ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part I--Fundamentals and Examples
ERIC Educational Resources Information Center
Schuttlefield, Jennifer D.; Grassian, Vicki H.
2008-01-01
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. Several examples of the use of FTIR-ATR spectroscopy in different undergraduate chemistry laboratory courses are presented here. These…
ERIC Educational Resources Information Center
Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.
2008-01-01
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…
Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry
NASA Astrophysics Data System (ADS)
Özgenç, Özlem; Durmaz, Sefa; Boyaci, Ismail Hakki; Eksi-Kocak, Haslet
2017-01-01
In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Fourier-transform Raman (FT-Raman) spectroscopy techniques were used to determine changes in the chemical structure of heat-treated woods. For this purpose, scots pine (Pinus sylvestris L.), oriental beech (Fagus orientalis L.), and oriental spruce (Picea orientalis L.) wood species were heat-treated at different temperatures. The effect of chemical changes on the FT-Raman and ATR-FTIR bands or ratios of heat-treated wood was related with the OH association of cellulose, functional groups, and the aromatic system of lignin. The effects of heat treatment on the carbohydrate and lignin peaks varied depending on the wood species. The spectral changes that occurred after heat treatment reflected the progress of the condensation reaction of lignin. Degradation of hemicelluloses led to a decrease in free hydroxyl groups. High temperature caused crystalline cellulose to increase due to the degradation of amorphous cellulose.
Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry.
Özgenç, Özlem; Durmaz, Sefa; Boyaci, Ismail Hakki; Eksi-Kocak, Haslet
2017-01-15
In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Fourier-transform Raman (FT-Raman) spectroscopy techniques were used to determine changes in the chemical structure of heat-treated woods. For this purpose, scots pine (Pinus sylvestris L.), oriental beech (Fagus orientalis L.), and oriental spruce (Picea orientalis L.) wood species were heat-treated at different temperatures. The effect of chemical changes on the FT-Raman and ATR-FTIR bands or ratios of heat-treated wood was related with the OH association of cellulose, functional groups, and the aromatic system of lignin. The effects of heat treatment on the carbohydrate and lignin peaks varied depending on the wood species. The spectral changes that occurred after heat treatment reflected the progress of the condensation reaction of lignin. Degradation of hemicelluloses led to a decrease in free hydroxyl groups. High temperature caused crystalline cellulose to increase due to the degradation of amorphous cellulose. Copyright © 2016 Elsevier B.V. All rights reserved.
Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa
2015-02-05
The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.
Mou, Yongyan; Rabalais, J Wayne
2009-07-01
The application of attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectromicroscopy for detection of explosive particles in fingerprints is described. The combined functions of ATR-FTIR spectromicroscopy are visual searching of particles in fingerprints and measuring the FTIR spectra of the particles. These functions make it possible to directly identify whether a suspect has handled explosives from the fingerprints alone. Particles in explosive contaminated fingerprints are either ingredients of the explosives, finger residues, or other foreign materials. These cannot normally be discriminated by their morphology alone. ATR-FTIR spectra can provide both particle morphology and composition. Fingerprints analyzed by ATR-FTIR can be used for further analysis and identification because of its non-destructive character. Fingerprints contaminated with three different types of explosives, or potential explosives, have been analyzed herein. An infrared spectral library was searched in order to identify the explosive residues. The acquired spectra are compared to those of finger residue alone, in order to differentiate such residue from explosive residue.
Characterization of Printing Inks Using DART-Q-TOF-MS and Attenuated Total Reflectance (ATR) FTIR.
Williamson, Rhett; Raeva, Anna; Almirall, Jose R
2016-05-01
The rise in improved and widely accessible printing technology has resulted in an interest to develop rapid and minimally destructive chemical analytical techniques that can characterize printing inks for forensic document analysis. Chemical characterization of printing inks allows for both discrimination of inks originating from different sources and the association of inks originating from the same source. Direct analysis in real-time mass spectrometry (DART-MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used in tandem to analyze four different classes of printing inks: inkjets, toners, offset, and intaglio. A total of 319 samples or ~ 80 samples from each class were analyzed directly on a paper substrate using the two methods. DART-MS was found to characterize the semi-volatile polymeric vehicle components, while ATR-FTIR provided chemical information associated with the bulk components of these inks. Complimentary data results in improved discrimination when both techniques are used in succession resulting in >96% discrimination for all toners, 95% for all inkjets, >92% for all offset, and >54% for all intaglio inks. © 2016 American Academy of Forensic Sciences.
Zarnowiec, Paulina; Mizera, Andrzej; Chrapek, Magdalena; Urbaniak, Mariusz; Kaca, Wieslaw
2016-07-01
Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research. © The Author(s) 2016.
Thomas L. Eberhardt
2009-01-01
The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...
Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Blinová, Lenka; Sirotiak, Maroš; Michalíková, Anna
2017-06-01
The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue), azo (Congo Red, Eriochrome Black T) and nitroso (Naphthol Green B) dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances. Spectral interpretation of dye spectra revealed valuable information about the identification and characterization of each group of dyes.
Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties
Washburn, Kathryn E.; Birdwell, Justin E.
2013-01-01
In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.
NASA Astrophysics Data System (ADS)
Pachaiappan, Rekha; Prakasarao, Aruna; Singaravelu, Ganesan
2017-02-01
Oral cancer is the most frequent type of cancer that occurs with 75000 to 80000 new cases reported every year in India. The carcinogens from tobacco and related products are the main cause for the oral cancer. ATR-FTIR method is label free, fast and cost-effective diagnostic method would allow for rapid diagnostic results in earlier stages by the minimal chemical changes occur in the biological metabolites available in the blood plasma. The present study reports the use of ATR-FTIR data with advanced statistical model (LDA-ANN) in the diagnosis of oral cancer from normal with better accuracy. The infrared spectra were acquired on ATR-FTIR Jasco spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 5 spectra recorded from each blood plasma sample. The spectral data were routed through the multilayer perception of artificial neural network to evaluate for the statistical efficacy. Among the spectral data it was found that amide II (1486 cm-1) and lipid (1526 cm-1) affords about 90 % in the discrimination between groups using LDA. These preliminary results indicate that ATR-FTIR is useful to differentiate normal subject from oral cancer patients using blood plasma.
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Blinová, Lenka; Gerulová, Kristína
2015-06-01
Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chromochloris zofingiensis (Dönz) Fucíková et L.A. Lewis (SAG 211-14, Gottingen, Germany), Acutodesmus obliguus (Turpin) Hegewald (SAG 276-1, Gottingen, Germany) and Chlorella sorokiniana (K. Brandt) Pröschold et Darienko (SAG 211-40c, Gottingen, Germany). Polysaccharides and lipids from these three algae species were determined using Fourier Transformed Infrared Spectroscopy (FTIR) with ATR accessory with diamante crystal in spectral range from 400 - 4000 cm-1 and resolution 4.
Nam, Yun Sik; Park, Jin Sook; Lee, Yeonhee; Lee, Kang-Bong
2014-05-01
Questioned documents examined in a forensic laboratory sometimes contain signatures written with ballpoint pen inks; these signatures were examined to assess the feasibility of micro-attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy as a forensic tool. Micro-ATR FTIR spectra for signatures written with 63 ballpoint pens available commercially in Korea were obtained and used to construct an FTIR spectral database. A library-searching program was utilized to identify the manufacturer, blend, and model of each black ballpoint pen ink based upon their FTIR peak intensities, positions, and patterns in the spectral database. This FTIR technique was also successfully used in determining the sequence of homogeneous line intersections from the crossing lines of two ballpoint pen signatures. We have demonstrated with a set of sample documents that micro-ATR FTIR is a viable nondestructive analytical method that can be used to identify the origin of the ballpoint pen ink used to mark signatures. © 2014 American Academy of Forensic Sciences.
ERIC Educational Resources Information Center
Dickson-Karn, Nicole M.
2017-01-01
A multi-instrument approach has been applied to the efficient identification of polymers in an upper-division undergraduate instrumental analysis laboratory course. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is used in conjunction with differential scanning calorimetry (DSC) to identify 18 polymer samples and…
ERIC Educational Resources Information Center
Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong
2016-01-01
This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…
Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee
2018-01-01
The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Lin, Zhongyu; Hu, Ren; Zhou, Jianzhang; Ye, Yiwen; Xu, Zhaoxi; Lin, Changjian
2017-02-01
The adsorption mechanism of bovine serum albumin (BSA) on hydroxyapatite (HA) for different time intervals has been studied by Fourier transform infrared (FTIR)-attenuated total internal reflectance (ATR) spectrometry in this paper. The difference spectra obtained in HA and BSA frequency regions demonstrate that the binding of Pdbnd O, from the phosphate (PO43 -) of HA, to the hydrogen of methyl (- CH3), methene (- CH2) and amideII (- CNH) in the protein appears to be much faster and stronger than that of the Psbnd O group. In addition, Ca2 + must serve as a key role in the interaction of BSA with HA. The binding of Ca2 + to the oxygen of the peptide bond seems to induce a significant reconformation of polypeptide backbones from β-pleated sheet to α-helix and β-turn of helical circles. This alteration seems to have been accompanied by much hydrogen of polypeptides driven to bind PO43 - and OH- of the HA actively and much -C = O and Hsbnd Nsbnd groups of the peptide bond freed from inter-chain hydrogen bonding to react on Ca2 + and combine strongly with the HA surface. This might be well expected to promote the HA biomineralization.
Biological Applications Of Fourier Transform Infrared (FTIR) Or Bloody FTIR
NASA Astrophysics Data System (ADS)
Jakobsen, R. J.; Winters, S.; Gendreau, R. M.
1981-10-01
An ex vivo FT-IR/ATR experiment for studying blood protein adsorption at the molecular level is described. This experiment involves the use of live dogs pumping the blood through a arterial-veinal shunt to the ATR cell and back into the animal. The results from these live dog experiments are compared to results obtained using donated whole blood. These experiments demonstrate that FT-IR can be used to study aqueous, physiological, flowing solutions in real time with the sensitivity necessary to detect minor changes.
Tahir, Haroon Elrasheid; Xiaobo, Zou; Zhihua, Li; Jiyong, Shi; Zhai, Xiaodong; Wang, Sheng; Mariod, Abdalbasit Adam
2017-07-01
Fourier transform infrared with attenuated total reflectance (FTIR-ATR) and Raman spectroscopy combined with partial least square regression (PLSR) were applied for the prediction of phenolic compounds and antioxidant activity in honey. Standards of catechin, syringic, vanillic, and chlorogenic acids were used for the identification and quantification of the individual phenolic compounds in six honey varieties using HPLC-DAD. Total antioxidant activity (TAC) and ferrous chelating capacity were measured spectrophotometrically. For the establishment of PLSR model, Raman spectra with Savitzky-Golay smoothing in wavenumber region 1500-400cm -1 was used while for FTIR-ATR the wavenumber regions of 1800-700 and 3000-2800cm -1 with multiplicative scattering correction (MSC) and Savitzky-Golay smoothing were used. The determination coefficients (R 2 ) were ranged from 0.9272 to 0.9992 for Raman while from 0.9461 to 0.9988 for FTIT-ART. The FTIR-ATR and Raman demonstrated to be simple, rapid and nondestructive methods to quantify phenolic compounds and antioxidant activities in honey. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rogers, K.; Cooper, W. T.; Hodgkins, S. B.; Verbeke, B. A.; Chanton, J.
2017-12-01
Solid state direct polarization 13C NMR spectroscopy (DP-NMR) is generally considered the most quantitatively reliable method for soil organic matter (SOM) characterization, including determination of the relative abundances of carbon functional groups. These functional abundances can then be used to calculate important soil parameters such as degree of humification and extent of aromaticity that reveal differences in reactivity or compositional changes along gradients (e.g. thaw chronosequence in permafrost). Unfortunately, the 13C NMR DP-NMR experiment is time-consuming, with a single sample often requiring over 24 hours of instrument time. Alternatively, solid state cross polarization 13C NMR (CP-NMR) can circumvent this problem, reducing analyses times to 4-6 hours but with some loss of quantitative reliability. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) is a quick and relatively inexpensive method for characterizing solid materials, and has been suggested as an alternative to NMR for analysis of soil organic matter and determination of humification (HI) and aromatization (AI) indices. However, the quantitative reliability of ATR-FTIR for SOM analyses has never been verified, nor have any ATR-FTIR data been compared to similar measurements by NMR. In this work we focused on FTIR vibrational bands that correspond to the three functional groups used to calculate HI and AI values: carbohydrates (1030 cm-1), aromatics (1510, 1630 cm-1), and aliphatics (2850, 2920 cm-1). Data from ATR-FTIR measurements were compared to analogous quantitation by DP- and CP-NMR using peat samples from Sweden, Minnesota, and North Carolina. DP- and CP-NMR correlate very strongly, although the correlations are not always 1:1. Direct comparison of relative abundances of the three functional groups determined by NMR and ATR-FTIR yielded satisfactory results for carbohydrates (r2= 0.78) and aliphatics (r2=0.58), but less so for aromatics (r2= 0.395). ATR-FTIR has to this point been used primarily for relative abundance analyses (e.g. calculating HI and AI values), but these results suggest FTIR can provide quantitative reliability that approaches that of NMR.
NASA Astrophysics Data System (ADS)
Remes, Z.; Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A.; Girard, H. A.; Arnault, J.-C.; Bergonzo, P.
2013-04-01
Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000-1500 cm-1 spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.
Jung, Melissa R; Horgen, F David; Orski, Sara V; Rodriguez C, Viviana; Beers, Kathryn L; Balazs, George H; Jones, T Todd; Work, Thierry M; Brignac, Kayla C; Royer, Sarah-Jeanne; Hyrenbach, K David; Jensen, Brenda A; Lynch, Jennifer M
2018-02-01
Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1-6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon. Published by Elsevier Ltd.
Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.
Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław
2017-01-01
Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).
Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun
2011-03-01
As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.
Yoshida, Satoshi; Zhang, Qin-Zeng; Sakuyama, Shu; Matsushima, Satoshi
2009-07-24
The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR) - attenuated total reflection (ATR) detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005 to approximately 3015 cm(-1), of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA)-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm(-1). The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.
Enhancing forensic science with spectroscopic imaging
NASA Astrophysics Data System (ADS)
Ricci, Camilla; Kazarian, Sergei G.
2006-09-01
This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging from analysis of trace evidence (e.g. in soil), tablets, drugs, fibres, tape explosives, biological samples to detection of gunshot residues and imaging of fingerprints.
Changes in Attenuated Total Reflection Fourier Transform Infrared Spectra as Blood Dries Out.
Zhang, Yinming; Wang, Qi; Li, Bing; Wang, Zhijun; Li, Chengzhi; Yao, Yao; Huang, Ping; Wang, Zhenyuan
2017-05-01
The time since deposition (TSD) of a bloodstain is a valuable piece of evidence for forensic scientists to determine the time at which a crime took place. The objective of this study was to determine whether attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy could be used to estimate the TSD of a bloodstain in a relatively early period (from 0 min to the time required for the bloodstain to dry out). For this purpose, we used ATR-FTIR to study the variation in absorbance at certain wavelengths as rat and human blood sample dried out. The absorbance at 3308/cm (A3308) was found to have a close correlation with the TSD during this time period, and the changes in A3308 during the drying of rat and human blood drops under the same controlled conditions showed similar results. The current study indicates that ATR-FTIR spectroscopy has potential as a tool for estimating TSD at early time periods of blood deposition. © 2016 American Academy of Forensic Sciences.
Jung, Melissa R.; Horgen, F. David; Orski, Sara V.; Rodriguez, Viviana; Beers, Kathryn L.; Balazs, George H.; Jones, T. Todd; Work, Thierry M.; Brignac, Kayla C.; Royer, Sarah-Jeanne; Hyrenbach, David K.; Jensen, Brenda A.; Lynch, Jennifer M.
2018-01-01
Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1–6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon.
NASA Astrophysics Data System (ADS)
Gartner, Hunter; Li, Yana; Almenar, Eva
2015-03-01
The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pletincx, Sven; Marcoen, Kristof; Trotochaud, Lena
Understanding the stability of chemical interactions at the polymer/metal oxide interface under humid conditions is vital to understand the long-term durability of hybrid systems. Therefore, the interface of ultrathin PMMA films on native aluminum oxide, deposited by reactive adsorption, was studied. The characterization of the interface of the coated substrates was performed using ambient pressure X-ray photoelectron spectroscopy (APXPS), Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The formation of hydrogen bonds and carboxylate ionic bonds at the interface are observed. The formed ionic bond is stable up to 5 Torrmore » water vapour pressure as shown by APXPS. However, when the coated samples are exposed to an excess of aqueous electrolyte, an increase in the amount of carboxylate bonds at the interface, as a result of hydrolysis of the methoxy group, is observed by ATR-FTIR Kretschmann. In conclusion, these observations, supported by ToF-SIMS spectra, lead to the proposal of an adsorption mechanism of PMMA on aluminum oxide, which shows the formation of methanol at the interface and the effect of water molecules on the different interfacial interactions.« less
USDA-ARS?s Scientific Manuscript database
Mid-infrared attenuated total reflectance (MIR-ATR) spectra (4000-380 cm-1) of pericarp, germ, and endosperm sections from sound and Fusarium-damaged wheat kernels of cultivars Everest and Tomahawk were collected using a Fourier Transform Infrared (FTIR) spectrometer. The differences in infrared abs...
Obinaju, Blessing E; Martin, Francis L
2016-01-01
Fourier-transform infrared (FTIR) spectroscopy is an emerging technique to detect biochemical alterations in biological tissues, particularly changes due to sub-lethal exposures to environmental contaminants. We have previously shown the potential of attenuated total reflection FTIR (ATR-FTIR) spectroscopy to detect real-time exposure to contaminants in sentinel organisms as well as the potential to relate spectral alterations to the presence of specific environmental agents. In this study based in the Niger Delta (Nigeria), changes occurring in fish tissues as a result of polycyclic aromatic hydrocarbon (PAH) exposure at contaminated sites are compared to the infrared (IR) spectra of the tissues obtained from a relatively pristine site. Multivariate analysis revealed that PAH contamination could be occurring at the pristine site, based on the IR spectra and significant (P<0.0001) differences between sites. The study provides evidence of the IR spectroscopy techniques' sensitivity and supports their potential application in environmental biomonitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanocrystalline diamond sensor targeted for selective CRP detection: an ATR-FTIR spectroscopy study.
Andersson, Per Ola; Viberg, Pernilla; Forsberg, Pontus; Nikolajeff, Fredrik; Österlund, Lars; Karlsson, Mikael
2016-05-01
Protein immobilization on functionalized fluorine-terminated nanocrystalline (NCD) films was studied by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using an immobilization protocol developed to specifically bind C-reactive protein (CRP). Using an ATR-FTIR spectroscopy method employing a force-controlled anvil-type configuration, three critical steps of the ex situ CRP immobilization were analyzed. First, the NCD surface was passivated by deposition of a copolymer layer consisting of polyethylene oxide and polypropylene oxide. Second, a synthetic modified polypeptide binder with high affinity to CRP was covalently attached to the polymeric film. Third, CRP dissolved in aqueous buffer in concentrations of 10-20 μg/mL was added on the functionalized NCD surface. Both the amide I and II bands, due to the polypeptide binder and CRP, were clearly observed in ATR-FTIR spectra. CRP amide I bands were extracted from difference spectra and yielded bands that agreed well with the reported amide I band of free (non-bonded) CRP in solution. Thus, our results show that CRP retains its secondary structure when it is attached to the polypeptide binders. Compared to previous IR studies of CRP in solution, about 200 times lower concentration was applied in the present study. Graphical Abstract Direct non-destructive ATR-FTIR analysis of C-reactive protein (CRP) selectively bound to functionalized nanocrystalline diamond (NCD) sensor surface.
Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening
NASA Astrophysics Data System (ADS)
Rymsza, Taciana; Ribeiro, Eliane Aline; de Carvalho, Luis Felipe das Chagas e. Silva; Bhattacharjee, Tanmoy; de Azevedo Canevari, Renata
2018-05-01
The human papillomavirus (HPV) genital infection is considered one of the most common sexually transmitted diseases worldwide, and has been associated with cervical cancer. The objective of this study was to investigate the efficacy of the diagnostic methods: polymerase chain reaction (PCR) and Fourier transform infrared (FTIR) equipped with an ATR (Attenuated Total Reflectance) unit (Pike Tech) spectroscopy, to diagnose HPV infection in women undergoing gynecological examination. Seventeen patients (41.46%) of the 41 patients analyzed were diagnosed with exophytic/condyloma acuminate lesions by clinical analysis, 29 patients (70.7%) (G1 group) of the 41 patients, showed positive result for HPV cell injury by oncotic colpocitology and 12 patients (29.3%) (G2 group), presented negative result for cellular lesion and absence of clinical HPV lesion. Four samples were obtained per patient, which were submitted oncotic colpocitology analysis (Papanicolau staining, two samples), PCR (one sample) and ATR-FTIR analysis (one sample). L1 gene was amplified by PCR technique with specific GP5+/GP6+ and MY09/MY11 primers. PCR results were uniformly positive for presence of HPV in all analyzed samples. Multivariate analysis of ATR-FTIR spectra suggests no significant biochemical changes between groups and no clustering formed, concurring with results of PCR. This study suggests that PCR and ATR-FTIR are highly sensitive technique for HPV detection.
Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening.
Rymsza, Taciana; Ribeiro, Eliane Aline; de Carvalho, Luis Felipe das Chagas E Silva; Bhattacharjee, Tanmoy; de Azevedo Canevari, Renata
2018-05-05
The human papillomavirus (HPV) genital infection is considered one of the most common sexually transmitted diseases worldwide, and has been associated with cervical cancer. The objective of this study was to investigate the efficacy of the diagnostic methods: polymerase chain reaction (PCR) and Fourier transform infrared (FTIR) equipped with an ATR (Attenuated Total Reflectance) unit (Pike Tech) spectroscopy, to diagnose HPV infection in women undergoing gynecological examination. Seventeen patients (41.46%) of the 41 patients analyzed were diagnosed with exophytic/condyloma acuminate lesions by clinical analysis, 29 patients (70.7%) (G1 group) of the 41 patients, showed positive result for HPV cell injury by oncotic colpocitology and 12 patients (29.3%) (G2 group), presented negative result for cellular lesion and absence of clinical HPV lesion. Four samples were obtained per patient, which were submitted oncotic colpocitology analysis (Papanicolau staining, two samples), PCR (one sample) and ATR-FTIR analysis (one sample). L1 gene was amplified by PCR technique with specific GP5+/GP6+ and MY09/MY11 primers. PCR results were uniformly positive for presence of HPV in all analyzed samples. Multivariate analysis of ATR-FTIR spectra suggests no significant biochemical changes between groups and no clustering formed, concurring with results of PCR. This study suggests that PCR and ATR-FTIR are highly sensitive technique for HPV detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Qin; Zhang, Youyu; Liu, Meiling; Ye, Min; Zhang, YuQin; Yao, Shouzhuo
2007-07-30
The electrochemical piezoelectric quartz crystal impedance (EQCI), a combined technique of piezoelectric quartz crystal impedance (PQCI), electrochemical impedance (EI), and Fourier transform infrared spectroscopy-attenuated total internal reflectance spectroscopy (FTIR-ATR) were used to in situ study the adsorption process of fibrinogen onto the surface of biomaterials-TiO2 and hydroxyapatite (Ca5(PO4)3OH, HAP). The equivalent circuit parameters, the resonance frequencies and the half peak width of the conductance spectrum of the two biomaterial-modified piezoelectric quartz crystal (PQC) resonances as well as the FTIR-ATR spectra of fibrinogen during fibrinogen adsorption on TiO2 and HAP particles modified electrode surface were obtained. The adsorption kinetics and mechanism of fibrinogen were investigated and discussed as well. The results suggested that two consecutive steps occurred during the adsorption of fibrinogen onto TiO2 and hydroxyapatite (HAP) surface. The fibrinogen molecules were firstly adsorbed onto the surface, and then the rearrangement of adsorbed fibrinogen or multi-layered adsorption occurred. The FTIR-ATR spectroscopy investigations showed that the secondary structure of fibrinogen molecules was altered during the adsorption and the adsorption kinetics of fibrinogen related with the variety of biomaterials. These experimental results suggest a way for enriching biological analytical science and developing new applications of analytical techniques, such as PQCI, EI, and FTIR-ATR.
Liu, Yongliang; Kim, Hee-Jin
2017-06-22
With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber ( im ) mutant cotton fibers. It was observed that the R value, CI IR , and the integrated intensity of the 895 cm -1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.
Tang, Yongjiao; Jing, Nan; Zhang, Pudun
2015-11-01
A series of chlorobutyl rubber/polyamide-12 (CIIR/PA-12) blends compatibilized by different amounts of maleic anhydride (MAH) grafted polypropylene (PP-g-MAH) were investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) mapping. Multivariate curve resolution (MCR) was used to process the FT-IR images. Both the spectra of pure components in the blends and their concentration distributions in a micro-region were acquired. Our results demonstrated that the blend with 15 parts per hundred rubber PP-g-MAH showed the best miscibility. An amide interphase and an imide interphase were inferred by analyzing the spectra of MCR component 3 of the blends with and without PP-g-MAH, respectively. Correspondingly, two different compatibilizing mechanisms were proposed for these blends.
Kandhro, Aftab A; Laghari, Abdul Hafeez; Mahesar, Sarfaraz A; Saleem, Rubina; Nelofar, Aisha; Khan, Salman Tariq; Sherazi, S T H
2013-11-01
A quick and reliable analytical method for the quantitative assessment of cefixime in orally administered pharmaceutical formulations is developed by using diamond cell attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy as an easy procedure for quality control laboratories. The standards for calibration were prepared in aqueous medium ranging from 350 to 6000mg/kg. The calibration model was developed based on partial least square (PLS) using finger print region of FT-IR spectrum in the range from 1485 to 887cm(-1). Excellent coefficient of determination (R(2)) was achieved as high as 0.99976 with root mean square error of 44.8 for calibration. The application of diamond cell (smart accessory) ATR FT-IR proves a reliable determination of cefixime in pharmaceutical formulations to assess the quality of the final product. Copyright © 2013 Elsevier B.V. All rights reserved.
Brittain, Harry G
2016-01-01
Through the combined use of infrared (IR) absorption spectroscopy and attenuated total reflectance (ATR) sampling, the composition of inks used to print the many different types of one-cent Benjamin Franklin stamps of the 19th century has been established. This information permits a historical evaluation of the formulations used at various times, and also facilitates the differentiation of the various stamps from each other. In two instances, the ink composition permits the unambiguous identification of stamps whose appearance is identical, and which (until now) have only been differentiated through estimates of the degree of hardness or softness of the stamp paper, or through the presence or absence of a watermark in the paper. In these instances, the use of ATR Fourier transform infrared spectroscopy (FT-IR) spectroscopy effectively renders irrelevant two 100-year-old practices of stamp identification. Furthermore, since the use of ATR sampling makes it possible to obtain the spectrum of a stamp still attached to its cover, it is no longer necessary to identify these blue Franklin stamps using their cancellation dates. © The Author(s) 2015.
Khan, Mohd Umar; Hassan, Mohammad Fahimul; Rauf, Abdul
2017-01-01
This paper reports the application of a simple and rapid method for the determination of trans fatty acid (TFA) content in some of the selected Indian fast food products and hydrogenated fats using Fourier transform infrared (FTIR) spectroscopy in conjunction with second derivative procedure. FTIR spectroscopy has been successfully applied to trans measurement using the absorbance bands at or near 966 cm -1 in the FTIR spectra. It was found from the analysis that TFA content of fast food product was ranging from 1.57% to 3.83% of the total fat while for hydrogenated fats, comparatively large quantity of TFA was detected in the range of 3.31% to 4.73%. Since GC-FID is most widely used method for the determination of fatty acid (FA) composition, this method was used for the sake of comparison. Value of regression coefficient was found very close to one (0.99503) with standard deviation of 0.10247 showing a good agreement between GC-FID and proposed ATR-FTIR method.
Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J
2018-02-01
Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted more changes. Size exclusion chromatography analysis depicted the complete dissolution of BSA in the aqueous media employed in the wet granulation method. In conclusion, an ATR FT-IR spectroscopic method was successfully developed to investigate BSA secondary structure in solid lipid matrices following the subtraction of lipid spectral interference. The ATR FT-IR spectroscopy could further be applied to investigate the secondary structure perturbations of therapeutic proteins during their formulation development.
Bai, Yue-kui; Yu, Li-wei; Zhang, Le; Fu, Jing; Leng, Hui; Yang, Xiao-jun; Ma, Jun-qiang; Li, Xiao-juan; Li, Xiu-juan; Zhu, Qing; Zhang, Yuan-fu; Ling, Xiao-feng; Cao, Wen-lan
2015-03-01
To explore the feasibility of quick intraoperative in situ and noninvasive diagnosis of lymph node metastasis in gastric cancer by Fourier transform infrared (FTIR) spectrometry. FTIR spectra of surgically removed fresh lymph nodes were measured by FTIR via probe of attenuated total reflection (ATR). For each spectrum, 13 bands were indentified and assigned between 3 000 and 1 000 cm(-1). Peaks in the spectra were measured and relative intensity ratios were calculated and compared between the spectra of Metastatic lymph nodes (MLN) and Non-metastatic lymph nodes (NMLN). Standard statistic analysis was performed. 720 lymph nodes were measured in 38 gastric cancer patients. Results show that there were significant differences between the FTIR of 540 MLN and 180 NMLN. (1) For the band related to nucleic acid: The ratios of I1240/I1460 (p = 0.015) and I1080/I1460 (p = 0.034) increased in MLN, which shows that the relative quantity of nucleic acid was more in MLN than that in NMLN. (2) For the bands related to protein: The ratios of I1640 /I1460 (p = 0.001) and I146/I1460 (p = 0.027) increased in MLN, which shows that the relative quantity of protein was more in MLN. (3) For the bands related to lipid: The ratio of I2855/I460 and I1740/I1460 decreased in MLN FTIR spectrum, indicating the lower relative quantity of lipid in MLN. (4) For the bands related to carbohydrate: The ratio of I1160/I1460 (p = 0.023) decreased in MLN FTIR spectrum, indicating the lower relative quantity of carbohydrate in MLN. The results demonstrate that the FTIR spectroscopy technique maybe develop into a promising method for in situ and quick intraoperative differential diagnosis of lymph node metastasis in gastric cancer.
de Castro, Eduardo da S G; Cassella, Ricardo J
2016-05-15
Reference methods for quality control of vaccines usually require treatment of the samples before analysis. These procedures are expensive, time-consuming, unhealthy and require careful manipulation of the sample, making them a potential source of analytical errors. This work proposes a novel method for the quality control of thermostabilizer samples of the yellow fever vaccine employing attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). The main advantage of the proposed method is the possibility of direct determination of the analytes (sodium glutamate and sorbitol) without any pretreatment of the samples. Operational parameters of the FTIR technique, such as the number of accumulated scans and nominal resolution, were evaluated. The best conditions for sodium glutamate were achieved when 64 scans were accumulated using a nominal resolution of 4 cm(-1). The measurements for sodium glutamate were performed at 1347 cm(-1) (baseline correction between 1322 and 1369 cm(-1)). In the case of sorbitol, the measurements were done at 890cm(-1) (baseline correction between 825 and 910 cm(-1)) using a nominal resolution of 2 cm(-1) with 32 accumulated scans. In both cases, the quantitative variable was the band height. Recovery tests were performed in order to evaluate the accuracy of the method and recovery percentages in the range 93-106% were obtained. Also, the methods were compared with reference methods and no statistical differences were observed. The limits of detection and quantification for sodium glutamate were 0.20 and 0.62% (m/v), respectively, whereas for sorbitol they were 1 and 3.3% (m/v), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Non-destructive evaluation of polyolefin thermal aging using infrared spectroscopy
NASA Astrophysics Data System (ADS)
Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.
2017-04-01
Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for nondestructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.
Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.
Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to trackmore » oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.« less
Infrared vibrational spectroscopy: a rapid and novel diagnostic and monitoring tool for cystinuria
Oliver, Katherine V.; Vilasi, Annalisa; Maréchal, Amandine; Moochhala, Shabbir H.; Unwin, Robert J.; Rich, Peter R.
2016-01-01
Cystinuria is the commonest inherited cause of nephrolithiasis (~1% in adults; ~6% in children) and is the result of impaired cystine reabsorption in the renal proximal tubule. Cystine is poorly soluble in urine with a solubility of ~1 mM and can readily form microcrystals that lead to cystine stone formation, especially at low urine pH. Diagnosis of cystinuria is made typically by ion-exchange chromatography (IEC) detection and quantitation, which is slow, laboursome and costly. More rapid and frequent monitoring of urinary cystine concentration would significantly improve the diagnosis and clinical management of cystinuria. We used attenuated total reflection - Fourier transform infrared spectroscopy (ATR-FTIR) to detect and quantitate insoluble cystine in 22 cystinuric and 5 healthy control urine samples. Creatinine concentration was also determined by ATR-FTIR to adjust for urinary concentration/dilution. Urine was centrifuged, the insoluble fraction re-suspended in 5 μL water and dried on the ATR prism. Cystine was quantitated using its 1296 cm−1 absorption band and levels matched with parallel measurements made using IEC. ATR-FTIR afforded a rapid and inexpensive method of detecting and quantitating insoluble urinary cystine. This proof-of-concept study provides a basis for developing a high-throughput, cost-effective diagnostic method for cystinuria, and for point-of-care clinical monitoring PMID:27721432
FT-IR examination of the development of secondary cell wall in cotton fibers
USDA-ARS?s Scientific Manuscript database
The secondary cell wall development of cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering was examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. Generally, a progressive intensity increase for bands assigned to cellulose Iß was ...
Water clustering in glassy polymers.
Davis, Eric M; Elabd, Yossef A
2013-09-12
In this study, water solubility and water clustering in several glassy polymers, including poly(methyl methacrylate) (PMMA), poly(styrene) (PS), and poly(vinylpyrrolidone) (PVP), were measured using both quartz spring microbalance (QSM) and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Specifically, QSM was used to determine water solubility, while FTIR-ATR spectroscopy provided a direct, molecular-level measurement of water clustering. The Flory-Huggins theory was employed to obtain a measure of water-polymer interaction and water solubility, through both prediction and regression, where the theory failed to predict water solubility in both PMMA and PVP. Furthermore, a comparison of water clustering between direct FTIR-ATR spectroscopy measurements and predictions from the Zimm-Lundberg clustering analysis produced contradictory results. The failure of the Flory-Huggins theory and Zimm-Lundberg clustering analysis to describe water solubility and water clustering, respectively, in these glassy polymers is in part due to the equilibrium constraints under which these models are derived in contrast to the nonequilibrium state of glassy polymers. Additionally, FTIR-ATR spectroscopy results were compared to temperature-dependent diffusivity data, where a correlation between the activation energy for diffusion and the measured water clustering was observed.
NASA Astrophysics Data System (ADS)
Irfanita, N.; Jaswir, I.; Mirghani, M. E. S.; Sukmasari, S.; Ardini, Y. D.; Lestari, W.
2017-08-01
The presence of gelatin is not limited to food products but has also been found in pharmaceuticals. Most dental materials available in Malaysia are imported from other countries and might contain gelatin which is a protein derived either from porcine, bovine or other animal sources. Authentication of gelatin is crucial due to religious and health concerns. Therefore, this study aimed to detect gelatin in dental materials using ATR-FTIR. Forty two samples of dental material were purchased from dental suppliers and detection was done using ATR-FTIR. The spectrum from each sample was compared against standard bovine and porcine gelatin. Experimental dental paste containing bovine and porcine gelatin at concentrations of 5, 10, 15 and 20% were also prepared for quantification analysis. The results showed that gelatin was present in nine out of forty two samples of dental materials but the species of origin was not confirmed. Meanwhile, in the experimental bovine and porcine dental paste, it was seen that as the concentration increased, the intensity of the absorption of Amide group also increased. Thus, ATR-FTIR can be utilized as a reliable tool to detect gelatin in dental materials and other pharmaceuticals.
Barraza-Garza, Guillermo; Castillo-Michel, Hiram; de la Rosa, Laura A.; Martinez-Martinez, Alejandro; Pérez-León, Jorge A.; Cotte, Marine; Alvarez-Parrilla, Emilio
2016-01-01
The protective effect of different polyphenols, catechin (Cat), quercetin (Qc) (flavonoids), gallic acid (GA), caffeic acid (CfA), chlorogenic acid (ChA) (phenolic acids), and capsaicin (Cap), against H2O2-induced oxidative stress was evaluated in rat enterocytes using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Fourier Transform Infrared Microspectroscopy (FTIRM), and results were compared to standard lipid peroxidation techniques: conjugated dienes (CD) and Thiobarbituric Acid Reactive Substances (TBARS). Analysis of ATR-FTIR and FTIRM spectral data allowed the simultaneous evaluation of the effects of H2O2 and polyphenols on lipid and protein oxidation. All polyphenols showed a protective effect against H2O2-induced oxidative stress in enterocytes, when administered before or after H2O2. Cat and capsaicin showed the highest protective effect, while phenolic acids had weaker effects and Qc presented a mild prooxidative effect (IR spectral profile of biomolecules between control and H2O2-treated cells) according to FTIR analyses. These results demonstrated the viability to use infrared spectroscopy to evaluate the oxidant and antioxidant effect of molecules in cell systems assays. PMID:27213031
Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy
NASA Astrophysics Data System (ADS)
Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong
2018-05-01
In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Thomas, S.; Tokas, R. B.; Kshirsagar, R. J.
2014-01-01
Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively.
Comnea-Stancu, Ionela Raluca; Wieland, Karin; Ramer, Georg; Schwaighofer, Andreas
2016-01-01
This work was sparked by the reported identification of man-made cellulosic fibers (rayon/viscose) in the marine environment as a major fraction of plastic litter by Fourier transform infrared (FT-IR) transmission spectroscopy and library search. To assess the plausibility of such findings, both natural and man-made fibers were examined using FT-IR spectroscopy. Spectra acquired by transmission microscopy, attenuated total reflection (ATR) microscopy, and ATR spectroscopy were compared. Library search was employed and results show significant differences in the identification rate depending on the acquisition method of the spectra. Careful selection of search parameters and the choice of spectra acquisition method were found to be essential for optimization of the library search results. When using transmission spectra of fibers and ATR libraries it was not possible to differentiate between man-made and natural fibers. Successful differentiation of natural and man-made cellulosic fibers has been achieved for FT-IR spectra acquired by ATR microscopy and ATR spectroscopy, and application of ATR libraries. As an alternative, chemometric methods such as unsupervised hierarchical cluster analysis, principal component analysis, and partial least squares-discriminant analysis were employed to facilitate identification based on intrinsic relationships of sample spectra and successful discrimination of the fiber type could be achieved. Differences in the ATR spectra depending on the internal reflection element (Ge versus diamond) were observed as expected; however, these did not impair correct classification by chemometric analysis. Moreover, the effects of different levels of humidity on the IR spectra of natural and man-made fibers were investigated, too. It has been found that drying and re-humidification leads to intensity changes of absorption bands of the carbohydrate backbone, but does not impair the identification of the fiber type by library search or cluster analysis. PMID:27650982
Unravelling the Chemical Influence of Water on the PMMA/Aluminum Oxide Hybrid Interface In Situ
Pletincx, Sven; Marcoen, Kristof; Trotochaud, Lena; ...
2017-10-17
Understanding the stability of chemical interactions at the polymer/metal oxide interface under humid conditions is vital to understand the long-term durability of hybrid systems. Therefore, the interface of ultrathin PMMA films on native aluminum oxide, deposited by reactive adsorption, was studied. The characterization of the interface of the coated substrates was performed using ambient pressure X-ray photoelectron spectroscopy (APXPS), Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The formation of hydrogen bonds and carboxylate ionic bonds at the interface are observed. The formed ionic bond is stable up to 5 Torrmore » water vapour pressure as shown by APXPS. However, when the coated samples are exposed to an excess of aqueous electrolyte, an increase in the amount of carboxylate bonds at the interface, as a result of hydrolysis of the methoxy group, is observed by ATR-FTIR Kretschmann. In conclusion, these observations, supported by ToF-SIMS spectra, lead to the proposal of an adsorption mechanism of PMMA on aluminum oxide, which shows the formation of methanol at the interface and the effect of water molecules on the different interfacial interactions.« less
Quantitative analysis of anti-inflammatory drugs using FTIR-ATR spectrometry
NASA Astrophysics Data System (ADS)
Hassib, Sonia T.; Hassan, Ghaneya S.; El-Zaher, Asmaa A.; Fouad, Marwa A.; Taha, Enas A.
2017-11-01
Four simple, accurate, sensitive and economic Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopic (ATR-FTIR) methods have been developed for the quantitative estimation of some non-steroidal anti-inflammatory drugs. The first method involves the determination of Etodolac by direct measurement of the absorbance at 1716 cm- 1. In the second method, the second derivative of the IR spectra of Tolfenamic acid and its reported degradation product (2-chlorobenzoic acid) was used and the amplitudes were measured at 1084.27 cm- 1 and 1056.02 cm- 1 for Tolfenamic acid and 2-chlorobenzoic acid, respectively. The third method used the first derivative of the IR spectra of Bumadizone and its reported degradation product, N,N-diphenylhydrazine and the amplitudes were measured at 2874.98 cm- 1 and 2160.32 cm- 1 for Bumadizone and N,N-diphenylhydrazine, respectively. The fourth method depends on measuring the amplitude of Diacerein at 1059.18 cm- 1 and of rhein, its reported degradation product, at 1079.32 cm- 1 in their first derivative spectra. The four methods were successfully applied on the pharmaceutical formulations by extracting the active constituent in chloroform and the extract was directly measured in liquid phase mode using a specific cell. Moreover, validation of these methods was carried out following International Conference of Harmonisation (ICH) guidelines.
Sharp, Michael D; Kocaoglu-Vurma, Nurdan A; Langford, Vaughan; Rodriguez-Saona, Luis E; Harper, W James
2012-03-01
Vanilla beans have been shown to contain over 200 compounds, which can vary in concentration depending on the region where the beans are harvested. Several compounds including vanillin, p-hydroxybenzaldehyde, guaiacol, and anise alcohol have been found to be important for the aroma profile of vanilla. Our objective was to evaluate the performance of selected ion flow tube mass spectrometry (SIFT-MS) and Fourier-transform infrared (FTIR) spectroscopy for rapid discrimination and characterization of vanilla bean extracts. Vanilla extracts were obtained from different countries including Uganda, Indonesia, Papua New Guinea, Madagascar, and India. Multivariate data analysis (soft independent modeling of class analogy, SIMCA) was utilized to determine the clustering patterns between samples. Both methods provided differentiation between samples for all vanilla bean extracts. FTIR differentiated on the basis of functional groups, whereas the SIFT-MS method provided more specific information about the chemical basis of the differentiation. SIMCA's discriminating power showed that the most important compounds responsible for the differentiation between samples by SIFT-MS were vanillin, anise alcohol, 4-methylguaiacol, p-hydroxybenzaldehyde/trimethylpyrazine, p-cresol/anisole, guaiacol, isovaleric acid, and acetic acid. ATR-IR spectroscopy analysis showed that the classification of samples was related to major bands at 1523, 1573, 1516, 1292, 1774, 1670, 1608, and 1431 cm(-1) , associated with vanillin and vanillin derivatives. © 2012 Institute of Food Technologists®
Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub
2016-01-01
Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266
Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub
2016-03-30
Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.
Microplastics on sandy beaches of the Baja California Peninsula, Mexico.
Piñon-Colin, Teresita de Jesus; Rodriguez-Jimenez, Ruben; Pastrana-Corral, Miguel Angel; Rogel-Hernandez, Eduardo; Wakida, Fernando Toyohiko
2018-06-01
Microplastics have become a concern in recent years because of their negative impact on marine and freshwater environments. Twenty-one sandy beach sites were sampled to investigate the occurrence and distribution of microplastics on the sandy beaches of the Baja California Peninsula, Mexico, as well as their spectroscopic characterization and morphology. Microplastics were separated using the density method and identified using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). The mean abundance of microplastics in the samples was 135 ± 92 particles kg−1, and fiber was the most abundant microplastic found in the samples, comprising 91% of the total microplastics identified. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis of the microplastics showed that the main polymers found in microplastics were polyacrylic, polyacrylamide, polyethylene terephthalate, polyesters, and nylon.
Baij, Lambert; Hermans, Joen J; Keune, Katrien; Iedema, Piet
2018-06-18
The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Application of FTIR-ATR spectroscopy to the quantification of sugar in honey.
Anjos, Ofélia; Campos, Maria Graça; Ruiz, Pablo Contreras; Antunes, Paulo
2015-02-15
A Fourier transform infrared spectroscopic method with attenuated total reflectance (FTIR-ATR) and partial least squares (PLS) regression model for the prediction of sugar content in honey samples was calculated. Standards of trehalose, glucose, fructose, sucrose, melezitose, turanose and maltose were used to identify and quantify the individual sugar components in 63 honey samples by HPAEC-IPAD. Fructose and glucose are the highest sugars in honey with an average value of 36% and 26%, respectively. The 1stDer spectra with MSC or SLS in the wave number range from 1500 to 750cm(-1) provide the best calibration model with a r(2) of 86.60 and 86.01 with RPD of 2.6 and 2.55, respectively for fructose and glucose. For turanose and melezitose good models were also found. The FTIR-ATR showed to be a good methodology to quantify the main sugar content in honey and easily adapted to routine analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang
2015-02-01
A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.
Infrared and colorimetric characterization of discolored kiln-dried hard maple lumber
Benjamin E. Dawson-Andoh; Michael Wiemann; Laurent Matuana; John Baumgras
2004-01-01
Discoloration of hard maple lumber commonly occurs during kiln-drying. In this study, discolored andnondiscolored kiln-dried hard maple lumber boards were characterized using a colorimetric method and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR). Colorimetric measurements (L*, a*, b*) were found to be in good agreement with visual...
USDA-ARS?s Scientific Manuscript database
Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...
Infrared spectroscopy as a screening technique for colitis
NASA Astrophysics Data System (ADS)
Titus, Jitto; Ghimire, Hemendra; Viennois, Emilie; Merlin, Didier; Perera, A. G. Unil
2017-05-01
There remains a great need for diagnosis of inflammatory bowel disease (IBD), for which the current technique, colonoscopy, is not cost-effective and presents a non-negligible risk for complications. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy is a new screening technique to evaluate colitis. Comparing infrared spectra of sera to study the differences between them can prove challenging due to the complexity of its biological constituents giving rise to a plethora of vibrational modes. Overcoming these inherent infrared spectral analysis difficulties involving highly overlapping absorbance peaks and the analysis of the data by curve fitting to improve the resolution is discussed. The proposed technique uses colitic and normal wild type mice dried serum to obtain ATR/FTIR spectra to effectively differentiate colitic mice from normal mice. Using this method, Amide I group frequency (specifically, alpha helix to beta sheet ratio of the protein secondary structure) was identified as disease associated spectral signature in addition to the previously reported glucose and mannose signatures in sera of chronic and acute mice models of colitis. Hence, this technique will be able to identify changes in the sera due to various diseases.
Chércoles Asensio, Ruth; San Andrés Moya, Margarita; de la Roja, José Manuel; Gómez, Marisa
2009-12-01
In the last few decades many new polymers have been synthesized that are now being used in cultural heritage conservation. The physical and chemical properties and the long-term behaviors of these new polymers are determined by the chemical composition of the starting materials used in their synthesis along with the nature of the substances added to facilitate their production. The practical applications of these polymers depend on their composition and form (foam, film, sheets, pressure-sensitive adhesives, heat-seal adhesives, etc.). Some materials are used in restoration works and others for the exhibition, storage and transport of works of art. In all cases, it is absolutely necessary to know their compositions. Furthermore, many different materials that are manufactured for other objectives are also used for conservation and restoration. The technical information about the materials provided by the manufacturer is usually incomplete, so it is necessary to analytically characterize such materials. FTIR spectrometry is widely used for polymer identification, and, more recently, ATR-FTIR has been shown to give excellent results. This paper reports the ATR-FTIR analysis of samples of polymeric materials used in the conservation of artworks. These samples were examined directly in the solid material without sample preparation.
Kumar, Naveen; Thomas, S; Tokas, R B; Kshirsagar, R J
2014-01-24
Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Aleixandre-Tudo, Jose Luis; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel
2018-01-01
The wine industry requires reliable methods for the quantification of phenolic compounds during the winemaking process. Infrared spectroscopy appears as a suitable technique for process control and monitoring. The ability of Fourier transform near infrared (FT-NIR), attenuated total reflectance mid infrared (ATR-MIR) and Fourier transform infrared (FT-IR) spectroscopies to predict compositional phenolic levels during red wine fermentation and aging was investigated. Prediction models containing a large number of samples collected over two vintages from several industrial fermenting tanks as well as wine samples covering a varying number of vintages were validated. FT-NIR appeared as the most accurate technique to predict the phenolic content. Although slightly less accurate models were observed, ATR-MIR and FT-IR can also be used for the prediction of the majority of phenolic measurements. Additionally, the slope and intercept test indicated a systematic error for the three spectroscopies which seems to be slightly more pronounced for HPLC generated phenolics data than for the spectrophotometric parameters. However, the results also showed that the predictions made with the three instruments are statistically comparable. The robustness of the prediction models was also investigated and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Aqueous infrared carboxylate absorbances: Aliphatic di-acids
Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.
1998-01-01
Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.
Peng, Jiangtao; Peng, Silong; Xie, Qiong; Wei, Jiping
2011-04-01
In order to eliminate the lower order polynomial interferences, a new quantitative calibration algorithm "Baseline Correction Combined Partial Least Squares (BCC-PLS)", which combines baseline correction and conventional PLS, is proposed. By embedding baseline correction constraints into PLS weights selection, the proposed calibration algorithm overcomes the uncertainty in baseline correction and can meet the requirement of on-line attenuated total reflectance Fourier transform infrared (ATR-FTIR) quantitative analysis. The effectiveness of the algorithm is evaluated by the analysis of glucose and marzipan ATR-FTIR spectra. BCC-PLS algorithm shows improved prediction performance over PLS. The root mean square error of cross-validation (RMSECV) on marzipan spectra for the prediction of the moisture is found to be 0.53%, w/w (range 7-19%). The sugar content is predicted with a RMSECV of 2.04%, w/w (range 33-68%). Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.
2018-06-01
Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.
NASA Astrophysics Data System (ADS)
Kino, Saiko; Omori, Suguru; Matsuura, Yuji
2016-03-01
An attenuated-total-reflection (ATR), mid-infrared spectroscopy system that consists of hollow optical fibers, a trapezoidal multi-reflection ATR prism, and a conventional FT-IR spectrometer has been developed to measure blood glucose levels. Owing to the low transmission loss and high flexibility of the hollow-optical fiber, the system can measure any sites of the human body where blood capillaries are close to the surface of mucosa, such as inner lips. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. The results of in-vivo measurement of human inner lips showed the feasibility of the proposed system, and the measurement errors were within 20%.
Yusof, Nur A'thifah; Isha, Azizul; Ismail, Intan Safinar; Khatib, Alfi; Shaari, Khozirah; Abas, Faridah; Rukayadi, Yaya
2015-09-01
The metabolite changes in three germplasm accessions of Malaysia Andrographis paniculata (Burm. F.) Nees, viz. 11265 (H), 11341 (P) and 11248 (T), due to their different harvesting ages and times were successfully evaluated by attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy and translated through multivariate data analysis of principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). This present study revealed the feasibility of ATR-FTIR in detecting the trend changes of the major metabolites - andrographolide and neoandrographolide - functional groups in A. paniculata leaves of different accessions. The harvesting parameter was set at three different ages of 120, 150 and 180 days after transplanting (DAT) and at two different time sessions of morning (7:30-10:30 am) and evening (2:30-5.30 pm). OPLS-DA successfully discriminated the A. paniculata crude extracts into groups of which the main constituents - andrographolide and neoandrographolide - could be mainly observed in the morning session of 120 DAT for P and T, while H gave the highest intensities of these constituents at 150 DAT. The information extracted from ATR-FTIR data through OPLS-DA could be useful in tailoring this plant harvest stage in relation to the content of its two major diterpene lactones: andrographolide and neoandrographolide. © 2014 Society of Chemical Industry.
