Science.gov

Sample records for infrared complex faraday

  1. Determination of the Infrared Complex Magnetoconductivity Tensor in Itinerant Ferromagnets from Faraday and Kerr Measurements

    SciTech Connect

    Kim, M. H.; Acbas, G.; Yang, M. H.; Ohkubo, I.; Christen, Hans M; Mandrus, David; Scarpulla, M.A. Scarpulla; Dubon, O.D.; Schlesinger, Z.; Khalifah, Peter; Cerne, J.

    2007-01-01

    We present measurement and analysis techniques that allow the complete complex magnetoconductivity tensor to be determined from mid-infrared (11-1.6 {micro}m; 100-800 meV) measurements of the complex Faraday ({theta}{sub F}) and Kerr ({theta}{sub K}) angles. Since this approach involves measurement of the geometry (orientation axis and ellipticity of the polarization) of transmitted and reflected light, no absolute transmittance or reflectance measurements are required. Thick-film transmission and reflection equations are used to convert the complex {theta}{sub F} and {theta}{sub K} into the complex longitudinal conductivity {sigma}{sub xx} and the complex transverse (Hall) conductivity {sigma}{sub xy}. {theta}{sub F} and {theta}{sub K} are measured in a Ga{sub 1-x}Mn{sub x}As and SrRuO{sub 3} films. The resulting {sigma}{sub xx} is compared to the values obtained from conventional transmittance and reflectance measurements, as well as the results from Kramers-Kronig analysis of reflectance measurements on similar films.

  2. Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer.

    PubMed

    Wang, Yin; Nikodem, Michal; Wysocki, Gerard

    2013-01-14

    A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10(-8) rad/Hz(1/2) is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz(1/2) was achieved using the R(17/2) transition of NO at 1906.73 cm(-1).

  3. Suppression of infrared absorption in nanostructured metals by controlling Faraday inductance and electron path length.

    PubMed

    Han, Sang Eon

    2016-02-01

    Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials.

  4. Full spin polarization of complex ferrimagnetic bismuth iron garnet probed by magneto-optical Faraday spectroscopy

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Popova, Elena; Fouchet, Arnaud; Keller, Niels

    2013-06-01

    We investigate the spin-dependent electronic density of states near and above the Fermi level in bismuth iron garnet (BIG), Bi3Fe5O12, by magnetic circular dichroism and magneto-optical Faraday spectroscopy. BIG is a recently synthesized material, as its preparation requires special nonequilibrium conditions. Its scientific and applicative interest resides in huge specific Faraday rotation of the incident light, useful for magneto-optic applications. We show experimentally the presence of spin gaps in the conduction band as recently predicted theoretically by Oikawa [T. Oikawa, S. Suzuki, and K. Nakao, J. Phys. Soc. Jpn.JUPSAU0031-901510.1143/JPSJ.74.401 74, 401 (2005)]. In the range of photon energies, where full spin polarization is expected, completely asymmetric Faraday hysteresis loops were observed, similar to those observed in half-metals such as (Pr,La)0.7Ca0.3MnO3 and Fe3O4. These results were modeled using even and odd (with respect to magnetization) contributions into hysteresis loops. The odd contribution appears only in the energy ranges where the density of states is fully spin polarized and vanishes at the Curie temperature. These results open a new perspective for the use of bismuth iron garnet in optic spintronics at room temperature and above.

  5. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  6. Michael Faraday's Bicentenary.

    ERIC Educational Resources Information Center

    Williams, L. Pearce; And Others

    1991-01-01

    Six articles discuss the work of Michael Faraday, a chemist whose work revolutionized physics and led directly to both classical field and relativity theory. The scientist as a young man, the electromagnetic experiments of Faraday, his search for the gravelectric effect, his work on optical glass, his laboratory notebooks, and his creative use of…

  7. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  8. Michael Faraday, media man.

    PubMed

    Fara, Patricia

    2006-03-01

    Michael Faraday was an enthusiastic portrait collector, and he welcomed the invention of photography not only as a possible means of recording observations accurately, but also as a method for advertising science and its practitioners. This article (which is part of the Science in the Industrial Revolution series) shows that like many eminent scientists, Faraday took advantage of the burgeoning Victorian media industry by posing in various roles. PMID:16332391

  9. Michael Faraday, media man.

    PubMed

    Fara, Patricia

    2006-03-01

    Michael Faraday was an enthusiastic portrait collector, and he welcomed the invention of photography not only as a possible means of recording observations accurately, but also as a method for advertising science and its practitioners. This article (which is part of the Science in the Industrial Revolution series) shows that like many eminent scientists, Faraday took advantage of the burgeoning Victorian media industry by posing in various roles.

  10. Following Michael Faraday's Footprints

    NASA Astrophysics Data System (ADS)

    Galeano, Javier

    2011-01-01

    Last fall I had the good fortune of receiving financial support to shoot a documentary about Michael Faraday. I took the opportunity to learn more about this great experimentalist and to visit the highlights of places in his life. In this paper, I would like to share a list and description of some of the most remarkable places in London suitable for following Michael Faraday's footprints. There are many other places in Europe of special interest for the physics teacher,2,3 and some useful guides to help us visit places as "scientific travelers,"4,5 but this paper focuses on Michael Faraday and London. I have personally visited most of the places described below and found the experience to be really worthwhile.

  11. High-frequency fluctuation measurements by far-infrared laser Faraday-effect polarimetry-interferometry and forward scattering system on MST.

    PubMed

    Ding, W X; Lin, L; Duff, J R; Brower, D L

    2014-11-01

    Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.

  12. Faraday rotation system. Topical report

    SciTech Connect

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  13. Cryogenic Faraday isolator

    SciTech Connect

    Zheleznov, D S; Zelenogorskii, V V; Katin, E V; Mukhin, I B; Palashov, O V; Khazanov, Efim A

    2010-05-26

    A Faraday isolator is described in which thermal effects are suppressed by cooling down to liquid nitrogen temperatures. The principal scheme, main characteristics and modifications of the isolator are presented. The isolation degree is studied experimentally for the subkilowatt average laser radiation power. It is shown that the isolator can be used at radiation powers up to tens of kilowatts. (quantum electronic devices)

  14. Following Michael Faraday's Footprints

    ERIC Educational Resources Information Center

    Galeano, Javier

    2011-01-01

    Last fall I had the good fortune of receiving financial support to shoot a documentary about Michael Faraday. I took the opportunity to learn more about this great experimentalist and to visit the highlights of places in his life. In this paper, I would like to share a list and description of some of the most remarkable places in London suitable…

  15. Estimating extragalactic Faraday rotation

    NASA Astrophysics Data System (ADS)

    Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T. A.; Akahori, T.; Carretti, E.; Gaensler, B. M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; Pratley, L.; Schnitzeler, D. H. F. M.; Stil, J. M.; Vacca, V.

    2015-03-01

    Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly

  16. Modified Faraday cup

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1996-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  17. Modified Faraday cup

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1996-09-10

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  18. Michael Faraday vs. the Spiritualists

    NASA Astrophysics Data System (ADS)

    Hirshfeld, Alan

    2006-12-01

    In the 1850s, renowned physicist Michael Faraday launched a public campaign against pseudoscience and spiritualism, which were rampant in England at the time. Faraday objected especially to claims that electrical or magnetic forces were responsible for paranormal phenomena, such as table-spinning and communication with the dead. Using scientific methods, Faraday unmasked the deceptions of spiritualists, clairvoyants and mediums and also laid bare the credulity of a public ill-educated in science. Despite his efforts, Victorian society's fascination with the paranormal swelled. Faraday's debacle anticipates current controversies about public science education and the interface between science and religion. This episode is one of many described in the new biography, The Electric Life of Michael Faraday (Walker & Co.), which chronicles Faraday's discoveries and his unlikely rise from poverty to the pinnacle of the English science establishment.

  19. Complex structure within Saturn's infrared aurora

    USGS Publications Warehouse

    Stallard, T.; Miller, S.; Lystrup, M.; Achilleos, N.; Bunce, E.J.; Arridge, C.S.; Dougherty, M.K.; Cowley, S.W.H.; Badman, S.V.; Talboys, D.L.; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Sotin, C.; Nicholson, P.D.; Drossart, P.

    2008-01-01

    The majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission, and ionize the hydrogen, leading to H3+ infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate. Recent models predict only weak emission away from the main auroral oval. Here we report images that show emission both poleward and equatorward of the main oval (separated by a region of low emission). The extensive polar emission is highly variable with time, and disappears when the main oval has a spiral morphology; this suggests that although the polar emission may be associated with minor increases in the dynamic pressure from the solar wind, it is not directly linked to strong magnetospheric compressions. This aurora appears to be unique to Saturn and cannot be explained using our current understanding of Saturn's magnetosphere. The equatorward arc of emission exists only on the nightside of the planet, and arises from internal magnetospheric processes that are currently unknown. ??2008 Macmillan Publishers Limited. All rights reserved.

  20. Complex structure within Saturn's infrared aurora.

    PubMed

    Stallard, Tom; Miller, Steve; Lystrup, Makenzie; Achilleos, Nicholas; Bunce, Emma J; Arridge, Christopher S; Dougherty, Michele K; Cowley, Stan W H; Badman, Sarah V; Talboys, Dean L; Brown, Robert H; Baines, Kevin H; Buratti, Bonnie J; Clark, Roger N; Sotin, Christophe; Nicholson, Phil D; Drossart, Pierre

    2008-11-13

    The majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission, and ionize the hydrogen, leading to H(3)(+) infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate. Recent models predict only weak emission away from the main auroral oval. Here we report images that show emission both poleward and equatorward of the main oval (separated by a region of low emission). The extensive polar emission is highly variable with time, and disappears when the main oval has a spiral morphology; this suggests that although the polar emission may be associated with minor increases in the dynamic pressure from the solar wind, it is not directly linked to strong magnetospheric compressions. This aurora appears to be unique to Saturn and cannot be explained using our current understanding of Saturn's magnetosphere. The equatorward arc of emission exists only on the nightside of the planet, and arises from internal magnetospheric processes that are currently unknown. PMID:19005549

  1. Observation of Trans-Ethanol and Gauche-Ethanol Complexes with Benzene Using Matrix Isolation Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Amicangelo, Jay; Silbaugh, Matthew J.

    2016-06-01

    Ethanol can exist in two conformers, one in which the OH group is trans to the methyl group (trans-ethanol) and the other in which the OH group is gauche to the methyl group (gauche-ethanol). Matrix isolation infrared spectra of ethanol deposited in 20 K argon matrices display distinct infrared peaks that can be assigned to the trans-ethanol and gauche-ethanol conformers, particularly with the O-H stretching vibrations. Given this, matrix isolation experiments were performed in which ethanol (C_2H_5OH) and benzene (C_6H_6) were co-deposited in argon matrices at 20 K in order to determine if conformer specific ethanol complexes with benzene could be observed in the infrared spectra. New infrared peaks that can be attributed to the trans-ethanol and gauche-ethanol complexes with benzene have been observed near the O-H stretching vibrations of ethanol. The initial identification of the new infrared peaks as being due to the ethanol-benzene complexes was established by performing a concentration study (1:200 to 1:1600 S/M ratios), by comparing the co-deposition spectra with the spectra of the individual monomers, by matrix annealing experiments (35 K), and by performing experiments using isotopically labeled ethanol (C_2D_5OD) and benzene (C_6D_6). Quantum chemical calculations were also performed for the C_2H_5OH-C_6H_6 complexes using density functional theory (B3LYP) and ab initio (MP2) methods. Stable minima were found for the both the trans-ethanol and gauche-ethanol complexes with benzene at both levels of theory and were predicted to have similar interaction energies. Both complexes can be characterized as H-π complexes, in which the ethanol is above the benzene ring with the hydroxyl hydrogen interacting with the π cloud of the ring. The theoretical O-H stretching frequencies for the complexes were predicted to be shifted from the monomer frequencies and from each other and these results were used to make the conformer specific infrared peak assignments

  2. Faraday instability in deformable domains

    NASA Astrophysics Data System (ADS)

    Pucci, Giuseppe; Ben Amar, Martine; Couder, Yves

    2014-11-01

    We investigate the Faraday instability in floating liquid lenses, as an example of hydrodynamic instability that develops in a domain with flexible boundaries. We show that a mutual adaptation of the instability pattern and the domain shape occurs, as a result of the competition between the wave radiation pressure and the capillary response of the lens border. Two archetypes of behaviour are observed. In the first, stable shapes are obtained experimentally and predicted theoretically as the exact solutions of a Riccati equation, and they result from the equilibrium between wave radiation pressure and capillarity. In the second, the radiation pressure exceeds the capillary response of the lens border and leads to non-equilibrium behaviours, with breaking into smaller domains that have a complex dynamics including spontaneous propagation. The authors are grateful to Université Franco-Italienne (UFI) for financial support.

  3. fsclean: Faraday Synthesis CLEAN imager

    NASA Astrophysics Data System (ADS)

    Bell, M. R.; Ensslin, T. A.

    2015-06-01

    Fsclean produces 3D Faraday spectra using the Faraday synthesis method, transforming directly from multi-frequency visibility data to the Faraday depth-sky plane space. Deconvolution is accomplished using the CLEAN algorithm, and the package includes Clark and Högbom style CLEAN algorithms. Fsclean reads in MeasurementSet visibility data and produces HDF5 formatted images; it handles images and data of arbitrary size, using scratch HDF5 files as buffers for data that is not being immediately processed, and is limited only by available disk space.

  4. Infrared and Microwave Spectra of Ne-WATER Complex

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Thomas, Javix; Xu, Yunjie; Hou, Dan; Li, Hui

    2016-06-01

    The binary complex of rare gas atom and water is an ideal model to study the anisotropic potential energy surface of van der Waals interaction and the large amplitude motion. Although Xe-H_2O, Kr-H_2O, Ar-H_2O, Ar-D_2O and even Ne-D_2O complexes were studied by microwave or high resolution infrared spectroscopy, the lighter Ne-H_2O complex has remained unidentified. In this talk, we will present the theoretical and experimental investigation of the Ne-H_2O complex. A four-dimension PES for H_2O-Ne which only depended on the intramolecular (Q2) normal-mode coordinate of H2O monomer was calculated in this work to determine the rovibrational energy levels and mid-infrared transitions. Aided with the calculated transitions, we were able to assigned the high resolution mid-infrared spectra of both 20Ne-H_2O and 22Ne-H_2O complexes that are generated with a pulsed supersonic molecular beam in a multipass direct absorption spectrometer equiped with an external cavity quantum cascade laser at 6 μm. Several bands of both para and ortho Ne-H2O were assigned and fitted using the Hamiltonian with strong Coriolis and angular-radical coupling terms. The predicted groud state energy levels are then confirmed by the J=1-0 and J=2-1 transitions measurement using a cavity based Fourier transform microwave spectrometer.

  5. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  6. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  7. MUSIC for Faraday rotation measure synthesis

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    2013-03-01

    Faraday rotation measure (RM) synthesis requires the recovery of the Faraday dispersion function (FDF) from measurements restricted to limited wavelength ranges, which is an ill-conditioned deconvolution problem. Here, we propose a novel deconvolution method based on an extension of the MUltiple SIgnal Classification (MUSIC) algorithm. The complexity and speed of the method is determined by the eigen-decomposition of the covariance matrix of the observed polarizations. We show numerically that for high to moderate signal-to-noise ratio (S/N) cases the RM-MUSIC method is able to recover the Faraday depth values of closely spaced pairs of thin RM components, even in situations where the peak response of the FDF is outside of the RM range between the two input RM components. This result is particularly important because the standard deconvolution approach based on RM-CLEAN fails systematically in such situations, due to its greedy mechanism used to extract the RM components. For low S/N situations, both the RM-MUSIC and RM-CLEAN methods provide similar results.

  8. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  9. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  10. Ultrafast infrared studies of complex ligand rearrangements in solution

    SciTech Connect

    Payne, Christine K.

    2003-05-31

    The complete description of a chemical reaction in solution depends upon an understanding of the reactive molecule as well as its interactions with the surrounding solvent molecules. Using ultrafast infrared spectroscopy it is possible to observe both the solute-solvent interactions and the rearrangement steps which determine the overall course of a chemical reaction. The topics addressed in these studies focus on reaction mechanisms which require the rearrangement of complex ligands and the spectroscopic techniques necessary for the determination of these mechanisms. Ligand rearrangement is studied by considering two different reaction mechanisms for which the rearrangement of a complex ligand constitutes the most important step of the reaction. The first system concerns the rearrangement of a cyclopentadienyl ring as the response of an organometallic complex to a loss of electron density. This mechanism, commonly referred to as ''ring slip'', is frequently cited to explain reaction mechanisms. However, the ring slipped intermediate is too short-lived to be observed using conventional methods. Using a combination of ultrafast infrared spectroscopy and electronic structure calculations it has been shown that the intermediate exists, but does not form an eighteen-electron intermediate as suggested by traditional molecular orbital models. The second example examines the initial steps of alkyne polymerization. Group 6 (Cr, Mo, W) pentacarbonyl species are generated photolytically and used to catalyze the polymerization of unsaturated hydrocarbons through a series of coordination and rearrangement steps. Observing this reaction on the femto- to millisecond timescale indicates that the initial coordination of an alkyne solvent molecule to the metal center results in a stable intermediate that does not rearrange to form the polymer precursor. This suggests that polymerization requires the dissociation of additional carbonyl ligands before rearrangement can occur. Overall

  11. Infrared Spectroscopy of Charge Transfer Complexes of Purines and Pyrimidines

    SciTech Connect

    Rathod, Pravinsinh I.; Oza, A. T.

    2011-10-20

    The FTIR spectra of charge transfer complexes of purines and pyrimidines with organic acceptors such as TCNQ, TCNE, DDQ, chloranil and iodine are obtained and studied in the present work. Adenine, guanine, thymine, cytosine and uracil are the purines and pyrimidines which are found as constituent of DNA and RNA. Charge transfer induced hydrogen bonding is concluded on the basis of indirect transitions observed in the infrared range in these CTCs. Some CTCs show gaussian bands revealing delocalization of charge carriers. The CTCs show interband transition in three-dimensions rather than two-dimensions unlike CTCs of amino acids. There is no extended hydrogen bonded network spanning the whole crystal. This leads to indirect transition due to locally deformed lattice furnishing a phonon-assisted transition.

  12. Near infrared photodissociation spectra of the aniline +-argon ionic complexes

    NASA Astrophysics Data System (ADS)

    Pino, T.; Douin, S.; Boudin, N.; Bréchignac, Ph.

    2006-02-01

    The near infrared spectra of the ionic complexes aniline(NH 2) +-argon and aniline(ND 2) +-argon have been measured by laser photodissociation spectroscopy. The bands observed from 10 500 to 13 500 cm -1 have been assigned to the D1(A˜2A2)←D0(X˜2B1) electronic transition within the solvated chromophore. They are characterized by a long vibrational progression involving the 6a mode. On the basis of CASSCF calculations, a large change of geometry along this coordinate is found while the amino group remains in the ring plane. Therefore, a change of the conjugation of the ring rather than a charge transfer is inferred. This is thought to be the origin of the extent of the progression.

  13. Various Paths to Faraday's Law

    ERIC Educational Resources Information Center

    Redzic, Dragan V.

    2008-01-01

    In a recent note, the author presented a derivation of Faraday's law of electromagnetic induction for a closed filamentary circuit C(t) which is moving at relativistic velocities and also changing its shape as it moves via the magnetic vector potential. Recently, Kholmetskii et al, while correcting an error in an equation, showed that it can be…

  14. Building a better Faraday cage

    NASA Astrophysics Data System (ADS)

    MartinAlfven; Wright, David; skocpol; Rounce, Graham; Richfield, Jon; W, Nick; wheelsonfire

    2015-11-01

    In reply to the physicsworld.com news article “Are Faraday cages less effective than previously thought?” (15 September, http://ow.ly/SfklO), about a study that indicated, based on mathematical modelling, that conducting wire-mesh cages may not be as good at excluding electromagnetic radiation as is commonly assumed.

  15. Faraday's Law and Seawater Motion

    ERIC Educational Resources Information Center

    De Luca, R.

    2010-01-01

    Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…

  16. A Mobile Phone Faraday Cage

    ERIC Educational Resources Information Center

    French, M. M. J.

    2011-01-01

    A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is…

  17. Faraday's first dynamo: A retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  18. BROADBAND RADIO POLARIMETRY AND FARADAY ROTATION OF 563 EXTRAGALACTIC RADIO SOURCES

    SciTech Connect

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.

    2015-12-10

    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1′ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases.

  19. Broadband Radio Polarimetry and Faraday Rotation of 563 Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.

    2015-12-01

    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1‧ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases.

  20. Faraday rotation in CMB maps

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, Beatriz; Battaner, Eduardo; Florido, Estrella

    2016-10-01

    WMAP CMB polarization maps have been used to detect a low signal of Faraday Rotation (FR). If this detection is not interpreted as simple noise, it could be produced: at the last scattering surface (LSS) (z=1100), being primordial, at Reionization (z=10), in the Milky Way. The second interpretation is favoured here. In this case magnetic fields at Reionization with peak values of the order of 10-8 G should produce this observational FR.

  1. Faraday dispersion functions of galaxies

    SciTech Connect

    Ideguchi, Shinsuke; Tashiro, Yuichi; Takahashi, Keitaro; Akahori, Takuya; Ryu, Dongsu E-mail: 136d8008@st.kumamoto-u.ac.jp E-mail: akahori@physics.usyd.edu.au

    2014-09-01

    The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, find that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.

  2. Deconvolving Current from Faraday Rotation Measurement

    SciTech Connect

    Stephen E. Mitchell

    2008-02-01

    In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters, such as the Faraday fiber’s Verdet constant and number of loops in the sensor, are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform, which reveals much of the Faraday rotation measurement’s implicit information necessary for unfolding the dynamic current measurement.

  3. Active imaging system with Faraday filter

    DOEpatents

    Snyder, J.J.

    1993-04-13

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  4. Active imaging system with Faraday filter

    DOEpatents

    Snyder, James J.

    1993-01-01

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  5. Lines of Force: Faraday's and Students' Views.

    ERIC Educational Resources Information Center

    Pocovi, M. Cecilia; Finley, Fred

    2002-01-01

    Analyzes how electric and magnetic lines of force were conceived by Faraday and how they are understood by a group of Argentine university students after receiving instruction. Results show that many students possess ideas similar to those of Faraday in that lines of force are conceived as real physical entities responsible for the transmission of…

  6. Michael Faraday's work on optical glass

    NASA Astrophysics Data System (ADS)

    James, Frank A. J. L.

    1991-09-01

    This article discusses Faraday's work of the late 1820s to improve optical glass for the joint Royal Society/Board of Longitude Committee set up for this purpose. It points out the importance of this work for some of Faraday's later physical researches.

  7. Resonant Faraday shield ICRH antenna

    NASA Astrophysics Data System (ADS)

    Cattanei, G.; W7-AS Team

    2002-05-01

    ICRH has proved to be an efficient method of heating the plasma in toroidal devices. The high voltages needed at the coupling structure are, however, a severe handicap of this method. The possibility is investigated of having the highest voltages between the bars of the Faraday shield (FS), where they are both necessary and easier to maintain. For this purpose a resonant Faraday shield (RFS) antenna where the first and last bars of the FS are connected by an inductive strip is proposed. In front of this strip there is a second strip, fed, as in a conventional antenna, by an RF generator. It is shown that if the toroidal length of the FS is larger than λ/2 the strip connecting the bars of the FS acts as the secondary coil of a tuned transformer, the strip fed by the generator being the primary. It is therefore possible, by varying the frequency and the distance between the two strips, i.e. the coupling coefficient, to match the impedance of the primary to that of the generator.

  8. Faraday diagnostics for ALT-3

    SciTech Connect

    Oro, David M; Tabaka, Leonard J

    2011-01-13

    ALT-3 and R-Damage are experiments to be executed in collaboration between LANL and VNIIEF personnel. They are planned to be fielded in Sarov, Russia at VNIIEF. Both experiments employ Russian explosively driven pulse-power systems to generate a pulse of electrical current that is used to drive the experiment. The current pulse will be measured with Faraday-rotation fiber-optic loops. Using this well known technique, the change in the current enclosed by the loops is determined by measuring the change in the magnetic field integrated along the fiber-optic loop by detecting the Faraday rotation of linearly polarized light traveling through the fiber. The amount of polarization rotation of the light is related to the integrated magnetic field and therefore the enclosed current (Ampere's law) through the Verdet constant which for the optical-fibers used in this experiment has been determined to within 1 %. The presentation describes how the technique will be employed in the ALT-3 experiment.

  9. Near infrared spectroscopy and chemometrics analysis of complex traits in animal physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance (NIR) applications have been expanding from the traditional framework of small molecule chemical purity and composition (as defined by spectral libraries) to complex system analysis and holistic exploratory approaches to questions in biochemistry, biophysics and environment...

  10. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    PubMed Central

    2015-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  11. WW domain folding complexity revealed by infrared spectroscopy.

    PubMed

    Davis, Caitlin M; Dyer, R Brian

    2014-09-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  12. 1/f Noise Inside a Faraday Cage

    SciTech Connect

    Handel, Peter H.; George, Thomas F.

    2009-04-23

    We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.

  13. Faraday wave lattice as an elastic metamaterial.

    PubMed

    Domino, L; Tarpin, M; Patinet, S; Eddi, A

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial. PMID:27300815

  14. Isotopic labelling studies on far-infrared spectra of nickel-histamine complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    2000-11-01

    Nickel-histamine (hm) complexes type [Ni(hm)Cl 2] and [Ni(hm) 3] X2 (Where X=Cl, Br, I, ClO 4) were investigated in the far-infrared region. Metal isotope labelling and deuteration effects were employed for observed band assignments. Metal-ligand vibrations were discussed and correlated with the structures of the complexes.

  15. Michael Faraday's Contributions to Archaeological Chemistry.

    PubMed

    Moshenska, Gabriel

    2015-08-01

    The analysis of ancient artefacts is a long but largely neglected thread within the histories of archaeology and chemistry. This paper examines Michael Faraday's contributions to this nascent field, drawing on his published correspondence and the works of his antiquarian collaborators, and focusing in particular on his analyses of Romano-British and ancient Egyptian artefacts. Faraday examined the materials used in ancient Egyptian mummification, and provided the first proof of the use of lead glazes on Roman ceramics. Beginning with an assessment of Faraday's personal interests and early work on antiquities with Humphry Davy, this paper critically examines the historiography of archaeological chemistry and attempts to place Faraday's work within its institutional, intellectual, and economic contexts. PMID:26307911

  16. Michael Faraday's Contributions to Archaeological Chemistry.

    PubMed

    Moshenska, Gabriel

    2015-08-01

    The analysis of ancient artefacts is a long but largely neglected thread within the histories of archaeology and chemistry. This paper examines Michael Faraday's contributions to this nascent field, drawing on his published correspondence and the works of his antiquarian collaborators, and focusing in particular on his analyses of Romano-British and ancient Egyptian artefacts. Faraday examined the materials used in ancient Egyptian mummification, and provided the first proof of the use of lead glazes on Roman ceramics. Beginning with an assessment of Faraday's personal interests and early work on antiquities with Humphry Davy, this paper critically examines the historiography of archaeological chemistry and attempts to place Faraday's work within its institutional, intellectual, and economic contexts.

  17. Wave-particle interaction in the Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa. PMID:26420468

  18. Wave-particle interaction in the Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.

  19. Infrared spectrum of the complex of formaldehyde with carbon dioxide in argon and nitrogen matrices

    NASA Technical Reports Server (NTRS)

    Van Der Zwet, G. P.; Allamandola, Louis J.; Baas, F.; Greenberg, J. M.

    1989-01-01

    The complex of formaldehyde with carbon dioxide has been studied by infrared spectroscopy in argon and nitrogen matrices. The shifts relative to the free species show that the complex is weak and similar in argon and nitrogen. The results give evidence for T-shaped complexes, which are isolated in several configurations. Some evidence is also presented which indicates that, in addition to the two well-known sites in argon, carbon dioxide can be trapped in a third site.

  20. Complex infrared emission features in the spectrum of beta Lyrae

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Potter, A. E.; Kondo, Y.

    1974-01-01

    Spectra of beta Lyrae over the spectral region from 5800 to 11,000 per cm (1.76 to 0.9 micron) at two different phases have been obtained. They show a remarkable emission-absorption complex at 9231 per cm, a highly structured emission at P beta, and several additional broad weak emissions.

  1. THE COMPUTED INFRARED SPECTRA OF A VARIETY OF [FePAH]{sup +} COMPLEXES: MID- AND FAR-INFRARED FEATURES

    SciTech Connect

    Simon, A.; Joblin, C.

    2010-03-20

    The effects of the pi-coordination of an Fe atom on the mid- and far-infrared spectra of a mixture of cationic polycyclic aromatic hydrocarbons (PAHs), e.g., pyrene (C{sub 16}H{sub 10}), anthanthrene (C{sub 22}H{sub 12}), coronene (C{sub 24}H{sub 12}), ovalene (C{sub 32}H{sub 14}), circumpyrene (C{sub 42}H{sub 16}), and circumcoronene (C{sub 54}H{sub 18}), are studied by Density Functional Theory based calculations. In the mid-infrared range (3-20 {mu}m), by comparison with the bare PAH{sup +} spectrum, we found (1) an increase of the intensity ratio of the C-H stretching and C-H out-of-plane bending bands with respect to the intense CC stretching band and (2) a shift of the band positions and a characteristic profile with a steep blue rise and an extended red tail for the CC stretching and CH out-of-plane bending bands. None of these features appears inconsistent with the observed aromatic infrared band spectrum. In the far-infrared range (lambda > 20 {mu}m), the presence of a pi-coordinated Fe atom induces many new bands as (1) some vibrational modes of the PAH are activated due to symmetry reduction and (2) new modes involving the motion of the Fe atom occur. In particular, an accumulation point due to the activation of the Fe-PAH stretching mode is observed at around 40 {mu}m. This range is suggested to contain the spectral fingerprint for the presence of [M-PAH]{sup +} (M=Fe, Si, Mg) complexes in the interstellar medium. Additional features in the [60-300] {mu}m range are found for complexes with large PAHs. The obtained results are discussed in the light of past, present, and future astronomical missions, among which are the Herschel Space Observatory and the SPICA telescope for the far-infrared domain.

  2. Infrared Spectroscopy of the H2/HD/D2-O2 Van Der Waals Complexes

    NASA Astrophysics Data System (ADS)

    Raston, Paul; Bunn, Hayley

    2016-06-01

    Hydrogen is the most abundant element in the universe and oxygen is the third, so understanding the interaction between the two in their different forms is important to understanding astrochemical processes. The interaction between H2 and O2 has been explored in low energy scattering experiments and by far infrared synchrotron spectroscopy of the van der Waals complex. The far infrared spectra suggest a parallel stacked average structure with seven bound rotationally excited states. Here, we present the far infrared spectrum of HD/D2-O2 and the mid infrared spectrum of H2-O2 at 80 K, recorded at the infrared beamline facility of the Australian Synchrotron. We observed 'sharp' peaks in the mid infrared region, corresponding to the end over end rotation of H2-O2, that are comparatively noisier than analogous peaks in the far infrared where the synchrotron light is brightest. The larger reduced mass of HD and D2 compared to H2 is expected to result in more rotational bound states and narrower bands. The latest results in our ongoing efforts to explore this system will be presented. Y. Kalugina, et al., Phys. Chem. Chem. Phys. 14, 16458 (2012) S. Chefdeville et al. Science 341, 1094 (2013) H. Bunn et al. ApJ 799, 65 (2015)

  3. Infrared intensities and charge mobility in hydrogen bonded complexes

    NASA Astrophysics Data System (ADS)

    Galimberti, Daria; Milani, Alberto; Castiglioni, Chiara

    2013-08-01

    The analytical model for the study of charge mobility in the molecules presented by Galimberti et al. [J. Chem. Phys. 138, 164115 (2013)] is applied to hydrogen bonded planar dimers. Atomic charges and charge fluxes are obtained from density functional theory computed atomic polar tensors and related first derivatives, thus providing an interpretation of the IR intensity enhancement of the X-H stretching band observed upon aggregation. Our results show that both principal and non-principal charge fluxes have an important role for the rationalization of the spectral behavior; moreover, they demonstrate that the modulation of the charge distribution during vibrational motions of the -XH⋯Y- fragment is not localized exclusively on the atoms directly involved in hydrogen bonding. With these premises we made some correlations between IR intensities, interaction energies, and charge fluxes. The model was tested on small dimers and subsequently to the bigger one cytosine-guanine. Thus, the model can be applied to complex systems.

  4. Michael Faraday and his contribution to anesthesia.

    PubMed

    Bergman, N A

    1992-10-01

    Michael Faraday (1791-1867) was a protégé of Humphry Davy. He became one of Davy's successors as Professor of Chemistry at the Royal Institution of Great Britain. Of Faraday's many brilliant discoveries in chemistry and physics, probably the best remembered today is his work on electromagnetic induction. Faraday's contribution to introduction of anesthesia was his published announcement in 1818 that inhalation of the vapor of ether produced the same effects on mentation and consciousness as the breathing of nitrous oxide. He most likely became familiar with the central nervous system effects of nitrous oxide through his association with Davy, an avid user of the gas. Sulfuric ether was a common, convenient, cheap, and easily available substance, in contrast to nitrous oxide, which required expensive, cumbersome, and probably not widely available apparatus for its production and administration. The capability for inhaling intoxicating vapors eventually became commonly available with the use of ether instead of the gas. The first surgical anesthetics were a consequence of the resulting student "ether frolics." The 1818 announcement on breathing ether vapor was published anonymously; however, notations in Faraday's handwriting in some of his personal books clearly establish Michael Faraday as the author of this brief communication. PMID:1416178

  5. Michael Faraday and his contribution to anesthesia.

    PubMed

    Bergman, N A

    1992-10-01

    Michael Faraday (1791-1867) was a protégé of Humphry Davy. He became one of Davy's successors as Professor of Chemistry at the Royal Institution of Great Britain. Of Faraday's many brilliant discoveries in chemistry and physics, probably the best remembered today is his work on electromagnetic induction. Faraday's contribution to introduction of anesthesia was his published announcement in 1818 that inhalation of the vapor of ether produced the same effects on mentation and consciousness as the breathing of nitrous oxide. He most likely became familiar with the central nervous system effects of nitrous oxide through his association with Davy, an avid user of the gas. Sulfuric ether was a common, convenient, cheap, and easily available substance, in contrast to nitrous oxide, which required expensive, cumbersome, and probably not widely available apparatus for its production and administration. The capability for inhaling intoxicating vapors eventually became commonly available with the use of ether instead of the gas. The first surgical anesthetics were a consequence of the resulting student "ether frolics." The 1818 announcement on breathing ether vapor was published anonymously; however, notations in Faraday's handwriting in some of his personal books clearly establish Michael Faraday as the author of this brief communication.

  6. The gravitational analog of Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Overduin, James

    2015-04-01

    Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.

  7. Near-Infrared Phosphorescent Iridium(III) Benzonorrole Complexes Possessing Pyridine-based Axial Ligands.

    PubMed

    Maurya, Yogesh Kumar; Ishikawa, Takahiro; Kawabe, Yasunori; Ishida, Masatoshi; Toganoh, Motoki; Mori, Shigeki; Yasutake, Yuhsuke; Fukatsu, Susumu; Furuta, Hiroyuki

    2016-06-20

    Novel near-infrared phosphorescent iridium(III) complexes based on benzo-annulated N-linked corrole analogue (termed as benzonorrole) were synthesized. The structures of the complexes revealed octahedral coordination geometries involving an organometallic iridium-carbon bond with two external axial ligands. Interestingly, the iridium(III) complex exhibits near-infrared phosphorescence at room temperature at wavelengths beyond 900 nm. The significant redshift of the emission, as compared to the corrole congener, is originated from the ligand-centered triplet character. The fine-tuning of the photophysical properties of the complexes was achieved by introducing electron-donating and electron-withdrawing substituents on the axial pyridine ligands. PMID:27249778

  8. Infrared intensities and charge mobility in hydrogen bonded complexes

    SciTech Connect

    Galimberti, Daria; Milani, Alberto; Castiglioni, Chiara

    2013-08-21

    The analytical model for the study of charge mobility in the molecules presented by Galimberti et al.[J. Chem. Phys. 138, 164115 (2013)] is applied to hydrogen bonded planar dimers. Atomic charges and charge fluxes are obtained from density functional theory computed atomic polar tensors and related first derivatives, thus providing an interpretation of the IR intensity enhancement of the X–H stretching band observed upon aggregation. Our results show that both principal and non-principal charge fluxes have an important role for the rationalization of the spectral behavior; moreover, they demonstrate that the modulation of the charge distribution during vibrational motions of the –XH⋯Y– fragment is not localized exclusively on the atoms directly involved in hydrogen bonding. With these premises we made some correlations between IR intensities, interaction energies, and charge fluxes. The model was tested on small dimers and subsequently to the bigger one cytosine-guanine. Thus, the model can be applied to complex systems.

  9. Giant Faraday rotation in single- and multilayer graphene

    NASA Astrophysics Data System (ADS)

    Crassee, Iris; Levallois, Julien; Walter, Andrew L.; Ostler, Markus; Bostwick, Aaron; Rotenberg, Eli; Seyller, Thomas; van der Marel, Dirk; Kuzmenko, Alexey B.

    2011-01-01

    The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases. As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films-the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon-graphene-turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices.

  10. Mode-locking via dissipative Faraday instability

    PubMed Central

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  11. Mode-locking via dissipative Faraday instability

    NASA Astrophysics Data System (ADS)

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-08-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system--spectrally dependent losses--achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  12. Faraday polarization fluctuations of satellite beacon signals

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Klobuchar, J. A.

    1988-01-01

    The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.

  13. Mode-locking via dissipative Faraday instability.

    PubMed

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  14. The hyperfine Paschen-Back Faraday effect

    NASA Astrophysics Data System (ADS)

    Zentile, Mark A.; Andrews, Rebecca; Weller, Lee; Knappe, Svenja; Adams, Charles S.; Hughes, Ifan G.

    2014-04-01

    We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine Paschen-Back regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra, we achieve magnetic field sensitivity at the 10-4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilization at large detuning. The theoretical sensitivity for 87Rb is found to be ˜40 kHz °C-1.

  15. Heating profiles on ICRF antenna Faraday shields

    SciTech Connect

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs.

  16. Faraday Waves under Time-Reversed Excitation

    NASA Astrophysics Data System (ADS)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer , Phys. Rev. E 78, 036218 (2008)PLEEE81539-3755]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  17. Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.

    PubMed

    Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V

    2015-05-01

    A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.

  18. Ultrafast Faraday Rotation of Slow Light

    NASA Astrophysics Data System (ADS)

    Musorin, A. I.; Sharipova, M. I.; Dolgova, T. V.; Inoue, M.; Fedyanin, A. A.

    2016-08-01

    The active control of optical signals in the time domain is what science and technology demand in fast all-optical information processing. Nanostructured materials can modify the group velocity and slow the light down, as the artificial light dispersion emerges. We observe the ultrafast temporal behavior of the Faraday rotation within a single femtosecond laser pulse under conditions of slow light in a one-dimensional magnetophotonic crystal. The Faraday effect changes by 20% over the time of 150 fs. This might be applicable to the fast control of light in high-capacity photonic devices.

  19. Analytical estimation of solid angle subtended by complex well-resolved surfaces for infrared detection studies.

    PubMed

    Mahulikar, Shripad P; Potnuru, Santosh K; Kolhe, Pankaj S

    2007-08-01

    The solid angle (Omega) subtended by the hot power-plant surfaces of a typical fighter aircraft, on the detector of an infrared (IR) guided missile, is analytically obtained. The use of the parallel rays projection method simplifies the incorporation of the effect of the optical blocking by engine surfaces, on Omega-subtended. This methodology enables the evaluation of the relative contribution of the IR signature from well-resolved distributed sources, and is important for imaging infrared detection studies. The complex 3D surface of a rear fuselage is projected onto an equivalent planar area normal to the viewing aspect, which would give the same Omega-subtended. PMID:17676106

  20. Infrared spectra and density functional theory calculations of the tantalum and niobium carbonyl dinitrogen complexes.

    PubMed

    Lu, Zhang-Hui; Jiang, Ling; Xu, Qiang

    2009-07-21

    Laser-ablated tantalum and niobium atoms react with CO and N(2) mixtures in excess neon to produce carbonyl metal dinitrogen complexes, NNMCO (M = Ta, Nb), (NN)(2)TaCO, and NNTa(CO)(2), as well as metal carbonyls and dinitrogen complexes. These carbonylmetal dinitrogen complexes are characterized using infrared spectroscopy on the basis of the results of the isotopic substitution and mixed isotopic splitting patterns. Density functional theory calculations have been performed on these novel species. The good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts supports the identification of these species from the matrix infrared spectra. Natural bond orbital analysis and plausible reaction mechanisms for the formation of the products are discussed.

  1. Infrared spectroscopic studies on reaction induced conformational changes in the NADH ubiquinone oxidoreductase (complex I).

    PubMed

    Hellwig, Petra; Kriegel, Sébastien; Friedrich, Thorsten

    2016-07-01

    Redox-dependent conformational changes are currently discussed to be a crucial part of the reaction mechanism of the respiratory complex I. Specialized difference Fourier transform infrared techniques allow the detection of side-chain movements and minute secondary structure changes. For complex I, (1)H/(2)H exchange kinetics of the amide modes revealed a better accessibility of the backbone in the presence of NADH and quinone. Interestingly, the presence of phospholipids, that is crucial for the catalytic activity of the isolated enzyme complex, changes the overall conformation. When comparing complex I samples from different species, very similar electrochemically induced FTIR difference spectra and very similar rearrangements are reported. Finally, the information obtained with variants and from Zn(2+) inhibited samples for the conformational reorganization of complex I upon electron transfer are discussed in this review. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  2. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    NASA Astrophysics Data System (ADS)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  3. Infrared spectra of oxygen-rich yttrium and lanthanum dioxygen/ozonide complexes in solid argon.

    PubMed

    Gong, Yu; Ding, Chuanfan; Zhou, Mingfei

    2009-07-30

    The reactions of yttrium and lanthanum atoms with O(2) have been reinvestigated using matrix isolation infrared spectroscopy and theoretical calculations. The ground-state yttrium and lanthanum atoms react with O(2) to produce the inserted yttrium and lanthanum dioxide molecules as the initial products. The yttrium dioxide molecule interacts spontaneously with additional O(2) molecules to form the oxygen-rich OY(eta(2)-O(3)) complex and possibly the (eta(2)-O(2))Y(eta(2)-O(3))(2) complexes upon sample annealing, which can be regarded as the side-on bonded yttrium monoxide ozonide complex and the superoxo yttrium bisozonide complex, respectively. Visible irradiation induces the isomerization of the OY(eta(2)-O(3)) complex to the superoxo yttrium peroxide Y(eta(2)-O(2))(2) isomer, in which both the superoxo and peroxo ligands are side-on bonded to the yttrium center. The lanthanum dioxide molecule reacts with additional O(2) molecules to form the lanthanum dioxide-dioxygen complex with planar C(2v) symmetry, which rearranges to the lanthanum monoxide ozonide complex, OLa(eta(2)-O(3)), under near-infrared excitation.

  4. Faraday current sensing employing chromatic modulation

    NASA Astrophysics Data System (ADS)

    Jones, G. R.; Li, G.; Spencer, J. W.; Aspey, R. A.; Kong, M. G.

    1998-01-01

    Faraday current sensors using a variety of sensing elements have been investigated extensively for their high sensitivity as well as other advantages [G.L. Lewis et al., Proc. IEE Conf. on The Reliability of Transmission and Distribution Equipment, 1995; Y.N. Ning et al., Optics Lett. 16 (1991); C.M.M. van den Tempel, Appl. Optics 32 (1993)]. Concurrently chromatic modulation techniques have been investigated at the University of Liverpool for use with optical fibre sensors of different types [N.A. Pilling, Ph.D. Thesis, 1992; M.M. Murphy, Ph.D. Thesis, 1991] including Faraday current sensing, for overcoming difficulties with non-referenced intensity modulation systems. In this contribution a brief discussion of the scope of chromatically based Faraday current sensing with particular regard to electric power transmission and distribution industries is given. A novel sensor based upon a Faraday glass block in combination with a BSO crystal in the sensing element is described. The sensor takes advantage of the natural gyrotropy of the BSO which conversely has been previously regarded as a disadvantage. The experimental results obtained indicate that this method offers a novel approach to improving system sensitivity. The extension of the approach from a simple bench top demonstrator to real power systems deployment is also discussed.

  5. Fast Faraday Cup With High Bandwidth

    SciTech Connect

    Deibele, Craig E

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  6. QUANTUM ELECTRONIC DEVICES: Cryogenic Faraday isolator

    NASA Astrophysics Data System (ADS)

    Zheleznov, D. S.; Zelenogorskii, V. V.; Katin, E. V.; Mukhin, I. B.; Palashov, O. V.; Khazanov, Efim A.

    2010-05-01

    A Faraday isolator is described in which thermal effects are suppressed by cooling down to liquid nitrogen temperatures. The principal scheme, main characteristics and modifications of the isolator are presented. The isolation degree is studied experimentally for the subkilowatt average laser radiation power. It is shown that the isolator can be used at radiation powers up to tens of kilowatts.

  7. Fiber optic, Faraday rotation current sensor

    SciTech Connect

    Veeser, L.R.; Day, G.W.

    1986-01-01

    At the Second Megagauss Conference in 1979, there were reports of experiments that used the Faraday magneto-optic effect in a glass rod to measure large electric current pulses or magnetic fields. Since then we have seen the development of single-mode optical fibers that can carry polarized light in a closed loop around a current load. A fiber optic Faraday rotation sensor will integrate the flux, instead of sampling it at a discrete point, to get a measurement independent of the current distribution. Early Faraday rotation experiments using optical fibers to measure currents dealt with problems such as fiber birefringence and difficulties in launching light into the tiny fiber cores. We have built on those experiments, working to reduce the effects of shocks and obtaining higher bandwidths, absolute calibration, and computerized recording and data analysis, to develop the Faraday rotation sensors into a routine current diagnostic. For large current pulses we find reduced sensitivity to electromagnetic interference and other backgrounds than for Rogowski loops; often the fiber optic sensors are useful where conductive probes cannot be used at all. In this paper we describe the fiber optic sensors and some practical matters involved in fielding them.

  8. Faraday rotation due to quadratic gravitation

    NASA Astrophysics Data System (ADS)

    Chen, Yihan; Liu, Liping; Tian, Wen-Xiu

    2011-01-01

    The linearized field equations of quadratic gravitation in stationary space-time are written in quasi-Maxwell form. The rotation of the polarization plane for an electromagnetic wave propagating in the gravito-electromagnetic field caused by a rotating gravitational lens is discussed. The influences of the Yukawa potential in quadratic gravitation on the gravitational Faraday rotation are investigated.

  9. Reflections of a Faraday Challenge Day Leader

    ERIC Educational Resources Information Center

    Sewell, Keira

    2014-01-01

    Keira Sewell has just finished her second year as a Challenge Leader for the Faraday Challenge, a STEM-based scheme run by the Institution of Engineering and Technology. Aimed at 12-13 year-old students, its purpose is to engage students in future careers in engineering. Each year, a new challenge is held in over sixty schools and universities…

  10. The Minus Sign in Faraday's Law Revisited

    ERIC Educational Resources Information Center

    O'Sullivan, Colm; Hurley, Donal

    2013-01-01

    By introducing the mathematical concept of orientation, the significance of the minus sign in Faraday's law may be made clear to students with some knowledge of vector calculus. For many students, however, the traditional approach of treating the law as a relationship between positive scalars and of relying on Lenz's law to provide the information…

  11. Water complexes of important air pollutants: geometries, complexation energies, concentrations, infrared spectra, and intrinsic reactivity.

    PubMed

    Galano, Annia; Narciso-Lopez, Marcela; Francisco-Marquez, Misaela

    2010-05-13

    Water complexes involving methanol, ethanol, formaldehyde, formic acid, acetone, ammonia, acetylene, ethylene, chloroethene, trichloroethene, 1,1,1-trichloroethane, hydroxyl radical, and hydroperoxyl radical have been studied. Enthalpies, entropies, and Gibbs free energies of association have been estimated, as well as the concentrations of the complexes under lower-troposphere conditions. The influence of the relative air humidity on the complexation processes has been analyzed. The association processes yielding water complexes of methanol, ethanol, formic acid, ammonia, acetone, hydroxyl radical, and hydroperoxyl radical were found to be more exothermic than that of the water dimer. General trends for the reactivity of the studied water complexes, compared to those of the corresponding free species, are proposed based on global reactivity indexes. The previously reported increased reactivity of the (*)OOH self-reaction, when there is water present, has been explained. The IR spectra of the complexes have been analyzed and compared with those of the free species. PMID:20394451

  12. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  13. Benzodipyrrole-based Donor-Acceptor-type Boron Complexes as Tunable Near-infrared-Absorbing Materials.

    PubMed

    Nakamura, Tomoya; Furukawa, Shunsuke; Nakamura, Eiichi

    2016-07-20

    Benzodipyrrole-based donor-acceptor boron complexes were designed and synthesized as near-infrared-absorbing materials. The electron-rich organic framework combined with the Lewis acidic boron co-ordination enabled us to tune the LUMO energy level and the HOMO-LUMO gap (i.e.,the absorption wavelength) by changing the organic acceptor units, the number of boron atoms, and the substituents on the boron atoms.

  14. The infrared spectrum and structure of the type I complex of silver and DNA.

    PubMed Central

    DiRico, D E; Keller, P B; Hartman, K A

    1985-01-01

    Infrared spectroscopy was used to study films of the type I complex of Ag+ and DNA as a function of hydration with the following conclusions. Ag+ binds to guanine residues but not to cytosine or thymine residues. Cytosine becomes protonated as Ag+ binds to guanine. (These conclusions confirm previous models.) The type I complex remains in the B family of structures with slight modifications of the sugar-phosphate geometry. This modified B structure remains stable at lower values of hydration for which pure DNA is in the A form. Binding of Ag+ to PO2-, O-P-O or the deoxyribose oxygen is excluded. PMID:4000921

  15. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  16. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    SciTech Connect

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold; Jeffrey D. Steill; Jos Oomens; Michael J. van Stipdonk

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.

  17. Faraday-Michelson system for quantum cryptography.

    PubMed

    Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can

    2005-10-01

    Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.

  18. On intracluster Faraday rotation. II - Statistical analysis

    NASA Technical Reports Server (NTRS)

    Lawler, J. M.; Dennison, B.

    1982-01-01

    The comparison of a reliable sample of radio source Faraday rotation measurements seen through rich clusters of galaxies, with sources seen through the outer parts of clusters and therefore having little intracluster Faraday rotation, indicates that the distribution of rotation in the former population is broadened, but only at the 80% level of statistical confidence. Employing a physical model for the intracluster medium in which the square root of magnetic field strength/turbulent cell per gas core radius number ratio equals approximately 0.07 microgauss, a Monte Carlo simulation is able to reproduce the observed broadening. An upper-limit analysis figure of less than 0.20 microgauss for the field strength/turbulent cell ratio, combined with lower limits on field strength imposed by limitations on the Compton-scattered flux, shows that intracluster magnetic fields must be tangled on scales greater than about 20 kpc.

  19. Faraday Rotation Measure Synthesis of Intermediate Redshift Quasars as a Probe of Intervening Matter

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Seong; Lilly, Simon J.; Miniati, Francesco; Bernet, Martin L.; Beck, Rainer; O’Sullivan, Shane P.; Gaensler, Bryan M.

    2016-10-01

    There is evidence that magnetized material along the line of sight to distant quasars is detectable in the polarization properties of the background sources. The polarization properties appear to be correlated with the presence of intervening Mg ii absorption, which is thought to arise in outflowing material from star forming galaxies. In order to investigate this further, we have obtained high spectral resolution polarization measurements, with the Very Large Array and the Australia Telescope Compact Array, of a set of 49 unresolved quasars for which we have high quality optical spectra. These enable us to produce a Faraday Depth spectrum for each source, using Rotation Measure (RM) Synthesis. Our new independent radio data confirms that interveners are strongly associated with depolarization. We characterize the complexity of the Faraday Depth spectrum using a number of parameters and show how these are related, or not, to the depolarization and to the presence of Mg ii absorption along the line of sight. We argue that complexity and structure in the Faraday Depth distribution likely arise from both intervening material and intrinsically to the background source and attempt to separate these. We find that the strong radio depolarization effects associated with intervening material at redshifts out to z≈ 1 arise from inhomogeneous Faraday screens producing a dispersion in RM across individual sources of around 10 rad m‑2. This is likely produced by disordered fields with strengths of at least 3 μG.

  20. Dynamic square superlattice of Faraday waves

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Tuckerman, Laurette

    2014-11-01

    Faraday waves are computed in a 3D container using BLUE, a code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. A new dynamic superlattice pattern is described which consists of a set of square waves arranged in a two-by-two array. The corners of this array are connected by a bridge whose position oscillates in time between the two diagonals.

  1. ionFR: Ionospheric Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brueggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eisloeffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Griessmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Roettgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-03-01

    ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.

  2. Faraday Pilot-Waves: Generation and Propagation

    NASA Astrophysics Data System (ADS)

    Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John

    2015-11-01

    We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.

  3. Faraday's first dynamo: An alternate analysis

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-02-01

    The steady-state charge densities, electric potential, and current densities are determined analytically in the case of the first dynamo created by Michael Faraday, which consists of a conducting disk rotating between the poles of an off-axis permanent magnet. The results obtained are compared with another work that considered the same problem using a different approach. We also obtain analytical expressions for the total current on the disk and for the dynamo's electromotive force.

  4. High resolution infrared spectra of H2-Kr and D2-Kr van der Waals complexes.

    PubMed

    McKellar, A R W

    2005-02-22

    Infrared spectra of weakly bound hydrogen-krypton complexes have been studied at high spectral resolution (0.04 cm(-1)) using a long-path (154 m) low temperature (100 K) absorption cell and a Fourier transform spectrometer. In addition to spectra from the regions of the H(2) and D(2) fundamental vibrational bands in the midinfrared, the results also include the region of the pure rotational S(0)(0) transition of H(2) in the far infrared. A total of 219 measured line positions from these spectra have been fully assigned to specific quantum transitions and form the basis for determining a greatly improved semiempirical three-dimensional intermolecular potential energy surface for hydrogen-krypton in an accompanying paper.

  5. Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry.

    PubMed

    Ruggiero, Emmanuel; Alonso-de Castro, Silvia; Habtemariam, Abraha; Salassa, Luca

    2016-08-16

    The article highlights the emergent use of upconverting nanoparticles as tools for the near infrared photoactivation of transition metal complexes, identifying opportunities and challenges of this approach in the context of medicinal inorganic chemistry. PMID:27482656

  6. A new di-ruthenium complex with an intense near-infrared electronic band

    SciTech Connect

    Spreer, L.O.; Allen, C.B.; MacQueen, D.B.; Calvin, M.; Otvos, J.W.

    1993-12-31

    A new di-ruthenium complex prepared by the aerobic oxidation of trans Ru(1,4,7,11-tetraazacyclo-tetradecane) Cl{sub 2} has been investigated. The FAB mass spectrum shows mass peaks centered at m/z 732 and the isotopic ion distribution pattern gives the composition C{sub 20}H{sub 36}N{sub 8}Cl{sub 4}Ru{sub 2}. This paper gives evidence supporting characterization of this species as the ruthenium analogue of a di-iron complex with a delocalized pi system (Inorg. Chem. 1992, 31, 717) bridging two tetraazamacrocycles. The di-ruthenium complex, like the di-iron has a very intense electronic transition in the near-infrared.

  7. Faraday-effect polarimeter-interferometer system for current density measurement on EAST

    SciTech Connect

    Liu, H. Q.; Jie, Y. X. Zou, Z. Y.; Li, W. M.; Wang, Z. X.; Qian, J. P.; Yang, Y.; Zeng, L.; Wei, X. C.; Hu, L. Q.; Wan, B. N.; Ding, W. X.; Brower, D. L.; Lan, T.; Li, G. S.

    2014-11-15

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10{sup 16} m{sup −2} (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  8. Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2016-01-01

    Highly transparent Dy3+-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy3+ in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy3+-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS-NIR) at room temperature. The Verdet constants increase at measured wavelengths and high thermal stability was found in Dy3+-doped TGG, as compared to the properties of pure TGG, indicating that Dy3+-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS-NIR wavelengths.

  9. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy.

    PubMed

    Spaun, Ben; Changala, P Bryan; Patterson, David; Bjork, Bryce J; Heckl, Oliver H; Doyle, John M; Ye, Jun

    2016-05-26

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.

  10. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-05-01

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.

  11. A Near-infrared Survey of the Rosette Complex: Clues of Early Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Román-Zúñiga, Carlos G.; Lada, Elizabeth A.; Ferreira, Bruno

    2008-05-01

    The majority of stars in our galaxy are born in embedded clusters, which can be considered the fundamental units of star formation. We have recently surveyed the star forming content of the Rosette Complex using FLAMINGOS in order to investigate the properties of its embedded clusters. We discuss the results of our near-infrared imaging survey. In particular, we on the first evidence for the early evolution and expansion of the embedded clusters. In addition we present data suggesting a temporal sequence of cluster formation across the cloud and discuss the influence of the HII region on the star forming history of the Rosette.

  12. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  13. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators

    NASA Astrophysics Data System (ADS)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-01

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  14. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    PubMed

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-01

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model. PMID:27104711

  15. Numerical simulation of supersquare patterns in Faraday waves

    NASA Astrophysics Data System (ADS)

    Kahouadji, L.; Périnet, N.; Tuckerman, L. S.; Shin, S.; Chergui, J.; Juric, D.

    2015-06-01

    We report the first simulations of the Faraday instability using the full three-dimensional Navier-Stokes equations in domains much larger than the characteristic wavelength of the pattern. We use a massively parallel code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. Simulations performed in rectangular and cylindrical domains yield complex patterns. In particular, a superlattice-like pattern similar to those of [Douady & Fauve, Europhys. Lett. 6, 221-226 (1988); Douady, J. Fluid Mech. 221, 383-409 (1990)] is observed. The pattern consists of the superposition of two square superlattices. We conjecture that such patterns are widespread if the square container is large compared to the critical wavelength. In the cylinder, pentagonal cells near the outer wall allow a square-wave pattern to be accommodated in the center.

  16. Tank segmentation of infrared images with complex background for the homing anti-tank missile

    NASA Astrophysics Data System (ADS)

    Zhou, Yulong; Gao, Min; Fang, Dan; Zhang, Baoquan

    2016-07-01

    In an effort to achieve fast and effective tank segmentation of infrared images under complex background for the homing anti-tank missile, the threshold of the maximum between-class variance method (i.e., the Otsu method) is experimentally analyzed, and the working mechanism of the Otsu method is revealed. Subsequently, a fast and effective method for tank segmentation under complex background is proposed based on the Otsu method by constraining the image background pixels and gray levels. Firstly, with the prior information of the tank, derive the equation to calculate the number of pixels of tank according to optical imaging principle, and then use the calculated tank size to constrain the image background pixels. Secondly, employ the golden section to restrict the background gray levels. Finally, use the Otsu method to implement the segmentation of the tank. Experimental results demonstrate that the proposed method can get as an ideal result as the manual segmentation with less running time.

  17. Infrared spectroscopy of copper-resveratrol complexes: A joint experimental and theoretical study

    SciTech Connect

    Chiavarino, B.; Crestoni, M. E.; Fornarini, S.; Taioli, S.; Mancini, I.; Tosi, P.

    2012-07-14

    Infrared multiple-photon dissociation spectroscopy has been used to record vibrational spectra of charged copper-resveratrol complexes in the 3500-3700 cm{sup -1} and 1100-1900 cm{sup -1} regions. Minimum energy structures have been determined by density functional theory calculations using plane waves and pseudopotentials. In particular, the copper(I)-resveratrol complex presents a tetra-coordinated metal bound with two carbon atoms of the alkenyl moiety and two closest carbons of the adjoining resorcinol ring. For these geometries vibrational spectra have been calculated by using linear response theory. The good agreement between experimental and calculated IR spectra for the selected species confirms the overall reliability of the proposed geometries.

  18. Infrared spectroscopy of copper-resveratrol complexes: A joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Chiavarino, B.; Crestoni, M. E.; Fornarini, S.; Taioli, S.; Mancini, I.; Tosi, P.

    2012-07-01

    Infrared multiple-photon dissociation spectroscopy has been used to record vibrational spectra of charged copper-resveratrol complexes in the 3500-3700 cm-1 and 1100-1900 cm-1 regions. Minimum energy structures have been determined by density functional theory calculations using plane waves and pseudopotentials. In particular, the copper(I)-resveratrol complex presents a tetra-coordinated metal bound with two carbon atoms of the alkenyl moiety and two closest carbons of the adjoining resorcinol ring. For these geometries vibrational spectra have been calculated by using linear response theory. The good agreement between experimental and calculated IR spectra for the selected species confirms the overall reliability of the proposed geometries.

  19. Isotope effects in far-infrared spectra of bis(theophyllinato)copper(II)-complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    1998-07-01

    Far-infrared spectra have been measured for 63Cu and 65Cu isotope substituted theophylline (Tp)-metal ion complexes: Cu(Tp) 2(NH 3) 2 · 2H 2O, Cu(Tp) 2(NH 3) 2, Cu(Tp) 2 · 2H 2O and Cu(Tp) 2. In addition, spectrum of Cu(Tp) 2(ND 3) 2 · 2D 2O has been recorded. Metal-theophylline, metal-ammine and water librational and translational modes have been assigned based on observed isotope shifts and complex dehydration effects. The copper-ammine vibrations have been found at 453 and 224 cm -1, whereas the bis(theophyllinato)copper(II) modes have been detected at 192 cm -1 for Cu(Tp) 2(NH 3) 2 and presumably at about 170 cm -1 for Cu(Tp) 2.

  20. A new look at the infrared spectrum of the weakly bound CO-N2 complex.

    PubMed

    Rezaei, Mojtaba; Michaelian, K H; Moazzen-Ahmadi, N; McKellar, A R W

    2013-12-19

    A broad-band (2135-2165 cm(-1)) infrared spectrum of the CO-N2 van der Waals complex is obtained, using a tunable quantum cascade laser to probe a pulsed supersonic expansion from a slit jet source. Analysis of the spectrum results in the characterization of four new 'stacks' of rotational levels for CO-orthoN2 (all in the v(CO) = 1 upper state) and five new stacks for CO-paraN2 (three in the upper state and two in the vCO = 0 lower state). This considerably expands our knowledge of a rather fundamental weakly bound complex and should lead to improved determinations of the intermolecular forces governing interactions between the carbon monoxide and nitrogen molecules.

  1. Infrared spectra of van de Waals complexes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Fraser, G. T.; Pine, A. S.; Lafferty, W. J.

    1990-01-01

    It has been suggested that (CO2)2 and Ar-CO2 are important constituents of the planetary atmospheres of Venus and Mars. Recent results on the laboratory spectroscopy of CO2 containing van der Waals complexes which may be of use in the modeling of the spectra of planetary atmospheres are presented. Sub-Doppler infrared spectra were obtained for (CO2)2, (CO2)3, and rare-gas-CO2 complexes in the vicinity of the CO2 Fermi diad at 2.7 micrometers using a color-center-laser optothermal spectrometer. From the spectroscopic constants the geometries of the complexes have been determined and van der Waals vibrational frequencies have been estimated. The equilibrium configurations are C2h, C3h, and C2v, for (CO2)2, (CO2)3, and the rare-gas-CO2 complexes, respectively. Most of the homogeneous linewidths for the revibrational transitions range from 0.5 to 22 MHz, indicating that predissociation is as much as four orders of magnitude faster than radiative processes for vibrational relaxation in these complexes.

  2. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy

    PubMed Central

    Amenabar, Iban; Poly, Simon; Nuansing, Wiwat; Hubrich, Elmar H.; Govyadinov, Alexander A.; Huth, Florian; Krutokhvostov, Roman; Zhang, Lianbing; Knez, Mato; Heberle, Joachim; Bittner, Alexander M.; Hillenbrand, Rainer

    2013-01-01

    Mid-infrared spectroscopy is a widely used tool for material identification and secondary structure analysis in chemistry, biology and biochemistry. However, the diffraction limit prevents nanoscale protein studies. Here we introduce mapping of protein structure with 30 nm lateral resolution and sensitivity to individual protein complexes by Fourier transform infrared nanospectroscopy (nano-FTIR). We present local broadband spectra of one virus, ferritin complexes, purple membranes and insulin aggregates, which can be interpreted in terms of their α-helical and/or β-sheet structure. Applying nano-FTIR for studying insulin fibrils—a model system widely used in neurodegenerative disease research—we find clear evidence that 3-nm-thin amyloid-like fibrils contain a large amount of α-helical structure. This reveals the surprisingly high level of protein organization in the fibril’s periphery, which might explain why fibrils associate. We envision a wide application potential of nano-FTIR, including cellular receptor in vitro mapping and analysis of proteins within quaternary structures. PMID:24301518

  3. Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Iron Hill, Colorado

    USGS Publications Warehouse

    Watson, K.; Rowan, L.C.; Bowers, T.L.; Anton-Pacheco, C.; Gumiel, P.; Miller, S.H.

    1996-01-01

    Airborne thermal-infrared multispectral scanner (TIMS) data of the Iron Hill carbonatite-alkalic igneous rock complex in south-central Colorado are analyzed using a new spectral emissivity ratio algorithm and confirmed by field examination using existing 1:24 000-scale geologic maps and petrographic studies. Color composite images show that the alkalic rocks could be clearly identified and that differences existed among alkalic rocks in several parts of the complex. An unsupervised classification algorithm defines four alkalic rock classes within the complex: biotitic pyroxenite, uncompahgrite, augitic pyroxenite, and fenite + nepheline syenite. Felsic rock classes defined in the surrounding country rock are an extensive class consisting of tuff, granite, and felsite, a less extensive class of granite and felsite, and quartzite. The general composition of the classes can be determined from comparisons of the TIMS spectra with laboratory spectra. Carbonatite rocks are not classified, and we attribute that to the fact that dolomite, the predominant carbonate mineral in the complex, has a spectral feature that falls between TIMS channels 5 and 6. Mineralogical variability in the fenitized granite contributed to the nonuniform pattern of the fenite-nepheline syenite class. The biotitic pyroxenite, which resulted from alteration of the pyroxenite, is spatially associated and appears to be related to narrow carbonatite dikes and sills. Results from a linear unmixing algorithm suggest that the detected spatial extent of the two mixed felsic rock classes was sensitive to the amount of vegetation cover. These results illustrate that spectral thermal infrared data can be processed to yield compositional information that can be a cost-effective tool to target mineral exploration, particularly in igneous terranes.

  4. Acoustic Faraday rotation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Donghao; Shi, Junren

    We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.

  5. Inverse Faraday effect driven by radiation friction

    NASA Astrophysics Data System (ADS)

    Liseykina, T. V.; Popruzhenko, S. V.; Macchi, A.

    2016-07-01

    A collective, macroscopic signature to detect radiation friction in laser–plasma experiments is proposed. In the interaction of superintense circularly polarized laser pulses with high density targets, the effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of a quasistatic axial magnetic field. This peculiar ‘inverse Faraday effect’ is investigated by analytical modeling and three-dimensional simulations, showing that multi-gigagauss magnetic fields may be generated at laser intensities \\gt {10}23 {{{W}}{{cm}}}-2.

  6. Rethinking Faraday's Law for Teaching Motional Electromotive Force

    ERIC Educational Resources Information Center

    Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo

    2012-01-01

    This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…

  7. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Sato, Takafumi; Kaneko, Kentaro; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2015-06-01

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/µm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties.

  8. Faraday Rotation Observations of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Spangler, S. R.

    1998-05-01

    Faraday rotation measures the path integral of the product of electron density and line of sight component of the magnetic field from the observer to a source of linearly polarized radio emission. For our observations, the line of sight passes through the solar corona. These observations were made with the NRAO Very Large Array at frequencies of 1465 and 1635 MHz. Observations at two frequencies can confirm the lambda (2) dependence of position angle rotation characteristic of Faraday rotation. We observed the extended radio source 0036+030 (4C+03.01) on March 28, 1997, when the source was 8.6 Rsun from the center of the Sun. Nearly continuous observations were made over an 11 hour period. Our observations measure an average rotation measure (RM) of about +7 radians/m(2) attributable to the corona. The RM showed slow variations during the observing session, with a total change of about 3 radians/m(2) . This variation is attributed to large scale gradients and static plasma structures in the corona, and is the same for two source components separated by 30 arcseconds (22000 km). We have also detected RM variations on time scales of 15 minutes to one hour, which may be coronal Alfven waves. We measure an rms variation of 0.57 radians/m(2) for such fluctuations, which is comparable to previous reports.

  9. Faraday diagnostics for R-damage

    SciTech Connect

    Oro, David M; Tabaka, Leonard J

    2011-01-13

    ALT-3 and R-Damage are experiments to be executed in collaboration between LANL and VNIIEF personnel. They are planned to be fielded in Sarov, Russia at VNIIEF. Both experiments employ Russian explosively driven pulse-power systems to generate a pulse of electrical current that is used to drive the experiment. The current pulse will be measured with Faraday-rotation fiber-optic loops. Using this well known technique, the change in the current enclosed by the loops is determined by measuring the change in the magnetic field integrated along the fiber-optic loop by detecting the Faraday rotation of linearly polarized light traveling through the fiber. The amount of polarization rotation of the light is related to the integrated magnetic field and therefore the enclosed current (Ampere's law) through the Verdet constant which for the optical-fibers used in this experiment has been determined to within 1 %. The presentation describes how the technique will be employed in the R-Damage experiment.

  10. Micro-position sensor using faraday effect

    SciTech Connect

    McElfresh, Michael; Lucas, Matthew; Silveira, Joseph P.; Groves, Scott E.

    2007-02-27

    A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

  11. Patterns beyond Faraday waves: observation of parametric crossover from Faraday instabilities to the formation of vortex lattices in open dual fluid strata

    NASA Astrophysics Data System (ADS)

    Ohlin, Kjell; Berggren, Karl Fredrik

    2016-07-01

    Faraday first characterised the behaviour of a fluid in a container subjected to vertical periodic oscillations. His study pertaining to hydrodynamic instability, the ‘Faraday instability’, has catalysed a myriad of experimental, theoretical, and numerical studies shedding light on the mechanisms responsible for the transition of a system at rest to a new state of well-ordered vibrational patterns at fixed frequencies. Here we study dual strata in a shallow vessel containing distilled water and high-viscosity lubrication oil on top of it. At elevated driving power, beyond the Faraday instability, the top stratum is found to ‘freeze’ into a rigid pattern with maxima and minima. At the same time there is a dynamic crossover into a new state in the form of a lattice of recirculating vortices in the lower layer containing the water. Instrumentation and the physics behind are analysed in a phenomenological way together with a basic heuristic modelling of the wave field. The study, which is based on relatively low-budget equipment, stems from related art projects that have evolved over the years. The study is of value within basic research as well as in education, especially as more advanced collective project work in e.g. engineering physics, where it invites further studies of pattern formation, the emergence of vortex lattices and complexity.

  12. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  13. Investigation of the ionospheric Faraday rotation for use in orbit corrections

    NASA Technical Reports Server (NTRS)

    Llewellyn, S. K.; Bent, R. B.; Nesterczuk, G.

    1974-01-01

    The possibility of mapping the Faraday factors on a worldwide basis was examined as a simple method of representing the conversion factors for any possible user. However, this does not seem feasible. The complex relationship between the true magnetic coordinates and the geographic latitude, longitude, and azimuth angles eliminates the possibility of setting up some simple tables that would yield worldwide results of sufficient accuracy. Tabular results for specific stations can easily be produced or could be represented in graphic form.

  14. Modeling of complex viscosity changes in the curing of epoxy resins from near-infrared spectroscopy and multivariate regression analysis.

    PubMed

    Garrido, M; Larrechi, M S; Rius, F X

    2004-12-01

    The present study investigates the relationship between the changes in complex viscosity and near-infrared spectra. Principal component regression analysis is applied to a near-infrared data set obtained from the in situ monitoring of the curing of diglycidyl ether of bisphenol A with the diamine 4,4'-diaminodiphenylmethane. The values of complex viscosity obtained by dynamic mechanical analysis during the cure process were used as a reference. The near-infrared spectra recorded throughout the reaction, unlike the univariate data analysis at some wavelengths of the spectra, contain a sufficient amount of information to estimate the complex viscosity. The relationship found was high and the results demonstrate the quality of the fitted model. Also, a simple user-friendly procedure for applying the model, focused on the user, is shown.

  15. Frequency dependence in a liquid's complex refractive index measured with infrared spectroradiometry.

    PubMed

    McKeown, W

    1999-10-20

    A laboratory measurement of wavelength dependence in the real n(lambda) and the imaginary k(lambda) parts of a liquid's complex refractive index is presented. A known heat flow through the liquid-gas interface is generated while a high-resolution infrared radiance spectrum is taken simultaneously. Wavelength variations of the absorption coefficient allow the emerging radiation to sense subsurface temperature gradients. This technique is valid only at intervals at which the absorption coefficient is sufficiently low to allow subsurface temperatures to be measured. Knowledge of a liquid's thermal conductivity, specific heat, and light transmission speed is required. Measurement error depends on radiance measurement error and the minimization of atmospheric parameters.

  16. Complex refractive indices in the infrared of nitric acid trihydrate aerosols

    SciTech Connect

    Richwine, L.J.; Clapp, M.L.; Miller, R.E.

    1995-10-01

    The refractive indices of nitric acid trihydrate (NAT) have been determined from the infrared spectra of laboratory generated aerosols. The aerosols are formed via homogeneous nucleation in a flow cell with separate regions for nucleation and observation, allowing for independent control of the temperature conditions in these regions. A spectrum of small, non-scattering particles is recorded to determine the frequency dependent imaginary refractive index, within a scaling factor. A subtractive Kramers-Kronig routine is then used to calculate the real index. The scaling factor for the imaginary indices is determined by fitting a spectrum associated with larger, scattering particles, which depends on both the real and imaginary portions of the refractive indices. The complex refractive indices of NAT are reported over the range 700 cm{sup -1} to 4000 cm{sup -1}. While in good qualitative agreement with previously reported results, there are significant quantitative differences which are discussed. 21 refs., 3 figs.

  17. The Rise of Near-Infrared Emitters: Organic Dyes, Porphyrinoids, and Transition Metal Complexes.

    PubMed

    Barbieri, Andrea; Bandini, Elisa; Monti, Filippo; Praveen, Vakayil K; Armaroli, Nicola

    2016-08-01

    In recent years, the interest in near-infrared (NIR) emitting molecules and materials has increased significantly, thanks to the expansion of the potential technological applications of NIR luminescence in several areas such as bioimaging, sensors, telecommunications, and night-vision displays. This progress has been facilitated by the development of new synthetic routes for the targeted functionalization and expansion of established molecular frameworks and by the availability of simpler and cheaper NIR detectors. Herein, we present recent developments on three major classes of systems-i.e., organic dyes, porphyrinoids, and transition metal complexes-exhibiting the maximum of the emission band at λ > 700 nm. In particular, we focus on the design strategies that may increase the luminescence efficiency, while pushing the emission band more deeply in the NIR region. This overview suggests that further progress can be achieved in the near future, with enhanced availability of more robust, stronger, and cheaper NIR luminophores. PMID:27573399

  18. Far-infrared Spectroscopy of the H2-O2 Van Der Waals Complex

    NASA Astrophysics Data System (ADS)

    Bunn, Hayley; Bennett, Trystan; Karayilan, Aidan; Raston, Paul L.

    2015-01-01

    We report the far infrared spectrum of H2-O2 at 80 K in the vicinity of the pure rotational bands of H2. Sharp peaks were observed, which correspond to end-over-end rotational transitions of the H2-O2 molecular complex, that are superimposed over broad collision induced absorptions. We find that the maximum value of the end-over-end rotational quantum number that is bound is seven, which is two more than supported by a recently reported ab initio H2-O2 potential energy surface. The rotational spectrum reported here should therefore greatly help in refining this surface, which is used to calculate scattering processes relevant to the chemistry occurring in interstellar molecular clouds.

  19. A CO LINE AND INFRARED CONTINUUM STUDY OF THE ACTIVE STAR-FORMING COMPLEX W51

    SciTech Connect

    Kang, Miju; Lee, Youngung; Choi, Minho; Bieging, John H.; Kulesa, Craig A.; Peters, William L.

    2010-09-15

    We present the results of an extensive observational study of the active star-forming complex W51 that was observed in the J = 2 - 1 transition of the {sup 12}CO and {sup 13}CO molecules over a 1.{sup 0}25 x 1.{sup 0}00 region with the University of Arizona Heinrich Hertz Submillimeter Telescope. We use a statistical equilibrium code to estimate physical properties of the molecular gas. We compare the molecular cloud morphology with the distribution of infrared (IR) and radio continuum sources and find associations between molecular clouds and young stellar objects (YSOs) listed in Spitzer IR catalogs. The ratios of CO lines associated with H II regions are different from the ratios outside the active star-forming regions. We present evidence of star formation triggered by the expansion of the H II regions and by cloud-cloud collisions. We estimate that about 1% of the cloud mass is currently in YSOs.

  20. A CO Line and Infrared Continuum Study of the Active Star-forming Complex W51

    NASA Astrophysics Data System (ADS)

    Kang, Miju; Bieging, John H.; Kulesa, Craig A.; Lee, Youngung; Choi, Minho; Peters, William L.

    2010-09-01

    We present the results of an extensive observational study of the active star-forming complex W51 that was observed in the J = 2 - 1 transition of the 12CO and 13CO molecules over a 1fdg25 × 1fdg00 region with the University of Arizona Heinrich Hertz Submillimeter Telescope. We use a statistical equilibrium code to estimate physical properties of the molecular gas. We compare the molecular cloud morphology with the distribution of infrared (IR) and radio continuum sources and find associations between molecular clouds and young stellar objects (YSOs) listed in Spitzer IR catalogs. The ratios of CO lines associated with H II regions are different from the ratios outside the active star-forming regions. We present evidence of star formation triggered by the expansion of the H II regions and by cloud-cloud collisions. We estimate that about 1% of the cloud mass is currently in YSOs.

  1. Two-dimensional infrared spectroscopy reveals the complex behavior of an amyloid fibril inhibitor

    PubMed Central

    Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.

    2012-01-01

    While amyloid formation has been implicated in the pathology of over twenty human diseases, the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labeling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin, the peptide responsible for islet amyloid formation in type 2 diabetes, with a known inhibitor, rat amylin. Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 hours after mixing rat amylin blocks the N-terminal β-sheet instead. At 24 hours after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet most likely on the outside of the human fibrils. This is striking because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes. PMID:22522254

  2. The infrared spectrum of the He–C{sub 2}D{sub 2} complex

    SciTech Connect

    Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David

    2015-02-28

    Spectra of the helium-acetylene complex are elusive because this weakly bound system lies close to the free rotor limit. Previously, limited assignments of He–C{sub 2}D{sub 2} transitions in the R(0) region of the ν{sub 3} fundamental band (≈2440 cm{sup −1}) were published. Here, new He–C{sub 2}D{sub 2} infrared spectra of this band are obtained using a tunable optical parametric oscillator laser source to probe a pulsed supersonic slit jet expansion from a cooled nozzle, and the analysis is extended to the weaker and more difficult P(1) and R(1) regions. A term value approach is used to obtain a consistent set of “experimental” energy levels. These are compared directly with calculations using two recently reported ab initio intermolecular potential energy surfaces, which exhibit small but significant differences. Rovibrational energies for the He–C{sub 2}H{sub 2} complex are also calculated using both surfaces. A Coriolis model, useful for predicting spectral intensities, is used to interpret the energy level patterns, and a comparison with the isoelectronic complex He–CO is made.

  3. Infrared spectra and theoretical calculations for Fe, Ru, and Os metal hydrides and dihydrogen complexes.

    PubMed

    Wang, Xuefeng; Andrews, Lester

    2009-01-22

    Laser-ablated iron, ruthenium, and osmium atoms react with hydrogen in excess argon, neon and pure hydrogen to produce the FeH(2) molecule, and the FeH(2)(H(2))(3), RuH(H(2))(4), RuH(2)(H(2))(4), and (H(2))MH complexes (M = Fe, Ru, Os), as identified through infrared spectra with D(2) and HD substitution. DFT frequency calculations support the assignment of absorptions observed experimentally. The FeH(2) molecule has a quintet ground state with a quasi-linear structure, and is repulsive to the addition of one more H(2) ligand: however, with three more H(2) ligands, stable triplet and singlet state FeH(2)(H(2))(3) supercomplexes can be formed. The quintet FeH(2) molecule and FeH(2)(H(2))(3) supercomplex undergo reversible near-ultraviolet photochemical rearrangement in solid neon and hydrogen. The RuH(2) molecule has a bent triplet ground state and forms the stable singlet RuH(2)(H(2))(4) supercomplex, but only the latter is observed in these experiments. In like fashion RuH has a quartet ground state and the doublet RuH(H(2))(4) complex is trapped in solid hydrogen. All three (H(2))MH complexes with lower energy than MH(3) are trapped, and no absorptions are observed for MH(3) molecules.

  4. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor

    NASA Astrophysics Data System (ADS)

    Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.

    2012-05-01

    Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.

  5. Infrared spectra and theoretical calculations for Fe, Ru, and Os metal hydrides and dihydrogen complexes.

    PubMed

    Wang, Xuefeng; Andrews, Lester

    2009-01-22

    Laser-ablated iron, ruthenium, and osmium atoms react with hydrogen in excess argon, neon and pure hydrogen to produce the FeH(2) molecule, and the FeH(2)(H(2))(3), RuH(H(2))(4), RuH(2)(H(2))(4), and (H(2))MH complexes (M = Fe, Ru, Os), as identified through infrared spectra with D(2) and HD substitution. DFT frequency calculations support the assignment of absorptions observed experimentally. The FeH(2) molecule has a quintet ground state with a quasi-linear structure, and is repulsive to the addition of one more H(2) ligand: however, with three more H(2) ligands, stable triplet and singlet state FeH(2)(H(2))(3) supercomplexes can be formed. The quintet FeH(2) molecule and FeH(2)(H(2))(3) supercomplex undergo reversible near-ultraviolet photochemical rearrangement in solid neon and hydrogen. The RuH(2) molecule has a bent triplet ground state and forms the stable singlet RuH(2)(H(2))(4) supercomplex, but only the latter is observed in these experiments. In like fashion RuH has a quartet ground state and the doublet RuH(H(2))(4) complex is trapped in solid hydrogen. All three (H(2))MH complexes with lower energy than MH(3) are trapped, and no absorptions are observed for MH(3) molecules. PMID:19099441

  6. The infrared spectrum of the He-C2D2 complex.

    PubMed

    Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David

    2015-02-28

    Spectra of the helium-acetylene complex are elusive because this weakly bound system lies close to the free rotor limit. Previously, limited assignments of He-C2D2 transitions in the R(0) region of the ν3 fundamental band (≈2440 cm(-1)) were published. Here, new He-C2D2 infrared spectra of this band are obtained using a tunable optical parametric oscillator laser source to probe a pulsed supersonic slit jet expansion from a cooled nozzle, and the analysis is extended to the weaker and more difficult P(1) and R(1) regions. A term value approach is used to obtain a consistent set of "experimental" energy levels. These are compared directly with calculations using two recently reported ab initio intermolecular potential energy surfaces, which exhibit small but significant differences. Rovibrational energies for the He-C2H2 complex are also calculated using both surfaces. A Coriolis model, useful for predicting spectral intensities, is used to interpret the energy level patterns, and a comparison with the isoelectronic complex He-CO is made.

  7. Discrimination of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species by Fourier transform infrared spectroscopy.

    PubMed

    Sousa, C; Silva, L; Grosso, F; Nemec, A; Lopes, J; Peixe, L

    2014-08-01

    The main goal of this work was to assess the ability of Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) to discriminate between the species of the Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex, i.e. A. baumannii, A. nosocomialis, A. pittii, A. calcoaceticus, genomic species "Between 1 and 3" and genomic species "Close to 13TU". A total of 122 clinical isolates of the Acb complex previously identified by rpoB sequencing were studied. FTIR-ATR spectra was analysed by partial least squares discriminant analysis (PLSDA) and the model scores were presented in a dendrogram form. This spectroscopic technique proved to be effective in the discrimination of the Acb complex species, with sensitivities from 90 to 100%. Moreover, a flowchart aiming to help with species identification was developed and tested with 100% correct predictions for A. baumannii, A. nosocomialis and A. pittii test isolates. This rapid, low cost and environmentally friendly technique proved to be a reliable alternative for the identification of these closely related Acinetobacter species that share many clinical and epidemiological characteristics and are often difficult to distinguish. Its validation towards application on a routine basis could revolutionise high-throughput bacterial identification.