Käppler, Andrea; Fischer, Marten; Scholz-Böttcher, Barbara M; Oberbeckmann, Sonja; Labrenz, Matthias; Fischer, Dieter; Eichhorn, Klaus-Jochen; Voit, Brigitte
2018-06-16
In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial pitfalls. Visual identification approaches using morphological criteria alone often lead to significant errors, being especially true for MP fibers. Reliable, chemical structure-based identification methods are indispensable. In this context, the frequently used vibrational spectroscopic techniques but also thermoanalytical methods are established. However, no critical comparison of these fundamentally different approaches has ever been carried out with regard to analyzing MP in environmental samples. In this blind study, we investigated 27 single MP particles and fibers of unknown material isolated from river sediments. Successively micro-attenuated total reflection Fourier transform infrared spectroscopy (μ-ATR-FTIR) and pyrolysis gas chromatography-mass spectrometry (py-GCMS) in combination with thermochemolysis were applied. Both methods differentiated between plastic vs. non-plastic in the same way in 26 cases, with 19 particles and fibers (22 after re-evaluation) identified as the same polymer type. To illustrate the different approaches and emphasize the complementarity of their information content, we exemplarily provide a detailed comparison of four particles and three fibers and a critical discussion of advantages and disadvantages of both methods.
An FTIR investigation of isocyanate skin absorption using in vitro guinea pig skin.
Bello, Dhimiter; Smith, Thomas J; Woskie, Susan R; Streicher, Robert P; Boeniger, Mark F; Redlich, Carrie A; Liu, Youcheng
2006-05-01
Isocyanates may cause contact dermatitis, sensitization and asthma. Dermal exposure to aliphatic and aromatic isocyanates can occur in various exposure settings. The fate of isocyanates on skin is an important unanswered question. Do they react and bind to the outer layer of skin or do they penetrate through the epidermis as unreacted compounds? Knowing the kinetics of these processes is important in developing dermal exposure sampling or decontamination strategies, as well as understanding potential health implications such exposure may have. In this paper the residence time of model isocyanates on hairless guinea pig skin was investigated in vitro using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry. Model isocyanates tested were octyl isocyanate, polymeric hexamethylene diisocyanate isocyanurate (pHDI), polymeric isophorone diisocyanate isocyanurate (pIPDI) and methylenediphenyl diisocyanate (MDI). Isocyanates in ethyl acetate (30 microL) were spiked directly on the skin to give 0.2-1.8 micromol NCO cm(-2) (NCO = -N=C=O), and absorbance of the isocyanate group and other chemical groups of the molecule were monitored over time. The ATR-FTIR findings showed that polymeric isocyanates pHDI and pIPDI may remain on the skin as unreacted species for many hours, with only 15-20% of the total isocyanate group disappearing in one hour, while smaller compounds octyl isocyanate and MDI rapidly disappear from the skin surface (80+% in 30 min). Isocyanates most likely leave the skin surface by diffusion predominantly, with minimal reaction with surface proteins. The significance of these findings and their implications for dermal exposure sampling and isocyanate skin decontamination are discussed.
Characterization of interaction between natural rubber and silica by FTIR
NASA Astrophysics Data System (ADS)
Jarnthong, Methakarn; Liao, Lusheng; Zhang, Fuquan; Wang, Yueqiong; Li, Puwang; Peng, Zheng; Malawet, Chutarat; Intharapat, Punyanich
2017-05-01
Blending of natural rubber (NR) and nanosilica (SiO2) was performed in latex state. The mechanical properties of NR/SiO2 nanocomposites at various filler contents were investigated. The interactions of unvulcanized natural rubber and nanosilica filler were characterized using Fourier Transform Infrared (FTIR)-Attenuated Total Reflectance (ATR) spectroscopy. The relationship between mechanical properties and rubber-filler interaction was discussed.
NASA Astrophysics Data System (ADS)
Crupi, V.; Guella, G.; Majolino, D.; Mancini, I.; Rossi, B.; Stancanelli, R.; Venuti, V.; Verrocchio, P.; Viliani, G.
2010-05-01
Solid inclusion complex of the non-steroidal anti-inflammatory drug Ibuprofen (IBP, (2-[4-(2-methylpropyl)phenyl]-propanoic acid) with (2,6-dimethyl)-β-cyclodextrin (diME-β-CD) has been investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR spectroscopy) and numerical simulation. The complexation-induced changes in the FTIR-ATR spectrum of IBP have been interpreted by comparison with the theoretical vibrational wavenumbers and IR intensities of dimeric structures of IBP, derived from symmetric hydrogen bonding of the two carboxylic groups, computed by using Density Functional Theory (DFT) calculations. From temperature-dependent studies, the enthalpy change ΔH associated with the binding of IBP with diME-β-CD for 1:1 stoichiometry, in solid phase, has been estimated.
Water content determination of superdisintegrants by means of ATR-FTIR spectroscopy.
Szakonyi, G; Zelkó, R
2012-04-07
Water contents of superdisintegrant pharmaceutical excipients were determined by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using simple linear regression. Water contents of the investigated three common superdisintegrants (crospovidone, croscarmellose sodium, sodium starch glycolate) varied over a wide range (0-24%, w/w). In the case of crospovidone three different samples from two manufacturers were examined in order to study the effects of different grades on the calibration curves. Water content determinations were based on strong absorption of water between 3700 and 2800 cm⁻¹, other spectral changes associated with the different compaction of samples on the ATR crystal using the same pressure were followed by the infrared region between 1510 and 1050 cm⁻¹. The calibration curves were constructed using the ratio of absorbance intensities in the two investigated regions. Using appropriate baseline correction the linearity of the calibration curves was maintained over the entire investigated water content regions and the effect of particle size on the calibration was not significant in the case of crospovidones from the same manufacturer. The described method enables the water content determination of powdered hygroscopic materials containing homogeneously distributed water. Copyright © 2012 Elsevier B.V. All rights reserved.
The bioscouring performance of four polygalacturonase enzymes
USDA-ARS?s Scientific Manuscript database
Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) analyses of greige cotton fabrics bioscoured with a combination of ultrasound and endo- and exo-polygalacturonase enzymes obtained from Rhizopus sp. fungi were used in a fractional factorial design experiment to examine their perform...
Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.
2016-01-01
Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445
Li, Yuanpeng; Li, Fucui; Yang, Xinhao; Guo, Liu; Huang, Furong; Chen, Zhenqiang; Chen, Xingdan; Zheng, Shifu
2018-08-05
A rapid quantitative analysis model for determining the glycated albumin (GA) content based on Attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy (FTIR) combining with linear SiPLS and nonlinear SVM has been developed. Firstly, the real GA content in human serum was determined by GA enzymatic method, meanwhile, the ATR-FTIR spectra of serum samples from the population of health examination were obtained. The spectral data of the whole spectra mid-infrared region (4000-600 cm -1 ) and GA's characteristic region (1800-800 cm -1 ) were used as the research object of quantitative analysis. Secondly, several preprocessing steps including first derivative, second derivative, variable standardization and spectral normalization, were performed. Lastly, quantitative analysis regression models were established by using SiPLS and SVM respectively. The SiPLS modeling results are as follows: root mean square error of cross validation (RMSECV T ) = 0.523 g/L, calibration coefficient (R C ) = 0.937, Root Mean Square Error of Prediction (RMSEP T ) = 0.787 g/L, and prediction coefficient (R P ) = 0.938. The SVM modeling results are as follows: RMSECV T = 0.0048 g/L, R C = 0.998, RMSEP T = 0.442 g/L, and R p = 0.916. The results indicated that the model performance was improved significantly after preprocessing and optimization of characteristic regions. While modeling performance of nonlinear SVM was considerably better than that of linear SiPLS. Hence, the quantitative analysis model for GA in human serum based on ATR-FTIR combined with SiPLS and SVM is effective. And it does not need sample preprocessing while being characterized by simple operations and high time efficiency, providing a rapid and accurate method for GA content determination. Copyright © 2018 Elsevier B.V. All rights reserved.
Patterson, Brian M; Havrilla, George J
2006-11-01
The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.
Assessing and calibrating the ATR-FTIR approach as a carbonate rock characterization tool
NASA Astrophysics Data System (ADS)
Henry, Delano G.; Watson, Jonathan S.; John, Cédric M.
2017-01-01
ATR-FTIR (attenuated total reflectance Fourier transform infrared) spectroscopy can be used as a rapid and economical tool for qualitative identification of carbonates, calcium sulphates, oxides and silicates, as well as quantitatively estimating the concentration of minerals. Over 200 powdered samples with known concentrations of two, three, four and five phase mixtures were made, then a suite of calibration curves were derived that can be used to quantify the minerals. The calibration curves in this study have an R2 that range from 0.93-0.99, a RMSE (root mean square error) of 1-5 wt.% and a maximum error of 3-10 wt.%. The calibration curves were used on 35 geological samples that have previously been studied using XRD (X-ray diffraction). The identification of the minerals using ATR-FTIR is comparable with XRD and the quantitative results have a RMSD (root mean square deviation) of 14% and 12% for calcite and dolomite respectively when compared to XRD results. ATR-FTIR is a rapid technique (identification and quantification takes < 5 min) that involves virtually no cost if the machine is available. It is a common tool in most analytical laboratories, but it also has the potential to be deployed on a rig for real-time data acquisition of the mineralogy of cores and rock chips at the surface as there is no need for special sample preparation, rapid data collection and easy analysis.
Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D
2016-01-27
The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans.
Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy
Lowenstern, Jacob B.; Pitcher, Bradley W.
2013-01-01
We present a calibration for attenuated total reflectance (ATR) micro-FTIR for analysis of H2O in hydrous glass. A Ge ATR accessory was used to measure evanescent wave absorption by H2O within hydrous rhyolite and other standards. Absorbance at 3450 cm−1 (representing total H2O or H2Ot) and 1630 cm−1 (molecular H2O or H2Om) showed high correlation with measured H2O in the glasses as determined by transmission FTIR spectroscopy and manometry. For rhyolite, wt%H2O=245(±9)×A3450-0.22(±0.03) and wt%H2Om=235(±11)×A1630-0.20(±0.03) where A3450 and A1630 represent the ATR absorption at the relevant infrared wavelengths. The calibration permits determination of volatiles in singly polished glass samples with spot size down to ~5 μm (for H2O-rich samples) and detection limits of ~0.1 wt% H2O. Basaltic, basaltic andesite and dacitic glasses of known H2O concentrations fall along a density-adjusted calibration, indicating that ATR is relatively insensitive to glass composition, at least for calc-alkaline glasses. The following equation allows quantification of H2O in silicate glasses that range in composition from basalt to rhyolite: wt%H2O=(ω×A3450/ρ)+b where ω = 550 ± 21, b = −0.19 ± 0.03, ρ = density, in g/cm3, and A3450 is the ATR absorbance at 3450 cm−1. The ATR micro-FTIR technique is less sensitive than transmission FTIR, but requires only a singly polished sample for quantitative results, thus minimizing time for sample preparation. Compared with specular reflectance, it is more sensitive and better suited for imaging of H2O variations in heterogeneous samples such as melt inclusions. One drawback is that the technique can damage fragile samples and we therefore recommend mounting of unknowns in epoxy prior to polishing. Our calibration should hold for any Ge ATR crystals with the same incident angle (31°). Use of a different crystal type or geometry would require measurement of several H2O-bearing standards to provide a crystal-specific calibration.
Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko; Ikegaya, Hiroshi; Ozawa, Takeaki
2017-09-19
Often in criminal investigations, discrimination of types of body fluid evidence is crucially important to ascertain how a crime was committed. Compared to current methods using biochemical techniques, vibrational spectroscopic approaches can provide versatile applicability to identify various body fluid types without sample invasion. However, their applicability is limited to pure body fluid samples because important signals from body fluids incorporated in a substrate are affected strongly by interference from substrate signals. Herein, we describe a novel approach to recover body fluid signals that are embedded in strong substrate interferences using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy and an innovative multivariate spectral processing. This technique supported detection of covert features of body fluid signals, and then identified origins of body fluid stains on substrates. We discriminated between ATR FT-IR spectra of postmortem blood (PB) and those of antemortem blood (AB) by creating a multivariate statistics model. From ATR FT-IR spectra of PB and AB stains on interfering substrates (polyester, cotton, and denim), blood-originated signals were extracted by a weighted linear regression approach we developed originally using principal components of both blood and substrate spectra. The blood-originated signals were finally classified by the discriminant model, demonstrating high discriminant accuracy. The present method can identify body fluid evidence independently of the substrate type, which is expected to promote the application of vibrational spectroscopic techniques in forensic body fluid analysis.
NASA Astrophysics Data System (ADS)
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-08-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-01-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring. PMID:23982222
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-01-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.
Titus, Jitto; Viennois, Emilie; Merlin, Didier; Perera, A. G. Unil
2016-01-01
This article describes a rapid, simple and cost-effective technique that could lead to a screening method for colitis without the need for biopsies or in vivo measurements. This screening technique includes the testing of serum using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy for the colitis-induced increased presence of mannose. Chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate-induced) models for colitis are tested using the ATR-FTIR technique. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non-colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non-colitic samples or the subject's previous sample spectrum. This shows the potential of having individualized route maps of disease status, leading to personalized diagnosis and drug management. PMID:27094092
Rapid Isolation of Phenol Degrading Bacteria by Fourier Transform Infrared (FTIR) Spectroscopy.
Li, Fei; Song, Wen-jun; Wei, Ji-ping; Wang, Su-ying; Liu, Chong-ji
2015-05-01
Phenol is an important chemical engineering material and ubiquitous in industry wastewater, its existence has become a thorny issue in many developed and developing country. More and more stringent standards for effluent all over the world with human realizing the toxicity of phenol have been announced. Many advanced biological methods are applied to industrial wastewater treatment with low cost, high efficiency and no secondary pollution, but the screening of function microorganisms is certain cumbersome process. In our study a rapid procedure devised for screening bacteria on solid medium can degrade phenol coupled with attenuated total reflection fourier transform infrared (ATR-FTIR) which is a detection method has the characteristics of efficient, fast, high fingerprint were used. Principal component analysis (PCA) is a method in common use to extract fingerprint peaks effectively, it couples with partial least squares (PLS) statistical method could establish a credible model. The model we created using PCA-PLS can reach 99. 5% of coefficient determination and validation data get 99. 4%, which shows the promising fitness and forecasting of the model. The high fitting model is used for predicting the concentration of phenol at solid medium where the bacteria were grown. The highly consistent result of two screening methods, solid cultural with ATR-FTIR detected and traditional liquid cultural detected by GC methods, suggests the former can rapid isolate the bacteria which can degrade substrates as well as traditional cumbersome liquid cultural method. Many hazardous substrates widely existed in industry wastewater, most of them has specialize fingerprint peaks detected by ATR-FTIR, thereby this detected method could be used as a rapid detection for isolation of functional microorganisms those can degrade many other toxic substrates.
Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M
2016-03-30
Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rohman, A; Man, Yb Che; Sismindari
2009-10-01
Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.
FTIR characterization of animal lung cells: normal and precancerous modified e10 cell line
NASA Astrophysics Data System (ADS)
Zezell, D. M.; Pereira, T. M.; Mennecier, G.; Bachmann, L.; Govone, A. B.; Dagli, M. L. Z.
2012-06-01
The chemical carcinogens from tobacco are related to over 90% of lung cancers around the world. The risk of death of this kind of cancer is high because the diagnosis usually is made only in advanced stages. Therefore, it is necessary to develop new diagnostic methods for detecting the lung cancer in earlier stages. The Fourier Transform Infrared Spectroscopy (FTIR) can offer high sensibility and accuracy to detect the minimal chemical changes into the biological sample. The aim of this study is to evaluate the differences on infrared spectra between normal lung cells and precancerous lung cells transformed by NNK. Non-cancerous lung cell line e10 (ATCC) and NNK-transformed e10 cell lines were maintained in complete culture medium (1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 [DMEM/Ham's F12], supplemented with 100 ng/ml cholera enterotoxin, 10 lg/ml insulin, 0.5 lg/ml. hydrocortisol, 20 ng/ml epidermal growth factor, and 5% horse serum. The cultures were maintained in alcohol 70%. The infrared spectra were acquired on ATR-FTIR Nicolet 6700 spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 3 spectra recorded, 30 infrared spectra were obtained from each cell line. The second derivate of spectra indicates that there are displacement in 1646 cm-1 (amine I) and 1255 cm-1(DNA), allowing the possibility to differentiate the two king of cells, with accuracy of 89,9%. These preliminary results indicate that ATR-FTIR is useful to differentiate normal e10 lung cells from precancerous e10 transformed by NNK.
Melamine detection in infant formula powder using near- and mid-infrared spectroscopy.
Mauer, Lisa J; Chernyshova, Alona A; Hiatt, Ashley; Deering, Amanda; Davis, Reeta
2009-05-27
Near- and mid-infrared spectroscopy methods (NIR, FTIR-ATR, FTIR-DRIFT) were evaluated for the detection and quantification of melamine in infant formula powder. Partial least-squares (PLS) models were established for correlating spectral data to melamine concentration: R(2) > 0.99, RMSECV ≤ 0.9, and RPD ≥ 12. Factorization analysis of spectra was able to differentiate unadulterated infant formula powder from samples containing 1 ppm melamine with no misclassifications, a confidence level of 99.99%, and selectivity > 2. These nondestructive methods require little or no sample preparation. The NIR method has an assay time of 1 min, and a 2 min total time to detection. The FTIR methods require up to 5 min for melamine detection. Therefore, NIR and FTIR methods enable rapid detection of 1 ppm melamine in infant formula powder.
Differentiation between pine woods according to species and growing location using FTIR-ATR.
Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio
2018-01-01
Attenuated total reflectance-Fourier transform infrared (FTIR-ATR) spectroscopy was applied to 120 samples of heartwood rings from eight individual pine trees from different locations in Spain. Pinus sylvestris cores were collected at the Artikutza natural park (Ps-ART). Pinus nigra cores were collected in Sierra de Cazorla (Pn-LIN) and in La Sagra Mountain (Pn-LSA). Three discriminant analysis tests were performed using all bands (DF T ), lignin bands only (DF L ) and polysaccharides bands only (DF P ), to explore the ability of FTIR-ATR to separate between species and growing location. The DF L model enabled a good separation between pine species, whereas the DF P model enabled differentiation for both species and growing location. The DF T model enabled virtually perfect separation, based on two functions involving twelve FTIR bands. Discrimination between species was related to bands at 860 and 1655 cm -1 , which were more intense in P. sylvestris samples, and bands at 1425 and 1635 cm -1 , more intense in P. nigra samples. These vibrations were related to differences in lignin structure and polysaccharide linear chains. Discrimination between growing locations was mainly related to polysaccharide absorptions: at 900, 1085 and 1335 cm -1 more representative of Pn-LIN samples, and at 1105 and 1315 cm -1 mostly associated to Pn-LSA samples. These absorptions are related to β-glycosidic linkages (900 cm -1 ), cellulose and hemicellulose (C-O bonds, 1085 and 1105 cm -1 ) and content in amorphous/crystalline cellulose (1315 and 1335 cm -1 ). These results show that FTIR-ATR in combination with multivariate statistics can be a useful tool for species identification and provenancing for pine wood samples of unknown origin.
Organic and inorganic content of fluorotic rat incisors measured by FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Porto, Isabel Maria; Saiani, Regina Aparecida; Chan, K. L. Andrew; Kazarian, Sergei G.; Gerlach, Raquel Fernanda; Bachmann, Luciano
2010-09-01
Details on how fluoride interferes in enamel mineralization are still controversial. Therefore, this study aimed at analyzing the organic contents of fluorosis-affected teeth using Fourier Transformation Infrared spectroscopy. To this end, 10 male Wistar rats were divided into two groups: one received 45 ppm fluoride in distilled water for 60 days; the other received distilled water only. Then, the lower incisors were removed and prepared for analysis by two FTIR techniques namely, transmission and micro-ATR. For the first technique, the enamel was powdered, whereas in the second case one fluorotic incisor was cut longitudinally for micro-ATR. Using transmission and powdered samples, FTIR showed a higher C-H content in the fluorotic enamel compared with control enamel ( p < 0.05, n = 4 in the flurotic, and n = 5 in the control group). Results from the micro-ATR-FTIR spectroscopic analysis on one longitudinally cut incisor carried out at six points reveal a higher C-H bond content at the surface of the enamel, with values decreasing toward the dentine-enamel junction, and reaching the lowest values at the subsuperficial enamel. These results agree with the morphological data, which indicate that in the rat incisor the fluorotic lesion is superficial, rather than subsuperficial, as in the case of human enamel. The results also suggest that the increased C-H bond content may extend toward the more basal enamel (intraosseous), indicating that fluorotic enamel may intrinsically contain more protein. Finally, particularly when coupled to ATR, FTIR is a suitable tool to study the rat incisor enamel, which is a largely used model of normal and abnormal amelogenesis. Further studies along this line may definitely answer some questions regarding protein content in fluorotic enamel as well as their origin.
ATR and transmission analysis of pigments by means of far infrared spectroscopy.
Kendix, Elsebeth L; Prati, Silvia; Joseph, Edith; Sciutto, Giorgia; Mazzeo, Rocco
2009-06-01
In the field of FTIR spectroscopy, the far infrared (FIR) spectral region has been so far less investigated than the mid-infrared (MIR), even though it presents great advantages in the characterization of those inorganic compounds, which are inactive in the MIR, such as some art pigments, corrosion products, etc. Furthermore, FIR spectroscopy is complementary to Raman spectroscopy if the fluorescence effects caused by the latter analytical technique are considered. In this paper, ATR in the FIR region is proposed as an alternative method to transmission for the analyses of pigments. This methodology was selected in order to reduce the sample amount needed for analysis, which is a must when examining cultural heritage materials. A selection of pigments have been analyzed in both ATR and transmission mode, and the resulting spectra were compared with each other. To better perform this comparison, an evaluation of the possible effect induced by the thermal treatment needed for the preparation of the polyethylene pellets on the transmission spectra of the samples has been carried out. Therefore, pigments have been analyzed in ATR mode before and after heating them at the same temperature employed for the polyethylene pellet preparation. The results showed that while the heating treatment causes only small changes in the intensity of some bands, the ATR spectra were characterized by differences in both intensity and band shifts towards lower frequencies if compared with those recorded in transmission mode. All pigments' transmission and ATR spectra are presented and discussed, and the ATR method was validated on a real case study.
Structural studies on Demospongiae sponges from Gökçeada Island in the Northern Aegean Sea
NASA Astrophysics Data System (ADS)
Bayari, Sevgi Haman; Şen, Elif Hilal; Ide, Semra; Topaloglu, Bülent
2018-03-01
The Demospongiae is the largest Class in the phylum Porifera (sponges). Most sponge species in the Class Demospongiae have a skeleton of siliceous spicules and/or protein spongin or both. The first aim of this study was to perform the morphological and structural characterization of the siliceous spicules of four species belonging to Class Demospongiae (Suberites domuncula, Axinella polypoides, Axinella damicornis and Agelas oroides) collected around Gökçeada Island-Turkey (Northern Aegean Sea). The characterizations were carried out using a combination of Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDX), Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Small Angle X-ray Scattering (SAXS) techniques. The sponge Chondrosia reniformis (Porifera, Demospongiae) lacks a structural skeleton of spicules or the spongin. It consists mainly of a collagenous tissue. The collagen with sponge origin is an important source in biomedical and pharmaceutical applications. The second aim of this study was to provide more information on the molecular structure of collagen of outer (ectosome) and inner (choanosome) regions of the Chondrosia reniformis using ATR-FTIR spectroscopy. Hierarchical clustering analysis (HCA) was also used for the discrimination of ATR-FTIR spectra of species.
Analysis of hard-to-cook red and black common beans using Fourier transform infrared spectroscopy.
Maurer, Giselle A; Ozen, Banu F; Mauer, Lisa J; Nielsen, S Suzanne
2004-03-24
Extracted fractions from black and red common beans (Phaseolus vulgaris) were studied using Fourier transform infrared spectroscopy (FT-IR). Beans were stored under three conditions: control at 4 degrees C; hard-to-cook (HTC) at 29 degrees C, 65% RH for 3.5 months; and refrigerated at 2 degrees C, 79% RH for 3.5 months after a HTC period (called HTC-refrigerated). Two fractions isolated from the beans, the soluble pectin fraction (SPF) and the water insoluble residue of the cell wall (WIRCW), were analyzed using diffuse reflectance (DRIFTS) FT-IR. The soaking water and cooking water from the beans were also studied using attenuated total reflectance (ATR) FT-IR. The DRIFTS FT-IR results from the SPF and WIRCW fractions were consistent with previously published data for Carioca beans showing that in general, more phenolic compounds were associated with the SPF of HTC beans than in the control beans. Results also showed that HTC-refrigerated beans had higher concentrations of phenolic compounds than control beans in the SPF. The ATR FT-IR results for soaking and cooking waters from the HTC-refrigerated and HTC beans had higher concentrations of absorbing compounds than the control beans, indicating that they lost more constituents to the water. Additionally, results indicate that the mechanism(s) for reversibility of the HTC defect could be different than the one(s) involved in the development of the defect.
USDA-ARS?s Scientific Manuscript database
To address the lack of systematic and surface sensitive studies on the adsorption energetics of arsenic compounds on metal (oxyhydr)oxides, we conducted temperature-dependent ATR-FTIR studies for the adsorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid on hematite nanoparticles a...
Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A
2009-08-01
Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.
Effects of Particle Size on the Attenuated Total Reflection Spectrum of Minerals.
Udvardi, Beatrix; Kovács, István J; Fancsik, Tamás; Kónya, Péter; Bátori, Miklósné; Stercel, Ferenc; Falus, György; Szalai, Zoltán
2017-06-01
This study focuses on particle size effect on monomineralic powders recorded using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Six particle size fractions of quartz, feldspar, calcite, and dolomite were prepared (<2, 2-4, 4-8, 8-16, 16-32, and 32-63 µm). It is found that the width, intensity, and area of bands in the ATR FT-IR spectra of minerals have explicit dependence on the particle size. As particle size increases, the intensity and area of IR bands usually decrease while the width of bands increases. The band positions usually shifted to higher wavenumbers with decreasing particle size. Infrared spectra of minerals are the most intensive in the particle size fraction of 2-4 µm. However, if the particle size is very small (<2 µm), due to the wavelength and penetration depth of the IR light, intensity decreases. Therefore, the quantity of very fine-grained minerals may be underestimated compared to the coarser phases. A nonlinear regression analysis of the data indicated that the average coefficients and indices of the power trend line equation imply a very simplistic relationship between median particle diameter and absorbance at a given wavenumber. It is concluded that when powder samples with substantially different particle size are compared, as in regression analysis for modal predictions using ATR FT-IR, it is also important to report the grain size distribution or surface area of samples. The band area of water (3000-3620 cm -1 ) is similar in each mineral fraction, except for the particles below 2 µm. It indicates that the finest particles could have disproportionately more water adsorbed on their larger surface area. Thus, these higher wavenumbers of the ATR FT-IR spectra may be more sensitive to this spectral interference if the number of particles below 2 µm is considerable. It is also concluded that at least a proportion of the moisture could be very adhesive to the particles due to the band shift towards lower wavenumbers in the IR range of 3000-3620 cm -1 .
Khoshmanesh, Aazam; Cook, Perran L M; Wood, Bayden R
2012-08-21
Phosphorus (P) is a major cause of eutrophication and subsequent loss of water quality in freshwater ecosystems. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. Despite the broad relevance of polyphosphate (Poly-P) in bioremediation and P release processes in the environment, its quantification is not yet well developed for sediment samples. Current methods possess significant disadvantages because of the difficulties associated with using a single extractant to extract a specific P compound without altering others. A fast and reliable method to estimate the quantitative contribution of microorganisms to sediment P release processes is needed, especially when an excessive P accumulation in the form of polyphosphate (Poly-P) occurs. Development of novel approaches for application of emerging spectroscopic techniques to complex environmental matrices such as sediments significantly contributes to the speciation models of P mobilization, biogeochemical nutrient cycling and development of nutrient models. In this study, for the first time Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in combination with partial least squares (PLS) was used to quantify Poly-P in sediments. To reduce the high absorption matrix components in sediments such as silica, a physical extraction method was developed to separate sediment biological materials from abiotic particles. The aim was to achieve optimal separation of the biological materials from sediment abiotic particles with minimum chemical change in the sample matrix prior to ATR-FTIR analysis. Using a calibration set of 60 samples for the PLS prediction models in the Poly-P concentration range of 0-1 mg g(-1) d.w. (dry weight of sediment) (R(2) = 0.984 and root mean square error of prediction RMSEP = 0.041 at Factor-1) Poly-P could be detected at less than 50 μg g(-l) d.w. Using this technique, there is no solvent extraction or chemical treatment required, sample preparation is minimal and simple, and the analysis time is greatly reduced. The results from this study demonstrated the potential of ATR FT-IR spectroscopy as an alternative method to study Poly-P in sediments.
Igci, Nasit; Sharafi, Parisa; Demiralp, Duygu Ozel; Demiralp, Cemil Ozerk; Yuce, Aysel; Emre, Serap Dokmeci
2017-10-01
Gaucher disease (GD) is defined as an autosomal recessive disorder resulting from the deficiency of glucocerebrosidase (E.C. 3.2.1.45). Glucocerebrosidase is responsible for the degradation of glucosylceramide into ceramide and glucose. The deficiency of this enzyme results in the accumulation of undegraded glucosylceramide, almost exclusively in macrophages. With Fourier transform infrared (FTIR) spectroscopy, the complete molecular diversity of the samples can be studied comparatively and the amount of the particular materials can be determined. Also, the secondary structure ratios of proteins can be determined by analysing the amide peaks. The primary aim of this study is to introduce FTIR-ATR spectroscopy technique to GD research for the first time in the literature and to assess its potential as a new molecular method. Primary fibroblast cell cultures obtained from biopsy samples were used, since this material is widely used for the diagnosis of GD. Intact cells were placed onto a FTIR-ATR crystal and dried by purging nitrogen gas. Spectra were recorded in the mid-infrared region between 4500-850 cm-1 wavenumbers. Each peak in the spectra was assigned to as organic biomolecules according to their chemical bond information. A quantitative analysis was performed using peak areas and we also used a hierarchical cluster analysis as a multivariate spectral analysis. We obtained FTIR spectra of fibroblast samples and assigned the biomolecule origins of the peaks. We observed individual heterogeneity in FTIR spectra of GD fibroblast samples, confirming the well-known phenotypic heterogeneity in GD at the molecular level. Significant alterations in protein, lipid and carbohydrate levels related to the enzyme replacement therapy were also observed, which is also supported by cluster analysis. Our results showed that the application of FTIR spectroscopy to GD research deserves more attention and detailed studies with an increased sample size in order to evaluate its potential in the diagnosis and follow-up of GD patients.
Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K
2013-08-06
The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.
Ogburn, Zachary L; Vogt, Frank
2018-03-01
With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic + chemometric methodology enables investigating the link between chemical conditions in a marine ecosystem and their consequences for phytoplankton living in it.
Vibrational spectroscopy and DFT calculations of flavonoid derriobtusone A
NASA Astrophysics Data System (ADS)
Marques, A. N. L.; Mendes Filho, J.; Freire, P. T. C.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Leite, R. V.; Braz-Filho, R.; Gusmão, G. O. M.; Nogueira, C. E. S.; Teixeira, A. M. R.
2017-02-01
Flavonoids are secondary metabolites of plants which perform various functions. One subclass of flavonoid is auronol that can present immunostimulating activity. In this work Fourier-Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) and Fourier-Transform Raman (FT-Raman) spectra of an auronol, derriobtusone A (C18H12O4), were obtained at room temperature. Theoretical calculations using Density Functional Theory (DFT) were performed in order to assign the normal modes and to interpret the spectra of the derriobtusone A molecule. The FTIR-ATR and FT-Raman spectra of the crystal, were recorded at room temperature in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, respectively. The normal modes of vibrations were obtained using Density Functional Theory with B3LYP functional and 6-31G+ (d,p) basis set. The calculated frequencies are in good agreement with those obtained experimentally. Detailed assignments of the normal modes present in both the Fourier-Transform infrared and the Fourier-Transform Raman spectra of the crystal are given.
Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions.
Bright, Nicholas J; Willson, Terry R; Driscoll, Daniel J; Reddy, Subrayal M; Webb, Roger P; Bleay, Stephen; Ward, Neil I; Kirkby, Karen J; Bailey, Melanie J
2013-07-10
The effect of vacuum exposure on latent fingerprint chemistry has been evaluated. Fingerprints were analysed using a quartz crystal microbalance to measure changes in mass, gas chromatography mass spectrometry to measure changes in lipid composition and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine changes in the content of water, fatty acids and their esters after exposure to vacuum. The results are compared with samples aged under ambient conditions. It was found that fingerprints lose around 26% of their mass when exposed to vacuum conditions, equivalent to around 5 weeks ageing under ambient conditions. Further exposure to vacuum causes a significant reduction in the lipid composition of a fingerprint, in particular with the loss of tetradecanoic and pentadecanoic acid, that was not observed in ambient aged samples. There are therefore implications for sequence in which fingerprint development procedures (for example vacuum metal deposition) are carried out, as well as the use of vacuum based methods such as secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption ionisation (MALDI) in the study of fingerprint chemistry. Copyright © 2013. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Ji; Li, Bing; Wang, Qi; Li, Chengzhi; Zhang, Yinming; Lin, Hancheng; Wang, Zhenyuan
2017-02-01
Postmortem interval (PMI) determination is one of the most challenging tasks in forensic medicine due to a lack of accurate and reliable methods. It is especially difficult for late PMI determination. Although many attempts with various types of body fluids based on chemical methods have been made to solve this problem, few investigations are focused on blood samples. In this study, we employed an attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique coupled with principle component analysis (PCA) to monitor biochemical changes in rabbit plasma with increasing PMI. Partial least square (PLS) model was used based on the spectral data for PMI prediction in an independent sample set. Our results revealed that postmortem chemical changes in compositions of the plasma were time-dependent, and various components including proteins, lipids and nucleic acids contributed to the discrimination of the samples at different time points. A satisfactory prediction within 48 h postmortem was performed by the combined PLS model with a good fitting between actual and predicted PMI of 0.984 and with an error of ± 1.92 h. In consideration of the simplicity and portability of ATR-FTIR, our preliminary study provides an experimental and theoretical basis for application of this technique in forensic practice.
Jung, Hae-Jin; Eom, Hyo-Jin; Kang, Hyun-Woo; Moreau, Myriam; Sobanska, Sophie; Ro, Chul-Un
2014-08-21
In this work, quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA) (called low-Z particle EPMA), Raman microspectrometry (RMS), and attenuated total reflectance Fourier transform infrared spectroscopic (ATR-FTIR) imaging were applied in combination for the analysis of the same individual airborne particles for the first time. After examining individual particles of micrometer size by low-Z particle EPMA, consecutive examinations by RMS and ATR-FTIR imaging of the same individual particles were then performed. The relocation of the same particles on Al or Ag foils was successfully carried out among the three standalone instruments for several standard samples and an indoor airborne particle sample, resulting in the successful acquisition of quality spectral data from the three single-particle analytical techniques. The combined application of the three techniques to several different standard particles confirmed that those techniques provided consistent and complementary chemical composition information on the same individual particles. Further, it was clearly demonstrated that the three different types of spectral and imaging data from the same individual particles in an indoor aerosol sample provided richer information on physicochemical characteristics of the particle ensemble than that obtainable by the combined use of two single-particle analytical techniques.
NASA Astrophysics Data System (ADS)
Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette
2016-07-01
In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.
Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette
2016-01-01
In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880
ATR-FTIR spectroscopy for the determination of Na4EDTA in detergent aqueous solutions.
Suárez, Leticia; García, Roberto; Riera, Francisco A; Diez, María A
2013-10-15
Fourier transform infrared spectroscopy in the attenuated total reflectance mode (ATR-FTIR) combined with partial last square (PLS) algorithms was used to design calibration and prediction models for a wide range of tetrasodium ethylenediaminetetraacetate (Na4EDTA) concentrations (0.1 to 28% w/w) in aqueous solutions. The spectra obtained using air and water as a background medium were tested for the best fit. The PLS models designed afforded a sufficient level of precision and accuracy to allow even very small amounts of Na4EDTA to be determined. A root mean square error of nearly 0.37 for the validation set was obtained. Over a concentration range below 5% w/w, the values estimated from a combination of ATR-FTIR spectroscopy and a PLS algorithm model were similar to those obtained from an HPLC analysis of NaFeEDTA complexes and subsequent detection by UV absorbance. However, the lowest detection limit for Na4EDTA concentrations afforded by this spectroscopic/chemometric method was 0.3% w/w. The PLS model was successfully used as a rapid and simple method to quantify Na4EDTA in aqueous solutions of industrial detergents as an alternative to HPLC-UV analysis which involves time-consuming dilution and complexation processes. © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.
2013-01-01
A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited tomore » provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.« less
NASA Astrophysics Data System (ADS)
Petrick, Lauren; Dubowski, Yael
2010-05-01
Tobacco smoking is well known as a significant source of primary indoor air pollutants. However, only recently has it been recognized that the impact of Tobacco smoking may continue even after the cigarette has been extinguished (i.e., third hand smoke) due to the effect of indoor surfaces. These surfaces may affect the fate of tobacco smoke in the form of secondary reactions and pollutants, including secondary organic aerosol (SOA) formation. Fourier Transform Infrared spectrometry with Attenuated Total Reflection (FTIR-ATR) in tandem with a Scanning Mobility Particle Sizing (SMPS) system was used to monitor the ozonation of cellulose sorbed nicotine and resulting SOA formation. SOA formation began at onset of ozone introduction ([O3] = 60 ± 5 ppb) with a size distribution of dp ≤ 25 nm, and was determined to be a result of heterogeneous reaction (opposed to homogeneous). SOA yield from reacted surface nicotine was on the order of 10 %. Simultaneous to SOA monitoring, FTIR-ATR spectra showed surface changes in the nicotine film as the reaction progressed, revealing a pseudo first-order surface reaction rate of 0.0026 ± 0.0008 min-1. Identified surface oxidation products included: cotinine, myosmine, methylnicotinamide and nicotyrine. Surface reaction rate was found to be partially inhibited at high relative humidity. Given the toxicity of some of the identified products (e.g., cotinine has shown potential mutagenicity and teratogenicity) and that small particles may contribute to adverse health effects, the present study indicates that exposure to 3rd hand smoke ozonation products may pose additional health risks.
Gómez, Nuria; Molleda, Cristina; Quintana, Ester; Carbajo, José M; Rodríguez, Alejandro; Villar, Juan C
2016-09-01
A new method was developed to study how the oil and cyan pigments of cold-set ink are distributed in newspaper thickness. The methodology involved laboratory printing followed by delamination of the printed paper. The unprinted side, printed side, and resulting layers were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR). Three commercial newspapers and black and cyan cold-set inks were chosen for the study. Attenuated total reflection Fourier transform infrared spectroscopy enabled the proportion of oil and cyan pigment on the printed surface and throughout the sheet thickness to be measured. Oil percentage was evaluated as the area increment of the region from 2800 cm(-1) to 3000 cm(-1) The relative amount of cyan pigment was determined as the area of the absorption band at 730 cm(-1) The ink oil was found mainly below half the paper thickness, whereas the pigment was detected at the layers closer to the printed surface, at a depth penetration of less than 15 µm (20% of thickness). Distribution of these two components in paper thickness depended on the type of cold-set ink, the amount of ink transferred, and the newspaper properties. © The Author(s) 2016.
Kadamne, Jeta V; Jain, Vishal P; Saleh, Mohammed; Proctor, Andrew
2009-11-25
Conjugated linoleic acid (CLA) isomers in oils are currently measured as fatty acid methyl esters by a gas chromatography-flame ionization detector (GC-FID) technique, which requires approximately 2 h to complete the analysis. Hence, we aim to develop a method to rapidly determine CLA isomers in CLA-rich soy oil. Soy oil with 0.38-25.11% total CLA was obtained by photo-isomerization of 96 soy oil samples for 24 h. A sample was withdrawn at 30 min intervals with repeated processing using a second batch of oil. Six replicates of GC-FID fatty acid analysis were conducted for each oil sample. The oil samples were scanned using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the spectrum was collected. Calibration models were developed using partial least-squares (PLS-1) regression using Unscrambler software. Models were validated using a full cross-validation technique and tested using samples that were not included in the calibration sample set. Measured and predicted total CLA, trans,trans CLA isomers, total mono trans CLA isomers, trans-10,cis-12 CLA, trans-9,cis-11 CLA and cis-10,trans-12 CLA, and cis-9,trans-11 CLA had cross-validated coefficients of determinations (R2v) of 0.97, 0.98, 0.97, 0.98, 0.97, and 0.99 and corresponding root-mean-square error of validation (RMSEV) of 1.14, 0.69, 0.27, 0.07, 0.14, and 0.07% CLA, respectively. The ATR-FTIR technique is a rapid and less expensive method for determining CLA isomers in linoleic acid photo-isomerized soy oil than GC-FID.
Zhang, Qing-Nuan; Zhang, Yun; Cai, Chen; Guo, Yu-Cong; Reid, Jonathan P; Zhang, Yun-Hong
2014-04-17
Sodium nitrate is a main component of aging sea salt aerosol, and its phase behavior has been studied repeatedly with wide ranges observed in the efflorescence relative humidity (RH) in particular. Studies of the efflorescence dynamics of NaNO3 droplets deposited on a ZnSe substrate are reported, using an in situ Fourier transform infrared attenuated total reflection (FTIR-ATR) technique. The time-dependence of the infrared spectra of NaNO3 aerosols accompanying step changes in RH have been measured with high signal-to-noise ratio. From the IR difference spectra recorded, changes of the time-dependent absorption peak area of the O-H stretching band (ν-OH, ∼3400 cm(-1)) and the nitrate out-of-plane bending band (ν2-NO3(-), ∼836 cm(-1)) are obtained. From these measurements, changes in the IR signatures can be attributed to crystalline and solution phase nitrate ions, allowing the volume fraction of the solution droplets that have crystallized to be determined. Then, using these clear signatures of the volume fraction of droplets that have yet to crystallize, the homogeneous and heterogeneous nucleation kinetics can be studied from conventional measurements using a steady decline in RH. The nucleation rate measurements confirm that the rate of crystallization in sodium nitrate droplets is considerably less than in ammonium sulfate droplets at any particular degree of solute supersaturation, explaining the wide range of efflorescence RHs observed for sodium nitrate in previous studies. We demonstrate that studying nucleation kinetics using the FTIR-ATR approach has many advantages over brightfield imaging studies on smaller numbers of larger droplets or measurements made on single levitated particles.
An FTIR point sensor for identifying chemical WMD and hazardous materials
NASA Astrophysics Data System (ADS)
Norman, Mark L.; Gagnon, Aaron M.; Reffner, John A.; Schiering, David W.; Allen, Jeffrey D.
2004-03-01
A new point sensor for identifying chemical weapons of mass destruction and other hazardous materials based on Fourier transform infrared (FT-IR) spectroscopy is presented. The sensor is a portable, fully functional FT-IR system that features a miniaturized Michelson interferometer, an integrated diamond attenuated total reflection (ATR) sample interface, and an embedded on-board computer. Samples are identified by an automated search algorithm that compares their infrared spectra to digitized databases that include reference spectra of nerve and blister agents, toxic industrial chemicals, and other hazardous materials. The hardware and software are designed for use by technicians with no background in infrared spectroscopy. The unit, which is fully self-contained, can be hand-carried and used in a hot zone by personnel in Level A protective gear, and subsequently decontaminated by spraying or immersion. Wireless control by a remote computer is also possible. Details of the system design and performance, including results of field validation tests, are discussed.
Gorzsás, András; Sundberg, Björn
2014-01-01
Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.
Penido, Ciro A F O; Pacheco, Marcos Tadeu T; Zângaro, Renato A; Silveira, Landulfo
2015-01-01
Identification of cocaine and subsequent quantification immediately after seizure are problems for the police in developing countries such as Brazil. This work proposes a comparison between the Raman and FT-IR techniques as methods to identify cocaine, the adulterants used to increase volume, and possible degradation products in samples seized by the police. Near-infrared Raman spectra (785 nm excitation, 10 sec exposure time) and FT-IR-ATR spectra were obtained from different samples of street cocaine and some substances commonly used as adulterants. Freebase powder, hydrochloride powder, and crack rock can be distinguished by both Raman and FT-IR spectroscopies, revealing differences in their chemical structure. Most of the samples showed characteristic peaks of degradation products such as benzoylecgonine and benzoic acid, and some presented evidence of adulteration with aluminum sulfate and sodium carbonate. Raman spectroscopy is better than FT-IR for identifying benzoic acid and inorganic adulterants in cocaine. © 2014 American Academy of Forensic Sciences.
Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gasses around an integrated industrial swine production facility in eastern North Carolina. Several single-path measurements were made ove...
Abiotic degradation of glyphosate into aminomethylphosphonic acid in the presence of metals.
Ascolani Yael, J; Fuhr, J D; Bocan, G A; Daza Millone, A; Tognalli, N; Dos Santos Afonso, M; Martiarena, M L
2014-10-08
Glyphosate [N-phosphono-methylglycine (PMG)] is the most used herbicide worldwide, particularly since the development of transgenic glyphosate-resistant (GR) crops. Aminomethylphosphonic acid (AMPA) is the main glyphosate metabolite, and it may be responsible for GR crop damage upon PMG application. PMG degradation into AMPA has hitherto been reckoned mainly as a biological process, produced by soil microorganisms (bacteria and fungi) and plants. In this work, we use density functional calculations to identify the vibrational bands of PMG and AMPA in surface-enhanced Raman spectroscopy (SERS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra experiments. SERS shows the presence of AMPA after glyphosate is deposited from aqueous solution on different metallic surfaces. AMPA is also detected in ATR-FTIR experiments when PMG interacts with metallic ions in aqueous solution. These results reveal an abiotic degradation process of glyphosate into AMPA, where metals play a crucial role.
Non-Equilibrium Water-Glassy Polymer Dynamics
NASA Astrophysics Data System (ADS)
Davis, Eric; Minelli, Matteo; Baschetti, Marco; Sarti, Giulio; Elabd, Yossef
2012-02-01
For many applications (e.g., medical implants, packaging), an accurate assessment and fundamental understanding of the dynamics of water-glassy polymer interactions is of great interest. In this study, sorption and diffusion of pure water in several glassy polymers films, such as poly(styrene) (PS), poly(methyl methacrylate) (PMMA), poly(lactide) (PLA), were measured over a wide range of vapor activities and temperatures using several experimental techniques, including quartz spring microbalance (QSM), quartz crystal microbalance (QCM), and time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Non-Fickian behavior (diffusion-relaxation phenomena) was observed by all three techniques, while FTIR-ATR spectroscopy also provides information about the distribution of the states of water and water transport mechanisms on a molecular-level. Specifically, the states of water are significantly different in PS compared to PMMA and PLA. Additionally, a purely predictive non-equilibrium lattice fluid (NELF) model was applied to predict the sorption isotherms of water in these glassy polymers.
The toxicity of binary mixture of Cu (II) ion and phenols on Tetrahymena thermophila.
Luo, Hui; Li, Xi; Fang, Tingting; Liu, Peng; Zhang, Chaocan; Xie, Hao; Sun, Enjie
2015-03-01
The toxicity of binary mixture of Cu(2+) and phenols (phenol; o-nitrophenol; m-nitrophenol; p-nitrophenol) was evaluated using Tetrahymena thermophila as the model organism, by microcalorimetry, optical density, field emission scanning electron microscope (FESEM) and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The growth curves and metabolic properties of Tetrahymena exposed to Cu(2+) and phenols were monitored by microcalorimetry. Binary mixture toxicity changed with the concentration of Cu(2+)/phenols and the order of toxicity was Cu(2+)/phenol
Cantwell, Caoimhe A; Byrne, Laurann A; Connolly, Cathal D; Hynes, Michael J; McArdle, Patrick; Murphy, Richard A
2017-08-01
The aim of the present work was to establish a reliable analytical method to determine the degree of complexation in commercial metal proteinates used as feed additives in the solid state. Two complementary techniques were developed. Firstly, a quantitative attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic method investigated modifications in vibrational absorption bands of the ligand on complex formation. Secondly, a powder X-ray diffraction (PXRD) method to quantify the amount of crystalline material in the proteinate product was developed. These methods were developed in tandem and cross-validated with each other. Multivariate analysis (MVA) was used to develop validated calibration and prediction models. The FTIR and PXRD calibrations showed excellent linearity (R 2 > 0.99). The diagnostic model parameters showed that the FTIR and PXRD methods were robust with a root mean square error of calibration RMSEC ≤3.39% and a root mean square error of prediction RMSEP ≤7.17% respectively. Comparative statistics show excellent agreement between the MVA packages assessed and between the FTIR and PXRD methods. The methods can be used to determine the degree of complexation in complexes of both protein hydrolysates and pure amino acids.
The Effect of Pressure and Temperature on Mid-Infrared Sensing of Dissolved Hydrocarbons in Water.
Heath, Charles; Myers, Matthew; Pejcic, Bobby
2017-12-19
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using a polymer coated internal reflection element/waveguide is an established sensor platform for the detection of a range of organic and hydrocarbon molecules dissolved in water. The polymer coating serves two purposes: to concentrate hydrocarbons from the aqueous phase and to exclude water along with other interfering molecules from the surface of the internal reflection element. Crucial to reliable quantification and analytical performance is the calibration of the ATR-FTIR sensor which is commonly performed in water under mild ambient conditions (i.e., 25 °C and 1 atm). However, there is a pressing need to monitor environmental and industrial processes/events that may occur at high pressures and temperatures where this calibration approach is unsuitable. Using a ruggedized optical fiber probe with a diamond-based ATR, we have conducted mid-infrared sensor experiments to understand the influence of high pressure (up to 207 bar) and temperature (up to 80 °C) on the detection of toluene and naphthalene dissolved in water. Using a poly(isobutylene) film, we have shown that the IR spectroscopic response is relatively unaffected by changes in pressure; however, a diminished response was observed with increasing temperature. We reveal that changes in the refractive index of the polymer film with temperature have only a minor effect on sensitivity. A more plausible explanation for the observed significant change in sensor response with temperature is that the partitioning process is exothermic and becomes less favorable with increasing temperature. This Article shows that the sensitivity is relatively invariant to pressure; however, the thermal variations are significant and need to be considered when quantifying the concentration of hydrocarbons in water.
Color and surface chemistry changes of extracted wood flour after heating at 120 °C
Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark
2013-01-01
To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....
Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin
2014-11-01
Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer׳s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan
2017-12-21
Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.
NASA Astrophysics Data System (ADS)
Palombo, Francesca; Danoux, Charlène B.; Weinberg, Peter D.; Kazarian, Sergei G.
2009-07-01
Diffusion of two model drugs-benzyl nicotinate and ibuprofen-and the plasma macromolecule albumin across atherosclerotic rabbit aorta was studied ex vivo by attenuated total reflection-Fourier transform infrared (ATR-FTIR) imaging. Solutions of these molecules were applied to the endothelial surface of histological sections of the aortic wall that were sandwiched between two impermeable surfaces. An array of spectra, each corresponding to a specific location in the section, was obtained at various times during solute diffusion into the wall and revealed the distribution of the solutes within the tissue. Benzyl nicotinate in Ringer's solution showed higher affinity for atherosclerotic plaque than for apparently healthy tissue. Transmural concentration profiles for albumin demonstrated its permeation across the section and were consistent with a relatively low distribution volume for the macromolecule in the middle of the wall. The ability of albumin to act as a drug carrier for ibuprofen, otherwise undetected within the tissue, was demonstrated by multivariate subtraction image analysis. In conclusion, ATR-FTIR imaging can be used to study transport processes in tissue samples with high spatial and temporal resolution and without the need to label the solutes under study.
Ahmad, Waed; Coeur, Cecile; Tomas, Alexandre; Fagniez, Thomas; Brubach, Jean-Blaise; Cuisset, Arnaud
2017-04-10
Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) synchrotron analyses supplemented by density functional theory (DFT) anharmonic calculations have been undertaken to study the fundamental vibrational signatures of guaiacol and syringol, two methoxyphenol compounds found at the highest concentrations in fresh wood smoke and precursors of secondary organic aerosols (SOA) affecting the radiative balance and chemistry of the atmosphere. Nitroderivatives of these two compounds have also been studied experimentally for nitroguaiacol and theoretically for nitrosyringol. All the active fundamental vibrational bands have been assigned and compared to available gas phase measurements, providing a vibrational database of the main precursors for the analysis of SOA produced by atmospheric oxidation of methoxyphenols. In addition, the SOA formed in an atmospheric simulation chamber from the OH reaction with guaiacol and syringol were analyzed using the ATR-FTIR synchrotron spectroscopy and their hygroscopic properties were also investigated. The vibrational study confirms that nitroguaiacol and nitrosyringol are the main oxidation products of methoxyphenols by OH and are key intermediates in SOA production. The hydration experiments highlight the hydrophilic and hydrophobic characters of nitrosyringol and nitroguaiacol, respectively.
Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin
2015-01-01
The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity. Copyright © 2015 Elsevier B.V. All rights reserved.
AFM combined to ATR-FTIR reveals Candida cell wall changes under caspofungin treatment.
Quilès, Fabienne; Accoceberry, Isabelle; Couzigou, Célia; Francius, Grégory; Noël, Thierry; El-Kirat-Chatel, Sofiane
2017-09-21
Fungal pathogens from Candida genus are responsible for severe life-threatening infections and the antifungal arsenal is still limited. Caspofungin, an antifungal drug used for human therapy, acts as a blocking agent of the cell wall synthesis by inhibiting the β-1,3-glucan-synthase encoded by FKS genes. Despite its efficiency, the number of genetic mutants that are resistant to caspofungin is increasing. An important challenge to improve antifungal therapy is to understand cellular phenomenon that are associated with drug resistance. Here we used atomic force microscopy (AFM) combined to Fourier transform infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) to decipher the effect of low and high drug concentration on the morphology, mechanics and cell wall composition of two Candida strains, one susceptible and one resistant to caspofungin. Our results confirm that caspofungin induces a dramatic cell wall remodelling via activation of stress responses, even at high drug concentration. Additionally, we highlighted unexpected changes related to drug resistance, suggesting that caspofungin resistance associated with FKS gene mutations comes from a combination of effects: (i) an overall remodelling of yeast cell wall composition; and (ii) cell wall stiffening through chitin synthesis. This work demonstrates that AFM combined to ATR-FTIR is a valuable approach to understand at the molecular scale the biological mechanisms associated with drug resistance.
Investigating the Photocatalytic Degradation of Oil Paint using ATR-IR and AFM-IR.
Morsch, Suzanne; van Driel, Birgit A; van den Berg, Klaas Jan; Dik, Joris
2017-03-22
As linseed oil has a longstanding and continuing history of use as a binder in artistic paints, developing an understanding of its degradation mechanism is critical to conservation efforts. At present, little can be done to detect the early stages of oil paint deterioration due to the complex chemical composition of degrading paints. In this work, we use advanced infrared analysis techniques to investigate the UV-induced deterioration of model linseed oil paints in detail. Subdiffraction limit infrared analysis (AFM-IR) is applied to identify and map accelerated degradation in the presence of two different grades of titanium white pigment particles (rutile or anatase TiO 2 ). Differentiation between the degradation of these two formulations demonstrates the sensitivity of this approach. The identification of characteristic peaks and transient species residing at the paint surface allows infrared absorbance peaks related to degradation deeper in the film to be extricated from conventional ATR-FTIR spectra, potentially opening up a new approach to degradation monitoring.
NASA Astrophysics Data System (ADS)
Pérez-Rodríguez, Marta; Horák-Terra, Ingrid; Rodríguez-Lado, Luis; Martínez Cortizas, Antonio
2016-11-01
Despite its potential, infrared spectroscopy combined with multivariate statistics has been seldom used to model peat properties with environmental value, such us the concentration of potentially toxic metals. In this research, we applied attenuated total reflectance (ATR) Fourier-Transform Infrared (FTIR) spectroscopy to evaluate the ability of the technique to predict mercury concentrations in late-Pleistocene/Holocene peat from a minerogenic peatland from Minas Gerais (Brazil). Mercury concentrations were analysed using a Milestone DMA-80 analyzer and attenuated total reflectance FTIR-ATR was performed using a Gladi-ATR (Pike Technologies) in the mid IR spectrum (4000-400 cm- 1). Concentrations were modelled using principal components (PCR) and partial least squares regression (PLS). The performance of the models varied between moderate and very good (R2 0.67-0.90), with low RMSD values (0.35-1.06). A PLS model based on three latent vectors (LV1 to LV3) provided the best (R2 0.90, RMSD 0.35) results. LV1 reflected total organic matter content versus mineral matter (mainly quartz from local fluxes), LV2 was related to dust deposition from regional sources, and LV3 reflected peat organic matter decomposition. Compared to a previous investigation based on geochemical data, the spectroscopy-based PLS model performed better, but it has to be complemented with additional data (as δ13 C ratios) to reliably reproduce the changes of the factors controlling mercury accumulation over time. This, time- and cost-effective, methodology may help to develop multi-core approaches to study the within and between mire (of a similar type and area) variability in mercury accumulation, and probably also other peat properties. Fig. S2 Loadings weights of the three and two significant components from the direct (dPCR) and transposed (trPCR) PCR models. Fig. S3 Depth records of the cumulative effects of the factors involved in the variation of mercury concentrations. Left, MIR-PLS model; centre, MIR-PLS + δ13 C data model; right, geochemical model from Pérez-Rodríguez et al. [44].
Study of consumer fireworks post-blast residues by ATR-FTIR.
Martín-Alberca, Carlos; Zapata, Félix; Carrascosa, Héctor; Ortega-Ojeda, Fernando E; García-Ruiz, Carmen
2016-03-01
Specific analytical procedures are requested for the forensic analysis of pre- and post-blast consumer firework samples, which present significant challenges. Up to date, vibrational spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR) have not been tested for the analysis of post-blast residues in spite of their interesting strengths for the forensic field. Therefore, this work proposes a simple and fast procedure for the sampling and analysis of consumer firework post-blast residues by a portable FTIR instrument with an Attenuated Total Reflection (ATR) accessory. In addition, the post-blast residues spectra of several consumer fireworks were studied in order to achieve the identification of their original chemical compositions. Hence, this work analysed 22 standard reagents usually employed to make consumer fireworks, or because they are related to their combustion products. Then, 5 different consumer fireworks were exploded, and their residues were sampled with dry cotton swabs and directly analysed by ATR-FTIR. In addition, their pre-blast fuses and charges were also analysed in order to stablish a proper comparison. As a result, the identification of the original chemical compositions of the post-blast samples was obtained. Some of the compounds found were potassium chlorate, barium nitrate, potassium nitrate, potassium perchlorate or charcoal. An additional study involving chemometric tools found that the results might greatly depend on the swab head type used for the sampling, and its sampling efficiency. The proposed procedure could be used as a complementary technique for the analysis of consumer fireworks post-blast residues. Copyright © 2015 Elsevier B.V. All rights reserved.
Blond, Pascale; Mattiuzzi, Alice; Valkenier, Hennie; Troian-Gautier, Ludovic; Bergamini, Jean-François; Doneux, Thomas; Goormaghtigh, Erik; Raussens, Vincent; Jabin, Ivan
2018-05-29
Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transform infrared (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive, but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. Here, we report robust monolayers of calix[4]arenes bearing oligo(ethylene glycol) (oEG) chains, which were grafted on germanium and gold surfaces via their tetradiazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR, and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy, and the nonspecific absorption of bovine serum albumin was found to be reduced by 85% compared to that of unmodified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way for the design of germanium- or gold-based biosensors.
Oelofse, A; Malherbe, S; Pretorius, I S; Du Toit, M
2010-10-15
The objective of this study was to evaluate different infrared spectroscopy methods in combination with chemometrics for the differentiation between Brettanomyces bruxellensis strains. These methods of discrimination were applied to intact yeast cells of B. bruxellensis strains and on wines spoiled by the same strains. Eleven wine isolates of B. bruxellensis were evaluated for volatile phenol production in red wine and their genetic diversity was determined by Restriction Endonuclease Analysis-Pulsed Field Gel Electrophoresis (REA-PFGE). Fourier transform mid-infrared (FTMIR) spectroscopy was used to obtain spectral fingerprints of the spoiled wines. Attenuated total reflectance (ATR) was used to obtain spectral fingerprints from the intact cells of the 11 B. bruxellensis strains. The groupings from the genetic fingerprints obtained with REA-PFGE were used as reference firstly for comparison with the groupings observed with the FTMIR spectral fingerprint of the wines and secondly for the FTIR-ATR spectral fingerprints from the whole cells. Results indicated that ATR-IR spectra obtained by scanning whole cells of B. bruxellensis could be useful for rapid strain typing in comparison or complementary to molecular techniques and FTMIR spectra from wines provide a useful resource for the discrimination between B. bruxellensis contaminated wines. Copyright © 2010 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cotton fibers are routinely harvested from cotton plants (in planta), and their end-use qualities depend on their development stages. Cotton fibers are also cultured at controlled laboratory environments, so that cotton researchers can investigate many aspects of experimental protocols in cotton bre...
Koca, N; Rodriguez-Saona, L E; Harper, W J; Alvarez, V B
2007-08-01
Short-chain free fatty acids (FFA) are important sources of cheese flavor and have been reported to be indicators for assessing quality. The objective of this research was to develop a simple and rapid screening tool for monitoring the short-chain FFA contents in Swiss cheese by using Fourier transform infrared spectroscopy (FTIR). Forty-four Swiss cheese samples were evaluated by using a MIRacle three-reflection diamond attenuated total reflectance (ATR) accessory. Two different sampling techniques were used for FTIR/ATR measurement: direct measurement of Swiss cheese slices (approximately 0.5 g) and measurement of a water-soluble fraction of cheese. The amounts of FFA (propionic, acetic, and butyric acids) in the water-soluble fraction of samples were analyzed by gas chromatography-flame ion-ization detection as a reference method. Calibration models for both direct measurement and the water-soluble fraction of cheese were developed based on a cross-validated (leave-one-out approach) partial least squares regression by using the regions of 3,000 to 2,800, 1,775 to 1,680, and 1,500 to 900 cm(-1) for short-chain FFA in cheese. Promising performance statistics were obtained for the calibration models of both direct measurement and the water-soluble fraction, with improved performance statistics obtained from the water-soluble extract, particularly for propionic acid. Partial least squares models generated from FTIR/ATR spectra by direct measurement of cheeses gave standard errors of cross-validation of 9.7 mg/100 g of cheese for propionic acid, 9.3 mg/100 g of cheese for acetic acid, and 5.5 mg/100 g of cheese for butyric acid, and correlation coefficients >0.9. Standard error of cross-validation values for the water-soluble fraction were 4.4 mg/100 g of cheese for propionic acid, 9.2 mg/100 g of cheese for acetic acid, and 5.2 mg/100 g of cheese for butyric acid with correlation coefficients of 0.98, 0.95, and 0.92, respectively. Infrared spectroscopy and chemometrics accurately and precisely predicted the short-chain FFA content in Swiss cheeses and in the water-soluble fraction of the cheese.
Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles.
Kirstein, Inga V; Kirmizi, Sidika; Wichels, Antje; Garin-Fernandez, Alexa; Erler, Rene; Löder, Martin; Gerdts, Gunnar
2016-09-01
The taxonomic composition of biofilms on marine microplastics is widely unknown. Recent sequencing results indicate that potentially pathogenic Vibrio spp. might be present on floating microplastics. Hence, these particles might function as vectors for the dispersal of pathogens. Microplastics and water samples collected in the North and Baltic Sea were subjected to selective enrichment for pathogenic Vibrio species. Bacterial colonies were isolated from CHROMagar™Vibrio and assigned to Vibrio spp. on the species level by MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionisation - Time of Flight Mass Spectrometry). Respective polymers were identified by ATR FT-IR (Attenuated Total Reflectance Fourier Transform - Infrared Spectroscopy). We discovered potentially pathogenic Vibrio parahaemolyticus on a number of microplastic particles, e.g. polyethylene, polypropylene and polystyrene from North/Baltic Sea. This study confirms the indicated occurrence of potentially pathogenic bacteria on marine microplastics and highlights the urgent need for detailed biogeographical analyses of marine microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Yi-Lei; Flora, Jason W; Thweatt, William David; Garrison, Stephen L; Gonzalez, Carlos; Houk, K N; Marquez, Manuel
2009-02-02
A yellow solid material [P(x)H(y)] has been obtained in the reaction of phosphine (PH(3)) and nitric oxide (NO) at room temperature and characterized by thermogravimetric analysis mass spectrometry (TGA-MS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. In this work using complete basis set (CBS-QB3) methods a plausible mechanism has been investigated for phosphine polymerization in the presence of nitric oxide (NO). Theoretical explorations with the ab initio method suggest (a) instead of the monomer the nitric oxide dimer acts as an initial oxidant, (b) the resulting phosphine oxides (H(3)P=O <--> H(3)P(+)O(-)) in the gas phase draw each other via strong dipolar interactions between the P-O groups, and (c) consequently an autocatalyzed polymerization occurs among the phosphine oxides, forming P-P chemical bonds and losing water. The possible structures of polyhydride phosphorus polymer were discussed. In the calculations a series of cluster models was computed to simulate polymerization.
Application of infrared spectroscopy in the identification of Ewing sarcoma: A preliminary report
NASA Astrophysics Data System (ADS)
Chaber, Radosław; Łach, Kornelia; Szmuc, Kamil; Michalak, Elżbieta; Raciborska, Anna; Mazur, Damian; Machaczka, Maciej; Cebulski, Józef
2017-06-01
Fourier transform infrared (FTIR) spectroscopy is a highly sensitive, non-invasive analytical technique that can provide information about molecular changes in a biological sample. FTIR spectrum is a sum of the frequencies of many biomolecules which reveals a biochemical fingerprint for mineral identification, and can be analyzed for information about the mineral structure of malignant cells. This gives us the potential to differentiate tumor cells from normal cells in the early stage of relapse, before the tumor cells would be detectable in light microscopy. Ewing sarcoma (ES) is the second most common malignant bone tumor found in children and adolescents. ES affects annually almost 3 persons/1,000,000 mostly children and young adults under 20 years of age annually. ES originates from primitive, low-differentiated neuroectodermal cells. The current standard of therapy for ES is the surgical resection of the primary tumor and metastasis in combination with the chemo- and radiotherapy. The aim of this study was to compare the spectra of ES bone samples and the spectra of normal bone tissues, analyzed before and after induction chemotherapy, by means of FTIR spectroscopy. Six patients with ES affecting bones aged 5.5-16.5 years (median age 11.2 years), who were treated between 2011 and 2015, were included to the study. In all analyzed patients, the diagnosis of ES and the assessment of response to the chemotherapy were performed according to the Euro-EWING-2008 protocol. The Fourier transform infrared spectroscope (FT-IR; Vertex 70v from Bruker) was used in this study. Tissue specimens were applied to the attenuated total reflection (ATR) in the infrared (IR) radiation from the mid-infrared range using a single-reflection snap ATR crystal diamond. In the FTIR spectra we observed a shift in the wave number of the phosphate ion (from 3 to 26 [cm-1]) associated with the presence of tumor tissue. After chemotherapy, a change of the FTIR spectrum was associated with the ES's histopathological response. In patients with a high ratio of the necrotic cells in the tumor (>90% of cells) after chemotherapy, we showed a shift of the peak ⧹ absorption bands to the higher wave numbers. In contrast, in patients with a poor chemotherapy response (<30% of necrotic cells in the tumor), we observed a decline in the peak absorption bands to the lower wave numbers. The results showed that analysis of the spectrum changes of tissue specimens in ES can be helpful in the assessment of clinical response to cancer therapy. It seems that FTIR spectroscopy is a valuable tool for his purpose. The issue awaits full elucidation in further studies on larger groups of patients with ES.
Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...
Investigation on thermal oxidative aging of nitrile rubber (NBR) O-rings under compression stress
NASA Astrophysics Data System (ADS)
Liu, X. R.; Zhang, W. F.; Lou, W. T.; Huang, Y. X.; Dai, W.
2017-11-01
The degradation behaviors of nitrile rubber O-rings exposure to air under compression were investigated at three elevated temperatures. The physical and mechanical properties of the aging samples before and after exposure at selected time were studied by measuring weight loss, tensile strength and elongation at break. The Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and fracture morphology were used to reveal the microstructural changes of the aging samples. The results indicate that the weight decreased with exposure time and temperature. Based on the results of the crosslinking density, the crosslinking predominates during the most of aging process. The significant changes in tensile strength and elongation at break also indicate the severe degradation in air. The fracture morphology results show that the fracture surface after 64 days of exposure to air turns rough and present defects. The ATR-FTIR results demonstrate that the hydroxyl groups were formed for the samples aged in air.
Lucena, Rafael; Cárdenas, Soledad; Gallego, Mercedes; Valcárcel, Miguel
2006-03-01
Monitoring the exhaustion of alkaline degreasing baths is one of the main aspects in metal mechanizing industrial process control. The global level of surfactant, and mainly grease, can be used as ageing indicators. In this paper, an attenuated total reflection-Fourier transform infrared (ATR-FTIR) membrane-based sensor is presented for the determination of these parameters. The system is based on a micro-liquid-liquid extraction of the analytes through a polymeric membrane from the aqueous to the organic solvent layer which is in close contact with the internal reflection element and continuously monitored. Samples are automatically processed using a simple, robust sequential injection analysis (SIA) configuration, on-line coupled to the instrument. The global signal obtained for both families of compounds are processed via a multivariate calibration technique (partial least squares, PLS). Excellent correlation was obtained for the values given by the proposed method compared to those of the gravimetric reference one with very low error values for both calibration and validation.
Kaparaju, Prasad; Felby, Claus
2010-05-01
The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.
Preparation and characterization of kefiran electrospun nanofibers.
Esnaashari, Seyedeh Sara; Rezaei, Sasan; Mirzaei, Esmaeil; Afshari, Hamed; Rezayat, Seyed Mahdi; Faridi-Majidi, Reza
2014-09-01
In this study, we report the first successful production of kefiran nanofibers through electrospinning process using distilled water as solvent. For this purpose, kefiran was extracted from cultured kefir grains, and homogenous kefiran solutions with different concentrations were prepared and then electrospun to obtain uniform nanofibers. The effect of main process parameters, including applied voltage, tip-to-collector distance, and feeding rate, on diameter and morphology of produced nanofibers, was studied. Scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to characterize electrospun mats. Rheological behavior of the kefiran solution was evaluated via a cone and plate rheometer too. The results exhibited that diameter of kefiran nanofibers increased with increasing polymer concentration, applied voltage, and polymer feeding rate, while tip-to-collector distance did not have significant effect on nanofiber diameter. ATR-FTIR spectra showed that kefiran has maintained its molecular structure during electrospinning process. Flow curves also demonstrated shear thinning behavior for kefiran solutions. Copyright © 2014 Elsevier B.V. All rights reserved.
Miaw, Carolina Sheng Whei; Assis, Camila; Silva, Alessandro Rangel Carolino Sales; Cunha, Maria Luísa; Sena, Marcelo Martins; de Souza, Scheilla Vitorino Carvalho
2018-07-15
Grape, orange, peach and passion fruit nectars were formulated and adulterated by dilution with syrup, apple and cashew juices at 10 levels for each adulterant. Attenuated total reflectance Fourier transform mid infrared (ATR-FTIR) spectra were obtained. Partial least squares (PLS) multivariate calibration models allied to different variable selection methods, such as interval partial least squares (iPLS), ordered predictors selection (OPS) and genetic algorithm (GA), were used to quantify the main fruits. PLS improved by iPLS-OPS variable selection showed the highest predictive capacity to quantify the main fruit contents. The selected variables in the final models varied from 72 to 100; the root mean square errors of prediction were estimated from 0.5 to 2.6%; the correlation coefficients of prediction ranged from 0.948 to 0.990; and, the mean relative errors of prediction varied from 3.0 to 6.7%. All of the developed models were validated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Crupi, Vincenza; Majolino, Domenico; Venuti, Valentina; Guella, Graziano; Mancini, Ines; Rossi, Barbara; Verrocchio, Paolo; Viliani, Gabriele; Stancanelli, Rosanna
2010-07-01
The vibrational dynamics of solid inclusion complexes of the nonsteroidal anti-inflammatory drug Ibuprofen (IBP) with beta-cyclodextrin (beta-CD) and methyl-beta-cyclodextrin (Me-beta-CD) has been investigated by using attenuated total reflection-Fourier transform infrared FTIR-ATR spectroscopy, in order to monitor the changes induced, as a consequence of complexation, on the vibrational spectrum of IBP, in the wavenumber range 600-4000 cm(-1). Quantum chemical calculations were performed on monomeric and dimeric structures of IBP, derived from symmetric hydrogen bonding of the two carboxylic groups, in order to unambiguously assign some characteristic IR bands in the IBP spectrum. The evolution in temperature from 250 to 340 K of the C horizontal lineO stretching vibration, described by a best-fit procedure, allowed us to extract the thermodynamic parameter DeltaH associated to the binding of IBP with betaCDs in the solid phase. By comparing these results, Me-beta-CD has been shown to be the most effective carrier for IBP.
Crystallization kinetics from mixture Na2SO4/glycerol droplets of Na2SO4 by FTIR-ATR
NASA Astrophysics Data System (ADS)
Tan, Dan-Ting; Cai, Chen; Zhang, Yun; Wang, Na; Pang, Shu-Feng; Zhang, Yun-Hong
2016-08-01
The efflorescence of mixed Na2SO4/glycerol aerosols on the ZnSe substrate with various mole ratios (Na2SO4/glycerol = 1:1, 1:2, 1:4) has been studied in the relative humidity (RH) linearly decline process, using a situ Fourier transform infrared attenuated total reflection (FTIR-ATR) technique. The crystal ratio at a given RH can be gained by the absorbance of the band at 1132 cm-1, which shows the incomplete nucleation for mixed Na2SO4/glycerol aerosols and the decreased amount of the droplets crystallized at the lowest RH with the glycerol increase. Using the volume fraction of droplets that have yet to crystallize, the heterogeneous nucleation kinetics has been gained. By the Extended Aerosol Inorganics Model (E-AIM), the nucleation rate as the function of solute saturation degree has been gained for various mixed Na2SO4/glycerol aerosols.
USDA-ARS?s Scientific Manuscript database
The immature fiber (im) mutant is one type of cotton fiber mutants with unique characteristics of non-fluffy cotton bolls. Compared to its near-isogenic wild type Texas Marker-1 (TM-1), im fiber has thin secondary cell wall and is less mature. In this work, we applied the previously proposed princip...
Freudenthal, Oona; Quilès, Fabienne; Francius, Grégory; Wojszko, Kamila; Gorczyca, Marcelina; Korchowiec, Beata; Rogalska, Ewa
2016-11-01
Colistin (Polymyxin E), an antimicrobial peptide, is increasingly put forward as salvage for severe multidrug-resistant infections. Unfortunately, colistin is potentially toxic to mammalian cells. A better understanding of the interaction with specific components of the cell membranes may be helpful in controlling the factors that may enhance toxicity. Here, we report a physico-chemical study of model phospholipid (PL) mono- and bilayers exposed to colistin at different concentrations by Langmuir technique, atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The effect of colistin on chosen PL monolayers was examined. Insights into the topographical and elastic changes in the PL bilayers within time after peptide injection are presented via AFM imaging and force spectra. Finally, changes in the PL bilayers' ATR-FTIR spectra as a function of time within three bilayer compositions, and the influence of colistin on their spectral fingerprint are examined together with the time-evolution of the Amide II and νCO band integrated intensity ratios. Our study reveals a great importance in the role of the PL composition as well as the peptide concentration on the action of colistin on PL model membranes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dave, Kashyap; Dhayal, Marshal
2017-02-01
A hydrosol approach developed to synthesize fluorescence quenched fluorescein isothiocyanate (FITC) functionalized colloidal suspension of graphene oxide nanoparticles (GONP). UV-vis spectroscopic measurements showed characteristic peak at 236 nm and 300 nm due to pi-pi* interaction in Cdbnd C and n-pi* transition in Cdbnd O bond of GONP, respectively. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra showed reduced intensity of 1429 cm-1 IR band of GONP due to the electrostatic and pi-pi interactions of FITC with GONP in FITC-GONP. ATR-FTIR spectra of different amino acid co-functionalised FITC-GONP showed an increase in the FTIR band intensity at 1429 cm-1 which was significantly reduced due to electrostatic/pi-pi interactions of FITC with GONP in the absence of the amino acids. A peak at 1084 cm-1 in ATR-FTIR spectra appears which confirms the interaction between amine group of amino acids and sbnd COO- groups at GONP surface. The FITC interaction with GONP lead to fluorescence resonance energy transfers (FRET) and resulted in a liner decrease in the FITC fluorescence with an increase of GONP concentration. An increase in the reappearance of FITC fluorescence observed while the amino acid concentration was increased in co-functionalised FITC-GONP. The quantified amount of reappeared fluorescence of FITC in amino acid co-functionalised FITC-GONP depends on the concentration, polar and non-polar nature of amino acids. The reappearance of FITC from the surface of FITC-GONP with the addition of amino acid was found to be consistent with the organic substitute, size of amino acids and their functionalities. Therefore, FRET based method using FITC-GONP colloidal suspension may have potential application in determining the binding nature of biomolecules with GONP for biomedical applications.
NASA Astrophysics Data System (ADS)
Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.
1997-06-01
The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.
Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Yu, Haixia; Xu, Kexin
2013-01-01
Because mid-infrared (mid-IR) spectroscopy is not a promising method to noninvasively measure glucose in vivo, a method for minimally invasive high-precision glucose determination in vivo by mid-IR laser spectroscopy combined with a tunable laser source and small fiber-optic attenuated total reflection (ATR) sensor is introduced. The potential of this method was evaluated in vitro. This research presents a mid-infrared tunable laser with a broad emission spectrum band of 9.19 to 9.77μm(1024~1088 cm−1) and proposes a method to control and stabilize the laser emission wavelength and power. Moreover, several fiber-optic ATR sensors were fabricated and investigated to determine glucose in combination with the tunable laser source, and the effective sensing optical length of these sensors was determined for the first time. In addition, the sensitivity of this system was four times that of a Fourier transform infrared (FT-IR) spectrometer. The noise-equivalent concentration (NEC) of this laser measurement system was as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. Furthermore, a partial least-squares regression and Clarke error grid were used to quantify the predictability and evaluate the prediction accuracy of glucose concentration in the range of 5 to 500 mg/dL (physiologically relevant range: 30~400 mg/dL). The experimental results were clinically acceptable. The high sensitivity, tunable laser source, low NEC and small fiber-optic ATR sensor demonstrate an encouraging step in the work towards precisely monitoring glucose levels in vivo. PMID:24466493
Sorption, desorption, and surface oxidative fate of nicotine.
Petrick, Lauren; Destaillats, Hugo; Zouev, Irena; Sabach, Sara; Dubowski, Yael
2010-09-21
Nicotine dynamics in an indoor environment can be greatly affected by building parameters (e.g. relative humidity (RH), air exchange rate (AER), and presence of ozone), as well as surface parameters (e.g. surface area (SA) and polarity). To better understand the indoor fate of nicotine, these parameter effects on its sorption, desorption, and oxidation rates were investigated on model indoor surfaces that included fabrics, wallboard paper, and wood materials. Nicotine sorption under dry conditions was enhanced by higher SA and higher polarity of the substrate. Interestingly, nicotine sorption to cotton and nylon was facilitated by increased RH, while sorption to polyester was hindered by it. Desorption was affected by RH, AER, and surface type. Heterogeneous nicotine-ozone reaction was investigated by Fourier transform infrared spectrometry with attenuated total reflection (FTIR-ATR), and revealed a pseudo first-order surface reaction rate of 0.035 +/- 0.015 min(-1) (at [O(3)] = 6 +/- 0.3 x 10(15) molecules cm(-3)) that was partially inhibited at high RH. Extrapolation to a lower ozone level ([O(3)] = 42 ppb) showed oxidation on the order of 10(-5) min(-1) corresponding to a half-life of 1 week. In addition, similar surface products were identified in dry and high RH using gas chromatography-mass spectrometry (GC-MS). However, FTIR analysis revealed different product spectra for these conditions, suggesting additional unidentified products and association with surface water. Knowing the indoor fate of condensed and gas phase nicotine and its oxidation products will provide a better understanding of nicotine's impact on personal exposures as well as overall indoor air quality.
Application of FTIR spectroscopy to the characterization of archeological wood.
Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio
2016-01-15
Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P=0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR. Copyright © 2015 Elsevier B.V. All rights reserved.
Application of FTIR spectroscopy to the characterization of archeological wood
NASA Astrophysics Data System (ADS)
Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio
2016-01-01
Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P = 0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR.
Nicolaou, Nicoletta; Goodacre, Royston
2008-10-01
Microbiological safety plays a very significant part in the quality control of milk and dairy products worldwide. Current methods used in the detection and enumeration of spoilage bacteria in pasteurized milk in the dairy industry, although accurate and sensitive, are time-consuming. FT-IR spectroscopy is a metabolic fingerprinting technique that can potentially be used to deliver results with the same accuracy and sensitivity, within minutes after minimal sample preparation. We tested this hypothesis using attenuated total reflectance (ATR), and high throughput (HT) FT-IR techniques. Three main types of pasteurized milk - whole, semi-skimmed and skimmed - were used and milk was allowed to spoil naturally by incubation at 15 degrees C. Samples for FT-IR were obtained at frequent, fixed time intervals and pH and total viable counts were also recorded. Multivariate statistical methods, including principal components-discriminant function analysis and partial least squares regression (PLSR), were then used to investigate the relationship between metabolic fingerprints and the total viable counts. FT-IR ATR data for all milks showed reasonable results for bacterial loads above 10(5) cfu ml(-1). By contrast, FT-IR HT provided more accurate results for lower viable bacterial counts down to 10(3) cfu ml(-1) for whole milk and, 4 x 10(2) cfu ml(-1) for semi-skimmed and skimmed milk. Using FT-IR with PLSR we were able to acquire a metabolic fingerprint rapidly and quantify the microbial load of milk samples accurately, with very little sample preparation. We believe that metabolic fingerprinting using FT-IR has very good potential for future use in the dairy industry as a rapid method of detection and enumeration.
Partially-irreversible sorption of formaldehyde in five polymers
NASA Astrophysics Data System (ADS)
Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.
2014-12-01
Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.
FTIR-ATR infrared spectroscopy for the detection of ochratoxin A in dried vine fruit.
Galvis-Sánchez, Andrea C; Barros, Antonio; Delgadillo, Ivonne
2007-11-01
A method of screening sultanas for ochratoxin A (OTA) contamination, using mid-infrared spectroscopy/Golden Gate single-reflection ATR (attenuated total reflection), is described. The main spectral characteristics of sultanas from different sources were identified in a preliminary acquisition and spectral analysis study. Principal component analysis (PCA) showed that samples of various origins had different spectral characteristics, especially in water content and the fingerprint region. A lack of reproducibility was observed in the spectra acquired on different days. However, spectral repeatability was greatly improved when water activity of the sample was set at 0.62. A calibration curve of OTA was constructed in the range 10-40 microg OTA kg(-1). Samples with OTA levels higher than 20 microg kg(-1) were separated from samples contaminated with a lower concentration (10 microg OTA kg(-1)) and from uncontaminated samples. The reported methodology is a reliable and simple technique for screening dried vine fruit for OTA.
Lima, Cassio A; Goulart, Viviane P; Correa, Luciana; Zezell, Denise M
2016-07-01
Vibrational spectroscopic methods associated with multivariate statistical techniques have been succeeded in discriminating skin lesions from normal tissues. However, there is no study exploring the potential of these techniques to assess the alterations promoted by photodynamic effect in tissue. The present study aims to demonstrate the ability of Fourier Transform Infrared (FTIR) spectroscopy on Attenuated total reflection (ATR) sampling mode associated with principal component-linear discriminant analysis (PC-LDA) to evaluate the biochemical changes caused by photodynamic therapy (PDT) in skin neoplastic tissue. Cutaneous neoplastic lesions, precursors of squamous cell carcinoma (SCC), were chemically induced in Swiss mice and submitted to a single session of 5-aminolevulinic acid (ALA)-mediated PDT. Tissue sections with 5 μm thickness were obtained from formalin-fixed paraffin-embedded (FFPE) and processed prior to the histopathological analysis and spectroscopic measurements. Spectra were collected in mid-infrared region using a FTIR spectrometer on ATR sampling mode. Principal Component-Linear Discriminant Analysis (PC-LDA) was applied on preprocessed second derivatives spectra. Biochemical changes were assessed using PCA-loadings and accuracy of classification was obtained from PC-LDA . Sub-bands of Amide I (1,624 and 1,650 cm(-1) ) and Amide II (1,517 cm(-1) ) indicated a protein overexpression in non-treated and post-PDT neoplastic tissue compared with healthy skin, as well as a decrease in collagen fibers (1,204, 1,236, 1,282, and 1,338 cm(-1) ) and glycogen (1,028, 1,082, and 1,151 cm(-1) ) content. Photosensitized neoplastic tissue revealed shifted peak position and decreased β-sheet secondary structure of proteins (1,624 cm(-1) ) amount in comparison to non-treated neoplastic lesions. PC-LDA score plots discriminated non-treated neoplastic skin spectra from post-PDT cutaneous lesions with accuracy of 92.8%, whereas non-treated neoplastic skin was discriminated from healthy tissue with 93.5% accuracy and post-PDT cutaneous lesions was discriminated from healthy tissue with 89.7% accuracy. PC-LDA was able to discriminate ATR-FTIR spectra of non-treated and post-PDT neoplastic lesions, as well as from healthy skin. Thus, the method can be used for early diagnosis of premalignant skin lesions, as well as to evaluate the response to photodynamic treatment. Lasers Surg. Med. 48:538-545, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara
2013-01-01
Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.
Damin, Craig A; Sommer, André J
2013-11-01
Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending tolerance indicated HWGs should be preferred in the construction of a fiber/waveguide-coupled ATR probe.
Gudi, Gennadi; Krähmer, Andrea; Krüger, Hans; Schulz, Hartwig
2015-10-07
Sage (Salvia officinalis L.) is cultivated worldwide for its aromatic leaves, which are used as herbal spice, and for phytopharmaceutical applications. Fast analytical strategies for essential oil analysis, performed directly on plant material, would reduce the delay between sampling and analytical results. This would enhance product quality by improving technical control of cultivation. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) method described here provides a reliable calibration model for quantification of essential oil components [EOCs; R(2) = 0.96; root-mean-square error of cross-validation (RMSECV) = 0.249 mL 100 g(-1) of dry matter (DM); and range = 1.115-5.280 mL 100 g(-1) of DM] and main constituents [e.g., α-thujone/β-thujone; R(2) = 0.97/0.86; RMSECV = 0.0581/0.0856 mL 100 g(-1) of DM; and range = 0.010-1.252/0.005-0.893 mL 100 g(-1) of DM] directly on dried intact leaves of sage. Except for drying, no further sample preparation is required for ATR-FTIR, and the measurement time of less than 5 min per sample contrasts with the most common alternative of hydrodistillation followed by gas chromatography analysis, which can take several hours per sample.
Lyman, Donald J; Murray-Wijelath, Jacqueline
2005-01-01
A comparative study of Fourier transform infrared attenuated total reflection (FTIR-ATR) spectra of 32 scalp and pubic hair samples from individuals diagnosed with breast cancer and those who were negative for breast cancer showed increases in the beta-sheet/disorder structures (relative to alpha-helix structures) and C-H lipid content of hair from breast cancer patients. Thus, the presence of breast cancer appears to alter the hair growth process, resulting in changes in the composition and conformation of cell membrane and matrix materials of hair fiber. These appear to be consistent with the changes observed in X-ray diffraction patterns for hair from breast cancer patients. A blind study of 12 additional hair samples using these FTIR-ATR spectral differences as markers correctly identified all four hair samples from cancer patients (100%). Two of these samples were from breast cancer patients. Of the remaining two samples analyzing positive for cancer, one was from a prostate cancer patient and one from a lung cancer patient. Thus, it appears that the mechanism that alters hair fiber synthesis in the three types of cancer may be similar. The blind study incorrectly identified as positive for cancer three hair samples from two apparently healthy individuals and one patient considered cured from prostate cancer.
Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis.
Nespeca, Maurilio Gustavo; Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo
2018-01-01
Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000-650 cm -1 . The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time.
Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis
Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo
2018-01-01
Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000–650 cm−1. The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time. PMID:29629209
Cordoba de Torresi, Susana Ines; Dourado, Andre H B; Silva, Rubens A; Torresi, Roberto M; Sumodjo, Paulo T A; Arenz, Matthias
2018-06-05
A quartz crystal microbalance method with dissipation (QCM-D) and attenuated total reflection infrared (ATR-FTIRS) spectroscopy were used to study the adsorption of L-cysteine (L-Cys) on Pt. Using QCM-D, it was possible to verify that the viscoelastic properties of the adsorbed species play an important role in the adsorption, rendering Sauerbrey's equation inapplicable. The modelling of QCM-D data exposed two different processes for the adsorption reaction. The first one had an activation time and is fast, whereas the second is slow. These processes were also resolved by ATR-FTIRS identified to be water and anion adsorption preceded by L-Cys adsorption. Both techniques reveal that the degree of surface coverage is pH dependent. Spectroscopic data indicate that the conformation of L-Cys(ads) changes with pH and that the structures do not fully agree with those proposed in literature for other metallic surfaces. The assembling of the adsorbed monolayer appeared to be very fast, and it was not possible to determine or quantify this kinetics. The conformation is also controlled by applied potential, and the anion adsorption and interfacial water depends on the conformation of the adsorbed molecules. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Durazzo, Alessandra; Gabrielli, Paolo; Manzi, Pamela
2015-01-01
Soy-based beverages are a source of high quality proteins and balanced nutrients; they thus represent an alternative to milk in case of allergy to cow milk proteins or intolerance to lactose. In this research, antioxidant properties of soy-based beverages and UHT cow milk were studied. In addition, color parameters, by a quick and non-destructive methodology, were studied in order to verify a possible correlation with antioxidant properties and a qualitative analysis of the major functional groups undertaken by Fourier Transformed Infrared Spectroscopy (FTIR) on Attenuated Total Reflectance (ATR) was carried out. Extractable and hydrolysable polyphenols were studied in soy-based beverages. However, only the extractable fraction was studied in UHT milk, which was characterized by a small amount of polyphenols. All color parameters showed highly significant differences among soy-based beverages and between soy-based beverages and cow milk. FTIR-ATR spectra of soy-based beverages and cow milk showed several differences in the various regions depending on both the specific contribution of molecular groups and different food items. PMID:26783841
Computer analysis of ATR-FTIR spectra of paint samples for forensic purposes
NASA Astrophysics Data System (ADS)
Szafarska, Małgorzata; Woźniakiewicz, Michał; Pilch, Mariusz; Zięba-Palus, Janina; Kościelniak, Paweł
2009-04-01
A method of subtraction and normalization of IR spectra (MSN-IR) was developed and successfully applied to extract mathematically the pure paint spectrum from the spectrum of paint coat on different bases, both acquired by the Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) technique. The method consists of several stages encompassing several normalization and subtraction processes. The similarity of the spectrum obtained with the reference spectrum was estimated by means of the normalized Manhattan distance. The utility and performance of the method proposed were tested by examination of five different paints sprayed on plastic (polyester) foil and on fabric materials (cotton). It was found that the numerical algorithm applied is able - in contrast to other mathematical approaches conventionally used for the same aim - to reconstruct a pure paint IR spectrum effectively without a loss of chemical information provided. The approach allows the physical separation of a paint from a base to be avoided, hence a time and work-load of analysis to be considerably reduced. The results obtained prove that the method can be considered as a useful tool which can be applied to forensic purposes.
Pletincx, Sven; Trotochaud, Lena; Fockaert, Laura-Lynn; Mol, Johannes M. C.; Head, Ashley R.; Karslıoğlu, Osman; Bluhm, Hendrik; Terryn, Herman; Hauffman, Tom
2017-01-01
Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation. PMID:28327587
Chen, Long; Tian, Yaoqi; Sun, Binghua; Cai, Canxin; Ma, Rongrong; Jin, Zhengyu
2018-03-01
Concerns regarding increased dietary oil uptake have prompted efforts to investigate the oil absorption and distribution in fried starchy foods. In the present study, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, together with a chloroform-methanol method, was used to analyze the external and internal oil contents in fried starchy samples. The micromorphology of fried starchy samples was further investigated using scanning electron microscope (SEM), polarized light microscope (PLM) and confocal laser scanning microscopy (CLSM). The results indicated that large amounts of oil were absorbed in or within waxy maize starch, but the majority of oil was located near the surface layer of the starch granules. After defatting, the internal oil was thoroughly removed, while a small amount of external oil remained. As evidenced by the changes of the crystalline characteristics with the help of X-ray diffraction (XRD), the interaction between starch and lipids on the surface was confirmed to form V-type complex compounds during frying at high moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham
1999-04-01
A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.
Rapid detection of NBOME's and other NPS on blotter papers by direct ATR-FTIR spectrometry.
Coelho Neto, José
2015-07-01
Blotter paper is among the most common forms of consumption of new psychotropic substances (NPS), formerly referred as designer drugs. In many cases, users are misled to believe they are taking LSD when, in fact, they are taking newer and less known drugs like the NBOMEs or other substituted phenethylamines. We report our findings in quick testing of blotter papers for illicit substances like NBOMEs and other NPS by taking ATR-FTIR spectra directly from blotters seized on the streets, without any sample preparation. Both sides (front and back) of each blotter were tested. Collected data were analyzed by single- and multi-component spectral matching and submitted to chemometric discriminant analysis. Our results showed that, on 66.7% of the cases analyzed, seized blotters contained one or more types of NBOMEs, confirming the growing presence of this novel substances on the market. Matching IR signals were detected on both or just one side of the blotters and showed variable strength. Although no quantitative analysis was made, detection of these substances by the proposed approach serves as indication of variable and possibly higher dosages per blotter when compared to LSD, which showed to be below the detection limit of the applied method. Blotters containing a mescaline-like compound, later confirmed by GC-MS and LC-MS to be MAL (methallylescaline), a substance very similar to mescaline, were detected among the samples tested. Validity of direct ATR-FTIR testing was confirmed by checking the obtained results against independent GC-MS or LC-MS results for the same cases/samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sroka-Bartnicka, Anna; Borkowski, Leszek; Ginalska, Grazyna; Ślósarczyk, Anna; Kazarian, Sergei G.
2017-01-01
Hydroxyapatite and carbonate-substituted hydroxyapatite are widely used in bone tissue engineering and regenerative medicine. Both apatite materials were embedded into recently developed ceramic/polymer composites, subjected to Simulated Body Fluid (SBF) for 30 days and characterized using ATR-FTIR spectroscopic imaging to assess their behaviour and structures. The specific aim was to detect the transition phases between both types of hydroxyapatite during the test and to analyze the surface modification caused by SBF. ATR-FTIR spectroscopic imaging was successfully applied to characterise changes in the hydroxyapatite lattice due to the elastic properties of the scaffolds. It was observed that SBF treatment caused a replacement of phosphates in the lattice of non-substituted hydroxyapatite by carbonate ions. A detailed study excluded the formation of pure A type carbonate apatite. In turn, CO32- content in synthetic carbonate-substituted hydroxyapatite decreased. The usefulness of ATR-FTIR spectroscopic imaging studies in the evaluation of elastic and porous β-glucan hydroxyapatite composites has been demonstrated.
NASA Astrophysics Data System (ADS)
Akyuz, Sevim; Akyuz, Tanil; Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba; Basaran, Sait; Cakan, Banu
2012-05-01
Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry.
Goodall, Rosemary A; Hall, Jay; Sharer, Robert J; Traxler, Loa; Rintoul, Llew; Fredericks, Peter M
2008-01-01
Fourier transform infrared (FT-IR) attenuated total reflection (ATR) imaging has been successfully used to identify individual mineral components of ancient Maya paint. The high spatial resolution of a micro FT-IR-ATR system in combination with a focal plane array detector has allowed individual particles in the paint to be resolved and identified from their spectra. This system has been used in combination with micro-Raman spectroscopy to characterize the paint, which was found to be a mixture of hematite and silicate particles with minor amounts of calcite, carbon, and magnetite particles in a sub-micrometer hematite and calcite matrix. The underlying stucco was also investigated and found to be a combination of calcite with fine carbon particles, making a dark sub-ground for the paint.
NASA Astrophysics Data System (ADS)
Yu, Peiqiang
2012-05-01
Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research
Araña, J; Tello-Rendón, E; Doña-Rodríguez, J M; Campo, C V; Herrera-Melidán, J A; González-Díaz; Pérez-Peña, J
2001-01-01
The degradation of high phenol concentrations (1 g/L) in water solutions by TiO2 photocatalysis and the photo-Fenton reaction has been studied. From the obtained data it may be suggested that degradation of phenol by TiO2-UV takes place onto the catalyst surface by means of peroxo-compounds formation. At low phenol concentrations other mechanism, the insertion of OH. radicals, may be favored. On the other hand, highly concentrated phenol aqueous solutions treatment by the photo-Fenton reaction gives rise to the formation of polyphenolic polymers. These seem to reduce the process rate. Degradation intermediates have been identified by HPLC and FTIR. The FTIR study of the catalyst surface has shown infrared bands attributable to different chemisorbed peroxo-compounds, formates, ortho-formates and carboxylates that can inactivate the catalyst.
Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Kevin A.; Key, Baris; Li, Jianlin
Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less
Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes
Hays, Kevin A.; Key, Baris; Li, Jianlin; ...
2018-04-24
Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less
Multitechnique characterization of oligo(ethylene glycol) functionalized gold nanoparticles.
Rafati, Ali; Shard, Alexander G; Castner, David G
2016-11-09
Gold nanoparticles (AuNPs) with average diameters of ∼14 and ∼40 nm, as well as flat gold coated silicon wafers, were functionalized with oligo ethylene glycol (OEG) terminated 1-undecanethiol (HS-CH 2 ) 11 self-assembled monolayers (SAMs). Both hydroxyl [(OEG) 4 OH] and methoxy [(OEG) 4 OMe] terminated SAMs were prepared. The AuNPs were characterized with transmission electron microscopy (TEM), time of flight secondary ion mass spectrometry (ToF-SIMS), x-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier infrared spectroscopy (ATR-FTIR), and low-energy ion scattering (LEIS). These studies provided quantitative information about the OEG functionalized AuNPs. TEM showed the 14 nm AuNPs were more spherical and had a narrower size distribution than the 40 nm AuNPs. ToF-SIMS clearly differentiated between the two OEG SAMs based on the C 3 H 7 O + peak attributed to the methoxy group in the OMe terminated SAMs as well as the different masses of the [Au + M] - ion (M = mass of the thiol molecule) from each type of SAM. Overlayer/substrate ratios quantitatively determined with XPS show a greater proportion of OEG units at the surface of 40 nm AuNPs compared to the 14 nm AuNPs. ATR-FTIR suggested the C11 backbone of the two SAMs on both AuNPs are similar and crystalline, but the OEG head groups are more crystalline on the 40 nm AuNPs compared to the 14 nm AuNPs. This indicated a better ordered SAM present at the surface of the larger, more irregular particles due to greater ordering of the OEG groups. This was consistent with the XPS and LEIS results, which showed a 30% thicker SAM was formed on the 40 nm AuNPs compared to the 14 nm AuNPs. The OH or OMe functionality did not have a significant effect on the ordering and thickness of the OEG SAMs.
Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Kerbal, Abdelali; Kajjout, Mohamed; Doumenq, Pierre; De Carvalho, Maria Luisa
2015-08-01
The most critical steps during the conservation-restoration treatment applied in Moroccan libraries are the deacidification using immersion in a saturated aqueous calcium hydroxide (Ca(OH)2) solution and the consolidation of degraded manuscripts using Japanese paper. The present study aims to assess the efficiency of this restoration method using a multi-analytical approach. For this purpose, three ancient Arabic Moroccan manuscript papers dating back to the 16th, 17th, and 18th centuries were investigated to characterize the paper support and make a comparative study between pre-restoration and post-restoration states. Three structural and molecular characterization techniques including solid-state nuclear magnetic resonance spectroscopy on (13)C with cross-polarization and magic-angle spinning nuclear magnetic resonance ((13)C CP-MAS NMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), and X-ray diffraction (XRD) were used to elucidate the cellulose main features, to identify the inorganic composition of the papers, and to study the crystallinity of the samples. Inductively coupled plasma atomic emission spectrometry (ICP-AES) allowed us to obtain a qualitative and quantitative characterization of the mineral fillers used in the manufacturing of the papers. Scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) ascertained the state of conservation of the different papers and helped us to study the elemental composition of the samples. After restoration, it was shown that the deacidification improved the stability of papers by providing an important alkaline buffer, as demonstrated using FT-IR and energy dispersive spectrometry (EDS) results. However, XRD and ICP-AES did not confirm the pertinence of the treatment for all samples because of the unequal distribution of Ca on the paper surface during the restoration. The consolidation process was studied using SEM analysis; its effectiveness in restoring torn areas was found to be significant.
USDA-ARS?s Scientific Manuscript database
Fourier transform infrared photoacoustic spectrometry was used to reveal and identify n-p type intermolecular interaction formed in plastic comprising binary blends of polystyrene and a biodegradable polymer, either polylactic acid, polycaprolactone or poly(tetramethyleneadipate-co-terephthalate)....
NASA Astrophysics Data System (ADS)
Flores-Rojas, G. G.; Bucio, E.
2016-10-01
Silicone rubber (SR) was modified with a graft of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) using either gamma-radiation or azobisisobutyronitrile (AIBN). The graft efficiency was evaluated as a function of monomer concentration, absorbed dose, reaction temperature, and concentration of AIBN. The hydrophilicity of the grafted films was measured by contact angle and their equilibrium swelling time in ethanol. Additional characterization by infrared (FTIR-ATR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is also reported.
A genetic algorithm-based framework for wavelength selection on sample categorization.
Anzanello, Michel J; Yamashita, Gabrielli; Marcelo, Marcelo; Fogliatto, Flávio S; Ortiz, Rafael S; Mariotti, Kristiane; Ferrão, Marco F
2017-08-01
In forensic and pharmaceutical scenarios, the application of chemometrics and optimization techniques has unveiled common and peculiar features of seized medicine and drug samples, helping investigative forces to track illegal operations. This paper proposes a novel framework aimed at identifying relevant subsets of attenuated total reflectance Fourier transform infrared (ATR-FTIR) wavelengths for classifying samples into two classes, for example authentic or forged categories in case of medicines, or salt or base form in cocaine analysis. In the first step of the framework, the ATR-FTIR spectra were partitioned into equidistant intervals and the k-nearest neighbour (KNN) classification technique was applied to each interval to insert samples into proper classes. In the next step, selected intervals were refined through the genetic algorithm (GA) by identifying a limited number of wavelengths from the intervals previously selected aimed at maximizing classification accuracy. When applied to Cialis®, Viagra®, and cocaine ATR-FTIR datasets, the proposed method substantially decreased the number of wavelengths needed to categorize, and increased the classification accuracy. From a practical perspective, the proposed method provides investigative forces with valuable information towards monitoring illegal production of drugs and medicines. In addition, focusing on a reduced subset of wavelengths allows the development of portable devices capable of testing the authenticity of samples during police checking events, avoiding the need for later laboratorial analyses and reducing equipment expenses. Theoretically, the proposed GA-based approach yields more refined solutions than the current methods relying on interval approaches, which tend to insert irrelevant wavelengths in the retained intervals. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Parikh, Sanjai J.; Mukome, Fungai N.D.; Zhang, Xiaoming
2014-01-01
Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (α-Fe2O3) and goethite (α-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, P. aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm−1) and inner-sphere (1310-1320 cm−1) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with α-Fe2O3 and α-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ~1043 cm−1, corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on α-FeOOH, as compared to α-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052
Limirio, Pedro Henrique Justino Oliveira; da Rocha Junior, Huberth Alexandre; Morais, Richarlisson Borges de; Hiraki, Karen Renata Nakamura; Balbi, Ana Paula Coelho; Soares, Priscilla Barbosa Ferreira; Dechichi, Paula
2018-01-01
The aim of this study was to evaluate the biomechanics and structural bone matrix in diabetic rats subjected to hyperbaric oxygen therapy (HBO). Twenty-four male rats were divided into the following groups: Control; Control + HBO; Diabetic, and Diabetic + HBO. Diabetes was induced with streptozotocin (STZ) in the diabetic Groups. After 30 days, HBO was performed every 48h in HBO groups and all animals were euthanized 60 days after diabetic induction. The femur was submitted to a biomechanical (maximum strength, energy-to-failure and stiffness) and Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR) analyses (crosslink ratio, crystallinity index, matrix-to-mineral ratio: Amide I + II/Hydroxyapatite (M:MI) and Amide III + Collagen/HA (M:MIII)). In biomechanical analysis, diabetic animals showed lower values of maximum strength, energy and stiffness than non-diabetic animals. However, structural strength and stiffness were increased in groups with HBO compared with non-HBO. ATR-FTIR analysis showed decreased collagen maturity in the ratio of crosslink peaks in diabetic compared with the other groups. The bone from the diabetic groups showed decreased crystallinity compared with non-diabetic groups. M:MI showed no statistical difference between groups. However, M:MIII showed an increased matrix mineral ratio in diabetic+HBO and control+HBO compared with control and diabetic groups. Correlations between mechanical and ATR-FTIR analyses showed significant positive correlation between collagen maturity and stiffness. Diabetes decreased collagen maturation and the mineral deposition process, thus reducing biomechanical properties. Moreover, the study showed that HBO improved crosslink maturation and increased maximum strength and stiffness in the femur of T1DM animals.
Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen
Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim
2015-01-01
Background Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. Methodology The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. Results The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps. PMID:25867755
Wei, Ru-Yi; Zhou, Jin-Song; Zhang, Xue-Min; Yu, Tao; Gao, Xiao-Hui; Ren, Xiao-Qiang
2014-11-01
The present paper describes the observations and measurements of the infrared absorption spectra of CO2 on the Earth's surface with OP/FTIR method by employing a mid-infrared reflecting scanning Fourier transform spectrometry, which are the first results produced by the first prototype in China developed by the team of authors. This reflecting scanning Fourier transform spectrometry works in the spectral range 2 100-3 150 cm(-1) with a spectral resolution of 2 cm(-1). Method to measure the atmospheric molecules was described and mathematical proof and quantitative algorithms to retrieve molecular concentration were established. The related models were performed both by a direct method based on the Beer-Lambert Law and by a simulating-fitting method based on HITRAN database and the instrument functions. Concentrations of CO2 were retrieved by the two models. The results of observation and modeling analyses indicate that the concentrations have a distribution of 300-370 ppm, and show tendency that going with the variation of the environment they first decrease slowly and then increase rapidly during the observation period, and reached low points in the afternoon and during the sunset. The concentrations with measuring times retrieved by the direct method and by the simulating-fitting method agree with each other very well, with the correlation of all the data is up to 99.79%, and the relative error is no more than 2.00%. The precision for retrieving is relatively high. The results of this paper demonstrate that, in the field of detecting atmospheric compositions, OP/FTIR method performed by the Infrared reflecting scanning Fourier transform spectrometry is a feasible and effective technical approach, and either the direct method or the simulating-fitting method is capable of retrieving concentrations with high precision.
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.
1998-06-01
Fourier Transform Infrared (FTIR) Spectroscopy using optical fibers operated in the attenuated total reflection (ATR) regime in the mid-IR region in the range 850 to 4000 cm-1 has recently found an application in the noninvasive diagnostics of tissues in vivo. The method is suitable for nondestructive, nontoxic, fast (seconds), direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo, and in vivo in real time. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications as well as for the research of different materials.
Physiochemical/Rheological Control of Nonmetallic Materials.
1982-08-01
CONCLUSIONS ... .. .. . .oo.. .. .. .. .. .. .. .... 23 APPENDIX A - Infrared Spectra of Nonmetallic Consumables .. ......... 24 77’. 1SN 7.. Tiii LIST OF...Spectrometer IR Infrared Spectroscopy GC Gas Chromatrography MS Mass Spectrometry * DSC Differenitial Scanning Calorimetry RT Room Temperature ET Elevated...Linear Heating Rate *FTIR Fourier Transform Infrared TGA Thermogravimetric Analysis Vi 1.0 INTRODUCTION AND SUOARY Over the past 10 years
NASA Astrophysics Data System (ADS)
Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred
2010-02-01
The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.
Niece, Krista L.
2015-01-01
Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160
Nurdalila, A’wani Aziz; Bunawan, Hamidun; Kumar, Subbiah Vijay; Rodrigues, Kenneth Francis; Baharum, Syarul Nataqain
2015-01-01
Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance–Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish. PMID:26147421
Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K
2016-07-01
Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. © The Author(s) 2016.
Gajjar, Ketan; Heppenstall, Lara D.; Pang, Weiyi; Ashton, Katherine M.; Trevisan, Júlio; Patel, Imran I.; Llabjani, Valon; Stringfellow, Helen F.; Martin-Hirsch, Pierre L.; Dawson, Timothy; Martin, Francis L.
2013-01-01
The most common initial treatment received by patients with a brain tumour is surgical removal of the growth. Precise histopathological diagnosis of brain tumours is to some extent subjective. Furthermore, currently available diagnostic imaging techniques to delineate the excision border during cytoreductive surgery lack the required spatial precision to aid surgeons. We set out to determine whether infrared (IR) and/or Raman spectroscopy combined with multivariate analysis could be applied to discriminate between normal brain tissue and different tumour types (meningioma, glioma and brain metastasis) based on the unique spectral “fingerprints” of their biochemical composition. Formalin-fixed paraffin-embedded tissue blocks of normal brain and different brain tumours were de-waxed, mounted on low-E slides and desiccated before being analyzed using attenuated total reflection Fourier-transform IR (ATR-FTIR) and Raman spectroscopy. ATR-FTIR spectroscopy showed a clear segregation between normal and different tumour subtypes. Discrimination of tumour classes was also apparent with Raman spectroscopy. Further analysis of spectral data revealed changes in brain biochemical structure associated with different tumours. Decreased tentatively-assigned lipid-to-protein ratio was associated with increased tumour progression. Alteration in cholesterol esters-to-phenylalanine ratio was evident in grade IV glioma and metastatic tumours. The current study indicates that IR and/or Raman spectroscopy have the potential to provide a novel diagnostic approach in the accurate diagnosis of brain tumours and have potential for application in intra-operative diagnosis. PMID:24098310
Nurdalila, A'wani Aziz; Bunawan, Hamidun; Kumar, Subbiah Vijay; Rodrigues, Kenneth Francis; Baharum, Syarul Nataqain
2015-07-02
Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance-Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish.
NASA Astrophysics Data System (ADS)
Assumpção, M. H. M. T.; Nandenha, J.; Buzzo, G. S.; Silva, J. C. M.; Spinacé, E. V.; Neto, A. O.; De Souza, R. F. B.
2014-05-01
The effect of ethanol concentration on the direct ethanol fuel cell (DEFC) performance and products distribution were studied in situ using a single fuel cell/ATR-FTIR setup. The experiments were performed at 80 °C using commercial Pt3Sn/C as anodic catalyst and the concentrations of ethanol solution were varied from 0.1 to 2.0 mol L-1. An increase in power density was observed with the increase of ethanol concentration to 1.0 mol L-1, while the band intensities analysis in the FTIR spectra revealed an increase of acetic acid/acetaldehyde ratio with the increase of ethanol concentration. Also, from FTIR spectra results, it could be concluded that the acetic acid production follow parallel mechanisms; that is, it does not require the presence of acetaldehyde as an intermediate.
DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY
A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...
Sundaramoorthi, Kamatchi; Sethu, Gunasekaran; Ethirajulu, Sailatha; Raja Marthandam, Pavithra
2017-03-20
Diabetes mellitus is chronic metabolic disorder, resulting from insulin deficiency, characterized by hyperglycemia altered metabolism of carbohydrates, proteins and lipids and an increased risk of vascular complications. There are different classes of anti-diabetic drugs in allopathic system of medicine. Metformin (dimethyl biguanide) is a blood glucose lowering agent used in the treatment of non-insulin dependent diabetes mellitus. Almost in all diseases the blood serves as the primary metabolic transport system in the body. Its composition is the preferred indicator with respect to the pathophysiological condition of the patient. Instead of analyzing blood to diagnose diabetes, hair could be used to detect diabetes using FTIR-ATR technique. The most important components of hair are fibrous proteins (keratins), melanins, glycogen, and lipids. Hair follicles are located 3-4mm below the surface of the skin and are surrounded by rich blood capillary system. In the present study, ten diabetic subjects were considered to evaluate the efficacy of metformin hydrochloride for the treatment of diabetes mellitus using FTIR-ATR spectroscopy. The spectra of diabetic hair fibre samples have been recorded in the mid infrared region of 4000-450cm -1 . The hair samples of the diabetic subjects before medication were taken as pre-treatment samples. The hair samples of diabetic subjects referred to medication with metformin for a period of three month were taken as post-treatment sample. Some remarkable spectral differences were elucidated between pre- and post-treatment hair fibre samples. A comparative study on the FTIR-ATR hair spectra of patients (pre- and post-treatment) along with the healthy subjects has been made. The absorption values of some of the specific bands of biomolecules present in the hair samples viz., protein, lipids and glucose for both the pre- and post-treatment subjects are noted. It was observed that, these biomarkers are significantly different between pre- and post-treatment hair samples. Some of the biomarkers such as R 1 =I 1635/1450 , R 2 =I 1540/1450 , R 3 =I 2885/1450, R 4 =I 1255/1450 and R 5 =I 1015/1450 were used as diagnostic parameters, and hence the efficacy of metformin is estimated. The results are further validated with statistical analysis by applying the dependent t-test, which indicated that the spectral variations are statistically significant. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Xiaodong; Root, Robert A.; Farrell, James; Ela, Wendell; Chorover, Jon
2014-01-01
The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In-situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8 – 9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)-Fe bond distances of ~2.92–2.94 and 3.41–3.44 Å, respectively. The As-Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As-Fe bonding mechanisms. PMID:25382933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starace, Anne K.; Evans, Robert J.; Lee, David D.
A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease inmore » lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).« less
NASA Astrophysics Data System (ADS)
Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun
2017-06-01
Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.
Papliaka, Zoi Eirini; Vaccari, Lisa; Zanini, Franco; Sotiropoulou, Sophia
2015-07-01
Fourier transform infrared (FTIR) imaging in transmission mode, employing a bidimensional focal plane array (FPA) detector, was applied for the detection and spatially resolved chemical characterisation of organic compounds or their degradation products within the stratigraphy of a critical group of fragments, originating from prehistoric and roman wall paintings, containing a very low concentration of subsisted organic matter or its alteration products. Past analyses using attenuated total reflection (ATR) or reflection FTIR on polished cross sections failed to provide any evidence of any organic material assignable as binding medium of the original painting. In order to improve the method's performance, in the present study, a new method of sample preparation in thin section was developed. The procedure is based on the use of cyclododecane C12H24 as embedding material and a subsequent double-side polishing of the specimen. Such procedure provides samples to be studied in FTIR transmission mode without losing the information on the spatial distribution of the detected materials in the paint stratigraphy. For comparison purposes, the same samples were also studied after opening their stratigraphy with a diamond anvil cell. Both preparation techniques offered high-quality chemical imaging of the decay products of an organic substance, giving clues to the painting technique. In addition, the thin sections resulting from the cyclododecane pre-treatment offered more layer-specific data, as the layer thickness and order remained unaffected, whereas the samples resulting from compression within the diamond cell were slightly deformed; however, since thinner and more homogenous, they provided higher spectral quality in terms of S/N ratio. In summary, the present study illustrates the appropriateness of FTIR imaging in transmission mode associated with a new thin section preparation strategy to detect and localise very low-concentrated organic matter subjected to deterioration processes, when the application of FTIR in reflection mode or FTIR-ATR fails to give any relevant information.
Pletincx, Sven; Trotochaud, Lena; Fockaert, Laura-Lynn; ...
2017-03-22
Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here in this paper, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in themore » Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation.« less
Mah, Pei T; Novakovic, Dunja; Saarinen, Jukka; Van Landeghem, Stijn; Peltonen, Leena; Laaksonen, Timo; Isomäki, Antti; Strachan, Clare J
2017-05-01
To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.
Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali
2018-03-01
Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe 3 O 4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.
Detection of aflatoxin M1 in milk using spectroscopy and multivariate analyses.
Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Jaspreet; Borah, Anjan; Ramya, H G
2018-01-01
Aflatoxin M1 (AFM1), a potentially carcinogenic compound, is found in milk obtained from animals that consume contaminated feed. Spectra of bovine milk, spiked with AFM1 (0, 0.02, 0.04, 0.06, 0.08 and 0.1μg/l) were acquired using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. Spectra revealed significant differences among pure and AFM1 spiked samples in spectral regions 1800-650cm -1 and 3689-3499cm -1 , which may be attributed to complex chemical structure of AFM1. Principal component analysis (PCA) showed clear clustering of samples (p⩽0.05). The models could successfully classify (>86%) and detect even 0.02μg/l AFM1 in milk (p⩽0.05) using SIMCA. AFM1 was best predicted in wavenumber range of 1800-650cm -1 with coefficient of determination (R 2 ) of 0.99 and 0.98, for calibration and validation, respectively, using partial least square (PLS) regression. The study indicated feasibility of ATR-FTIR spectroscopy and chemometrics in rapid detection and quantification of AFM1 in milk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghoufi, Aziz; Dražević, Emil; Szymczyk, Anthony
2017-03-07
In this work we have examined a computational approach in predicting the interactions between uncharged organic solutes and polyamide membranes. We used three model organic molecules with identical molecular weights (100.1 g/mol), 4-aminopiperidine, 3,3-dimethyl-2-butanone (pinacolone) and methylisobutyl ketone for which we obtained experimental data on partitioning, diffusion and separation on a typical seawater reverse osmosis (RO) membrane. The interaction energy between the solutes and the membrane phase (fully aromatic polyamide) was computed from molecular dynamics (MD) simulations and the resulting sequence was found to correlate well with the experimental rejections and sorption data. Sorption of the different organic solutes within the membrane skin layer determined from attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) nicely agreed with interaction energies computed from molecular simulations. Qualitative information about solute diffusivity inside the membrane was also extracted from MD simulations while ATR-FTIR experiments indicated strongly hindered diffusion with diffusion coefficients in the membrane about 10 -15 m 2 /s. The computational approach presented here could be a first step toward predicting rejections trends of, for example, hormones and pharmaceuticals by RO dense membranes.
NASA Astrophysics Data System (ADS)
He, Chunli; Wang, Miao; Cai, Xianmei; Huang, Xiaobo; Li, Li; Zhu, Haomiao; Shen, Jian; Yuan, Jiang
2011-11-01
To improve hydrophilicity and blood compatibility properties of polyurethane (PU) film, we chemically induced graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of polyurethane film using benzoyl peroxide as an initiator. The effects of grafting temperature, grafting time, monomer and initiator concentrations on the grafting yields were studied. The maximum grafting yield value was obtained 0.0275 g/cm2 for HEMA. Characterization of the films was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements. ATR-FTIR data showed that HEMA was successfully grafted onto the PU films surface. Water contact angle measurement demonstrated the grafted films possessed a relatively hydrophilic surface. The blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion test and hemolysis test. The results of platelet adhesion experiment showed that polyurethane grafted polymerization with monomer of 2-hydroxyethyl methacrylate had good blood compatibility featured by the low platelet adhesion. Hemolysis rate of the PU-g-PHEMA films was dramatically decreased than the ungrafted PU films. This kind of new biomaterials grafted with HEMA monomers might have a potential usage for biomedical applications.
Strong, Rebecca; Martin, Francis L.; Jones, Kevin C.; Shore, Richard F.; Halsall, Crispin J.
2017-01-01
Worldwide amphibian populations are declining due to habitat loss, disease and pollution. Vulnerability to environmental contaminants such as pesticides will be dependent on the species, the sensitivity of the ontogenic life stage and hence the timing of exposure and the exposure pathway. Herein we investigated the biochemical tissue ‘fingerprint’ in spawn and early-stage tadpoles of the Common frog, Rana temporaria, using attenuated total reflection-Fourier-transform infrared (ATR-FTIR) spectroscopy with the objective of observing differences in the biochemical constituents of the respective amphibian tissues due to varying water quality in urban and agricultural ponds. Our results demonstrate that levels of stress (marked by biochemical constituents such as glycogen that are involved in compensatory metabolic mechanisms) can be observed in tadpoles present in the pond most impacted by pollution (nutrients and pesticides), but large annual variability masked any inter-site differences in the frog spawn. ATR-FTIR spectroscopy is capable of detecting differences in tadpoles that are present in selected ponds with different levels of environmental perturbation and thus serves as a rapid and cost effective tool in assessing stress-related effects of pollution in a vulnerable class of organism. PMID:28317844
NASA Astrophysics Data System (ADS)
Hamzah, M.; Khenfouch, M.; Rjeb, A.; Sayouri, S.; Houssaini, D. S.; Darhouri, M.; Srinivasu, VV
2018-03-01
Polyethylene is the most commonly used plastic in daily life, covering wide areas of application e.g. this polymer is used as a greenhouses covering material. This article investigates the effect of photo-oxidation on commercial unstabilised Low Density Polyethylene (uLDPE), as result of outdoor weathering factors. In this study, the samples were exposed for four months to the natural weather. The physico-chemical effects of natural ageing were studied by attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy to elucidate the chemical composition, the nature of chemical bonds established and further to interrogate the changes that occur on the surface of the uLDPE samples. The main chemical change of uLDPE results in the formation of different kinds of carbonyl and vinyl groups identifiable in the ATR-FTIR and XPS spectra. The degree of crystallinity for these samples was calculated in terms of time exposure. An increase in the degree of crystallinity due to chemicrystallization was observed, which we indicative of the occurrences of chain scission. During outdoor exposure it was found that the photo-oxidation results in the formation of chain scission occurrences via Norrish type II reactions.
Oliver, Katherine V.; Maréchal, Amandine
2016-01-01
When analyzing solutes by Fourier transform infrared (FT-IR) spectroscopy in attenuated total reflection (ATR) mode, drying of samples onto the ATR crystal surface can greatly increase solute band intensities and, therefore, aid detection of minor components. However, analysis of such spectra is complicated by the existence of alternative partial hydration states of some substances that can significantly alter their infrared signatures. This is illustrated here with urea, which is a dominant component of urine. The effects of hydration state on its infrared spectrum were investigated both by incubation in atmospheres of fixed relative humidities and by recording serial spectra during the drying process. Significant changes of absorption band positions and shapes were observed. Decomposition of the CN antisymmetric stretching (νas) band in all states was possible with four components whose relative intensities varied with hydration state. These correspond to the solution (1468 cm–1) and dry (1464 cm–1) states and two intermediate (1454 cm–1 and 1443 cm–1) forms that arise from specific urea–water and/or urea–urea interactions. Such intermediate forms of other compounds can also be formed, as demonstrated here with creatinine. Recognition of these states and their accommodation in analyses of materials such as dried urine allows more precise decomposition of spectra so that weaker bands of diagnostic interest can be more accurately defined. PMID:27170705
Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un
2010-07-15
Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.
Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo
2015-10-01
To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.
Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study
NASA Astrophysics Data System (ADS)
Szymborska-Małek, Katarzyna; Komorowska, Małgorzata; Gąsior-Głogowska, Marlena
2018-01-01
We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100 nm) for 5, 10, and 20 min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50 °C a considerable increase in the A form was only observed for 10 min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.
NASA Astrophysics Data System (ADS)
Zanini, Stefano; Citterio, Attilio; Leonardi, Gabriella; Riccardi, Claudia
2018-01-01
We performed atmospheric pressure plasma treatments of wool/cashmere (15/85%) textiles with a dielectric barrier discharge (DBD) in nitrogen. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy, X-ray photoelectron microscopy (XPS), and fatty acid gas chromatographic analysis. Changes in mechanical properties and tactile performance of textiles after the plasma treatment were determined using the KES-F system. The analyses reveal significant surface modification of the treated fabrics, which enhances their surface wettability.
Sieger, Markus; Haas, Julian; Jetter, Michael; Michler, Peter; Godejohann, Matthias; Mizaikoff, Boris
2016-03-01
The performance and versatility of GaAs/AlGaAs thin-film waveguide technology in combination with quantum cascade lasers for mid-infrared spectroscopy in comparison to conventional FTIR spectroscopy is presented. Infrared radiation is provided by a quantum cascade laser (QCL) spectrometer comprising four tunable QCLs providing a wavelength range of 5-11 μm (1925-885 cm(-1)) within a single collimated beam. Epitaxially grown GaAs slab waveguides serve as optical transducer for tailored evanescent field absorption analysis. A modular waveguide mounting accessory specifically designed for on-chip thin-film GaAs waveguides is presented serving as a flexible analytical platform in lieu of conventional attenuated total reflection (ATR) crystals uniquely facilitating macroscopic handling and alignment of such microscopic waveguide structures in real-world application scenarios.
In Situ Infrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions.
Šeděnková, Ivana; Stejskal, Jaroslav; Trchová, Miroslava
2014-12-26
The progress of the oxidation of aniline with ammonium peroxydisulfate in an alkaline aqueous medium has been monitored in situ by attenuated total reflection (ATR) Fourier transform infrared spectroscopy. The growth of the microspheres and of the film at the ATR crystal surface, as well as the changes proceeding in the surrounding aqueous medium, are reflected in the spectra. The evolution of the spectra and the changes in the molecular structure occurring during aniline oxidation in alkaline medium are discussed with the help of differential spectra. Several processes connected with the various stages of aniline oxidation were distinguished. The progress of hydrolysis of the aniline in water and further an oxidation of aminophenol to benzoquinone imines in the presence of peroxydisulfate in alkaline medium have been detected in the spectra in real time. The precipitated solid oxidation product was analyzed by mass spectrometry. It is composed of oligomers, mainly trimers to octamers, of various molecular structures incorporating in addition to aniline constitutional units also p-benzoquinone or p-benzoquinoneimine moieties.
Fourier transform infrared evanescent wave (FTIR-FEW) spectroscopy of tissue
NASA Astrophysics Data System (ADS)
Bruch, Reinhard F.; Sukuta, Sydney; Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Butvina, Leonid N.
1997-05-01
A new Fourier transform infrared fiberoptic evanescent wave (FTIR-FEW) spectroscopy method has been developed for tissue diagnostics in the middle infrared (MIR) wavelength range (3 to 20 micrometers). Specific novel fiberoptical chemical and biological sensors have been studied and used for spectroscopic diagnostic purposes. These nontoxic and nonhygroscopic fiber sensors are characterized by (1) low optical losses (0.05 to 0.2 dB/m at about 10 micrometer) and (2) high flexibility. Our new fiber optical devices can be utilized with standard commercially available Fourier transform spectrometers including attenuated total reflection (ATR) techniques. They are in particular ideally suited for noninvasive, fast, direct, sensitive investigations of in vivo and ex vivo medical diagnostics applications. Here we present data on IR spectra of skin tissue in vivo for various cases of melanoma and nevus in the range of 1480 - 1800 cm-1. The interpretation of the spectra of healthy and different stages of tumor and cancer skin tissue clearly indicates that this technique can be used for precancer and cancer diagnostics. This technique can be designed for real-time and on-line computer modeling and analysis of tissue changes.
Doménech-Carbó, Antonio; Doménech-Carbó, María Teresa; Valle-Algarra, Francisco Manuel; Gimeno-Adelantado, José Vicente; Osete-Cortina, Laura; Bosch-Reig, Francisco
2016-07-13
A web-based database of voltammograms is presented for characterizing artists' pigments and corrosion products of ceramic, stone and metal objects by means of the voltammetry of immobilized particles methodology. Description of the website and the database is provided. Voltammograms are, in most cases, accompanied by scanning electron microphotographs, X-ray spectra, infrared spectra acquired in attenuated total reflectance Fourier transform infrared spectroscopy mode (ATR-FTIR) and diffuse reflectance spectra in the UV-Vis-region. For illustrating the usefulness of the database two case studies involving identification of pigments and a case study describing deterioration of an archaeological metallic object are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Process control using fiber optics and Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Kemsley, E. K.; Wilson, Reginald H.
1992-03-01
A process control system has been constructed using optical fibers interfaced to a Fourier transform infrared (FT-IR) spectrometer, to achieve remote spectroscopic analysis of food samples during processing. The multichannel interface accommodates six fibers, allowing the sequential observation of up to six samples. Novel fiber-optic sampling cells have been constructed, including transmission and attenuated total reflectance (ATR) designs. Different fiber types have been evaluated; in particular, plastic clad silica (PCS) and zirconium fluoride fibers. Processes investigated have included the dilution of fruit juice concentrate, and the addition of alcohol to fruit syrup. Suitable algorithms have been written which use the results of spectroscopic measurements to control and monitor the course of each process, by actuating devices such as valves and switches.
Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin
NASA Astrophysics Data System (ADS)
Sobiesiak, M.
2016-04-01
The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.
Gopal, Judy; Chun, Sechul; Doble, Mukesh
2016-08-01
Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (<350 °C) showed high C-H groups and decreased OH groups on their surface, which possibly contributed towards their bacterio-phobicity. The TS-Ti nanooxide film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces.
FTIR Spectroscopy Applied in Remazol Blue Dye Oxidation by Laccases
NASA Astrophysics Data System (ADS)
Juárez-Hernández, J.; Zavala-Soto, M. E.; Bibbins-Martínez, M.; Delgado-Macuil, R.; Díaz-Godinez, G.; Rojas-López, M.
2008-04-01
We have used FTIR with attenuated total reflectance (ATR) technique to analyze the decolourization process of Remazol Blue dye (RB19) caused by the oxidative activity of laccase enzyme. It is known that laccases catalyze the oxidation of a large range of phenolic compounds and aromatic amines carrying out one-electron oxidations, although also radicals could be formed which undergo subsequent nonenzymatic reactions. The enzyme laccase is a copper-containing polyphenol oxidase (EC 1.10.3.2) which has been tested as a potential alternative in detoxification of environmental pollutants such as dyes present in wastewaters generated for the textile industry. In order to ensure degradation or avoid formation of toxic compounds it is important to establish the mechanism by which laccase oxidizes dyes. In this research individual ATR-FTIR spectra have been recorded for several reaction times between 0 to 236 hours, and the temporal dependence of the reaction was analyzed through the relative diminution of the intensity of the infrared band at 1127 cm-1 (associated to C-N vibration), with respect to the intensity of the band at 1104 cm-1 (associated to S = O) from sulphoxide group. Decolourization process of this dye by laccase could be attributed to its accessibility on the secondary amino group, which is a potential point of attack of laccases, abstracting the hydrogen atom. This decolourization process of remazol blue dye by laccase enzyme might in a future replace the traditionally high chemical, energy and water consuming textile operations.
The detection and discrimination of human body fluids using ATR FT-IR spectroscopy.
Orphanou, Charlotte-Maria; Walton-Williams, Laura; Mountain, Harry; Cassella, John
2015-07-01
Blood, saliva, semen and vaginal secretions are the main human body fluids encountered at crime scenes. Currently presumptive tests are routinely utilised to indicate the presence of body fluids, although these are often subject to false positives and limited to particular body fluids. Over the last decade more sensitive and specific body fluid identification methods have been explored, such as mRNA analysis and proteomics, although these are not yet appropriate for routine application. This research investigated the application of ATR FT-IR spectroscopy for the detection and discrimination of human blood, saliva, semen and vaginal secretions. The results demonstrated that ATR FT-IR spectroscopy can detect and distinguish between these body fluids based on the unique spectral pattern, combination of peaks and peak frequencies corresponding to the macromolecule groups common within biological material. Comparisons with known abundant proteins relevant to each body fluid were also analysed to enable specific peaks to be attributed to the relevant protein components, which further reinforced the discrimination and identification of each body fluid. Overall, this preliminary research has demonstrated the potential for ATR FT-IR spectroscopy to be utilised in the routine confirmatory screening of biological evidence due to its quick and robust application within forensic science. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sample and data processing considerations for the NIST quantitative infrared database
NASA Astrophysics Data System (ADS)
Chu, Pamela M.; Guenther, Franklin R.; Rhoderick, George C.; Lafferty, Walter J.; Phillips, William
1999-02-01
Fourier-transform infrared (FT-IR) spectrometry has become a useful real-time in situ analytical technique for quantitative gas phase measurements. In fact, the U.S. Environmental Protection Agency (EPA) has recently approved open-path FT-IR monitoring for the determination of hazardous air pollutants (HAP) identified in EPA's Clean Air Act of 1990. To support infrared based sensing technologies, the National Institute of Standards and Technology (NIST) is currently developing a standard quantitative spectral database of the HAPs based on gravimetrically prepared standard samples. The procedures developed to ensure the quantitative accuracy of the reference data are discussed, including sample preparation, residual sample contaminants, data processing considerations, and estimates of error.
Ryu, JiYeon; Ro, Chul-Un
2009-08-15
This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.
Assessment tools for microplastics and natural fibres ingested by fish in an urbanised estuary.
Halstead, Jennifer E; Smith, James A; Carter, Elizabeth A; Lay, Peter A; Johnston, Emma L
2018-03-01
Microplastics and fibres occur in high concentrations along urban coastlines, but the occurrence of microplastic ingestion by fishes in these areas requires further investigation. Herein, the ingestion of debris (i.e., synthetic and natural fibres and synthetic fragments of various polymer types) by three benthic-foraging fish species Acanthopagrus australis (yellowfin bream), Mugil cephalus (sea mullet) and Gerres subfasciatus (silverbiddy) in Sydney Harbour, Australia has been quantified and chemically speciated by vibrational spectroscopy to identify the polymer type. Ingested debris were quantified using gut content analysis, and identified using attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Raman microspectroscopies in combination with principal component analysis (PCA). The occurrence of debris ingestion at the time of sampling ranged from 21 to 64% for the three species, and the debris number ranged from 0.2 to 4.6 items per fish for the different species, with ∼53% of debris being microplastic. There was a significant difference in the amount of debris ingested among species; however, there was no difference among species when debris counts were standardised to fish weight or gut content weight, indicating that these species ingest a similar concentration of debris relative to their ingestion rate of other material. ATR-FTIR microspectroscopy successfully identified 72% of debris. Raman spectroscopy contributed an additional 1% of successful identification. In addition, PCA was used to non-subjectively classify the ATR-FTIR spectra resulting in the identification of an additional 9% of the debris. The most common microplastics found were polyester (PET), acrylic-polyester blend, and rayon (semi-synthetic) fibres. The potential of using Raman microspectroscopy for debris identification was investigated and provided additional information about the nature of the debris as well as the presence of specific dyes (and hence potential toxicity). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eom, Hyo-Jin; Gupta, Dhrubajyoti; Cho, Hye-Rin; Hwang, Hee Jin; Do Hur, Soon; Gim, Yeontae; Ro, Chul-Un
2016-11-01
Two aerosol samples collected at King Sejong Korean scientific research station, Antarctica, on 9 December 2011 in the austral summer (sample S1) and 23 July 2012 in the austral winter (sample S2), when the oceanic chlorophyll a levels on the collection days of the samples were quite different, by ˜ 19 times (2.46 vs. 0.13 µg L-1, respectively), were investigated on a single-particle basis using quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), called low-Z particle EPMA, Raman microspectrometry (RMS), and attenuated total reflection Fourier transform infrared (ATR-FTIR) imaging techniques to obtain their characteristics based on the elemental chemical compositions, molecular species, and mixing state. X-ray analysis showed that the supermicron summertime and wintertime Antarctic aerosol samples have different elemental chemical compositions, even though all the individual particles analyzed were sea spray aerosols (SSAs); i.e., the contents of C, O, Ca, S, and Si were more elevated, whereas Cl was more depleted, for sample S1 than for sample S2. Based on qualitative analysis of the chemical species present in individual SSAs by the combined application of RMS and ATR-FTIR imaging, different organic species were observed in samples S1 and S2; i.e., Mg hydrate salts of alanine were predominant in samples S1 and S2, whereas Mg salts of fatty acids internally mixed with Mg hydrate salts of alanine were significant in sample S2. Although CaSO4 was observed significantly in both samples S1 and S2, other inorganic species, such as Na2SO4, NaNO3, Mg(NO3)2, SiO2, and CH3SO3Mg, were observed more significantly in sample S1, suggesting that those compounds may be related to the higher phytoplankton activity in summer.
Sills, Deborah L; Gossett, James M
2012-04-01
Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy, combined with partial least squares (PLS) regression, accurately predicted solubilization of plant cell wall constituents and NaOH consumption through pretreatment, and overall sugar productions from combined pretreatment and enzymatic hydrolysis. PLS regression models were constructed by correlating FTIR spectra of six raw biomasses (two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of prairie biomasses, mixed hardwood, and corn stover), plus alkali loading in pretreatment, to nine dependent variables: glucose, xylose, lignin, and total solids solubilized in pretreatment; NaOH consumed in pretreatment; and overall glucose and xylose conversions and yields from combined pretreatment and enzymatic hydrolysis. PLS models predicted the dependent variables with the following values of coefficient of determination for cross-validation (Q²): 0.86 for glucose, 0.90 for xylose, 0.79 for lignin, and 0.85 for total solids solubilized in pretreatment; 0.83 for alkali consumption; 0.93 for glucose conversion, 0.94 for xylose conversion, and 0.88 for glucose and xylose yields. The sugar yield models are noteworthy for their ability to predict overall saccharification through combined pretreatment and enzymatic hydrolysis per mass dry untreated solids without a priori knowledge of the composition of solids. All wavenumbers with significant variable-important-for-projection (VIP) scores have been attributed to chemical features of lignocellulose, demonstrating the models were based on real chemical information. These models suggest that PLS regression can be applied to FTIR-ATR spectra of raw biomasses to rapidly predict effects of pretreatment on solids and on subsequent enzymatic hydrolysis. Copyright © 2011 Wiley Periodicals, Inc.
Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...
Infrared Spectroscopic Evidence of Surface Speciation of Amino Acids on Titanium Dioxide
NASA Astrophysics Data System (ADS)
Jonsson, C. M.; Jonsson, C. L.; Parikh, S. J.; Sverjensky, D. A.; Cleaves, H. J.; Hazen, R. M.
2008-12-01
Interactions that occur at the interface between molecules and mineral surfaces in the presence of water are integral to many chemical and physical processes, including the behavior of pollutants in the environment, metal implants in the human body, and perhaps the origin of life. During the emergence of life, mineral surfaces may have played a role in the selection of amino acids, leading to the formation of proteins that are essential building blocks of life. To investigate this hypothesis, we are studying two amino acids, glutamic (Glu) and aspartic (Asp) acid, and their adsorption to the rutile form of titanium dioxide as a function of pH and surface coverage in electrolyte solutions. The objective is to get a fundamental understanding of the speciation and coordination chemistry of these amino acids at the rutile surface. We used attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy to investigate the adsorption of Glu on rutile, and a previously published ATR-FTIR study [1] of Asp and Glu adsorption on an amorphous titanium dioxide film was used as a guide to peak assignment and interpretation of our FTIR spectra. Binding of Glu to both surfaces occurs primarily through one or both of the carboxyl groups, implying that at least two types of surface complexes are formed in a proportion presumably dependent on surface coverage and pH. The interpretation of our results suggests that Glu binds to rutile in a mixed chelating-monodentate fashion involving both carboxyl groups (Glu lying down at the surface), and in a chelating fashion involving only the gamma carboxyl group (Glu standing up at the surface). FTIR results also show that the intensity of the amine peak increases with sorption, which is possibly a consequence of the amine group being brought closer to the surface but not binding directly to it. Glu adsorption on rutile is favored at low pH, based on results from batch adsorption experiments. We have commenced a systematic investigation of Glu and Asp interactions with the rutile surface using potentiometric titrations, adsorption experiments and FTIR spectroscopy. The spectroscopic evidence integrated with quantitative adsorption data and potentiometric titration data are used to describe the adsorption with surface complexation models. [1] Roddick-Lanzilotta A.D. and McQuillan A.J. (2000) J. Colloid & Interface Sci. 227, 48-54.
Oliver, Katherine V; Maréchal, Amandine; Rich, Peter R
2016-06-01
When analyzing solutes by Fourier transform infrared (FT-IR) spectroscopy in attenuated total reflection (ATR) mode, drying of samples onto the ATR crystal surface can greatly increase solute band intensities and, therefore, aid detection of minor components. However, analysis of such spectra is complicated by the existence of alternative partial hydration states of some substances that can significantly alter their infrared signatures. This is illustrated here with urea, which is a dominant component of urine. The effects of hydration state on its infrared spectrum were investigated both by incubation in atmospheres of fixed relative humidities and by recording serial spectra during the drying process. Significant changes of absorption band positions and shapes were observed. Decomposition of the CN antisymmetric stretching (νas) band in all states was possible with four components whose relative intensities varied with hydration state. These correspond to the solution (1468 cm(-1)) and dry (1464 cm(-1)) states and two intermediate (1454 cm(-1) and 1443 cm(-1)) forms that arise from specific urea-water and/or urea-urea interactions. Such intermediate forms of other compounds can also be formed, as demonstrated here with creatinine. Recognition of these states and their accommodation in analyses of materials such as dried urine allows more precise decomposition of spectra so that weaker bands of diagnostic interest can be more accurately defined. © The Author(s) 2016.
Schäfer, Klaus; Brockmann, Klaus; Heland, Jörg; Wiesen, Peter; Jahn, Carsten; Legras, Olivier
2005-04-10
The detection limits for NO and NO2 in turbine exhausts by nonintrusive monitoring have to be improved. Multipass mode Fourier-transform infrared (FTIR) absorption spectrometry and use of a White mirror system were found from a sensitivity study with spectra simulations in the mid-infrared to be essential for the retrieval of NO2 abundances. A new White mirror system with a parallel infrared beam was developed and tested successfully with a commercial FTIR spectrometer in different turbine test beds. The minimum detection limits for a typical turbine plume of 50 cm in diameter are approximately 6 parts per million (ppm) for NO and 9 ppm for NO2 (as well 100 ppm for CO2 and 4 ppm for CO).
Dos Santos, Raimunda C; Ombredane, Alicia S; Souza, Jéssica Maria T; Vasconcelos, Andreanne G; Plácido, Alexandra; Amorim, Adriany das G N; Barbosa, Eder Alves; Lima, Filipe C D A; Ropke, Cristina D; Alves, Michel M M; Arcanjo, Daniel D R; Carvalho, Fernando A A; Delerue-Matos, Cristina; Joanitti, Graziella A; Leite, José Roberto de S A
2018-03-01
This study investigated a lycopene-rich extract from red guava (LEG) for its chemical composition using spectrophotometry, mass spectrometry, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and computational studies. The cytotoxic activity of LEG and the underlying mechanism was studied in human breast adenocarcinoma cells (MCF-7), murine fibroblast cells (NIH-3T3), BALB/c murine peritoneal macrophages, and sheep blood erythrocytes by evaluating the cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and flow cytometry. Spectrophotometry analysis showed that LEG contained 20% of lycopene per extract dry weight. Experimental and theoretical ATR-FTIR suggests the presence of lycopene, whereas MS/MS spectra obtained after fragmentation of the molecular ion [M] +• of 536.4364 show fragment ions at m/z 269.2259, 375.3034, 444.3788, and 467.3658, corroborating the presence of lycopene mostly related to all-trans configuration. Treatment with LEG (1600 to 6.25μg/mL) for 24 and 72h significantly affected the viability of MCF-7 cells (mean half maximal inhibitory concentration [IC 50 ]=29.85 and 5.964μg/mL, respectively) but not NIH-3T3 cells (IC 50 =1579 and 911.5μg/mL, respectively). Furthermore LEG at concentrations from 800 to 6.25μg/mL presented low cytotoxicity against BALB/c peritoneal macrophages (IC 50 ≥800μg/mL) and no hemolytic activity. LEG (400 and 800μg/mL) caused reduction in the cell proliferation and induced cell cycle arrest, DNA fragmentation, modifications in the mitochondrial membrane potential, and morphologic changes related to granularity and size in MCF-7 cells; however, it failed to cause any significant damage to the cell membrane or display necrosis or traditional apoptosis. In conclusion, LEG was able to induce cytostatic and cytotoxic effects on breast cancer cells probably via induction of an apoptotic-like pathway. Copyright © 2017. Published by Elsevier Ltd.
Protein Structural Perturbation and Aggregation on Homogeneous Surfaces
Sethuraman, Ananthakrishnan; Belfort, Georges
2005-01-01
We have demonstrated that globular proteins, such as hen egg lysozyme in phosphate buffered saline at room temperature, lose native structural stability and activity when adsorbed onto well-defined homogeneous solid surfaces. This structural loss is evident by α-helix to turns/random during the first 30 min and followed by a slow α-helix to β-sheet transition. Increase in intramolecular and intermolecular β-sheet content suggests conformational rearrangement and aggregation between different protein molecules, respectively. Amide I band attenuated total reflection/Fourier transformed infrared (ATR/FTIR) spectroscopy was used to quantify the secondary structure content of lysozyme adsorbed on six different self-assembled alkanethiol monolayer surfaces with –CH3, –OPh, –CF3, –CN, –OCH3, and –OH exposed functional end groups. Activity measurements of adsorbed lysozyme were in good agreement with the structural perturbations. Both surface chemistry (type of functional groups, wettability) and adsorbate concentration (i.e., lateral interactions) are responsible for the observed structural changes during adsorption. A kinetic model is proposed to describe secondary structural changes that occur in two dynamic phases. The results presented in this article demonstrate the utility of the ATR/FTIR spectroscopic technique for in situ characterization of protein secondary structures during adsorption on flat surfaces. PMID:15542559
Microwave assisted scalable synthesis of titanium ferrite nanomaterials
NASA Astrophysics Data System (ADS)
Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.
2018-04-01
Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.
NASA Astrophysics Data System (ADS)
Ismail, Nur Arifah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat
2017-09-01
The GG thin films were prepared by film casting technique using gelzan (GG1) and kelcogel (GG2) respectively. The physical appearances of the thin films were observed and their mechanical and chemical properties were investigated. Chemical characterizations were done by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), UV-Vis Spectroscopy, and Scanning Electron Microscopy (SEM). Based on the ATR-FTIR result, GG1 and GG2 thin films show a broad peak in the range of 3600-3200 cm-1 assigned to -OH functional group. A broad peaks also was observed at 3000-2600 cm-1 and 1800-1600 cm-1 which are belong to -CH and C=O functional group, respectively. The UV-Vis Spectroscopy analysis shows that single absorption peak was observed at 260 nm for both films. For mechanical properties, GG1 thin film has high tensile strength (80±12), but low strain at break (2±1), on the other hand GG2 thin film has low tensile strength (3±0.08) but high strain at break (13±0.58). The Water Vapour Transmission Rates (WVTR) and swelling of GG1 and GG2 thin films were (422±113, 415±26) and (987±113, 902±63), respectively.
Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.
Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi
2016-02-16
In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.
Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid.
Mali, Kailas K; Dhawale, Shashikant C; Dias, Remeth J
2017-12-01
The objective of this study was to synthesize and characterize citric acid crosslinked carboxymethyl tamarind gum (CMTG) hydrogels films. The hydrogel films were characterized by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state 13 C-nuclear magnetic resonance ( 13 C NMR) spectroscopy and differential scanning calorimeter (DSC). The prepared hydrogel films were evaluated for the carboxyl content and swelling ratio. The model drug moxifloxacin hydrochloride was loaded into hydrogels films and drug release was studied at pH 7.4. The hemolysis assay was used to study the biocompatibility of hydrogel films. The results of ATR-FTIR, solid state 13 C NMR and DSC confirmed the formation of ester crosslinks between citric acid and CMTG. The total carboxyl content of hydrogel film was found to be decreased when amount of CMTG was increased. The swelling of hydrogel film was found to be decreased with increase in curing temperature and time. CMTG hydrogel films showed high drug loading with non-Fickian release mechanism suggesting controlled release of drug. The hydrogel films were found to be biocompatible. It can be concluded that the citric acid can be used for the preparation of CMTG hydrogel films. Further, CMTG hydrogel film can be used potentially for controlled release of drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Kanter, Ulrike; Heller, Werner; Durner, Jörg; Winkler, J. Barbro; Engel, Marion; Behrendt, Heidrun; Holzinger, Andreas; Braun, Paula; Hauser, Michael; Ferreira, Fatima; Mayer, Klaus; Pfeifer, Matthias; Ernst, Dieter
2013-01-01
Climate change and air pollution, including ozone is known to affect plants and might also influence the ragweed pollen, known to carry strong allergens. We compared the transcriptome of ragweed pollen produced under ambient and elevated ozone by 454-sequencing. An enzyme-linked immunosorbent assay (ELISA) was carried out for the major ragweed allergen Amb a 1. Pollen surface was examined by scanning electron microscopy and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), and phenolics were analysed by high-performance liquid chromatography. Elevated ozone had no influence on the pollen size, shape, surface structure or amount of phenolics. ATR-FTIR indicated increased pectin-like material in the exine. Transcriptomic analyses showed changes in expressed-sequence tags (ESTs), including allergens. However, ELISA indicated no significantly increased amounts of Amb a 1 under elevated ozone concentrations. The data highlight a direct influence of ozone on the exine components and transcript level of allergens. As the total protein amount of Amb a 1 was not altered, a direct correlation to an increased risk to human health could not be derived. Additional, the 454-sequencing contributes to the identification of stress-related transcripts in mature pollen that could be grouped into distinct gene ontology terms. PMID:23637846
Photodissolution of ferrihydrite in the presence of oxalic acid: an in situ ATR-FTIR/DFT study.
Bhandari, Narayan; Hausner, Douglas B; Kubicki, James D; Strongin, Daniel R
2010-11-02
The photodissolution of the iron oxyhydroxide, ferrihydrite, in the presence of oxalic acid was investigated with vibrational spectroscopy, density functional theory (DFT) calculations, and batch geochemical techniques that determined the composition of the solution phase during the dissolution process. Specifically, in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR- FTIR) was used to determine the structure of the adsorbed layer during the dissolution process at a solution pH of 4.5. DFT based computations were used to interpret the vibrational data associated with the surface monolayer in order to help determine the structure of the adsorbed complexes. Results showed that at pH 4.5, oxalate adsorbed on ferrihydrite adopted a mononuclear bidentate (MNBD) binding geometry. Photodissolution at pH 4.5 exhibited an induction period where the rate of Fe(II) release was limited by a low concentration of adsorbed oxalate due to the site-blocking of carbonate that was intrinsic to the surface of the ferrihydrite starting material. Oxalate displaced this initial carbonate over time, and the dissolution rate showed a corresponding increase. Irradiation of oxalate/ferrihydrite at pH 4.5 also ultimately led to the appearance of carbonate reaction product (distinct from carbonate intrinsic to the starting material) on the surface.
NASA Astrophysics Data System (ADS)
Chandwani, Nisha; Dave, Purvi; Jain, Vishal; Nema, Sudhir; Mukherjee, Subroto
2017-04-01
The present work investigates the effect of high frequency (2.5 MHz) Dielectric Barrier Discharge (DBD) in air on surface characteristics of Merino wool as a function of plasma exposure time (5s to 15s). The FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy Dispersive X-ray spectrum) and Derivative ATR-FTIR (Attenuated Total Reflection- Fourier Transform Infrared) Spectroscopy are used to study physio-chemical changes induced by plasma. These physio-chemical properties of fibers can be co-related with the felting behaviour of the wool fiber, which leads to shrinkage and pilling of garments while laundering. Felting occurs mainly because of presence of outermost hydrophobic cuticle layer having sharp scales. The FE-SEM analysis of wool fiber surface reveals that cuticle scales on wool fiber become blunt after plasma processing. The ATR-FTIR analysis along with second order derivative spectroscopy demonstrates the cleavage of di-sulphide bonds of cuticle and formation of sulphur-oxygen groups such as Cystine Sulphonate (-S-SO3-), cysteic acid (-SO3-), cystine monoxide(-SO-S-), cysteine di-oxide (-SO2-S-). A possible explanation about how the combined effect of morphological and chemical changes induced by plasma results in minimizing the felting of wool fibers is discussed.
NASA Astrophysics Data System (ADS)
Upadhyay, Neelam; Jaiswal, Pranita; Jha, Shyam Narayan
2018-02-01
Pure ghee is superior to other fats and oils due to the presence of bioactive lipids and its rich flavor. Adulteration of ghee with cheaper fats and oils is a prevalent fraudulent practice. ATR-FTIR spectroscopy was coupled with chemometrics for the purpose of detection of presence of pig body fat in pure ghee. Pure mixed ghee was spiked with pig body fat @ 3, 4, 5, 10, 15% level. The spectra of pure (ghee and pig body fat) along with the spiked samples was taken in MIR from 4000 to 500 cm-1. Some wavenumber ranges were selected on the basis of differences in the spectra obtained. Separate clusters of the samples were obtained by employing principal component analysis at 5% level of significance on the selected wavenumber range. Probable class membership was predicted by applying SIMCA approach. Approximately, 90% of the samples classified into their respective class and pure ghee and pig body fat never misclassified themselves. The value of R2 was >0.99 for both calibration and validation sets using partial least square method. The study concluded that spiking of pig body fat in pure ghee can be detected even at a level of 3%.
Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks
Starace, Anne K.; Evans, Robert J.; Lee, David D.; ...
2016-06-17
A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease inmore » lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).« less
NASA Astrophysics Data System (ADS)
Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald
2009-03-01
Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.
Chemical modifications of liquid natural rubber
NASA Astrophysics Data System (ADS)
Azhar, Nur Hanis Adila; Rasid, Hamizah Md; Yusoff, Siti Fairus M.
2016-11-01
Liquid natural rubber (LNR) was synthesized via photosentisized degradation of natural rubber (NR). LNR was modified into epoxidized liquid natural rubber (LENR) and hydroxylated liquid natural rubber (LNR-OH) using Na2WO4/CH3COOH/H2O2 catalytic system. Chemical structures of LNR and modified LNRs were characterized using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopies. Integration of 1H NMR was used to calculate the epoxy content (%) of LENR. 1H NMR detected the formation of LNR-OH after prolonged heating and increased of catalyst in oxidation reaction.
Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard
2016-12-01
The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.
Lorite, Gabriela S; de Souza, Alessandra A; Neubauer, Daniel; Mizaikoff, Boris; Kranz, Christine; Cotta, Mônica A
2013-02-01
The structural integrity and protection of bacterial biofilms are intrinsically associated with a matrix of extracellular polymeric substances (EPS) produced by the bacteria cells. However, the role of these substances during biofilm adhesion to a surface remains largely unclear. In this study, the influence of EPS on Xylella fastidiosa biofilm formation was investigated. This bacterium is associated with economically important plant diseases; it presents a slow growth rate and thus allows us to pinpoint more precisely the early stages of cell-surface adhesion. Scanning electron microscopy and atomic force microscopy show evidence of EPS production in such early stages and around individual bacteria cells attached to the substrate surface even a few hours after inoculation. In addition, EPS formation was investigated via attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR). To this end, X. fastidiosa cells were inoculated within an ATR liquid cell assembly. IR-ATR spectra clearly reveal EPS formation already during the early stages of X. fastidiosa biofilm formation, thereby providing supporting evidence for the hypothesis of the relevance of the EPS contribution to the adhesion process. Copyright © 2012 Elsevier B.V. All rights reserved.
Sugumaran, Vatsala; Prakash, Shanti; Ramu, Emmandi; Arora, Ajay Kumar; Bansal, Veena; Kagdiyal, Vivekanand; Saxena, Deepak
2017-07-15
Bio-oil obtained from pyrolysis is highly complicated mixture with valued chemicals. In order to reduce the complexity for unambiguous characterization of components present in bio-oil, solvent extractions using different solvents with increasing polarity have been adopted. The fractions have been analyzed by Fourier transform infrared (FTIR) spectroscopy for identifying the functional groups and Gas chromatography-mass spectrometry (GC-MS), for detailed characterization of components present in various fractions, thereby providing in-depth information at molecular level of various components in bio-oil. This paper reveals the potential of the analytical techniques in identification and brings out the similarities as well as differences in the components present in the bio-oil obtained from two non-edible oil seed-cakes, viz., Jatropha and Karanjia. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Yue; Wingen, Lisa M.; Perraud, Véronique; Finlayson-Pitts, Barbara J.
2016-03-01
Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs) and have a high secondary organic aerosol (SOA) forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27-44 s reaction times) and in static Teflon chambers (30-60 min reaction times). The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS), or measured online using direct analysis in real-time mass spectrometry (DART-MS) and aerosol mass spectrometry (AMS). The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3 × 10-15 cm2 s-1 and shows that SOA is a highly viscous semisolid. Possible structures of four newly observed low molecular weight (MW ≤ 300 Da) reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW) products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI) scavengers on HMW products and particle formation, confirm that HMW products and reactions of SCI play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.
Determination of iprodione in agrochemicals by infrared and Raman spectrometry.
Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel
2007-04-01
Two methodologies based on vibrational spectrometry--making use of Fourier transform infrared absorption (FTIR) and Raman spectrometry--were developed for iprodione determination in solid pesticide formulations. The FTIR procedure involved the extraction of iprodione by CHCl(3), and the latter determination involved measuring the peak area between 1450 and 1440 cm(-1), corrected using a horizontal baseline defined at 1481 cm(-1). FT-Raman determination was performed directly on the powdered solid products, using standard chromatography glass vials as sample cells and measuring the Raman intensity between 1003 and 993 cm(-1), with a two-point baseline correction established between 1012 and 981 cm(-1). The sensitivities obtained were 0.319 area values g mg(-1) for FTIR determination and 5.58 area values g g(-1) for FT-Raman. The repeatabilities, taken to be the relative standard deviation of five independent measurements at 1.51 mg g(-1) and 10.98% w/w concentration levels, were equal to 0.16% and 0.9% for FTIR and FT-Raman, respectively, and the limits of detection were 0.3 and 0.2% w/w (higher than those obtained for HPLC, 0.016% w/w). FTIR determination provided a sample frequency of 60 h(-1), higher than those obtained for the Raman and reference chromatography methods (25 and 8.6 h(-1), respectively). On the other hand, the new FT-Raman method eliminates reagent consumption and waste generation, and reduces the need for sample handling and the contact of operator with the pesticide. In spite of their lack of sensitivity, vibrational procedures can therefore provide viable environmentally friendly alternatives to laborious, time- and solvent-consuming reference chromatography methods for quality control in commercially available pesticide formulations.
Ricci, Arianna; Parpinello, Giuseppina P; Olejar, Kenneth J; Kilmartin, Paul A; Versari, Andrea
2015-11-01
Attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy was used to characterize 40 commercial tannins, including condensed and hydrolyzable chemical classes, provided as powder extracts from suppliers. Spectral data were processed to detect typical molecular vibrations of tannins bearing different chemical groups and of varying botanical origin (univariate qualitative analysis). The mid-infrared region between 4000 and 520 cm(-1) was analyzed, with a particular emphasis on the vibrational modes in the fingerprint region (1800-520 cm(-1)), which provide detailed information about skeletal structures and specific substituents. The region 1800-1500 cm(-1) contained signals due to hydrolyzable structures, while bands due to condensed tannins appeared at 1300-900 cm(-1) and exhibited specific hydroxylation patterns useful to elucidate the structure of the flavonoid monomeric units. The spectra were investigated further using principal component analysis for discriminative purposes, to enhance the ability of infrared spectroscopy in the classification and quality control of commercial dried extracts and to enhance their industrial exploitation.
Simultaneous determination of three surfactants and water in shampoo and liquid soap by ATR-FTIR.
Carolei, Luciano; Gutz, Ivano G R
2005-03-31
It is demonstrated for the first time that the principal constituents of a shampoo as well as of a liquid soap -three surfactants and water- can be determined directly, simultaneously and quickly in undiluted samples by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in the middle infrared region, despite the broad absorption bands of the solvent. Two of the surfactants, sodium lauryl ether sulfate (SLES) and cocoamidopropyl betaine (CAPB), are common to both formulations; alkylpolyglucoside (APG) is the third surfactant of the liquid soap and cocodiethanolamide (CDEA), the corresponding ingredient of the shampoo. Absorbance data of the undiluted samples and of the calibration standards was collected in the middle infrared region of the spectrum (800-1600 and 1900-3000cm(-1)). Two methods of multivariate quantification were compared: classical least squares (CLS), where absorbance data measured at 200 wavenumbers was processed, and inverse least squares (ILS), where data at 10 selected wavenumbers was analyzed. A spectra normalization procedure, based on a dominating water band, was examined. Twenty-seven standard mixtures were used for each application, consisting of all combinations at three concentration levels of each surfactant, respectively the lower limit, the expected value and the upper limit accepted in quality control. By favoring wavenumbers where absorption bands of the minor components (APG in the liquid soap and CDEA in the shampoo) are more intense, good results were obtained for 18 simulated samples of shampoo and 18 samples of liquid soap, no matter if calculations were made by CLS or ILS. The relative errors for water (major component, 84-88%) and SLES (7-10%) were always below 2%; for CAPB (2-4%), APG (<2%) and CDEA (<2%), they occasionally reached 5% of the component, an uncertainty of less than 0.07% in terms of the sample weight.
2012-08-05
equivalents from the B-MBP [15]. 2.4. ATR-FTIR analysis of the reactivity of individual components ATR-FTIR spectroscopy measurements were conducted...isocyanate (de- scribed in greater detail in the Supplementary Data). The analysis was completed in triplicate (n = 3) for each reaction analyzed...using MetaMorph 7.1 im- age analysis software (MDS Analytical Technologies). The mass of each slice was used to obtain the density, and the measured den
Riba Ruiz, Jordi-Roger; Canals, Trini; Cantero, Rosa
2017-01-01
Ethylene propylene diene monomer (EPDM) rubber is widely used in a diverse type of applications, such as the automotive, industrial and construction sectors among others. Due to its appealing features, the consumption of vulcanized EPDM rubber is growing significantly. However, environmental issues are forcing the application of devulcanization processes to facilitate recovery, which has led rubber manufacturers to implement strict quality controls. Consequently, it is important to develop methods for supervising the vulcanizing and recovery processes of such products. This paper deals with the supervision process of EPDM compounds by means of Fourier transform mid-infrared (FT-IR) spectroscopy and suitable multivariate statistical methods. An expedited and nondestructive classification approach was applied to a sufficient number of EPDM samples with different applied processes, that is, with and without application of vulcanizing agents, vulcanized samples, and microwave treated samples. First the FT-IR spectra of the samples is acquired and next it is processed by applying suitable feature extraction methods, i.e., principal component analysis and canonical variate analysis to obtain the latent variables to be used for classifying test EPDM samples. Finally, the k nearest neighbor algorithm was used in the classification stage. Experimental results prove the accuracy of the proposed method and the potential of FT-IR spectroscopy in this area, since the classification accuracy can be as high as 100%.
Surface Characterization of Mechanochemically Modified Exfoliated Halloysite Nanoscrolls.
Zsirka, Balázs; Táborosi, Attila; Szabó, Péter; Szilágyi, Róbert K; Horváth, Erzsébet; Juzsakova, Tatjána; Fertig, Dávid; Kristóf, János
2017-04-11
Surface modifications fundamentally influence the morphology of kaolinite nanostructures as a function of crystallinity and the presence of contaminants. Besides morphology, the catalytic properties of 1:1-type exfoliated aluminosilicates are also influenced by the presence of defect sites that can be generated in a controlled manner by mechanochemical activation. In this work, we investigated exfoliated halloysite nanoparticles with a quasi-homogeneous, scroll-type secondary structure toward developing structural/functional relationships for composition, atomic structure, and morphology. The surface properties of thin-walled nanoscrolls were studied as a function of mechanochemical activation expressed by the duration of dry-grinding. The surface characterizations were carried out using N 2 , NH 3 , and CO 2 adsorption measurements. The effects of grinding on the nanohalloysite structure were followed using thermoanalytical thermogravimetric/derivative thermogravimetric (TG/DTG) and infrared spectroscopic [Fourier transform infrared/attenuated total reflection (FTIR/ATR)] techniques. Grinding results in partial dehydroxylation with similar changes as those observed for heat treatment above 300 °C. Mechanochemical activation shows a decrease in the dehydroxylation mass loss and the DTG peak temperature, a decrease in the specific surface area and the number of mesopores, an increase in the surface acidity, blue shift of surface hydroxide bands, and a decrease in the intensity of FTIR/ATR bands as a function of the grinding time. The experimental observations were used to guide atomic-scale structural and energetic simulations using realistic molecular cluster models for a nanohalloysite particle. A full potential energy surface description was developed for the mechanochemical activation and/or heating toward nanometahalloysite formation that aids the interpretation of experimental results. The calculated differences upon dehydroxylation show a remarkable agreement with the mass loss values from DTG measurements.
Mazzeo, R; Prati, S; Quaranta, M; Joseph, E; Kendix, E; Galeotti, M
2008-09-01
The interaction of pigments and binding media may result in the production of metal soaps on the surface of paintings which modifies their visible appearance and state of conservation. To characterise more fully the metal soaps found on paintings, several historically accurate oil and egg yolk tempera paint reconstructions made with different pigments and naturally aged for 10 years were submitted to attenuated total reflectance Fourier transform infrared (ATR FTIR) microspectroscopic analyses. Standard metal palmitates were synthesised and their ATR spectra recorded in order to help the identification of metal soaps. Among the different lead-based pigments, red lead and litharge seemed to produce a larger amount of carboxylates compared with lead white, Naples yellow and lead tin yellow paints. Oil and egg tempera litharge and red lead paints appeared to be degraded into lead carbonate, a phenomenon which has been observed for the first time. The formation of metal soaps was confirmed on both oil and egg tempera paints based on zinc, manganese and copper and in particular on azurite paints. ATR mapping analyses showed how the areas where copper carboxylates were present coincided with those in which azurite was converted into malachite. Furthermore, the key role played by manganese in the production of metals soaps on burnt and raw sienna and burnt and raw umber paints has been observed for the first time. The formation of copper, lead, manganese, cadmium and zinc metal soaps was also identified on egg tempera paint reconstructions even though, in this case, the overlapping of the spectral region of the amide II band with that of metal carboxylates made their identification difficult.
NASA Astrophysics Data System (ADS)
Fermo, Paola; Piazzalunga, Andrea; de Vos, Mariette; Andreoli, Martina
2013-12-01
In the present study, shards from Roman wall paintings (from the end of the first century to the fourth century A.D.) decorating the domus below the Basilica of SS. John and Paul on the Caelian Hill (Rome), were analyzed in order to identify the pigments used. The analytical techniques employed for the characterization of the pigments were the scanning electron microscope coupled with an energy dispersive spectrometer (SEM-EDS) and infrared spectroscopy (ATR and micro ATR). While SEM-EDS allowed to perform a qualitative analysis of the material, by FT-IR chemical species have been identified. The pigments identified were those mentioned in the literature for the Imperial Roman fresco painting: different types of ochre (yellow and red), mixtures containing lead, green earths and precious pigments such as cinnabar and Egyptian blue. They were often used as mixtures and the use of the most valuable pigments (cinnabar and Egyptian blue) were found in the most ancient rooms.
NASA Astrophysics Data System (ADS)
Amalric, Julien; Marchand-Brynaert, Jacqueline
2011-12-01
A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.
Wang, Wei; Liu, Wen-Qing; Zhang, Tian-Shu
2013-08-01
The development of spectroscopic techniques has offered continuous measurement of stable isotopes in the ambient air. The method of measuring environmental stable isotopes based on Fourier transform infrared spectrometry (FTIR) is described. In order to verify the feasibility of the method for continuous measurement of the stable isotopes, an open-path FTIR system was used to measure stable isotopes of CO2 and H2O in ambient air directly in a seven-day field experiment, including 12CO2, 3CO2, H2 16O and HD16 O. Also, the time course of carbon isotopic ratio delta13 C and deuterium isotope composition deltaD was calculated. The measurement precision is about 1.08 per thousand for delta13 C and 1.32 per thousand for deltaD. The measured stable isotopes of CO2 and H2O were analyzed on different time scales by Keeling plot methods, and the deuterium isotopic ratios of evapotranspiration were determined. The results of the field experiment demonstrate the potential of the open-path FTIR system for continuous measurement of stable isotopes in the air.
Original Experimental Approach for Assessing Transport Fuel Stability.
Bacha, Kenza; Ben Amara, Arij; Alves Fortunato, Maira; Wund, Perrine; Veyrat, Benjamin; Hayrault, Pascal; Vannier, Axel; Nardin, Michel; Starck, Laurie
2016-10-21
The study of fuel oxidation stability is an important issue for the development of future fuels. Diesel and kerosene fuel systems have undergone several technological changes to fulfill environmental and economic requirements. These developments have resulted in increasingly severe operating conditions whose suitability for conventional and alternative fuels needs to be addressed. For example, fatty acid methyl esters (FAMEs) introduced as biodiesel are more prone to oxidation and may lead to deposit formation. Although several methods exist to evaluate fuel stability (induction period, peroxides, acids, and insolubles), no technique allows one to monitor the real-time oxidation mechanism and to measure the formation of oxidation intermediates that may lead to deposit formation. In this article, we developed an advanced oxidation procedure (AOP) based on two existing reactors. This procedure allows the simulation of different oxidation conditions and the monitoring of the oxidation progress by the means of macroscopic parameters, such as total acid number (TAN) and advanced analytical methods like gas chromatography coupled to mass spectrometry (GC-MS) and Fourier Transform Infrared - Attenuated Total Reflection (FTIR-ATR). We successfully applied AOP to gain an in-depth understanding of the oxidation kinetics of a model molecule (methyl oleate) and commercial diesel and biodiesel fuels. These developments represent a key strategy for fuel quality monitoring during logistics and on-board utilization.
The effect of addition of PTFE or urea on luminescence response of copper-doped lithium tetraborate
NASA Astrophysics Data System (ADS)
Iskandar, Ferry; Fajri, Annisa; Nuraeni, Nunung; Stavila, Erythrina; Aimon, Akfiny H.; Nuryadin, Bebeh W.
2018-04-01
Lithium tetraborate (Li2B4O7) is a promising material for application in personal dosimetry due to its tissue equivalent properties. The addition of copper as a dopant in Li2B4O7 is known to increase the sensitivity for both photoluminescent (PL) and thermoluminescent (TL) emission. Therefore, in this paper, synthesis of Li2B4O7:Cu is reported. The optimum synthesis condition was achieved using the solution-assisted method, followed by calcination at 700 °C for 2 h. The addition of 0.1 wt% Cu resulted in the highest PL and TL emissions. Further investigation of the influence of polytetrafluoroethylene (PTFE) or urea addition on the luminescence response of Li2B4O7:Cu is described. All samples were characterized by x-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry, photoluminescence spectrofluorophotometer, thermoluminescence reader, scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. The addition of PTFE decreased the PL emission of the Li2B4O7:Cu but slightly increased its TL emission. Meanwhile, the addition of urea increased the luminescence emission for both PL and TL of the Li2B4O7:Cu.
Recovery of Platinum from Dilute Chloride Media Using Biosorbents
NASA Astrophysics Data System (ADS)
Zeytuncu, B.; Morcali, M. H.; Yucel, O.
Pistachio nut shells and Rice husk, a biomass residue, were investigated as adsorbents for the platinum uptake from synthetically prepared dilute chloroplatinic acid solutions. The effects of the different uptake parameters on platinum uptake (%) were studied in detail on a batch sorption. Before the pistachio nut shell material was activated, platinum uptake (%) was poor compared with rice husk. However, after the pistachio nut shell material was activated at 1000°C under an argon atmosphere, the platinum uptake (%) increased two-fold. The pistachio nut shell (inactivated and activated) and rice husk were characterized by Attenuated Total Reflection-Fourier transform infrared spectroscopy (ATR-FTIR).
[Detection of oil spills on water by differential polarization FTIR spectrometry].
Yuan, Yue-ming; Xiong, Wei; Fang, Yong-hua; Lan, Tian-ge; Li, Da-cheng
2010-08-01
Detection of oil spills on water, by traditional thermal remote sensing, is based on the radiance contrast between the large area of clean water and the polluted area of water. And the categories of oil spills can not be identified by analysing the thermal infrared image. In order to find out the extent of pollution and identify the oil contaminants, an approach to the passive detection of oil spills on water by differential polarization FTIR spectrometry is proposed. This approach can detect the contaminants by obtaining and analysing the subtracted spectrum of horizontal and vertical polarization intensity spectrum. In the present article, the radiance model of differential polarization FTIR spectrometry is analysed, and an experiment about detection of No. O diesel and SF96 film on water by this method is presented. The results of this experiment indicate that this method can detect the oil contaminants on water without radiance contrast with clean water, and it also can identify oil spills by analysing the spectral characteristic of differential polarization FTIR spectrum. So it well makes up for the shortage of traditional thermal remote sensing on detecting oil spills on water.
Hoppel, Magdalena; Mahrhauser, Denise; Stallinger, Christina; Wagner, Florian; Wirth, Michael; Valenta, Claudia
2014-05-01
The aim of this study was to create multiple water-in-oil-in-water (W/O/W) emulsions with an increased long-term stability as skin delivery systems for the hydrophilic model drug 5-fluorouracil. Multiple W/O/W emulsions were prepared in a one-step emulsification process, and were characterized regarding particle size, microstructure and viscosity. In-vitro studies on porcine skin with Franz-type diffusion cells, tape stripping experiments and attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) were performed. The addition of Solagum AX, a natural polymer mixture of acacia and xanthan gum, led to multiple W/O/W emulsions with a remarkably increased long-term stability in comparison to formulations without a thickener. The higher skin diffusion of 5-fluorouracil from the multiple emulsions compared with an O/W-macroemulsion could be explained by ATR-FTIR. Shifts to higher wave numbers and increase of peak areas of the asymmetric and symmetric CH2 stretching vibrations confirmed a transition of parts of the skin lipids from an ordered to a disordered state after impregnation of porcine skin with the multiple emulsions. Solagum AX is highly suitable for stabilization of the created multiple emulsions. Moreover, these formulations showed superiority over a simple O/W-macroemulsion regarding skin permeation and penetration of 5-fluorouracil. © 2013 Royal Pharmaceutical Society.
Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation.
Sari, Mutiara Ayu; Chellam, Shankararaman
2015-11-15
Boron uptake from highly saline hydraulic fracturing wastewater by freshly precipitated amorphous Al(OH)3 precipitates is due to ligand exchange and complexation with surface hydroxyl groups. Consequently, aluminum electrocoagulation can be a feasible approach to remove boron from flowback/produced water. Actual hydraulic fracturing wastewater containing ∼120mg/L boron from the Eagle Ford shale play was employed. Electrocoagulation was performed over a range of aluminum dosages (0-1350mg/L), pH 6.4 and 8, and high current densities (20-80mA/cm(2)) using a cylindrical aluminum anode encompassed by a porous cylindrical 316-stainless steel cathode. Direct measurements of boron uptake along with its chemical state and coordination were made using Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-Ray Photoelectron Spectroscopy. Boron removal increased monotonically with aluminum dosage and was higher at pH 8, but remained relatively constant at ⩾20mA/cm(2). Chloride ions induced anodic pitting and super-Faradaic (131% efficiency) aluminum dissolution and their electrooxidation produced free chlorine. ATR-FTIR suggested outer-sphere and inner-sphere complexation of trigonal B(OH)3 with Al(OH)3, which was confirmed by the BO bond shifting toward lower binding energies in XPS. Severe AlO interferences precluded evidence for tetrahedral B(OH)4(-) complexation. No evidence for co-precipitation was obtained. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumari, Supriya; Mangwani, Neelam; Das, Surajit
2017-02-01
Three-dimensional excitation-emission matrix (3D EEM) fluorescence spectroscopy and attenuated total reflectance fourier-transformed infrared spectroscopy (ATR-FTIR) was used to evaluate the interaction of biofilm associated extracellular polymeric substances (EPS) of a marine bacterium Pseudomonas pseudoalcaligenes NP103 with lead [Pb(II)]. EEM fluorescence spectroscopic analysis revealed the presence of one protein-like fluorophore in the EPS of P. pseudoalcaligenes NP103. Stern-Volmer equation indicated the existence of only one binding site (n = 0.789) in the EPS of P. pseudoalcaligenes NP103. The interaction of Pb(II) with EPS was spontaneous at room temperature (Δ G = - 2.78 kJ/K/mol) having binding constant (Kb) of 2.59 M- 1. ATR-FTIR analysis asserted the involvement of various functional groups such as sulphydryl, phosphate and hydroxyl and amide groups of protein in Pb(II) binding. Scanning electron microscopy (SEM) and fluorescence microscopy analysis displayed reduced growth of biofilm with altered surface topology in Pb(II) supplemented medium. Energy dispersive X-ray spectroscopy (EDX) analysis revealed the entrapment of Pb in the EPS. Uronic acid, a characteristic functional group of biofilm, was observed in 1H NMR spectroscopy. The findings suggest that biofilm associated EPS are perfect organic ligands for Pb(II) complexation and may significantly augment the bioavailability of Pb(II) in the metal contaminated environment for subsequent sequestration.
Orientation determination of interfacial beta-sheet structures in situ.
Nguyen, Khoi Tan; King, John Thomas; Chen, Zhan
2010-07-01
Structural information such as orientations of interfacial proteins and peptides is important for understanding properties and functions of such biological molecules, which play crucial roles in biological applications and processes such as antimicrobial selectivity, membrane protein activity, biocompatibility, and biosensing performance. The alpha-helical and beta-sheet structures are the most widely encountered secondary structures in peptides and proteins. In this paper, for the first time, a method to quantify the orientation of the interfacial beta-sheet structure using a combined attenuated total reflectance Fourier transformation infrared spectroscopic (ATR-FTIR) and sum frequency generation (SFG) vibrational spectroscopic study was developed. As an illustration of the methodology, the orientation of tachyplesin I, a 17 amino acid peptide with an antiparallel beta-sheet, adsorbed to polymer surfaces as well as associated with a lipid bilayer was determined using the regular and chiral SFG spectra, together with polarized ATR-FTIR amide I signals. Both the tilt angle (theta) and the twist angle (psi) of the beta-sheet at interfaces are determined. The developed method in this paper can be used to obtain in situ structural information of beta-sheet components in complex molecules. The combination of this method and the existing methodology that is currently used to investigate alpha-helical structures will greatly broaden the application of optical spectroscopy in physical chemistry, biochemistry, biophysics, and structural biology.
Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo
2017-07-18
Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.
Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.
2011-01-01
An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Golovkina, Viktoriya N.
1997-08-01
Fiber optic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of aminoacid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haack, L.P.; LaCourse, D.L.; Korniski, T.J.
1986-01-01
Experiments were conducted to validate a Fourier transform infrared (FT-IR) sampling and analysis system for measurement of trace gases in vehicle exhaust utilizing gasoline-, gasohol-, diesel-, and methanol-fueled vehicles as the emission source and formaldehyde (HCHO) as the test molecule. The 2,4-dinitrophenylhydrazine impinger method was chosen as the reference method. Diluted exhaust was drawn continuously though the FT-IR cell and measured every 3 s. The FT-IR signals were averaged over a complete driving-test cycle and compared to the concentration determined from concurrent impinger sampling. By impinger measurements it was shown that HCHO losses between the tailpipe and the FT-IR cellmore » were on the order of only 5%, independent of vehicle type or HCHO concentration (0.02-8.5 ppm). Comparisons between FT-IR and impinger measurements on 43 tests of methanol-fueled vehicles under transient conditions (diluted-exhaust HCHO 0.28-8.5 ppm) showed FT-IR/impinger = 1.055 +/- 0.095. 19 references, 5 figures, 5 tables.« less
Pereira, António; Caldeira, Ana Teresa; Maduro, Belmira; Vandenabeele, Peter; Candeias, António
2016-01-01
The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum. Museum curators classified it as a tortoiseshell box decorated with gold applications solely on the basis of visual inspection and the information provided by the donor. This box has visible signs of degradation with white veils, initially assumed to be the result of biological degradation of a proteinaceous matrix. This paper presents the methodological rationale behind this study and proposes a totally non-invasive methodology for the identification of polymeric materials in museum artifacts. The analysis of surface leachates using (1)H and (13)C nuclear magnetic resonance (NMR) complemented by in situ attenuated total reflection infrared spectroscopy (ATR FT-IR) allowed for full characterization of the object s substratum. The NMR technique unequivocally identified a great number of additives and ATR FT-IR provided information about the polymer structure and while also confirming the presence of additives. The pressure applied during ATR FT-IR spectroscopy did not cause any physical change in the structure of the material at the level of the surface (e.g., color, texture, brightness, etc.). In this study, variable pressure scanning electron microscopy (VP-SEM-EDS) was also used to obtain the elemental composition of the metallic decorations. Additionally, microbiologic and enzymatic assays were performed in order to identify the possible biofilm composition and understand the role of microorganisms in the biodeterioration process. Using these methodologies, the box was correctly identified as being made of cellulose acetate plastic with brass decorations and the white film was identified as being composed mainly of polymer exudates, namely sulphonamides and triphenyl phosphate. © The Author(s) 2015.
Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad
2011-06-01
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.
Infrared spectroscopy and spectroscopic imaging in forensic science.
Ewing, Andrew V; Kazarian, Sergei G
2017-01-16
Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.
Poster 6: Influence of traces elements in the organic chemistry of upper atmosphere of Titan
NASA Astrophysics Data System (ADS)
Mathe, Christophe; Carrasco, Nathalie; Trainer, Melissa G.; Gautier, Thomas; Gavilan, Lisseth; Dubois, David; Li, Xiang
2016-06-01
In the upper atmosphere of Titan, complex chemistry leads to the formation of organic aerosols. Since the work of Khare et al. in 1984, several experiments investigated the formation of Titan aerosols, so called tholins, in the laboratory. It has been suggested that nitrogen-containing compounds may contribute significantly to the aerosols formation process. In this study, we focused on the influence of pyridine, the simplest nitrogenous aromatic hydrocarbon, on the chemistry of Titan's atmosphere and on aerosol formation. To assess the effect of pyridine on aerosol formation chemistry, we used two different experimental setups : a capacitively coupled radio-frequency (electronic impact), and a VUV Deuterium lamp (photochemistry) in a collaboration between LATMOS (Guyancourt) and NASA-GSFC (Greenbelt), respectively. Aerosols produced with both setups were first analyzed using a FTIR-ATR (Fourier Transform Infrared spectroscopy - Attenuated Total Reflection) with a spectral range of 4000-800 cm-1 to characterize their optical properties. Next the samples were analysed using a Bruker Autoflex Speed MALDI mass spectrometer with a m/z range up to 2000 Da in order to infer their composition. Infrared spectroscopy analysis showed that tholins produced with a nitrogen-methane gas mixture (95:5) and nitrogenpyridine gas mixture (99:250ppm) present very similar spectra features. Tholins produced with a mixture of nitrogenmethane-pyridine (99:1:250ppm) do not present aliphatic CH2 or CH3 vibrational signatures. This could indicate a cyclic polymerization by a pyridine skeleton. Mass spectrometry is still in progress to confirm this.
Wang, Long-Fei; He, Dong-Qin; Chen, Wei; Yu, Han-Qing
2015-09-15
Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level. The results show that Ca(2+) exhibited superior performance in accelerating fouling compared to Mg(2+). The hydrophobic polyethersulfone (PES) membrane exhibited greater complexation with HA in the presence of Mg(2+) and Ca(2+), compared to the hydrophilic cellulose membrane, as evidenced by the more intense polysaccharide C-O, aromatic C=C and carboxylic C=O bands in the FTIR spectra. The QCM and ITC measurements provide quantitative evidence to support that Ca(2+) was more effective than Mg(2+) in binding with HA and accumulating foulants on the membrane surfaces. The higher charge neutralization capacity and more favorable binding ability of Ca(2+) were found to be responsible for its greater contribution to the NOM-induced membrane fouling than Mg(2+). This work offers a new insight into the mechanism of cation-mediated NOM-induced membrane fouling process, and demonstrates that such an integrated ATR-FTIR/QCM/ITC approach could be a useful tool to explore other complicated interaction processes in natural and engineered environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Palaeoproteomic Profiling of Conservation Layers on a 14th Century Italian Wall Painting.
Mackie, Meaghan; Rüther, Patrick; Samodova, Diana; Di Gianvincenzo, Fabiana; Granzotto, Clara; Lyon, David; Peggie, David A; Howard, Helen; Harrison, Lynne; Jensen, Lars Juhl; Olsen, Jesper V; Cappellini, Enrico
2018-06-18
Ahead of display, a non-original layer was observed on the surface of a fragment of a wall painting by Ambrogio Lorenzetti (active 1319, died 1348/9). FTIR analysis suggested proteinaceous content. Mass spectrometry was used to better characterise this layer and revealed two protein components: sheep and cow glue and chicken and duck egg white. Analysis of post-translational modifications detected several photo-oxidation products, which suggest that the egg experienced prolonged exposure to UV light and was likely applied long before the glue layer. Additionally, glycation products detected may indicate naturally occurring glycoprotein degradation or reaction with a carbohydrate material such as starch, identified by ATR-FTIR in a cross-section of a sample taken from the painting. Palaeoproteomics is shown to provide detailed characterisation of organic layers associated with mural paintings and therefore aids reconstruction of the conservation history of these objects. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.
Brechbühl, Yves; Christl, Iso; Elzinga, Evert J; Kretzschmar, Ruben
2012-07-01
The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures. Copyright © 2012 Elsevier Inc. All rights reserved.
Svečnjak, Lidija; Prđun, Saša; Rogina, Josip; Bubalo, Dragan; Jerković, Igor
2017-10-01
Samples of Satsuma mandarin (Citrus unshiu Marc.) nectar, honey sac content and honey were analyzed by FTIR-ATR spectroscopy and reference methods. The spectral analysis allowed detection of the major chemical constituents in C. unshiu nectar-to-honey transformation pathway thus providing information on the intensity and location of the compositional changes occurring during this process. The preliminary results showed that in average more than one-third of sugar-related nectar-to-honey conversion takes place directly in the honey sac; the average sugar content (w/w) was 17.93% (nectar), 47.03% (honey sac) and 79.63% (honey). FTIR-ATR results showed great spectral similarity of analyzed honey samples and small degree variations in both sugar and water content in nectar samples. The spectral data revealed distinctive differences in the chemical composition of individual honey sac contents with the most intensive and complex absorption envelope in the spectral region between 1175 and 950cm -1 (glucose, fructose and sucrose absorption bands). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Meléndez, L. V.; Cabanzo, R.; Mejía-Ospino, E.; Guzmán, A.
2016-02-01
Eight vacuum residues and their delayed coking liquids products from Colombian crude were study by infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and principal component analysis (PCA). For the samples the structural parameters of aromaticity factor (fa), alifaticity (A2500-3100cm-1), aromatic condensation degree (GCA), length of aliphatic chains (LCA) and aliphatic chain length associated with aromatic (LACAR) were determined through the development of a methodology, which includes the previous processing of spectroscopy data, identifying the regions in the IR spectra of greatest variance using PCA and molecules patterns. The parameters were compared with the results obtained from proton magnetic resonance (1H-NMR) and 13C-NMR. The results showed the influence and correlation of structural parameters with some physicochemical properties such as API gravity, weight percent sulphur (% S) and Conradson carbon content (% CCR)
Perrone, Olavo Micali; Colombari, Felippe Mariano; Rossi, Jessika Souza; Moretti, Marcia Maria Souza; Bordignon, Sidnei Emilio; Nunes, Christiane da Costa Carreira; Gomes, Eleni; Boscolo, Mauricio; Da-Silva, Roberto
2016-10-01
Sugarcane bagasse (SCB) was treated in three stages using ozone oxidation (O), washing in an alkaline medium (B) and ultrasonic irradiation (U). The impact of each pretreatment stage on the physical structure of the SCB was evaluated by its chemical composition, using an infrared technique (FTIR-ATR), and using thermogravimetric analysis (TGA/DTG). The pretreatment sequence O, B, U provided a significant reduction of lignin and hemicellulose, which was confirmed by changes in the absorption bands corresponding to these compounds, when observed using infrared. Thermogravimetric analysis confirmed an increased thermal stability in the treated sample due to the removal of hemicellulose and extractives during the pretreatment. This pretreatment released 391mg glucose/g from treated SCB after the enzymatic hydrolysis, corresponding to a yield of 94% of the cellulose available. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paraskevaidi, Maria; Morais, Camilo L M; Lima, Kássio M G; Ashton, Katherine M; Stringfellow, Helen F; Martin-Hirsch, Pierre L; Martin, Francis L
2018-06-07
The current lack of an accurate, cost-effective and non-invasive test that would allow for screening and diagnosis of gynaecological carcinomas, such as endometrial and ovarian cancer, signals the necessity for alternative approaches. The potential of spectroscopic techniques in disease investigation and diagnosis has been previously demonstrated. Here, we used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to analyse urine samples from women with endometrial (n = 10) and ovarian cancer (n = 10), as well as from healthy individuals (n = 10). After applying multivariate analysis and classification algorithms, biomarkers of disease were pointed out and high levels of accuracy were achieved for both endometrial (95% sensitivity, 100% specificity; accuracy: 95%) and ovarian cancer (100% sensitivity, 96.3% specificity; accuracy 100%). The efficacy of this approach, in combination with the non-invasive method for urine collection, suggest a potential diagnostic tool for endometrial and ovarian cancers.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Developing char-based soil amendments Soil carbon and char analysis via molecular beam mass spectrometry depth profiling, Fourier transform infrared [FTIR]) Rapid soil carbon analysis using analytical DRIFTS, 13C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic
Method for analysis dried vine fruits contaminated with ochratoxin A.
Galvis-Sánchez, Andrea C; Barros, Antonio S; Delgadillo, Ivonne
2008-06-09
The EU maximum limit of 10 microg kg(-1) of OTA for dried vine fruits has been established since 2002 (European Commission, 2005). The presented work explore the capability of using Fourier infrared spectroscopy attenuated total reflection (FTIR-ATR) for the detection of ochratoxin A (OTA) in dried vine fruits in a range of concentration between 2 and 50 microg kg(-1) OTA. The method developed included a sample pretreatment using a C18 cartridge which was efficient for the isolation of the mycotoxin. The PLS1 analysis of the spectrum of sultanas spiked with different OTA concentrations showed a good correlation between the spectral data and reference concentration for OTA (R(2)=0.85).
A preliminary study on the synthesis of monosaccharide palmitate
NASA Astrophysics Data System (ADS)
Othman, Nor Hamidah Abu; Jafri, Nur Hafifah Nahdirah; Salimon, Jumat
2018-04-01
The esterification reaction between palmitic acid and different monosaccharides using 1.5% sulfuric acid as the catalyst to produce monosachharide palmitate was studied. The highest percentage yield obtained was 20% from tripalmitate (TAG01) whereas the lowest percentage formed was 0.8% from glucose pentapalmitate (GPP01). Functional group analysis was conducted using ATR-FTIR spectroscopy. Infrared spectroscopy showed C=O ester stretching at 1735, 1697, 1732 and 1729 cm-1, C-O ester stretching at 1265, 1269, 1284 and 1265 while C-H sp3 stretching was observed at 2847-2914 cm-1 for tripalmitate (TAG), glucose pentapalmitate (GPP), xylitol pentapalmitate (XPP) and sorbitol hexapalmitate (SHP) with no observed -OH stretch after esterification to produce monosaccharide palmitate.
Analysis of Fusarium mycotoxins by gas chromatography--Fourier transform infrared spectroscopy.
Young, J C; Games, D E
1994-03-11
The Fourier transform infrared (FTIR) spectra of selected Fusarium mycotoxins of various structure types were determined. Absorptions were observed for the following functionalities: hydroxyl at 3625-65 cm-1 and 3482 cm-1, the latter being associated with a 7 alpha-hydroxyl adjacent to an 8-carbonyl in keto trichothecenes; carbonyl at 1760-6 cm-1 for 5-membered rings and at 1695-8 cm-1 for those conjugated to a single C = C in a six-membered ring; acetate carbonyl at 1765 cm-1 and acetate C-O at 1220-9 cm-1; and C = C at 1680 cm-1. Gas chromatography combined with FTIR and mass spectrometry was applied to the identification of some mycotoxins in a F. roseum liquid culture extract.
Analyzing Raman - Infrared spectral correlation in the recently found meteorite Csátalja
NASA Astrophysics Data System (ADS)
Kereszturi, A.; Gyollai, I.; Kereszty, Zs.; Kiss, K.; Szabó, M.; Szalai, Z.; Ringer, M.; Veres, M.
2017-02-01
Correlating the Raman and infrared spectra of shocked minerals in Csátalja ordinary chondrite (H4, S2, W2) with controlling the composition by EPMA measurements, we identified and improved various shock indicators, as infrared spectro-microscopic analysis has been poorly used for shock impact alteration studies of meteorites to date. We also provide reference spectra as SOM for the community with local mineralogical and shock alteration related context to support further standardization of the IR ATR based measurements. Raman band positions shifted in conjunction with the increase in full width half maximum (FWHM) with shock stage in olivine minerals while in the infrared spectra when comparing the IR band positions and IR maximal absorbance, increasing correlation was found as a function of increasing shock effects. This is the first observational confirmation with the ATR method of the already expected shock related disordering. In the case of shocked pyroxenes the well-known peak broadening and peak shift was confirmed by Raman method, beyond the level that could have been produced by only chemical changes. With increasing shock level the 852-864 cm- 1 and 1055-1071 cm- 1 FTIR bands finally disappeared. From the shock effect occasionally mixed mineral structures formed, especially feldspars together with pyroxene. Feldspars were only present in the shock melted volumes, thus produced by the shock effect itself. Based on the above mentioned observations in Csátalja meteorite the less shocked (only fractured) part witnessed 2-6 GPa shock pressure with temperature below 100 °C. The moderately shocked parts (minerals with mosaicism and mechanical twins) witnessed 5-10 GPa pressure and 900 °C temperature. The strongly shocked area (many olivine and pyroxene grains) was subject to 10-15 GPa and 1000 °C. The existence of broad peak near 510 cm- 1 and disappearance of other peaks of feldspar at 480 and 570 cm- 1 indicate the presence of maskelynite, which proposes that the peak shock pressure could reach 20 GPa at certain locations. We identified higher shock levels than earlier works in this meteorite and provided examples how heterogeneous the shock effect and level could be at small spatial scale. The provided reference spectra support the future improvement for the standardization of infrared ATR based methods and the understanding of shock-related mineral alterations beyond the optical appearance.
Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs).
Ioannou, Aristos; Varotsis, Constantinos
2017-01-01
High performance liquid chromatography (HPLC) coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs) formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb) and Myoglobin (Mb) at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR) spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.
Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita
2016-01-01
In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV-vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Seon-Ah; Marinero, Ernesto E.; Stanciu, Lia A. Stanciu; Poudyal, Shishir; Kuhn, Richard J.
A composite of 3-Aminopropyltriethoxysilane (APTES) functionalized graphene oxide (APTES-GO) wrapped on SiO2 particles (SiO2@APTES-GO) was prepared via self-assembly. Transmission electron microscopy (TEM) and ATR-Fourier Transform Infrared spectroscopy (ATR-FTIR) confirmed wrapping of the SiO2 particles by the APTES-GO sheets. An impedimetric biosensor was constructed and used to sensitively detect Zika and dengue DNA and RNA via primer hybridization using different oligonucleotide sequences. The results demonstrate that the SiO2@APTES-GO electrode materials provide enhanced RNA detection sensitivity with selectivity and detection limit (1 femto-Molar), compared to both APTES-GO and APTES-SiO2. The three-dimensional structure, higher contact area, electrical properties and the ability for rapid hybridization offered by the SiO2@APTES-GO resulted in a successful design of a Zika and dengue biosensor with the lowest detection limit reported to date. We are in the process of developing a platform for multiple viral detection for point-of-care diagnostics for arthropode borne viral infectious diseases.
Yadav, Neerja; Gupta, Munishwar Nath; Khare, Sunil K
2017-10-01
In the present study, a halophilic Bacillus subtilis subsp. spizizenii (NCBI GenBank accession number KX109607) was isolated from the Sambhar Salt Lake, Rajasthan India. This organism exhibited significance antibacterial and antifungal activity against Proteus vulgaris, Bacillus subtilis, Aspergillus niger, Rhizopus oligosporus and Penicillium chrysogenum respectively. The bioactive constituent responsible for it was extracted by three phase partitioning and purified by column chromatography. The purified compound was further characterized by FTIR-ATR, NMR and Mass spectrometry. The mass spectra show a molecular ion of m/z 301.14. The compound has very high antimicrobial activity showing 35mm zone of inhibition against Bacillus subtilis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Duband, Sébastien; Govin, Alexandre; Dumollard, Jean-Marc; Forest, Fabien; Basset, Thierry; Péoc'h, Michel
2012-01-10
Forensic pathologists are sometimes confronted with microscopic foreign bodies mixed in with soft tissues surrounding wounds and which are thus difficult to identify. This identification, however, could be primordial in investigating a crime and in determining the weapon used. A case of a fatal respiratory distress syndrome due to conjoining suicidal drug intoxication and laryngeal obstruction by a voluminous foreign body giant cell granuloma is presented. The classical histological examination showed exogenous particles in the vocal cord tumor with birefringent qualities. Their analysis with Fourier-Transform infrared (FTIR) spectrometry coupled with infrared microscope allows the determination of their chemical nature as polytetrafluoroethylene and to the diagnosis of teflonoma. This case report put the emphasis on the forensic interest of the FTIR imaging. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cheng, Weiwei; Liu, Guoqin; Liu, Xinqi
2016-07-27
In the present study, the formation mechanisms of glycidyl fatty acid esters (GEs) were investigated both in real edible oils (soybean oil, camellia oil, and palm oil) during laboratory-scale preparation and refining and in chemical model (1,2-dipalmitin (DPG) and 1-monopalmitin (MPG)) during high temperature exposure (160-260 °C under nitrogen). The formation process of GEs in the chemical model was monitored using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The results showed that the roasting and pressing process could produce certain amounts of GEs that were much lower than that produced in the deodorization process. GE contents in edible oils increased continuously and significantly with increasing deodorization time below 200 °C. However, when the temperature exceeded 200 °C, GE contents sharply increased in 1-2 h followed by a gradual decrease, which could verify a simultaneous formation and degradation of GEs at high temperature. In addition, it was also found that the presence of acylglycerol (DAGs and MAGs) could significantly increase the formation yield of GEs both in real edible oils and in chemical model. Compared with DAGs, moreover, MAGs displayed a higher formation capacity but substantially lower contribution to GE formation due to their low contents in edible oils. In situ ATR-FTIR spectroscopic evidence showed that cyclic acyloxonium ion intermediate was formed during GE formation derived from DPG and MPG in chemical model heated at 200 °C.
NASA Astrophysics Data System (ADS)
Venuti, Valentina; Stancanelli, Rosanna; Acri, Giuseppe; Crupi, Vincenza; Paladini, Giuseppe; Testagrossa, Barbara; Tommasini, Silvana; Ventura, Cinzia Anna; Majolino, Domenico
2017-10-01
The ability of Captisol® (sulphobutylether-β-cyclodextrin, SBE-β-CD), to form inclusion complexes, both in solution and in the solid state, has been tested in order to improve some unfavorable chemical-physical characteristics, such as poor solubility in water, of a bioflavonoid, Coumestrol (Coum), well known for its anti-oxidant, anti-inflammatory, anti-fungal and anti-viral activity. In pure water, a phase-solubility study was carried out to evaluate the enhancement of the solubility of Coum and, therefore, the occurred complexation with the macrocycle. The stoichiometry and the stability constant of the SBE-β-CD/Coum complex were calculated with the phase solubility method and through the Job's plot. After that, the solid SBE-β-CD/Coum complex was prepared utilizing a kneading method. The spectral changes induced by complexation on characteristic vibrational band of Coum were complementary investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and Raman spectroscopy, putting into evidence the guest chemical groups involved in the "host-guest" interactions responsible of the formation and stabilization of the complex. Particular attention was paid to the Cdbnd O and Osbnd H stretching vibrations, whose temperature-evolution respectively furnished the enthalpy changes associated to the binding of host and guest in solid phase and to the reorganization of the hydrogen bond scheme upon complexation. From the whole set of results, an inclusion geometry is also proposed.
Ghanbari-Siahkali, Afshin; Almdal, Kristoffer; Kingshott, Peter
2003-12-01
The effects of laser irradiation on changes to the surface chemistry and structure of a commercially available ethylene propylene diene monomer (EPDM) rubber sample after Raman microscopy analysis was investigated. The Raman measurements were carried out with different levels of laser power on the sample, ranging from 4.55 mW to 0.09 mW. The surface of the EPDM was analyzed before and after laser exposure using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The techniques have surface probe depths of approximately < or = 10 nm and 1 microm, respectively. Both sets of analysis show that ingredients of the blended EPDM rubber "bloom" to the surface as a result of local heating that takes place due to the absorption of laser by carbon black during the Raman analysis. Scanning electron microscopy (SEM) analysis was also performed on the Raman analyzed areas to visually illustrate the effects created due to laser light exposure (i.e., burning marks). The change in surface chemistry also occurs in regions a few millimeters from the exposed sites, indicating that the effect is quite long range. However, this phenomenon has no major influence, as far as XPS or ATR-FTIR results disclose, on the backbone structure of the rubber sample. The results indicate that precautions should be taken when analyzing complex blended polymer samples using Raman spectroscopy.
Formation and enzymatic degradation of poly-l-arginine/fucoidan multilayer films.
Webber, Jessie L; Benbow, Natalie L; Krasowska, Marta; Beattie, David A
2017-11-01
A polyelectrolyte multilayer (PEM) system based on biopolymers has been constructed and studied in its formation and enzymatic breakdown. The multilayer is composed of fucoidan (a proven antimicrobial/anti-inflammatory seaweed-based polysaccharide) and poly-l-arginine (a polypeptide that can be readily degraded with trypsin to yield arginine, a known NO donor), thus making the multilayer a potential dual action surface treatment for wound dressings. Studies on the formation of the multilayer revealed that the film built-up in the expected stepwise manner with consistent reversal of the zeta potential upon the adsorption of each subsequent polyion. The completed film (8 bilayers) was seen to have low hydration (30% water), as determined by H 2 O/D 2 O solvent replacement studies using the quartz crystal microbalance, with an adsorbed mass (without hydration water) of approx. 4.8μgcm -2 , as determined by quantitative attenuated total reflectance Fourier transform infrared (ATR FTIR) spectroscopy. The enzymatic breakdown of the film in response to exposure to trypsin was also investigated, and the film was seen to release both polymers over time, with a projected complete film removal period of approximately 24h. Critically, this information was determined using ATR FTIR spectroscopy experiments, which allowed unambiguous deconvolution of the removal rates of the two polyions, which is information that cannot be obtained from other methodologies used to study enzymatic breakdown of surface films. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rezaei, Fatemeh; Shokri, Babak; Sharifian, M.
2016-01-01
This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid-base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was observed that plasma-treated samples exhibited significantly better biocompatibility, comparing to the pristine one.
NASA Astrophysics Data System (ADS)
Strathmann, Timothy J.; Myneni, Satish C. B.
2004-09-01
Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).
Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system
Lenhart, J.J.; Bargar, J.R.; Davis, J.A.
2001-01-01
Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.
Yang, Yanli; Wang, Shengrui; Liu, Jingyang; Xu, Yisheng; Zhou, Xiaoyun
2016-05-17
Lysine adsorption at clay/aqueous interfaces plays an important role in the mobility, bioavailability, and degradation of amino acids in the environment. Knowledge of these interfacial interactions facilitates our full understanding of the fate and transport of amino acids. Here, X-ray diffraction (XRD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) measurements were used to explore the dynamic process of lysine adsorption on montmorillonite and the competition with Ca(2+) at the molecular level. Density functional theory (DFT) calculations were employed to determine the peak assignments of dissolved lysine in the solution phase. Three surface complexes, including dicationic, cationic, and zwitterionic structures, were observed to attach to the clay edge sites and penetrate the interlayer space. The increased surface coverage and Ca(2+) competition did not affect the interfacial lysine structures at a certain pH, whereas an elevated lysine concentration contributed to zwitterionic-type coordination at pH 10. Moreover, clay dissolution at pH 4 could be inhibited at a higher surface coverage with 5 and 10 mM lysine, whereas the inhibition effect was inconspicuous or undetected at pH 7 and 10. The presence of Ca(2+) not only could remove a part of the adsorbed lysine but also could facilitate the readsorption of dissolved Si(4+) and Al(3+) and surface protonation. Our results provide new insights into the process of lysine adsorption and its effects on montmorillonite surface sites.
Chen, Xiaoyun; Wang, Jie; Paszti, Zoltan; Wang, Fulin; Schrauben, Joel N; Tarabara, Volodymyr V; Schmaier, Alvin H; Chen, Zhan
2007-05-01
Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), zeta-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.
Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger
2014-09-15
About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH<6.5) and phosphate buffer (PB, pH 7.5-8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
McAuley, W J; Chavda-Sitaram, S; Mader, K T; Tetteh, J; Lane, M E; Hadgraft, J
2013-04-15
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effects of three fatty acid esters on skin permeation. Propylene glycol diperlargonate (DPPG), isopropyl myristate (IPM) and isostearyl isostearate (ISIS) were selected as pharmaceutically relevant solvents with a range of lipophilicities and cyanophenol (CNP) was used as a model drug. The resultant data were compared with that obtained when water was used as the solvent. The diffusion of CNP, DPPG and IPM across epidermis was successfully described by a Fickian model. When ISIS was used as a solvent Fickian behaviour was only obtained across isolated stratum corneum suggesting that the hydrophilic layers of the epidermis interfere with the permeation of the hydrophobic ISIS. The diffusion coefficients of CNP across epidermis in the different solvents were not significantly different. Using chemometric data analysis diffusion profiles for the solvents were deconvoluted from that of the skin and modelled. Each of these solvents was found to diffuse at a faster rate across the skin than CNP. DPPG considerably increased the concentration of CNP in the stratum corneum in comparison with the other solvents indicating strong penetration enhancer potential. In contrast IPM produced a similar CNP concentration in the stratum corneum to water with ISIS resulting in a lower CNP concentration suggesting negligible enhancement and penetration retardation effects for these two solvents respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Lando, Gabriela Albara; Marconatto, Letícia; Schrank, Augusto; Vainstein, Marilene Henning
2017-01-01
Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management. PMID:28718785
Clinical use and material wear of polymeric tracheostomy tubes.
Björling, Gunilla; Axelsson, Sara; Johansson, Unn-Britt; Lysdahl, Michael; Markström, Agneta; Schedin, Ulla; Aune, Ragnhild E; Frostell, Claes; Karlsson, Sigbritt
2007-09-01
The objectives were to compare the duration of use of polymeric tracheostomy tubes, i.e., silicone (Si), polyvinyl chloride (PVC), and polyurethane (PU), and to determine whether surface changes in the materials could be observed after 30 days of patient use. Data were collected from patient and technical records for all tracheostomized patients attending the National Respiratory Center in Sweden. In the surface study, 19 patients with long-term tracheostomy were included: six with Bivona TTS Si tubes, eight with Shiley PVC tubes, and five with Trachoe Twist PU tubes. All tubes were exposed in the trachea for 30 days before being analyzed by scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). New tubes and tubes exposed in phosphate-buffered saline were used as reference. Si tubes are used for longer periods of time than those made of PVC (P<.0001) and PU (P=.021). In general, all polymeric tubes were used longer than the recommended 30-day period. Eighteen of the 19 tubes exposed in patients demonstrated, in one or more areas of the tube, evident surface changes. The morphologic changes identified by SEM correlate well with the results obtained by ATR-FTIR. Si tracheostomy tubes are in general used longer than those made of PVC and PU. Most of the tubes exposed in the trachea for 30 days suffered evident surface changes, with degradation of the polymeric chains as a result.
Filali, Samira; Bergamelli, Charlotte; Lamine Tall, Mamadou; Salmon, Damien; Laleye, Diane; Dhelens, Carole; Diouf, Elhadji; Pivot, Christine; Pirot, Fabrice
2017-08-01
A new institutional clinical trial assessed the improvement of sleep disorders in 40 children with autism treated by immediate-release melatonin formulation in different regimens (0.5 mg, 2 mg, and 6 mg daily) for one month. The objectives of present study were to (i) prepare low-dose melatonin hard capsules for pediatric use controlled by two complementary methods and (ii) carry out a stability study in order to determine a use-by-date. Validation of preparation process was claimed as ascertained by mass uniformity of hard capsules. Multicomponent analysis by attenuated total reflectance Fourier transformed infrared (ATR-FTIR) of melatonin/microcrystalline cellulose mixture allowed to identify and quantify relative content of active pharmaceutical ingredients and excipients. Absolute melatonin content analysis by high performance liquid chromatography in 0.5 mg and 6 mg melatonin capsules was 93.6%±4.1% and 98.7%±6.9% of theoretical value, respectively. Forced degradation study showed a good separation of melatonin and its degradation products. The capability of the method was 15, confirming a risk of false negative <0.01%. Stability test and dissolution test were compliant over 18 months of storage with European Pharmacopoeia. Preparation of melatonin hard capsules was completed manually and melatonin in hard capsules was stable for 18 months, in spite of low doses of active ingredient. ATR-FTIR offers a real alternative to HPLC for quality control of high-dose melatonin hard capsules before the release of clinical batches.
Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.
Pinto, S; Alves, P; Santos, A C; Matos, C M; Oliveiros, B; Gonçalves, S; Gudiña, E; Rodrigues, L R; Teixeira, J A; Gil, M H
2011-09-15
Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these compounds affect the PDMS surface properties. BSs isolated from four probiotic strains (Lactococcus lactis, Lactobacillus paracasei, Streptococcus thermophilus A, and Streptococcus thermophilus B) were used. Bare PDMS and PDMS coated with BSs were characterized by contact angle measurements, infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The influence of the surface modifications on the materials blood compatibility was studied through thrombosis and hemolysis assays. The cytotoxicity of these materials was tested against rat peritoneal macrophages. AFM results demonstrated the successful coating of the surfaces. Also, by contact angle measurements, an increase of the coated surfaces hydrophilicity was seen. Furthermore, XPS analysis indicated a decrease of the silicon content at the surface, and ATR-FTIR results showed the presence of BS characteristic groups as a consequence of the modification. All the studied materials revealed no toxicity and were found to be nonhemolytic. The proposed approach for the modification of PDMS surfaces was found to be effective and opens new possibilities for the application of these surfaces in the biomedical field. Copyright © 2011 Wiley Periodicals, Inc.
Photoactive chitosan switching on bone-like apatite deposition.
Chiono, Valeria; Gentile, Piergiorgio; Boccafoschi, Francesca; Carmagnola, Irene; Ninov, Momchil; Georgieva, Ventsislava; Georgiev, George; Ciardelli, Gianluca
2010-02-08
The work was focused on the synthesis and characterization of the chitosan-g-fluorescein (CHFL) conjugate polymer as a biocompatible amphiphilic water-soluble photosensitizer, able to stimulate hydroxyapatite deposition upon visible light irradiation. Fluorescein (FL) grafting to chitosan (CH) chains was confirmed by UV-vis analysis of water solutions of FL and CHFL and by Fourier transform infrared spectroscopy (FTIR-ATR) analysis of CHFL and CH. Smooth CHFL cast films with 4 microm thickness were obtained by solvent casting. Continuous exposure to visible light for 7 days was found to activate the deposition of calcium phosphate crystals from a conventional simulated body fluid (SBF 1.0x) on the surface of CHFL cast films. EDX and FTIR-ATR analyses confirmed the apatite nature of the deposited calcium phosphate crystals. CHFL films preincubated in SBF (1.0x) solution under visible light irradiation and in the dark for 7 days were found to support the in vitro adhesion and proliferation of MG63 osteoblast-like cells (MTT viability test; 1-3 days culture time). On the other hand, the mineralization ability of MG63 osteoblast-like cells was significantly improved on CHFL films preincubated under visible light exposure (alkaline phosphatase activity (ALP) test for 1, 3, 7, and 14 days). The use of photoactive biocompatible conjugate polymer, such as CHFL, may lead to new therapeutic options in the field of bone/dental repair, exploiting the photoexcitation mechanism as a tool for biomineralization.
Liu, Xiaochang; Liu, Meiying; Liu, Chao; Quan, Peng; Zhao, Yongshan; Fang, Liang
2017-08-30
Chemical enhancers are widely used to facilitate drug permeation in transdermal drug delivery system (TDDS) and the effect of chemical enhancers is desired to be temporary. Though temporary enhancement effect of chemical enhancers has been widely discussed, there is still a lack of knowledge about the molecular mechanism of temporary enhancement effect. Using the skin permeation of flurbiprofen as a probe, the temporary enhancement effect of isopulegol decanoate (ISO-10) was evaluated with in vitro permeation experiment and confocal laser scanning microscopy (CLSM). In addition, molecular mechanism of skin recovery was explored with skin retention of ISO-10, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), molecular dynamic (MD) simulation and transepidermal water loss (TEWL). Temporary enhancement effect of ISO-10 was observed by the permeation of flurbiprofen after the treatment of 180min. Furthermore, temporary enhancement effect of ISO-10 on the diffusion of intercellular lipid in the stratum cornuem (SC) was observed by ATR-FTIR, molecular dynamic (MD) simulation. The SC barrier function recovered with the existence of ISO-10 in the lipid bilayer as indicated by the retention study and TEWL. In conclusion, the lipid bilayer accepted the enhancer as a new component to form a new stable arrangement, resulted the recovery of the skin barrier function. This work processed a novel mechanism of the recovery of skin barrier function after the addition of chemical enhancers. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.
2016-02-01
Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment.
Gudi, Gennadi; Krähmer, Andrea; Koudous, Iraj; Strube, Jochen; Schulz, Hartwig
2015-10-01
Different yew species contain poisonous taxane alkaloids which serve as resources for semi-synthesis of anticancer drugs. The highly variable amounts of taxanes demand new methods for fast characterization of the raw plant material and the isolation of the target structures during phyto extraction. For that purpose, applicability of different vibrational spectroscopy methods in goods receipt of raw plant material and in process control was investigated and demonstrated in online tracking isolation and purification of the target taxane 10-deacetylbaccatin III (10-DAB) during solvent extraction. Applying near (NIRS) and mid infrared spectroscopy (IRS) the amount of botanical impurities in mixed samples of two different yew species (R(2)=0.993), the leave-to-wood ratio for Taxus baccata material (R(2)=0.94) and moisture in dried yew needles (R(2)=0.997) can be quantified. By partial least square analysis (PCA) needles of different Coniferales species were successfully discriminated by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FT-IR). The analytical potential of ATR-FT-IR and Fourier Transform-Raman Spectroscopy (FT-RS) in process control of extraction and purification of taxanes is demonstrated for determination of the water content in methanolic yew extracts (R(2)=0.999) and for quantification of 10-DAB (R(2)=0.98) on a highly sophisticated level. The decrease of 10-DAB in the plant tissue during extraction was successfully visualized by FT-IR imaging of thin cross sections providing new perspectives for process control and design. Copyright © 2015 Elsevier B.V. All rights reserved.
[Research on Rapid Discrimination of Edible Oil by ATR Infrared Spectroscopy].
Ma, Xiao; Yuan, Hong-fu; Song, Chun-feng; Hu, Ai-qin; Li, Xiao-yu; Zhao, Zhong; Li, Xiu-qin; Guo Zhen; Zhu, Zhi-qiang
2015-07-01
A rapid discrimination method of edible oils, KL-BP model, was proposed by attenuated total reflectance infrared spectroscopy. The model extracts the characteristic of classification from source data by KL and reduces data dimension at the same time. Then the neural network model is constructed by the new data which as the input of the model. 84 edible oil samples which include sesame oil, corn oil, canola oil, blend oil, sunflower oil, peanut oil, olive oil, soybean oil and tea seed oil, were collected and their infrared spectra determined using an ATR FT-IR spectrometer. In order to compare the method performance, principal component analysis (PCA) direct-classification model, KL direct-classification model, PLS-DA model, PCA-BP model and KL-BP model are constructed in this paper. The results show that the recognition rates of PCA, PCA-BP, KL, PLS-DA and KL-BP are 59.1%, 68.2%, 77.3%, 77.3% and 90.9% for discriminating the 9 kinds of edible oils, respectively. KL extracts the eigenvector which make the distance between different class and distance of every class ratio is the largest. So the method can get much more classify information than PCA. BP neural network can effectively enhance the classification ability and accuracy. Taking full of the advantages of KL in extracting more category information in dimension reducing and the features of BP neural network in self-learning, adaptive, nonlinear, the KL-BP method has the best classification ability and recognition accuracy and great importance for rapidly recognizing edible oil in practice.
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
Goh, Choon Fu; Craig, Duncan Q M; Hadgraft, Jonathan; Lane, Majella E
2017-02-01
Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm -1 ) containing the carboxylate (COO - ) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO - asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Coexisting Ions on Adsorption of Arsenic by Metal Oxides
NASA Astrophysics Data System (ADS)
Meng, Xiaoguang; Shi, Qiantao; Christodoulatos, Christos
2017-04-01
Iron hydroxides and nano TiO2 are commonly used adsorbents for removal of arsenic in water. Iron hydroxides also play an important role in controlling the fate and transport of arsenic in groundwater. Co-existing anions, such as phosphate, silicate, and bicarbonate could significantly affect the adsorption capacity of the adsorbents for arsenate and arsenite and increase their mobility in groundwater aquifers. Arsenate and arsenite interactions at the solid-water interface were investigated using electrophoretic mobility (EM) measurements, Fourier transform infrared (FTIR) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. Electrochemical scanning tunneling microscopy (ECSTM) and in-situ flow cell ATR-FTIR were applied to investigate the interactions between As(III), As(V) and carbonate in water and at the solid-water interface. The experimental results suggested that arsenate and arsenite formed inner-sphere complexes with the hydroxide groups on the adsorbents. Arsenite and carbonate could form ternary surface complexes with the hydroxyl groups on iron hydroxide.
SEASONAL EMISSIONS OF AMMONIA AND METHANE FROM A HOG WASTE LAGOON WITH BIOACTIVE COVER
The paper discusses the use of plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) to measure the flux of ammonia and methane from a hog waste lagoon before and after the installation of a bioactive cover. A computed tomography algorithm using a smoo...
NASA Astrophysics Data System (ADS)
Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.
2014-12-01
Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.
2011-01-01
Background There is an increasing demand for renewable resources to replace fossil fuels. However, different applications such as the production of secondary biofuels or combustion for energy production require different wood properties. Therefore, high-throughput methods are needed for rapid screening of wood in large scale samples, e.g., to evaluate the outcome of tree breeding or genetic engineering. In this study, we investigated the intra-specific variability of lignin and energy contents in extractive-free wood of hybrid poplar progenies (Populus trichocarpa × deltoides) and tested if the range was sufficient for the development of quantitative prediction models based on Fourier transform infrared spectroscopy (FTIR). Since lignin is a major energy-bearing compound, we expected that the energy content of wood would be positively correlated with the lignin content. Results Lignin contents of extractive-free poplar wood samples determined by the acetyl bromide method ranged from 23.4% to 32.1%, and the calorific values measured with a combustion calorimeter varied from 17260 to 19767 J g-1. For the development of calibration models partial least square regression and cross validation was applied to correlate FTIR spectra determined with an attenuated total reflectance (ATR) unit to measured values of lignin or energy contents. The best models with high coefficients of determination (R2 (calibration) = 0.91 and 0.90; R2 (cross-validation) = 0.81 and 0.79) and low root mean square errors of cross validation (RMSECV = 0.77% and 62 J g-1) for lignin and energy determination, respectively, were obtained after data pre-processing and automatic wavenumber restriction. The calibration models were validated by analyses of independent sets of wood samples yielding R2 = 0.88 and 0.86 for lignin and energy contents, respectively. Conclusions These results show that FTIR-ATR spectroscopy is suitable as a high-throughput method for lignin and energy estimations in large data sets. Our study revealed that the intra-specific variations in lignin and energy contents were unrelated to each other and that the lignin content, therefore, was no predictor of the energy content. Employing principle component analyses we showed that factor loadings for the energy content were mainly associated with carbohydrate ring vibrations, whereas those for lignin were mainly related to aromatic compounds. Therefore, our analysis suggests that it may be possible to optimize the energy content of trees without concomitant increase in lignin. PMID:21477346
NASA Astrophysics Data System (ADS)
Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.
2017-10-01
Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment.
NASA Astrophysics Data System (ADS)
Szczepanik, Beata; Słomkiewicz, Piotr; Garnuszek, Magdalena; Czech, Kamil; Banaś, Dariusz; Kubala-Kukuś, Aldona; Stabrawa, Ilona
2015-03-01
The effect of chemical modification of halloysite from a Polish strip mine "Dunino" on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700-3600 cm-1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium-silicon skeleton in the 1400-1000 cm-1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample.
ATR-FTIR microscopy in mapping mode for the study of verdigris and its secondary products
NASA Astrophysics Data System (ADS)
Prati, S.; Bonacini, I.; Sciutto, G.; Genty-Vincent, A.; Cotte, M.; Eveno, M.; Menu, M.; Mazzeo, R.
2016-01-01
To study degradation processes occurring on painting materials, the use of high-resolution micro-analytical techniques is highly requested since it provides a detailed identification and localisation of both the original and deteriorated ingredients. Among the various pigments recently studied, the characterisation of verdigris has received a major interest. This pigment has not a unique chemical formula, but its composition depends on the recipe employed for its manufacturing. Moreover, verdigris paints are not stable and are subject to a colour change from blue-green to green, which occurs in the first few months after the application. In this paper, we focused our attention on the use of ATR-FTIR mapping as a useful method to identify verdigris secondary products and pathways. Several mock-ups and real samples have been analysed, and the correlation among the detected compounds and their spatial location, obtained by the application of ATR-FTIR microscopy in mapping mode, allowed formulating some hypotheses on the degradation pattern of verdigris, which may feed the discussion on the transformation and stability of this pigment. From an analytical point of view, we showed how FTIR mapping approaches may be extremely useful both for the identification of compounds in complex matrix in which single spectra may limit the exhaustive characterisations due to bands overlapping and for the study of degradation pathways by taking into consideration the relative distribution of degradation products.
Ortiz Martinez, Camila; Pereira Ruiz, Suelen; Carvalho Fenelon, Vanderson; Rodrigues de Morais, Gutierrez; Luciano Baesso, Mauro; Matioli, Graciette
2016-05-01
Agrobacterium sp. IFO 13140 cells were immobilized on a loofa sponge and used to produce curdlan over five successive cycles. The interaction between microbial cells and the loofa sponge as well as the produced curdlan were characterized by Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectrometry. The purity of the curdlan was also evaluated. The storage stability of the immobilized cells was assessed and the produced curdlan was used in a functional yogurt formulation. The average curdlan production by immobilized cells was 17.84 g L(-1) . The presence of the microorganism in the sponge was confirmed and did not cause alterations in the matrix, and the chemical structure of the curdlan was the same as that of commercial curdlan. The purity of both was similar. The immobilized cells remained active after 300 days of storage at -18 °C. The use of the produced curdlan in a functional yogurt resulted in a product with lower syneresis. A large number of cells physically adhered to the surface of loofa sponge fibers, and its use as an immobilization matrix to produce curdlan was effective. The use of the produced curdlan in yogurt allowed the development of a more stable product. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Cockrell, Allison L; Fitzgerald, Lisa A; Cusick, Kathleen D; Barlow, Daniel E; Tsoi, Stanislav D; Soto, Carissa M; Baldwin, Jeffrey W; Dale, Jason R; Morris, Robert E; Little, Brenda J; Biffinger, Justin C
2015-09-01
A thermophile, Thermus scotoductus SA-01, was cultured within a constant-temperature (65°C) microwave (MW) digester to determine if MW-specific effects influenced the growth and physiology of the organism. As a control, T. scotoductus cells were also cultured using convection heating at the same temperature as the MW studies. Cell growth was analyzed by optical density (OD) measurements, and cell morphologies were characterized using electron microscopy imaging (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]), dynamic light scattering (DLS), and atomic force microscopy (AFM). Biophysical properties (i.e., turgor pressure) were also calculated with AFM, and biochemical compositions (i.e., proteins, nucleic acids, fatty acids) were analyzed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the fatty acid methyl esters extracted from cell membranes. Here we report successful cultivation of a thermophile with only dielectric heating. Under the MW conditions for growth, cell walls remained intact and there were no indications of membrane damage or cell leakage. Results from these studies also demonstrated that T. scotoductus cells grown with MW heating exhibited accelerated growth rates in addition to altered cell morphologies and biochemical compositions compared with oven-grown cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
TOF-SIMS Analysis of Red Color Inks of Writing and Printing Tools on Questioned Documents.
Lee, Jihye; Nam, Yun Sik; Min, Jisook; Lee, Kang-Bong; Lee, Yeonhee
2016-05-01
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a well-established surface technique that provides both elemental and molecular information from several monolayers of a sample surface while also allowing depth profiling or image mapping to be performed. Static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric, biological, archaeological, and forensic materials. In forensic investigation, the use of a minimal sample for the analysis is preferable. Although the TOF-SIMS technique is destructive, the probing beams have microsized diameters so that only small portion of the questioned sample is necessary for the analysis, leaving the rest available for other analyses. In this study, TOF-SIMS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were applied to the analysis of several different pen inks, red sealing inks, and printed patterns on paper. The overlapping areas of ballpoint pen writing, red seal stamping, and laser printing in a document were investigated to identify the sequence of recording. The sequence relations for various cases were determined from the TOF-SIMS mapping image and the depth profile. TOF-SIMS images were also used to investigate numbers or characters altered with two different red pens. TOF-SIMS was successfully used to determine the sequence of intersecting lines and the forged numbers on the paper. © 2016 American Academy of Forensic Sciences.
Solid state direct bonding of polymers by vacuum ultraviolet light below 160 nm
NASA Astrophysics Data System (ADS)
Hashimoto, Yuki; Yamamoto, Takatoki
2017-10-01
This work investigated the application of vacuum ultraviolet (VUV) irradiation to the bonding of various substrates, including glass, polycarbonate (PC), cyclic olefin polymer (COP), polydimethylsiloxane (PDMS) and polymethyl methacrylate (PMMA). This method has the advantage of being able to bond various substrates without the application of heat or adhesives, and therefore may be very useful in the fabrication of micro/nanoscale structures composed of polymers. In contrast to previous applications of this technique, the present study used VUV radiation at wavelengths at and below 160 nm so as to take advantage of the higher energy in this range. Bonding was assessed based on measuring the shear stress of various test specimens subjected to VUV irradiation and then pressed together, and a number of analytical methods were also employed to examine the irradiated surfaces in order to elucidate the morphological and chemical changes following VUV treatment. These analyses included water contact angle measurements, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), time of flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy (AFM). Poor bonding was identified between combinations consisting of PMMA/PC, PMMA/COP, PMMA/PMMA, PMMA/glass, and PC/COP, whereas all other combinations resulted in successful bonding with the bonding stress values such as PC/PC = 2.0 MPa, PC/glass = 10.7 MPa and COP/COP = 1.7 MPa, respectively.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Wingen, L. M.; Perraud, V.; Finlayson-Pitts, B. J.
2015-12-01
Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs) and have a high secondary organic aerosol (SOA) forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27-44 s reaction times) and in static Teflon chambers (30-60 min reaction times). The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and electrospray ionization mass spectrometry (ESI-MS), or measured on line using direct analysis in real time (DART-MS) and aerosol mass spectrometry (AMS). The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3 × 10-15 cm2 s-1 and shows that SOA is a highly viscous semi-solid. Possible structures of four newly observed low molecular weight (MW ≤ 300 Da) reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW) products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI) scavengers on HMW products and particle formation, confirm that HMW products and reactions of Criegee intermediates play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.
In vivo interstitial glucose characterization and monitoring in the skin by ATR-FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Skrebova Eikje, Natalja
2011-03-01
Successful development of real-time non-invasive glucose monitoring would represent a major advancement not only in the treatment and management of patients with diabetes mellitus and carbohydrate metabolism disorders, but also for understanding in those biochemical, metabolic and (patho-)physiological processes of glucose at the molecular level in vivo. Here, ATR-FTIR spectroscopy technique has been challenged not only for in vivo measurement of interstitial glucose levels, but also for their non-invasive molecular qualitative and quantitative comparative characterization in the skin tissue. The results, based on calculated mean values of determined 5 glucose-specific peaks in the glucose-related 1000-1160 cm-1 region, showed intra- and inter-subject differences in interstitial glucose activity levels with their changes at different times and doses of OGTT, while raising questions about the relationships between interstitial and blood glucose levels. In conclusion, the introduction of ATR-FTIR spectroscopy technique has opened up an access to the interstitial fluid space in the skin tissue for interstitial glucose characterization and monitoring in vivo. Though interstitial versus blood glucose monitoring has different characteristics, it can be argued that accurate and precise measurements of interstitial glucose levels may be more important clinically.
Cebi, Nur; Yilmaz, Mustafa Tahsin; Sagdic, Osman
2017-08-15
Sibutramine may be illicitly included in herbal slimming foods and supplements marketed as "100% natural" to enhance weight loss. Considering public health and legal regulations, there is an urgent need for effective, rapid and reliable techniques to detect sibutramine in dietetic herbal foods, teas and dietary supplements. This research comprehensively explored, for the first time, detection of sibutramine in green tea, green coffee and mixed herbal tea using ATR-FTIR spectroscopic technique combined with chemometrics. Hierarchical cluster analysis and PCA principle component analysis techniques were employed in spectral range (2746-2656cm -1 ) for classification and discrimination through Euclidian distance and Ward's algorithm. Unadulterated and adulterated samples were classified and discriminated with respect to their sibutramine contents with perfect accuracy without any false prediction. The results suggest that existence of the active substance could be successfully determined at the levels in the range of 0.375-12mg in totally 1.75g of green tea, green coffee and mixed herbal tea by using FTIR-ATR technique combined with chemometrics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Staniszewska, Emilia; Malek, Kamilla; Baranska, Malgorzata
2014-01-01
ATR FTIR spectra were collected from rat tissue homogenates (myocardium, brain, liver, lung, intestine, and kidney) to analyze their biochemical content. Based on the second derivative of an average spectral profile it was possible to assign bands e.g. to triglycerides and cholesterol esters, proteins, phosphate macromolecules (DNA, RNA, phospholipids, phosphorylated proteins) and others (glycogen, lactate). Peaks in the region of 1600-1700 cm-1 related to amide I mode revealed the secondary structure of proteins. The collected spectra do not characterize morphological structure of the investigated tissues but show their different composition. The comparison of spectral information gathered from FTIR spectra of the homogenates and those obtained previously from FTIR imaging of the tissue sections implicates that the presented here approach can be successfully employed in the investigations of biochemical variation in animal tissues. Moreover, it can be used in the pharmacological and pharmacokinetic studies to correlate the overall biochemical status of the tissue with the pathological changes it has undergone.
A comparative review of optical surface contamination assessment techniques
NASA Technical Reports Server (NTRS)
Heaney, James B.
1987-01-01
This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.
Yao, Yan; Zhang, Ping; Wang, Zhen-Chun; Chen, Yong-Heng
2009-01-01
The experiment was designed based on consumption of carbon dioxide through the photosynthesis of Brassica oberacea var acephala leaf, and the photosynthesis of kale leaf under thallium stress was investigated by in situ attenuated total reflection FTIR (in situ ATR-FTIR). The ATR-FTIR showed that the absorption peaks of leaves had no obvious difference between plants growing in thallium stress soil and plants growing in non-thallium pollution soil, and the strong peaks at 3,380 cm(-1) could be assigned to the absorption of water, carbohydrate, protein or amide; the strong peaks at 2,916 and 2,850 cm(-1) assigned to the absorption of carbohydrate or aliphatic compound; the peaks at 1,640 cm(-1) assigned to the absorption of water. However, as detected by the in situ ATR-FTIR, the double peaks (negative peaks) at 2,360 and 2,340 cm(-1) that are assigned to the absorption of CO2 appeared and became high gradually. It was showed that kale was carrying photosynthesis. At the same time, the carbon dioxide consumption speed of leaf under thallium stress was obviously larger than that of the blank It was expressed that photosynthesis under thallium stress was stronger than the blank All these represented that kale had certain tolerance to the heavy metal thallium. Meanwhile, the carbon dioxide consumption of grown-up leaf was more than that of young leaf whether or not under thallium stress. It was also indicated that the intensity of photosynthesis in grown-up leaf is higher than that in young leaf.
Infrared spectroscopy in biomedical diagnostics
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Artioushenko, Vjacheslav G.; Golovkina, Viktoriya N.
1998-01-01
Fiberoptic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of amino acid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.
Cuetos, María José; Gómez, Xiomar; Otero, Marta; Morán, Antonio
2010-07-01
In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG-MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (approximately 300 degrees C) peak was observed, while the weight loss experienced at high-temperature (450-550 degrees C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.
Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong
2010-10-19
Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.
Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias
2013-07-01
We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.
Preparation and characterizations of EGDE crosslinked chitosan electrospun membranes.
Aqil, A; Tchemtchoua, V T; Colige, A; Atanasova, G; Poumay, Y; Jérôme, C
2015-01-01
Composite Crosslinked nanofibrous membranes of chitosan, ethylene glycol diglycidyl ether (EGDE) and polyethylene oxide was successfully prepared with bead free morphology via electrospinning technique followed by heat mediated chemical crosslinking. Architectural stability of nanofiber mat in aqueous medium was achieved by chemical crosslinking of only 1% EGDE, and tensile strength tests revealed that increasing EGDE content has considerably enhance the elastic modulus of nanofibers. The structure, morphology and mechanical properties of nanofibers were characterized by Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and Instron machine, respectively. Skin fibroblasts and endothelial cells showed good attachment, proliferation and viability on crosslinked electrospun membranes. The results indicate a good biocompatibility and non-toxic nature of the resulted membrane.
Perera, Undugodage Don Nuwan; Nishikida, Koichi; Lavine, Barry K
2018-06-01
A previously published study featuring an attenuated total reflection (ATR) simulation algorithm that mitigated distortions in ATR spectra was further investigated to evaluate its efficacy to enhance searching of infrared (IR) transmission libraries. In the present study, search prefilters were developed from transformed ATR spectra to identify the assembly plant of a vehicle from ATR spectra of the clear coat layer. A total of 456 IR transmission spectra from the Paint Data Query (PDQ) database that spanned 22 General Motors assembly plants and served as a training set cohort were transformed into ATR spectra by the simulation algorithm. These search prefilters were formulated using the fingerprint region (1500 cm -1 to 500 cm -1 ). Both the transformed ATR spectra (training set) and the experimental ATR spectra (validation set) were preprocessed for pattern recognition analysis using the discrete wavelet transform, which increased the signal-to-noise of the ATR spectra by concentrating the signal in specific wavelet coefficients. Attenuated total reflection spectra of 14 clear coat samples (validation set) measured with a Nicolet iS50 Fourier transform IR spectrometer were correctly classified as to assembly plant(s) of the automotive vehicle from which the paint sample originated using search prefilters developed from 456 simulated ATR spectra. The ATR simulation (transformation) algorithm successfully facilitated spectral library matching of ATR spectra against IR transmission spectra of automotive clear coats in the PDQ database.
NASA Astrophysics Data System (ADS)
Banas, A.; Banas, K.; Kalaiselvi, S. M. P.; Pawlicki, B.; Kwiatek, W. M.; Breese, M. B. H.
2017-01-01
Lactose and saccharose have the same molecular formula; however, the arrangement of their atoms is different. A major difference between lactose and saccharose with regard to digestion and processing is that it is not uncommon for individuals to be lactose intolerant (around two thirds of the population has a limited ability to digest lactose after infancy), but it is rather unlikely to be saccharose intolerant. The pharmaceutical industry uses lactose and saccharose as inactive ingredients of drugs to help form tablets because of their excellent compressibility properties. Some patients with severe lactose intolerance may experience symptoms of many allergic reactions after taking medicine that contains this substance. People who are specifically "allergic" to lactose (not just lactose intolerant) should not use tablets containing this ingredient. Fourier Transform Infrared (FTIR) spectroscopy has a unique chemical fingerprinting capability and plays a significant important role in the identification and characterization of analyzed samples and hence has been widely used in pharmaceutical science. However, a typical FTIR spectrum collected from tablets contains a myriad of valuable information hidden in a family of tiny peaks. Powerful multivariate spectral data processing can transform FTIR spectroscopy into an ideal tool for high volume, rapid screening and characterization of even minor tablet components. In this paper a method for distinction between FTIR spectra collected for tablets with or without lactose is presented. The results seem to indicate that the success of identifying one component in FTIR spectra collected for pharmaceutical composition (that is tablet) is largely dependent on the choice of the chemometric technique applied.
NASA Astrophysics Data System (ADS)
Ideris, N.; Ahmad, A. L.; Ooi, B. S.; Low, S. C.
2018-05-01
Microporous PVDF membranes were used as protein capture matrices in immunoassays. Because the most common labels in immunoassays were detected based on the colour change, an understanding of how protein concentration varies on different PVDF surfaces was needed. Herein, the correlation between the membrane pore size and protein adsorption was systematically investigated. Five different PVDF membrane morphologies were prepared and FTIR/ATR was employed to accurately quantify the surface protein concentration on membranes with small pore sizes. SigmaPlot® was used to find a suitable curve fit for protein adsorption and membrane pore size, with a high correlation coefficient, R2, of 0.9971.
Garside, Paul; Wyeth, Paul
2007-05-01
Textile artifacts form a vital part of our cultural heritage. In order to determine appropriate methods of conservation, storage, and display, it is important to understand the current physical state of an artifact, as effected by the microstructure of the component fibers. The semi-crystalline nature of the constituent polymer aggregates, the degree of crystallinity, and the crystallite orientation have a significant influence on mechanical properties. The value of polarized Fourier transform infrared (FT-IR) spectroscopy in probing these aspects of cellulosic fibers has been assessed. A variety of representative fibers (both natural plant fibers and regenerated materials) were examined by polarized attenuated total reflection spectroscopy (Pol-ATR) and polarized infrared microspectroscopy (Pol-microIR); the former is a surface sampling technique and the latter is a transmission technique. The introduction of a polarizer into the system allows the alignment as well as the nature of bonds to be determined, and thus the presence and extent of crystallinity or long range ordering can be investigated. Using the data from the Pol-ATR experiments, it was found to be possible to derive the principle alignment of the cellulose polymer with respect to the fiber axis, along with an indication of the total cellulose crystallinity of the material, as measured by a crystallinity parameter, Chi. The Pol-microIR spectra, on the other hand, yielded more limited information, particularly when considering plant fibers with more complex microstructures.
Discrimination of organic coffee via Fourier transform infrared-photoacoustic spectroscopy.
Gordillo-Delgado, Fernando; Marín, Ernesto; Cortés-Hernández, Diego Mauricio; Mejía-Morales, Claudia; García-Salcedo, Angela Janet
2012-08-30
Procedures for the evaluation of the origin and quality of ground and roasted coffee are constantly needed for the associated industry due to complexity of the related market. Conventional Fourier transform infrared (FTIR) spectroscopy can be used for detecting changes in functional groups of compounds, such as coffee. However, dispersion, reflection and non-homogeneity of the sample matrix can cause problems resulting in low spectral quality. On the other hand, sample preparation frequently takes place in a destructive way. To overcome these difficulties, in this work a photoacoustic cell has been adapted as a detector in a FTIR spectrophotometer to perform a study of roasted and ground coffee from three varieties of Coffea arabica grown by organic and conventional methods. Comparison between spectra of coffee recorded by FTIR-photoacoustic spectrometry (PAS) and by FTIR spectrophotometry showed a better resolution of the former method, which, aided by principal components analysis, allowed the identification of some absorption bands that allow the discrimination between organic and conventional coffee. The results obtained provide information about the spectral behavior of coffee powder which can be useful for establishing discrimination criteria. It has been demonstrated that FTIR-PAS can be a useful experimental tool for the characterization of coffee. Copyright © 2012 Society of Chemical Industry.
Kimura, Yukihiro; Yura, Yuki; Hayashi, Yusuke; Li, Yong; Onoda, Moe; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu; Ohno, Takashi
2016-12-15
The light-harvesting 1 reaction center (LH1-RC) complex from thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits enhanced thermostability and an unusual LH1 Q y transition, both induced by Ca 2+ binding. In this study, metal-binding sites and metal-protein interactions in the LH1-RC complexes from wild-type (B915) and biosynthetically Sr 2+ -substituted (B888) Tch. tepidum were investigated by isothermal titration calorimetry (ITC), atomic absorption (AA), and attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopies. The ITC measurements revealed stoichiometric ratios of approximately 1:1 for binding of Ca 2+ , Sr 2+ , or Ba 2+ to the LH1 αβ-subunit, indicating the presence of 16 binding sites in both B915 and B888. The AA analysis provided direct evidence for Ca 2+ and Sr 2+ binding to B915 and B888, respectively, in their purified states. Metal-binding experiments supported that Ca 2+ and Sr 2+ (or Ba 2+ ) competitively associate with the binding sites in both species. The ATR-FTIR difference spectra upon Ca 2+ depletion and Sr 2+ substitution demonstrated that dissociation and binding of Ca 2+ are predominantly responsible for metal-dependent conformational changes of B915 and B888. The present results are largely compatible with the recent structural evidence that another binding site for Sr 2+ (or Ba 2+ ) exists in the vicinity of the Ca 2+ -binding site, a part of which is shared in both metal-binding sites.
Obinaju, Blessing E; Graf, Carola; Halsall, Crispin; Martin, Francis L
2015-06-01
Petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) are a pollution issue in the Niger Delta region due to oil industry activities. PAHs were measured in the water column of the Ovia River with concentrations ranging from 0.1 to 1055.6 ng L(-1). Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy detected alterations in tissues of the African catfish (Heterobranchus bidorsalis) from the region showed varying degrees of statistically significant (P<0.0001, P<0.001, P<0.05) changes to absorption band areas and shifts in centroid positions of peaks. Alteration patterns were similar to those induced by benzo[a]pyrene in MCF-7 cells. These findings have potential health implications for resident local communities as H. bidorsalis constitutes a key nutritional source. The study provides supporting evidence for the sensitivity of infrared spectroscopy in environmental studies and supports their potential application in biomonitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Application of mid-infrared wavelength tunable laser in glucose determination].
Yu, Song-Lin; Li, Da-Chao; Zhong, Hao; Sun, Chang-Yue; Xu, Ke-Xin
2013-04-01
The authors proposed a method of control and stabilization for laser emission wavelengths and power, and presented the mid-infrared wavelength tunable laser with broad emission spectrum band of 9.19-9.77 microm, half wave width of 4 cm(-1), spectral resolution of 2.7 x 10(4) and max power of 800 mW with fluctuation < 0.8% in the present paper. The tunable laser was employed as the light source in combination with ATR sensor for glucose measurement in PBS solution. In our experiments, absorbance at the five laser emission wavelengths, including 1 081, 1 076, 1 051, 1 041 and 1 037 cm(-1) in the 9R and 9P band of the laser emission spectrum, all correlates well with the glucose concentration (R2 > 0.99, SD < 0.0004, P < 0.000 1). Especially, the sensitivity of this laser spectroscopy system is about 4 times as high as that of traditional FTIR spectrometer.
Saucedo-Hernández, Yanelis; Lerma-García, María Jesús; Herrero-Martínez, José Manuel; Ramis-Ramos, Guillermo; Jorge-Rodríguez, Elisa; Simí-Alfonso, Ernesto F
2011-04-27
Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), followed by multivariate treatment of the spectral data, was used to classify seed oils of the genus Cucurbita (pumpkins) according to their species as C. maxima, C. pepo, and C. moschata. Also, C. moschata seed oils were classified according to their genetic variety as RG, Inivit C-88, and Inivit C-2000. Up to 23 wavelength regions were selected on the spectra, each region corresponding to a peak or shoulder. The normalized absorbance peak areas within these regions were used as predictors. Using linear discriminant analysis (LDA), an excellent resolution among all categories concerning both Cucurbita species and C. moschata varieties was achieved. The proposed method was straightforward and quick and can be easily implemented. Quality control of pumpkin seed oils is important because Cucurbita species and genetic variety are both related to the pharmaceutical properties of the oils.
TG-FTIR analysis on pyrolysis and combustion of marine sediment
NASA Astrophysics Data System (ADS)
Oudghiri, Fatiha; Allali, Nabil; Quiroga, José María; Rodríguez-Barroso, María Rocío
2016-09-01
In this paper, the pyrolysis and combustion of sediment have been compared using thermogravimetric analysis (TG) coupled with Fourier transform infrared spectrometry (TG-FTIR) analysis. The TG results showed that both the pyrolysis and combustion of sediment presented four weight loss stages, each. The evolving gaseous products during pyrolysis were H2O, CO2 and hydrocarbons, while combustion yielded considerable amounts of CO2, in addition to H2O, CO, Cdbnd C, Cdbnd O and NH3. Comparing the pyrolysis and combustion TG-FTIR curves, it is possible to evaluate the effect of oxygen presence in the temperature range of 200-600 °C, which increases the volatilisation rate of organic matter in sediment. For the better detection of organic and inorganic matter in sediment by TG-FTIR analysis it is recommended to work in combustion mode of sediment.
NASA Astrophysics Data System (ADS)
Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo
2018-03-01
Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.
NASA Astrophysics Data System (ADS)
Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang
2018-01-01
The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.
In situ detection of cancerous kidney tissue by means of fiber ATR-FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Sablinskas, Valdas; Velicka, Martynas; Pucetaite, Milda; Urboniene, Vidita; Ceponkus, Justinas; Bandzeviciute, Rimante; Jankevicius, Feliksas; Sakharova, Tatiana; Bibikova, Olga; Steiner, Gerald
2018-02-01
The crucial goal of kidney-sparing surgical resection of a malignant tumor is complete removal of the cancerous tissue. The exact border between the cancerous and normal tissues is not always possible to identify by naked eye, therefore, a supplementary intraoperative diagnosis is needed. Unfortunately, intraoperative pathology methods used nowadays are time consuming and of inadequate quality rendering not definitive diagnosis. It has recently been shown that ATR-FTIR spectroscopy can be used for fast discrimination between cancerous and normal kidney tissues by analyzing the collected spectra of the tissue touch imprint smears. Most prominent differences are obtained in the wavenumber region from 950 cm-1 to 1250 cm-1, where the spectral bands due to the molecular vibrations of glycogen arise in the spectra of cancerous tissue smears. Such method of detection of cancerous tissue is limited by requirement to transfer the suspected tissue from the body to the FTIR instrument and stamp it on an ATR crystal of the spectrometer. We propose a spectroscopic tool which exploits the same principle of detection of cancerous cells as mentioned above, but does not require the tissue to be transferred from the body to the spectrometer. The portable spectrometer used in this design is equipped with fiber ATR probe and a sensitive liquid nitrogen cooled MCT detector. The design of the fiber probe allows the ATR tip to be changed easily in order to use only new sterilized tips for each measurement point of the tissue. It also enables sampling multiple areas of the suspected tissue with high lateral resolution which, in turn, increases accuracy with which the marginal regions between normal and cancerous tissues can be identified. Due to the loss of optical signal in the fiber probe the spectra have lower signal-to-noise ratio than in the case of standard ATR sampling setup. However, software for the spectral analysis used with the fiber probe design is still able to distinguish between cancerous and normal tissues with high accuracy.
Song, Young-Chul; Ryu, JiYeon; Malek, Md Abdul; Jung, Hae-Jin; Ro, Chul-Un
2010-10-01
In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.
Sciutto, Giorgia; Prati, Silvia; Bonacini, Irene; Litti, Lucio; Meneghetti, Moreno; Mazzeo, Rocco
2017-10-23
The present research is focused on the setting up of an advanced analytical system for the detection of synthetic dyes. The system is based on the combination of an innovative thin layer chromatography (TLC) plate coupled with enhanced infrared (MU-ATR, metal underlayer attenuated total reflection) and Surface Enhanced Raman (SERS) spectroscopy. In particular, a TLC plate made of silver iodide (AgI) applied onto a gold coated glass slide (AgI@Au) is proposed as an efficient stationary phase for the separation of dyes mixtures. The separated dyes are then identified by means of both enhanced FTIR and SERS, performed directly on the same eluted spots. The use of a mid-IR transparent inorganic salt as stationary phase coupled with the underneath gold layer avoids spectral interferences, enhancing the signal obtained from ATR analyses. At the same time, SERS spectra can be recorded as the TLC plate may act as a SERS active substrate due to the photoreduction of AgI to metallic Ag caused by the exposure to the laser during the Raman analysis. Different mixtures of synthetic dyes of known composition, widely used in dyeing processes, have been tested and the method resulted to be effective in identifying trace amounts in the order of tens nanograms. Moreover, the method has been further evaluated on a real case study represented by dyes extracted from dyed wool. Copyright © 2017 Elsevier B.V. All rights reserved.
R. J. Yokelson; T. J. Christian; T. G. Karl; A. Guenther
2008-01-01
As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE), tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR), proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography (GC), GC/PTRMS, and filter sampling of the particles...
Forensic analysis of black coral (Order Antipatharia).
Espinoza, Edgard O; Scanlan, Michael D; McClure, Pamela J; Baker, Barry W
2012-03-10
Fourier-transform infrared spectroscopy (FTIR), discriminate analysis, X-ray fluorescence spectrometry (XRF), and stereoscopic microscopy were used to separate black coral forensic evidence items from similarly appearing items manufactured from plastics, bovid keratin, and mangrove wood. In addition, novel observations were made of bromine and iodine relationships in black coral that have not been previously reported. Published by Elsevier Ireland Ltd.
Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter
2016-06-23
Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.
Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W
2009-03-01
This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.
ATR technique, an appropriate method for determining the degree of conversion in dental giomers
NASA Astrophysics Data System (ADS)
Prejmerean, Cristina; Prodan, Doina; Vlassa, Mihaela; Streza, Mihaela; Buruiana, Tinca; Colceriu, Loredana; Prejmerean, Vasile; Cuc, Stanca; Moldovan, Marioara
2016-12-01
Dental light-curing giomers were developed to combine the favourable properties of diacrylic resin composites (DRCs) and glass-ionomer cements (GICs) in a single material and to eliminate their inherent drawbacks. Giomers are characterized by their aesthetic appearance, high mechanical properties, adhesion to dental tissues as well as fluoride release and recharge abilities. The qualities of the giomers are greatly influenced by the level of conversion of the component resins. Infrared spectroscopy is one of the most largely used techniques for the determination of the degree of conversion in resin-based dental materials. However different results were obtained due to the performances of the used methods. The present work presents the determination of conversion degree in a series of dental copolymers and their corresponding giomers using transmission Fourier transform infrared spectroscopy (FTIR) and an attenuated total reflection technique (ATR) technique, respectively, the main aim being the study of the influence of the materials composition and of the light curing modes upon the achieved conversion in the cured giomers. Beautifil II commercial giomer was used as a control. A halogen lamp and a diode-blue LED lamp were used for the curing of the materials. The results showed that the composition of the resins greatly influenced the conversion. The highest conversions (up to 79%) were obtained in the case of the experimental giomers which contained the experimental Bis-GMA urethane analogue, followed by the Beautifil II giomer (61%) and experimental giomers based on commercial Bis-GMA (up to 50%), respectively. The resins light-cured by using the diode-blue LED lamp presented slightly higher conversions than the resins cured by halogen lamp. The study demonstrates the possibility to evaluate easily and reproducibly the conversion in light-curing composite materials with complex chemical composition and structure, particularly in the case of giomers by using the ATR technique.
Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin
2014-11-01
A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing fast determination of gasoline induction period, and of a positive meaning in the evaluation of fuel quality.
Marzec, K M; Reva, I; Fausto, R; Proniewicz, L M
2011-05-05
In the present work, γ-terpinene (a 1,4-diene derivative) and α-phellandrene (1,3-diene derivative) were isolated in cryogenic argon matrices and their structures, vibrational spectra, and photochemistries were characterized with the aid of FTIR spectroscopy and quantum chemical calculations performed at the DFT/B3LYP/6-311++G(d,p) level of approximation. The molecules bear one conformationally relevant internal rotation axis, corresponding to the rotation of the isopropyl group. The calculations provide evidence of three minima on the potential energy surfaces of the studied molecules, where the isopropyl group assumes the trans, gauche+, and gauche- conformations (T, G+, G-). The signatures of all these conformers were identified in the experimental matrix infrared spectra, with the T forms dominating, in agreement with the theoretical predicted abundances in gas phase at room temperature. In situ UV (λ > 200 nm) irradiation of matrix-isolated α-phellandrene led to its isomerization into an open-ring species. The photoproduct was found to exhibit the ZE configuration of its backbone, which to be formed from the reactant molecule does not require extensive structural rearrangements of both the reagent and matrix. γ-Terpinene was photostable when subjected to irradiation under the same experimental conditions. In addition, the liquid compounds at room temperature were also investigated by FTIR-ATR and FT-Raman spectroscopies.
Role of hydration and water coordination in micellization of Pluronic block copolymers.
Šturcová, Adriana; Schmidt, Pavel; Dybal, Jiří
2010-12-15
Raman, attenuated total reflectance FTIR, near-infrared spectroscopy, and DFT calculations have been used in a study of aqueous solutions of three tri-block copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) or PEO-PPO-PEO with commercial names Pluronic PE6200, PE6400 and F68. It is shown that the process of micellization as a response to increased temperature is reflected in the hydroxyl stretching region of infrared and Raman spectra, which contains information both about restructuring of water and changes of polymer chains in polymer/water aggregates. Raman spectra exhibit differences between individual Pluronics even at temperatures below the critical micellization temperature (CMT). According to the attenuated total reflection (ATR) FTIR spectra, the same five water coordination types defined by the number of donated/accepted hydrogen bonds are present in interacting water as in bulk water. It indicates that models considering mixed states of water with different hydrogen bonding environments provide appropriate descriptions of bound water both below and above the CMT. Above the CMT, aggregate hydration increases in the order PE6400 < PE6200 < F68, although that does not fully correspond to the EO/PO ratio, and points to the differences in microstructure of aggregates formed by each copolymer. This study relates nanoscale phenomena (hydrophobic and hydrophilic hydration) with the mesoscale phenomenon of micellization. Copyright © 2010 Elsevier Inc. All rights reserved.
Early reaction kinetics of contemporary glass-ionomer restorative materials.
Roberts, Howard W; Berzins, David W
2015-02-01
To investigate polyalkenoate reaction rates in conventional glass-ionomer cement (GIC) and resin-modified glass ionomer (RMGI) restorative materials using infrared spectroscopy. Nine conventional GIC and six RMGI restorative materials were prepared according to manufacturer's directions and placed on a FTIR (Fourier transform infrared spectroscopy) diamond ATR (attenuated total reflectance) surface. FTIR spectra (700 to 1800 cm-1) were obtained each minute for 3 h. VLC specimens were light polymerized after 1 min; at 5 min, all samples were covered with gauze saturated with deionized water. Polyalkenoate reaction was determined by measuring area growth (Å/cm-1) between 1375 and 1500 cm-1. Mean peak areas were determined at 5, 15, 30, 90, and 180 min and compared using ANOVA (p = 0.05) RESULTS: For all RMGI materials, VLC polymerization inhibited the polyalkenoate reaction rate. Compared to conventional GIC, RMGI materials demonstrated less polyalkenoate reaction. Compared to dark curing, RMGI light polymerization significantly inhibited the polyalkenoate reaction rate. The addition of resin components to glass-ionomer products significantly retards and impedes the polyalkenoate reaction. The polyalkenoate reaction rate of RMGI products was significantly lower than that of self-curing GIC restorative materials. Furthermore, light activation of RMGI products further retards the polyalkenoate rate. When clinicians require the therapeutic benefit of a polyalkenoate product, perhaps a conventional GIC restorative product should be the first material of choice.
A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends.
Akrami, Marzieh; Ghasemi, Ismaeil; Azizi, Hamed; Karrabi, Mohammad; Seyedabadi, Mohammad
2016-06-25
In this study, a new compatibilizer was synthesized to improve the compatibility of the poly(lactic acid)/thermoplastic starch blends. The compatibilizer was based on maleic anhydride grafted polyethylene glycol grafted starch (mPEG-g-St), and was characterized using Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis (DMTA) and back titration techniques. The results indicated successful accomplishment of the designed reactions and formation of a starch cored structure with many connections to m-PEG chains. To assess the performance of synthesized compatibilizer, several PLA/TPS blends were prepared using an internal mixer. Consequently, their morphology, dynamic-mechanical behavior, crystallization and mechanical properties were studied. The compatibilizer enhanced interfacial adhesion, possibly due to interaction between free end carboxylic acid groups of compatibilizer and active groups of TPS and PLA phases. In addition, biodegradability of the samples was evaluated by various methods consisting of weight loss, FTIR-ATR analysis and morphology. The results revealed no considerable effect of compatibilizer on biodegradability of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Qi; He, Haijun; Li, Bing; Lin, Hancheng; Zhang, Yinming; Zhang, Ji
2017-01-01
Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet–visible (UV–Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI. PMID:28753641
Rehbein, Moritz C; Husmann, Sascha; Lechner, Christian; Kunick, Conrad; Scholl, Stephan
2018-05-01
In early stages of drug development only sparse amounts of the key substances are available, which is problematic for the determination of important process data like reaction kinetics. Therefore, it is important to perform experiments as economically as possible, especially in regards to limiting compounds. Here we demonstrate the use of a temperature step experiment enabling the determination of complete reaction kinetics in a single non-isothermal experiment. In contrast to the traditionally used HPLC, the method takes advantage of the high measuring rate and the low amount of labor involved in using in-situ ATR-FTIR to determine time-dependent concentration-equivalent data. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes
NASA Astrophysics Data System (ADS)
Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan
2015-08-01
Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).
Pan, Chang-Jiang; Hou, Yan-Hua; Zhang, Bin-Bin; Zhang, Lin-Cai
2014-01-01
This paper presents a simple method to sequentially immobilize poly (ethylene glycol) (PEG) and albumin on titanium surface to enhance the blood compatibility. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis indicated that PEG and albumin were successfully immobilized on the titanium surface. Water contact angle results showed a better hydrophilic surface after the immobilization. The immobilized PEG or albumin can not only obviously prevent platelet adhesion and activation but also prolong activated partial thromboplastin time (APTT), leading to the improved anticoagulation. Moreover, immobilization of albumin on PEG-modified surface can further improve the anticoagulation. The approach in the present study provides an effective and efficient method to improve the anticoagulation of blood-contact biomedical devices such as coronary stents.
Surface damage studies of ETFE polymer bombarded with low energy Si ions (⩽100 keV)
NASA Astrophysics Data System (ADS)
Minamisawa, Renato Amaral; Almeida, Adelaide De; Budak, Satilmis; Abidzina, Volha; Ila, Daryush
2007-08-01
Surface studies of ethylenetetrafluoroethylene (ETFE), bombarded with Si in a high-energy tandem Pelletron accelerator, have recently been reported. Si ion bombardment with a few MeV to a few hundred keV energies was shown to be sufficient to produce damage on ETFE film. We report here the use of a low energy implanter with Si ion energies lower than 100 keV, to induce changes on ETFE films. In order to determine the radiation damage, ETFE bombarded films were simulated with SRIM software and analyzed with optical absorption photometry (OAP), Raman and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to show quantitatively the physical and chemical property changes. Carbonization occurs following higher dose implantation, and hydroperoxides were formed following dehydroflorination of the polymer.
NASA Astrophysics Data System (ADS)
Chao, Jianbin; Wang, Huijuan; Song, Kailun; Wang, Yongzhao; Zuo, Ying; Zhang, Liwei; Zhang, Bingtai
2017-02-01
The inclusion complexes of ferulic acid (FA) with p-Sulfonatocalix[n]arenes (SCXn, n = 4, 6, 8) were prepared and characterized both in the solid state and in solution using fluorescence spectroscopy, 1H nuclear magnetic resonance (1H NMR), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The results show that FA is able to form inclusion complexes with SCXn in a molar ratio of 1:1, causing a significant decrease in the fluorescence intensity of FA. The association constant of the inclusion complexes was calculated from the fluorescence titration data. 1H NMR spectroscopy analysis demonstrates that the aromatic ring and methoxy group of FA are partially covered by SCXn.
Riaz, Tabinda; Ahmad, Adnan; Saleemi, Sidra; Adrees, Muhammad; Jamshed, Fahad; Hai, Abdul Moqeet; Jamil, Tahir
2016-11-20
Blended membranes of polyurethane and cellulose acetate were prepared, characterized and investigated for their performance. Various ratios of cellulose acetate were employed to prepare four different blend membranes. The characteristics of both pure and blend membranes were investigated and results were compared to distinguish their properties. Functional group analysis was carried out by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) of pure and blend samples. Contact angle measurement and water content were evaluated to determine the membrane hydrophilicity. Moreover, the membrane morphology was studied by scanning electron microscopy (SEM). The membrane permeation properties and ability to reject chromium (VI) ions were tested at various pH and pressure by utilizing different salt concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
PEM Anchorage on Titanium Using Catechol Grafting
Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence
2012-01-01
Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262
Waveguide infrared spectrometer platform for point and standoff chemical sensing
NASA Astrophysics Data System (ADS)
Chadha, Suneet; Henning, Pat; Landers, Frank; Weling, Ani
2004-03-01
Advanced autonomous detection of chemical warfare agents and toxic industrial chemicals has long been a major military concern. At present, our capability to rapidly assess the immediate environment is severely limited and our domestic infrastructure is burdened by the meticulous procedures required to rule out false threats. While significant advances have recently been accomplished in remote spectral sensing using rugged FTIRs and point detectors, efforts towards low cost chemical discrimination have been lacking. Foster-Miller has developed a unique waveguide spectrometer which is a paradigm shift from the conventional FTIR approach. The spectrometer provides spectral discrimination over the 3-14 μm range and will be the spectrometer platform for both active and passive detection. Foster-Miller has leveraged its innovations in infrared fiber-optic probes and the recent development of a waveguide spectrometer to build a novel infrared sensor platform for both point and stand-off chemical sensing. A monolithic wedge-grating optic provides the spectral dispersion with low cost thermopile point or array detectors picking off the diffracted wavelengths from the optic. The integrated optic provides spectral discrimination between 3-12 μm with resolution at 16 cm-1 or better and overall optical throughput approaching 35%. The device has a fixed cylindrical grating bonded to the edge of a ZnSe conditioning "wedge". The conditioning optic overcomes limitations of concave gratings as it accepts high angle (large FOV) light at the narrow end of the wedge and progressively conditions it to be near normal to the grating. On return, the diffracted wavelengths are concentrated on the discrete or array detector (pixel) elements by the wedge, providing throughput comparable to that of an FTIR. The waveguide spectrometer coupled to ATR probes, flow through liquid cells or multipass gas cells provides significant cost advantage over conventional sampling methodologies. We will present the enabling innovations along with present performance, sensitivity expectations and discrimination algorithm strategy.
Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.
Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar
2017-02-15
Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ +Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roebben, Gert; Kestens, Vikram; Varga, Zoltan; Charoud-Got, Jean; Ramaye, Yannic; Gollwitzer, Christian; Bartczak, Dorota; Geißler, Daniel; Noble, James; Mazoua, Stéphane; Meeus, Nele; Corbisier, Philippe; Palmai, Marcell; Mihály, Judith; Krumrey, Michael; Davies, Julie; Resch-Genger, Ute; Kumarswami, Neelam; Minelli, Caterina; Sikora, Aneta; Goenaga-Infante, Heidi
2015-10-01
This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterisation of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots. This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a 'reference material' (ISO Guide 30:2015) or rather those of the recently defined category of 'representative test material' (ISO TS 16195:2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to representative test material or reference material, and how this status depends on its intended use.
Direct detection of saponins in crude extracts of soapnuts by FTIR.
Almutairi, Meshari Saad; Ali, Muhammad
2015-01-01
Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.
NASA Astrophysics Data System (ADS)
Warneke, Thorsten; Müller, Denise; Caldow, Christopher; Rixen, Tim; Notholt, Justus
2015-04-01
We have coupled a Fourier-Transform InfraRed (FTIR) trace gas analyser to an equilibrator, which allows the simultaneous and continuous measurement of dissolved CO2, CH4, N2O and CO in water. The FTIR-technique has a high precision over a wide range of concentrations, making it very suitable for the measurement of these gases in freshwater systems. We have employed this measurement system on a commercial river barge on the Elbe river (Czech Republic, Germany) and on a fisher boat in the coastal area of Sarawak (Malaysia). In addition we have performed stationary continuous measurements at a small river in Northern Germany over the duration of 3 months. The presentation will outline the advantages and disadvantages of the FTIR-technique for freshwater measurements and will present results from the measurement campaigns.
Aernouts, Ben; Polshin, Evgeny; Saeys, Wouter; Lammertyn, Jeroen
2011-10-31
Milk production is a dominant factor in the metabolism of dairy cows involving a very intensive interaction with the blood circulation. As a result, the extracted milk contains valuable information on the metabolic status of the cow. On-line measurement of milk components during milking two or more times a day would promote early detection of systemic and local alterations, thus providing a great input for strategic and management decisions. The objective of this study was to investigate the potential of mid-infrared (mid-IR) spectroscopy to measure the milk composition using two different measurement modes: micro attenuated total reflection (μATR) and high throughput transmission (HTT). Partial least squares (PLS) regression was used for prediction of fat, crude protein, lactose and urea after preprocessing IR data and selecting the most informative wavenumber variables. The prediction accuracies were determined separately for raw and homogenized copies of a wide range of milk samples in order to estimate the possibility for on-line analysis of the milk. In case of fat content both measurement modes resulted in an excellent prediction for homogenized samples (R(2)>0.92) but in poor results for raw samples (R(2)<0.70). Homogenization was however not mandatory to achieve good predictions for crude protein and lactose with both μATR and HTT, and urea with μATR spectroscopy. Excellent results were obtained for prediction of crude protein, lactose and urea content (R(2)>0.99, 0.98 and 0.86 respectively) in raw and homogenized milk using μATR IR spectroscopy. These results were significantly better than those obtained by HTT IR spectroscopy. However, the prediction performance of HTT was still good for crude protein and lactose content (R(2)>0.86 and 0.78 respectively) in raw and homogenized samples. However, the detection of urea in milk with HTT spectroscopy was significantly better (R(2)=0.69 versus 0.16) after homogenization of the milk samples. Based on these observations it can be concluded that μATR approach is most suitable for rapid at line or even on-line milk composition measurement, although homogenization is crucial to achieve good prediction of the fat content. Copyright © 2011 Elsevier B.V. All rights reserved.
Easmin, Sabina; Sarker, Md Zaidul Islam; Ghafoor, Kashif; Ferdosh, Sahena; Jaffri, Juliana; Ali, Md Eaqub; Mirhosseini, Hamed; Al-Juhaimi, Fahad Y; Perumal, Vikneswari; Khatib, Alfi
2017-04-01
Phaleria macrocarpa, known as "Mahkota Dewa", is a widely used medicinal plant in Malaysia. This study focused on the characterization of α-glucosidase inhibitory activity of P. macrocarpa extracts using Fourier transform infrared spectroscopy (FTIR)-based metabolomics. P. macrocarpa and its extracts contain thousands of compounds having synergistic effect. Generally, their variability exists, and there are many active components in meager amounts. Thus, the conventional measurement methods of a single component for the quality control are time consuming, laborious, expensive, and unreliable. It is of great interest to develop a rapid prediction method for herbal quality control to investigate the α-glucosidase inhibitory activity of P. macrocarpa by multicomponent analyses. In this study, a rapid and simple analytical method was developed using FTIR spectroscopy-based fingerprinting. A total of 36 extracts of different ethanol concentrations were prepared and tested on inhibitory potential and fingerprinted using FTIR spectroscopy, coupled with chemometrics of orthogonal partial least square (OPLS) at the 4000-400 cm -1 frequency region and resolution of 4 cm -1 . The OPLS model generated the highest regression coefficient with R 2 Y = 0.98 and Q 2 Y = 0.70, lowest root mean square error estimation = 17.17, and root mean square error of cross validation = 57.29. A five-component (1+4+0) predictive model was build up to correlate FTIR spectra with activity, and the responsible functional groups, such as -CH, -NH, -COOH, and -OH, were identified for the bioactivity. A successful multivariate model was constructed using FTIR-attenuated total reflection as a simple and rapid technique to predict the inhibitory activity. Copyright © 2016. Published by Elsevier B.V.
Sol gel method for synthesis of semiconducting ferrite and the study of FTIR, DTA, SEM and CV
NASA Astrophysics Data System (ADS)
Alva, Sagir; Hua, Tang Ing; Kalmar Nizar, Umar; Wahyudi, Haris; Sundari, Rita
2018-03-01
In this study, a sol gel method using citric acid as anionic surfactant is used for synthesis of magnesium ferrite. Calcinations of magnesium ferrite at temperature (300°C, 600°C and 800°C) have been conducted after sol gel process. Characterization study of the prepared magnesium ferrite related to calcinations using Fourier transform infrared spectrometry (FTIR), Differential thermogravic analysis (DTA), and Scanning electron microscope (SEM) has been discussed. The study of Cyclic voltammetry (CV) of the prepared magnesium ferrite has been examined to assay the semiconducting behavior of magnesium ferrite in relation to its electrochemical behavior.
Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre
2012-06-01
Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.
NASA Astrophysics Data System (ADS)
Yang, C. S.-C.; Williams, B. R.; Hulet, M. S.; Tiwald, T. E.; Miles, R. W., Jr.; Samuels, A. C.
2011-05-01
We studied various liquids using a vertical attenuated total reflection (ATR) liquid sampling assembly in conjunction with Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE), to determine the infrared optical constants of several bulk liquids related to chemical warfare. The index of refraction, n, and the extinction coefficient, k, of isopropyl methylphosphonofluoridate (Sarin or GB), isopropyl alcohol (IPA) (a precursor of GB), and dimethyl methylphosphonate (DMMP)-a commonly employed simulant for GB, measured by our vertical ATR IR-VASE setup are closely matched to those found in other studies. We also report the optical constants of cyclohexyl methylphosphonofluoridate (GF), 2-(diisopropylamino)ethyl methylphosphonothioate (VX), bis-(2-chloroethyl) sulfide (HD), and 2-chlorovinyl dichloroarsine (L, Lewisite). The ATR IR-VASE technique affords an accurate measurement of the optical constants of these hazardous compounds.
Takeno, Shinya; Bamba, Takeshi; Nakazawa, Yoshihisa; Fukusaki, Eiichiro; Okazawa, Atsushi; Kobayashi, Akio
2008-04-01
Commercial development of trans-1,4-polyisoprene from Eucommia ulmoides Oliver (EU-rubber) requires specific knowledge on selection of high-rubber-content lines and establishment of agronomic cultivation methods for achieving maximum EU-rubber yield. The development can be facilitated by high-throughput and highly sensitive analytical techniques for EU-rubber extraction and quantification. In this paper, we described an efficient EU-rubber extraction method, and validated that the accuracy was equivalent to that of the conventional Soxhlet extraction method. We also described a highly sensitive quantification method for EU-rubber by Fourier transform infrared spectroscopy (FT-IR) and pyrolysis-gas chromatography/mass spectrometry (PyGC/MS). We successfully applied the extraction/quantification method for study of seasonal changes in EU-rubber content and molecular weight distribution.
Ueland, Maiken; Howes, Johanna M; Forbes, Shari L; Stuart, Barbara H
2017-10-05
Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo
2016-01-01
Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. Copyright © 2015. Published by Elsevier B.V.
Effect of bioactive glass-containing resin composite on dentin remineralization.
Lee, Myoung Geun; Jang, Ji-Hyun; Ferracane, Jack L; Davis, Harry; Bae, Han Eul; Choi, Dongseok; Kim, Duck-Su
2018-05-25
The purpose of this study was to evaluate the effect of bioactive glass (BAG)-containing composite on dentin remineralization. Sixty-six dentin disks with 3 mm thickness were prepared from thirty-three bovine incisors. The following six experimental groups were prepared according to type of composite (control and experimental) and storage solutions (simulated body fluid [SBF] and phosphate-buffered saline [PBS]): 1 (undemineralized); 2 (demineralized); 3 (demineralized with control in SBF); 4 (demineralized with control in PBS); 5 (demineralized with experimental composite in SBF); and 6 (demineralized with experimental composite in PBS). BAG65S (65% Si, 31% Ca, and 4% P) was prepared via the sol-gel method. The control composite was made with a 50:50 Bis-GMA:TEGDMA resin matrix, 57 wt% strontium glass, and 15 wt% aerosol silica. The experimental composite had the same resin and filler, but with 15 wt% BAG65S replacing the aerosol silica. For groups 3-6, composite disks (20 × 10 × 2 mm) were prepared and approximated to the dentin disks and stored in PBS or SBF for 2 weeks. Micro-hardness measurements, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and field-emission scanning electron microscopy (FE-SEM) was investigated. The experimental BAG-containing composite significantly increased the micro-hardness of the adjacent demineralized dentin. ATR-FTIR revealed calcium phosphate peaks on the surface of the groups which used experimental composite. FE-SEM revealed surface deposits partially occluding the dentin surface. No significant difference was found between SBF and PBS storage. BAG-containing composites placed in close proximity can partially remineralize adjacent demineralized dentin. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kumar, Raj; Kumar, Vinay; Sharma, Vishal
2017-01-01
The aim of the present work is to explore the non-destructive application of ATR-FTIR technique for characterization and discrimination of paper samples which could be helpful to give forensic aid in resolving legal cases. Twenty-four types of paper brands were purchased from local market in and around Chandigarh, India. All the paper samples were subjected to ATR-FTIR analysis from 400 to 4000 cm- 1 wavenumber range. The qualitative feature and Chemometrics of the obtained spectral data are used for characterization and discrimination. Characterization is achieved by matching the peaks with standards of cellulose and inorganic fillers, a usual constituents of paper. Three different regions of IR, i.e. 400-2000 cm- 1, 2000-4000 cm- 1 and 400-4000 cm- 1 were selected for differentiation by Chemometrics analysis. The discrimination is achieved on the basis of three principal components, i.e. PC 1, PC 2 and PC 3. It is observed that maximum discrimination was procured in the wave number range of i.e. 2000-4000 cm- 1. Discriminating power was calculated on the basis of qualitative features as well, and it is found that the discrimination of paper samples was better achieved by Chemometrics analysis rather than qualitative features. The discriminating power by Chemometrics is 99.64% and which is larger as ever achieved by any group for present number of samples. The present result confirms that this study will be highly useful in forensic document examination work in the legal cases, where the authenticity of the document is challenged. The results are completely analytical and, therefore, overcome the problem encounter in traditional routine light/radiation scanning methods which are still in practice by various questioned document laboratories.
On the interaction between fluoxetine and lipid membranes: Effect of the lipid composition
NASA Astrophysics Data System (ADS)
Pham, Vy T.; Nguyen, Trinh Q.; Dao, Uyen P. N.; Nguyen, Trang T.
2018-02-01
Molecular interaction between the antidepressant fluoxetine and lipid bilayers was investigated in order to provide insights into the drug's incorporation to lipid membranes. In particular, the effects of lipid's unsaturation degree and cholesterol content on the partitioning of fluoxetine into large unilamellar vesicles (LUVs) comprised of unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated using second derivative spectrophotometry and Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). It was found that fluoxetine partitioned to a greater extent into the liquid-crystalline DOPC LUVs than into the solid-gel DPPC LUVs. The lipid physical state dependence of drug partitioning was verified by increasing the temperature in which the partition coefficient of fluoxetine significantly increased upon the change of the lipid phase from solid-gel to liquid-crystalline. The incorporation of 28 mol% cholesterol into the LUVs exerted a significant influence on the drug partitioning into both DOPC and DPPC LUVs. The ATR-FTIR study revealed that fluoxetine perturbed the conformation of DOPC more strongly than that of DPPC due to the cis-double bonds in the lipid acyl chains. Fluoxetine possibly bound to the carbonyl moiety of the lipids through the hydrogen bonding formation while displaced some water molecules surrounding the PO2- regions of the lipid head groups. Cholesterol, however, could lessen the interaction between fluoxetine and the carbonyl groups of both DOPC and DPPC LUVs. These findings provided a better understanding of the role of lipid structure and cholesterol on the interaction between fluoxetine and lipid membranes, shedding more light into the drug's therapeutic action.
Wang, Huhu; Ding, Shijie; Wang, Guangyu; Xu, Xinglian; Zhou, Guanghong
2013-11-01
Salmonella biofilm on food-contact surfaces present on food processing facilities may serve as a source of cross-contamination. In our work, biofilm formation by multi-strains of meat-borne Salmonella incubated at 20 °C, as well as the composition and distribution of extracellular polymeric substances (EPS), were investigated in situ by combining confocal laser scanning microscopy (CLSM), scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. A standard laboratory culture medium (tryptic soy broth, TSB) was used and compared with an actual meat substrate (meat thawing-loss broth, MTLB). The results indicated that Salmonella grown in both media were able to form biofilms on stainless steel surfaces via building a three-dimensional structure with multilayers of cells. Although the number of biofilm cells grown in MTLB was less than that in TSB, the cell numbers in MTLB was adequate to form a steady and mature biofilm. Salmonella grown in MTLB showed "cloud-shaped" morphology in the mature biofilm, whereas when grown in TSB appeared "reticular-shaped". The ATR-FTIR and Raman analysis revealed a completely different chemical composition between biofilms and the corresponding planktonic cells, and some important differences in biofilms grown in MTLB and in TSB. Importantly, our findings suggested that the progress towards a mature Salmonella biofilm on stainless steel surfaces may be associated with the production of the EPS matrix, mainly consisting of polysaccharides and proteins, which may serve as useful markers of biofilm formation. Our work indicated that a combination of these non-destructive techniques provided new insights into the formation of Salmonella biofilm matrix. © 2013.
Surface and mechanical analysis of explanted Poly Implant Prosthèse silicone breast implants.
Yildirimer, L; Seifalian, A M; Butler, P E
2013-05-01
The recent events surrounding Poly Implant Prosthèse (PIP) breast implants have renewed the debate about the safety profile of silicone implants. The intentional use of industrial-grade instead of certified medical-grade silicone is thought to be responsible for reportedly higher frequencies of implant rupture in vivo. The differences in mechanical and viscoelastic properties between PIP and medical-grade silicone implant shells were investigated. Surface characterization of shells and gels was carried out to determine structural changes occurring after implantation. Breast implants were obtained from women at the Royal Free Hospital (London, UK). PIP implants were compared with medical-grade control silicone implants. Tensile strength, tear resistance and elongation at break were assessed using a tensile tester. Surfaces were analysed using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Spearman correlation analyses and Kruskal-Wallis one-way statistical tests were performed for mechanical data. There were 18 PIP and four medical-grade silicone implants. PIP silicone shells had significantly weaker mechanical strength than control shells (P < 0·009). There were negative correlations between mechanical properties of PIP shells and implantation times, indicative of deterioration of PIP shells over time in vivo (r(s) = -0·75, P = 0·009 for tensile strength; r(s) = -0·76, P = 0·001 for maximal strain). Comparison of ATR-FTIR spectra of PIP and control silicones demonstrated changes in material characteristics during the period of implantation suggestive of time-dependent bond breakage and degradation of the material. This study demonstrated an increased weakness of PIP shells with time and therefore supports the argument for prophylactic removal of PIP breast implants. © 2013 British Journal of Surgery Society Ltd. Published by John Wiley & Sons Ltd.
One-step surface modification of poly(dimethylsiloxane) by undecylenic acid
NASA Astrophysics Data System (ADS)
Zhou, Jinwen; McInnes, Steven J. P.; Md Jani, Abdul Mutalib; Ellis, Amanda V.; Voelcker, Nicolas H.
2008-12-01
Poly(dimethylsiloxane) (PDMS) is a popular material for microfluidic devices due to its relatively low cost, ease of fabrication, oxygen permeability and optical transmission characteristics. However, its highly hydrophobic surface is still the main factor limiting its wide application, in particular as a material for biointerfaces. A simple and rapid method to form a relatively stable hydrophilised PDMS surface is reported in this paper. The PDMS surface was treated with pure undecylenic acid (UDA) for 10 min, 1 h and 1 day at 80 °C in a sealed container. The effects of the surface modification were investigated using water contact angle (WCA) measurements, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), and streaming zeta-potential analysis. The water contact angle of 1 day UDAmodified PDMS was found to decrease from that of native PDMS (110 °) to 75 °, demonstrating an increase in wettability of the surface. A distinctive peak at 1715 cm-1 in the FTIR-ATR spectra after UDA treatment was representative of carboxylation of the PDMS surface. The measured zeta-potential (ζ) at pH 4 changed from -27 mV for pure PDMS to -19 mV after UDA treatment. In order to confirm carboxylation of the surface visually, Lucifer Yellow CH fluorescence dye was reacted via a condensation reaction to the 1 day UDA modified PDMS surface. Fluorescent microscopy showed Lucifer Yellow CH fluorescence on the carboxylated surface, but not on the pure PDMS surface. Stability experiments were also performed showing that 1 day modified UDA samples were stable in both MilliQ water at 50 °C for 17 h, and in a desiccator at room temperature for 19.5 h.
Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong
2018-01-01
Background Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. Methods With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)–DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP–DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. Results SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. Conclusion A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings. PMID:29713169
Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong
2018-01-01
Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.
Hong, Zhi-Neng; Jiang, Jun; Li, Jiu-Yu; Xu, Ren-Kou
2018-05-01
Adhesion of bacteria onto minerals is a ubiquitous process that plays a central role in many biogeochemical, microbiology and environmental processes in soil and sediment. Although bacterial adhesion onto soil minerals such as phyllosilicates and Fe-oxides have been investigated extensively, little is known about the mechanisms for bacterial attachment onto Al-oxides. Here, we explored the adhesion of Bacillus subtilis onto gibbsite (γ-AlOOH) under various ionic strengths (1, 10, 50, and 100 mM NaCl) and pHs (pH 4, 7, and 9) by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The time evolution of the peak intensities of the attached bacteria suggested that the adhesion underwent an initial rapid reaction followed by a slow pseudo-first-order kinetic stage. Spectral comparison between the attached and free cells, together with the interaction energy calculated with the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory and the micro-morphology of bacteria-gibbsite complexes, indicated that both electrostatic and chemical (bacterial groups such as phosphate and carboxyl covalently bind to gibbsite) interactions participated in the adhesion processes. Both solution ionic strength (IS) and pH impacted the spectra of attached bacteria, but the peak intensity of different bands changed differently with these two factors, showing a preferential adhesion of surface groups (phosphate, carboxyl, and amide groups) on gibbsite at different conditions. The diverse responses to IS and pH alteration of the forces (chemical bonds, electrostatic attractions, and the hydrophobic interactions) that essentially govern the adhesion might be responsible for the preferential adhesion. These results may help to better understand how bacteria adhere onto soil oxides at molecular scales. Copyright © 2018 Elsevier B.V. All rights reserved.
Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka
2014-12-30
Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.
NASA Astrophysics Data System (ADS)
Manap, Siti Munirah; Ahmad, Azizan; Anuar, Farah Hannan
2016-11-01
A polyurethane films consisting of PLLA, PPG and PLLA-PPG were prepared using solution casting method. Three types of polyurethane were prepared: PPLA:PMDI, PPG:PMDI and PLLA-PPG:PMDI in the presence of polymeric diphenylmethane diisocyanate (PMDI) as the coupling agent and catalyst, Sn(Oct)2. The aim of this research was to improve the physicals properties of PLLA and PPG homopolymers through copolymerization between the two polymers. The homopolymers and polyurethane films were characterized using ATR-FTIR spectroscopy. Chemical reaction between PLLA, PPG and PMDI before and after the reaction were confirmed by observing the shifting of wavenumber for the carbonyl and ether group. Other than that, the additional band for N-H after the reaction indicated that the reaction was successful.
Cornet, I; Wittner, N; Tofani, G; Tavernier, S
2018-02-01
Since the determination of the fermentation kinetics is one of the main challenges in solid state fermentation, the quantitative measurement of biomass growth during microbial pretreatment by FTIR spectroscopy in Attenuated Total Reflectance mode was evaluated. Peaks at wave numbers of 1651 cm -1 and 1593 cm -1 showed to be affected during pretreatment of poplar wood particles by Phanerochaete chrysosporium MUCL 19343. Samples with different microbial biomass fractions were obtained from two different experiments, i.e., shake flask and fixed-bed reactor experiments. The glucosamine concentration was compared to the normalized absorbance ratio of the 1651 cm -1 to 1593 cm -1 peak, measured by FTIR-ATR, and resulted in a linear relationship. The application of a normalized absorbance ratio in function of time provided a graph that was similar to the microbial growth curve. Application of FTIR in ATR mode to follow-up kinetics during solid state fermentation seems to be a fast and easy alternative to laborious measurement techniques, such as glucosamine determination. Copyright © 2018 Elsevier B.V. All rights reserved.
[A study of Boletus bicolor from different areas using Fourier transform infrared spectrometry].
Zhou, Zai-Jin; Liu, Gang; Ren, Xian-Pei
2010-04-01
It is hard to differentiate the same species of wild growing mushrooms from different areas by macromorphological features. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis was used to identify 58 samples of boletus bicolor from five different areas. Based on the fingerprint infrared spectrum of boletus bicolor samples, principal component analysis was conducted on 58 boletus bicolor spectra in the range of 1 350-750 cm(-1) using the statistical software SPSS 13.0. According to the result, the accumulated contributing ratio of the first three principal components accounts for 88.87%. They included almost all the information of samples. The two-dimensional projection plot using first and second principal component is a satisfactory clustering effect for the classification and discrimination of boletus bicolor. All boletus bicolor samples were divided into five groups with a classification accuracy of 98.3%. The study demonstrated that wild growing boletus bicolor at species level from different areas can be identified by FTIR spectra combined with principal components analysis.
Effect of DMMP on the pyrolysis products of polyurethane foam materials in the gaseous phase
NASA Astrophysics Data System (ADS)
Liu, W.; Li, F.; Ge, X. G.; Zhang, Z. J.; He, J.; Gao, N.
2016-07-01
Dimethyl methylphosphonate (DMMP) has been used as a flame retardant containing phosphorus to decrease the flammability of the polyurethane foam material (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results show that LOI values of all PUF/DMMP samples are higher than that of the neat PUF sample and the LOI value of the samples increases with both DMMP concentration and the %P value. Thermal analysis indicates that flame retardant PUF shows a dominant condensed flame retardant activity during combustion. Thermogravimetric analysis-infrared spectrometry (TG-FTIR) has been used to study the influence of DMMP on the pyrolysis products in the gaseous phase during the thermal degradation of the PUF sample. Fourier transform infrared spectrometry (FTIR) spectra of the PUF sample at the maximum evolution rates and the generated trends of water and the products containing -NCO have been examined to obtain more information about the pyrolysis product evolutions of the samples at high temperature. These results reveal that although DMMP could improve the thermal stability of PUF samples through the formation of the residual char layer between fire and the decomposed materials, the influence of DMMP on the gaseous phase can be also observed during the thermal degradation process of materials.
NASA Astrophysics Data System (ADS)
Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.
2016-05-01
The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan
2015-09-25
Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increasemore » with the ionic liquid ratio.« less
Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes
2018-02-01
Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.
Gordon, Sherald H; Harry-O'kuru, Rogers E; Mohamed, Abdellatif A
2017-11-01
Infrared analysis of proteins and polysaccharides by the well known KBr disk technique is notoriously frustrated and defeated by absorbed water interference in the important amide and hydroxyl regions of spectra. This interference has too often been overlooked or ignored even when the resulting distortion is critical or even fatal, as in quantitative analyses of protein secondary structure, because the water has been impossible to measure or eliminate. Therefore, a new chemometric method was devised that corrects spectra of materials in KBr disks by mathematically eliminating the water interference. A new concept termed the Beer-Lambert law absorbance ratio (R-matrix) model was augmented with water concentration ratios computed via an exponential decay kinetic model of the water absorption process in KBr, which rendered the otherwise indeterminate system of linear equations determinate and thus possible to solve in a formal analytic manner. Consequently, the heretofore baffling KBr water elimination problem is now solved once and for all. Using the new formal solution, efforts to eliminate water interference from KBr disks in research will be defeated no longer. Resulting spectra of protein were much more accurate than attenuated total reflection (ATR) spectra corrected using the well-accepted Advanced ATR Correction Algorithm. Published by Elsevier B.V.
Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.
Król, A; Pomastowski, P; Rafińska, K; Railean-Plugaru, V; Walczak, J; Buszewski, B
2018-01-01
The aim of the study was to neutralize zearalenone by lactic acid bacteria (LAB) such as Lactococcus lactis and Bifidobacterium sp. and investigate the mechanism of zearalenone (ZEA) binding. Neutralization of ZEA by LAB was confirmed by identification of binding kinetics and spectroscopic studies such as Fourier transform infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The obtained results showed that the kinetic process of zearalenone binding to L. lactis is not homogeneous but is expressed with an initial rapid stage with about 90% of ZEA biosorption and with a much slower second step. In case of Bifidobacterium sp., the neutralization process is homogeneous; the main stage can be described with about 88% of ZEA biosorption. MALDI-TOF-MS measurements and FTIR analysis confirmed the uptake of zearalenone molecules by bacterial species. Moreover, the assessment of dead and live lactic acid bacteria cells after zearalenone treatment was performed using fluorescence microscopy. Graphical abstract Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. was confirmed by identification of binding kinetics and spectroscopic studies such as FT-IR spectroscopy and MALDI-TOF-MS spectrometry. The mechanism of ZEA binding was also investigated.
Beauvais, Muriel; Serreau, Laurence; Heitz, Caroline; Barthel, Etienne
2009-03-01
The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.
Effect of CO2 laser micromachining on physicochemical properties of poly(L-lactide)
NASA Astrophysics Data System (ADS)
Antończak, Arkadiusz J.; Stepak, Bogusz; Szustakiewicz, Konrad; Wójcik, Michał; Kozioł, Paweł E.; Łazarek, Łukasz; Abramski, Krzysztof M.
2014-08-01
In this paper, we present some examples of micromachining of poly(L-lactide) with a CO2 laser and an analysis of changes in material properties in the heat affected HAZ induced by the fluence well above the ablation threshold. The complexity of the processes of decomposition implies the need for simultaneous use of many selective analytical techniques which complement each other to give a full image of the changes. Introduced changes were characterized using Differential Scanning Calorimetry (DSC), Gel Permeation Chromatography (GPC), X-ray Photoelectron Spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR). It turns out that CO2 laser processing of poly(L-lactide) mainly induces surface changes. However, oxidation of the surface was not observed. We recorded a bimodal distribution and some reduction in the molecular weight. Infrared spectroscopy in turn revealed the existence of absorption bands, characteristic for the vinyl groups (RCH=CH2). The appearance of these bands indicates that the decomposition of the polymer occurred, among others, by means of the cis-elimination reaction.
Nunes, Karen M; Andrade, Marcus Vinícius O; Santos Filho, Antônio M P; Lasmar, Marcelo C; Sena, Marcelo M
2016-08-15
Concerns about meat authenticity are increasing recently, due to great fraud scandals. This paper analysed real samples (43 adulterated and 12 controls) originated from criminal networks dismantled by the Brazilian Police. This fraud consisted of injecting solutions of non-meat ingredients (NaCl, phosphates, carrageenan, maltodextrin) in bovine meat, aiming to increase its water holding capacity. Five physico-chemical variables were determined, protein, ash, chloride, sodium, phosphate. Additionally, infrared spectra were recorded. Supervised classification PLS-DA models were built with each data set individually, but the best model was obtained with data fusion, correctly detecting 91% of the adulterated samples. From this model, a variable selection based on the highest VIPscores was performed and a new data fusion model was built with only one chemical variable, providing slightly lower predictions, but a good cost/performance ratio. Finally, some of the selected infrared bands were specifically associated to the presence of adulterants NaCl, tripolyphosphate and carrageenan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of Atmospheric Organic Nitrates in Particles
NASA Astrophysics Data System (ADS)
Bruns, E. A.; Alexander, M. L.; Perraud, V.; Yu, Y.; Ezell, M.; Johnson, S. N.; Zellenyuk, A.; Imre, D.; Finlayson-Pitts, B. J.
2008-12-01
Aerosols in the atmosphere significantly affect climate, human health and visibility. Knowledge of aerosol composition is necessary to understand and then predict the specific impacts of aerosols in the atmosphere. It is known that organic nitrates are present in particles, but there is limited knowledge of the individual compounds and quantity. This is in part due to the lack of a wide variety of proven analytical techniques for particulate organic nitrates. In this study, several known organic nitrates, as well as those present in complex mixtures formed from oxidation of "Ñ-pinene, were studied using a variety of techniques. These include Fourier Transform infrared spectroscopy (FTIR) of samples collected by impaction on ZnSe discs. Samples were also collected on quartz fiber filters and the extracts analyzed by electrospray mass spectrometry (ESI- MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), HPLC-UV, LC-MS and GC-MS. In addition, real-time analysis was provided by SPLAT-II and aerosol mass spectrometry (AMS). FTIR analysis of particles collected on ZnSe discs provides information on the ratio of organic nitrate to total organic content, while the analysis of filter extracts allows identification of specific organic nitrates. These are compared to the particle mass spectrometry data and the implications for detecting and measuring particulate organic nitrate in air is discussed.
Zhou, Xin-li; Li, Yan; Liu, Zu-liang; Zhu, Chang-jiang; Wang, Jun-de; Lu, Chun-xu
2002-10-01
In this paper, combustion characterization of pyrotechnic composition is investigated using a remote sensing Fourier transform infrared spectrometry. The emission spectra have been recorded between 4,700 and 740 cm-1 with a spectral resolution of 4 cm-1. The combustion temperature can be determined remotely from spectral line intensity distribution of the fine structure of the emission fundamental band of gaseous products such as HF. The relationship between combustion temperature and combustion time has been given. Results show that there is a violent mutative temperature field with bigger temperature gradient near combustion surface. It reveals that the method of temperature measurement using remote sensing FTIR for flame temperature of unstable, violent and short time combustion on real time is a rapid, accurate and sensitive technique without interference the flame temperature field. Potential prospects of temperature measurement, gas product concentration measurement and combustion mechanism are also revealed.
Kuligowski, J; Quintás, G; Garrigues, S; de la Guardia, M
2010-03-15
A new background correction method for the on-line coupling of gradient liquid chromatography and Fourier transform infrared spectrometry has been developed. It is based on the use of a point-to-point matching algorithm that compares the absorption spectra of the sample data set with those of a previously recorded reference data set in order to select an appropriate reference spectrum. The spectral range used for the point-to-point comparison is selected with minimal user-interaction, thus facilitating considerably the application of the whole method. The background correction method has been successfully tested on a chromatographic separation of four nitrophenols running acetonitrile (0.08%, v/v TFA):water (0.08%, v/v TFA) gradients with compositions ranging from 35 to 85% (v/v) acetonitrile, giving accurate results for both, baseline resolved and overlapped peaks. Copyright (c) 2009 Elsevier B.V. All rights reserved.
A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting
LUTHRIA, DEVANAND L.; MUKHOPADHYAY, SUDARSAN; LIN, LONG-ZE; HARNLY, JAMES M.
2013-01-01
Spectral fingerprinting, as a method of discriminating between plant cultivars and growing treatments for a common set of broccoli samples, was compared for six analytical instruments. Spectra were acquired for finely powdered solid samples using Fourier transform infrared (FT-IR) and Fourier transform near-infrared (NIR) spectrometry. Spectra were also acquired for unfractionated aqueous methanol extracts of the powders using molecular absorption in the ultraviolet (UV) and visible (VIS) regions and mass spectrometry with negative (MS−) and positive (MS+) ionization. The spectra were analyzed using nested one-way analysis of variance (ANOVA) and principal component analysis (PCA) to statistically evaluate the quality of discrimination. All six methods showed statistically significant differences between the cultivars and treatments. The significance of the statistical tests was improved by the judicious selection of spectral regions (IR and NIR), masses (MS+ and MS−), and derivatives (IR, NIR, UV, and VIS). PMID:21352644
NASA Astrophysics Data System (ADS)
Gorlova, Olga; Wolke, Conrad T.; Fournier, Joseph; Colvin, Sean; Johnson, Mark; Miller, Scott
2015-06-01
Comprehensive FTIR, MS/MS and NMR of pharmaceuticals are generally readily available but characterization of their metabolites has been an obstacle. Atorvastatin is a statin drug responsible for the maintenance of cholesterol in the body. Diovan is an angiostensin receptor antagonist used to treat high blood pressure and congestive heart failure. The field of metabolomics, however, is struggling to obtain the identity of their structures. We implement mass spectrometry with cryogenic ion spectroscopy to study gaseous ions of the desired metabolites which, in combination, not only identify the mass of the metabolite but also elucidate their structures through isotope-specific infrared spectroscopy.
FTIR-ATR evaluation of topical skin protectants useful for sulfur mustard and related compounds
NASA Astrophysics Data System (ADS)
Braue, Ernest H., Jr.; Litchfield, Marty R.; Bangledorf, Catherine R.; Rieder, Robert G.
1992-03-01
The US Army has a need to develop topical protectants that can decrease the effects of cutaneous exposure to chemical warfare (CW) agents. Such materials would enhance a soldier's ability to carry out the mission in a chemically hostile environment, would lessen the burden on medical personnel, and may allow the casualties to return to duty in a shorter period of time than might otherwise be possible. In a preliminary report (E. H. Braue, Jr. and M. G. Pannella, Applied Spectrosc., 44, 1061 (1990)), we described a unique analytical method using FT-IR spectroscopy and the horizontal attenuated total reflectance (ATR) accessory for evaluating the effectiveness of topical skin protectants (TSPs) against penetration by chemical agents. We now describe the application of this method to the chemical warfare agent sulfur mustard (HD).
Castro, Felipe D; Sedman, Jacqueline; Ismail, Ashraf A; Asadishad, Bahareh; Tufenkji, Nathalie
2010-06-01
The effects of dissolved oxygen tension during bacterial growth and acclimation on the cell surface properties and biochemical composition of the bacterial pathogens Escherichia coli O157:H7 and Yersinia enterocolitica are characterized. Three experimental techniques are used in an effort to understand the influence of bacterial growth and acclimation conditions on cell surface charge and the composition of the bacterial cell: (i) electrophoretic mobility measurements; (ii) potentiometric titration; and (iii) ATR-FTIR spectroscopy. Potentiometric titration data analyzed using chemical speciation software are related to measured electrophoretic mobilities at the pH of interest. Titration of bacterial cells is used to identify the major proton-active functional groups and the overall concentration of these cell surface ligands at the cell membrane. Analysis of titration data shows notable differences between strains and conditions, confirming the appropriateness of this tool for an overall charge characterization. ATR-FTIR spectroscopy of whole cells is used to further characterize the bacterial biochemical composition and macromolecular structures that might be involved in the development of the net surficial charge of the organisms examined. The evaluation of the integrated intensities of HPO(2)(-) and carbohydrate absorption bands in the IR spectra reveals clear differences between growth protocols. Taken together, the three techniques seem to indicate that the dissolved oxygen tension during cell growth or acclimation can noticeably influence the expression of cell surface molecules and the measurable cell surface charge, though in a strain-dependent fashion.
Kumar, Vijay; Kumar, Virender; Upadhyay, Niraj; Sharma, Sitansh
2015-10-01
Transition metal ions have their own significances and utility. Externally applied pesticides may alter the bioavailability of these metal ions to plants through the coordinating ability of these pesticides with metal ions. In current study a series of metal complexes containing atrazine (Atr) group(s) attached to metal(II) (M) frame, with the formula; [M(Atr) n .xH 2 O.yCl] (where M = Mn, Fe, Co, Ni, Cu or Zn; n = 1 or 2; x = 1-4; y = 1-2), have been synthesized for the first time to check the interactions of atrazine with transition metal ions. More importantly, all the complexes were synthesized at neutral pH in aqueous medium. The major differences among the FTIR spectra were observed between 3,700-2,800 and 1,800-1,350 cm -1 . On the basis of FTIR, CHN and computational study, it was observed that Mn, Ni and Cu formed complexes in 1:2 and Fe, Co and Zn in 1:1. The obtained results were supported by 3D molecular modeling using GAMESS computations as a package of ChemBio3D Ultra14 program. The FTIR spectral analysis and 3D molecular modeling suggests that the Atr can show coordination through the nitrogen (in between two side chains) of ring as well as nitrogen (non steric amine) of side chain with different metal ions.
Riyajan, Sa-Ad; Sukhlaaied, Wattana
2013-04-01
The epoxidized natural rubber (ENR) latex-g-chitosan (ENR-g-chitosan) was prepared in latex form using potassium persulphate as an initiator. Firstly, the reduction in molecular weight of chitosan was subjected to the addition of K2S2O8 at 70 °C for 15 min. The structure of the modified chitosan was characterized by ATR-FTIR. Secondarily, the influence of chitosan contents, reaction time, and temperature and K2S2O8 concentrations on the gel content of the modified ENR was investigated. The chemical structure of the ENR-g-chitosan was confirmed by (1)H-NMR and ATR-FTIR. The ether linkage of the ENR-g-chitosan was conformed at 1154 an 1089 cm(-1) by ATR-FTIR and 3.60 ppm by (1)H-NMR. The gel content of ENR-g-chitosan at 5% chitosan showed the highest value compared with other samples. But when chitosan increased from 5% to 10% or 20%, the gel content of ENR-g-chitosan dramatically decreased. The ENR-g-chitosan showed good thermal resistance due to incorporation of chitosan. The morphology of ENR-g-chitosan particle showed the core-shell structure observed by TEM. The optimum condition of grafting ENR with chitosan was found at 65°C for 3h of reaction time, ratio of ENR/chitosan at 9:1. Copyright © 2012 Elsevier B.V. All rights reserved.
Artifact Correction in Temperature-Dependent Attenuated Total Reflection Infrared (ATR-IR) Spectra.
Sobieski, Brian; Chase, Bruce; Noda, Isao; Rabolt, John
2017-08-01
A spectral processing method was developed and tested for analyzing temperature-dependent attenuated total reflection infrared (ATR-IR) spectra of aliphatic polyesters. Spectra of a bio-based, biodegradable polymer, 3.9 mol% 3HHx poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), were analyzed and corrected prior to analysis using two-dimensional correlation spectroscopy (2D-COS). Removal of the temperature variation of diamond absorbance, correction of the baseline, ATR correction, and appropriate normalization were key to generating more reliable data. Both the processing steps and order were important. A comparison to differential scanning calorimetry (DSC) analysis indicated that the normalization method should be chosen with caution to avoid unintentional trends and distortions of the crystalline sensitive bands.
Changes on enological parameters of white wine packaged in bag-in-box during secondary shelf life.
Fu, Y; Lim, L-T; McNicholas, P D
2009-10-01
This study investigated the effects of temperature (22, 35, and 45 degrees C), storage time (48, 30, and 15 d), and packaging type on the quality of white wine in bag-in-box (BIB) during the secondary shelf life. Several enological parameters (color and contents of free and total SO2, total aldehyde, and total phenol) were monitored and correlated with oxygen transmission rate (OTR) and Fourier transform infrared (FTIR) spectral data. Time and temperature had significant effects on color development and SO2 depletion during storage. The increased absorbance at 420 nm was correlated with decreases of free SO2 and total SO2. Overall, total phenol content correlated negatively with total aldehyde content. The variance of the enological parameters can be correlated with the OTR data, indicating the barrier properties for the tested packages were different. FTIR-ATR spectra of the wine were analyzed chemometrically using PLS algorithm. The resulting models were able to predict the A(420), free SO2, total SO2, total phenol, total aldehyde, and storage time of the wines. This technique can potentially be used as an efficient tool to evaluate the quality of wine.
NASA Astrophysics Data System (ADS)
Akram, Faridah; Chan, Chin Han; Natarajan, Valliyappan David
2015-08-01
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate [P(3HB-co-3HHx)] produced by C. necator PHB-4 harboring phaCcs from crude palm kernel oil with 21 mol% of 3-hydroxyhexanoate and epoxidized natural rubber with 25 mol% of epoxy content (ENR-25) were used to study the miscibility of the blends by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and differential scanning calorimetry (DSC). The polymers used were purified and the blends were prepared by solution casting method. Nuclear magnetic resonance (NMR) spectra confirm the purity and molecular structures of P(3HB-co-3HHx) and ENR-25. FTIR spectra for different compositions of P(3HB-co-3HHx) and ENR-25 blends show absorbance change of the absorbance bands but with no significant shifting of the absorbance bands as the P(3HB-co-3HHx) content decreases, which shows that there is no intermolecular interaction between the parent polymer blends. On top of that, there are two Tgs present for the blends and both remain constant for different compositions which corresponds to the Tgs of the parent polymers. This indicates that the blends are immiscible.
NASA Astrophysics Data System (ADS)
Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei
2017-07-01
The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.
Taghizadeh, Mohammad Taghi; Vatanparast, Morteza
2016-12-01
Zirconium dioxide (ZrO2) nanoparticles were fabricated successfully via ultrasonic-assisted method using ZrO(NO3)2·H2O, ethylenediamine and hydrazine as precursors in aqueous solution. Morphology, structure and composition of the obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS). Then, the synthesized nanoparticles were used to prepare Nafion/ZrO2 nanocomposite membranes. The properties of the membranes were studied by ion exchange capacity (IEC) proton conductivity (σ), thermal stability and water uptake measurements. The ex-situ Fenton's test was used to investigate the chemical stability of the membranes. From our results, compared with Nafion membrane, the nanocomposite membrane exhibited lower fluoride release and weight loss. Therefore, it can concluded that Nafion/ZrO2 nanocomposite exhibit more chemical stability than the pure Nafion membrane. ATR-FTIR spectra and SEM surface images of membranes also confirm these results. Copyright © 2016 Elsevier Inc. All rights reserved.
Schmidt, Michael P; Martínez, Carmen Enid
2016-08-09
Protein adsorption onto clay minerals is a process with wide-ranging impacts on the environmental cycling of nutrients and contaminants. This process is influenced by kinetic and conformational factors that are often challenging to probe in situ. This study represents an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic investigation of the adsorption of a model protein (bovine serum albumin (BSA)) onto a clay mineral (montmorillonite) at four concentrations (1.50, 3.75, 7.50, and 15.0 μM) under environmentally relevant conditions. At all concentrations probed, FTIR spectra show that BSA readily adsorbs onto montmorillonite. Adsorption kinetics follow an Elovich model, suggesting that primary limitations on adsorption rates are surface-related heterogeneous energetic restrictions associated with protein rearrangement and lateral protein-protein interaction. BSA adsorption onto montmorillonite fits the Langmuir model, yielding K = 5.97 × 10(5) M(-1). Deconvolution and curve fitting of the amide I band at the end of the adsorption process (∼120 min) shows a large extent of BSA unfolding upon adsorption at 1.50 μM, with extended chains and turns increasing at the expense of α-helices. At higher concentrations/surface coverages, BSA unfolding is less pronounced and a more compact structure is assumed. Two-dimensional correlation spectroscopic (2D-COS) analysis reveals three different pathways corresponding to adsorbed conformations. At 1.50 μM, adsorption increases extended chains, followed by a loss in α-helices and a subsequent increase in turns. At 3.75 μM, extended chains decrease and then aggregated strands increase and side chains decrease, followed by a decrease in turns. With 7.50 and 15.0 μM BSA, the loss of side-chain vibrations is followed by an increase in aggregated strands and a subsequent decrease in turns and extended chains. Overall, the BSA concentration and resultant surface coverage have a profound impact on the dynamics of BSA adsorption onto montmorillonite. These results enhance our understanding of the molecular-level protein dynamics and stabilization of organic matter at mineral surfaces.
Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H
2014-08-08
For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.
Chan, K L Andrew; Kazarian, Sergei G
2008-10-01
Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.
Elsohaby, Ibrahim; Hou, Siyuan; McClure, J Trenton; Riley, Christopher B; Shaw, R Anthony; Keefe, Gregory P
2015-08-20
Following the recent development of a new approach to quantitative analysis of IgG concentrations in bovine serum using transmission infrared spectroscopy, the potential to measure IgG levels using technology and a device better designed for field use was investigated. A method using attenuated total reflectance infrared (ATR) spectroscopy in combination with partial least squares (PLS) regression was developed to measure bovine serum IgG concentrations. ATR spectroscopy has a distinct ease-of-use advantage that may open the door to routine point-of-care testing. Serum samples were collected from calves and adult cows, tested by a reference RID method, and ATR spectra acquired. The spectra were linked to the RID-IgG concentrations and then randomly split into two sets: calibration and prediction. The calibration set was used to build a calibration model, while the prediction set was used to assess the predictive performance and accuracy of the final model. The procedure was repeated for various spectral data preprocessing approaches. For the prediction set, the Pearson's and concordance correlation coefficients between the IgG measured by RID and predicted by ATR spectroscopy were both 0.93. The Bland Altman plot revealed no obvious systematic bias between the two methods. ATR spectroscopy showed a sensitivity for detection of failure of transfer of passive immunity (FTPI) of 88 %, specificity of 100 % and accuracy of 94 % (with IgG <1000 mg/dL as the FTPI cut-off value). ATR spectroscopy in combination with multivariate data analysis shows potential as an alternative approach for rapid quantification of IgG concentrations in bovine serum and the diagnosis of FTPI in calves.
Ross, Matthew K; Jones, Toni L; Filipov, Nikolay M
2009-04-01
2-Chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine, ATR) is a toxicologically important and widely used herbicide. Recent studies have shown that it can elicit neurological, immunological, developmental, and biochemical alterations in several model organisms, including in mice. Because disposition data in mice are lacking, we evaluated ATR's metabolism and tissue dosimetry after single oral exposures (5-250 mg/kg) in C57BL/6 mice using liquid chromatography/mass spectrometry (Ross and Filipov, 2006). ATR was metabolized and cleared rapidly; didealkyl ATR (DACT) was the major metabolite detected in urine, plasma, and tissues. Plasma ATR peaked at 1 h postdosing and rapidly declined, whereas DACT peaked at 2 h and slowly declined. Most ATR and metabolite residues were excreted within the first 24 h. However, substantial amounts of DACT were still present in 25- to 48-h and 49- to 72-h urine. ATR reached maximal brain levels (0.06-1.5 microM) at 4 h (5-125 mg/kg) and 1 h (250 mg/kg) after dosing, but levels quickly declined to <0.1 microM by 12 h in all the groups. In contrast, strikingly high concentrations of DACT (1.5-50 microM), which are comparable with liver DACT levels, were detectable in brain at 2 h. Brain DACT levels slowly declined, paralleling the kinetics of plasma DACT. Our findings suggest that in mice ATR is widely distributed and extensively metabolized and that DACT is a major metabolite detected in the brain at high levels and is ultimately excreted in urine. Our study provides a starting point for the establishment of models that link target tissue dose to biological effects caused by ATR and its in vivo metabolites.
Zhang, Yu; Ng, I-Son; Yao, Chuanyi; Lu, Yinghua
2014-09-01
Lactobacillus rhamnosus is a well-known lactic acid bacterium (LAB), but a new ZY strain was isolated for the first time from commercial probiotic powder recently. Although many studies have focused on developing cost-effective media for the production of LAB, the de Man, Rogosa and Sharpe (MRS) medium is still the most common medium for bioprocesses. The aim of the current study is to decipher the composition of MRS based on a statistical approach, which will allow a higher biomass of Lactobacillus to be obtained. In Taguchi's approach, an L27 orthogonal array was adopted to evaluate the significance of 10 ingredients in MRS, in which the effects of the components were ranked according to their effect on biomass at OD600 as dextrose > MnSO4·H2O > beef extract > CH3COONa > MgSO4 > yeast extract > proteose peptone > K2HPO4 > ammonium citrate > Tween 80. Although the individual trace elements of ammonium citrate, K2HPO4, CH3COONa and MgSO4 in MRS had an insignificant influence on the biomass after statistical analysis, the total elimination of trace elements would predominantly affect the cell growth of Lactobacillus. Further characterization of the cell properties through attenuated total reflectance of Fourier transform infrared (ATR-FTIR) spectroscopy and protein identification via SDS-PAGE coupled with tandem mass spectrometry implied that dextrose as major carbon source in MRS played the most crucial role for L. rhamnosus production. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Chen, Huang-Han; Hsiao, Yu-Chieh; Li, Jie-Ren; Chen, Shu-Hui
2015-03-20
Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp5, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif-sensitive enzyme activity assay. Copyright © 2015 Elsevier B.V. All rights reserved.
Rtimi, S; Pulgarin, C; Bensimon, M; Kiwi, J
2016-08-01
Binary oxide semiconductors TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 (TiO2-ZrO2-Cu) uniform films were sputtered on polyester (PES). These films were irradiated under low intensity solar simulated light and led to bacterial inactivation in aerobic and anaerobic media as evaluated by CFU-plate counting. But bacterial mineralization was only induced by TiO2-ZrO2-Cu in aerobic media. The highly oxidative radicals generated on the films surface under light were identified by the use of appropriate scavengers. The hole generated on the TiO2-ZrO2 films is shown to be the main specie leading to bacterial inactivation. TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 films release Zr and Ti <1ppb and Cu 4.6ppb/cm(2) as determined by inductively coupled plasma mass spectrometry (ICP-MS) This level is far below the citotoxicity permitted level allowed for mammalian cells suggesting that bacterial disinfection proceeds through an oligodynamic effect. By Fourier transform attenuated infrared spectroscopy (ATR-FTIR) the systematic shift of the predominating νs(CH2) vibrational-rotational peak making up most of the bacterial cell-wall content in C was monitored. Based on this evidence a mechanism suggested leading to CH bond stretching followed by cell lysis and cell death. Bacterial inactivation cycling was observed on TiO2-ZrO2-Cu showing the stability of these films leading to bacterial inactivation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Salman, Ahmad; Lapidot, Itshak; Pomerantz, Ami; Tsror, Leah; Shufan, Elad; Moreh, Raymond; Mordechai, Shaul; Huleihel, Mahmoud
2012-01-01
The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bactericides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi genera were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sampling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear discriminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed significant spectral differences between the various fungi genera examined. The use of k-means enabled classification between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained using PCA (9 PCs) and LDA for the lower wavenumber region (800-1775 cm-1), with identification success rates of 87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively.