  8. Infrared spectroscopy of Mg-CO2 and Al-CO2 complexes in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Thomas, Brandon J.; Harruff-Miller, Barbara A.; Bunker, Christopher E.; Lewis, William K.

    2015-05-01

    The catalytic reduction of CO2 to produce hydrocarbon fuels is a topic that has gained significant attention. Development of efficient catalysts is a key enabler to such approaches, and metal-based catalysts have shown promise towards this goal. The development of a fundamental understanding of the interactions between CO2 molecules and metal atoms is expected to offer insight into the chemistry that occurs at the active site of such catalysts. In the current study, we utilize helium droplet methods to assemble complexes composed of a CO2 molecule and a Mg or Al atom. High-resolution infrared (IR) spectroscopy and optically selected mass spectrometry are used to probe the structure and binding of the complexes, and the experimental observations are compared with theoretical results determined from ab initio calculations. In both the Mg-CO2 and Al-CO2 systems, two IR bands are obtained: one assigned to a linear isomer and the other assigned to a T-shaped isomer. In the case of the Mg-CO2 complexes, the vibrational frequencies and rotational constants associated with the two isomers are in good agreement with theoretical values. In the case of the Al-CO2 complexes, the vibrational frequencies agree with theoretical predictions; however, the bands from both structural isomers exhibit significant homogeneous broadening sufficient to completely obscure the rotational structure of the bands. The broadening is consistent with an upper state lifetime of 2.7 ps for the linear isomer and 1.8 ps for the T-shaped isomer. The short lifetime is tentatively attributed to a prompt photo-induced chemical reaction between the CO2 molecule and the Al atom comprising the complex.

  9. High Resolution Infrared Spectroscopy of Propargyl Alcohol-Water Complex Embedded in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Mani, Devendra; Pal, Nitish; Kaufmann, Matin; Schwaab, Gerhard; Havenith, Martina

    2016-06-01

    Propargyl alcohol (hereafter abbreviated as PA) is a molecule of astrophysical interest and has been probed extensively using microwave spectroscopy.1,2 It is a multifunctional molecule and offers multiple sites for hydrogen bonding interactions. Therefore, it has also attracted the attention of groups interested in weak intermolecular interactions. Recently, the Ar…PA complex3 and PA-dimer4 have been studied using microwave spectroscopy. More recently, there have been matrix-isolation infrared spectroscopic studies on PA-water5 and PA-acetylene6 complexes. In the present work, clusters of PA and water were formed in the helium nanodroplets and probed using a combination of infrared spectroscopy and mass spectrometry. Using ab-initio quantum mechanical calculations, PA-water clusters were optimised and five minimum structures were found on the potential energy hypersurface, which were used as a guidance to the experiments. We used D2O for the experiments since our laser sources at Bochum do not cover the IR spectral region of H2O. IR spectra of PA-D2O complex were recorded in the region of symmetric and antisymmetric stretches of the bound D2O. Multiple signals were found in these regions which were dependent on the concentration of PA as well as D2O. Using pickup curves most of these signals could be assigned to 1:1 PA:D2O clusters. The ab-initio calculations helped in a definitive assignment of the spectra to the different conformers of PA-D2O complex. The details will be presented in the talk. References: 1. E. Hirota, J. Mol. Spec. 26, 335 (1968). 2. J.C. Pearson and B.J. Drouin, J. Mol. Spectrosc. 234, 149 (2005). 3. D. Mani and E. Arunan, ChemPhysChem 14, 754 (2013). 4. D. Mani and E. Arunan, J. Chem. Phys. 141, 164311 (2014). 5. J. Saini, K.S. Vishwanathan, J. Mol. Struct. 1118, 147 (2016). 6. K. Sundararajan et al., J. Mol. Struct. 1121, 26 (2016).

  10. Algorithm for Unfolding Current from Faraday Rotation Measurement

    SciTech Connect

    Stephen E. Mitchell

    2008-05-23

    Various methods are described to translate Faraday rotation measurements into a useful representation of the dynamic current under investigation[1]. For some experiments, simply counting the “fringes” up to the turnaround point in the recorded Faraday rotation signal is sufficient in determining the peak current within some allowable fringe uncertainty. For many other experiments, a higher demand for unfolding the entire dynamic current profile is required. In such cases, investigators often rely extensively on user interaction on the Faraday rotation data by visually observing the data and making logical decisions on what appears to be turnaround points and/or inflections in the signal. After determining extrema, inflection points, and locations, a piece-wise, ΔI/Δt, representation of the current may be revealed with the proviso of having a reliable Verdet constant of the Faraday fiber or medium and time location for each occurring fringe. In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters such as the Faraday fiber’s Verdet constant and number of loops in the sensor are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform (STFT) which reveals much of the Faraday rotation’s hidden detail necessary for unfolding the dynamic current measurement.

  11. Current measurement by Faraday effect on GEPOPU

    NASA Astrophysics Data System (ADS)

    N, Correa; H, Chuaqui; E, Wyndham; F, Veloso; J, Valenzuela; M, Favre; H, Bhuyan

    2014-05-01

    The design and calibration of an optical current sensor using BK7 glass is presented. The current sensor is based on the polarization rotation by Faraday effect. GEPOPU is a pulsed power generator, double transit time 120ns, 1.5 Ohm impedance, coaxial geometry, where Z pinch experiment are performed. The measurements were performed at the Optics and Plasma Physics Laboratory of Pontificia Universidad Catolica de Chile. The verdet constant for two different optical materials was obtained using He-Ne laser. The values obtained are within the experimental error bars of measurements published in the literature (less than 15% difference). Two different sensor geometries were tried. We present the preliminary results for one of the geometries. The values obtained for the current agree within the measurement error with those obtained by means of a Spice simulation of the generator. Signal traces obtained are completely noise free.

  12. TSAG-based cryogenic Faraday isolator

    NASA Astrophysics Data System (ADS)

    Starobor, Aleksey; Yasyhara, Ryo; Snetkov, Ilya; Mironov, Evgeniy; Palashov, Oleg

    2015-09-01

    Thermooptical and magnetooptical properties of novel magnetoactive crystal terbium-scandium aluminum garnet were investigated at temperature range 80-300 K. It is shown that Verdet constant increases inversely proportional to temperature, and thermally induced depolarization, and the optical power of the thermal lens is reduced significantly with cooling from 290 K to 80 K. According to estimates, TSAG crystals in [1 1 1] orientation allow to create a cryogenic Faraday isolator provides a degree of isolation of 30 dB with the laser power exceeds ∼6 kW, it is estimated that the transition to the [0 0 1] orientation allows to provide degree of isolation of 30 dB at a laser power higher than 400 kW.

  13. Template analysis of a Faraday disk dynamo

    NASA Astrophysics Data System (ADS)

    Moroz, I. M.

    2008-12-01

    In a recent paper Moroz [1] returned to a nonlinear three-dimensional model of dynamo action for a self-exciting Faraday disk dynamo introduced by Hide et al. [2]. Since only two examples of chaotic behaviour were shown in [2], Moroz [1] performed a more extensive analysis of the dynamo model, producing a selection of bifurcation transition diagrams, including those encompassing the two examples of chaotic behaviour in [2]. Unstable periodic orbits were extracted and presented in [1], but no attempt was made to identify the underlying chaotic attractor. We rectify that here. Illustrating the procedure with one of the cases considered in [1], we use some of the unstable periodic orbits to identify a possible template for the chaotic attractor, using ideas from topology [3]. In particular, we investigate how the template is affected by changes in bifurcation parameter.

  14. Scaling behavior of coarsening Faraday heaps.

    PubMed

    van Gerner, Henk Jan; van der Weele, Ko; van der Meer, Devaraj; van der Hoef, Martin A

    2015-10-01

    When a layer of sand is vertically shaken, the surface spontaneously breaks up in a landscape of small conical "Faraday heaps," which merge into larger ones on an ever increasing time scale. We propose a model for the heap dynamics and show analytically that the mean lifetime of the transient state with N heaps scales as N(-2). When there is an abundance of sand, such that the vibrating plate always remains completely covered, this means that the average diameter of the heaps grows as t(1/2). Otherwise, when the sand is less plentiful and parts of the plate get depleted during the coarsening process, the average diameter of the heaps grows more slowly, namely as t(1/3). This result compares well with experimental observations. PMID:26565231

  15. Fluctuation dynamos and their Faraday rotation signatures

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy

    2015-03-01

    We study fluctuation dynamo (FD) action in turbulent systems like galaxy-clusters focusing on the Faraday rotation signature. This is defined as RM = K ∫ L n e B . dl where n e is the thermal electron density, B is the magnetic field, the integration is along the line of sight from the source to the observer, and K = 0.81 rad m-2 cm-3 μG-1 pc-1. We directly compute, using the simulation data, ∫ B . dl, and hence the Faraday rotation measure (RM) over 3N 2 lines of sight, along each x, y and z-directions. We normalise the RM by the rms value expected in a simple model, where a field of strength B rms fills each turbulent cell but is randomly oriented from one turbulent cell to another. This normalised RM is expected to have a nearly zero mean but a non-zero dispersion, σ RM . We show in Fig. 1a and 1b, that a suite of simulations, on saturation, obtain the value of σ RM = 0.4-0.5, and this is independent of P M , R M and the resolution of the run. This is a fairly large value for an intermittent random field; as it is of order 40%-50%, of that expected in a model where B rms strength fields volume fill each turbulent cell, but are randomly oriented from one cell to another. We also find that the regions with a field strength larger than 2B rms contribute only 15-20% to the total RM (see Fig. 1a). This shows that it is the general `sea' of volume filling fluctuating fields that contribute dominantly to the RM produced, rather than the the high field regions.

  16. Infrared linear dichroism investigations of deoxyribonucleic complexes with histones H2B and H3.

    PubMed

    Liquier, J; Taboury, J; Taillandier, E; Brahms, J

    1977-07-12

    Complexes between DNA and histones H2B and H3 were studies by means of infrared linear dichroism in a wide range of histone to DNA ratios and of different relative humidities. The measurement of the dichroic ratios allows one to determine the secondary structure of DNA in the complexes. It is shown that the progressive addition of histone H2B or H3 to DNA inhibits the structural B leads to A transition and DNA remains in a B-type form at low relative humidity. A new simple method is proposed to evaluate the amount of A or B forms of DNA when both structures are present. It is found that the B leads to A transition is fully inhibited when only one molecule of H2B or H3 histone is bound per about three or four turns of DNA helix, respectively. It is proposed that about four to three turns of DNA helix represent the "critical length of DNA" (minimum "cooperative unit") for the B leads to A transition.

  17. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.

  18. Miniature modified Faraday cup for micro electron beams

    DOEpatents

    Teruya, Alan T.; Elmer, John W.; Palmer, Todd A.; Walton, Chris C.

    2008-05-27

    A micro beam Faraday cup assembly includes a refractory metal layer with an odd number of thin, radially positioned traces in this refractory metal layer. Some of the radially positioned traces are located at the edge of the micro modified Faraday cup body and some of the radially positioned traces are located in the central portion of the micro modified Faraday cup body. Each set of traces is connected to a separate data acquisition channel to form multiple independent diagnostic networks. The data obtained from the two diagnostic networks are combined and inputted into a computed tomography algorithm to reconstruct the beam shape, size, and power density distribution.

  19. Development of a complex type of pour point-viscosity depressant and infrared spectrum research

    SciTech Connect

    Zhang Fusheng; Wang Biao

    1995-11-01

    EMS, a complex type of pour point-viscosity depressant for crudes, is composed of EVA, MVA [molecular structure shown for both in the paper] and Surfactant. After adding EMS into the crudes, a very nice result in reducing pour point and viscosity for Daqing, Jianghan and Jidong crudes was obtained. From the research result of infrared spectroscopy of the interactions between EMS or its components and wax or mixture of resin and asphaltene isolated from three crudes, it has been shown that the area ratio of the double absorption peaks of 719 cm{sup {minus}1} and 729 cm{sup {minus}1} or 1,368 cm{sup {minus}1} and 1,378 cm{sup {minus}1} changed remarkably after EMS or its components were added into wax. It can be inferred that the cocrystallization probably happened between the EMS or its components and the wax. The position of the 4,000--3,000 cm{sup {minus}1} infrared absorption peak of the mixture of resin and asphaltene moved to the lower wavenumber, and the ratio of the area of 1,373 cm{sup {minus}1} absorption peak (methyl) to the combination area of 748, 810 and 871 cm{sup {minus}1} absorption peak (aromatics) increased remarkably. It can be inferred that the pour point-viscosity depressant molecules destroyed the original hydrogen bonds and overlapping of the aromatic ring planes among resin and asphaltene molecules to form a new cubic molecular structure and new hydrogen bonds with the results the viscosity of crude oil will be reduced.

  20. Upconverting Nanoparticles Prompt Remote Near-Infrared Photoactivation of Ru(II)-Arene Complexes.

    PubMed

    Ruggiero, Emmanuel; Garino, Claudio; Mareque-Rivas, Juan C; Habtemariam, Abraha; Salassa, Luca

    2016-02-18

    The synthesis and full characterisation (including X-ray diffraction studies and DFT calculations) of two new piano-stool Ru(II) -arene complexes, namely [(η(6) -p-cym)Ru(bpy)(m-CCH-Py)][(PF)6]2 (1) and [(η(6) -p-cym)Ru(bpm)(m-CCH-Py)][(PF)6]2 (2; p-cym=p-cymene, bpy=2,2'-bipyridine, bpm=2,2'-bipyrimidine, and m-CCH-Py=3-ethynylpyridine), is described and discussed. The reaction of the m-CCH-Py ligand of 1 and 2 with diethyl-3-azidopropyl phosphonate by Cu-catalysed click chemistry affords [(η(6) -p-cym)Ru(bpy)(P-Trz-Py)][(PF)6]2 (3) and [(η(6) -p-cym)Ru(bpm)(P-Trz-Py)][(PF)6]2 (4; P-Trz-Py=[3-(1-pyridin-3-yl-[1,2,3]triazol-4-yl)-propyl]phosphonic acid diethyl ester). Upon light excitation at λ=395 nm, complexes 1-4 photodissociate the monodentate pyridyl ligand and form the aqua adduct ions [(η(6) -p-cym)Ru(bpy)(H2O)](2+) and [(η(6) -p-cym)Ru(bpm)(H2O)](2+). Thulium -doped upconverting nanoparticles (UCNPs) are functionalised with 4, thus exploiting their surface affinity for the phosphonate group in the complex. The so-obtained nanosystem UCNP@4 undergoes near-infrared (NIR) photoactivation at λ=980 nm, thus producing the corresponding reactive aqua species that binds the DNA-model base guanosine 5'-monophosphate. PMID:26785101

  1. Infrared spectroscopic investigation of two isomers of the weakly bound complex OCS-(CO2)2.

    PubMed

    Oliaee, J Norooz; Mivehvar, F; Dehghany, M; Moazzen-Ahmadi, N

    2010-12-16

    Vibration-rotation spectra of the OCS-(CO(2))(2) van der Waals complex were studied by means of direct infrared absorption spectroscopy. Complexes were generated in a supersonic slit-jet apparatus, and the expansion gas was probed using a rapid-scan tunable diode laser. Infrared bands were observed for two different isomeric forms of the complex. A relatively strong band centered at 2058.799 cm(-1) was assigned to the most stable isomer, which has a barrel-shaped geometry and is already known from microwave spectroscopy. A weaker infrared band centered at 2050.702 cm(-1) was assigned to a new isomeric form, observed here for the first time, which was expected on the basis of ab initio calculations. Infrared bands for seven isotopomers were recorded in an attempt to quantify the structure of the new isomer. Because it has no symmetry elements, nine parameters are needed to fully define the geometry. It was possible to determine six of these which define the relative position of the OCS monomer with respect to the CO(2) dimer fragment in the complex while the remaining three were fixed at their ab initio values. Similarities and differences between the faces of the two isomers of OCS-(CO(2))(2) and the associated dimers are discussed.

  2. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy.

    PubMed

    Wagner, D R; Kim, H S; Saykally, R J

    2000-12-20

    Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.

  3. One-Piece Faraday Generator: A Paradoxical Experiment from 1851

    ERIC Educational Resources Information Center

    Crooks, M. J.; And Others

    1978-01-01

    Describes an experiment based on Faraday's one-piece generator, where the rotating disk is replaced by a cylindrical permanent magnet. Explains the apparent paradox that an observer in an inertial frame could measure his absolute velocity. (GA)

  4. Faraday effect based optical fiber current sensor for tokamaks

    SciTech Connect

    Aerssens, M.; Gusarov, A.; Brichard, B.; Massaut, V.; Megret, P.; Wuilpart, M.

    2011-07-01

    Fiber optical current sensor (FOCS) is a technique considered to be compatible with the ITER nuclear environment. FOCS principle is based on the magneto-optic Faraday effect that produces non-reciprocal circular birefringence when a magnetic field is applied in the propagation direction of the light beam. The magnetic field or the electrical current is deduced from the modification of the state of polarization of light. The linear birefringence of the fiber related with non-perfect manufacturing, temperature changes or stress constitute a parasitic effect that reduces the precision and sensitivity of FOCS. A two-pass optical scheme with a Faraday mirror at the end has been proposed to compensate the influence of linear birefringence. In this paper we perform a Stokes analysis of the two-pass optical scheme to highlight the fact that the linear birefringence is not compensated perfectly by the Faraday mirror when non-reciprocal birefringence such as Faraday effect is also present. (authors)

  5. Principle and applications of Faraday-Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Di, Nan; Zhao, Jianlin

    2010-10-01

    A Faraday-Fabry-Perot (FFP) cavity, composed of an Fabry-Perot (FP) cavity and a piece of Faraday magneto-optical material, is presented. The principle of FFP cavity and its polarization modulation effect are described by use of optical matrix analysis. The result shows that the Faraday rotation is able to be magnified by more than two orders of magnitude in resonant FFP cavity, while different elliptically polarized lights are obtained in non-resonant cavity. Furthermore two novel applications, that is, optical isolator based on passive FFP cavity (FOI) and Faraday-Zeeman dual-frequency laser (FZDL) based on active FFP cavity whose eigen modes operate as circularly polarized lights and whose frequency difference can be adjusted continuously by magnetic field, are introduced. The principles, typical parameters and performance characteristics are analyzed in both applications.

  6. High-albedo C-complex outer-belt asteroids: The near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Kasuga, T.; Usui, F.; Ootsubo, T.; Hasegawa, S.; Kuroda, D.; Shirahata, M.; Okamura, N.

    2014-07-01

    Primitive, outer-belt asteroids are generally of low albedo, reflecting carbonaceous compositions like those of CI and CM meteorites. However, a few outer-belt asteroids having high albedos are known, suggesting the presence of unusually reflective surface minerals or, conceivably, even exposed water ice. Here, we present near-infrared (1.1--2.5 micron) spectra of four outer-belt C-complex asteroids with albedos > 0.1. We find no absorption features characteristic of water ice (near 1.5 and 2.0 micron) in the objects. Intimate mixture models set limits to the water ice by weight < 2 %. Asteroids (723) Hammonia and (936) Kunigunde are featureless and have (60--95 %) amorphous Mg pyroxenes that might explain the high albedos. Asteroid (1276) Ucclia also shows a featureless reflection spectrum with (50--60 %) amorphous Mg pyroxenes. Asteroid (1576) Fabiola shows a possible weak, broad absorption band (1.5--2.1 micron). The feature can be reproduced by either (80 %) amorphous Mg pyroxenes or orthopyroxene (crystalline silicate), being likely to cause its high albedo. We discuss the origin of high-albedo components in primitive asteroids. This study is published in The Astronomical Journal, Volume 146, Issue 1, article id. 1, 6 pp. (2013).

  7. Evaluation of Airborne Visible/Infrared Imaging Spectrometer Data of the Mountain Pass, California carbonatite complex

    NASA Technical Reports Server (NTRS)

    Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.

  8. Unsupervised background-constrained tank segmentation of infrared images in complex background based on the Otsu method.

    PubMed

    Zhou, Yulong; Gao, Min; Fang, Dan; Zhang, Baoquan

    2016-01-01

    In an effort to implement fast and effective tank segmentation from infrared images in complex background, the threshold of the maximum between-class variance method (i.e., the Otsu method) is analyzed and the working mechanism of the Otsu method is discussed. Subsequently, a fast and effective method for tank segmentation from infrared images in complex background is proposed based on the Otsu method via constraining the complex background of the image. Considering the complexity of background, the original image is firstly divided into three classes of target region, middle background and lower background via maximizing the sum of their between-class variances. Then, the unsupervised background constraint is implemented based on the within-class variance of target region and hence the original image can be simplified. Finally, the Otsu method is applied to simplified image for threshold selection. Experimental results on a variety of tank infrared images (880 × 480 pixels) in complex background demonstrate that the proposed method enjoys better segmentation performance and even could be comparative with the manual segmentation in segmented results. In addition, its average running time is only 9.22 ms, implying the new method with good performance in real time processing. PMID:27625967

  9. Testing Ionospheric Faraday Rotation Corrections in CASA

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Moellenbrock, George

    2015-04-01

    The Earth’s ionosphere introduces direction- and time-dependent effects over a range of physical and temporal scales and so is a major source for unmodeled phase offsets for low frequency radioastronomical observations. Ionospheric effects are often the limiting factor to making sensitive radioastronomical measurements to probe the solar corona or coronal mass ejections at low frequencies (< 5 GHz). It has become common practice to use global ionospheric models derived from the Global Positioning System (GPS) to provide a means of externally calibrating low frequency data. We have developed a new calibration algorithm in the Common Astronomy Software Applications (CASA) package. CASA, which was developed to meet the data post-processing needs of next generation telescopes such as the Karl G. Jansky Very Large Array (VLA), did not previously have the capability to mitigate ionospheric effects. This algorithm uses GPS-based global ionosphere maps to mitigate the first and second order ionospheric effects (dispersion delay and Faraday rotation, respectively). We investigated several data centers as potential sources for global ionospheric models and chose the International Global Navigation Satellite System Service data product because data from other sources are generally too sparse to use without additional interpolation schemes. This implementation of ionospheric corrections in CASA has been tested on several sets of VLA observations and all of them showed a significant reduction of the dispersion delay. In order to rigorously test CASA’s ability to mitigate ionospheric Faraday rotation, we made VLA full-polarization observations of the standard VLA phase calibrators J0359+5057 and J0423+4150 in August 2014, using L band (1 - 2 GHz), S band (2 - 4 GHz), and C band (4 - 6 GHz) frequencies in the D array configuration. The observations were 4 hours in duration, beginning near local sunrise. In this paper, we give a general description of how these corrections are

  10. Evaluation of the Faraday angle by numerical methods and comparison with the Tore Supra and JET polarimeter electronics.

    PubMed

    Brault, C; Gil, C; Boboc, A; Spuig, P

    2011-04-01

    On the Tore Supra tokamak, a far infrared polarimeter diagnostic has been routinely used for diagnosing the current density by measuring the Faraday rotation angle. A high precision of measurement is needed to correctly reconstruct the current profile. To reach this precision, electronics used to compute the phase and the amplitude of the detected signals must have a good resilience to the noise in the measurement. In this article, the analogue card's response to the noise coming from the detectors and their impact on the Faraday angle measurements are analyzed, and we present numerical methods to calculate the phase and the amplitude. These validations have been done using real signals acquired by Tore Supra and JET experiments. These methods have been developed to be used in real-time in the future numerical cards that will replace the Tore Supra present analogue ones. PMID:21678660

  11. Evaluation of the Faraday angle by numerical methods and comparison with the Tore Supra and JET polarimeter electronics.

    PubMed

    Brault, C; Gil, C; Boboc, A; Spuig, P

    2011-04-01

    On the Tore Supra tokamak, a far infrared polarimeter diagnostic has been routinely used for diagnosing the current density by measuring the Faraday rotation angle. A high precision of measurement is needed to correctly reconstruct the current profile. To reach this precision, electronics used to compute the phase and the amplitude of the detected signals must have a good resilience to the noise in the measurement. In this article, the analogue card's response to the noise coming from the detectors and their impact on the Faraday angle measurements are analyzed, and we present numerical methods to calculate the phase and the amplitude. These validations have been done using real signals acquired by Tore Supra and JET experiments. These methods have been developed to be used in real-time in the future numerical cards that will replace the Tore Supra present analogue ones.

  12. Multifrequency control of Faraday wave patterns.

    PubMed

    Topaz, Chad M; Porter, Jeff; Silber, Mary

    2004-12-01

    We show how pattern formation in Faraday waves may be manipulated by varying the harmonic content of the periodic forcing function. Our approach relies on the crucial influence of resonant triad interactions coupling pairs of critical standing wave modes with damped, spatiotemporally resonant modes. Under the assumption of weak damping and forcing, we perform a symmetry-based analysis that reveals the damped modes most relevant for pattern selection, and how the strength of the corresponding triad interactions depends on the forcing frequencies, amplitudes, and phases. In many cases, the further assumption of Hamiltonian structure in the inviscid limit determines whether the given triad interaction has an enhancing or suppressing effect on related patterns. Surprisingly, even for forcing functions with arbitrarily many frequency components, there are at most five frequencies that affect each of the important triad interactions at leading order. The relative phases of those forcing components play a key role, sometimes making the difference between an enhancing and suppressing effect. In numerical examples, we examine the validity of our results for larger values of the damping and forcing. Finally, we apply our findings to one-dimensional periodic patterns obtained with impulsive forcing and to two-dimensional superlattice patterns and quasipatterns obtained with multifrequency forcing.

  13. Linear diffusion into a Faraday cage.

    SciTech Connect

    Warne, Larry Kevin; Lin, Yau Tang; Merewether, Kimball O.; Chen, Kenneth C.

    2011-11-01

    Linear lightning diffusion into a Faraday cage is studied. An early-time integral valid for large ratios of enclosure size to enclosure thickness and small relative permeability ({mu}/{mu}{sub 0} {le} 10) is used for this study. Existing solutions for nearby lightning impulse responses of electrically thick-wall enclosures are refined and extended to calculate the nearby lightning magnetic field (H) and time-derivative magnetic field (HDOT) inside enclosures of varying thickness caused by a decaying exponential excitation. For a direct strike scenario, the early-time integral for a worst-case line source outside the enclosure caused by an impulse is simplified and numerically integrated to give the interior H and HDOT at the location closest to the source as well as a function of distance from the source. H and HDOT enclosure response functions for decaying exponentials are considered for an enclosure wall of any thickness. Simple formulas are derived to provide a description of enclosure interior H and HDOT as well. Direct strike voltage and current bounds for a single-turn optimally-coupled loop for all three waveforms are also given.

  14. Conformations of dimethyl carbonate and its complexes with water: A matrix isolation infrared and ab initio study

    NASA Astrophysics Data System (ADS)

    Kar, Bishnu Prasad; Ramanathan, N.; Sundararajan, K.; Viswanathan, K. S.

    2012-09-01

    Conformations of dimethyl carbonate (DMC) were studied using matrix isolation infrared spectroscopy. Infrared spectra of DMC trapped in inert gas matrixes, using an effusive source at 298 and 423 K, showed evidence of both the ground state (cis-cis), and higher energy (cis-trans) conformers. Experiments were also performed using a supersonic jet source to deposit the matrix, to look for conformational cooling in the expansion process. The structures and vibrational frequencies of these conformers were computed at the B3LYP/6-31++G** level of theory. Natural bond orbital analyses were performed to understand the role of the delocalization interactions in conformational preferences. Complexes of DMC with H2O were also studied. A 1:1 DMC-H2O complex was identified in the matrix isolation experiments, where the carbonyl oxygen of DMC served as the proton acceptor for the hydrogen bonded complex. This observation was corroborated by computations performed on the complex at the B3LYP/6-31++G** level. Our computations also indicated another minimum, corresponding to an alkoxy bonded DMC-H2O complex, which was less exothermic; however, this complex was not identified in our experiments. Atoms-in-molecules theory was also performed to understand the nature of the intermolecular interaction in the DMC-H2O complex.

  15. In-frame and inter-frame information based infrared moving small target detection under complex cloud backgrounds

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Cao, Ercong; Hu, Xiaobo; Qian, Weixian; Ren, Kan

    2016-05-01

    Infrared moving small target detection under complex cloud backgrounds is one of the key techniques of infrared search and track (IRST) systems. This paper proposes a novel method based on in-frame inter-frame information to detect infrared moving small targets accurately. For a single frame, in the spatial domain, a directional max-median filter is developed to make a pre-processing and a background suppression filtering template is utilized on the denoised image to highlight target. Then, targets in cloud regions and non-cloud regions are extracted by different thresholds according to a cloud discrimination method so that a spatial domain map (SDM) is acquired. In the frequency domain, we design an α-DoB band-pass filter to conduct coarse saliency detection and make an amplitude transformation with smoothing processing which is the so-called elaborate saliency detection. Furthermore, a frequency domain map (FDM) is acquired by an adaptive binary segmentation method. Lastly, candidate targets in single frame are extracted by a discrimination based on intensity and spatial distance criteria. For consecutive frames, a false alarm suppression is conducted on account of differences of motion features between moving target and false alarms to improve detection accuracy again. Large numbers of experiments demonstrate that the proposed method has satisfying detection effectiveness and robustness for infrared moving small target detection under complex cloud backgrounds.

  16. Infrared Spectrum of CO-O2, a 'new' Weakly-Bound Complex

    NASA Astrophysics Data System (ADS)

    McKellar, Bob; Barclay, A. J.; Michaelian, K. H.; Moazzen-Ahmadi, Nasser

    2016-06-01

    Only a few weakly-bound complexes containing the O2 molecule have been characterized by high-resolution spectroscopy, notably N2O-O2 [1] and HF-O2 [2]. This neglect is no doubt due in part to the complications added by the oxygen unpaired electron spin. Here we report an extensive infrared spectrum of CO-O2, as observed in the CO fundamental band region (˜2150 wn) using a tunable quantum cascade laser to probe a pulsed supersonic jet expansion. The derived energy level pattern consists of 'stacks' characterized by K, the projection of the total angular momentum on the intermolecular axis. Five such stacks are observed in the ground vibrational state, and ten in the excited state, v(CO) = 1. They are divided into two groups, with no observed transitions between groups, and we believe these groups correlate with the two lowest rotational states of O2, namely (N, J) = (1, 0) and (1, 2). In many ways, the spectrum and energy levels are similar to those of CO-N2 [3], and we use the same approach for analysis, simply fitting each stack with its own origin, B-value, and distortion constants. The rotational constant of the lowest stack in the ground state (with K = 0) implies an effective intermolecular separation of 3.82 Å, but this should be interpreted with caution since it ignores possible effects of electron spin. [1] H.-B. Qian, D. Seccombe, and B.J. Howard, J. Chem. Phys. 107, 7658 (1997). [2] W.M. Fawzy, C.M. Lovejoy, D.J. Nesbitt, and J.T. Hougen, J. Chem. Phys. 117, 693 (2002); S. Wu, G. Sedo, E.M. Grumstrup, and K.R. Leopold, J. Chem. Phys. 127, 204315 (2007). [3] M. Rezaei, K.H. Michaelian, N. Moazzen-Ahmadi, and A.R.W. McKellar, J. Phys. Chem. A 117, 13752 (2013), and references therein.

  17. A femtosecond visible/visible and visible/mid-infrared transient absorption study of the light harvesting complex II.

    PubMed

    Stahl, Andreas D; Di Donato, Mariangela; van Stokkum, Ivo; van Grondelle, Rienk; Groot, Marie Louise

    2009-12-16

    Light harvesting complex II (LHCII) is the most abundant protein in the thylakoid membrane of higher plants and green algae. LHCII acts to collect solar radiation, transferring this energy mainly toward photosystem II, with a smaller amount going to photosystem I; it is then converted into a chemical, storable form. We performed time-resolved femtosecond visible pump/mid-infrared probe and visible pump/visible probe absorption difference spectroscopy on purified LHCII to gain insight into the energy transfer in this complex occurring in the femto-picosecond time regime. We find that information derived from mid-infrared spectra, together with structural and modeling information, provides a unique visualization of the flow of energy via the bottleneck pigment chlorophyll a604.

  18. Laplace's equation and Faraday's lines of force

    SciTech Connect

    Narasimhan, T.N.

    2007-06-01

    Boundary-value problems involve two dependent variables: a potential function, and a stream function. They can be approached in two mutually independent ways. The first, introduced by Laplace, involves spatial gradients at a point. Inspired by Faraday, Maxwell introduced the other, visualizing the flow domain as a collection of flow tubes and isopotential surfaces. Boundary-value problems intrinsically entail coupled treatment (or, equivalently, optimization) of potential and stream functions Historically, potential theory avoided the cumbersome optimization task through ingenious techniques such as conformal mapping and Green's functions. Laplace's point-based approach, and Maxwell's global approach, each provides its own unique insights into boundary-value problems. Commonly, Laplace's equation is solved either algebraically, or with approximate numerical methods. Maxwell's geometry-based approach opens up novel possibilities of direct optimization, providing an independent logical basis for numerical models, rather than treating them as approximate solvers of the differential equation. Whereas points, gradients, and Darcy's law are central to posing problems on the basis of Laplace's approach, flow tubes, potential differences, and the mathematical form of Ohm's law are central to posing them in natural coordinates oriented along flow paths. Besides being of philosophical interest, optimization algorithms can provide advantages that complement the power of classical numerical models. In the spirit of Maxwell, who eloquently spoke for a balance between abstract mathematical symbolism and observable attributes of concrete objects, this paper is an examination of the central ideas of the two approaches, and a reflection on how Maxwell's integral visualization may be practically put to use in a world of digital computers.

  19. Faraday instability in a near-critical fluid under weightlessness.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions. PMID:24580335

  20. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  1. Evaluation of ion collection area in Faraday probes

    SciTech Connect

    Brown, Daniel L.; Gallimore, Alec D.

    2010-06-15

    A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.

  2. Laser mode complexity analysis in infrared waveguide free-electron lasers

    NASA Astrophysics Data System (ADS)

    Prazeres, Rui

    2016-06-01

    We analyze an optical phenomenon taking place in waveguide free-electron lasers, which disturbs, or forbids, operation in far infrared range. Waveguides in the optical cavity are used in far-infrared and THz ranges in order to avoid diffraction optical losses, and a hole coupling on output mirror is used for laser extraction. We show that, when the length of the waveguide exceeds a given limit, a phenomenon of "mode disorder" appears in the cavity, which makes the laser difficult, or impossible, to work properly. This phenomenon is even more important when the waveguide covers the whole length of the cavity. A numerical simulation describes this effect, which creates discontinuities of the laser power in the spectral domain. We show an example with an existing infrared Free-Electron Laser, which exhibits such discontinuities of the power, and where no convincing explanation was proposed until now.

  3. Infrared depletion spectroscopy of the doubly hydrogen-bonded aniline-(tetrahydrofuran) 2 complex produced in supersonic jet

    NASA Astrophysics Data System (ADS)

    Chowdhury, Pradyot K.

    2006-01-01

    The vibrational frequencies of the N-H stretching modes of aniline after forming a strong doubly H-bonded complex with tetrahydrofuran (THF) are measured with infrared depletion spectroscopy that uses cluster-size-selective resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Two strong infrared absorption features observed at 3355 and 3488 cm -1 are assigned to the symmetric and antisymmetric N-H stretching vibrations of the 1:2 aniline-THF complex, respectively. The red-shifts of the N-H stretching vibrations of aniline agree with the ab initio calculated (MP2/6-31G**) aniline-(THF) 2 structure in which both aniline N-H bonds interact with the oxygen atom of THF through two hydrogen bonds. The calculated binding energy is found to be 29.6 kJ mol -1 after corrections for basis set superposition error (BSSE) and zero-point energy. The calculated structure revealed that the angle between the N-H bonds in the NH 2 group increased to 112.5° in the aniline-(THF) 2 complex from that of 109.8° in the aniline. The electronic 0-0 band origin for the S1 ← S0 transition is observed at 32,900 cm -1 in the aniline-(THF) 2 complex, giving a red-shift of 1129 cm -1 from that of the aniline molecule.

  4. Fast Faraday fading of long range satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.

    1972-01-01

    20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.

  5. Faraday rotation effects for diagnosing magnetism in bubble environments

    NASA Astrophysics Data System (ADS)

    Ignace, R.

    2014-05-01

    Faraday rotation is a process by which the position angle (PA) of background linearly polarized light is rotated when passing through an ionized and magnetized medium. The effect is sensitive to the line-of-sight magnetic field in conjunction with the electron density. This contribution highlights diagnostic possibilities of inferring the magnetic field (or absence thereof) in and around wind-blown bubbles from the Faraday effect. Three cases are described as illustrations: a stellar toroidal magnetic field, a shocked interstellar magnetic field, and an interstellar magnetic field within an ionized bubble.

  6. Experimenting with magnetism: Ways of learning of Joann and Faraday

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth

    1997-09-01

    This paper narrates learning as it evolved through experimental work and interpretation in two distinct investigations: the explorations of permanent magnets and needles conducted by a student, Joann, as I interactively interviewed her, and Faraday's initial experimenting with diamagnetism, as documented in his Diary. Both investigators puzzled over details, revisited their confusions resiliently, and invented analogies as ways of extending their questioning; "misconceptions" and conflict were not explicit to their process. Additionally, Faraday formed interpretations—and doubts critiquing them—that drew upon his extensive experience with magnetism's spatial behaviors. These two cases suggest that physics instruction could include opportunities for students' development of their own investigatory learning.

  7. All-Fiber Optical Faraday Mirror Using 56-wt%-Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-22

    An all-fiber optical Faraday mirror that consists of a fiber Faraday rotator and a fiber Bragg grating is demonstrated. The fiber Faraday rotator uses a 21-cm-long section of 56-wt%-terbium-doped silicate fiber. The polarization state of the reflected light is rotated 89 degrees +/- 2 degrees with a 16-dB polarization extinction ratio.

  8. High-resolution infrared spectroscopy of HCN-Agn (n = 1-4) complexes solvated in superfluid helium droplets.

    PubMed

    Stiles, Paul L; Miller, Roger E

    2007-08-01

    High-resolution infrared spectroscopy has been used to determine the structures, C-H stretching frequencies, and dipole moments of the HCN-Agn (n = 1-3) complexes formed in superfluid helium droplets. The HCN-Ag4 cluster was tentatively assigned based upon pick-up cell pressure dependencies and harmonic vibrational shift calculations. Ab initio and density functional theory calculations were used in conjunction with the high-resolution spectra to analyze the bonding nature of each cluster. All monoligated species reported here are bound through the nitrogen end of the HCN molecule. The HCN-Agn complexes are structurally similar to the previously reported HCN-Cun clusters, with the exception of the HCN-Ag binary complex. Although the interaction between the HCN and the Agn clusters follows the same trends as the HCN-Cun clusters, the more diffuse nature of the electrons surrounding the silver atoms results in a much weaker interaction.

  9. Investigating vibrational relaxation in cyanide-bridged transition metal mixed-valence complexes using two-dimensional infrared and infrared pump-probe spectroscopies

    PubMed Central

    Slenkamp, Karla M.; Lynch, Michael S.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2016-01-01

    Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]− (FeRu) dissolved in D2O or formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4− (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent. PMID:27158634

  10. Overview of the Massive Young Star-Forming Complex Study in Infrared and X-Ray (MYStIX) Project

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.; Townsley, Leisa K.; Broos, Patrick S.; Busk, Heather A.; Getman, Konstantin V.; King, Robert R.; Kuhn, Michael A.; Naylor, Tim; Povich, Matthew S.; Baddeley, Adrian; Bate, Matthew R.; Indebetouw, Remy; Luhman, Kevin L.; McCaughrean, Mark J.; Pittard, Julian M.; Pudritz, Ralph E.; Sills, Alison; Song, Yong; Wadsley, James

    2013-12-01

    The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) seeks to characterize 20 OB-dominated young clusters and their environs at distances d <= 4 kpc using imaging detectors on the Chandra X-ray Observatory, Spitzer Space Telescope, and the United Kingdom InfraRed Telescope. The observational goals are to construct catalogs of star-forming complex stellar members with well-defined criteria and maps of nebular gas (particularly of hot X-ray-emitting plasma) and dust. A catalog of MYStIX Probable Complex Members with several hundred OB stars and 31,784 low-mass pre-main sequence stars is assembled. This sample and related data products will be used to seek new empirical constraints on theoretical models of cluster formation and dynamics, mass segregation, OB star formation, star formation triggering on the periphery of H II regions, and the survivability of protoplanetary disks in H II regions. This paper gives an introduction and overview of the project, covering the data analysis methodology and application to two star-forming regions: NGC 2264 and the Trifid Nebula.

  11. Possibility of observing dark matter via the gyromagnetic Faraday effect.

    PubMed

    Gardner, Susan

    2008-02-01

    If dark matter consists of cold, neutral particles with a nonzero magnetic moment, then, in the presence of an external magnetic field, a measurable gyromagnetic Faraday effect becomes possible. This enables direct constraints on the nature and distribution of such dark matter through detailed measurements of the polarization and temperature of the cosmic-microwave background radiation.

  12. Faraday's Investigation of Electromagnetic Induction. Experiment No. 21.

    ERIC Educational Resources Information Center

    Devons, Samuel

    This paper focuses on Michael Faraday's experimental research in electricity in the 1830's. Historical notes related to his work are included as well as experiments, his objectives, and illustrations of equipment for the experiments. Examples from his diary are given so that students can attempt to emulate his honest and systematic manner of…

  13. Faraday signature of magnetic helicity from reduced depolarization

    SciTech Connect

    Brandenburg, Axel; Stepanov, Rodion

    2014-05-10

    Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter. The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.

  14. Interferometer using a 3 × 3 coupler and Faraday mirrors

    NASA Astrophysics Data System (ADS)

    Breguet, J.; Gisin, N.

    1995-06-01

    A new interferometric setup using a 3 \\times 3 coupler and two Faraday mirrors is presented. It has the advantages of being built only with passive components, of freedom from the polarization fading problem, and of operation with a LED. It is well suited for sensing time-dependent signals and does not depend on reciprocal or nonreciprocal constant perturbations.

  15. Faraday Rotation of Rare Earth Ions in Orthoferrites

    NASA Astrophysics Data System (ADS)

    Gomi, Manabu; Abe, Masanori; Nomura, Soichiro

    1980-09-01

    The Faraday rotation spectra corresponding to the 4I15/2→4F9/2(Er3+) and 3H6→3F2(Tm3+) transitions in ErFeO3 and TmFeO3 were found to be in dissipative and dispersive shapes, respectively, in both the \\varGamma2(Fx) and \\varGamma4(Fz) spin configurations. The Faraday rotation due to the electronic transition of the rare earth ions (R3+) was analysed in terms of the molecular field perturbation acting on the R3+ ions. In the case of the R3+ ions with odd number of electrons such as Er3+(4f11), the crystal field state of the J-multiplet is split into degenerate Kramers doublets which makes the spectrum of the Faraday rotation dissipative when \\varGamma(linewidth)≲\\varDelta(Kramers splitting)≪kT; while in the case of the R3+ ions with even number of electrons such as Tm3+(4f12), the crystal field state is split into nondegenerate singlets, which makes the spectrum of the Faraday rotation dispersive.