Characteristic Study of Some Different Kinds of Coal Particles Combustion with Online TG-MS-FTIR
NASA Astrophysics Data System (ADS)
Pan, Guanfu
2018-01-01
Four kinds of pulverized coal samples from China and Indonesia were studied by thermogravimetry coupled with mass spectrometry and fourier transform infrared spectroscopy (TG-MS-FTIR). The thermal behaviors and gaseous emissions of these coals were analyzed in this work. The results indicate that the relative lower values of H/C ratios, which normally represent the degree of aromatization and ring condensation in coal samples, could lead to the relative more intense thermal reaction. The time-evolved profiles of some typical gas products (i.e., CO, SO2, CH4, NO, NO2, NH3 and etc.) were provided by TG-MS-FTIR, and their variations are different. For all the samples, the releases of SO2 and COS can be found at lower temperature than those of NO and CO. As the temperature increases, the possible conversion of NO2 and NH3 to NO is deduced in this work.
Muhamadali, Howbeer; Weaver, Danielle; Subaihi, Abdu; AlMasoud, Najla; Trivedi, Drupad K; Ellis, David I; Linton, Dennis; Goodacre, Royston
2016-01-07
Campylobacter species are one of the main causes of food poisoning worldwide. Despite the availability of established culturing and molecular techniques, due to the fastidious nature of these microorganisms, simultaneous detection and species differentiation still remains challenging. This study focused on the differentiation of eleven Campylobacter strains from six species, using Fourier transform infrared (FT-IR) and Raman spectroscopies, together with matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS), as physicochemical approaches for generating biochemical fingerprints. Cluster analysis of data from each of the three analytical approaches provided clear differentiation of each Campylobacter species, which was generally in agreement with a phylogenetic tree based on 16S rRNA gene sequences. Notably, although C. fetus subspecies fetus and venerealis are phylogenetically very closely related, using FT-IR and MALDI-TOF-MS data these subspecies were readily differentiated based on differences in the lipid (2920 and 2851 cm(-1)) and fingerprint regions (1500-500 cm(-1)) of the FT-IR spectra, and the 500-2000 m/z region of the MALDI-TOF-MS data. A finding that was further investigated with targeted lipidomics using liquid chromatography-mass spectrometry (LC-MS). Our results demonstrate that such metabolomics approaches combined with molecular biology techniques may provide critical information and knowledge related to the risk factors, virulence, and understanding of the distribution and transmission routes associated with different strains of foodborne Campylobacter spp.
Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments
Pejcic, Bobby; Myers, Matthew; Ross, Andrew
2009-01-01
The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR) sensor based on attenuated total reflectance (ATR) is a promising analytical tool that has been used to detect a variety of hydrocarbon compounds (i.e., aromatics, alkyl halides, phenols, etc.) dissolved in water. It has been shown that under certain conditions the MIR-ATR sensor is capable of achieving detection limits in the 10–100 ppb concentration range. Since the infrared spectral features of every single organic molecule are unique, the sensor is highly selective, making it possible to distinguish between many different analytes simultaneously. This review paper discusses some of the parameters (i.e., membrane type, film thickness, conditioning) that dictate MIR-ATR sensor response. The performance of various chemoselective membranes which are used in the fabrication of the sensor will be evaluated. Some of the challenges associated with long-term environmental monitoring are also discussed. PMID:22454582
Boguta, Patrycja; Sokołowska, Zofia; Skic, Kamil
2017-01-01
Thermogravimetry-coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)-was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40-220°C; R2, 220-430°C; and R3, 430-650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin.
Sokołowska, Zofia; Skic, Kamil
2017-01-01
Thermogravimetry–coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)–was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40–220°C; R2, 220–430°C; and R3, 430–650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin. PMID:29240819
Direct detection of formate ligation in cytochrome c oxidase by ATR-FTIR spectroscopy.
Iwaki, Masayo; Rich, Peter R
2004-03-03
The IR signature of binding of formate to the heme a(3-)Cu(B) binuclear site of bovine cytochrome c oxidase has been obtained by perfusion ATR-FTIR spectroscopy. The data show unequivocally that formate binds in its anionic form despite its binding being electroneutral overall. The bound formate can be distinguished from free ligand by the binding-induced sharpening and downshifting of vibrational bands. Formate ligation also causes shifts of vibrational modes of heme a(3) and its substituents and perturbation of histidine residues. The association of the accompanying protonation change with a carboxylate or tyrosine can be ruled out and may involve a histidine metal ligand or, more likely, a simple displacement into the bulk phase of a hydroxide ligand to heme a(3) or CU(B), a reaction which would account for stoichiometric proton uptake and maintenance of net charge within the binuclear center domain.
Corrosion study of steels exposed over five years to the humid tropical atmosphere of Panama
NASA Astrophysics Data System (ADS)
Jaén, Juan A.; Iglesias, Josefina
2017-11-01
The results of assessing five-year corrosion of low-carbon and conventional weathering steels exposed to the Panamanian tropical atmosphere is presented. Two different test sites, one in Panama City: 5 km from the shoreline of the Pacific Ocean, and another in the marine environment of Fort Sherman, Caribbean coast of Panama; namely, Fort Sherman Coastal site: 100 m from coastline. The corrosion products, formed in the skyward and earthward faces in the studied tropical environment, were mainly identified using room temperature and low temperature (15 K) Mössbauer spectroscopy, and ATR-FTIR. In all samples, lepidocrocite ( γ-FeOOH) and goethite ( α-FeOOH) were the main constituents. Some maghemite ( γ-Fe2 O 3), was also identified in Tocumen by Mössbauer spectroscopy and traces of feroxyhyte ( δ-FeOOH) using ATR-FTIR. The corrosion rate values obtained are discussed in light of the atmospheric exposure conditions and atmospheric pollutants.
Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham
Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{submore » 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santiago, Denise Ester O.; Department of Chemical Engineering, University of the Philippines, Los Baños, College, Laguna 4031 Philippines; Pajarito, Bryan B.
The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonitemore » decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.« less
Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber.
Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W; Wu, Sizhu
2015-12-01
Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.
Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes.
Bakhshpour, Monireh; Yavuz, Handan; Denizli, Adil
2018-02-19
Molecular imprinting technique was used for the preparation of antibiotic and anti-neoplastic chemotherapy drug (mitomycin C) imprinted cryogel membranes (MMC-ICM). The membranes were synthezied by using metal ion coordination interactions with N-methacryloyl-(l)-histidine methyl ester (MAH) functional monomer and template molecules (i.e. MMC). The 2-hydroxyethyl methacrylate (HEMA) monomer and methylene bisacrylamide (MBAAm) crosslinker were used for the preparation of mitomycin C imprinted cryogel membranes by radical suspension polymerization technique. The imprinted cryogel membranes were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and swelling degree measurements. Cytotoxicity of MMC-ICMs was investigated using mouse fibroblast cell line L929. Time-dependent release of MMC was demonstrated within 150 h from cryogel membranes. Cryogels demonstrated very high MMC loading efficiency (70-80%) and sustained MMC release over hours.
Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation
Kim, Sung Eun; Lee, Deok-Won; Kang, Eun Young; Jeong, Won Jae; Lee, Boram; Jeong, Myeong Seon; Kim, Hak Jun; Park, Kyeongsoon; Song, Hae-Ryong
2015-01-01
Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation. PMID:26221587
Study of the surface activation of ETFE by low energy (keV) Si and N bombardment
NASA Astrophysics Data System (ADS)
Parada, M. A.; de Almeida, A.; Muntele, C.; Muntele, I.; Delalez, N.; Ila, D.
2005-12-01
The ethylenetetrafluoroethylene (ETFE) is a polymer formed by alternating ethylene and tetrafluoroethylene segments. It can be applied in the field of medical physics as intra venous catheters and as radiation dosimeters. The increasing application of polymeric materials in technological and scientific fields has motivated the use of surface treatments to modify the physical and chemical properties of polymer surfaces. When a material is exposed to ionizing radiation, it suffers damage leading to surface activation depending on the type, energy and intensity of the applied radiation. In order to determine the radiation damage and the surface activation mechanism ETFE films were bombarded with keV Si and N at various fluences. The bombarded film was also analyzed with optical absorption photospectrometry (OAP), Raman and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy showing quantitatively the chemical nature at the damage caused by the Si and N bombardment.
Alayande, Abayomi Babatunde; Kim, Lan Hee; Kim, In S
2016-01-01
In this study, an environmentally friendly compound, hydroxypropyl-beta-cyclodextrin (HP-β-CD) was applied to clean reverse osmosis (RO) membranes fouled by microorganisms. The cleaning with HP-β-CD removed the biofilm and resulted in a flux recovery ratio (FRR) of 102%. As cleaning efficiency is sometimes difficult to determine using flux recovery data alone, attached bacterial cells and extracellular polymeric substances (EPS) were quantified after cleaning the biofouled membrane with HP-β-CD. Membrane surface characterization using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and atomic force microscopy (AFM) confirmed the effectiveness of HP-β-CD in removal of biofilm from the RO membrane surface. Finally, a comparative study was performed to investigate the competitiveness of HP-β-CD with other known cleaning agents such as sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), Tween 20, rhamnolipid, nisin, and surfactin. In all cases, HP-β-CD was superior.
The reuse of wastepaper for the extraction of cellulose nanocrystals.
Danial, Wan Hazman; Abdul Majid, Zaiton; Mohd Muhid, Mohd Nazlan; Triwahyono, Sugeng; Bakar, Mohd Bakri; Ramli, Zainab
2015-03-15
The study reports on the preparation of cellulose nanocrystals (CNCs) from wastepaper, as an environmental friendly approach of source material, which can be a high availability and low-cost precursor for cellulose nanomaterial processing. Alkali and bleaching treatments were employed for the extraction of cellulose particles followed by controlled-conditions of acid hydrolysis for the isolation of CNCs. Attenuated total reflectance Fourier Transform Infrared (ATR FTIR) spectroscopy was used to analyze the cellulose particles extracted while Transmission electron microscopy images confirmed the presence of CNCs. The diameters of CNCs are in the range of 3-10nm with a length of 100-300nm while a crystallinity index of 75.9% was determined from X-ray diffraction analysis. The synthesis of this high aspect ratio of CNCs paves the way toward alternative reuse of wastepaper in the production of CNCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber
Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W.; Wu, Sizhu
2015-01-01
Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD. PMID:26693513
Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia.
Syakti, Agung Dhamar; Bouhroum, Rafika; Hidayati, Nuning Vita; Koenawan, Chandra Joei; Boulkamh, Abdelaziz; Sulistyo, Isdy; Lebarillier, Stephanie; Akhlus, Syafsir; Doumenq, Pierre; Wong-Wah-Chung, Pascal
2017-09-15
Qualitative analysis of the structures of the polymers composing floating plastic debris was performed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the aging of the debris was assessed by measuring carbonyl group formation on the particle surfaces. Plastic material made up >75% of the 2313 items collected during a three-year survey. The size, shape and color of the microplastic were correlated with the polymer structure. The most abundant plastic materials were polypropylene (68%) and low-density polyethylene (11%), and the predominant colors of the plastics were white, blue and green. Cilacap Bay, Indonesia, was contaminated with microplastic at a concentration of 2.5mg·m 3 . The carbonyl index demonstrated that most of the floating microplastic was only slightly degraded. This study highlights the need to raise environmental awareness through citizen science education and adopting good environmental practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anti-Corrosion Performance of 1,3-BENZOTHIAZOLE on 410 Martensitic Stainless Steel in H2SO4
NASA Astrophysics Data System (ADS)
Loto, Roland Tolulope
The corrosion inhibition effect of synthesized 1,3-benzothiazole at very low concentrations on 410 martensitic stainless steel in 3MH2SO4 solution was studied through potentiodynamic polarization and weight loss measurements. The observation showed that the organic compound performed effectively with average inhibition efficiencies of 94% and 98% at the concentrations studied from both electrochemical methods due to the inhibition action of protonated inhibitor molecules in the acid solution. The amine and aromatics functional groups of the molecules active in the corrosion inhibition reaction were exposed from Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopic analysis. Thermodynamic calculations showed cationic adsorption to be chemisorption adsorption, obeying the Langmuir adsorption isotherm. Images from optical microscopy showed an improved morphology in comparison to images from corroded stainless steel. Severe surface deterioration and macro-pits were observed in the uninhibited samples.
Hyphenated GC-FTIR and GC-MS techniques applied in the analysis of bioactive compounds
NASA Astrophysics Data System (ADS)
Gosav, Steluta; Paduraru, Nicoleta; Praisler, Mirela
2014-08-01
The drugs of abuse, which affect human nature and cause numerous crimes, have become a serious problem throughout the world. There are hundreds of amphetamine analogues on the black market. They consist of various alterations of the basic amphetamine molecular structure, which are yet not yet included in the lists of forbidden compounds although they retain or slightly modify the hallucinogenic effects of their parent compound. It is their important variety that makes their identification quite a challenge. A number of analytical procedures for the identification of amphetamines and their analogues have recently been reported. We are presenting the profile of the main hallucinogenic amphetamines obtained with the hyphenated techniques that are recommended for the identification of illicit amphetamines, i. e. gas chromatography combined with mass spectrometry (GC-MS) and gas chromatography coupled with Fourier transform infrared spectrometry (GC-FTIR). The infrared spectra of the analyzed hallucinogenic amphetamines present some absorption bands (1490 cm-1, 1440 cm-1, 1245 cm-1, 1050 cm-1 and 940 cm-1) that are very stable as position and shape, while their intensity depends of the side-chain substitution. The specific ionic fragment of the studied hallucinogenic compounds is the 3,4-methylenedioxybenzyl cation (m/e = 135) which has a small relative abundance (lesser than 20%). The complementarity of the above mentioned techniques for the identification of hallucinogenic compounds is discussed.
NASA Astrophysics Data System (ADS)
Hans, Kerstin M.-C.; Gianella, Michele; Sigrist, Markus W.
2012-03-01
On-site drug tests have gained importance, e.g., for protecting the society from impaired drivers. Since today's drug tests are majorly only positive/negative, there is a great need for a reliable, portable and preferentially quantitative drug test. In the project IrSens we aim to bridge this gap with the development of an optical sensor platform based on infrared spectroscopy and focus on cocaine detection in saliva. We combine a one-step extraction method, a sample drying technique and infrared attenuated total reflection (ATR) spectroscopy. As a first step we have developed an extraction technique that allows us to extract cocaine from saliva to an almost infrared-transparent solvent and to record ATR spectra with a commercially available Fourier Transform-infrared spectrometer. To the best of our knowledge this is the first time that such a simple and easy-to-use one-step extraction method is used to transfer cocaine from saliva into an organic solvent and detect it quantitatively. With this new method we are able to reach a current limit of detection around 10 μg/ml. This new extraction method could also be applied to waste water monitoring and controlling caffeine content in beverages.
MMWR/FLIR/ATR sensor fusion: Proof of concept
NASA Astrophysics Data System (ADS)
Woolett, Jerry F.
1988-06-01
To improve the relocatable target capabilities of strategic aircraft a sensor fusion concept using a millimeter-wave radar (MMWR) and a forward-looking infrared (FLIR) system providing inputs to an auto target recognizer (ATR) has been developed. To prove this concept, a cooperative research effort is being conducted by a group of industry leaders in bomber avionics, MMWR, and ATR technologies. The author discusses the concept and the plan developed to test, evaluate, and demonstrate the expected performance.
NASA Astrophysics Data System (ADS)
Paran, S. M. R.; Naderi, G.; Ghoreishy, M. H. R.
2016-09-01
Halloysite nanotubes (HNTs) grafted with carboxylated nitrile byutadiene rubber (XNBR) were synthesized via a sol-gel method. The HNTs as an inorganic cores were pre-treated with 3-Glycidoxypropyl trimethoxysilane, then successfully coated with the XNBR as an organic shell. The properties of XNBR-grafted HNTs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results suggested that the XNBR grafted to the surfaces of HNTs successfully. Then the TPE nanocomposites based on polyamide-6 (PA6) and nitrile butadiene rubber (NBR) containing various XNBR-grafted and pristine HNTs were prepared via a direct melt mixing method. The morphology, mechanical, dynamic mechanical and rheological properties of the prepared TPE nanocomposites were investigated. The results show that the XNBR-grafted HNTs can effectively improve the morphology and mechanical properties of the PA6/NBR TPEs. The morphology study of the prepared nanocomposites show that the effect of XNBR-grafted HNTs on the size reduction of NBR phase is markedly more effective than the pristine HNTs and rose by 50% in the same concentrations. Mechanical measurements show that the Young's modulus of the TPE nanocomposites rose by 60% in just 7 wt% of XNBR-grafted HNT loading. The results indicate that the introduction of HNT/XNBR core-shells into the PA6/NBR TPEs can enhances the interfacial interactions and provides a more fine rubber phase morphology and controlled mechanical properties in comparison with the accordingly TPE nanocomposites containing pristine HNTs.
Gorre, Elsa; Owens, Kevin G
2016-11-01
In this work an attenuated total reflection Fourier transform infrared (FT-IR) absorption based method is used to measure the solubility of two matrix-assisted laser desorption-ionization (MALDI) matrices in a few pure solvents and mixtures of acetonitrile and water using low microliter amounts of solution. Results from a method that averages the values obtained from multiple calibration curves created by manual peak picking are compared to those predicted using a partial least squares (PLS) chemometrics approach. The PLS method provided solubility values that were in good agreement with the manual method with significantly greater ease of analysis. As a test, the solubility of adipic acid in acetone was measured using the two methods of analysis, and the values are in good agreement with solubility values reported in literature. The solubilities of the MALDI matrices α-cyano-4-hydroxy cinnamic acid (CHCA) and sinapinic acid (SA) were measured in a series of mixtures made from acetonitrile (ACN) and water; surprisingly, the results show a highly nonlinear trend. While both CHCA and SA show solubility values of less than 10 mg/mL in the pure solvents, the solubility value for SA increases to 56.3 mg/mL in a 75:25 v/v ACN:water mixture. This can have a significant effect on the matrix-to-analyte ratios in the MALDI experiment when sample protocols call for preparation of a saturated solution of the matrix in the chosen solvent system. © The Author(s) 2016.
Investigation of the effects of plasma treatments on biodeteriorated ancient paper
NASA Astrophysics Data System (ADS)
Laguardia, L.; Vassallo, E.; Cappitelli, F.; Mesto, E.; Cremona, A.; Sorlini, C.; Bonizzoni, G.
2005-11-01
Deterioration of paper-based materials is mainly due to the degradation of cellulose caused by a lot of factors such as chemical attack due to acidic hydrolysis, oxidative agent, light, air pollution and biological attack and also due to the presence of microorganisms like bacteria and fungi. It is therefore desirable to focus the research activities on restoration and conservation techniques to develop appropriate treatments. The aim of this paper is the removal or reduction of the microbial contamination and paper consolidation by means of plasma treatment. For plasma processes, different gas mixtures are utilised, and the different gas mixtures are compared as a function of pressure, power, and treatment time. To demonstrate the efficiency of the sterilisation treatment, two fungi: Aspergillus niger and Penicillium funiculosum, commonly found in libraries and archives were spread on naturally aged paper (19th century). Microorganisms were let to grow by using the organic compounds found in the historical records as a sole source of carbon and energy. The microbial abatement was measured before and after the plasma treatment by using the standard plate count method. Surface chemical and morphological characterisation of paper before and after plasma treatment has been carried out by X-ray photoelectron spectroscopy (XPS) and ATR infrared spectroscopy (ATR FTIR). The tensile strength of the plasma-treated papers was also determined. CNR Patent, n° Mi2004A000068, 21/01/2004.
Manning, Phillip L; Morris, Peter M; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H S; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I; van Dongen, Bart E; Buckley, Mike; Wogelius, Roy A
2009-10-07
An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material).
Manning, Phillip L.; Morris, Peter M.; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H. S.; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G.; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I.; van Dongen, Bart E.; Buckley, Mike; Wogelius, Roy A.
2009-01-01
An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material). PMID:19570788
Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.
Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J
2015-01-01
Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm.
Collins, Natalie B.; Wilson, James B.; Bush, Thomas; Thomashevski, Andrei; Roberts, Kate J.; Jones, Nigel J.
2009-01-01
Previous work has shown several proteins defective in Fanconi anemia (FA) are phosphorylated in a functionally critical manner. FANCA is phosphorylated after DNA damage and localized to chromatin, but the site and significance of this phosphorylation are unknown. Mass spectrometry of FANCA revealed one phosphopeptide, phosphorylated on serine 1449. Serine 1449 phosphorylation was induced after DNA damage but not during S phase, in contrast to other posttranslational modifications of FA proteins. Furthermore, the S1449A mutant failed to completely correct a variety of FA-associated phenotypes. The DNA damage response is coordinated by phosphorylation events initiated by apical kinases ATM (ataxia telangectasia mutated) and ATR (ATM and Rad3-related), and ATR is essential for proper FA pathway function. Serine 1449 is in a consensus ATM/ATR site, phosphorylation in vivo is dependent on ATR, and ATR phosphorylated FANCA on serine 1449 in vitro. Phosphorylation of FANCA on serine 1449 is a DNA damage–specific event that is downstream of ATR and is functionally important in the FA pathway. PMID:19109555
Molecular IR Spectroscopy: New Trends and Methods of Noninvasive Diagnostics of Tissue IN VIVO
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia; Bruch, Reinhard
1998-05-01
Fiberoptic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850-1850 cm-1) has recently been applied to the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured the normal skin and malignant tissues in vivo on the surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room to measure the skin in the depth (under/in the layers of epidermis) of human breast, stomach, lung, and kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of aminoacid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.
Using FT-IR Spectroscopy to Measure Charge Organization in Ionic Liquids
Burba, Christopher M.; Janzen, Jonathan; Butson, Eric D.; Coltrain, Gage L.
2013-01-01
A major goal in the field of ionic liquids is correlating transport property trends with the underlying liquid structure of the compounds, such as the degree of charge organization among the constituent ions. Traditional techniques for experimentally assessing charge organization are specialized and not readily available for routine measurements. This represents a significant roadblock in elucidating these correlations. We use a combination of transmission and polarized-ATR infrared spectroscopy to measure the degree of charge organization for ionic liquids. The technique is illustrated with a family of 1-alkyl-3-methylimidazolium trifluoromethansulfonate ionic liquids at 30°C. As expected, the amount of charge organization decreases as the alkyl side chain is lengthened, highlighting the important role of short-range repulsive interactions in defining quasilattice structure. Inherent limitations of the method are identified and discussed. The quantitative measurements of charge organization are then correlated with trends in the transport properties of the compounds to highlight the relationship between charge and momentum transport and the underlying liquid structure. Most research laboratories possess infrared spectrometers capable of conducting these measurements, thus, the proposed method may represent a cost-effective solution for routinely measuring charge organization in ionic liquids. PMID:23781877
Halliwell, Diane E; Morais, Camilo L M; Lima, Kássio M G; Trevisan, Júlio; Siggel-King, Michele R F; Craig, Tim; Ingham, James; Martin, David S; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L
2017-07-11
Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an 'intact' chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach.
NASA Astrophysics Data System (ADS)
Halliwell, Diane E.; Morais, Camilo L. M.; Lima, Kássio M. G.; Trevisan, Júlio; Siggel-King, Michele R. F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.
2017-07-01
Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an 'intact' chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach.
Halliwell, Diane E.; Morais, Camilo L.M.; Lima, Kássio M.G.; Trevisan, Júlio; Siggel-King, Michele R.F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.
2017-01-01
Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an ‘intact’ chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach. PMID:28696426
Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL.
Halliwell, Diane E; Morais, Camilo L M; Lima, Kássio M G; Trevisan, Julio; Siggel-King, Michele R F; Craig, Tim; Ingham, James; Martin, David S; Heys, Kelly A; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L
2016-07-12
Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit.
Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL
Halliwell, Diane E.; Morais, Camilo L. M.; Lima, Kássio M. G.; Trevisan, Julio; Siggel-King, Michele R. F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly A.; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.
2016-01-01
Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit. PMID:27406404
Serum-based diagnostic prediction of oral submucous fibrosis using FTIR spectrometry
NASA Astrophysics Data System (ADS)
Rai, Vertika; Mukherjee, Rashmi; Routray, Aurobinda; Ghosh, Ananta Kumar; Roy, Seema; Ghosh, Barnali Paul; Mandal, Puspendu Bikash; Bose, Surajit; Chakraborty, Chandan
2018-01-01
Oral submucous fibrosis (OSF) is found to have the highest malignant potentiality among all other pre-cancerous lesions. However, its detection prior to tissue biopsy can be challenging in clinics. Moreover, biopsy examination is invasive and painful. Hence, there is an urgent need of new technology that facilitates accurate diagnostic prediction of OSF prior to biopsy. Here, we used FTIR spectroscopy coupled with chemometric techniques to distinguish the serum metabolic signatures of OSF patients (n = 30) and healthy controls (n = 30). Serum biochemical analyses have been performed to further support the FTIR findings. Absorbance intensities of 45 infrared wavenumbers differed significantly between OSF and normal serum FTIR spectra representing alterations in carbohydrates, proteins, lipids and nucleic acids. Nineteen prominent significant wavenumbers (P ≤ 0.001) at 1020, 1025, 1035, 1039, 1045, 1078, 1055, 1100, 1117, 1122, 1151, 1169, 1243, 1313, 1398, 1453, 1544, 1650 and 1725 cm- 1 provided excellent segregation of OSF spectra from normal using multivariate statistical techniques. These findings provided essential information on the metabolic features of blood serum of OSF patients and established that FTIR spectroscopy coupled with chemometric analysis can be potentially useful in the rapid and accurate preoperative screening/diagnosis of OSF.
Mossoba, M M; Adams, S; Roach, J A; Trucksess, M W
1996-01-01
Gas chromatography/matrix isolation/Fourier transform infrared (GC/MI/FTIR) spectroscopy and GC/mass spectrometry (MS) were used to confirm the identities of trimethylsilyl (TMS) derivatives of trichothecene mycotoxins in naturally contaminated grains. Infrared spectral bands observed in the fingerprint region were unique for 10 trichothecene standards. Characteristic absorption bands were observed for the ester (near 1750 cm-1) and ketone (near 1700 cm-1) carbonyl stretching vibrations, the acetate CH3 symmetric bend (1370 cm-1), the epoxide ring (1262 cm-1), the trimethylsilyl CH3 in-plane deformation (1253 cm-1), the ester (O)C-O asymmetric stretching vibration (near 1244 cm-1), and several other bands including intense features due to the TMS function. Infrared bands observed under cryogenic matrix isolation conditions were compared with those found at room temperature in a potassium bromide matrix for 5 of these standards. Identities of deoxynivalenol (DON) from barley and mixed feed, nivalenol from wheat and barley, and DON and fusarenon-x from sweet corn were confirmed by comparison of their infrared spectral bands with those of standards. The identity of DON in the same test samples of sweet corn was confirmed further by GC/MS. GC/MS was also used to quantitate the levels of DON (67-455 ppm) in sweet corn test samples.
Kocaoglu-Vurma, N A; Eliardi, A; Drake, M A; Rodriguez-Saona, L E; Harper, W J
2009-08-01
The acceptability of cheese depends largely on the flavor formed during ripening. The flavor profiles of cheeses are complex and region- or manufacturer-specific which have made it challenging to understand the chemistry of flavor development and its correlation with sensory properties. Infrared spectroscopy is an attractive technology for the rapid, sensitive, and high-throughput analysis of foods, providing information related to its composition and conformation of food components from the spectra. Our objectives were to establish infrared spectral profiles to discriminate Swiss cheeses produced by different manufacturers in the United States and to develop predictive models for determination of sensory attributes based on infrared spectra. Fifteen samples from 3 Swiss cheese manufacturers were received and analyzed using attenuated total reflectance infrared spectroscopy (ATR-IR). The spectra were analyzed using soft independent modeling of class analogy (SIMCA) to build a classification model. The cheeses were profiled by a trained sensory panel using descriptive sensory analysis. The relationship between the descriptive sensory scores and ATR-IR spectra was assessed using partial least square regression (PLSR) analysis. SIMCA discriminated the Swiss cheeses based on manufacturer and production region. PLSR analysis generated prediction models with correlation coefficients of validation (rVal) between 0.69 and 0.96 with standard error of cross-validation (SECV) ranging from 0.04 to 0.29. Implementation of rapid infrared analysis by the Swiss cheese industry would help to streamline quality assurance.
Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier
2013-12-01
Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.
Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer
NASA Astrophysics Data System (ADS)
Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon
2014-07-01
Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.
Assessment of the Effects Exerted by Acid and Alkaline Solutions on Bone: Is Chemistry the Answer?
Amadasi, Alberto; Camici, Arianna; Porta, Davide; Cucca, Lucia; Merli, Daniele; Milanese, Chiara; Profumo, Antonella; Rassifi, Nabila; Cattaneo, Cristina
2017-09-01
The treatment of corpses with extremely acid or basic liquids is sometimes performed in criminal contexts. A thorough characterization by chemical analysis may provide further help to macroscopic and microscopic analysis; 63 porcine bone samples were treated with solutions at different pH (1-14) for immersion periods up to 70 days, as well as in extremely acidic sulfuric acid solutions (9 M/18 M) and extremely basic sodium hydroxide. Inductively coupled optical emission spectrometry (ICP-OES)/plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) showed that only the sulfuric acid solution 18 M was able to completely dissolve the sample. In addition, chemical analysis allowed to recognize the contact between bone and substances. Hydrated calcium sulfate arose from extreme pH. The possibility of detecting the presence of human material within the residual solution was demonstrated, especially with FT-IR, ICP-OES, and EDX. © 2017 American Academy of Forensic Sciences.
Fluorescent solute-partitioning characterization of layered soft contact lenses.
Dursch, T J; Liu, D E; Oh, Y; Radke, C J
2015-03-01
Partitioning of aqueous packaging, wetting, and care-solution agents into and out of soft contact lenses (SCLs) is important for improving wear comfort and also for characterizing lens physico-chemical properties. We illustrate both features of partitioning by application of fluorescent-solute partitioning into DAILIES TOTAL1® (delefilcon A) water-gradient SCLs, which exhibit a layered structure of a silicone-hydrogel (SiHy) core sandwiched between thin surface-gel layers. Two-photon fluorescence confocal laser-scanning microscopy and attenuated total-reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) characterize the lens and assess uptake profiles of six prototypical fluorescent solutes. Comparison of solute uptake in a SiHy-core prototype lens (i.e., O2OPTIX(TM)) validates the core SiHy structure of DAILIESTOTAL1®. To establish surface-layer charge, partition coefficients and water contents are obtained for aqueous pH values of 4 and 7.4. Solute fluorescence-intensity profiles clearly confirm a layered structure for the DAILIES TOTAL1® lenses. In all cases, aqueous solute partition coefficients are greater in the surface layers than in the SiHy core, signifying higher water in the surface gels. ATR-FTIR confirms surface-layer mass water contents of 82±3%. Water uptake and hydrophilic-solute uptake at pH 4 compared with that at pH 7.4 reveal that the surface-gel layers are anionic at physiologic pH 7.4, whereas both the SiHy core and O2OPTIX™ (lotrafilcon B) are nonionic. We successfully confirm the layered structure of DAILIES TOTAL1®, consisting of an 80-μm-thick SiHy core surrounded by 10-μm-thick polyelectrolyte surface-gel layers of significantly greater water content and aqueous solute uptake compared with the core. Accordingly, fluorescent-solute partitioning in SCLs provides information on gel structure and composition, in addition to quantifying uptake and release amounts and rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiaowei, Cheng; Sheng, Huang; Xiaoyang, Guo; Wenhui, Duan
2017-07-01
Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as -COOH, C-OH, and -CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization treated WTR increased 11.03% and 13.36%, and the flexural strength increased 9.65% and 7.31%, respectively. A decrease in the compressive strength also occurred but was inconspicuous. A tight interface bonding for ethanol LTP polymerization treated WTR with cement matrix was observed via an SEM image.
Kumar, Raj; Kumar, Vinay; Sharma, Vishal
2017-01-05
The aim of the present work is to explore the non-destructive application of ATR-FTIR technique for characterization and discrimination of paper samples which could be helpful to give forensic aid in resolving legal cases. Twenty-four types of paper brands were purchased from local market in and around Chandigarh, India. All the paper samples were subjected to ATR-FTIR analysis from 400 to 4000cm(-1) wavenumber range. The qualitative feature and Chemometrics of the obtained spectral data are used for characterization and discrimination. Characterization is achieved by matching the peaks with standards of cellulose and inorganic fillers, a usual constituents of paper. Three different regions of IR, i.e. 400-2000cm(-1), 2000-4000cm(-1) and 400-4000cm(-1) were selected for differentiation by Chemometrics analysis. The discrimination is achieved on the basis of three principal components, i.e. PC 1, PC 2 and PC 3. It is observed that maximum discrimination was procured in the wave number range of i.e. 2000-4000cm(-1). Discriminating power was calculated on the basis of qualitative features as well, and it is found that the discrimination of paper samples was better achieved by Chemometrics analysis rather than qualitative features. The discriminating power by Chemometrics is 99.64% and which is larger as ever achieved by any group for present number of samples. The present result confirms that this study will be highly useful in forensic document examination work in the legal cases, where the authenticity of the document is challenged. The results are completely analytical and, therefore, overcome the problem encounter in traditional routine light/radiation scanning methods which are still in practice by various questioned document laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.
An ATR architecture for algorithm development and testing
NASA Astrophysics Data System (ADS)
Breivik, Gøril M.; Løkken, Kristin H.; Brattli, Alvin; Palm, Hans C.; Haavardsholm, Trym
2013-05-01
A research platform with four cameras in the infrared and visible spectral domains is under development at the Norwegian Defence Research Establishment (FFI). The platform will be mounted on a high-speed jet aircraft and will primarily be used for image acquisition and for development and test of automatic target recognition (ATR) algorithms. The sensors on board produce large amounts of data, the algorithms can be computationally intensive and the data processing is complex. This puts great demands on the system architecture; it has to run in real-time and at the same time be suitable for algorithm development. In this paper we present an architecture for ATR systems that is designed to be exible, generic and efficient. The architecture is module based so that certain parts, e.g. specific ATR algorithms, can be exchanged without affecting the rest of the system. The modules are generic and can be used in various ATR system configurations. A software framework in C++ that handles large data ows in non-linear pipelines is used for implementation. The framework exploits several levels of parallelism and lets the hardware processing capacity be fully utilised. The ATR system is under development and has reached a first level that can be used for segmentation algorithm development and testing. The implemented system consists of several modules, and although their content is still limited, the segmentation module includes two different segmentation algorithms that can be easily exchanged. We demonstrate the system by applying the two segmentation algorithms to infrared images from sea trial recordings.
The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared.
Zamiri, Reza; Abbastabar Ahangar, Hossein; Zakaria, Azmi; Zamiri, Golnoosh; Shabani, Mehdi; Singh, Budhendra; Ferreira, J M F
2015-01-01
In this paper a template-free precipitation method was used as an easy and low cost way to synthesize Ag2S semiconductor nanoparticles. The Kramers-Kronig method (K-K) and classical dispersion theory was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and dielectric constant ε(ω) in Far-infrared regime. Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method. Ag2S nanoparticle was characterized by X-ray diffraction, Scanning Electron Microscopy, UV-visible, and FT-IR spectrometry. The refinement of the monoclinic β-Ag2S phase yielded a structure solution similar to the structure reported by Sadanaga and Sueno. The band gap of Ag2S nanoparticles is around 0.96 eV, which is in good agreement with previous reports for the band gap energy of Ag2S nanoparticles (0.9-1.1 eV). The crystallite size of the synthesized particles was obtained by Hall-Williamson plot for the synthesized Ag2S nanoparticles and it was found to be 217 nm. The Far-infrared optical constants of the prepared Ag2S semiconductor nanoparticles were evaluated by means of FTIR transmittance spectra data and K-K method. Graphical abstractThe Far-infrared optical constants of Ag2S semiconductor nanoparticles.
Miller, Arthur L.; Weakley, Andrew Todd; Griffiths, Peter R.; Cauda, Emanuele G.; Bayman, Sean
2017-01-01
In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in coal mine dusts, using both OLS and PLS analyses, when kaolinite was present. PMID:27645724
Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean
2017-05-01
In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in coal mine dusts, using both OLS and PLS analyses, when kaolinite was present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akram, Faridah; Chan, Chin Han; Natarajan, Valliyappan David
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate [P(3HB-co-3HHx)] produced by C. necator PHB{sup −}4 harboring phaC{sub cs} from crude palm kernel oil with 21 mol% of 3-hydroxyhexanoate and epoxidized natural rubber with 25 mol% of epoxy content (ENR-25) were used to study the miscibility of the blends by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and differential scanning calorimetry (DSC). The polymers used were purified and the blends were prepared by solution casting method. Nuclear magnetic resonance (NMR) spectra confirm the purity and molecular structures of P(3HB-co-3HHx) and ENR-25. FTIR spectra for different compositions of P(3HB-co-3HHx) and ENR-25 blends show absorbance change of the absorbance bands but with nomore » significant shifting of the absorbance bands as the P(3HB-co-3HHx) content decreases, which shows that there is no intermolecular interaction between the parent polymer blends. On top of that, there are two T{sub g}s present for the blends and both remain constant for different compositions which corresponds to the T{sub g}s of the parent polymers. This indicates that the blends are immiscible.« less
Detection of chemical changes in bone after irradiation with Er,Cr:YSGG laser
NASA Astrophysics Data System (ADS)
Benetti, Carolina; Santos, Moises O.; Rabelo, Jose S.; Ana, Patrícia A.; Correa, Paulo R.; Zezell, Denise M.
2011-03-01
The use of laser for bone cutting can be more advantageous than the use of drill. However, for a safe clinical application, it is necessary to know the effects of laser irradiation on bone tissues. In this study, the Fourier Transform Infrared spectroscopy (FTIR) was used to verify the molecular and compositional changes promoted by laser irradiation on bone tissue. Bone slabs were obtained from rabbit's tibia and analyzed using ATR-FTIR. After the initial analysis, the samples were irradiated using a pulsed Er,Cr:YSGG laser (2780nm), and analyzed one more time. In order to verify changes due to laser irradiation, the area under phosphate (1300-900cm-1), amides (1680-1200cm-1), water (3600-2400cm-1), and carbonate (around 870cm-1 and between 1600-1300cm-1) bands were calculated, and normalized by phosphate band area (1300-900cm-1). It was observed that Er,Cr:YSGG irradiation promoted a significant decrease in the content of water and amides I and III at irradiated bone, evidencing that laser procedure caused an evaporation of the organic content and changed the collagen structure, suggesting that these changes may interfere with the healing process. In this way, these changes should be considered in a clinical application of laser irradiation in surgeries.
Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria.
Luo, Ting; Ye, Li; Ding, Cheng; Yan, Jinlong; Jing, Chuanyong
2017-11-15
Reduction of surface-bound arsenate [As(V)] and subsequent release into the aqueous phase contribute to elevated As in groundwater. However, this natural process is not fully understood, especially in the presence of sulfate-reducing bacteria (SRB). Gaining mechanistic insights into solid-As(V)-SRB interactions motivated our molecular level study on the fate of nano-TiO 2 bound As(V) in the presence of Desulfovibrio vulgaris DP4, a strain of SRB, using incubation and in situ ATR-FTIR experiments. The incubation results clearly revealed the reduction of As(V), either adsorbed on nano-TiO 2 or dissolved, in the presence of SRB. In contrast, this As(V) reduction was not observed in abiotic control experiments where sulfide was used as the reductant. Moreover, the reduction was faster for surface-bound As(V) than for dissolved As(V), as evidenced by the appearance of As(III) at 45h and 75h, respectively. ATR-FTIR results provided direct evidence that the surface-bound As(V) was reduced to As(III) on TiO 2 surfaces in the presence of SRB. In addition, the As(V) desorption from nano-TiO 2 was promoted by SRB relative to abiotic sulfide, due to the competition between As(V) and bacterial phosphate groups for TiO 2 surface sites. This competition was corroborated by the ATR-FTIR analysis, which showed inner-sphere surface complex formation by bacterial phosphate groups on TiO 2 surfaces. The results from this study highlight the importance of indirect bacteria-mediated As(V) reduction and release in geochemical systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Hernandez-Leon, Sergio G; Sarabia-Sainz, Jose Andre-I; Montfort, Gabriela Ramos-Clamont; Guzman-Partida, Ana M; Robles-Burgueño, Maria Del Refugio; Vazquez-Moreno, Luz
2017-10-12
Silica nanoparticles were functionalized with immobilized molecular bait, Cibacron Blue, and a porous polymeric bis-acrylamide shell. These nanoparticles represent a new alternative to capture low molecular weight (LMW) proteins/peptides, that might be potential biomarkers. Functionalized core-shell silica nanoparticles (FCSNP) presented a size distribution of 243.9 ± 11.6 nm and an estimated surface charge of -38.1 ± 0.9 mV. The successful attachment of compounds at every stage of synthesis was evidenced by ATR-FTIR. The capture of model peptides was determined by mass spectrometry, indicating that only the peptide with a long sequence of hydrophobic amino acids (alpha zein 34-mer) interacted with the molecular bait. FCSNP excluded the high molecular weight protein (HMW), BSA, and captured LMW proteins (myoglobin and aprotinin), as evidenced by SDS-PAGE. Functionalization of nanoparticles with Cibacron Blue was crucial to capture these molecules. FCSNP were stable after twelve months of storage and maintained a capacity of 3.1-3.4 µg/mg.
Cotte, M; Checroun, E; Susini, J; Dumas, P; Tchoreloff, P; Besnard, M; Walter, Ph
2006-12-15
Lead soaps can be found in archaeological cosmetics as well as in oil paintings, as product of interactions of lead salts with oil. In this context, a better understanding of the formation of lead soaps allows a follow-up of the historical evolution of preparation recipes and provides new insights into conservation conditions. First, ancient recipes of both pharmaceutical lead plasters and painting lead mediums, mixtures of oil and lead salts, were reconstructed. The ester saponification by lead salts is determined by the preparation parameters which were quantified by FT-IR spectrometry. In particular, ATR/FT-IR spectrometer was calibrated by the standard addition method to quantitatively follow the kinetics of this reaction. The influence of different parameters such as temperature, presence of water and choice of lead salts was assessed: the saponification is clearly accelerated by water and heating. This analysis provides chemical explanations to the historical evolution of cosmetic and painting preparation recipes.
NASA Astrophysics Data System (ADS)
Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.
2018-06-01
Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.
Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Shaw, R Anthony; Keefe, Gregory P
2016-01-01
In this study, we evaluated and compared the performance of transmission and attenuated total reflectance (ATR) infrared (IR) spectroscopic methods (in combination with quantification algorithms previously developed using partial least squares regression) for the rapid measurement of bovine serum immunoglobulin G (IgG) concentration, and detection of failure of transfer of passive immunity (FTPI) in dairy calves. Serum samples (n = 200) were collected from Holstein calves 1-11 days of age. Serum IgG concentrations were measured by the reference method of radial immunodiffusion (RID) assay, transmission IR (TIR) and ATR-IR spectroscopy-based assays. The mean IgG concentration measured by RID was 17.22 g/L (SD ±9.60). The mean IgG concentrations predicted by TIR and ATR-IR spectroscopy methods were 15.60 g/L (SD ±8.15) and 15.94 g/L (SD ±8.66), respectively. RID IgG concentrations were positively correlated with IgG levels predicted by TIR (r = 0.94) and ATR-IR (r = 0.92). The correlation between 2 IR spectroscopic methods was 0.94. Using an IgG concentration <10 g/L as the cut-point for FTPI cases, the overall agreement between TIR and ATR-IR methods was 94%, with a corresponding kappa value of 0.84. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for identifying FTPI by TIR were 0.87, 0.97, 0.91, 0.95, and 0.94, respectively. Corresponding values for ATR-IR were 0.87, 0.95, 0.86, 0.95, and 0.93, respectively. Both TIR and ATR-IR spectroscopic approaches can be used for rapid quantification of IgG level in neonatal bovine serum and for diagnosis of FTPI in dairy calves. © 2015 The Author(s).
Xu, L; Cai, C B; Cui, H F; Ye, Z H; Yu, X P
2012-12-01
Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages was developed by Fourier transform infrared (FTIR) spectrometry combined with chemometrics. Transmittance spectra ranging from 400 to 4000 cm⁻¹ of 73 Halal and 78 non-Halal Chinese ham sausages were measured. Sample preparation involved finely grinding of samples and formation of KBr disks (under 10 MPa for 5 min). The influence of data preprocessing methods including smoothing, taking derivatives and standard normal variate (SNV) on partial least squares discriminant analysis (PLSDA) and least squares support vector machine (LS-SVM) was investigated. The results indicate removal of spectral background and baseline plays an important role in discrimination. Taking derivatives, SNV can improve classification accuracy and reduce the complexity of PLSDA. Possibly due to the loss of detailed high-frequency spectral information, smoothing degrades the model performance. For the best models, the sensitivity and specificity was 0.913 and 0.929 for PLSDA with SNV spectra, 0.957 and 0.929 for LS-SVM with second derivative spectra, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes
NASA Astrophysics Data System (ADS)
Jun, Byung-Moon; Kim, Su Hwan; Kwak, Sang Kyu; Kwon, Young-Nam
2018-06-01
This work was systematically investigated the effects of acidic aqueous solution (15 wt% sulfuric acid as model wastewater from smelting process) on the physical and chemical properties of commercially available nanofiltration (NF) polyamide membranes, using piperazine (PIP)-based NE40/70 membranes and m-phenylene diamine (MPD)-based NE90 membrane. Surface properties of the membranes were studied before and after exposure to strong acid using various analytical tools: Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), contact angle analyzer, and electrophoretic light scattering spectrophotometer. The characterization and permeation results showed piperazine-based NE40/70 membranes have relatively lower acid-resistance than MPD-based NE90 membrane. Furthermore, density functional theory (DFT) calculation was also conducted to reveal the different acid-tolerances between the piperazine-based and MPD-based polyamide membranes. The easiest protonation was found to be the protonation of oxygen in piperazine-based monomer, and the N-protonation of the monomer had the lowest energy barrier in the rate determining step (RDS). The calculations were well compatible with the surface characterization results. In addition, the energy barrier in RDS is highly correlated with the twist angle (τD), which determines the delocalization of electrons between the carbonyl πCO bond and nitrogen lone pair, and the tendency of the twist angle was also maintained in longer molecules (dimer and trimer). This study clearly explained why the semi-aromatic membrane (NE40/70) is chemically less stable than the aromatic membrane (NE90) given the surface characterizations and DFT calculation results.
Preparation of graphene oxide as biomaterials for drug adsorption
NASA Astrophysics Data System (ADS)
Usca, G. Tubón; Gómez, C. Vacacela; Fiallos, D. Coello; Tavolaro, P.; Martino, G.; Caputi, L. S.; Tavolaro, A.
2015-02-01
Doxorubicin hydrochloride (DOX), is a class I anthracycline antibiotic (FDA approved in the 1970s) widely used as an effective chemotherapeutic drug for the treatment of many human neoplasms. Like most anticancer drugs, DOX can provoke severe toxicity to the body when it is administered at high doses systemically. Here we report the results of an investigation of drug adsorption on graphene oxide (GO) materials prepared by the Improved Hummer's method. High-purity GO has been prepared, characterized by XPS, UV-vis, FTIR-ATR, FESEM, UV- vis analyses, Zero Point Charge determinations and applied in the immobilization of doxorubicin, via simple noncovalent method. The adsorption percentage of the drug at pH 7 on GO was observed to be higher (equal to 90 %) than that obtained at acidic pH 3 (equal to 85%). Experimental result of adsorption of DOX on GO, obtained by FTIR-ATR spectroscopy analysis indicate that the inorganic material and the drug form and adduct by π-π stacking interactions.
Density control of dodecamanganese clusters anchored on silicon(100).
Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Nativo, Paola; Fragalà, Ignazio L; Gatteschi, Dante
2006-04-24
A synthetic strategy to control the density of Mn12 clusters anchored on silicon(100) was investigated. Diluted monolayers suitable for Mn12 anchoring were prepared by Si-grafting mixtures of the methyl 10-undecylenoate precursor ligand with 1-decene spectator spacers. Different ratios of these mixtures were tested. The grafted surfaces were hydrolyzed to reveal the carboxylic groups available for the subsequent exchange with the [Mn12O12(OAc)16(H2O)4]4 H2O2 AcOH cluster. Modified surfaces were analyzed by attenuated total reflection (ATR)-FTIR spectroscopy, X-ray photoemission spectroscopy (XPS), and AFM imaging. Results of XPS and ATR-FTIR spectroscopy show that the surface mole ratio between grafted ester and decene is higher than in the source solution. The surface density of the Mn12 cluster is, in turn, strictly proportional to the ester mole fraction. Well-resolved and isolated clusters were observed by AFM, using a diluted ester/decene 1:1 solution.
ATR-FTIR spectroscopic investigation of the cis- and trans-bis-(α-amino acids) copper(II) complexes
NASA Astrophysics Data System (ADS)
Berestova, Tatyana V.; Kuzina, Lyudmila G.; Amineva, Natalya A.; Faizrakhmanov, Ilshat S.; Massalimov, Ismail A.; Mustafin, Akhat G.
2017-06-01
The crystalline phases of the trans-(a) and cis-(b)-isomers of bis-(α-amino acids) copper(II) complexes [Cu(bL)2] 1-5 (bL - bidentate ligand: gly (1), S-ala (2), R,S-val (3), (±)-thr (4), R,S-phe (5)) were studied by ATR-FTIR spectroscopy in the mid region IR spectrum. It was established that asymmetric νas(COO) and symmetric νs(COO) stretching vibrations of carboxylic groups of 1-5 are sensitive to change of the geometric structure and have a different maxima for the trans(a)- and cis(b)-isomers. It found that νas(COO) and νs(COO) stretching vibrations of cis-isomers are broadened and shifted to longer wavelengths (b) as compared with trans-isomers (a). Shown that peculiarities of crystal packing molecules of geometric isomers may affect on carboxylate stretching vibration bis-α-amino acids complexes copper(II) 1-5 a,b.
Mendes, Gonçalo; Faria, Mónica; Carvalho, Alexandra; Gonçalves, M Clara; de Pinho, Maria Norberta
2018-06-01
Hybrid cellulose acetate (CA) silica (SiO 2 ) (CA/SiO 2 ) membranes were synthesized by promoting the in situ condensation between silanols from the SiO 2 precursor and the COH or acetate groups from the CA polymer. For all the CA/SiO 2 membranes, the ATR-FTIR peak assigned to (SiOC) proves the hybrid condensation reaction and confirms the synthesis of monophasic hybrid membranes. ATR-FTIR shows the presence of uncondensed highly reactive SiOH species, in membranes with silica contents higher than 20 mol%. Together with RMN studies, results show molecular water strongly hydrogen-bonded with SiOH groups, yielding a drastic decrease in the membrane hydraulic permeability, from 57 to 10 kg/h/m 2 /bar. The incorporation of 5 and 10 mol% of silica increased the hydraulic permeability from 32 to 82 kg/h/m 2 /bar when compared to the CA membrane. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kinetics of Thermal Decomposition of Ammonium Perchlorate by TG/DSC-MS-FTIR
NASA Astrophysics Data System (ADS)
Zhu, Yan-Li; Huang, Hao; Ren, Hui; Jiao, Qing-Jie
2014-01-01
The method of thermogravimetry/differential scanning calorimetry-mass spectrometry-Fourier transform infrared (TG/DSC-MS-FTIR) simultaneous analysis has been used to study thermal decomposition of ammonium perchlorate (AP). The processing of nonisothermal data at various heating rates was performed using NETZSCH Thermokinetics. The MS-FTIR spectra showed that N2O and NO2 were the main gaseous products of the thermal decomposition of AP, and there was a competition between the formation reaction of N2O and that of NO2 during the process with an iso-concentration point of N2O and NO2. The dependence of the activation energy calculated by Friedman's iso-conversional method on the degree of conversion indicated that the AP decomposition process can be divided into three stages, which are autocatalytic, low-temperature diffusion and high-temperature, stable-phase reaction. The corresponding kinetic parameters were determined by multivariate nonlinear regression and the mechanism of the AP decomposition process was proposed.