  16. Faraday, Dickens and Science Education in Victorian Britain

    ERIC Educational Resources Information Center

    Melville, Wayne; Allingham, Philip V.

    2011-01-01

    The achievements of Michael Faraday in the fields of electricity and electrochemistry have led some to describe him as the greatest experimental scientist in history. Charles Dickens was the creative genius behind some of the most memorable characters in literature. In this article, we share an historical account of how the collaboration of these…

  17. Michael Faraday: Prince of lecturers in Victorian England

    NASA Astrophysics Data System (ADS)

    Lan, Boon Leong; Lim, Jeanette B. S.

    2001-01-01

    In this note, we focus on Faraday as a lecturer/teacher. We trace his development as a lecturer/teacher and highlight his approaches in popular-science lecturing and in teaching chemistry to military cadets. We appraise his success and conclude with an account of his poignant last lecture.

  18. Professor Henry, Mr. Faraday, and the Hunt for Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Moyer, Albert E.

    1997-04-01

    On different sides of the Atlantic but about the same time, Michael Faraday and Joseph Henry announced success in a quest that had preoccupied the scientific community for a decade: coaxing electricity from magnetism. "Mutual induction," what Faraday and Henry had identified in the early 1830s, would turn out to be not only a foundational concept in the physics of electricity and magnetism but also the principle behind the technology of electrical transformers and generators--two mainstays of industrialization. Although Faraday's breakthrough in London and Henry's in Albany might appear to be classic examples of "independent discovery," they were not. The two natural philosophers shared a similar orientation toward their research and, moreover, a distinctive laboratory instrument: Henry's new, powerful electromagnet. Thus, the story of Henry's and Faraday's search for induction illuminates not only the workings of Victorian science but also the crucial part that an instrument--the unadorned hardware--can play in scientific inquiry. Albert Moyer takes this story from his biography of Joseph Henry that Smithsonian Institution Press is about to publish in commemoration of the 200th anniversary of Henry's birth. The biography focuses on Henry's early and middle years, 1797-1847, from his emergence as America's foremost physical scientist to his election as the Smithsonian Institution's first director.

  19. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infrared spectra

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Zhao, Guizhi

    1986-01-01

    The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  20. Research on infrared dim-point target detection and tracking under sea-sky-line complex background

    NASA Astrophysics Data System (ADS)

    Dong, Yu-xing; Li, Yan; Zhang, Hai-bo

    2011-08-01

    Target detection and tracking technology in infrared image is an important part of modern military defense system. Infrared dim-point targets detection and recognition under complex background is a difficulty and important strategic value and challenging research topic. The main objects that carrier-borne infrared vigilance system detected are sea-skimming aircrafts and missiles. Due to the characteristics of wide field of view of vigilance system, the target is usually under the sea clutter. Detection and recognition of the target will be taken great difficulties .There are some traditional point target detection algorithms, such as adaptive background prediction detecting method. When background has dispersion-decreasing structure, the traditional target detection algorithms would be more useful. But when the background has large gray gradient, such as sea-sky-line, sea waves etc .The bigger false-alarm rate will be taken in these local area .It could not obtain satisfactory results. Because dim-point target itself does not have obvious geometry or texture feature ,in our opinion , from the perspective of mathematics, the detection of dim-point targets in image is about singular function analysis .And from the perspective image processing analysis , the judgment of isolated singularity in the image is key problem. The foregoing points for dim-point targets detection, its essence is a separation of target and background of different singularity characteristics .The image from infrared sensor usually accompanied by different kinds of noise. These external noises could be caused by the complicated background or from the sensor itself. The noise might affect target detection and tracking. Therefore, the purpose of the image preprocessing is to reduce the effects from noise, also to raise the SNR of image, and to increase the contrast of target and background. According to the low sea-skimming infrared flying small target characteristics , the median filter is used to

  1. Does a hydrogen bonded complex with dual contacts show synergism? A matrix isolation infrared and ab-initio study of propargyl alcohol-water complex

    NASA Astrophysics Data System (ADS)

    Saini, Jyoti; Viswanathan, K. S.

    2016-08-01

    When hydrogen bonded complexes are formed with more than one contact, the question arises if these multiple contacts operate synergistically. Propargyl alcohol-H2O complex presents a good case study to address this question, which is discussed in this work. Complexes of propargyl alcohol (PA) and H2O were studied experimentally using matrix isolation infrared spectroscopy, which was supported by quantum chemical computations performed at the M06-2X and MP2 level of theories, using 6-311++G (d,p) and aug-cc-pVDZ basis sets. A 1:1 PA-H2O complex was identified in the experiments and corroborated by our computations, where the PA was in the gauche conformation. This complex, which was a global minimum, showed dual interactions, one of which was an n-σ interaction between the O-H group of PA and the O of H2O, while the second was a H···​π contact between the O-H group of H2O and the π system of PA. We explored if the two interactions in the 1:1 complex exhibited synergism. We finally argue that the two interactions showed antagonism rather than synergism. Our computations indicated three other local minima for the 1:1 complexes; though these local minima were not identified in our experiments. Atoms-in-molecules and energy decomposition analysis executed through LMO-EDA were also performed to understand the nature of intermolecular interactions in the PA-H2O complexes. We have also revisited the problem of conformations of PA, with a view to understanding the reasons for gauche conformational preferences in PA.

  2. Zn(2+) and Cd(2+) cationized serine complexes: infrared multiple photon dissociation spectroscopy and density functional theory investigations.

    PubMed

    Coates, Rebecca A; Boles, Georgia C; McNary, Christopher P; Berden, Giel; Oomens, Jos; Armentrout, P B

    2016-08-10

    The gas-phase structures of zinc and cadmium dications bound to serine (Ser) are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy using the free electron laser FELIX, in combination with ab initio calculations. To identify the structures of the experimentally observed species, [Zn(Ser-H)CH3CN](+) and CdCl(+)(Ser), the measured action spectra are compared to linear absorption spectra calculated at the B3LYP/6-311+G(d,p) level for Zn(2+) containing complexes and B3LYP/def2-TZVP levels for Cd(2+) containing complexes. Good agreement between the observed IRMPD spectra and the predicted spectra allows identification of the isomers present. The intact amino acid interacting with cadmium chloride adopts a tridentate chelation involving the amino acid backbone amine and carbonyl groups as well as the hydroxyl group of the side-chain, [N,CO,OH]. The presence of two low-energy conformers is observed for the deprotonated serine-zinc complex, with the same tridentate coordination as for the cadmium complex but proton loss occurs at both the hydroxyl side-chain, [N,CO,O(-)], and the carboxylic acid of the amino acid backbone, [N,CO(-),OH]. These results are profitably compared with the analogous results previously obtained for comparable complexes with cysteine. PMID:27465924

  3. Structure and photophysics of near-infrared emissive ytterbium(III) monoporphyrinate acetate complexes having neutral bidentate ligands.

    PubMed

    He, Hongshan; Sykes, Andrew G; May, P Stanley; He, Guishan

    2009-09-28

    Substitution reactions between [Yb(TPP)(OOCCH3)(CH3OH)2] (1) and neutral bidentate ligands NN led to the formation of monoporphyrinate ytterbium(III) complexes [Yb(TPP)(OOCCH3)(NN)] (TPP = 5,10,15,20-tetraphenylporphyrinate anion; NN = 4-methyl-1,10-phenanthroline (2), 1,10-phenanthroline (3), 4,7-dimethyl-1,10-phenanthroline (4), 5,6-epoxy-5,6-dihydroxy-1,10-phenanthroline (5) and 2,2'-dipyridylamine (6)). Single-crystal X-ray diffraction analysis revealed that ytterbium(III) ions in 1 and 6 were seven-coordinate with OOCCH3- in monodentate coordination, whereas those in 2, 3, 4 and 5 were eight-coordinate with OOCCH3- in bidentate coordination. The visible emission (650 and 720 nm) from the porphyrin and near-infrared (NIR) emission (980 and 1003 nm) from ytterbium(III) ion were observed for all complexes. The eight-coordinate complexes exhibited stronger NIR emission and longer lifetimes in toluene solution than the seven-coordinate complexes. The NIR emission of complexes with decreased lifetimes was also observed when they were blended into organic polymer PMMA.

  4. Far-Infrared and Microwave Spectroscopic Examination of Weakly Bound Molecular Complexes: Potential Energy Surfaces and Internal Dynamics

    NASA Astrophysics Data System (ADS)

    Reeve, Scott Wayne

    1992-01-01

    High resolution far infrared gas phase absorption experiments on both the Ar-HX (X = F, Cl, Br) and the Ar -NH_3 systems are described. All of the spectroscopic measurements were obtained with a tunable far infrared difference frequency sideband (TuFIRS) spectrometer which was coupled to a continuous free jet expansion. In each system the low frequency bending and stretching vibrations, corresponding to the van der Waals coordinates, were observed and measured. The experimental measurements allow basic physical properties (e.g., rotational and centrifugal distortion constants) for these systems to be determined which are sensitive to the global topology of the intermolecular potential energy surface, and thus, provide critical tests for the physical models used to construct potential energy surfaces. A high resolution rotational spectroscopic study of the gas phase complex HCN-BF_3, done as a collaborative effort with scientists at the National Institute for Standards and Technology (NIST), is also described. Here, a Fourier transform microwave spectrometer is used to determine the molecular structure and basic physical properties of the HCN-BF_3 complex. We find the molecular structure to be that of an incipiently bonded molecule. In addition, we interpret the molecular structure, and the other measured molecular properties, within the generalized reaction path framework for BF_3 + nitrogen adducts discussed previously by Dvorak, et. al.^1 ftn^1M. A. Dvorak, R. S. Ford, R. D. Suenram, F. J. Lovas, and K. R. Leopold, J. Amer. Chem. Soc., 114, 108 (1992).

  5. Jet-driving protostars identified from infrared observations of the Carina Nebula complex

    NASA Astrophysics Data System (ADS)

    Ohlendorf, H.; Preibisch, T.; Gaczkowski, B.; Ratzka, T.; Grellmann, R.; McLeod, A. F.

    2012-04-01

    Aims: Jets are excellent signposts for very young embedded protostars, so we want to identify jet-driving protostars as a tracer of the currently forming generation of stars in the Carina Nebula, which is one of the most massive galactic star-forming regions and which is characterised by particularly high levels of massive-star feedback on the surrounding clouds. Methods: We used archive data to construct large ( ≳ 2° × 2°) Spitzer IRAC mosaics of the Carina Nebula and performed a spatially complete search for objects with excesses in the 4.5 μm band, typical of shock-excited molecular hydrogen emission. We also identified the mid-infrared point sources that are the likely drivers of previously discovered Herbig-Haro jets and molecular hydrogen emission line objects. We combined the Spitzer photometry with our recent Herschel far-infrared data to construct the spectral energy distributions, and used the Robitaille radiative-transfer modelling tool to infer the properties of the objects. Results: The radiative-transfer modelling suggests that the jet sources are protostars with masses between ~1 M⊙ and ~10 M⊙ that are surrounded by circumstellar disks and embedded in circumstellar envelopes. Conclusions: The estimated protostar masses ≤10 M⊙ suggest that the current star-formation activity in the Carina Nebula is restricted to low- and intermediate-mass stars. More optical than infrared jets can be observed, indicating that star formation predominantly takes place close to the surfaces of clouds. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, and on data collected by Herschel, an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. A Study of Broadband Faraday Rotation and Polarization Behavior over 1.3--10 GHz in 36 Discrete Radio Sources

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.

    2016-07-01

    We present a broadband polarization analysis of 36 discrete polarized radio sources over a very broad, densely sampled frequency band. Our sample was selected on the basis of polarization behavior apparent in narrowband archival data at 1.4 GHz: half the sample shows complicated frequency-dependent polarization behavior (i.e., Faraday complexity) at these frequencies, while half shows comparatively simple behavior (i.e., they appear Faraday simple). We re-observed the sample using the Australia Telescope Compact Array in full polarization, with 6 GHz of densely sampled frequency coverage spanning 1.3–10 GHz. We have devised a general polarization modeling technique that allows us to identify multiple polarized emission components in a source, and to characterize their properties. We detect Faraday complex behavior in almost every source in our sample. Several sources exhibit particularly remarkable polarization behavior. By comparing our new and archival data, we have identified temporal variability in the broadband integrated polarization spectra of some sources. In a number of cases, the characteristics of the polarized emission components, including the range of Faraday depths over which they emit, their temporal variability, spectral index, and the linear extent of the source, allow us to argue that the spectropolarimetric data encode information about the magneto-ionic environment of active galactic nuclei themselves. Furthermore, the data place direct constraints on the geometry and magneto-ionic structure of this material. We discuss the consequences of restricted frequency bands on the detection and interpretation of polarization structures, and the implications for upcoming spectropolarimetric surveys.

  7. Infrared Spectroscopic Analysis of Linkage Isomerism in Metal-Thiocyanate Complexes

    ERIC Educational Resources Information Center

    Baer, Carl; Pike, Jay

    2010-01-01

    We developed an experiment suitable for an advanced inorganic chemistry laboratory that utilizes a cooperative learning environment, which allows students to develop an empirical method of determining the bonding mode of a series of unknown metal-thiocyanate complexes. Students synthesize the metal-thiocyanate complexes and obtain the FT-IR…

  8. The infrared spectrum of the Ne-C2D2 complex.

    PubMed

    Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David

    2015-11-28

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm(-1)) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes.

  9. Far- and mid-infrared spectroscopy of complex organic matter of astrochemical interest: coal, heavy petroleum fractions and asphaltenes

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; García-Hernández, D. A.; Manchado, Arturo

    2013-03-01

    The coexistence of a large variety of molecular species (i.e. aromatic, cycloaliphatic and aliphatic) in several astrophysical environments suggests that unidentified infrared emission (UIE) occurs from small solid particles containing a mix of aromatic and aliphatic structures (e.g. coal, petroleum, etc.), renewing the astronomical interest on this type of materials. A series of heavy petroleum fractions namely `distillate aromatic extract', `Residual Aromatic Extract', heavy aromatic fraction (BQ-1) and asphaltenes derived from BQ-1 were used together with anthracite coal and bitumen as model compounds in matching the band pattern of the emission features of proto-planetary nebulae (PPNe). All the model materials were examined in the mid-infrared (2.5-16.66 μm) and for the first time in the far-infrared (16.66-200 μm), and the infrared bands were compared with the UIE from PPNe. The best match of the PPNe band pattern is offered by the BQ-1 heavy aromatic oil fraction and by its asphaltenes fraction. Particularly interesting is the ability of BQ-1 to match the band pattern of the aromatic-aliphatic C-H stretching bands of certain PPNe, a result which is not achieved neither by the coal model nor by the other petroleum fractions considered here. This study shows that a new interesting molecular model of the emission features of PPNe is asphaltene molecules which are composed by an aromatic core containing three to four condensed aromatic rings surrounded by cycloaliphatic (naphtenic) and aliphatic alkyl chains. Instead, the weakness of the model involving a mixture of polycyclic aromatic hydrocarbons (PAHs) for modelling the aromatic infrared emission bands (AIBs) is shown. The laboratory spectra of these complex organic compounds represent a unique data set of high value for the astronomical community, e.g. they may be compared with the Herschel Space Observatory spectra (˜51-220 μm) of several astrophysical environments such as (proto-) planetary nebulae, H

  10. Seaquake waves: Standing wave dynamics with Faraday excitation and radiative loss

    NASA Astrophysics Data System (ADS)

    Dolven, Eric Thomas

    When a body of deep water is subjected to vertical oscillations with frequency w0 , linear theory predicts that a standing wave field with frequency w=w02 forms on the surface. The wave number k*=w2g is determined by the deep water dispersion relation. These waves are called Faraday waves after Michael Faraday [16] who first documented them in 1831. Since then, much work has been done to try and understand them. However, all the existing results are for high frequency capillary waves subjected to viscous damping. What is observed is a variety of standing wave patterns that may be stabilized for various forcing strengths and viscosities. We analyze a system in which the dominant mechanism for energy dispersal is radiation rather than viscosity. We suggest this as a first approximation to the transient motions associated with earthquakes at sea and find that the results give insight into seaquake dynamics and the complex interactions involved with water wave formation. These assumptions introduce a number of challenges along with introducing interesting dynamics. In particular, phase dynamics arise that lead to remarkable quasi-stationary states that evolve on a slow time scale.

  11. Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yao, Xinfeng; Ji, Minhe

    2016-01-01

    Despite recent rapid advancement in remote sensing technology, accurate mapping of the urban landscape in China still faces a great challenge due to unusually high spectral complexity in many big cities. Much of this complication comes from severe spectral confusion of impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-step land cover decomposition method, which combines optical and thermal spectra from different seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture analysis was employed to generate fraction images for three preliminary endmembers (high albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature induced from thermal infrared spectra and coarse component fractions obtained from the first step was then used to reduce the confusion between impervious surfaces and nonimpervious materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of China's megacities. The results showed that the method was capable of consistently estimating impervious surfaces in highly complex urban environments with an accuracy of R2 greater than 0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This strategy seemed very promising for landscape mapping of complex urban areas.

  12. Deep red to near-infrared emitting rhenium(I) complexes: synthesis, characterization, electrochemistry, photophysics, and electroluminescence studies.

    PubMed

    Yu, Tao; Tsang, Daniel Ping-Kuen; Au, Vonika Ka-Man; Lam, Wai Han; Chan, Mei-Yee; Yam, Vivian Wing-Wah

    2013-09-27

    A series of triarylamine-containing tricarbonyl rhenium(I) complexes, [BrRe(CO)3 (N^N)] (N^N=5,5'-bis(N,N-diaryl-4-[ethen-1-yl]-aniline)-2,2'-bipyridine), has been designed and synthesized by introducing a rhenium(I) metal center into a donor-π-acceptor-π-donor structure. All of the complexes showed an intense broad structureless emission band in dichloromethane at around 680-708 nm, which originated from an excited state of intraligand charge transfer ((3)ILCT) character from the triarylamine to the bipyridine moiety. Upon introduction of the bulky and electron-donating pentaphenylbenzene units attached to the aniline groups, the emission bands were found to be red shifted. The nanosecond transient absorption spectra of two selected complexes were studied, which were suggestive of the formation of an initial charge-separated state. Computational studies have been performed to provide further insight into the origin of the absorption and emission. One of the rhenium(I) complexes has been utilized in the fabrication of organic light-emitting diodes (OLEDs), representing the first example of the realization of deep red to near-infrared rhenium(I)-based OLEDs with an emission extending up to 800 nm. PMID:23959682

  13. Research on infrared small-target tracking technology under complex background

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao

    2012-10-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.

  14. The research on infrared small-target detection technology under complex background

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xin; Chen, Jilu; Huang, Zhijian

    2011-06-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target detecting are described. Then, according to actual needs and the comparison results of those algorithms, some of them are optimized in combination with the image pre-processing. On the foundation of above works, a moving target detecting and tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of detecting algorithms are integrated in this software. These three detecting algorithms are Frame Difference method, Background Estimation method and Mixture Gaussian Modeling method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for detecting targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target detecting technology.

  15. A complex multi-notch astronomical filter to suppress the bright infrared sky.

    PubMed

    Bland-Hawthorn, J; Ellis, S C; Leon-Saval, S G; Haynes, R; Roth, M M; Löhmannsröben, H-G; Horton, A J; Cuby, J-G; Birks, T A; Lawrence, J S; Gillingham, P; Ryder, S D; Trinh, C

    2011-12-06

    A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.

  16. The infrared spectrum of the Ar-C2D2 complex

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2016-10-01

    Infrared spectra of Ar-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm-1) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Transitions are assigned involving K = 0-2 in the ground vibrational state, and K = 0-4 in the excited state. The intermolecular bending combination band is also observed, giving a bending frequency of 4.798 cm-1. Despite this low bending frequency, the Ar-C2D2 spectrum qualitatively resembles that of a normal semi-rigid molecule, in contrast to He- and Ne-C2D2 which are much closer to the limit of free internal rotation.

  17. A Faraday effect position sensor for interventional magnetic resonance imaging.

    PubMed

    Bock, M; Umathum, R; Sikora, J; Brenner, S; Aguor, E N; Semmler, W

    2006-02-21

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m(-1) gradient field, a localization uncertainty of 1.5 cm could be achieved.

  18. CRADA Final Report, 2011S003, Faraday Technologies

    SciTech Connect

    Faraday Technologies

    2012-12-12

    This Phase I SBIR program addressed the need for an improved manufacturing process for electropolishing niobium RF superconducting cavities for the International Linear Collider (ILC). The ILC is a proposed particle accelerator that will be used to gain a deeper understanding of the forces of energy and matter by colliding beams of electrons and positrons at nearly the speed of light. The energy required for this to happen will be achieved through the use of advanced superconducting technology, specifically ~16,000 RF superconducting cavities operating at near absolute zero. The RF superconductor cavities will be fabricated from highly pure Nb, which has an extremely low surface resistance at 2 Kelvin when compared to other materials. To take full advantage of the superconducting properties of the Nb cavities, the inner surface must be a) polished to a microscale roughness < 0.1 µm with removal of at least 100 µm of material, and b) cleaned to be free of impurities that would degrade performance of the ILC. State-of-the-art polishing uses either chemical polishing or electropolishing, both of which require hydrofluoric acid to achieve breakdown of the strong passive film on the surface. In this Phase I program, Faraday worked with its collaborators at the Thomas Jefferson National Accelerator Facility (JLab) to demonstrate the feasibility of an electropolishing process for pure niobium, utilizing an environmentally benign alternative to chemical or electrochemical polishing electrolytes containing hydrofluoric acid. Faraday utilized a 31 wt% aqueous sulfuric acid solution (devoid of hydrofluoric acid) in conjunction with the FARADAYICSM Process, which uses pulse/pulse reverse fields for electropolishing, to demonstrate the ability to electropolish niobium to the desired surface finish. The anticipated benefits of the FARADAYICSM Electropolishing process will be a simpler, safer, and less expensive method capable of surface finishing high purity niobium cavities

  19. Todd, Faraday and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward

    2007-10-01

    The origins of our understanding of brain electricity and electrical discharges in epilepsy can be traced to Robert Bentley Todd (1809-60). Todd was influenced by his contemporary in London, Michael Faraday (1791-1867), who in the 1830 s and 1840 s was laying the foundations of our modern understanding of electromagnetism. Todd's concept of nervous polarity, generated in nerve vesicles and transmitted in nerve fibres (neurons in later terminology), was confirmed a century later by the Nobel Prize-winning work of Hodgkin and Huxley, who demonstrated the ionic basis of neuro-transmission, involving the same ions which had had been discovered by Faraday's mentor, Sir Humphry Davy (1778-1829).

  20. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  1. Todd, Faraday and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward

    2007-10-01

    The origins of our understanding of brain electricity and electrical discharges in epilepsy can be traced to Robert Bentley Todd (1809-60). Todd was influenced by his contemporary in London, Michael Faraday (1791-1867), who in the 1830 s and 1840 s was laying the foundations of our modern understanding of electromagnetism. Todd's concept of nervous polarity, generated in nerve vesicles and transmitted in nerve fibres (neurons in later terminology), was confirmed a century later by the Nobel Prize-winning work of Hodgkin and Huxley, who demonstrated the ionic basis of neuro-transmission, involving the same ions which had had been discovered by Faraday's mentor, Sir Humphry Davy (1778-1829). PMID:17885273

  2. Giant Faraday and Kerr rotation with strained graphene.

    PubMed

    Martinez, J C; Jalil, M B A; Tan, S G

    2012-08-01

    Polarized electromagnetic waves passing through (reflected from) a dielectric medium parallel to a magnetic field undergo Faraday (Kerr) rotation of their polarization. Recently, Faraday rotation angles as much as 0.1 rad were observed for terahertz waves propagating through graphene over a SiC substrate. We show that the same effect is observable with the magnetic field replaced by an in-plane strain field which induces a pseudomagnetic field in graphene. With two such sheets a rotation of π/4 can be achieved, which is the required rotation for an optical diode. Similarly a Kerr rotation of 1/4 rad is predicted from a single reflection from a strained graphene sheet. PMID:22859144

  3. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    PubMed

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks.

  4. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths.

    PubMed

    Yeh, Yi-Jou; Black, Adam J; Akkin, Taner

    2013-10-10

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm. PMID:24217734

  5. Infrared and electron spin resonance spectral studies of some copper purine and pyrimidine complexes.

    PubMed

    Masoud, Mamdouh S; Abd El-Kaway, Marwa Y

    2013-02-01

    Copper guanine and barbital complexes were prepared and characterized by elemental analyses and spectral measurements. The data typified the formation of stoichiometries 1:1 (M:L) with possible Cu-Cu interaction "association". The complexes are with different geometries: square planar, square pyramidal and tetrahedral. The mode of bonding was identified by IR spectra. EPR spectra of the powdered complexes were recorded at X band at the room temperature. Different ESR parameters were calculated and discussed: g(//), g(⊥), A(//), [g], G, F, K, α(2). Molecular modeling techniques and quantum chemical methods have been performed for copper complexes to correlate the chemical structures of the complexes with their physical molecular properties. Bond lengths, bond orders, bond angles, dihedral angles, close contact, dipole moment (μ), sum of the total negative charge (STNC), electronegativity (χ), chemical potential (Pi), global hardness (η), softness (σ), the highest occupied molecular orbital energy (E(HOMO)), the lowest unoccupied molecular orbital energy (E(LUMO)) and the energy gap (ΔE) were calculated using PM3 semi-empirical and Molecular Mechanics (MM+) methods. The study displays a good correlation between the theoretical and experimental data which confirms the reliability of the quantum chemical methods. PMID:23220533

  6. Oscillon dynamics and rogue wave generation in Faraday surface ripples.

    PubMed

    Xia, H; Maimbourg, T; Punzmann, H; Shats, M

    2012-09-14

    We report new experimental results which suggest that the generation of extreme wave events in the Faraday surface ripples is related to the increase in the horizontal mobility of oscillating solitons (oscillons). The analysis of the oscillon trajectories in a horizontal plane shows that at higher vertical acceleration, oscillons move chaotically, merge and form enclosed areas on the water surface. The probability of the formation of such craters, which precede large wave events, increases with the increase in horizontal mobility. PMID:23005636

  7. Sodium and potassium vapor Faraday filters revisited: theory and applications

    SciTech Connect

    Harrell, S. D.; She, C.-Y.; Yuan Tao; Krueger, David A.; Chen, H.; Chen, S. S.; Hu, Z. L.

    2009-04-15

    A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of the filter transmission on atomic density and external magnetic field strength, as well as the frequency dependence of transmission, are explained in physical terms. As examples, applications of the computed results to ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to enable measurement of the density of mesospheric oxygen atoms are briefly discussed.

  8. A new approach for miniaturization of multiple faraday cup collectors.

    SciTech Connect

    Banar, J. C.; Chamberlin, E. P.; Poths, J.; Perrin, R. E.; Chastagner, P.

    2002-01-01

    The mass spectrometry section in CST-7 has been working for several years on a novel so0lution to overcome the size and placement restrictions of multiple Faraday cup collectors. Use of simultaneous collection of multiple isotopes both increases precision in the isotopic measurements and shortens the data collection time. Our application is for the measurement of the isotopic composition of Xe, ionized in a source that produces a large (10{sup -11} amp) but variable ion beam.

  9. Time-resolved visible and infrared study of the cyano complexes of myoglobin and of hemoglobin I from Lucina pectinata.

    PubMed

    Helbing, Jan; Bonacina, Luigi; Pietri, Ruth; Bredenbeck, Jens; Hamm, Peter; van Mourik, Frank; Chaussard, Frédéric; Gonzalez-Gonzalez, Alejandro; Chergui, Majed; Ramos-Alvarez, Cacimar; Ruiz, Carlos; López-Garriga, Juan

    2004-09-01

    The dynamics of the ferric CN complexes of the heme proteins Myoglobin and Hemoglobin I from the clam Lucina pectinata upon Soret band excitation is monitored using infrared and broad band visible pump-probe spectroscopy. The transient response in the UV-vis spectral region does not depend on the heme pocket environment and is very similar to that known for ferrous proteins. The main feature is an instantaneous, broad, short-lived absorption signal that develops into a narrower red-shifted Soret band. Significant transient absorption is also observed in the 360-390 nm range. At all probe wavelengths the signal decays to zero with a longest time constant of 3.6 ps. The infrared data on MbCN reveal a bleaching of the C triple bond N stretch vibration of the heme-bound ligand, and the formation of a five-times weaker transient absorption band, 28 cm(-1) lower in energy, within the time resolution of the experiment. The MbC triple bond N stretch vibration provides a direct measure for the return of population to the ligated electronic (and vibrational) ground state with a 3-4 ps time constant. In addition, the CN-stretch frequency is sensitive to the excitation of low frequency heme modes, and yields independent information about vibrational cooling, which occurs on the same timescale.

  10. Todd, Faraday, and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy. PMID:15324724

  11. Faraday rotation data analysis with least-squares elliptical fitting

    SciTech Connect

    White, Adam D.; McHale, G. Brent; Goerz, David A.; Speer, Ron D.

    2010-10-15

    A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the method is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.

  12. Todd, Faraday, and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy.

  13. Effects of Faraday Rotation Observed in Filter Magnetograph Data

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.; Adams, Mitzi L.; Smith, J. E.; West, Edward A.

    1999-01-01

    In this paper we analyze the effects of Faraday rotation on the azimuth of the transverse magnetic field from observations taken with the Marshall Space Flight Center's vector magnetograph for a simple sunspot observed on June 9, 1985. Vector magnetograms were obtained over the wavelength interval of 170 mA redward of line center of the Fe I 5250.22 A spectral line to 170 mA to the blue, in steps of 10 mA. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of vi ew of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the amount of Faraday rotation of the azimuth. From these comparisons we derived the amount of rotation as functions of bo th the magnitude and inclination of the sunspot's field and deduced the ranges of these field values for which Faraday rotation presents a significant problem in observations taken near the center of a spectral line.

  14. Design and characterization of a versatile Faraday cup

    NASA Astrophysics Data System (ADS)

    Seamans, J. F.; Kimura, W. D.

    1993-02-01

    The design and characterization of a Faraday cup utilizing modular components are presented. Design specifications were primarily tailored to satisfy the specific electron beam (e-beam) energy (˜375 keV), rise time (˜60 ns), and magnitude (30 A/cm2, peak) used in this work and permit convenient sampling of large e-beam areas up to 7 cm×7 cm. Characterization during evacuated conditions included Z-dependence measurements using beryllium, carbon, aluminum, and lead collector plates. Electron beam transmission measurements were made utilizing combinations of various metal screens and Kapton foils in both gas and evacuated conditions. Gas environments tested were air, krypton, and a Kr/Ar mixture. An attacher gas, SF6, was also added inside the Faraday cup. Results reveal decreasing current densities with increasing gas stopping power and increasing electron propagation distance in a gas. Employing a carbon collector plate and a 25-μm Kapton foil insulator, current densities measured through a 3.6-cm thick 760 Torr air slab are reduced ≤6% from the evacuated Kapton-free condition. Applying profile and full-aperture Faraday cup measurements, a consistent description of the e-beam is also presented.

  15. Toward instructional design principles: Inducing Faraday's law with contrasting cases

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Wieman, Carl E.

    2016-06-01

    Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory physics course, a pair of studies compare two instructional strategies for teaching a physics concept: having students (i) explain a set of contrasting cases or (ii) apply and build on previously learned concepts. We compare these strategies for the teaching of Faraday's law, showing that explaining a set of related contrasting cases not only improves student performance on Faraday's law questions over building on a previously learned concept (i.e., Lorentz force), but also prepares students to better learn subsequent topics, such as Lenz's law. These differences persist to the final exam. We argue that early exposure to contrasting cases better focuses student attention on a key feature related to both concepts: change in magnetic flux. Importantly, the benefits of contrasting cases for both learning and enjoyment are enhanced for students who did not first attend a Faraday's law lecture, consistent with previous research suggesting that being told a solution can circumvent the benefits of its discovery. These studies illustrate an experimental approach for understanding how the structure of activities affects learning and performance outcomes, a first step toward design principles for effective instructional materials.

  16. Model of fractionalization of Faraday lines in compact electrodynamics

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott D.; Motrunich, Olexei I.

    2014-12-01

    Motivated by ideas of fractionalization and intrinsic topological order in bosonic models with short-range interactions, we consider similar phenomena in formal lattice gauge theory models. Specifically, we show that a compact quantum electrodynamics (CQED) can have, besides the familiar Coulomb and confined phases, additional unusual confined phases where excitations are quantum lines carrying fractions of the elementary unit of electric field strength. We construct a model that has N -tupled monopole condensation and realizes 1 /N fractionalization of the quantum Faraday lines. This phase has another excitation which is a ZN quantum surface in spatial dimensions five and higher, but can be viewed as a quantum line or a quantum particle in four or three spatial dimensions, respectively. These excitations have statistical interactions with the fractionalized Faraday lines; for example, in three spatial dimensions, the particle excitation picks up a Berry phase of ei 2 π /N when going around the fractionalized Faraday line excitation. We demonstrate the existence of this phase by Monte Carlo simulations in (3+1) space-time dimensions.

  17. Portrait of the Polana-Eulalia family complex: Surface homogeneity revealed from near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemí; de León, J.; Walsh, K. J.; Campins, H.; Lorenzi, V.; Delbo, M.; DeMeo, F.; Licandro, J.; Landsman, Z.; Lucas, M. P.; Alí-Lagoa, V.; Burt, B.

    2016-08-01

    The inner asteroid belt is an important source of near-Earth asteroids (NEAs). Dynamical studies of the inner asteroid belt have identified several families overlapping in proper orbital elements, including the Polana and Eulalia families that contain a large fraction of the low-albedo asteroids in this region. We present results from two coordinated observational campaigns to characterize this region through near-infrared (NIR) spectroscopy. These campaigns ran from August 2012 to May 2014 and used the NASA Infrared Telescope Facility and the Telescopio Nazionale Galileo. The observations focused on objects within these families or in the background, with low albedo (pv ≤ 0.1) and low inclination (iP ≤ 7°). We observed 63 asteroids (57 never before observed in the NIR): 61 low-albedo objects and two interlopers, both compatible with S- or E- taxonomical types. We found our sample to be spectrally homogeneous in the NIR. The sample shows a continuum of neutral to moderately-red concave-up spectra, very similar within the uncertainties. Only one object in the sample, asteroid (3429) Chuvaev, has a blue spectrum, with a slope (S‧ = - 1.33 ± 0.21%/1000 Å) significantly different from the average spectrum (S‧ = 0.68 ± 0.68%/1000 Å). This spectral homogeneity is independent of membership in families or the background population. Furthermore, we show that the Eulalia and Polana families cannot be distinguished using NIR data. We also searched for rotational variability on the surface of (495) Eulalia which we do not detect. (495) Eulalia shows a red concave-up spectrum with an average slope S‧ = 0.91 ± 0.60%/1000 Å, very similar to the average slope of our sample. The spectra of two targets of sample-return missions, (101955) Bennu, target of NASA's OSIRIS-Rex and (162173) 1999 JU3 target of the Japanese Space Agency's Hayabusa-2, are very similar to our average spectrum, which would be compatible with an origin in this region of the inner belt.

  18. Azadipyrromethene cyclometalation in neutral Ru(II) complexes: photosensitizers with extended near-infrared absorption for solar energy conversion applications.

    PubMed

    Bessette, André; Cibian, Mihaela; Ferreira, Janaina G; DiMarco, Brian N; Bélanger, Francis; Désilets, Denis; Meyer, Gerald J; Hanan, Garry S

    2016-06-28

    In the on-going quest to harvest near-infrared (NIR) photons for energy conversion applications, a novel family of neutral ruthenium(ii) sensitizers has been developed by cyclometalation of an azadipyrromethene chromophore. These rare examples of neutral ruthenium complexes based on polypyridine ligands exhibit an impressive panchromaticity achieved by the cyclometalation strategy, with strong light absorption in the 600-800 nm range that tails beyond 1100 nm in the terpyridine-based adducts. Evaluation of the potential for Dye-Sensitized Solar Cells (DSSC) and Organic Photovoltaic (OPV) applications is made through rationalization of the structure-property relationship by spectroscopic, electrochemical, X-ray structural and computational modelization investigations. Spectroscopic evidence for photo-induced charge injection into the conduction band of TiO2 is also provided. PMID:27264670

  19. FAR-INFRARED SPECTROSCOPY OF THE H{sub 2}-O{sub 2} VAN DER WAALS COMPLEX

    SciTech Connect

    Bunn, Hayley; Bennett, Trystan; Karayilan, Aidan; Raston, Paul L.

    2015-01-20

    We report the far infrared spectrum of H{sub 2}-O{sub 2} at 80 K in the vicinity of the pure rotational bands of H{sub 2}. Sharp peaks were observed, which correspond to end-over-end rotational transitions of the H{sub 2}-O{sub 2} molecular complex, that are superimposed over broad collision induced absorptions. We find that the maximum value of the end-over-end rotational quantum number that is bound is seven, which is two more than supported by a recently reported ab initio H{sub 2}-O{sub 2} potential energy surface. The rotational spectrum reported here should therefore greatly help in refining this surface, which is used to calculate scattering processes relevant to the chemistry occurring in interstellar molecular clouds.

  20. Water binding energies of [Pb(amino acid-H)H2O]+ complexes determined by blackbody infrared radiative dissociation.

    PubMed

    Burt, Michael B; Decker, Sarah G A; Fridgen, Travis D

    2012-11-21

    The water binding energies (E(0)) of eight deprotonated Pb(2+)-amino acid (Aa) complexes of the form [Pb(Aa-H)H(2)O](+) (Aa = Gly, Ala, Val, Leu, Ile, Phe, Glu, and Lys) were determined using blackbody infrared radiative dissociation (BIRD). A Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer was used to trap ions generated by electrospray ionization (ESI) in a "zero"-pressure (~10(-10) torr) cell where dissociation can only occur by absorption of thermally generated photons. Since the [Pb(Aa-H)H(2)O](+) complexes have relatively few vibrational degrees of freedom (36-78) and are within the slow-exchange kinetic limit, the master equation was solved to extract meaningful threshold dissociation energies and thermal unimolecular dissociation rate constants (k(uni)). The master equation analysis uses variable reaction coordinate transition state theory (VRC-TST) to minimize the Rice-Ramsperger-Kassel-Marcus (RRKM) dissociation rate constants. The determined water binding energies range from 76.6 to 113.6 kJ mol(-1), and agree well with 0 K dissociation energies calculated using the B3LYP/6-31+G(d,p) and MP2(full)/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) methods. The relative strengths of the binding energies reflect the known structural isomers (A-, B-, C-, and D-type) of these [Pb(Aa-H)H(2)O](+) complexes.

  1. Infrared overtone spectroscopy of hydrogen fluoride van der Waals complexes at upsilon (HF) = 3

    NASA Astrophysics Data System (ADS)

    Tsang, Susy Ngan Ping

    1998-11-01

    The dependence of weak intermolecular forces on valence bond excitations is investigated by the spectroscopy and vibrational predissociation dynamics of four hydrogen fluoride van der Waals complexes, N2HF, (HF)2, Ar2HF and Ar3HF, at the second overtone vibrational excitation of the hydrogen bonded HF intramolecular stretch, v HF=3. The formation and detection of these weakly bound complexes are achieved by the unique combination of slit supersonic jet expansion and intracavity Ti:sapphire laser-induced fluorescence. For the four complexes studied, an increase in the red- shift as a function of v HF was observed in the hydrogen bonded HF valence stretch as a result of the strengthening of the hydrogen bond. In addition, changes in the anisotropies of the intermolecular potentials of these weakly bound systems are in accord with those observed in the prototypical studies of ArHF at v HF=3 in this laboratory. However, the van der Waals soft modes have only been completely characterized for N2HF at v HF=3. Moreover, the frequencies of these intermolecular modes were experimentally determined for the first time in the N2HF complex. Of major interest in the N2HF studies is the intermolecular state dependence of the vibrational predissociation in this complex at v HF=3. Intermolecular state dependent vibrational predissociation dynamics is also observed in the (HF)2 studies. In order to further understand the complex internal dynamics in N2HF, ab initio calculations for a highly accurate four-dimensional potential energy surface using the symmetry adapted perturbation theory (SAPT) method were performed at v HF=0 and at v HF=3. A preliminary analysis of the ab initio data for both vibrational states and bound state calculations for the ground state potential energy surface are presented. The work on the Ar2HF and Ar3HF clusters tests the accuracy of pairwise additive intermolecular potentials for these two systems at v HF=3. In particular, the data obtained on these

  2. Infrared study and phase transformation of the new lithium-diphenyl carbazide complex (LiDPC)

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.; Abdel Aziz, N. R.

    2015-07-01

    A complete IR investigation (400-4000 cm-1) of orthorhombic, amorphous DPC and crystalline LiDPC (at room temperature and 80 °C) is performed and new results are reported. Introducing lithium ions into diphenyl carbazide C13H14N4O forms a completely new complex associated with new properties. The IR spectroscopic analysis includes measurements and interpretation of the IR spectral band shape, intensities, and frequencies of the internal modes of vibrations. The principle modes of vibrations of amorphous DPC found to be 3445 cm-1, 3292 cm-1, 3052 cm-1, 1670 cm-1, 1602 cm-1, 1495 cm-1, 1305 cm-1, 1254 cm-1, 974 cm-1, and 577 cm-1 correspond to normal vibrations of Nsbnd H, Csbnd H, Nsbnd N, Cdbnd O and monosubstituted benzene. A marked change could be recorded for these modes of vibrations in the presence of Li+ ions. The results strongly confirm the formation of a metal-organic complex. Anomalous spectroscopic changes could be recorded in LiDPC spectra. A proposed Li+ position in LiDPC complex is proposed. X-ray diffraction analysis is used to find out the crystal structure and parameters of LiDPC complex. The results obtained show triclinic crystal structure with a = 5.6929 Å, b = 7.6378 Å, c = 17.8739 Å, α = 119.176°, β = 63.322°, γ = 85.378°. The results reveal the presence of an order-disorder phase transition in LiDPC complex at 60 °C. The transformation process is monitored by clear variations in the spectral shape, band intensities and new eight different modes appeared in the high temperature disordered phase. An energy model is suggested for the interpretation of such phase transition process.

  3. Laser Infrared Desorption Spectroscopy to Detect Complex Organic Molecules on Icy Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Sollit, Luke S.; Beegle, Luther W.

    2008-01-01

    Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.

  4. Infrared spectroscopy of Mg–CO{sub 2} and Al–CO{sub 2} complexes in helium nanodroplets

    SciTech Connect

    Thomas, Brandon J.; Harruff-Miller, Barbara A.; Bunker, Christopher E.; Lewis, William K.

    2015-05-07

    The catalytic reduction of CO{sub 2} to produce hydrocarbon fuels is a topic that has gained significant attention. Development of efficient catalysts is a key enabler to such approaches, and metal-based catalysts have shown promise towards this goal. The development of a fundamental understanding of the interactions between CO{sub 2} molecules and metal atoms is expected to offer insight into the chemistry that occurs at the active site of such catalysts. In the current study, we utilize helium droplet methods to assemble complexes composed of a CO{sub 2} molecule and a Mg or Al atom. High-resolution infrared (IR) spectroscopy and optically selected mass spectrometry are used to probe the structure and binding of the complexes, and the experimental observations are compared with theoretical results determined from ab initio calculations. In both the Mg–CO{sub 2} and Al–CO{sub 2} systems, two IR bands are obtained: one assigned to a linear isomer and the other assigned to a T-shaped isomer. In the case of the Mg–CO{sub 2} complexes, the vibrational frequencies and rotational constants associated with the two isomers are in good agreement with theoretical values. In the case of the Al–CO{sub 2} complexes, the vibrational frequencies agree with theoretical predictions; however, the bands from both structural isomers exhibit significant homogeneous broadening sufficient to completely obscure the rotational structure of the bands. The broadening is consistent with an upper state lifetime of 2.7 ps for the linear isomer and 1.8 ps for the T-shaped isomer. The short lifetime is tentatively attributed to a prompt photo-induced chemical reaction between the CO{sub 2} molecule and the Al atom comprising the complex.

  5. A new potential energy surface and microwave and infrared spectra of the He-OCS complex

    SciTech Connect

    Wang, Zhongquan Zhang, Chunzao; Sun, Chunyan; Feng, Eryin

    2014-11-07

    A new high quality potential energy surface for the He-OCS van der Waals complex was calculated using the CCSD(T) method and avqz+33221 basis set. It is found that the global minimum energy is −51.33 cm{sup −1} at R{sub e} = 6.30a{sub 0} and θ{sub e} = 110.0°, the shallower minimum is located at R = 8.50a{sub 0} and θ = 0° with well depth −32.26 cm{sup −1}. Using the fitted potential energy surface, we have calculated bound energy levels of the He-OCS, He-O{sup 13}CS, He-OC{sup 34}S, and {sup 3}He-OCS complexes. The theoretical results are all in better agreement compared to previous theoretical work.

  6. Infrared spectroscopic studies of hydrogen-bonded complexes in cryogenic sulutions

    NASA Astrophysics Data System (ADS)

    Iskanderov, T. A.; Kimel'fel'd, Ya. M.; Smirnova, E. M.

    1987-03-01

    We have measured the ν s(OH) band parameters of the IR absorption spectra for a wide variety of hydrogen-bonded (HB) complexes of CH 3OH(D), CF 3CH 2OH, and (CF 3) 3COH(D) with some simplest representatives of various classes of bases in Xe and Kr in the temperature range 120-270 K. The ν s(OH) absorption bands of the HB complexes in solution in atomic solvents have been demonstrated to be narrower by a factor of 2 to 4 than in molecular solvents at the same temperature. The fact that the ν s(OH) bandwidths in Xe and in the gas phase at similar temperatures are practically the same indicates that these bandwidths are in both cases governed mainly by the contribution of "hot transitions" from a sequence of excited levels of the ν β low-frequency bending mode of the hydrogen bond. The other characteristic features revealed for the complexes under study in liquid Xe and Kr at ν s(OH) frequency shifts up to 500 cm -1 include: (1) slight temperature dependence of the ν s(OH) bandwidth (0.1-0.3 cm -1/K), (2) almost "normal" isotope frequency ratio ν s(OH)/ν s(OD) (1.34-1.36) and (3) low ν s(OH) temperature shift values (0.1-0.4 cm -1/K).

  7. Synthesis, characterization, and near-infrared luminescent properties of the ternary thulium complex covalently bonded to mesoporous MCM-41

    SciTech Connect

    Feng Jing; Song Shuyan; Xing Yan; Zhang Hongjie Li Zhefeng; Sun Lining; Guo Xianmin; Fan Weiqiang

    2009-03-15

    The crystal structure of a ternary Tm(DBM){sub 3}phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline) and the synthesis of hybrid mesoporous material in which the complex covalently bonded to mesoporous MCM-41 are reported. Crystal data: Tm(DBM){sub 3}phen C{sub 59}H{sub 47}N{sub 2}O{sub 7}Tm, monoclinic, P21/c, a=19.3216(12) A, b=10.6691(7) A, c=23.0165(15) A, {alpha}=90 deg., {beta}=91.6330(10) deg., {gamma}=90 deg., V=4742.8(5) A{sup 3}, Z=4. The properties of the Tm(DBM){sub 3}phen complex and the corresponding hybrid mesoporous material [Tm(DBM){sub 3}phen-MCM-41] have been studied. The results reveal that the Tm(DBM){sub 3}phen complex is successfully covalently bonded to MCM-41. Both Tm(DBM){sub 3}phen complex and Tm(DBM){sub 3}phen-MCM-41 display typical near-infrared (NIR) luminescence upon excitation at the maximum absorption of the ligands, which contributes to the efficient energy transfer from the ligands to the Tm{sup 3+} ion, an antenna effect. The full width at half maximum (FWHM) centered at 1474 nm in the emission spectrum of Tm(DBM){sub 3}phen-MCM-41 is 110 nm, which is the potential candidate of broadening amplification band from C band (1530-1560 nm) to S{sup +} band (1450-1480 nm) in optical area. - Graphical abstract: The crystal structure of Tm(DBM){sub 3}phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline). The complex is successfully covalently bonded to MCM-41 (Tm(DBM){sub 3}phen-MCM-41). After ligand-mediated excitation, the emission spectrum of Tm(DBM){sub 3}phen-MCM-41 shows the bands 802 and 1474 nm. The FWHM of the 1474-nm band for Tm(DBM){sub 3}phen-MCM-41 is 110 nm, such a broad spectrum enables a wide gain bandwidth for optical amplification.

  8. A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.

    PubMed

    Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng

    2013-08-01

    We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.

  9. Comparison of Algorithms for Determination of Rotation Measure and Faraday Structure. I. 1100-1400 MHz

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Rudnick, L.; Akahori, Takuya; Anderson, C. S.; Bell, M. R.; Bray, J. D.; Farnes, J. S.; Ideguchi, S.; Kumazaki, K.; O'Brien, T.; O'Sullivan, S. P.; Scaife, A. M. M.; Stepanov, R.; Stil, J.; Takahashi, K.; van Weeren, R. J.; Wolleben, M.

    2015-02-01

    Faraday rotation measures (RMs) and more general Faraday structures are key parameters for studying cosmic magnetism and are also sensitive probes of faint ionized thermal gas. A definition of which derived quantities are required for various scientific studies is needed, as well as addressing the challenges in determining Faraday structures. A wide variety of algorithms has been proposed to reconstruct these structures. In preparation for the Polarization Sky Survey of the Universe's Magnetism (POSSUM) to be conducted with the Australian Square Kilometre Array Pathfinder and the ongoing Galactic Arecibo L-band Feeds Array Continuum Transit Survey (GALFACTS), we run a Faraday structure determination data challenge to benchmark the currently available algorithms, including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling, and QU-fitting. The input models include sources with one Faraday thin component, two Faraday thin components, and one Faraday thick component. The frequency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: (1) an average RM weighted by polarized intensity, R{{M}wtd}, (2) the separation Δφ of two Faraday components, and (3) the reduced chi-squared χ r2. Based on the current test data with a signal-to-noise ratio of about 32, we find the following. (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found. (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for R{{M}wtd} but with significantly higher errors for Δφ . All other methods, including standard Faraday synthesis, frequently identify only one component when Δφ is below or near the width of the Faraday point-spread function. (3) No methods as currently implemented work well for

  10. Pattern transition of two-dimensional Faraday waves at an extremely shallow depth

    NASA Astrophysics Data System (ADS)

    Li, XiaoChen; Li, XiaoMing; Liao, ShiJun

    2016-11-01

    In this paper, we experimentally investigate the pattern transition of two-dimensional Faraday waves at an extremely shallow depth in a Hele-Shaw cell. Several patterns of Faraday waves are observed, which have some significant differences in wave profile, wave height and wave length. It is found that, in a wide range of the forcing frequency f, there always exists a region of the acceleration amplitude A, in which there exist the so-called hysteretic jumps between different patterns of Faraday waves. All of these experimental observations could enrich our knowledges about the Faraday waves and would be helpful to the further theoretical studies on the related topic in future.

  11. Comparison of algorithms for determination of rotation measure and Faraday structure. I. 1100–1400 MHz

    SciTech Connect

    Sun, X. H.; Akahori, Takuya; Anderson, C. S.; Farnes, J. S.; O’Sullivan, S. P.; Rudnick, L.; O’Brien, T.; Bell, M. R.; Bray, J. D.; Scaife, A. M. M.; Ideguchi, S.; Kumazaki, K.; Stepanov, R.; Stil, J.; Wolleben, M.; Takahashi, K.; Weeren, R. J. van E-mail: larry@umn.edu

    2015-02-01

    Faraday rotation measures (RMs) and more general Faraday structures are key parameters for studying cosmic magnetism and are also sensitive probes of faint ionized thermal gas. A definition of which derived quantities are required for various scientific studies is needed, as well as addressing the challenges in determining Faraday structures. A wide variety of algorithms has been proposed to reconstruct these structures. In preparation for the Polarization Sky Survey of the Universe's Magnetism (POSSUM) to be conducted with the Australian Square Kilometre Array Pathfinder and the ongoing Galactic Arecibo L-band Feeds Array Continuum Transit Survey (GALFACTS), we run a Faraday structure determination data challenge to benchmark the currently available algorithms, including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling, and QU-fitting. The input models include sources with one Faraday thin component, two Faraday thin components, and one Faraday thick component. The frequency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: (1) an average RM weighted by polarized intensity, RM{sub wtd}, (2) the separation Δϕ of two Faraday components, and (3) the reduced chi-squared χ{sub r}{sup 2}. Based on the current test data with a signal-to-noise ratio of about 32, we find the following. (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found. (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for RM{sub wtd} but with significantly higher errors for Δϕ. All other methods, including standard Faraday synthesis, frequently identify only one component when Δϕ is below or near the width of the Faraday point-spread function. (3) No methods as currently implemented

  12. Infrared Laser Stark Spectroscopy of the OH\\cdot\\cdot\\cdotCH3OH Complex Isolated in Superfluid Helium Droplets

    NASA Astrophysics Data System (ADS)

    Leavitt, Christopher M.; Brice, Joseph T.; Douberly, Gary E.; Hernandez, Federico J.; Pino, Gustavo A.

    2015-06-01

    The elimination of volatile organic compounds (VOCs) from the atmosphere is initiated by reactions with OH, NO3 and O3. For oxygenated VOCs, such as alcohols, ketones, ethers, etc., reactions occur nearly exclusively with the hydroxyl radical. Furthermore, the potential energy surfaces associated with reactions between OH and oxygenated VOCs generally feature a pre-reactive complex, stabilized by hydrogen bonding, which results in rate constants that exhibit large negative temperature dependencies. This was explicitly demonstrated recently for the OH + methanol (MeOH) reaction, where the rate constant increased by nearly two orders of magnitude when the temperature decreased from 200 K to below 70 K, highlighting the potential impact of this reaction in the interstellar medium (ISM). In this study, we trap this postulated pre-reactive complex formed between OH and MeOH using He nanodroplet isolation (HENDI) techniques, and probe this species using a combination of mass spectrometry and infrared laser Stark spectroscopy. Atkinson, R.; Arey, J., Chem. Rev. 2003, 103, 4605-4638. Mellouki, A.; Le Bras, G.; Sidebottom, H., Chem. Rev. 2003, 103, 5077-5096. Smith, I. W. M.; Ravishankara, A. R., J. Phys. Chem. A 2002, 106, 4798-4807 Shannon, R. J.; Blitz, M. A.; Goddard, A.; Heard, D. E., Nat. Chem. 2013, 5, 745-749. Martin, J. C. G.; Caravan, R. L.; Blitz, M. A.; Heard, D. E.; Plane, J. M. C., J. Phys. Chem. A 2014, 118, 2693-2701.

  13. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 μm data. This data identified

  14. Infrared Multiple Photon Dissociation Spectroscopy of a Gas-Phase Oxo-Molybdenum Complex with 1,2-Dithiolene Ligands

    PubMed Central

    2015-01-01

    Electrospray ionization (ESI) in the negative ion mode was used to create anionic, gas-phase oxo-molybdenum complexes with dithiolene ligands. By varying ESI and ion transfer conditions, both doubly and singly charged forms of the complex, with identical formulas, could be observed. Collision-induced dissociation (CID) of the dianion generated exclusively the monoanion, while fragmentation of the monoanion involved decomposition of the dithiolene ligands. The intrinsic structure of the monoanion and the dianion were determined by using wavelength-selective infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory calculations. The IRMPD spectrum for the dianion exhibits absorptions that can be assigned to (ligand) C=C, C–S, C—C≡N, and Mo=O stretches. Comparison of the IRMPD spectrum to spectra predicted for various possible conformations allows assignment of a pseudo square pyramidal structure with C2v symmetry, equatorial coordination of MoO2+ by the S atoms of the dithiolene ligands, and a singlet spin state. A single absorption was observed for the oxidized complex. When the same scaling factor employed for the dianion is used for the oxidized version, theoretical spectra suggest that the absorption is the Mo=O stretch for a distorted square pyramidal structure and doublet spin state. A predicted change in conformation upon oxidation of the dianion is consistent with a proposed bonding scheme for the bent-metallocene dithiolene compounds [Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc.1976, 98, 1729−1742], where a large folding of the dithiolene moiety along the S···S vector is dependent on the occupancy of the in-plane metal d-orbital. PMID:24988369

  15. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infra-red spectroscopy (NIRS) has been successfully used on fresh and RNAlater® preserved Anopheles gambiae complex to identify sibling species and age. No preservation methods other than RNAlater® have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater®...

  16. Thermal and near-infrared light induced spin crossover in a mononuclear iron(ii) complex with a tetrathiafulvalene-fused dipyridophenazine ligand.

    PubMed

    Pointillart, F; Liu, X; Kepenekian, M; Le Guennic, B; Golhen, S; Dorcet, V; Roisnel, T; Cador, O; You, Z; Hauser, J; Decurtins, S; Ouahab, L; Liu, S-X

    2016-07-28

    A mononuclear Fe(ii) complex involving a tetrathiafulvalene-based ligand exhibits thermal spin-crossover (around 143 K) with pronounced hysteresis behaviour (48 K). The chromophoric and π-extended ligand allows Near-Infrared (NIR) sensitization for the light-induced excited spin-state trapping (LIESST) with T(LIESST) = 90 K. PMID:27358063

  17. [Improved results of the trachea scar stenosis treatment by inclusion in the complex therapy of combined application diprospan and low-intensity infrared laser radiation].

    PubMed

    Israfilova, S B; Gasymov, É M

    2013-09-01

    The experience of treating 61 patients over the rumen of stenosis of the trachea was summarizes. To improve the results suggested inclusion complex diprospan treatment in combination with low intensity infrared laser radiation. The advantages of the proposed method of treatment of tracheal stenosis scarring are reduced severity of chronic inflammation, reducing the proliferation of granulation tissue.

  18. Sensitized near-infrared emission from ytterbium(III) via direct energy transfer from iridium(III) in a heterometallic neutral complex.

    PubMed

    Mehlstäubl, Marita; Kottas, Gregg S; Colella, Silvia; De Cola, Luisa

    2008-05-14

    A tetrametallic iridium-ytterbium complex has been synthesised that shows sensitized near-infrared emission (lambda(max) = 976 nm) upon excitation of the iridium unit in the visible region (400 nm) due to efficient energy transfer from the iridium units to the Yb(III) ion. The iridium phosphorescence is quenched nearly quantitatively while the ytterbium ion emits brightly in the NIR.

  19. Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers.

    PubMed

    Teissier, J; Laurent, S; Manquest, C; Sirtori, C; Bousseksou, A; Coudevylle, J R; Colombelli, R; Beaudoin, G; Sagnes, I

    2012-01-16

    We have demonstrated an integrated three terminal device for the modulation of the complex refractive index of a distributed feedback quantum cascade laser (QCL). The device comprises an active region to produce optical gain vertically stacked with a control region made of asymmetric coupled quantum wells (ACQW). The optical mode, centered on the gain region, has a small overlap also with the control region. Owing to the three terminals an electrical bias can be applied independently on both regions: on the laser for producing optical gain and on the ACQW for tuning the energy of the intersubband transition. This allows the control of the optical losses at the laser frequency as the absorption peak associated to the intersubband transition can be electrically brought in and out the laser transition. By using this function a laser modulation depth of about 400 mW can be achieved by injecting less than 1 mW in the control region. This is four orders of magnitude less than the electrical power needed using direct current modulation and set the basis for the realisation of electrical to optical transducers.

  20. Michael Faraday, 30,000 Teenagers and Climate Change

    NASA Astrophysics Data System (ADS)

    Giles, K. A.; Wingham, D. J.

    2006-12-01

    One of the objectives of IPY is to engage the awareness, interest and understanding of schoolchildren, the general public and decision-makers worldwide in the purpose and value of polar research and monitoring. Between January and March 2006 I co-presented the Faraday Lecture, run by the Institution of Engineering Technology, which aims to interest the public, and young people in particular, in science and engineering. The topic of the lecture this year was climate change and the technologies that have the potential to reduce our carbon dioxide emissions. As a research fellow at the Centre for Polar Observation and Modelling, University College London, I was able to use my knowledge of the polar regions to help explain the fundamentals of human induced climate change, from using ice cores for paleoclimate studies to what would happen if Greenland melted. The lecture was attended by 30,000 people, mainly aged between 14 to 16, at theatres across the UK and Asia, as well as broadcast on the web to North America and Europe. While the lecture was generally well received, it was apparent that there are misconceptions about the roles of scientists and engineers and a limited understanding of the polar regions and why they are important. The Faraday Lecture is a useful example of a large-scale vehicle for public understanding of science, and for assessing what works and what does not work when addressing young audiences. We consider the lessons learnt from the Faraday lectures in terms of bringing the IPY activities to the attention of the next generation of polar scientists using not only lectures, but a also wider variety of multi-media techniques.

  1. Faraday rotator based on TSAG crystal with <001> orientation.

    PubMed

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Aleksey; Mironov, Evgeniy; Palashov, Oleg

    2016-07-11

    A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10-4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems. PMID:27410823

  2. RF-sheath assessment of ICRF Faraday Screens

    SciTech Connect

    Colas, L.

    2007-09-28

    The line-integrated parallel RF electric field {delta}V{sub RF} is studied on 'long field lines' radially in front of an ICRF antenna closed by a Faraday screen (FS). Several issues are addressed analytically and numerically. To what extent is a FS necessary to shield {delta}V{sub RF} in presence of magnetized plasma, depending on strap phasing? How efficient is it as a function of FS misalignment on tilted magnetic field? Can a FS attenuate {delta}V{sub RF} produced on antenna frame?.

  3. Spun microstructured optical fibres for Faraday effect current sensors

    SciTech Connect

    Chamorovsky, Yury K; Starostin, Nikolay I; Morshnev, Sergey K; Gubin, Vladimir P; Ryabko, Maksim V; Sazonov, Aleksandr I; Vorob'ev, Igor' L

    2009-11-30

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is {approx}70% that of an ideal fibre, in good agreement with theoretical predictions. (optical fibres and fibreoptic sensors)

  4. Faraday cup with nanosecond response and adjustable impedance for fast electron beam characterization

    SciTech Connect

    Hu Jing; Rovey, Joshua L.

    2011-07-15

    A movable Faraday cup design with simple structure and adjustable impedance is described in this work. This Faraday cup has external adjustable shunt resistance for self-biased measurement setup and 50 {Omega} characteristic impedance to match with 50 {Omega} standard BNC coaxial cable and vacuum feedthroughs for nanosecond-level pulse signal measurements. Adjustable shunt resistance allows self-biased measurements to be quickly acquired to determine the electron energy distribution function. The performance of the Faraday cup is validated by tests of response time and amplitude of output signal. When compared with a reference source, the percent difference of the Faraday cup signal fall time is less than 10% for fall times greater than 10 ns. The percent difference of the Faraday cup signal pulse width is below 6.7% for pulse widths greater than 10 ns. A pseudospark-generated electron beam is used to compare the amplitude of the Faraday cup signal with a calibrated F-70 commercial current transformer. The error of the Faraday cup output amplitude is below 10% for the 4-14 kV tested pseudospark voltages. The main benefit of this Faraday cup is demonstrated by adjusting the external shunt resistance and performing the self-biased method for obtaining the electron energy distribution function. Results from a 4 kV pseudospark discharge indicate a ''double-humped'' energy distribution.

  5. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    ERIC Educational Resources Information Center

    Tweney, Ryan D.

    2011-01-01

    James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of…

  6. A Left-Hand Rule for Faraday's Law

    ERIC Educational Resources Information Center

    Salu, Yehuda

    2014-01-01

    A left-hand rule for Faraday's law is presented here. This rule provides a simple and quick way of finding directional relationships between variables of Faraday's law without using Lenz's rule.

  7. Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li(+)@C60.

    PubMed

    Kawashima, Yuki; Ohkubo, Kei; Blas-Ferrando, Vicente Manuel; Sakai, Hayato; Font-Sanchis, Enrique; Ortíz, Javier; Fernández-Lázaro, Fernando; Hasobe, Taku; Sastre-Santos, Ángela; Fukuzumi, Shunichi

    2015-06-18

    Two phthalocyanines possessing carboxylate groups ((TBA)4H2Pc·1 and (TBA)4H2Pc·2) form 1:2 supramolecular complexes with lithium cation-encapsulated C60 (Li(+)@C60) [H2Pc·1(4-)/(Li(+)@C60)2 and H2Pc·2(4-)/(Li(+)@C60)2] in a polar mixed solvent. From the UV-vis spectral changes, the binding constants (K) were estimated as ca. 10(12) M(-2). Upon the photoexcitation of constructed supramolecular complexes, photoinduced electron transfer occurred to form the charge-separated (CS) state. The lifetime of the CS state was determined to be 1.2 ms for H2Pc·2(4-)/(Li(+)@C60)2, which is the longest CS lifetime among the porphyrinoid/fullerene supramolecular complexes. H2Pc·1(4-)/(Li(+)@C60)2 also afforded the long-lived CS state of 1.0 ms. The spin state of the long-lived CS states was determined to be a triplet, as indicated by the EPR signal at g = 4. The reorganization energy (λ) and the electronic coupling term were determined to be λ = 1.70 eV, V = 0.15 cm(-1) from the temperature dependence of the rate constant for the charge recombination of the CS state of H2Pc·1(4-)/(Li(+)@C60)2. The energy of the CS state (0.49 eV) is much smaller than the reorganization energy, indicating that the back-electron-transfer process is located in the Marcus normal region. The small electronic coupling term results from the spin-forbidden back electron transfer due to the triplet CS state. Supramolecular complexes of anionic zinc phthalocyanines with Li(+)@C60 were also prepared and investigated. The ZnPc·4(4-)/Li(+)@C60 supramolecular nanoclusters were assembled on the optically transparent electrode (OTE) of nanostructured SnO2 (OTE/SnO2) to construct the dye-sensitized solar cell. The IPCE (incident photon-to-photocurrent efficiency) values of OTE/SnO2/(ZnPc·4(4-)/Li(+)@C60)n were much higher than the sum of the two IPCE values of the individual systems OTE/SnO2/(Li(+)@C60)n and OTE/SnO2/(ZnPc·4(4-))n, covering the near-infrared region.

  8. Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li(+)@C60.

    PubMed

    Kawashima, Yuki; Ohkubo, Kei; Blas-Ferrando, Vicente Manuel; Sakai, Hayato; Font-Sanchis, Enrique; Ortíz, Javier; Fernández-Lázaro, Fernando; Hasobe, Taku; Sastre-Santos, Ángela; Fukuzumi, Shunichi

    2015-06-18

    Two phthalocyanines possessing carboxylate groups ((TBA)4H2Pc·1 and (TBA)4H2Pc·2) form 1:2 supramolecular complexes with lithium cation-encapsulated C60 (Li(+)@C60) [H2Pc·1(4-)/(Li(+)@C60)2 and H2Pc·2(4-)/(Li(+)@C60)2] in a polar mixed solvent. From the UV-vis spectral changes, the binding constants (K) were estimated as ca. 10(12) M(-2). Upon the photoexcitation of constructed supramolecular complexes, photoinduced electron transfer occurred to form the charge-separated (CS) state. The lifetime of the CS state was determined to be 1.2 ms for H2Pc·2(4-)/(Li(+)@C60)2, which is the longest CS lifetime among the porphyrinoid/fullerene supramolecular complexes. H2Pc·1(4-)/(Li(+)@C60)2 also afforded the long-lived CS state of 1.0 ms. The spin state of the long-lived CS states was determined to be a triplet, as indicated by the EPR signal at g = 4. The reorganization energy (λ) and the electronic coupling term were determined to be λ = 1.70 eV, V = 0.15 cm(-1) from the temperature dependence of the rate constant for the charge recombination of the CS state of H2Pc·1(4-)/(Li(+)@C60)2. The energy of the CS state (0.49 eV) is much smaller than the reorganization energy, indicating that the back-electron-transfer process is located in the Marcus normal region. The small electronic coupling term results from the spin-forbidden back electron transfer due to the triplet CS state. Supramolecular complexes of anionic zinc phthalocyanines with Li(+)@C60 were also prepared and investigated. The ZnPc·4(4-)/Li(+)@C60 supramolecular nanoclusters were assembled on the optically transparent electrode (OTE) of nanostructured SnO2 (OTE/SnO2) to construct the dye-sensitized solar cell. The IPCE (incident photon-to-photocurrent efficiency) values of OTE/SnO2/(ZnPc·4(4-)/Li(+)@C60)n were much higher than the sum of the two IPCE values of the individual systems OTE/SnO2/(Li(+)@C60)n and OTE/SnO2/(ZnPc·4(4-))n, covering the near-infrared region. PMID:25615010

  9. High-albedo C-complex Asteroids in the Outer Main Belt: The Near-infrared Spectra

    NASA Astrophysics Data System (ADS)

    Kasuga, Toshihiro; Usui, Fumihiko; Ootsubo, Takafumi; Hasegawa, Sunao; Kuroda, Daisuke

    2013-07-01

    Primitive, outer-belt asteroids are generally of low albedo, reflecting carbonaceous compositions like those of CI and CM meteorites. However, a few outer-belt asteroids having high albedos are known, suggesting the presence of unusually reflective surface minerals or, conceivably, even exposed water ice. Here, we present near-infrared (1.1-2.5 μm) spectra of four outer-belt C-complex asteroids with albedos >=0.1. We find no absorption features characteristic of water ice (near 1.5 and 2.0 μm) in the objects. Intimate mixture models set limits to the water ice by weight <=2%. Asteroids (723) Hammonia and (936) Kunigunde are featureless and have (60%-95%) amorphous Mg pyroxenes that might explain the high albedos. Asteroid (1276) Ucclia also shows a featureless reflection spectrum with (50%-60%) amorphous Mg pyroxenes. Asteroid (1576) Fabiola shows a possible weak, broad absorption band (1.5-2.1 μm). The feature can be reproduced by (80%) amorphous Mg pyroxenes or orthopyroxene (crystalline silicate), either of which is likely to cause its high albedo. We discuss the origin of high-albedo components in primitive asteroids.

  10. HIGH-ALBEDO C-COMPLEX ASTEROIDS IN THE OUTER MAIN BELT: THE NEAR-INFRARED SPECTRA

    SciTech Connect

    Kasuga, Toshihiro; Usui, Fumihiko; Hasegawa, Sunao; Ootsubo, Takafumi; Kuroda, Daisuke

    2013-07-01

    Primitive, outer-belt asteroids are generally of low albedo, reflecting carbonaceous compositions like those of CI and CM meteorites. However, a few outer-belt asteroids having high albedos are known, suggesting the presence of unusually reflective surface minerals or, conceivably, even exposed water ice. Here, we present near-infrared (1.1-2.5 {mu}m) spectra of four outer-belt C-complex asteroids with albedos {>=}0.1. We find no absorption features characteristic of water ice (near 1.5 and 2.0 {mu}m) in the objects. Intimate mixture models set limits to the water ice by weight {<=}2%. Asteroids (723) Hammonia and (936) Kunigunde are featureless and have (60%-95%) amorphous Mg pyroxenes that might explain the high albedos. Asteroid (1276) Ucclia also shows a featureless reflection spectrum with (50%-60%) amorphous Mg pyroxenes. Asteroid (1576) Fabiola shows a possible weak, broad absorption band (1.5-2.1 {mu}m). The feature can be reproduced by (80%) amorphous Mg pyroxenes or orthopyroxene (crystalline silicate), either of which is likely to cause its high albedo. We discuss the origin of high-albedo components in primitive asteroids.

  11. Infra-red spectroscopic characteristics of naphthalocyanine in bis(naphthalocyaninato) rare earth complexes peripherally substituted with thiophenyl derivatives.

    PubMed

    Li, Xiaobo; Mao, Yajun; Xiao, Chi; Lu, Fanli

    2015-04-01

    The infra-red (IR) spectroscopic data for a series of eleven rare earth double-deckers MIII[Nc(SPh)8]2 (M=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er) have been collected and systematically investigated. For MIII[Nc(SPh)8]2, typical IR marker bands for the naphthalocyanine anion radical [Nc(SPh)8].- were observed at 1317-1325 cm(-1) as the most intense absorption bands, which can be attributed to the pyrrole stretching. As for Ce[Nc(SPh)8]2, the typical IR marker band was also observed at 1317 cm(-1), which shows that the cerium complex exists as the form of CeIII[Nc(SPh)8]2-[Nc(SPh)8].-. In addition, both the Q-bands of electronic absorption spectra and the typical IR absorption bands of naphthalocyanine radical anion [Nc(SPh)8].- move to the high energy as the decrease of rare earth metal ionic radius. These facts suggest that the π-π electron interaction in these double-deckers becomes stronger along with the lanthanide contraction.

  12. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-01

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]- (FeRu) dissolved in D2O and formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4- (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm-1. The mixed-mode anharmonicities range from 2 to 14 cm-1. In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm-1. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  13. Herschel far-infrared observations of the Carina Nebula complex - The embedded young stellar and protostellar population

    NASA Astrophysics Data System (ADS)

    Gaczkowski, Benjamin; Preibisch, Thomas; Ratzka, Thorsten; Roccatagliata, Veronica; Ohlendorf, Henrike; Pekruhl, Stephanie

    2013-07-01

    At a distance of 2.3 kpc, the Carina Nebula is the nearest southern region with a large enough massive stellar population to sample the top of the IMF and displays all phenomena of massive star formation. We have performed a 9 square-degree Herschel far-infrared survey of the Carina Nebula complex (CNC) which revealed, for the first time, the very complex and filamentary small-scale structure of the dense clouds. We discovered 642 objects that are independently detected as point-like sources in at least two of the five Herschel bands. About 75% of these are Class 0 protostars with masses between about one and ten solar masses estimated from radiative transfer modeling. Taking the observational limits into account and extrapolating the observed number of Herschel-detected protostars over the stellar initial mass function suggests that the star formation rate of the CNC is about 0.017 solar masses per year. The spatial distribution of the Herschel young stellar objects (YSO) candidates is highly inhomogeneous and does not follow the distribution of cloud mass. Rather, most Herschel YSO candidates are found at the irradiated edges of clouds and pillars. The currently ongoing star formation process forms only low-mass and intermediate-mass stars, but no massive stars. The characteristic spatial configuration of the YSOs provides support to the picture that the formation of this latest stellar generation is triggered by the advancing ionization fronts. Around the bubble-shaped HII region Gum 31 (containing the young stellar cluster NGC 3324) in the north-western part of the CNC we identified 752 candidate YSOs from Spitzer, WISE, and Herschel data and analyzed their spectral energy distributions. Their location in the rim of the bubble is suggestive of their being triggered by a 'collect and collapse' scenario, which agrees well with the observed parameters of the region which we obtained from density and temperature maps from our Herschel data.

  14. Technology development for the Solar Probe Plus Faraday Cup

    NASA Astrophysics Data System (ADS)

    Freeman, Mark D.; Kasper, Justin; Case, Anthony W.; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Étienne; Balat-Pichelin, Marianne; Wright, Kenneth

    2013-09-01

    The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP's Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly exposed to the solar disk, where at closest approach to the Sun (less than 10 solar radii (Rs) from the center of the Sun) the intensity is greater than 475 earth-suns. These challenges range from materials characterization at temperatures in excess of 1400°C to thermal modeling of the behavior of the materials and their interactions at these temperatures. We discuss the trades that have resulted in the material selection for the current design of the Faraday Cup. Specific challenges include the material selection and mechanical design of insulators, particularly for the high-voltage (up to 8 kV) grid and coaxial supply line, and thermo-optical techniques to minimize temperatures in the SPC, with the specific intent of demonstrating Technology Readiness Level 6 by the end of 2013.

  15. A Faraday effect position sensor for interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bock, M.; Umathum, R.; Sikora, J.; Brenner, S.; Aguor, E. N.; Semmler, W.

    2006-02-01

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m-1 gradient field, a localization uncertainty of 1.5 cm could be achieved. This paper has been presented in parts at the 11th Annual Meeting of the International Society for Magnetic Resonance in Medicine in Toronto, 2003.

  16. Protection characteristics of a Faraday cage compromised by lightning burnthrough.

    SciTech Connect

    Warne, Larry Kevin; Bystrom, Edward; Jorgenson, Roy Eberhardt; Montoya, Sandra L.; Merewether, Kimball O.; Coats, Rebecca Sue; Martinez, Leonard E.; Jojola, John M.

    2012-01-01

    A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).

  17. Probing broken symmetry states in cuprate superconductors with polarization-sensitive infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Alok; Arik, Mumtaz Murat; Seo, Jungryeol; Cerne, John; Zhang, Hao; Xu, Ke Jun; Wei, John Y. T.; Armitage, N. P.; Kirzhner, T.; Koren, G.

    The nature of the pseudogap state in high-temperature superconducting (HTS) cuprates has drawn a lot of attention in the past two decades. A fundamental question is whether the pseudogap is a distinct phase with its own broken symmetries. Recent optical studies in the near-IR (800 meV) and THz (2-6 meV) ranges have observed symmetry breaking in the pseudogap state of HTS cuprates, suggesting that the pseudogap is a distinct phase. To probe the spectral character of this broken symmetry, we have performed infrared/visible Faraday and Kerr effect measurements at zero magnetic field and various temperatures on a series of HTS cuprate thin films, grown epitaxially by pulsed laser-ablated deposition. We will present and discuss our data, primarily complex Faraday/Kerr angle as a function of energy (0.1-3 eV), temperature (10-300K) and sample orientation with respect to the incident light polarization. This work supported by NSF-DMR1410599, NSERC, CFI-OIT and the Canadian Institute for Advanced Research.

  18. The continuity of scientific discovery and its communication: the example of Michael Faraday.

    PubMed

    Gross, Alan G

    2009-01-01

    This paper documents the cognitive strategies that led to Faraday's first significant scientific discovery. For Faraday, discovery is essentially a matter seeing as, of substituting for the eye all possess the eye of analysis all scientists must develop. In the process of making his first significant discovery, Faraday learns to dismiss the magnetic attractions and repulsions he and others had observed; by means of systematic variations in his experimental set-up, he learns to see these motions as circular: it is the first indication that an electro-magnetic field exists. In communicating his discoveries, Faraday, of course, takes into consideration his various audiences' varying needs and their differences in scientific competence; but whatever his audience, Faraday learns to convey what it feels like to do science, to shift from seeing to seeing as, from sight to insight. PMID:19350498

  19. The continuity of scientific discovery and its communication: the example of Michael Faraday.

    PubMed

    Gross, Alan G

    2009-02-25

    This paper documents the cognitive strategies that led to Faraday's first significant scientific discovery. For Faraday, discovery is essentially a matter seeing as, of substituting for the eye all possess the eye of analysis all scientists must develop. In the process of making his first significant discovery, Faraday learns to dismiss the magnetic attractions and repulsions he and others had observed; by means of systematic variations in his experimental set-up, he learns to see these motions as circular: it is the first indication that an electro-magnetic field exists. In communicating his discoveries, Faraday, of course, takes into consideration his various audiences' varying needs and their differences in scientific competence; but whatever his audience, Faraday learns to convey what it feels like to do science, to shift from seeing to seeing as, from sight to insight.

  20. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.

    PubMed

    Banno, Motohiro; Ohta, Kaoru; Yamaguchi, Sayuri; Hirai, Satori; Tominaga, Keisuke

    2009-09-15

    In aqueous solution, the basis of all living processes, hydrogen bonding exerts a powerful effect on chemical reactivity. The vibrational energy relaxation (VER) process in hydrogen-bonded complexes in solution is sensitive to the microscopic environment around the oscillator and to the geometrical configuration of the hydrogen-bonded complexes. In this Account, we describe the use of time-resolved infrared (IR) pump-probe spectroscopy to study the vibrational dynamics of (i) the carbonyl CO stretching modes in protic solvents and (ii) the OH stretching modes of phenol and carboxylic acid. In these cases, the carbonyl group acts as a hydrogen-bond acceptor, whereas the hydroxyl group acts as a hydrogen-bond donor. These vibrational modes have different properties depending on their respective chemical bonds, suggesting that hydrogen bonding may have different mechanisms and effects on the VER of the CO and OH modes than previously understood. The IR pump-probe signals of the CO stretching mode of 9-fluorenone and methyl acetate in alcohol, as well as that of acetic acid in water, include several components with different time constants. Quantum chemical calculations indicate that the dynamical components are the result of various hydrogen-bonded complexes that form between solute and solvent molecules. The acceleration of the VER is due to the increasing vibrational density of states caused by the formation of hydrogen bonds. The vibrational dynamics of the OH stretching mode in hydrogen-bonded complexes were studied in several systems. For phenol-base complexes, the decay time constant of the pump-probe signal decreases as the band peak of the IR absorption spectrum shifts to lower wavenumbers (the result of changing the proton acceptor). For phenol oligomers, the decay time constant of the pump-probe signal decreases as the probe wavenumber decreases. These observations show that the VER time strongly correlates with the strength of hydrogen bonding. This

  1. Matrix isolation infrared spectrum of the sulfuric acid-monohydrate complex: new assignments and resolution of the "missing H-Bonded v(OH) band" issue.

    PubMed

    Rozenberg, M; Loewenschuss, A

    2009-04-30

    The matrix isolation infrared spectra of "dry" and "wet" vapors of sulfuric acid have been investigated as trapped in solid argon matrices. The availability of a spectrum of trapped anhydrous acid vapor and its comparison with the spectra of trapped water containing vapors of the acid allowed the identification of the hydrogen-bonding shifted hydroxyl bands for both the acid and the water moieties of the monohydrated H(2)SO(4).H(2)O complex. The experimental results are compared to the various theoretically calculated wavenumber values of the acid and its monohydrated complex. The complex stabilization energies, as obtained from calculations and empirical correlations, are compared.

  2. Infrared Spectroscopy with ab initio molecular dynamics simulations : gas phase floppy peptides of increasing size and complexity, in relation with IR-MPD experiments

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    2009-03-01

    We present finite temperature DFT-based Car-Parrinello molecular dynamics (MD) simulations for the calculation of infrared spectra of complex molecular systems, either in the gas phase or in the condensed phase. We will review the fundamentals of the method, as well as the applicability and originality of finite temperature MD simulations for the purpose of modeling infrared spectra. Illustrations are taken from the infrared spectroscopy of alanine peptides of increasing size and complexity (from dipeptides to an octo-peptide) in the gas phase, in relation with IR-MPD (Infrared Multi Photon Dissociation) experiments : 300-400 K gas-phase action spectroscopy as devised on the CLIO platform at the University of Orsay-France or on the platform developed in the group of L. Snoek at Oxford-UK. A special emphasis on vibrational anharmonicities and how they can be extracted from molecular dynamics simulations will be put forward. Furthermore, band assignments in terms of atomic movements from MD is challenging and we have introduced a general method for obtaining effective normal modes of molecular systems from MD simulations.

  3. Faraday rotation as a probe of coronal and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Mancuso, Salvatore

    Faraday rotation observations of polarized radiation from natural radio sources yield a unique diagnostic of coronal and astrophysical plasmas. We made observations of the radiogalaxy 4C+03.01 seen through the solar corona when the source was at a distance of 8.6 solar radii from the Sun. Nearly continuous polarimetric observations were made on March 28, 1997 with the Very Large Array (VLA) at frequencies of 1465 and 1635 MHz. Dual frequency polarization measurements yield the rotation measure, a quantity that is proportional to the product along the line of sight of the electron density and the line-of-sight component of the magnetic field. We measure a rotation measure of +6.2 +/- 1.0 rad m-2 attributable to the corona. We obtain a weak detection of rotation measure fluctuations which may be due to coronal Alfvén waves and derive model-dependent upper limits to the Alfvén wave flux at the coronal base. We also report dual frequency linear polarization observations of thirteen polarized radio sources made on four days in May 1997 at elongations ranging from 5 to 14 solar radii. A tridimensional model of the solar minimum corona was found to be in excellent agreement with the observed rotation measures and deviations from the values predicted by the model were suggestive of long wavelength coronal Alfvén waves. These observations were also used for detection of high frequency magnetohydrodynamic waves. These waves can be detected through a Faraday screen depolarization mechanism, that is a reduction of the observed degree of linear polarization of an extended polarized source when viewed through a medium in which the Faraday rotation varies randomly. The observations show no detectable depolarization, and rule out some turbulence models. Finally we derive expressions for auto- and cross- correlation functions of the Stokes parameters Q and U of the galactic synchrotron radiation. Fluctuations in the polarization characteristics of the galactic synchrotron

  4. Herschel far-infrared observations of the Carina Nebula complex. III. Detailed cloud structure and feedback effects

    NASA Astrophysics Data System (ADS)

    Roccatagliata, V.; Preibisch, T.; Ratzka, T.; Gaczkowski, B.

    2013-06-01

    Context. The star formation process in large clusters/associations can be strongly influenced by the feedback from high-mass stars. Whether the resulting net effect of the feedback is predominantly negative (cloud dispersal) or positive (triggering of star formation due to cloud compression) is still an open question. Aims: The Carina Nebula complex (CNC) represents one of the most massive star-forming regions in our Galaxy. We use our Herschel far-infrared observations to study the properties of the clouds over the entire area of the CNC (with a diameter of ≈3.2°, which corresponds to ≈125 pc at a distance of 2.3 kpc). The good angular resolution (10''-36'') of the Herschel maps corresponds to physical scales of 0.1-0.4 pc, and allows us to analyze the small-scale (i.e., clump-size) structures of the clouds. Methods: The full extent of the CNC was mapped with PACS and SPIRE in the 70, 160, 250, 350, and 500 μm bands. We determined temperatures and column densities at each point in these maps by modeling the observed far-infrared spectral energy distributions. We also derived a map showing the strength of the UV radiation field. We investigated the relation between the cloud properties and the spatial distribution of the high-mass stars and computed total cloud masses for different density thresholds. Results: Our Herschel maps resolve for the first time the small-scale structure of the dense clouds over the entire spatial extent of the CNC. Several particularly interesting regions, including the prominent pillars south of η Car, are analyzed in detail. We compare the cloud masses derived from the Herschel data with previous mass estimates based on sub-mm and molecular line data. Our maps also reveal a peculiar wave-like pattern in the northern part of the Carina Nebula. Finally, we characterize two prominent cloud complexes at the periphery of our Herschel maps, which are probably molecular clouds in the Galactic background. Conclusions: We find that the

  5. Novel Implementations of Faraday Rotation Spectroscopy - from In-Situ Radical Detection to Studies of Environmental Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    Zhang, Eric; Westberg, Jonas; Wysocki, Gerard

    2016-06-01

    Radical species play an important role in various chemical processes spanning atmospheric chemistry (e.g. ozone formation), bio-medical science, and combustion. These highly reactive chemicals usually occur at very low concentration levels, and are difficult to quantify in experiments1. Generally, laser-based techniques rely on careful selection of the target transition to minimize spectral interference and achieve high selectivity. In case of complex gas mixtures (such as air) a possibility of spectral interference always exists. Since Faraday rotation spectroscopy (FRS) is sensitive only to paramagnetic species (radicals), it can simultaneously provide ultra-high sensitivity and selectivity. In this talk an overview of novel designs of FRS instrumentation as well as applications of FRS sensing will be provided. Examples will be given for FRS systems that routinely operate at the fundamental limits of optical detection, cavity-enhanced FRS detection schemes for sensitivity enhancement towards sub-pptv detection limits2, and high-accuracy FRS spectrometers designed specifically for ratiometry of nitrogen isotopes (14N, 15N)3. Prospects for the FRS technology to monitor important atmospheric molecules such as HOx radicals (atmospheric "cleansing" agents) will be discussed. References: 1. Wennberg et al., "Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals," Rev. Sci. Instrum. 65, 1858-1876 (1994). 2. Westberg et al., "Optical feedback cavity-enhanced Faraday rotation spectroscopy for oxygen detection," in CES2015(Boulder, CO, 2015). 3. Zhang, "Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer," Sensors 15, 25992 (2015).

  6. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    SciTech Connect

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  7. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  8. Non-destructive Faraday imaging of dynamically controlled ultracold atoms.

    PubMed

    Gajdacz, Miroslav; Pedersen, Poul L; Mørch, Troels; Hilliard, Andrew J; Arlt, Jan; Sherson, Jacob F

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds. PMID:24007051

  9. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    SciTech Connect

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-15

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  10. Non-destructive Faraday imaging of dynamically controlled ultracold atoms.

    PubMed

    Gajdacz, Miroslav; Pedersen, Poul L; Mørch, Troels; Hilliard, Andrew J; Arlt, Jan; Sherson, Jacob F

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  11. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    SciTech Connect

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  12. Classical and quantum dynamics of the Faraday lines of force

    SciTech Connect

    Frittelli, S.; Koshti, S.; Newman, E.T.; Rovelli, C. )

    1994-06-15

    We study the vacuum Maxwell theory by expressing the electric field in terms of its Faraday lines of force. This representation allows us to capture the two physical degrees of freedom of the electric field by means of two scalar fields. The corresponding classical canonical theory is constructed in terms of four scalar fields, is fully gauge invariant, has an attractive kinematics, but a rather complicated dynamics. The corresponding quantum theory can be constructed in a well-defined functional representation, which we refer to as the Euler representation. This representation turns out to be related to the loop representation. The resulting quantization scheme is, perhaps, of relevance for non-Abelian theories and for gravity.

  13. The response function of modulated grid Faraday cup plasma instruments

    NASA Technical Reports Server (NTRS)

    Barnett, A.; Olbert, S.

    1986-01-01

    Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.

  14. Aurora on Uranus - A Faraday disc dynamo mechanism

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Rassbach, M. E.; Dessler, A. J.

    1983-01-01

    A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.

  15. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  16. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    SciTech Connect

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreement with our FRDs and other current sensors.

  17. Aurora on Uranus - A Faraday disc dynamo mechanism

    NASA Astrophysics Data System (ADS)

    Hill, T. W.; Dessler, A. J.; Rassbach, M. E.

    1983-10-01

    A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.

  18. Improved Probing of the Rosette Nebula Superbubble with Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Savage, Allison H.; Buffo, J. J.; Spangler, S. R.

    2014-01-01

    In a recent paper Savage et al. 2013, ApJ 765, 42, we reported the results of our investigation of the super bubble associated with the Rosette Nebula (NGC 2244). We made linear polarization measurements of 23 extra-galactic radio sources whose lines of sight passed through or close to the Rosette Nebula. The observations were made at frequencies of 4.4GHz, 4.9GHz, and 7.6GHz using the Karl G. Jansky Very Large Array (VLA). We measured an excess rotation measure (RM) of 50-750 rad m-2 for sources whose lines of sight passed through the nebula. We compared our data with two simple plasma models that can reproduce the magnitude and sign of the measured RM. We argued that one of these models, a wind-blown bubble with an outer shock, better represented our data. However, distinguishing between these models requires measurements on more lines of sight. In NRAO project 12A-039, we observed 11 additional radio sources whose lines of sight pass through the shell of the Rosette Nebula to supplement the previous measurements and to further constrain the simple shell models. The 2012 observations cover two 1.024 GHz bands centered at 4.85GHz and 7.25GHz, with sixteen 128MHz sub-bands. This receiver configuration potentially allows for sixteen measurements of the polarization position angle across the sub-bands, which is a vast improvement over the three polarization position angle measurements of the previous data. We report preliminary results of Faraday rotation measurements for these 11 new lines of sight. We also describe similar Faraday rotation observations of the HII region W4/IC1805 undertaken in NRAO program 13A-035. This research was supported at the University of Iowa by grant AST09-07911 and ATM09-56901 from the National Science Foundation.

  19. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces.

    PubMed

    Edwards, C S; Christensen, P R

    2013-04-10

    The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars

  20. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces.

    PubMed

    Edwards, C S; Christensen, P R

    2013-04-10

    The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars

  1. The Continuity of Scientific Discovery and Its Communication: The Example of Michael Faraday

    PubMed Central

    Gross, Alan G.

    2009-01-01

    This paper documents the cognitive strategies that led to Faraday’s first significant scientific discovery. For Faraday, discovery is essentially a matter seeing as, of substituting for the eye all possess the eye of analysis all scientists must develop. In the process of making his first significant discovery, Faraday learns to dismiss the magnetic attractions and repulsions he and others had observed; by means of systematic variations in his experimental set-up, he learns to see these motions as circular: it is the first indication that an electro-magnetic field exists. In communicating his discoveries, Faraday, of course, takes into consideration his various audiences’ varying needs and their differences in scientific competence; but whatever his audience, Faraday learns to convey what it feels like to do science, to shift from seeing to seeing as, from sight to insight. PMID:19350498

  2. A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of Praziquantel and β-cyclodextrin inclusion complex in liquid water

    NASA Astrophysics Data System (ADS)

    de Oliveira, C. X.; Ferreira, N. S.; Mota, G. V. S.

    2016-01-01

    In this paper, we report a theoretical study of the inclusion complexes of Praziquantel (PZQ) and β-cyclodextrin (β-CD) in liquid water. The starting geometry has been carried out by molecular mechanics simulations, and afterwards optimized in B3LYP level with a 6-311G(d) basis set. Monte Carlo simulations have been used to calculate the solvation shell of the PZQ/β-CD inclusion complexes. Moreover, the vibrational frequencies and the infrared intensities for the PZQ/β-CD complex were computed using the B3LYP method. It is demonstrated that this combined model can yield well-converged thermodynamic data even for a modest number of sample configurations, which makes the methodology particularly adequate for understanding the solute-solvent interaction used for generating the liquid structures of one solute surrounded by solvent molecules. The complex solvation shell showed an increase of the water molecule level in relation to the isolated PZQ molecule because of the hydrophilic effect of the CD molecule. The infrared spectra showed that the contribution that originated in the PZQ molecule was not predominant in the upper-wave number region in the drug/β-CD. The movement that purely originated in the PZQ molecule was localized in the absorption band, ranging from 1328 to 1688 cm- 1.

  3. A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of Praziquantel and β-cyclodextrin inclusion complex in liquid water.

    PubMed

    de Oliveira, C X; Ferreira, N S; Mota, G V S

    2016-01-15

    In this paper, we report a theoretical study of the inclusion complexes of Praziquantel (PZQ) and β-cyclodextrin (β-CD) in liquid water. The starting geometry has been carried out by molecular mechanics simulations, and afterwards optimized in B3LYP level with a 6-311G(d) basis set. Monte Carlo simulations have been used to calculate the solvation shell of the PZQ/β-CD inclusion complexes. Moreover, the vibrational frequencies and the infrared intensities for the PZQ/β-CD complex were computed using the B3LYP method. It is demonstrated that this combined model can yield well-converged thermodynamic data even for a modest number of sample configurations, which makes the methodology particularly adequate for understanding the solute-solvent interaction used for generating the liquid structures of one solute surrounded by solvent molecules. The complex solvation shell showed an increase of the water molecule level in relation to the isolated PZQ molecule because of the hydrophilic effect of the CD molecule. The infrared spectra showed that the contribution that originated in the PZQ molecule was not predominant in the upper-wave number region in the drug/β-CD. The movement that purely originated in the PZQ molecule was localized in the absorption band, ranging from 1328 to 1688cm(-1).

  4. Diode-laser frequency stabilization based on the resonant Faraday effect

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.

  5. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    SciTech Connect

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  6. Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas

    SciTech Connect

    Liu Jian; Qin Hong

    2012-10-15

    Geometric phases of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase are investigated. The influence of the geometric phase to plasma diagnostics using the Faraday rotation is discussed as an application of the theory.

  7. Effects of Faraday Rotation on Microwave Remote Sensing From Space at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Kao, M.

    1997-01-01

    The effect of Faraday rotation on the remote sensing of soil moisture from space is investigated using the International Reference Ionosphere (IRI) to obtain electron density profiles and the International Geomagnetic Reference Field (IGRF) to model the magnetic field. With a judicious choice of satellite orbit (6 am, sunsynchronous) the errors caused by ignoring Faraday rotation are less than 1 K at incidence angles less than 40 degrees.

  8. The 8.3 and 12.4 micron imaging of the Galactic Center source complex with the Goddard infrared array camera

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Tresch-Fienberg, R.; Fazio, G. G.; Hoffmann, W. F.; Gatley, I.; Lamb, G.; Shu, P.; Mccreight, C. R.

    1985-01-01

    A 30 x 30 arcsec field at the Galactic Center (1.5 x 1.5 parsec) was mapped at 8.3 microns and 12.41 microns with high spatial resolution and accurate relative astrometry, using the 16 x 16 Si:Bi accumulation mode charge injection device Goddard infrared array camera. The design and performance of the array camera detector electronics system and image data processing techniques are discussed. Color temperature and dust opacity distributions derived from the spatially accurate images indicate that the compact infrared sources and the large scale ridge structure are bounded by warmer, more diffuse material. None of the objects appear to be heated appreciably by internal luminosity sources. These results are consistent with the model proposing that the complex is heated externally by a strong luminosity source at the Galactic Center, which dominates the energetics of the inner few parsecs of the galaxy.

  9. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  10. Experimental evidence for blue-shifted hydrogen bonding in the fluoroform-hydrogen chloride complex: a matrix-isolation infrared and ab initio study.

    PubMed

    Gopi, R; Ramanathan, N; Sundararajan, K

    2014-07-24

    The 1:1 hydrogen-bonded complex of fluoroform and hydrogen chloride was studied using matrix-isolation infrared spectroscopy and ab initio computations. Using B3LYP and MP2 levels of theory with 6-311++G(d,p) and aug-cc-pVDZ basis sets, the structures of the complexes and their energies were computed. For the 1:1 CHF3-HCl complexes, ab initio computations showed two minima, one cyclic and the other acyclic. The cyclic complex was found to have C-H · · · Cl and C-F · · · H interactions, where CHF3 and HCl sub-molecules act as proton donor and proton acceptor, respectively. The second minimum corresponded to an acyclic complex stabilized only by the C-F · · · H interaction, in which CHF3 is the proton acceptor. Experimentally, we could trap the 1:1 CHF3-HCl cyclic complex in an argon matrix, where a blue-shift in the C-H stretching mode of the CHF3 sub-molecule was observed. To understand the nature of the interactions, Atoms in Molecules and Natural Bond Orbital analyses were carried out to unravel the reasons for blue-shifting of the C-H stretching frequency in these complexes.

  11. Experimental evidence for blue-shifted hydrogen bonding in the fluoroform-hydrogen chloride complex: a matrix-isolation infrared and ab initio study.

    PubMed

    Gopi, R; Ramanathan, N; Sundararajan, K

    2014-07-24

    The 1:1 hydrogen-bonded complex of fluoroform and hydrogen chloride was studied using matrix-isolation infrared spectroscopy and ab initio computations. Using B3LYP and MP2 levels of theory with 6-311++G(d,p) and aug-cc-pVDZ basis sets, the structures of the complexes and their energies were computed. For the 1:1 CHF3-HCl complexes, ab initio computations showed two minima, one cyclic and the other acyclic. The cyclic complex was found to have C-H · · · Cl and C-F · · · H interactions, where CHF3 and HCl sub-molecules act as proton donor and proton acceptor, respectively. The second minimum corresponded to an acyclic complex stabilized only by the C-F · · · H interaction, in which CHF3 is the proton acceptor. Experimentally, we could trap the 1:1 CHF3-HCl cyclic complex in an argon matrix, where a blue-shift in the C-H stretching mode of the CHF3 sub-molecule was observed. To understand the nature of the interactions, Atoms in Molecules and Natural Bond Orbital analyses were carried out to unravel the reasons for blue-shifting of the C-H stretching frequency in these complexes. PMID:24979667

  12. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  13. Two-dimensional variational vibroequilibria and Faraday's drops

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Ivan; Lukovsky, Ivan; Timokha, Alexander

    2004-11-01

    When contacting with acoustically-vibrated structures a fluid volume can take a [time-averaged] geometric shape differing from capillary equilibrium. In accordance with theorems by Beyer et al. (2001) this shape (vibroequilibrium) furnishes a local minimum of a [quasi-potential energy] functional. The variational problem contains five dimensionless parameters evaluating the fluid volume, the wave number of acoustic field in the fluid domain, the contact angle and two newly-introduced numbers (η1, η2) giving relationships between (surface tension, gravitation) and Kapitsa’s vibrational forces/energy. The paper focuses on negligible small wave numbers (incompressible fluid) and two-dimensional flows. Although the variational problem may in some isolated cases have analytical solutions, it requires in general numerical approaches. Numerical examples simulate experiments by Wolf (1969) and Ganiyev et al. (1977) on vibroequilibria in horizontally vibrating tanks. These show that there appear at least two types of stable vibroequilibria associated with symmetric (possible non-connected) and asymmetric surface shapes. The paper represents also numerical results on flattening and vibrostabilisation of a drop hanging beneath a vibrating plate (experiments by Faraday (1831)).

  14. A sensitive Faraday rotation setup using triple modulation

    SciTech Connect

    Phelps, G.; Abney, J.; Broering, M.; Korsch, W.

    2015-07-15

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ{sup 2} dependence was observed.

  15. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    SciTech Connect

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D.

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  16. Fabrication of a high power Faraday isolator by direct bonding

    NASA Astrophysics Data System (ADS)

    Rothhardt, Carolin; Rekas, Miroslaw; Kalkowski, Gerhard; Haarlammert, Nicoletta; Eberhardt, Ramona; Tünnermann, Andreas

    2013-03-01

    With increasing output power of lasers, absorption in optical components grows larger and demands on heat withdrawal become challenging. We report on the fabrication of a Faraday isolator for high power fiber laser applications (P = 1 kW) at a wavelength of 1080 nm and operation at ambient conditions. We investigate direct bonding of Terbium Gallium Garnet to sapphire disks, to benefit from the good heat spreading properties (having a 6-fold higher thermal conductivity than TGG) at high transparency of the latter. Successful bonding was achieved by extensive cleaning of the plane and smooth surfaces prior to low pressure plasma activation. The surfaces to be bonded were then contacted in a vacuum environment at elevated temperature under axial load. Our measurements show that the bonded interface has no measurable influence on transmission properties and bonded samples are stable for laser output powers of at least 260 W. As compared to a single Terbium Gallium Garnet substrate, wavefront aberrations were significantly decreased by bonding sapphire disks to Terbium Gallium Garnet.

  17. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    PubMed Central

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  18. A sensitive Faraday rotation setup using triple modulation.

    PubMed

    Phelps, G; Abney, J; Broering, M; Korsch, W

    2015-07-01

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ(2) dependence was observed. PMID:26233356

  19. Homogenized boundary conditions and resonance effects in Faraday cages

    PubMed Central

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  20. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  1. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 ‑ (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  2. SIMULATED FARADAY ROTATION MEASURES TOWARD HIGH GALACTIC LATITUDES

    SciTech Connect

    Akahori, Takuya; Kim, Jongsoo; Ryu, Dongsu; Gaensler, B. M. E-mail: akahori@physics.usyd.edu.au E-mail: ryu@canopus.cnu.ac.kr

    2013-04-20

    We study the Faraday rotation measure (RM) due to the Galactic magnetic field (GMF) toward high Galactic latitudes. The RM arises from the global, regular component as well as from the turbulent, random component of the GMF. We model the former based on observations and the latter using the data of magnetohydrodynamic turbulence simulations. For a large number of different GMF models, we produce mock RM maps around the Galactic poles and calculate various statistical quantities with the RM maps. We find that the observed medians of RMs toward the north and south Galactic poles, {approx}0.0 {+-} 0.5 rad m{sup -2} and {approx} + 6.3 {+-} 0.5 rad m{sup -2}, are difficult to explain with any of our many alternate GMF models. The standard deviation of observed RMs, {approx}9 rad m{sup -2}, is clearly larger than that of simulated RMs. The second-order structure function of observed RMs is substantially larger than that of simulated RMs, especially at small angular scales. We discuss other possible contributions to RM toward high Galactic latitudes. Besides observational errors and the intrinsic RM of background radio sources against which RM is observed, we suggest that the RM due to the intergalactic magnetic field may account for a substantial fraction of the observed RM. Finally, we note that reproducing the observed medians may require additional components or/and structures of the GMF that are not present in our models.

  3. Na-Faraday rotation filtering: The optimal point

    PubMed Central

    Kiefer, Wilhelm; Löw, Robert; Wrachtrup, Jörg; Gerhardt, Ilja

    2014-01-01

    Narrow-band optical filtering is required in many spectroscopy applications to suppress unwanted background light. One example is quantum communication where the fidelity is often limited by the performance of the optical filters. This limitation can be circumvented by utilizing the GHz-wide features of a Doppler broadened atomic gas. The anomalous dispersion of atomic vapours enables spectral filtering. These, so-called, Faraday anomalous dispersion optical filters (FADOFs) can be by far better than any commercial filter in terms of bandwidth, transition edge and peak transmission. We present a theoretical and experimental study on the transmission properties of a sodium vapour based FADOF with the aim to find the best combination of optical rotation and intrinsic loss. The relevant parameters, such as magnetic field, temperature, the related optical depth, and polarization state are discussed. The non-trivial interplay of these quantities defines the net performance of the filter. We determine analytically the optimal working conditions, such as transmission and the signal to background ratio and validate the results experimentally. We find a single global optimum for one specific optical path length of the filter. This can now be applied to spectroscopy, guide star applications, or sensing. PMID:25298251

  4. Relation of magnetism and electricity beyond Faraday-Maxwell electrodynamics

    NASA Astrophysics Data System (ADS)

    Kurkin, M. I.; Orlova, N. B.

    2014-11-01

    A comparison has been performed between the Landau-Dzyaloshinskii-Astrov magnetoelectric effects and the electromagnetic effects caused by the electromagnetic Faraday induction and Maxwell displacement currents. The requirement for the spontaneous violation of symmetry relative to space inversion and time reversion is formulated as the condition for the existence of magnetoelectric effects. An analysis is performed of some results obtained by E.A. Turov both personally and in association with colleagues, which made a significant contribution to the development of the science of magnetoelectricity. These results include the development of the scheme of a simplified symmetry analysis for describing collinear spin structures; the use of this scheme for the invariant expansion of thermodynamic potentials for the magnetic materials with different types of magnetic ordering; the formulation of the microscopic model of magnetoelectricity with the use of the relation between spins and electroactive optical phonons; the study of the phenomena of the enhancement of magnetoelectric effects upon the magnetic resonance; the analysis of the opportunities of electrodipole excitation and of the detection of different signals of magnetic resonance; and the study of the manifestations of magnetoelectric effects in magnetoacoustics and optics.

  5. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    PubMed

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  6. A sensitive Faraday rotation setup using triple modulation

    NASA Astrophysics Data System (ADS)

    Phelps, G.; Abney, J.; Broering, M.; Korsch, W.

    2015-07-01

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ2 dependence was observed.

  7. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 - (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  8. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    PubMed

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials. PMID:24733086

  9. Faraday rotation and magnetic properties of neodynium trifluoride under high magnetic field

    NASA Astrophysics Data System (ADS)

    Guillot, M.; Schmiedel, T.; Xu, You

    1999-04-01

    Faraday rotation (Fr) and magnetization (M) measurements were performed in the trifluoride of neodymium NdF3 in high continuous magnetic field (17 T below 77 K and 30 T above this temperature). The temperature range extends from 15 to 300 K (Fr) and from 1.6 to 300 K (M), respectively; the external field was applied along the (c) direction of the hexagonal structure at 633 nm wavelength. M was found to be linear versus H above 40 K; the magnetic susceptibility (χ) follows a Curie-Weiss law. At low temperature, only the lowest doublet is populated and the saturation of M is observed. Below 30 K, Fr presents a nonlinear field dependence in H higher than 7 T but remains linear in the 30-300 K range. The Verdet constant (V) was then deduced. All the data confirm a complex and unusual temperature variation of the ratio V/χ which cannot be attributed to a strong superexchange coupling between the spins of the Nd3+ ions as previously proposed; they underline a paramagnetic behavior which is influenced by crystal field effects.

  10. The mean coronal magnetic field determined from Helios Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Patzold, M.; Bird, M. K.; Volland, H.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.

    1987-01-01

    Coronal Faraday rotation of the linearly polarized carrier signals of the Helios spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3-10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975-1976 was found to decrease with radial distance according to r exp-alpha, where alpha = 2.7 + or - 0.2. The mean field magnitude was 1.0 + or - 0.5 x 10 to the -5th tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.

  11. Thermochemistry and infrared spectroscopy of neutral and cationic iron-polycyclic aromatic hydrocarbon complexes of astrophysical interest: fundamental density functional theory studies.

    PubMed

    Simon, Aude; Joblin, Christine

    2007-10-01

    This paper reports extensive calculations on the structural, thermodynamic, and mid-infrared spectroscopic properties of neutral and cationic model iron-polycyclic aromatic hydrocarbon (PAH) complexes of astrophysical interest for three PAHs of increasing size, namely, naphthalene (C10H8), pyrene (C16H10), and coronene (C24H12). Geometry optimizations and frequency calculations were performed using hybrid Hartree-Fock/density functional theory (DFT) methods. The use of DFT methods is mandatory in terms of computational cost and efficiency to describe the electronic and vibrational structures of such large organometallic unsaturated species that present several low-energy isomers of different structures and electronic and spin states. The calculated structures for the low-energy isomers of the model Fe-PAH and Fe-PAH+ complexes are presented and discussed. Iron-PAH binding energies are extracted, and the consequences of the coordination of iron on the infrared spectra of neutral and cationic PAHs are shown with systematic effects on band intensities and positions being demonstrated. The first results are discussed in terms of astrophysical implications. This work is the first step of an ongoing effort in our group to understand the photophysics and spectroscopy of iron-PAH complexes in the conditions of the interstellar medium using a synergy between observations, laboratory experiments, and theory.

  12. Recognizing magnetic structures by present and future radio telescopes with Faraday rotation measure synthesis

    NASA Astrophysics Data System (ADS)

    Beck, R.; Frick, P.; Stepanov, R.; Sokoloff, D.

    2012-07-01

    Context. Modern radio telescopes allow us to record a large number of spectral channels. The application of a Fourier transform to spectropolarimetric data in radio continuum, Faraday rotation measure (RM) synthesis, yields the “Faraday spectrum”, which hosts valuable information about the magneto-ionic medium along the line of sight. Aims: We investigate whether the method of wavelet-based RM synthesis can help us to identify structures of regular and turbulent magnetic fields in extended magnetized objects, such as galaxies and galaxy clusters. Methods: The analysis of spectropolarimetric radio observations of multi-scale targets calls for a corresponding mathematical technique. Wavelets allow us to reformulate the RM synthesis method in a scale-dependent way and to visualize the data as a function of Faraday depth and scale. Results: We present observational tests to recognize magnetic field structures. A region with a regular magnetic field generates a broad “disk” in Faraday space, with two “horns” when the distribution of cosmic-ray electrons is broader than that of the thermal electrons. Each field reversal generates one asymmetric “horn” on top of the “disk”. A region with a turbulent field can be recognized as a “Faraday forest” of many components. These tests are applied to the spectral ranges of various synthesis radio telescopes. We argue that the ratio of maximum to minimum wavelengths determines the range of scales that can be identified in Faraday space. Conclusions: A reliable recognition of magnetic field structures in spiral galaxies or galaxy clusters requires the analysis of data cubes in position-position-Faraday depth space (“PPF cubes”), observed over a wide and continuous frequency range, allowing the recognition of a wide range of scales as well as high resolution in Faraday space. The planned Square Kilometre Array (SKA) will fulfill this condition and will be close to representing a perfect “Faraday

  13. Blue-shift of the C-H stretching vibration in CHF3-H2O complex: Matrix isolation infrared spectroscopy and ab initio computations

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2016-09-01

    As a result of hydrogen bonding in CHF3-H2O complex, ab initio computations exhibited a blue shift in the C-H stretching region of CHF3 sub-molecule. In this work, we have investigated whether the blue-shifting in CHF3-H2O complex can be experimentally discerned using matrix isolation infrared spectroscopy. The 1:1 CHF3-H2O complex was therefore trapped and studied in argon and neon matrices. Experimentally a blue shift of 20.3 and 32.3 cm-1 in the C-H stretching region of CHF3 sub-molecule for the CHF3-H2O complex was observed in argon and neon matrices. The structure of the complex and the energies were computed at MP2 level of theory using a 6-311++G(d,p) and aug-cc-pVDZ basis sets. Computations indicated only one minimum corresponded to a C-H⋯O interaction between the hydrogen of fluoroform and oxygen of water. AIM and NBO analyses were performed to understand the reasons for blue-shifting of the C-H stretching wavenumber in the complex.

  14. Infrared spectra of the C2H2-(OCS)2 van der Waals complex: observation of a structure with C2 symmetry.

    PubMed

    Rezaei, Mojtaba; McKellar, A R W; Moazzen-Ahmadi, N

    2011-09-29

    Infrared spectra of the C(2)H(2)-(OCS)(2) trimer are studied by means of direct infrared absorption spectroscopy. The van der Waals complexes are generated in a supersonic slit-jet apparatus and probed using a rapid-scan tunable diode laser in the region of the ν(1) fundamental vibration of the OCS monomer. Two infrared bands are analyzed for the lowest energy isomer of the trimer, which has C(2) symmetry and is experimentally observed here for the first time. A relatively strong band centered at 2068.93 cm(-1) is assigned as the out-of-phase vibrations of the pair of equivalent OCS monomers. This band is blue-shifted relative to the free OCS monomer but with a reduced shift as compared with the analogous vibration of the nonpolar OCS dimer. A weaker red-shifted band observed at 2049.64 cm(-1) establishes the nonplanarity of the OCS dimer subunit within the trimer. Spectra for three isotopologues in addition to the normal form are used to help define an experimental structure, which agrees well with past and present semiempirical calculations.

  15. Infrared Stark and Zeeman spectroscopy of OH-CO: The entrance channel complex along the OH + CO → trans-HOCO reaction pathway

    NASA Astrophysics Data System (ADS)

    Brice, Joseph T.; Liang, Tao; Raston, Paul L.; McCoy, Anne B.; Douberly, Gary E.

    2016-09-01

    Sequential capture of OH and CO by superfluid helium droplets leads exclusively to the formation of the linear, entrance-channel complex, OH-CO. This species is characterized by infrared laser Stark and Zeeman spectroscopy via measurements of the fundamental OH stretching vibration. Experimental dipole moments are in disagreement with ab initio calculations at the equilibrium geometry, indicating large-amplitude motion on the ground state potential energy surface. Vibrational averaging along the hydroxyl bending coordinate recovers 80% of the observed deviation from the equilibrium dipole moment. Inhomogeneous line broadening in the zero-field spectrum is modeled with an effective Hamiltonian approach that aims to account for the anisotropic molecule-helium interaction potential that arises as the OH-CO complex is displaced from the center of the droplet.

  16. Improper or classical hydrogen bonding? A comparative cryosolutions infrared study of the complexes of HCClF(2), HCCl(2)F, and HCCl(3) with dimethyl ether.

    PubMed

    Delanoye, Sofie N; Herrebout, Wouter A; van der Veken, Benjamin J

    2002-06-26

    Complexes of haloforms of the type HCCl(n)F(3-)(n) (n = 1-3) with dimethyl ether have been studied in liquid argon and liquid krypton, using infrared spectroscopy. For the haloform C[bond]H stretching mode, the complexation causes blue shifts of 10.6 and 4.8 cm(-1) for HCClF(2) and HCCl(2)F, respectively, while for HCCl(3) a red shift of 8.3 cm(-1) is observed. The ratio of the band areas of the haloform C[bond]H stretching in complex and monomer was determined to be 0.86(4) for HCClF(2), 33(3) for HCCl(2)F, and 56(3) for HCCl(3). These observations, combined with those for the HCF(3) complex with the same ether (J. Am. Chem. Soc. 2001, 123, 12290), have been analyzed using ab initio calculations at the MP2[double bond]FC/6-31G(d) level, and using some recent models for improper hydrogen bonding. Ab initio calculations on the haloforms embedded in a homogeneous electric field to model the influence of the ether suggest that the complexation shift of the haloform C[bond]H stretching is largely explained by the electric field effect induced by the electron donor in the proton donor. The model calculations also show that the electric field effect accounts for the observed intensity changes of the haloform C[bond]H stretches.

  17. Solvation-induced σ-complex structure formation in the gas phase: a revisit to the infrared spectroscopy of [C6H6-(CH3OH)2]+.

    PubMed

    Mizuse, Kenta; Suzuki, Yuta; Mikami, Naohiko; Fujii, Asuka

    2011-10-20

    Structures of the [C(6)H(6)-(CH(3)OH)(2)](+) cluster cation are investigated with infrared (IR) spectroscopy. While the noncovalent type structure has been confirmed for the n = 1 cluster of [C(6)H(6)-(CH(3)OH)(n)](+), only contradictory interpretations have been given for the spectra of n = 2, in which significant changes have been observed with the Ar tagging. In the present study, we revisit IR spectroscopy of the n = 2 cluster from the viewpoint of the σ-complex structure, which includes a covalent bond formation between the benzene and methanol moieties. The observed spectral range is extended to the lower-frequency region, and the spectrum is measured with and without Ar and N(2) tagging. A strongly hydrogen-bonded OH stretch band, which is characteristic to the σ-complex structure, is newly found with the tagging. The remarkable spectral changes with the tagging are interpreted by the competition between the σ-complex and noncovalent complex structures in the [C(6)H(6)-(CH(3)OH)(2)](+) system. This result shows that the microsolvation only with one methanol molecule can induce the σ-complex structure formation.

  18. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    SciTech Connect

    Moore, Evan G.; Xu, Jide; Dodani, Sheel; Jocher, Christoph; D'Aleo, Anthony; Seitz, Michael; Raymond, Kenneth

    2009-11-10

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a model Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.

  19. Modulating the near-infrared luminescence of neodymium and ytterbium complexes with tridentate ligands based on benzoxazole-substituted 8-hydroxyquinolines.

    PubMed

    Shavaleev, Nail M; Scopelliti, Rosario; Gumy, Frédéric; Bünzli, Jean-Claude G

    2009-04-01

    An improved synthesis of 2-(2'-benzothiazole)- and 2-(2'-benzoxazole)-8-hydroxyquinoline ligands that combine a tridentate N,N,O-chelating unit for metal binding and extended chromophore for light harvesting is developed. The 2-(2'-benzoxazole)-8-hydroxyquinoline ligands form mononuclear nine-coordinate complexes with neodymium, [Nd(kappa(3)-ligand)(3)], and an eight-coordinate complex with ytterbium, [Yb(kappa(3)-ligand)(2) x (kappa(1)-ligand) x H(2)O], as verified by crystallographic characterization of five complexes with four different ligands. The chemical stability of the complexes increases when the ligand contains 5,7-dihalo-8-hydroxyquinoline versus an 8-hydroxyquinoline group. The complexes feature a ligand-centered visible absorption band with a maximum at 508-527 nm and an intensity of (7.5-9.6) x 10(3) M(-1) x cm(-1). Upon excitation with UV and visible light within ligand absorption transitions, the complexes display characteristic lanthanide luminescence in the near-infrared at 850-1450 nm with quantum yields and lifetimes in the solid state at room temperature as high as 0.33% and 1.88 micros, respectively. The lanthanide luminescence in the complexes is enhanced upon halogenation of the 5,7-positions in the 8-hydroxyquinoline group and upon the addition of electron-donating substituents to the benzoxazole ring. Facile modification of chromophore units in 2-(2'-benzoxazole)-8-hydroxyquinoline ligands provides means for controlling the luminescence properties of their lanthanide complexes.

  20. Complex organic matter in space: about the chemical composition of carriers of the Unidentified Infrared Bands (UIBs) and protoplanetary emission spectra recorded from certain astrophysical objects.

    PubMed

    Cataldo, Franco; Keheyan, Yeghis; Heymann, Dieter

    2004-02-01

    In this communication we present the basic concept that the pure PAHs (Polycyclic Aromatic Hydrocarbons) can be considered only the ideal carriers of the UIBs (Unidentified Infrared Bands), the emission spectra coming from a large variety of astronomical objects. Instead we have proposed that the carriers of UIBs and of protoplanetary nebulae (PPNe) emission spectra are much more complex molecular mixtures possessing also complex chemical structures comparable to certain petroleum fractions obtained from the petroleum refining processes. The demonstration of our proposal is based on the comparison between the emission spectra recorded from the protoplanetary nebulae (PPNe) IRAS 22272+ 5435 and the infrared absorption spectra of certain 'heavy' petroleum fractions. It is shown that the best match with the reference spectrum is achieved by highly aromatic petroleum fractions. It is shown that the selected petroleum fractions used in the present study are able to match the band pattern of anthracite coal. Coal has been proposed previously as a model for the PPNe and UIBs but presents some drawbacks which could be overcome by adopting the petroleum fractions as model for PPNe and UIBs in place of coal. A brief discussion on the formation of the petroleum-like fractions in PPNe objects is included. PMID:14979641

  1. Complex organic matter in space: about the chemical composition of carriers of the Unidentified Infrared Bands (UIBs) and protoplanetary emission spectra recorded from certain astrophysical objects.

    PubMed

    Cataldo, Franco; Keheyan, Yeghis; Heymann, Dieter

    2004-02-01

    In this communication we present the basic concept that the pure PAHs (Polycyclic Aromatic Hydrocarbons) can be considered only the ideal carriers of the UIBs (Unidentified Infrared Bands), the emission spectra coming from a large variety of astronomical objects. Instead we have proposed that the carriers of UIBs and of protoplanetary nebulae (PPNe) emission spectra are much more complex molecular mixtures possessing also complex chemical structures comparable to certain petroleum fractions obtained from the petroleum refining processes. The demonstration of our proposal is based on the comparison between the emission spectra recorded from the protoplanetary nebulae (PPNe) IRAS 22272+ 5435 and the infrared absorption spectra of certain 'heavy' petroleum fractions. It is shown that the best match with the reference spectrum is achieved by highly aromatic petroleum fractions. It is shown that the selected petroleum fractions used in the present study are able to match the band pattern of anthracite coal. Coal has been proposed previously as a model for the PPNe and UIBs but presents some drawbacks which could be overcome by adopting the petroleum fractions as model for PPNe and UIBs in place of coal. A brief discussion on the formation of the petroleum-like fractions in PPNe objects is included.

  2. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    SciTech Connect

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-07-10

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  3. Faraday laser using 1.2 km fiber as an extended cavity

    NASA Astrophysics Data System (ADS)

    Tao, Zhiming; Zhang, Xiaogang; Pan, Duo; Chen, Mo; Zhu, Chuanwen; Chen, Jingbiao

    2016-07-01

    We demonstrate a Faraday laser using a 1.2 km fiber as an extended cavity, which provides optical feedback and obtains small free spectrum range (FSR) of 83 kHz, and have succeeded in limiting the laser frequency to a crossover transition {5}2{S}1/2,F=2\\to {5}2{P}3/2,F\\prime =1,3 of the natural 87Rb at 780 nm. The Faraday laser is based on a Faraday anomalous dispersion optical filter (FADOF) with an ultra-narrow bandwidth and the long fiber extended cavity of 1.2 km. The peak transmission assigned to the crossover transition F=2\\to F\\prime =1,3 in the FADOF is 20.5% with an ultra-narrow bandwidth of 29.1 MHz. The Allan deviation of the Faraday laser is around 6.0× {10}-11 in 0.06 to 1 s sampling time. Laser frequency is always kept in the center of the transmitted peak assigned to F=2\\to F\\prime =1,3. The Faraday laser realized here can provide light exactly resonant with an atomic transition used for atom-photon interaction experiments and is insensitive to diode temperature and injection current fluctuations.

  4. Faraday laser using 1.2 km fiber as an extended cavity

    NASA Astrophysics Data System (ADS)

    Tao, Zhiming; Zhang, Xiaogang; Pan, Duo; Chen, Mo; Zhu, Chuanwen; Chen, Jingbiao

    2016-07-01

    We demonstrate a Faraday laser using a 1.2 km fiber as an extended cavity, which provides optical feedback and obtains small free spectrum range (FSR) of 83 kHz, and have succeeded in limiting the laser frequency to a crossover transition {5}2{S}1/2,F=2\\to {5}2{P}3/2,F\\prime =1,3 of the natural 87Rb at 780 nm. The Faraday laser is based on a Faraday anomalous dispersion optical filter (FADOF) with an ultra-narrow bandwidth and the long fiber extended cavity of 1.2 km. The peak transmission assigned to the crossover transition F=2\\to F\\prime =1,3 in the FADOF is 20.5% with an ultra-narrow bandwidth of 29.1 MHz. The Allan deviation of the Faraday laser is around 6.0× {10}-11 in 0.06 to 1 s sampling time. Laser frequency is always kept in the center of the transmitted peak assigned to F=2\\to F\\prime =1,3. The Faraday laser realized here can provide light exactly resonant with an atomic transition used for atom–photon interaction experiments and is insensitive to diode temperature and injection current fluctuations.

  5. Dissymmetric Bis(dipyrrinato)zinc(II) Complexes: Rich Variety and Bright Red to Near-Infrared Luminescence with a Large Pseudo-Stokes Shift.

    PubMed

    Sakamoto, Ryota; Iwashima, Toshiki; Kögel, Julius F; Kusaka, Shinpei; Tsuchiya, Mizuho; Kitagawa, Yasutaka; Nishihara, Hiroshi

    2016-05-01

    Bis(dipyrrinato)metal(II) and tris(dipyrrinato)metal(III) complexes have been regarded as much less useful luminophores than their boron difluoride counterparts (4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes, BODIPYs), especially in polar solvent. We proposed previously that dissymmetry in such metal complexes (i.e., two different dipyrrinato ligands in one molecule) improves their fluorescence quantum efficiencies. In this work, we demonstrate the universality and utility of our methodology by synthesizing eight new dissymmetric bis(dipyrrinato)zinc(II) complexes and comparing them with corresponding symmetric complexes. Single-crystal X-ray diffraction analysis, (1)H and (13)C NMR spectroscopy, and high-resolution mass spectrometry confirm the retention of dissymmetry in both solution and solid states. The dissymmetric complexes all show greater photoluminescence (PL) quantum yields (ϕPL) than the corresponding symmetric complexes, allowing red to near-infrared emissions with large pseudo-Stokes shifts. The best performance achieves a maximum PL wavelength of 671 nm, a pseudo-Stokes shift of 5400 cm(-1), and ϕPL of 0.62-0.72 in toluene (dielectric constant εs = 2.4), dichloromethane (εs = 9.1), acetone (εs = 21.4), and ethanol (εs = 24.3). The large pseudo-Stokes shift is distinctive considering BODIPYs with small Stokes shifts (∼500 cm(-1)), and the ϕPL values are higher than or comparable to those of BODIPYs fluorescing at similar wavelengths. Electrochemistry and density functional theory calculations illustrate that frontier orbital ordering in the dissymmetric complexes meets the condition for efficient PL proposed in our theory.

  6. A new route for visible/near-infrared-light-driven H2 production over titania: Co-sensitization of surface charge transfer complex and zinc phthalocyanine

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohu; Peng, Bosi; Peng, Tianyou; Yu, Lijuan; Li, Renjie; Zhang, Jing

    2015-12-01

    This work introduces a new strategy for visible/near-infrared (NIR) light responsive H2 production over TiO2 nanoparticles co-sensitized with zinc phthalocyanine derivative (Zn-tri-PcNc) and surface ligand-to-metal charge transfer (LMCT) complex, which is in situ formed on the TiO2 nanoparticles' surfaces by using ascorbic acid (AA). The in situ formed surface LMCT complex (AA-TiO2) exhibits obvious visible-light-responsive photoactivity (126.2 μmol/h) for H2 production with a high apparent quantum yield (AQY) of 16.1% at 420 nm monochromatic light irradiation. Moreover, the co-sensitized TiO2 nanoparticles (Zn-tri-PcNc-TiO2-AA) shows a much higher photoactivity (162.2 μmol/h) for H2 production than the surface LMCT complex, and broader spectral responsive region (400-800 nm) with a relatively high AQY value (0.97%) at 700 nm monochromatic light irradiation. The present result reveals a possible substitute for the conventional Ru(II)-bipyridyl complexes or organic dyes as sensitizer of semiconductors in the field of solar fuel conversion.

  7. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ˜ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  8. Michael Faraday on the Learning of Science and Attitudes of Mind

    NASA Astrophysics Data System (ADS)

    Crawford, Elspeth

    The paper makes use of Michael Faraday's ideas about learning, in particular his thoughts about attitudes to the unknowns of science and the development of an attitude which improves scientific decision-making. An invented scenario involving nursery school children demonstrates some attitudes displayed there. Discussion of the scenario and variation in possible outcomes suggests that Faraday's views are relevant to scientific learning in general. The main thesis of the paper is that it is central to learning in science to acknowledge that there is an inner struggle involved in facing unknowns, and that empathy with the fears and expectations of learners is an essential quality if genuinely scientific thought is to develop. It is suggested, following Faraday, that understanding our own feelings while we teach is a pre-requisite to enabling such empathy and that only then will we be in a position to evaluate accurately whether or not our pupils are thinking scientifically.

  9. Dispersion of Electric-Field-Induced Faraday Effect in Magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    2016-03-01

    The frequency dependence of the electric-field-induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility α and the antiferromagnetic order parameter η . The relative strength of these contributions is determined by the frequency of the probing light and can be tuned between extreme characteristics following the temperature dependence of α or η . The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results allow us to measure voltage-controlled selection, isothermal switching, and temperature dependence of η in a tabletop setup. The voltage-specific Faraday rotation is independent of the sample thickness, making the method scalable and versatile down to the limit of dielectric breakdown.

  10. Faraday effect in rippled graphene: Magneto-optics and random gauge fields

    NASA Astrophysics Data System (ADS)

    Schiefele, Jürgen; Martin-Moreno, Luis; Guinea, Francisco

    2016-07-01

    A beam of linearly polarized light transmitted through magnetically biased graphene can have its axis of polarization rotated by several degrees after passing the graphene sheet. This large Faraday effect is due to the action of the magnetic field on graphene's charge carriers. As deformations of the graphene membrane result in pseudomagnetic fields acting on the charge carriers, the effect of random mesoscopic corrugations (ripples) can be described as the exposure of graphene to a random pseudomagnetic field. We aim to clarify the interplay of these typically sample inherent fields with the external magnetic bias field and the resulting effect on the Faraday rotation. In principle, random gauge disorder can be identified from a combination of Faraday angle and optical spectroscopy measurements.

  11. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    PubMed

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery. PMID:25004544

  12. Faraday Effect sensor redressed by Nd2Fe14B biasing magnetic film.

    PubMed

    Jiao, Xinbing; Nguyen, Truong Giang; Qian, Bo; Jiang, Chunping; Ma, Lixin

    2012-01-16

    A Faraday Effect sensor with Nd(2)Fe(14)B biasing magnetic film was described. Ta/Nd(2)Fe(14)B/Ta films were grown by magnetron sputtering method. The magnetic domain in the sensor with the Nd(2)Fe(14)B biasing magnetic film can persist its distribution. The average linearity error of Faraday Effect sensor with biasing magnetic film decreased from 1.42% to 0.125% compared with non-biasing magnetic film, and the measurement range increased from 820 Oe to 900 Oe.

  13. Growth and Faraday rotation characteristics of TbVO4 crystals

    NASA Astrophysics Data System (ADS)

    Guo, Feiyun; Chen, Xin; Gong, Zhongliang; Chen, Xiang; Zhao, Bin; Chen, Jianzhong

    2015-09-01

    TbVO4 (TV) single crystals with dimensions of 18 × 18 × 16 mm3 were grown by Czochralski method under different atmosphere. XPS studies revealed the presence of V4+ and Tb4+ in TV crystal grown at 99.9% N2 atmosphere, which caused a wide absorption peak centered at 950 nm in the transmission spectrum. TV crystal grown at 80% N2 + 20% CO2 mixed atmosphere has high transmittance at 600-1500 nm waveband. Faraday rotation spectra of TV crystal were measured. TV crystal has a larger Faraday rotation than terbium gallium garnet (TGG) crystal at 500-1500 nm waveband.

  14. Enhanced Faraday rotation by crystals of core-shell magnetoplasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Varytis, P.; Pantazopoulos, P. A.; Stefanou, N.

    2016-06-01

    Collective hybridized plasmon modes, which enable strong magnetooptical coupling and consequent enhanced Faraday effect in three-dimensional periodic assemblies of magnetic dielectric nanoparticles coated with a noble-metal shell, are studied by means of rigorous full electrodynamic calculations using an extension of the layer-multiple-scattering method, in conjunction with the effective-medium approximation. A thorough analysis of relevant photonic dispersion diagrams and transmission spectra provides a consistent explanation of the underlying physical mechanisms to a degree that goes beyond existing interpretation. It is shown that properly designed structures of such composite magnetoplasmonic nanoparticles offer a versatile platform for engineering increased and broadband Faraday rotation.

  15. Interaction of vortex lattice with ultrasound and the acoustic Faraday effect

    SciTech Connect

    Dominguez, D.; Bulaevskii, L.; Ivlev, B.; Maley, M.; Bishop, A.R. |

    1995-03-27

    The interaction of sound with the vortex lattice is considered for high-{ital T}{sub {ital c}} superconductors, taking into account pinning and electrodynamic forces between vortices and crystal displacements. At low temperatures the Magnus force results in the acoustic Faraday effect; the velocity of sound propagating along the magnetic field depends on the polarization. This effect is linear in the Magnus force and magnetic field in crystals with equivalent {ital a} and {ital b} axes for a field parallel to the {ital c} axis. In the thermally activated flux flow regime, the Faraday effect is caused by electric and magnetic fields induced by vortices and acting on ions.

  16. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  17. Strong interband Faraday rotation in 3D topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Ohnoutek, L.; Hakl, M.; Veis, M.; Piot, B. A.; Faugeras, C.; Martinez, G.; Yakushev, M. V.; Martin, R. W.; Drašar, Č.; Materna, A.; Strzelecka, G.; Hruban, A.; Potemski, M.; Orlita, M.

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass.

  18. Faraday-effect light-valve arrays for adaptive optical instruments

    SciTech Connect

    Hirleman, E.D.; Dellenback, P.A.

    1987-01-01

    The ability to adapt to a range of measurement conditions by autonomously configuring software or hardware on-line will be an important attribute of next-generation intelligent sensors. This paper reviews the characteristics of spatial light modulators (SLM) with an emphasis on potential integration into adaptive optical instruments. The paper focuses on one type of SLM, a magneto-optic device based on the Faraday effect. Finally, the integration of the Faraday-effect SLM into a laser-diffraction particle-sizing instrument giving it some ability to adapt to the measurement context is discussed.

  19. Graphite-ceramic rf Faraday-thermal shield and plasma limiter

    DOEpatents

    Hwang, D.L.Q.; Hosea, J.C.

    1983-05-05

    The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.

  20. Synthesis of a quantum nanocrystal-gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescence.

    PubMed

    Lin, Adam Y; Young, Joseph K; Nixon, Ariel V; Drezek, Rebekah A

    2014-09-21

    Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation. PMID:25096858

  1. Synthesis of a quantum nanocrystal-gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescence.

    PubMed

    Lin, Adam Y; Young, Joseph K; Nixon, Ariel V; Drezek, Rebekah A

    2014-09-21

    Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation.

  2. Infrared spectra and electronic structure calculations for NN complexes with U, UN, and NUN in solid argon, neon, and nitrogen.

    PubMed

    Andrews, Lester; Wang, Xuefeng; Gong, Yu; Kushto, Gary P; Vlaisavljevich, Bess; Gagliardi, Laura

    2014-07-17

    Reactions of laser-ablated U atoms with N2 molecules upon codeposition in excess argon or neon at 4 K gave intense NUN and weak UN absorptions. Annealing produced progressions of new absorptions for the UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes. The neon-to-argon matrix shift decreases with increasing NN ligation and therefore the number of noble gas atoms left in the primary coordination sphere around the NUN molecule. Small matrix shifts are observed when the secondary coordination layers around the primary UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes are changed from neon-to-argon to nitrogen. Electronic structure, energy, and frequency calculations provide support for the identification of these complexes and the characterization of the N≡U≡N and U≡N core molecules as terminal uranium nitrides. Codeposition of U with pure nitrogen produced the saturated U(NN)7 complex, which UV irradiation converted to the NUN(NN)5 complex with slightly lower frequencies than found in solid argon.

  3. Synthesis of Quantum Nanocrystal-Gold Nanoshell Complex for Near Infrared Generated Fluorescence and Photothermal Decay of Luminescence

    PubMed Central

    Lin, Adam Y.; Young, Joseph K.; Nixon, Ariel V.; Drezek, Rebekah A.

    2015-01-01

    Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl) trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals were excited at the same wavelength used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs is altered and the luminescent output significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation. PMID:25096858

  4. Comparison of Color Fundus Photography, Infrared Fundus Photography, and Optical Coherence Tomography in Detecting Retinal Hamartoma in Patients with Tuberous Sclerosis Complex

    PubMed Central

    Bai, Da-Yong; Wang, Xu; Zhao, Jun-Yang; Li, Li; Gao, Jun; Wang, Ning-Li

    2016-01-01

    Background: A sensitive method is required to detect retinal hamartomas in patients with tuberous sclerosis complex (TSC). The aim of the present study was to compare the color fundus photography, infrared imaging (IFG), and optical coherence tomography (OCT) in the detection rate of retinal hamartoma in patients with TSC. Methods: This study included 11 patients (22 eyes) with TSC, who underwent color fundus photography, IFG, and spectral-domain OCT to detect retinal hamartomas. TSC1 and TSC2 mutations were tested in eight patients. Results: The mean age of the 11 patients was 8.0 ± 2.1 years. The mean spherical equivalent was −0.55 ± 1.42 D by autorefraction with cycloplegia. In 11 patients (22 eyes), OCT, infrared fundus photography, and color fundus photography revealed 26, 18, and 9 hamartomas, respectively. The predominant hamartoma was type I (55.6%). All the hamartomas that detected by color fundus photography or IFG can be detected by OCT. Conclusion: Among the methods of color fundus photography, IFG, and OCT, the OCT has higher detection rate for retinal hamartoma in TSC patients; therefore, OCT might be promising for the clinical diagnosis of TSC. PMID:27174333

  5. Preliminary analysis of thermal-infrared multispectral scanner data of the Iron Hill, Colorado carbonatite-alkalic rock complex

    NASA Technical Reports Server (NTRS)

    Rowan, Lawrence C.; Watson, Kenneth; Miller, Susanne H.

    1992-01-01

    The Iron Hill carbonatite-alkalic igneous rock complex is in the Powderhorn mining district, approximately 40 km south-southwest of Gunnison, Colorado. The complex, which occupies about 30 sq km, was emplaced in metasedimentay and metavolcanic rocks during the later Precambrian or early Cambrian. The main rock types in the complex, from oldest to youngest, are fenite, pyroxenite, uncompahgrite, ijolite, nepheline syenite, and dolomitic carbonatite. The carbonatite is limonitic and forms an elliptially shaped 4 sq km stock. Calcitic and dolomitic carbonatite dikes are also numerous throughout the complex and in the pre-existing rocks. Pyroxenite is the most widespread rock type within the complex, but pyroxene is extensively altered to biotite, phlogopite, and vermiculite. Fenite, which formed through Na, K-metasomatism of the country rocks, typically contains more feldspar and less quartz than the equivalent unaltered country rocks. The other alkalic rock types are less widespread and less well exposed. Parts of the complex are covered by Oligocene ash-flow tuff and alluvial, colluvial, and glacial deposits. Sagebrush and grass cover is moderately dense to very dense at low to intermediate elevations; coniferous tree cover is dense at high elevations and on some north-facing slopes at lower elevations. A new algorithm was used to compute spectral emissivity ratios, independent of any emissivity assumptions. This algorithm has the advantage that any of the possible emissivity ratios can be computed and, thus, a large variety of composite ratio images can be constructed, which permits examination of various geologic hypotheses based on the spectral properties of the surface materials.

  6. Infrared laser induced conformational and structural changes of glycine and glycine·water complex in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Coussan, Stéphane; Tarczay, György

    2016-01-01

    Conformational and structural changes of matrix-isolated glycine and glycine·water complexes induced by the selective MIR excitation of the fundamental OH and NH stretching vibrational modes were studied. The observed spectral changes are consistent with the former assignments based on matrix-isolation IR spectroscopy combined with NIR laser irradiation. Since fewer conformational barriers can be reached by MIR than by NIR excitations, fewer processes are promoted effectively by MIR radiation. The comparison of spectral changes induced by selective MIR and NIR excitations can facilitate the conformational analysis of complex molecular systems and it can also yield information on the barrier heights.

  7. Towards clarifying the N-M vibrational nature of metallo-phthalocyanines. Infrared spectrum of phthalocyanine magnesium complex: density functional calculations.

    PubMed

    Zhang, Xianxi; Zhang, Yuexing; Jiang, Jianzhuang

    2004-08-01

    Infrared frequencies and intensities for the magnesium phthalocyanine complex MgPc have been calculated at density functional B3LYP level using the 6-31G(d) basis set. Detailed assignments of the metal-nitrogen (N-M) vibrational bands in the IR spectrum have been made on the basis of comparison of the calculated data of MgPc with the experimental result and also with that of H(2)Pc. The empirical controversial assignment of the characteristic band at 886-919 cm(-1) for metallo-phthalocyanines is also clearly interpreted. Nevertheless, the previous assignments of N-H stretchings, in-plane bending (IPB) and out-of-plane bending (OPB) modes made based on the comparative calculation of H(2)Pc and D(2)Pc are confirmed again by the present research result.

  8. Near infrared-red models for the remote estimation of chlorophyll- a concentration in optically complex turbid productive waters: From in situ measurements to aerial imagery

    NASA Astrophysics Data System (ADS)

    Gurlin, Daniela

    Today the water quality of many inland and coastal waters is compromised by cultural eutrophication in consequence of increased human agricultural and industrial activities and remote sensing is widely applied to monitor the trophic state of these waters. This study explores near infrared-red models for the remote estimation of chlorophyll-a concentration in turbid productive waters and compares several near infrared-red models developed within the last 35 years. Three of these near infrared-red models were calibrated for a dataset with chlorophyll-a concentrations from 2.3 to 81.2 mg m -3 and validated for independent and statistically significantly different datasets with chlorophyll-a concentrations from 4.0 to 95.5 mg m-3 and 4.0 to 24.2 mg m-3 for the spectral bands of the MEdium Resolution Imaging Spectrometer (MERIS) and Moderate-resolution Imaging Spectroradiometer (MODIS). The developed MERIS two-band algorithm estimated chlorophyll-a concentrations from 4.0 to 24.2 mg m-3, which are typical for many inland and coastal waters, very accurately with a mean absolute error 1.2 mg m-3. These results indicate a high potential of the simple MERIS two-band algorithm for the reliable estimation of chlorophyll-a concentration without any reduction in accuracy compared to more complex algorithms, even though more research seems required to analyze the sensitivity of this algorithm to differences in the chlorophyll-a specific absorption coefficient of phytoplankton. Three near infrared-red models were calibrated and validated for a smaller dataset of atmospherically corrected multi-temporal aerial imagery collected by the hyperspectral airborne imaging spectrometer for applications (AisaEAGLE). The developed algorithms successfully captured the spatial and temporal variability of the chlorophyll-a concentrations and estimated chlorophyll- a concentrations from 2.3 to 81.2 mg m-3 with mean absolute errors from 4.4 mg m-3 for the AISA two band algorithm to 5.2 mg m-3

  9. Synthesis of a quantum nanocrystal-gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescence

    NASA Astrophysics Data System (ADS)

    Lin, Adam Y.; Young, Joseph K.; Nixon, Ariel V.; Drezek, Rebekah A.

    2014-08-01

    Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation.Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs

  10. Asymmetry of M+(H2O)RG Complexes, (M=V, Nb) Revealed with Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Timothy B.; Miliordos, Evangelos; Xantheas, Sotiris; Duncan, Michael A.

    2015-06-01

    M+(H2O)Ar and M+(H2O)Ne clusters (M=V, Nb) were produced in a laser vaporization/pulsed nozzle source. The clusters were then mass selected in a time-of-flight mass spectrometer and studied with infrared photodissociation spectroscopy in the OH stretching region. Spectra showed two bands, with the asymmetric band showing k-type rotational structure. Previous work has shown that most metal-water rare gas-tagged systems adopt C2v geometry and exhibit the well-known 3:1 ortho:para ratio in the k-type rotational structure in asymmetric stretch band. However these two metals display a pattern that indicates a breaking of the C2v symmetry. Computational work confirms the breaking of C2v symmetry giving an Ar-M+-O angle of 163.7 degrees for V and 172.1 degrees for Nb. In the ground state we obtain rotational constants that match up well with obtained spectra using 166 degrees for V and 175 degrees for Nb.

  11. A new ab initio potential energy surface and microwave and infrared spectra for the Ne-CO(2) complex.

    PubMed

    Chen, Rong; Jiao, Erqiang; Zhu, Hua; Xie, Daiqian

    2010-09-14

    We report a new three-dimensional potential energy surface for Ne-CO(2) including the Q(3) normal mode for the υ(3) antisymmetric stretching vibration of the CO(2) molecule. The potential energies were calculated using the supermolecular method at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples [CCSD(T)], using a large basis set supplemented with midpoint bond functions. Two vibrationally averaged potentials with CO(2) at both the ground (υ=0) and the first (υ=1) vibrational υ(3) excited states were generated from the integration of the three-dimensional potential over the Q(3) coordinate. Each potential was found to have a T-shaped global minimum and two equivalent linear local minima. The radial DVR/angular FBR method and the Lanczos algorithm are applied to calculate the rovibrational energy levels. Comparison with the available observed values showed an overall excellent agreement for the microwave and infrared spectra. The calculated band origin shifts were found to be 0.1306 and 0.1419 cm(-1) for Ne-CO(2) and Ne-C(18)O(2), respectively, which are very close to the experimental values of 0.1303 and 0.1432 cm(-1).

  12. Ab initio potential energy and dipole moment surfaces, infrared spectra, and vibrational predissociation dynamics of the 35Cl-⋯H2/D2 complexes

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Grinev, T. A.; Kłos, J.; Bieske, E. J.; Szczȩśniak, M. M.; Chałasiński, G.

    2003-12-01

    Three-dimensional potential energy and dipole moment surfaces of the Cl--H2 system are calculated ab initio by means of a coupled cluster method with single and double excitations and noniterative correction to triple excitations with augmented correlation consistent quadruple-zeta basis set supplemented with bond functions, and represented in analytical forms. Variational calculations of the energy levels up to the total angular momentum J=25 provide accurate estimations of the measured rotational spectroscopic constants of the ground van der Waals levels n=0 of the Cl-⋯H2/D2 complexes although they underestimate the red shifts of the mid-infrared spectra with v=0→v=1 vibrational excitation of the monomer. They also attest to the accuracy of effective radial interaction potentials extracted previously from experimental data using the rotational RKR procedure. Vibrational predissociation of the Cl-⋯H2/D2(v=1) complexes is shown to follow near-resonant vibrational-to-rotational energy transfer mechanism so that more than 97% of the product monomers are formed in the highest accessible rotational level. This mechanism explains the strong variation of the predissociation rate with isotopic content and nuclear spin form of the complex. Strong deviation of the observed relative abundances of ortho and para forms of the complexes from those of the monomers is qualitatively explained by the secondary ligand exchange reactions in the ionic beam, within the simple thermal equilibrium model. Positions and intensities of the hot v=0, n=1→v=1, n=1 and combination v=0, n=0→v=1, n=1 bands are predicted, and implications to the photoelectron spectroscopy of the complex are briefly discussed.

  13. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    USGS Publications Warehouse

    Fullerton, Aimee H.; Torgersen, Christian; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.

    2015-01-01

    Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling

  14. Structure of the complex UCl4•2DMF by vibrational infrared spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Shundalau, M. B.; Komyak, A. I.; Zazhogin, A. P.; Umreiko, D. S.

    2012-03-01

    Structural models are designed and spectral characteristics are computed based on DFT calculations for a complex of UCl4 with two molecules of DMF (UCl4•2DMF). The calculations were carried out using a B3LYP hybrid functional in the LANL2DZ effective core potential approximation for the uranium atom and an allelectron basis set, cc-pVDZ, for all other atoms with partial force-field scaling. Two structural variants were found for the complex. The first structure is more stable, has C i symmetry, and is characterized by trans arrangement of ligands. The energy of the second structure of C2 symmetry (with cis arrangement of ligands) is greater by 46 kJ/mol. The formation of the complex is shown to be accompanied by significant changes in the structure of UCl4. The obtained spectral characteristics are analyzed and compared with experimental data. The adequacy of the proposed models and the agreement between calculation and experiment are demonstrated.

  15. Multistate Redox Switching and Near-Infrared Electrochromism Based on a Star-Shaped Triruthenium Complex with a Triarylamine Core

    NASA Astrophysics Data System (ADS)

    Tang, Jian-Hong; He, Yan-Qin; Shao, Jiang-Yang; Gong, Zhong-Liang; Zhong, Yu-Wu

    2016-10-01

    A star-shaped cyclometalated triruthenium complex 2(PF6)n (n = 3 and 4) with a triarylamine core was synthesized, which functions as a molecular switch with five well-separated redox states in both solution and film states. The single-crystal X-ray structure of 2(PF6)3 is presented. This complex displays four consecutive one-electron redox waves at +0.082, +0.31, +0.74, and +1.07 V vs Ag/AgCl. In each redox state, it shows significantly different NIR absorptions with λmax of 1590 nm for 24+, 1400 nm for 25+, 1060 nm for 26+, and 740 nm for 27+, respectively. Complex 24+ shows a single-line EPR signal at g = 2.060, while other redox states are all EPR inactive. The spin density distributions and NIR absorptions in different redox states were rationalized by DFT and TDDFT calculations. A vinyl-substituted triruthenium analogous 3(PF6)4 was prepared, which was successfully polymerized on ITO glass electrode surfaces by reductive electropolymerization. The obtained poly-3n+/ITO film was characterized by FTIR, AFM, and SEM analysis. It shows four well-defined redox couples and reversible multistate NIR electrochromism. In particular, a contrast ratio (ΔT%) up to 63% was achieved at the optic telecommunication wavelength (1550 nm).

  16. Multistate Redox Switching and Near-Infrared Electrochromism Based on a Star-Shaped Triruthenium Complex with a Triarylamine Core

    PubMed Central

    Tang, Jian-Hong; He, Yan-Qin; Shao, Jiang-Yang; Gong, Zhong-Liang; Zhong, Yu-Wu

    2016-01-01

    A star-shaped cyclometalated triruthenium complex 2(PF6)n (n = 3 and 4) with a triarylamine core was synthesized, which functions as a molecular switch with five well-separated redox states in both solution and film states. The single-crystal X-ray structure of 2(PF6)3 is presented. This complex displays four consecutive one-electron redox waves at +0.082, +0.31, +0.74, and +1.07 V vs Ag/AgCl. In each redox state, it shows significantly different NIR absorptions with λmax of 1590 nm for 24+, 1400 nm for 25+, 1060 nm for 26+, and 740 nm for 27+, respectively. Complex 24+ shows a single-line EPR signal at g = 2.060, while other redox states are all EPR inactive. The spin density distributions and NIR absorptions in different redox states were rationalized by DFT and TDDFT calculations. A vinyl-substituted triruthenium analogous 3(PF6)4 was prepared, which was successfully polymerized on ITO glass electrode surfaces by reductive electropolymerization. The obtained poly-3n+/ITO film was characterized by FTIR, AFM, and SEM analysis. It shows four well-defined redox couples and reversible multistate NIR electrochromism. In particular, a contrast ratio (ΔT%) up to 63% was achieved at the optic telecommunication wavelength (1550 nm). PMID:27731404

  17. If Maxwell Had Worked between Ampere and Faraday: An Historical Fable with a Pedagogical Moral.

    ERIC Educational Resources Information Center

    Jammer, Max; Stachel, John

    1980-01-01

    Describes a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galilean relativity principle are introduced before discussion of the Faraday induction term. Rationale for the alternate order of introducing these concepts and laws is explained, relative to their historical development. (CS)

  18. Permanent-magnet Faraday isolator with the field intensity of 25 kOe

    SciTech Connect

    Mironov, E A; Snetkov, I L; Voitovich, A V; Palashov, O V

    2013-08-31

    A Faraday isolator with a single magneto-optical element is constructed and experimentally tested. It provides the isolation ratio of 30 dB at an average laser radiation power of 650 W. These parameters are obtained by increasing the field intensity in the magnetic system of the isolator and employing a low-absorption magneto-optical element. (elements of laser devices)

  19. Conditions for the Validity of Faraday's Law of Induction and Their Experimental Confirmation

    ERIC Educational Resources Information Center

    Lopez-Ramos, A.; Menendez, J. R.; Pique, C.

    2008-01-01

    This paper, as its main didactic objective, shows the conditions needed for the validity of Faraday's law of induction. Inadequate comprehension of these conditions has given rise to several paradoxes about the issue; some are analysed and solved in this paper in the light of the theoretical deduction of the induction law. Furthermore, an…

  20. Faraday and resonant waves in binary collisionally-inhomogeneous Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sudharsan, J. B.; Radha, R.; Carina Raportaru, Mihaela; Nicolin, Alexandru I.; Balaž, Antun

    2016-08-01

    We study Faraday and resonant waves in two-component quasi-one-dimensional (cigar-shaped) collisionally inhomogeneous Bose-Einstein condensates subject to periodic modulation of the radial confinement. We show by means of extensive numerical simulations that, as the system exhibits stronger spatially-localised binary collisions (whose scattering length is taken for convenience to be of Gaussian form), the system becomes effectively a linear one. In other words, as the scattering length approaches a delta-function, we observe that the two nonlinear configurations typical for binary cigar-shaped condensates, namely the segregated and the symbiotic one, turn into two overlapping Gaussian wave functions typical for linear systems, and that the instability onset times of the Faraday and resonant waves become longer. Moreover, our numerical simulations show that the spatial period of the excited waves (either resonant or Faraday ones) decreases as the inhomogeneity becomes stronger. Our results also demonstrate that the topology of the ground state impacts the dynamics of the ensuing density waves, and that the instability onset times of Faraday and resonant waves, for a given level of inhomogeneity in the two-body interactions, depend on whether the initial configuration is segregated or symbiotic.

  1. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Paku, Miei

    2007-01-01

    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  2. All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-18

    An all-fiber optical magnetic field sensor with a sensitivity of 0.49 rad/T is demonstrated. It consists of a fiber Faraday rotator (56-wt.%-terbium–doped silica fiber) and a fiber polarizer (Corning SP1060 fiber).

  3. Dynamic Interplay of Coherent Rotations and Domain Wall Motion in Faraday Rotators based on Ferromagnetic Crystals

    NASA Astrophysics Data System (ADS)

    Garzarella, Anthony; Wu, Dong; Shinn, Mannix

    Under small, externally-applied magnetic fields, the Faraday rotation in magneto-optic material containing ferromagnetic domains is driven primarily by two principal mechanisms: domain wall motion and coherent domain rotations. Domain wall motion yields a larger Faraday responsivity but is limited by magnetically induced optical incoherence and by damping effects. Coherent domain rotation yields smaller Faraday rotations, but exhibits a flatter and broader frequency response. The two mechanisms occur along orthogonal principal axes and may be probed independently. However, when probed along an oblique angle to the principal axes, the relationship between the Faraday rotation and the external field changes from linear to tensorial. Although this may lead to more complicated phenomena (e.g. a sensitivity axis that depends on RF frequency), the interplay of domain rotation and domain wall motion can be exploited to improve responsivity or bandwidth. The detailed experimental data can be understood in terms of a quantitative model for the magnitude and direction of the responsivity vector. Applications to magnetic field sensors based on arrayed bismuth doped iron garnet films will be emphasized in this presentation.

  4. Design and construction of a Faraday cup for measurement of small electronic currents

    NASA Technical Reports Server (NTRS)

    Veyssiere, A.

    1985-01-01

    The design of a device to measure and integrate very small currents generated by the impact of a charged particle beam upon a Faraday cut is described. The main component is a graphite block capable of stopping practically all the incident changes. The associated electronic apparatus required to measure better than 10/13 ampere with a precision of 10/0 is described.

  5. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  6. Michael Faraday on the Learning of Science and Attitudes of Mind.

    ERIC Educational Resources Information Center

    Crawford, Elspeth

    1998-01-01

    Makes use of Michael Faraday's ideas on learning, focusing on his attitudes toward the unknowns of science and the development of an attitude that improves scientific decision making. This approach acknowledges that there is an inner struggle involved in facing unknowns. (DDR)

  7. A Bright Spark: Open Teaching of Science Using Faraday's Lectures on Candles

    ERIC Educational Resources Information Center

    Walker, Mark; Groger, Martin; Schutler, Kirsten; Mosler, Bernd

    2008-01-01

    As well as being a founding father of modern chemistry and physics Michael Faraday was also a skilled lecturer, able to explain scientific principles and ideas simply and concisely to nonscientific audiences. However science didactics today emphasizes the use of open and student-centered methods of teaching in which students find and develop…

  8. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes, the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  9. Crystalline structure of the poly(ethylene oxide)--p-nitrophenol complex; 2: Fourier transform infrared spectroscopy

    SciTech Connect

    Damman, P.; Point, J.J. . Service de Chimie-Physique et Thermodynamique)

    1994-07-04

    The authors have previously reported the existence of a crystalline compound made of poly(ethylene oxide) (PEO) and p-nitrophenol (pnp). From x-ray fiber patterns on stretched and spherulitic samples of this complex, a triclinic unit cell (a = 1.172 nm, b = 0.555 nm, c = 1.557 nm, [alpha] = 90.7[degree], [beta] = 87.1[degree], and [gamma] = 104.0[degree]) was deduced; the unit cell contains 6 PEO monomeric units and 4 pnp molecules, in agreement with the stoichiometry deduced from the phase diagram. The aim of this paper is to elucidate the conformation of the PEO chains and the mutual arrangement of the PEO and pnp molecules in the unit cell. To carry out this, the authors studied the dichroism of the IR bands of pnp in two differently oriented samples, namely, in stretched samples and in spherulites. The benzene rings are found to be perpendicular to the c crystallographic parameter (chain axis), and the 1--4 axis of pnp is found to be parallel to the a* reciprocal parameter. These observations completely determine the orientation of the pnp molecules in the unit cell. The conformation of the polymeric chains in the complex is not helical as in pure PEO. From the C[sub 2h] factor group of the PEO molecules, deduced from the FTIR observations, and the normal mode analysis of hydrogenated and deuterated PEO, they propose the (t[sub 2]gt[sub 2]gt[sub 3]t[sub 2]g[prime]t[sub 2]g[prime]t[sub 3]) glide type conformation. In conclusion, it appears that in the PEO--pnp complex a stack of pnp molecules stabilizes the surrounding PEO molecules in this new conformation.

  10. Estimation of complex refractive index of polydisperse particulate systems from multiple-scattered ultraviolet-visible-near-infrared measurements.

    PubMed

    Velazco-Roa, M A; Thennadil, S N

    2007-06-20

    A method to extract the complex refractive index of spherical particles from a polydisperse suspension at concentrations where multiple light-scattering effects are significant is presented. The optical constants are estimated from total diffuse reflectance and transmittance measurements and inverting the measurements using the radiative transfer equation (RTE) and the Mie theory for scattering by polydisperse spherical particles. The method is tested by applying it to three different polydisperse polystyrene suspensions and extracting the optical constants of polystyrene particles in the wavelength range of 450-1200 nm. The effect of particle size, concentration, and polydispersity on the estimated values of the optical constants is also discussed.

  11. Infrared band extinctions and complex refractive indices of crystalline C2H2 and C4H2

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Ospina, Mario J.; Zhao, Guizhi

    1988-01-01

    Thermal IR absorption intensities are obtained for thin films of crystalline C2H2 and C4H2 at 70 K, and their n and k complex refractive indices are ascertained by separating true film absorption from interface reflection on the basis of an analysis of the transmission spectrum ratio for two sample thicknesses. This method significantly simplifies the n and k iteration process. The n and k values determined in the laboratory will in most cases reproduce a given sample thickness' observed transmission to within + or - 5 percent.

  12. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  13. Structural dynamics of nitrosylruthenium isomeric complexes studied with steady-state and transient pump-probe infrared spectroscopies

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yang, Fan; Wang, Jianru; Yu, Pengyun; Pan, Huifen; Wang, Hongfei; Wang, Jianping

    2016-09-01

    The characteristic nitrosyl stretching (NO) in the region of 1800-1900 cm- 1 was used to study the geometric and ligand effect on two nitrosylruthenium complexes, namely [Ru(OAc)(2QN)2NO] (QN = 2-chloro-8-quinolinol (H2cqn) or QN = 2-methyl-8-quinolinol (H2mqn)). The NO stretching frequency (νNO) was found in the following order: νcis-1 (2cqn) > νcis-2 (2cqn) > νcis-1 (2mqn) > νtrans (2mqn). The results exhibited a spectral sensitivity of the NO mode to both charge distribution and ligand arrangement, which was supported by ab initio computations and natural bond orbital (NBO) analyses. Further, the vibrational population of the vibrationally excited NO stretching mode was found to relax on the order of 7-10 ps, showing less than 30% variation from one isomer to another, which were explained on the basis of NO local structures and solute-solvent interactions in these isomeric nitrosylruthenium complexes.

  14. Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites?

    PubMed

    Göltl, Florian; Sautet, Philippe; Hermans, Ive

    2015-06-26

    Copper-exchanged SSZ-13 is a very efficient material in the selective catalytic reduction of NO(x) using ammonia (deNO(x)-SCR) and characterizing the underlying distribution of copper sites in the material is of prime importance to understand its activity. The IR spectrum of NO adsorbed to divalent copper sites are modeled using ab initio molecular dynamics simulations. For most sites, complex multi-peak spectra induced by the thermal motion of the cation as well as the adsorbate are found. A finite temperature spectrum for a specific catalyst was constructed, which shows excellent agreement with previously reported data. Additionally these findings allow active and inactive species in deNO(x)-SCR to be identified. To the best of our knowledge, this is the first time such complex spectra for single molecules adsorbed to single active centers have been reported in heterogeneous catalysis, and we expect similar effects to be important in a large number of systems with mobile active centers. PMID:25966680

  15. Infrared photodissociation of a water molecule from a flexible molecule-H{sub 2}O complex: Rates and conformational product yields following XH stretch excitation

    SciTech Connect

    Clarkson, Jasper R.; Herbert, John M.; Zwier, Timothy S.

    2007-04-07

    Infrared-ultraviolet hole-burning and hole-filling spectroscopies have been used to study IR-induced dissociation of the tryptamine{center_dot}H{sub 2}O and tryptamine{center_dot}D{sub 2}O complexes. Upon complexation of a single water molecule, the seven conformational isomers of tryptamine collapse to a single structure that retains the same ethylamine side chain conformation present in the most highly populated conformer of tryptamine monomer. Infrared excitation of the tryptamine{center_dot}H{sub 2}O complex was carried out using a series of infrared absorptions spanning the range of 2470-3715 cm{sup -1}. The authors have determined the conformational product yield over this range and the dissociation rate near threshold, where it is slow enough to be measured by our methods. The observed threshold for dissociation occurred at 2872 cm{sup -1} in tryptamine{center_dot}H{sub 2}O and at 2869 cm{sup -1} in tryptamine{center_dot}D{sub 2}O, with no dissociation occurring on the time scale of the experiment ({approx}2 {mu}s) at 2745 cm{sup -1}. The dissociation time constants varied from {approx}200 ns for the 2869 cm{sup -1} band of tryptamine{center_dot}D{sub 2}O to {approx}25 ns for the 2872 cm{sup -1} band of tryptamine{center_dot}H{sub 2}O. This large isotope dependence is associated with a zero-point energy effect that increases the binding energy of the deuterated complex by {approx}190 cm{sup -1}, thereby reducing the excess energy available at the same excitation energy. At all higher energies, the dissociation lifetime was shorter than the pulse duration of our lasers (8 ns). At all wavelengths, the observed products in the presence of collisions are dominated by conformers A and B of tryptamine monomer, with small contributions from the other minor conformers. In addition, right at threshold (2869 cm{sup -1}), tryptamine{center_dot}D{sub 2}O dissociates exclusively to conformer A in the absence of collisions with helium, while both A and B conformational

  16. Explaining the visible and near-infrared circular dichroism spectra of light-harvesting 1 complexes from purple bacteria: a modeling study.

    PubMed

    Georgakopoulou, Sofia; van Grondelle, Rienk; van der Zwan, Gert

    2006-02-23

    In this work, we investigate the origin and characteristics of the circular dichroism (CD) spectrum of various light-harvesting 1 (LH1) complexes. The near-infrared (NIR) CD signal of these core antennae is strongly nonconservative, and the nature of this nonconservativity is under examination in this paper. So far, on the basis of the high-resolution structures of LH2, we have been able to model the absorption and CD spectra in the bacteriochlorophyll (BChl) Q(Y) and Q(X) regions of LH2 (Georgakopoulou et al., Biophys. J. 2002, 82, 2184-2197), as well as in the carotenoid region (Georgakopoulou et al., Biophys. J. 2004, 87, 3010-3022). We proceed by applying the same modeling method in order to reproduce the LH1 spectra. We assume a ring of dimers in a perfect circular arrangement with 16-fold symmetry, and account for all excitonic interactions within the ring. Because LH1 complexes exhibit Q(Y) and Q(X) CD signals of very low intensity, higher transitions can easily affect these regions. Therefore, we expand the model and take into account also the Soret and carotenoid transitions. We can now understand the shape of the absorption and CD spectra and contemplate the structure of the LH1 complex. The latter is similar to LH2 in that it is a very symmetric ring dominated by excitonic interactions. The larger number of symmetry and the bigger diameter of LH1, combined with small rotations of the BChl transition dipole moments, are responsible for the display of CD signals that are very low in intensity. The interaction of the Q(Y) with the carotenoid transitions results in complete loss of the conservativity. Interaction energies between all the pigments in the ring are calculated, and their values are in good accordance with what is reported in the literature.

  17. Band profile of hydroxyl groups in the infrared spectrum of hydrogen-bonded surface complexes: Ammonia on silicon dioxide

    SciTech Connect

    Pavlov, A.Y.; Tsyganenko, A.A.

    1994-07-01

    Dependences of the band maximum and band half-width of the stretching modes of surface OH and OD groups perturbed by ammonia adsorption on Aerosil were studied as functions of sample temperature, amount of adsorbed ammonia, and thermal treatment in vacuum. The appearance of a low-frequency wing was explained by the formation of polymer chains of OH groups coupled via adsorbed molecules. The latter tend to form a second bond with an oxygen atom of the neighboring OH group in addition to a hydrogen bond with a hydroxyl proton via nitrogen. The wide band at 3250 cm{sup -1} was assigned to NH groups of adsorbed molecules perturbed by H-bonding with oxygen. This band is observed as a shoulder of the coupled-OH group band. The large width of the latter as well as its temperature behavior was explained by differences in the arrangement of OH groups and by anharmonic coupling with the low-frequency vibrational modes of the complex. 14 refs., 4 figs., 4 tabs.

  18. Near-Infrared Photoluminescence and Electroluminescence of Neodymium(III), Erbium(III), and Ytterbium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Kawamura, Yuichiro; Wada, Yuji; Yanagida, Shozo

    2001-01-01

    Tris(dibenzoylmethanato)(monobathophenanthroline)lanthanide(III) complex [Ln(DBM)3 bath (Ln: Nd, Er and Yb)] both in solutions and thin films at room temperature showed narrow band photoluminescence (PL) due to the f-f transitions in the near-IR region: 890, 1070 and 1350 nm for Nd(III), 980 and 1540 nm for Er(III), and 985 nm for Yb(III). The PL efficiencies in solution were determined [φPL=3.3× 10-3 for Nd(III), 7.0× 10-5 for Er(III), and 1.4× 10-2 for Yb(III)]. Organic electroluminescent (EL) devices having the structure of glass substrate/indium-tin oxide/N,N\\prime-diphenyl-N,N\\prime-di(m-tolyl)benzidine{\\slash}Ln(DBM)3bath(Ln: Nd, Er and Yb)/bathocuproine/Mg:Ag/Ag were fabricated, giving the EL bands around 900-1600 nm at room temperature. The external near-IR EL efficiencies at low current density were estimated by comparing with that of the Eu(III) device having the same structure. The saturation of near-IR EL intensity observed at the high current density suggested that the near-IR EL should suffer the T-T annihilation.

  19. Using chaotic Faraday waves to create a two-dimensional pseudo-thermal bath for floating particles with tunable interaction potentials

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric

    2013-03-01

    Whether chaos in actively driven systems can be described by an effective temperature is an unresolved question in the study of nonlinear physics. We use chaotic Faraday waves to create a two-dimensional pseudo-thermal bath to investigate tunable interactions between floating particles. By vertically oscillating a liquid with an acceleration greater than g we excite the Faraday instability and create surface waves. Increasing this acceleration above some critical value causes this instability to become chaotic with fluctuations over a broad range of length scales. Particles placed on the surface are buffeted by random excitations in analogy to Brownian motion. We can change the ``temperature'' of the pseudo-thermal bath by manipulating the driving frequency and amplitude, a feature of the system we verify using real-time tracking to follow the diffusive movement of a single particle. With an eye toward creating complex self-assembling systems we use this system to measure the tunable interaction potential in two-, three-, and many-particle systems and to probe the effects of particle size, shape, symmetry, and wetting properties.

  20. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  1. Infrared longitudinal and Hall conductivities in Ga1-xMnxAs films

    NASA Astrophysics Data System (ADS)

    Acbas, Gheorghe; Kim, M.-H.; Cerne, J.; Cukr, M.; Novak, V.; Jungwirth, T.; Sinova, J.

    2008-03-01

    We determine the complete infrared (0.1-1.2 eV) magneto-conductivity tensor of a series of Ga1-xMnxAs films from the complex Faraday and Kerr angles as outlined in M.-H. Kim, et al., Phys. Rev. B 75, 214416 (2007). A systematic series of samples with varying Mn and hole concentrations is studied. The samples range from insulating to metallic. The frequency dependence of the real part of the longitudinal conductivity σxx is consistent with the values determined from transmission and reflection measurements. The complex transverse (Hall) conductivity σxy shows resonances associated with the inter-valence band transitions. As the Mn concentration decreases these transitions become broadened due to increased disorder. The temperature dependence shows non-monotonic behavior with sign changes at certain wavelengths. The data is compared with predictions from a disordered valence band model (T. Jungwirth, et al., Phys. Rev. B 76, 125206 (2007)). This work is supported by the Research Corporation Cottrell Scholar Award (Buffalo and Texas A&M), NSF-CAREER-DMR0449899 (Buffalo), an instrumentation award from the CAS, Univ. at Buffalo, ERAS-CT-2003-980409 (Prague)and NSF-CAREER-DMR-0547875 (Texas A&M).

  2. Infrared diode laser spectroscopy of the Ne-D2O van der Waals complex: Strong Coriolis and angular-radial coupling

    NASA Astrophysics Data System (ADS)

    Li, Song; Zheng, Rui; Zhu, Yu; Duan, Chuanxi

    2011-10-01

    Four internal-rotation/vibration bands of the Ne-D2O complex have been measured in the v2 bend region of D2O using a tunable infrared diode laser spectrometer to probe a slit supersonic expansion. Three ortho bands are excited from the ground state Σ(000) to the Σ and Π(111, υ2 = 1) internal rotor states and the n = 1, Σ(000, υ2 = 1) stretching-internal rotor combination state. Strong perturbations between the excited vibrational states are evident. The observed spectra are analyzed separately with a three-state J-dependent Coriolis plus J-independent angular-radial coupling model [M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 106, 3078 (1997), 10.1063/1.473051] and a three-state Coriolis coupling model [R. C. Cohen and R. J. Saykally, J. Chem. Phys. 95, 7891 (1991), 10.1063/1.461318]. The former model works more successfully than the latter. Molecular constants for the ground and excited vibrational states of ortho 20Ne-D2O isotopomer as well as the Coriolis and angular-radial coupling constants are determined accurately. The van der Waals stretching frequency is estimated to be νs = 24.85 cm-1 in the ground state and decreases to about 20.8 cm-1 upon vibrational excitation of the D2O bend.

  3. Tuning the decay time of lanthanide-based near infrared luminescence from micro- to milliseconds through d-->f energy transfer in discrete heterobimetallic complexes.

    PubMed

    Torelli, Stéphane; Imbert, Daniel; Cantuel, Martine; Bernardinelli, Gérald; Delahaye, Sandra; Hauser, Andreas; Bünzli, Jean-Claude G; Piguet, Claude

    2005-05-20

    Inert and optically active pseudo-octahedral Cr(III)N6 and Ru(II)N6 chromophores have been incorporated by self-assembly into heterobimetallic triple-stranded helicates HHH-[CrLnL3]6+ and HHH-[RuLnL3]5+. The crystal structures of [CrLnL(3)](CF(3)SO(3))(6) (Ln=Nd, Eu, Yb, Lu) and [RuLnL3](CF3SO3)5 (Ln=Eu, Lu) demonstrate that the helical structure can accommodate metal ions of different sizes, without sizeable change in the intermetallic MLn distances. These systems are ideally suited for unravelling the molecular factors affecting the intermetallic nd-->4f communication. Visible irradiation of the Cr(III)N6 and Ru(II)N6 chromophores in HHH-[MLnL3]5/6+ (Ln=Nd, Yb, Er; M=Cr, Ru) eventually produces lanthanide-based near infrared (NIR) emission, after directional energy migration within the complexes. Depending on the kinetic regime associated with each specific d-f pair, the NIR luminescence decay times can be tuned from micro- to milliseconds. The origin of this effect, together with its rational control for programming optical functions in discrete heterobimetallic entities, are discussed. PMID:15779094

  4. Near-Infrared-to-Visible Photon Upconversion Sensitized by a Metal Complex with Spin-Forbidden yet Strong S0-T1 Absorption.

    PubMed

    Amemori, Shogo; Sasaki, Yoichi; Yanai, Nobuhiro; Kimizuka, Nobuo

    2016-07-20

    Near-infrared (NIR)-to-visible (vis) photon upconversion (UC) is useful for various applications; however, it remains challenging in triplet-triplet annihilation-based UC, mainly due to the energy loss during the S1-to-T1 intersystem crossing (ISC) of molecular sensitizers. In this work, we circumvent this energy loss by employing a sensitizer with direct S0-to-T1 absorption in the NIR region. A mixed solution of an osmium complex having a strong S0-T1 absorption and rubrene emitter upconverts NIR light (λ = 938 nm) to visible light (λ = 570 nm). Sensitizer-doped emitter nanoparticles are prepared by re-precipitation and dispersed into an oxygen-barrier polymer. The obtained composite film shows a stable NIR-to-vis UC emission based on triplet energy migration (TEM), even in air. A high UC quantum yield of 3.1% is observed for this TEM-UC system, expanding the scope of molecular sensitizers for NIR-to-vis UC. PMID:27354325

  5. Infrared diode laser spectroscopy of the Ne-D2O van der Waals complex: strong Coriolis and angular-radial coupling.

    PubMed

    Li, Song; Zheng, Rui; Zhu, Yu; Duan, Chuanxi

    2011-10-01

    Four internal-rotation/vibration bands of the Ne-D(2)O complex have been measured in the v(2) bend region of D(2)O using a tunable infrared diode laser spectrometer to probe a slit supersonic expansion. Three ortho bands are excited from the ground state Σ(0(00)) to the Σ and Π(1(11), υ(2) = 1) internal rotor states and the n = 1, Σ(0(00), υ(2) = 1) stretching-internal rotor combination state. Strong perturbations between the excited vibrational states are evident. The observed spectra are analyzed separately with a three-state J-dependent Coriolis plus J-independent angular-radial coupling model [M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 106, 3078 (1997)] and a three-state Coriolis coupling model [R. C. Cohen and R. J. Saykally, J. Chem. Phys. 95, 7891 (1991)]. The former model works more successfully than the latter. Molecular constants for the ground and excited vibrational states of ortho (20)Ne-D(2)O isotopomer as well as the Coriolis and angular-radial coupling constants are determined accurately. The van der Waals stretching frequency is estimated to be ν(s) = 24.85 cm(-1) in the ground state and decreases to about 20.8 cm(-1) upon vibrational excitation of the D(2)O bend.

  6. Photooxidation of guanine by a ruthenium dipyridophenazine complex intercalated in a double-stranded polynucleotide monitored directly by picosecond visible and infrared transient absorption spectroscopy.

    PubMed

    Elias, Benjamin; Creely, Caitriona; Doorley, Gerard W; Feeney, Martin M; Moucheron, Cécile; Kirsch-DeMesmaeker, Andrée; Dyer, Joanne; Grills, David C; George, Michael W; Matousek, Pavel; Parker, Anthony W; Towrie, Michael; Kelly, John M

    2008-01-01

    Transient species formed by photoexcitation (400 nm) of [Ru(dppz)(tap)2]2+ (1) (dppz = dipyrido[3,2-a:2',3'-c]phenazine; tap=1,4,5,8-tetraazaphenanthrene) in aqueous solution and when intercalated into a double-stranded synthetic polynucleotide, [poly(dG-dC)]2, have been observed on a picosecond timescale by both visible transient absorption (allowing monitoring of the metal complex intermediates) and transient infrared (IR) absorption spectroscopy (allowing direct study of the DNA nucleobases). By contrast with its behavior when free in aqueous solution, excitation of 1 when bound to [poly(dG-dC)]2 causes a strong increase in absorbance at 515 nm due to formation of the reduced complex [Ru(dppz)(tap)2]+ (rate constant=(2.0+/-0.2) x 10(9) s(-1)). The subsequent reformation of 1 proceeds with a rate constant of (1.1+/-0.2) x 10(8) s(-1). When the process is carried out in D2O, the rates of formation and removal of [Ru(dppz)(tap)2]+ are reduced (rate constants (1.5+/-0.3) x 10(9) and (0.7+/-0.2) x 10(8) s(-1) respectively) consistent with proton-coupled electron transfer processes. Picosecond transient IR measurements in the 1540-1720 cm(-1) region in D2O solution confirm that the reduction of 1 intercalated into [poly(dG-dC)]2 is accompanied by bleaching of IR ground-state bands of guanine (1690 cm(-1)) and cytosine (1656 cm(-1)), each with similar rate constants.

  7. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    SciTech Connect

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  8. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-01

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  9. Probing the gravitational Faraday rotation using quasar X-ray microlensing

    PubMed Central

    Chen, Bin

    2015-01-01

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051

  10. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    PubMed

    Chen, Bin

    2015-11-17

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission.

  11. Strong interband Faraday rotation in 3D topological insulator Bi2Se3

    PubMed Central

    Ohnoutek, L.; Hakl, M.; Veis, M.; Piot, B. A.; Faugeras, C.; Martinez, G.; Yakushev, M. V.; Martin, R. W.; Drašar, Č.; Materna, A.; Strzelecka, G.; Hruban, A.; Potemski, M.; Orlita, M.

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass. PMID:26750455

  12. Faraday-active Fabry-Perot resonator: transmission, reflection, and emissivity.

    PubMed

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2012-05-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection, and emissivity of the resonator not only for polarized, but also for unpolarized, light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  13. Field effect tuning of microwave Faraday rotation and isolation with large-area graphene

    NASA Astrophysics Data System (ADS)

    Skulason, Helgi S.; Sounas, Dimitrios L.; Mahvash, Farzaneh; Francoeur, Sebastien; Siaj, Mohamed; Caloz, Christophe; Szkopek, Thomas

    2015-08-01

    We have demonstrated field effect tuning of microwave frequency Faraday rotation in magnetically biased large-area graphene in a hollow circular waveguide isolator geometry. Oxidized intrinsic silicon was used as a microwave transparent back-gate for large-area graphene devices. A 26 dB modulation of isolation in the K-band was achieved with a gate voltage modulation of 10 V corresponding to a carrier density modulation of 7 × 10 11 /cm2. We have developed a simple analytical model for transmission and isolation of the structure. Field effect modulation of Faraday rotation can be extended to other two dimensional electronic systems and is anticipated to be useful for gate voltage controlled isolators, circulators, and other non-reciprocal devices.

  14. The Influence of Antenna Pattern on Faraday Rotation in Remote Sensing at L-band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Jacob, S. Daniel

    2007-01-01

    Faraday rotation is a change in the polarization vector of electromagnetic radiation that occurs as the waves propagate from the Earth surface through the ionosphere to a spaceborne sensor. This change can cause errors in monitoring parameters at the surface such as soil moisture and sea surface salinity and it is an important consideration for radiometers on future missions in space such as NASA's Aquarius mission and ESA's SMOS mission. Two prominent strategies for compensating for Faraday rotation are using a sum of the signal at two polarizations and using the correlation between the signals at the two polarizations. These strategies work for an idealized antenna. This paper evaluates the strategies in the context of realistic antennas such as will be built for the Aquarius radiometer. Realistic antennas will make small differences that need to be included in planning for retrieval algorithms in future missions.

  15. Dual role of gravity on the Faraday threshold for immiscible viscous layers.

    PubMed

    Batson, W; Zoueshtiagh, F; Narayanan, R

    2013-12-01

    This work discusses the role of gravity on the Faraday instability, and the differences one can expect to observe in a low-gravity experiment when compared to an earth-based system. These differences are discussed in the context of the viscous linear theory for laterally infinite systems, and a surprising result of the analysis is the existence of a crossover frequency where an interface in low gravity switches from being less to more stable than an earth-based system. We propose this crossover exists in all Faraday systems, and the frequency at which it occurs is shown to be strongly influenced by layer height. In presenting these results physical explanations are provided for the behavior of the predicted forcing amplitude thresholds and wave number selection. PMID:24483552

  16. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    SciTech Connect

    Zhang, J.; Crocker, N. A.; Carter, T. A.; Kubota, S.; Peebles, W. A.

    2010-10-15

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.

  17. Closing remarks on Faraday Discussion 107: Interactions of acoustic waves with thin films and interfaces

    SciTech Connect

    Martin, S.J.

    1997-11-01

    The papers in this Faraday Discussion represent the state-of-the-art in using acoustic devices to measure the properties of thin films and interfaces. Sauerbrey first showed that the mass sensitivity of a quartz crystal could be used to measure the thickness of vacuum-deposited metals. Since then, significant progress has been made in understanding other interaction mechanisms between acoustic devices and contacting media. Bruckenstein and Shay and Kanazawa and Gordon showed that quartz resonators could be operated in a fluid to measure surface mass accumulation and fluid properties. The increased understanding of interactions between acoustic devices and contacting media has allowed new information to be obtained about thin films and interfaces. These closing remarks will summarize the current state of using acoustic techniques to probe thin films and interfaces, describe the progress reported in this Faraday Discussion, and outline some remaining problems. Progress includes new measurement techniques, novel devices, new applications, and improved modeling and data analysis.

  18. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    PubMed

    Chen, Bin

    2015-01-01

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051

  19. Explanation of the computer listings of Faraday factors for INTASAT users

    NASA Technical Reports Server (NTRS)

    Nesterczuk, G.; Llewellyn, S. K.; Bent, R. B.; Schmid, P. E.

    1974-01-01

    Using a simplified form of the Appleton-Hartree formula for the phase refractive index, a relationship was obtained between the Faraday rotation angle along the angular path and the total electron content along the vertical path, intersecting the angular at the height of maximum electron density. Using the second mean value theorem of integration, the function B cosine theta second chi was removed from under the integral sign and replaced by a 'mean' value. The mean value factors were printed on the computer listing for 39 stations receiving signals from the INTASAT satellite during the specified time period. The data is presented by station and date. Graphs are included to demonstrate the variation of the Faraday factor with local time and season, with magnetic latitude, elevation and azimuth angles. Other topics discussed include a description of the bent ionospheric model, the earth's magnetic field model, and the sample computer listing.

  20. Universal Faraday Rotation in HgTe Wells with Critical Thickness.

    PubMed

    Shuvaev, A; Dziom, V; Kvon, Z D; Mikhailov, N N; Pimenov, A

    2016-09-01

    The universal value of the Faraday rotation angle close to the fine structure constant (α≈1/137) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σ_{xy}=e^{2}/h, which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model. PMID:27661718

  1. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  2. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    NASA Astrophysics Data System (ADS)

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  3. Strong interband Faraday rotation in 3D topological insulator Bi2Se3.

    PubMed

    Ohnoutek, L; Hakl, M; Veis, M; Piot, B A; Faugeras, C; Martinez, G; Yakushev, M V; Martin, R W; Drašar, Č; Materna, A; Strzelecka, G; Hruban, A; Potemski, M; Orlita, M

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass. PMID:26750455

  4. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  5. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  6. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Joshua; Broering, Mark; Korsch, Wolfgang

    2016-05-01

    Off-resonance Faraday rotation can offer a method to measure the nuclear spin optical rotation of the 3 He nucleus and gain access to new information about the atomic polarizability of the Helium atom. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3 He target polarization. Progress towards detecting nuclear spin optical rotation on 3 He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  7. Universal Faraday Rotation in HgTe Wells with Critical Thickness

    NASA Astrophysics Data System (ADS)

    Shuvaev, A.; Dziom, V.; Kvon, Z. D.; Mikhailov, N. N.; Pimenov, A.

    2016-09-01

    The universal value of the Faraday rotation angle close to the fine structure constant (α ≈1 /137 ) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σx y=e2/h , which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.

  8. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  9. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Zuegel, J. D.; Marciante, J. R.

    2010-01-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. Finally, the effective Verdet constant of the Tb-doped fiber is measured to be -24.5±1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  10. Analysis of photon-atom entanglement generated by Faraday rotation in a cavity

    SciTech Connect

    Lee, S. K. Y.; Law, C. K.

    2006-05-15

    Faraday rotation based on ac Stark shifts is a mechanism that can entangle the polarization states of photons and atoms. We study the entanglement dynamics inside an optical cavity, and characterize the photon-atom entanglement by using the Schmidt decomposition method. The time dependence of entanglement entropy and the effective Schmidt number are examined. We show that the entanglement can be enhanced by the cavity, and the entanglement entropy can be controlled by the initial fluctuations of atoms and photons.

  11. Faraday effect due to Pauli exclusion principle in 3D topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Paudel, Hari P.; Leuenberger, Michael N.

    2014-05-01

    3D topological insulator (3D TI) materials have interesting surface states that are protected against scattering due to non-magnetic impurities. They turn out to be useful in quantum information processing. Here, using the 3D Dirac equation, we show that the transitions between positive and negative energy solutions in a 3D TI heterostructure junction and in a 3D TI quantum dot (QD) obey strict optical selection rules. We calculate the optical conductivity tensor of a 3D TI double interface made of a PbTe/Pb0:31Sn0:69Te/PbTe heterostructure using Maxwell's equations, which reveals a giant Faraday rotation effect due to Pauli exclusion principle. A transfer matrix method is employed to calculate the transmittance in a multilayer stacking of PbTe/Pb0:31Sn0:69Te/PbTe heterostructure. We show that while the Faraday rotation is giant for a single double interface, it takes about 60 double interfaces to absorb incoming radiation completely. We also present the model of a QD consisting of a spherical core-bulk heterostructure made of 3D TI materials, such as PbTe/Pb0:31Sn0:69Te/PbTe , with bound massless and helical Weyl states existing at the interface and being confined in all three dimensions. We calculate the Faraday rotation effect coming from the polarization of single electron-hole pairs. We show that the semi-classical Faraday effect can be used to read out spin quantum memory.

  12. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    SciTech Connect

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-15

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10{sup -4} Pa Xe (3.3x10{sup -6} Torr Xe) to 1.1x10{sup -3} Pa Xe (8.4x10{sup -6} Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures.

  13. Measurements of coronal Faraday rotation at 4.6 R {sub ☉}

    SciTech Connect

    Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.; Spangler, Steven R.

    2014-03-20

    Many competing models for the coronal heating and acceleration mechanisms of the high-speed solar wind depend on the solar magnetic field and plasma structure in the corona within heliocentric distances of 5 R {sub ☉}. We report on sensitive Very Large Array (VLA) full-polarization observations made in 2011 August, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C 228 through the solar corona at heliocentric distances of 4.6-5.0 R {sub ☉}. Observations at 5.0 GHz permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faraday rotation observations provide unique information on the magnetic field in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Our data on 3C 228 provide two lines of sight (separated by 46'', 33,000 km in the corona). We detected three periods during which there appeared to be a difference in the Faraday rotation measure between these two closely spaced lines of sight. These measurements (termed differential Faraday rotation) yield an estimate of 2.6-4.1 GA for coronal currents. Our data also allow us to impose upper limits on rotation measure fluctuations caused by coronal waves; the observed upper limits were 3.3 and 6.4 rad m{sup –2} along the two lines of sight. The implications of these results for Joule heating and wave heating are briefly discussed.

  14. A little help for a better understanding and application of Faraday's law

    NASA Astrophysics Data System (ADS)

    Benedetto, E.; Capriolo, M.; Feoli, A.; Tucci, D.

    2012-05-01

    In this letter, we examine Faraday's law of induction, analysing the electromotive force generated by a Lorentz force and the one generated by an electric field due to a changing magnetic field. We obtain the result in a didactically simple and appealing way. The final formula is derived considering explicitly the dependence of the magnetic field on the space coordinates, which is often neglected in standard textbooks.

  15. Polarization Rotation and the Third Stokes Parameter: The Effects of Spacecraft Attitude and Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2006-01-01

    The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.

  16. Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.

    PubMed

    Paudel, Hari P; Leuenberger, Michael N

    2014-02-26

    Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds.

  17. Implementation of Positive Operator-Valued Measure in Passive Faraday Mirror Attack

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Long; Gao, Ming; Ma, Zhi

    2015-03-01

    Passive Faraday-mirror (PFM) attack is based on imperfect Faraday mirrors in practical quantum cryptography systems and a set of three-dimensional Positive Operator-Valued Measure (POVM) operators plays an important role in this attack. In this paper, we propose a simple scheme to implement the POVM in PFM attack on an Faraday-Michelson quantum cryptography system. Since the POVM can not be implemented directly with previous methods, in this scheme it needs to expand the states sent by Alice and the POVM operators in the attack into four-dimensional Hilbert space first, without changing the attacking effect by calculation. Based on the methods proposed by Ahnert and Payne, the linear-optical setup for implementing the POVM operators is derived. At last, the complete setup for realizing the PFM attack is presented with all parameters. Furthermore, our scheme can also be applied to realize PFM attack on a plug-and-play system by changing the parameters in the setup. Supported by National Natural Science Foundation of China under Grant Nos. 61472446, U1204602, and National High Technology Research and Development Program of China under Grant No. 2011AA010803, and the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No. 2013A14

  18. Giant Faraday rotation induced by the Berry phase in bilayer graphene under strong terahertz fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xu, Xiaodong; Liu, Ren-Bao

    2014-04-01

    High-order terahertz (THz) sideband generation in semiconductors is a phenomenon with physics similar to that of high-order harmonic generation but in a regime of much lower frequency. Our previous paper [1] found that the electron-hole pair excited by a weak optical laser can accumulate a Berry phase along a cyclic trajectory under the driving of a strong elliptically polarized THz field. Furthermore, the Berry phase appears as the Faraday rotation angle of the emission signal under short-pulse excitation in monolayer MoS_{2}. In this paper, the theory of the Berry phase in THz extreme nonlinear optics is applied to biased bilayer graphene with Bernal stacking, which has similar Bloch band features and optical properties to monolayer MoS_{2}, such as the time-reversal related valleys and the valley contrasting optical selection rule. However, the biased bilayer graphene has much larger Berry curvature than monolayer MoS_{2}, which leads to a large Berry phase of the quantum trajectory and in turn a giant Faraday rotation of the optical emission (˜1 rad for a THz field with frequency 1 THz and strength 8 kV cm-1). This surprisingly big angle shows that the Faraday rotation can be induced more efficiently by the Berry curvature in momentum space than by the magnetic field in real space. It provides opportunities to use bilayer graphene and THz lasers for ultrafast electro-optical devices.

  19. High frequency current sensors using the Faraday effect in optical fibers

    SciTech Connect

    Cernosek, R.W.

    1994-09-01

    This study investigates the high frequency response of Faraday effect optical fiber current sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical models were developed for several configurations of planar (collocated turns) and travelling wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the model predictions. High frequency operation above 500 MHz, with good sensitivity, was demonstrated for several current sensors; this frequency region was not previously considered accessible by fiber devices. Planar fiber coils in three configurations were investigated: circular cross section with the conductor centered coaxially; circular cross section with the conductor noncentered; and noncircular cross section with arbitrary location of the conductor. The helical travelling wave fiber coils were immersed in the dielectric of a coaxial transmission line to improve velocity phase matching between the field and light. Three liquids (propanol, methanol, and water) and air were used as transmission line dielectric. Complete models, which must account for liquid dispersion and waveguide dispersion from the multilayer dielectric in the transmission line, were developed to describe the Faraday response of the travelling wave sensors. Other travelling wave current sensors with potentially greater Faraday sensitivity, wider bandwidth and smaller size are investigated using the theoretical models developed for the singlemode fibers coils.

  20. Faraday-Effect Polarimeter Diagnostic for Internal Magnetic Field Fluctuation Measurements in DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Ding, W. X.; Brower, D. L.

    2015-11-01

    A high-resolution Faraday-effect polarimeter-interferometer diagnostic currently under construction at the DIII-D tokamak has three overall measurement goals: (1) determine the current density dynamics at the magnetic axis, J(0,t), for torque-free plasmas (no NBI) and bootstrap current in the pedestal region; (2) resolve both coherent and broadband magnetic fluctuations [at the level δb <= 1 Gauss with up to 2 MHz bandwidth] associated with MHD perturbations, energetic particle driven modes and broadband turbulence (e.g. microtearing modes), and (3) identify non-axisymmetric structures and plasma response to externally applied RMP (resonant magnetic perturbation) fields being developed for ELM control as well as MHD events. These goals will be achieved using a 650-700 GHz source and heterodyne receiver system to measure the line-integrated Faraday-effect and density along three horizontal chords positioned at the magnetic axis and +/-15 cm off-axis. The system will be double-pass and cornercube retroreflectors have already been installed. Simultaneous measurement of density and Faraday effect allows isolation of the fluctuating magnetic field component in the radial direction. Supported by US DOE under DE-FG03-01ER54615 and DE-FC02-04ER54698.

  1. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Chang, S. C.; Chang, Y. C.

    2013-07-01

    An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001) single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  2. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission.

    PubMed

    Arnoult, K M; Wdowiak, T J; Beegle, L W

    2000-06-01

    We have demonstrated by experiment that, in an energetic environment, a simple polycyclic aromatic hydrocarbon (PAH) such as naphthalene will undergo chemical reactions that produce a wide array of more complex species (an aggregate). For a stellar wind of a highly evolved star (post-asymptotic giant branch [post-AGB]), this process would be in addition to what is expected from reactions occurring under thermodynamic equilibrium. A surprising result of that work was that produced in substantial abundance are hydrogenated forms that are hybrids of polycyclic aromatic and polycyclic alkanes. Infrared spectroscopy described here reveals a spectral character for these materials that has much in common with that observed for the constituents of circumstellar clouds of post-AGB stars. It can be demonstrated that a methylene (-CH2-) substructure, as in cycloalkanes, is the likely carrier of the 6.9 microns band emission of dust that has recently been formed around IRAS 22272+5433, NGC 7027, and CPD -56 8032. Ultraviolet spectroscopy previously done with a lower limit of 190 nm had revealed that this molecular aggregate can contribute to the interstellar extinction feature at 2175 angstroms. We have now extended our UV spectroscopy of these materials to 110 nm by a vacuum ultraviolet technique. That work, described here, reveals new spectral characteristics and describes how material newly formed during the late stages of stellar evolution could have produced an extinction feature claimed to exist at 1700 angstroms in the spectrum of HD 145502 and also how the newly formed hydrocarbon material would be transformed/aged in the general interstellar environment. The contribution of this molecular aggregate to the rise in interstellar extinction at wavelengths below 1500 angstroms is also examined. The panspectral measurements of the materials produced in the laboratory, using plasmas of H, He, N, and O to convert the simple PAH naphthalene to an aggregate of complex species

  3. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission

    NASA Technical Reports Server (NTRS)

    Arnoult, K. M.; Wdowiak, T. J.; Beegle, L. W.

    2000-01-01

    We have demonstrated by experiment that, in an energetic environment, a simple polycyclic aromatic hydrocarbon (PAH) such as naphthalene will undergo chemical reactions that produce a wide array of more complex species (an aggregate). For a stellar wind of a highly evolved star (post-asymptotic giant branch [post-AGB]), this process would be in addition to what is expected from reactions occurring under thermodynamic equilibrium. A surprising result of that work was that produced in substantial abundance are hydrogenated forms that are hybrids of polycyclic aromatic and polycyclic alkanes. Infrared spectroscopy described here reveals a spectral character for these materials that has much in common with that observed for the constituents of circumstellar clouds of post-AGB stars. It can be demonstrated that a methylene (-CH2-) substructure, as in cycloalkanes, is the likely carrier of the 6.9 microns band emission of dust that has recently been formed around IRAS 22272+5433, NGC 7027, and CPD -56 8032. Ultraviolet spectroscopy previously done with a lower limit of 190 nm had revealed that this molecular aggregate can contribute to the interstellar extinction feature at 2175 angstroms. We have now extended our UV spectroscopy of these materials to 110 nm by a vacuum ultraviolet technique. That work, described here, reveals new spectral characteristics and describes how material newly formed during the late stages of stellar evolution could have produced an extinction feature claimed to exist at 1700 angstroms in the spectrum of HD 145502 and also how the newly formed hydrocarbon material would be transformed/aged in the general interstellar environment. The contribution of this molecular aggregate to the rise in interstellar extinction at wavelengths below 1500 angstroms is also examined. The panspectral measurements of the materials produced in the laboratory, using plasmas of H, He, N, and O to convert the simple PAH naphthalene to an aggregate of complex species

  4. Stability of Glycine to Energetic Processing Under Astrophysical Conditions Investigated via Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Herrero, Victor Jose; Tanarro, Isabel; Escribano, Rafael

    2015-06-01

    Glycine, the simplest aminoacid, has been detected in comets and meteorites in our Solar System. Its detection in the interstellar medium is not improbable since other organic molecules of comparable complexity have been observed. Information of how complex organic molecules resist the energetic processing that they may suffer in different regions of space is of great interest for astrochemists and astrobiologists. Further to previous investigations we have studied in this work, via infrared spectroscopy, the effect of 2 keV electron bombardment on amorphous and crystalline glycine layers at low temperatures, to determine its destruction cross section under astrophysical conditions. Energetic electrons are known to be present in the solar wind and in planetary magnetospheres, and are also formed in the interaction of cosmic rays with matter. Moreover, we have probed the shielding effect of water ice layers grown on top of the glycine samples at 90 K. These experiment aim to mimic the conditions of the aminoacid in ice mantles on dust grains in the interstellar medium or in some outer Solar System objects, with a water ice surface crust. A residual material, product of glycine decomposition, was found at the end of the processing. A tentative assignment of the infrared spectra of the residue will be discussed in the presentation. E. Herbst and E. F. van Dishoeck, Annu. Rev. Astro. Astrophys. 2009, 47:427-480 B. Maté, Y. Rodriguez-Lazcano, O. Gálvez, I. Tanarro and R. Escribano, Phys Chem Chem Phys, 2011, 13, 12268. B. Maté, I. Tanarro, M.A. Moreno, M. Jiménez-Redondo, R. Escribano, and V. J. Herrero, Faraday Discussions, 2014, DOI: 10.1039/c3fd00132f.

  5. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-04-01

    Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.

  6. Infrared Spectrometry.

    ERIC Educational Resources Information Center

    McDonald, Robert S.

    1984-01-01

    This review on infrared spectrometry covering the period from late 1981 to late 1983, is divided into nine sections. Topic areas include: books; reviews; analytical applications; biochemical applications; environmental applications; polymer applications; infrared instrumentation; sampling techniques; and software and algorithms. (JN)

  7. PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect

    Broderick, Avery E.; McKinney, Jonathan C. E-mail: jmckinne@stanford.ed

    2010-12-10

    It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to {approx}10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.

  8. Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

    SciTech Connect

    Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu E-mail: bryan.gaensler@sydney.edu.au

    2014-08-01

    Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detected in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.

  9. A low-mass faraday cup experiment for the solar wind

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Steinberg, J. T.; Mcnutt, R. L., Jr.

    1993-01-01

    Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism.

  10. On interannual variations of the winter temperature at Faraday/Vernadsky Antarctic Station

    NASA Astrophysics Data System (ADS)

    Evtushevsky, A.; Kravchenko, V.; Grytsai, A.; Milinevsky, G.

    2009-04-01

    The interannual variations of the winter temperature at Faraday/Vernadsky Station, West Antarctic Peninsula are investigated. The meteorological READER surface air temperature and wind velocity/direction data for 1947-2007 period as well as the temperature and zonal/meridional wind distribution at 1000 hPa from the NCEP-NCAR reanalysis data (1979-2007) were used. The possible reasons of observed winter warming are discussed. The winter warming is accompanied by narrowing of the temperature variation range between -14°C and -4°C during 1950s to -8°C and -4°C in last decade. Positive trend in annual mean and winter mean temperature corresponds to lowering of the "depth" of cold winter anomalies, which can relate to the area located to the east of Antarctic Peninsula. The indications are seen from agreement between the interannual variations in winter temperature at Faraday/Vernadsky and the east-west migrations of quasistationary distribution of surface air temperature and zonal/meridional wind in Antarctic Peninsula region. The meteorological observations at Faraday/Vernadsky station display long-term changes in the wind distribution pattern: the appearance frequency of the "continental" wind (0°E±45° azimuth) observation has been reduced but the appearance frequency of the "ocean" wind (180°E±45° azimuth) has been increased threefold in the last two decades in comparison to 1950s-1970s. That is evidence of the structural change-over of circulation pattern in the region which is advantageous for warming. Results show that the changes in the quasistationary pattern in Antarctic troposphere contribute to the local climate change in Antarctic Peninsula region. The research was partly supported by National Taras Shevchenko University of Kyiv, project 06BF051-12.

  11. Highlights from Faraday Discussion 170: challenges and opportunities of modern mechanochemistry, Montreal, Canada, 2014.

    PubMed

    Friščić, Tomislav; James, Stuart L; Boldyreva, Elena V; Bolm, Carsten; Jones, William; Mack, James; Steed, Jonathan W; Suslick, Kenneth S

    2015-04-14

    The Faraday Discussion Mechanochemistry: From Functional Solids to Single Molecules which took place 21-23 May 2014 in Montreal, Canada, brought together a diversity of academic and industrial researchers, experimentalists and theoreticians, students, as well as experienced researchers, to discuss the changing face of mechanochemistry, an area with a long history and deep connections to manufacturing, that is currently undergoing vigorous renaissance and rapid expansion in a number of areas, including supramolecular chemistry, smart polymers, metal-organic frameworks, pharmaceutical materials, catalytic organic synthesis, as well as mineral and biomass processing and nanoparticle synthesis. PMID:25785352

  12. Conditions for the validity of Faraday's law of induction and their experimental confirmation

    NASA Astrophysics Data System (ADS)

    López-Ramos, A.; Menéndez, J. R.; Piqué, C.

    2008-09-01

    This paper, as its main didactic objective, shows the conditions needed for the validity of Faraday's law of induction. Inadequate comprehension of these conditions has given rise to several paradoxes about the issue; some are analysed and solved in this paper in the light of the theoretical deduction of the induction law. Furthermore, an experimental set-up, in which such conditions are experimentally tested, is included. The experiment is not complicated and the method we use, and similar methods used elsewhere, is widely considered as suitable laboratory practice for students of first university courses in physics and engineering.

  13. Faraday waves on finite thickness smectic A liquid crystal and polymer gel materials

    SciTech Connect

    Ovando-Vazquez, C.; Rodriguez, O. Vazquez; Hernandez-Contreras, M.

    2008-11-13

    We studied with linear stability theory the Faraday waves on the surface of a smectic A liquid crystal and polymer gel-vapor systems of finite thicknesses. Model smectic A material exhibits alternating subharmonic-harmonic patterns of stability curves in a plot of driving acceleration versus wave number. For the case of highly viscoelastic gel media there are coexisting surface modes of harmonic and subharmonic types that correspond to peaks in the plot of the critical acceleration as a function of wave frequency. Larger frequencies lead to subsequent peaks of coexisting subharmonic waves only.

  14. Tools for laser spectroscopy: The design and construction of a Faraday isolator

    NASA Astrophysics Data System (ADS)

    Winter, S.; Mok, C.; Kumarakrishnan, A.

    2006-09-01

    We discuss the design and construction of a Faraday isolator for diode laser spectroscopy using commercially available components. The design involves modelling the magnetic field of an assembly of cylindrical magnets and verifying the predictions using a sensor. We obtain an isolation ratio for optical feedback of similar to 35 dB at a wavelength of 780 nm. The cost is approximately one-fourth the cost of an equivalent commercially available device. We expect that the design can be widely used in experiments in laser spectroscopy and in advanced undergraduate laboratory experiments.

  15. Influence of cubic nonlinearity on compensation of thermally induced polarisation distortions in Faraday isolators

    SciTech Connect

    Kuzmina, M S; Khazanov, E A

    2013-10-31

    The problem on laser radiation propagation in a birefringent medium is solved with the allowance made for thermally induced linear birefringence under the conditions of cubic nonlinearity. It is shown that at high average and peak radiation powers the degree of isolation in a Faraday isolator noticeably reduces due to the cubic nonlinearity: by more than an order of magnitude when the B-integral is equal to unity. This effect is substantial for pulses with the energy of 0.2 – 3 J, duration of 10 ps to 4 ns and pulse repetition rate of 0.2 – 40 kHz. (components of laser devices)

  16. Faraday-cup-type lost fast ion detector on Heliotron J

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Ogawa, K.; Isobe, M.; Darrow, D. S.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Ohshima, S.; Weir, G. M.; Nakamura, Y.; Konoshima, S.; Kemmochi, N.; Ohtani, Y.; Mizuuchi, T.

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90∘-140∘, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  17. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Spun microstructured optical fibresfor Faraday effect current sensors

    NASA Astrophysics Data System (ADS)

    Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.

    2009-11-01

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.

  18. A comparative study on the calibration of pole caps for a Faraday vacuum microbalance

    NASA Astrophysics Data System (ADS)

    Rais, A.; Yousif, A. A.

    1999-08-01

    Calibration curves for standard 177 mm diameter Henry profile pole caps of an electromagnet coupled to a Faraday vacuum microbalance are obtained from absolute magnetic susceptibility measurements. The pole caps are at gaps of 4.0 cm, 4.5 cm and 5.0 cm for maximum magnetic field strengths ranging from 173 kA m-1 to 549 kA m-1. Typical results on a few standard substances are compared with reported values. An error of less than 3% can be achieved for samples of limited size that are sufficiently free from ferromagnetic impurities.

  19. Hybrid Faraday rotation spectrometer for sub-ppm detection of atmospheric O2.

    PubMed

    Zhang, Eric J; Brumfield, Brian; Wysocki, Gerard

    2014-06-30

    Faraday rotation spectroscopy (FRS) of O(2) is performed at atmospheric conditions using a DFB diode laser and permanent rare-earth magnets. Polarization rotation is detected with a hybrid-FRS detection method that combines the advantages of two conventional approaches: balanced optical-detection and conventional FRS with an optimized analyzer offset angle for maximum sensitivity enhancement. A measurement precision of 0.6 ppmv·Hz(-1/2) for atmospheric O(2) has been achieved. The theoretical model of hybrid detection is described, and the calculated detection limits are in excellent agreement with experimental values.

  20. A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Goetz, Ryan; Tanner, David; Mueller, Guido

    2016-03-01

    Using conventional interferometry, the strain sensitivity of Advanced LIGO is limited by a quantum noise floor known as the standard quantum limit (SQL). Injecting squeezed vacuum states into the output port of the interferometer allows for detector sensitivities below the SQL at frequencies within a band of observational interest. The effectiveness of squeezing in reducing quantum noise is strongly dependent upon the optical loss in the squeezed path. Thus, to combine the squeezed vacuum state with the interferometer output we require a Faraday isolator with both high power-throughput efficiency and high isolation ratio. A prototype isolator is currently being developed, and we will discuss the design goals and current status.

  1. Chain-induced effects in the Faraday instability on ferrofluids in a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Mekhonoshin, V. V.; Lange, Adrian

    2004-04-01

    The linear stability analysis of the Faraday instability on a viscous ferrofluid in a horizontal magnetic field is performed. Strong dipole-dipole interactions lead to the formation of chains elongated in the field direction. The formation of chains results in a qualitative new behavior of the ferrofluid. This new behavior is characterized by a neutral stability curve similar to that observed earlier for Maxwell viscoelastic liquids and causes a significant weakening of the energy dissipation at high frequencies. In the case of a ferrofluid with chains in a horizontal magnetic field, the effective viscosity is anisotropic and depends on the field strength as well as on the wave frequency.

  2. Magnetic fields in galaxy clusters: Faraday rotation and non thermal emission

    NASA Astrophysics Data System (ADS)

    Bonafede, Annalisa

    In this thesis we study the magnetic field in galaxy clusters and their connection with thermal and non-thermal phenomena in the Intra Cluster Medium. These topics are investigated through the analysis of the polarization properties of sources located behind and inside galaxy clusters as well as through MHD cosmological simulation. To this aim we have obtained observations at the Very Large Array (VLA) radio telescope (New Mexico USA) and we have investigated the magnetic field properties through different methods. We used the numerical code Faraday to interpret our results. We also used the brand new implementation within the Gadget3 code to investigate the properties of massive simulated galaxy clusters.

  3. Suppression of Faraday waves in a Bose-Einstein condensate in the presence of an optical lattice

    SciTech Connect

    Capuzzi, Pablo; Gattobigio, Mario; Vignolo, Patrizia

    2011-01-15

    We study the formation of Faraday waves in an elongated Bose-Einstein condensate in the presence of a one-dimensional optical lattice. The waves are parametrically excited by modulating the radial confinement of the condensate close to a transverse breathing mode of the system. For very shallow optical lattices, phonons with a well-defined wave vector propagate along the condensate, as in the absence of the lattice, and we observe the formation of a Faraday pattern. We find that by increasing the potential depth the local sound velocity decreases, and when it equals the condensate local phase velocity, the condensate develops an incoherent superposition of several modes and the parametric excitation of Faraday waves is suppressed.

  4. Infrared Measurement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Jet Propulsion Laboratory Technical Support Package (TSP) describing a technique for processing data from an infrared radiometer assisted a manufacturer of laminates for printed circuit boards. To reduce emissions and lower the cost of producing prepreg (a continuous glass cloth, or web, impregnated with epoxy resin and partially cured by applying heat), Norplex Oak switched to infrared treating towers. The TSP confirmed the company's computer prediction of heat flux patterns, provided information that allowed the company to modify infrared treaters for consistency, and furnished a basis for development of optimal heater placements. The treaters are now successfully operating at increased speeds with improved product consistency.

  5. All-Fiber Optical Magnetic-Field Sensor Based on Faraday Rotation in Highly Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-03-03

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  6. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber.

    PubMed

    Sun, L; Jiang, S; Marciante, J R

    2010-03-15

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium-doped silicate fiber with a Verdet constant of -24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  7. Infrared spectroscopy of [XFeC24H12]+ (X = C5H5, C5(CH3)5) complexes in the gas phase: experimental and computational studies of astrophysical interest.

    PubMed

    Simon, Aude; Joblin, Christine; Polfer, Nick; Oomens, Jos

    2008-09-18

    We report the first experimental mid-infrared (700-1600 cm (-1)) multiple-photon dissociation (IRMPD) spectra of [XFeC 24H 12] (+) (X = C 5H 5 or Cp, C 5(CH 3) 5 or Cp*) complexes in the gas phase obtained using the free electron laser for infrared experiments. The experimental results are complemented with theoretical infrared (IR) absorption spectra calculated with methods based on density functional theory. The isomers in which the XFe unit is coordinated to an outer ring of C 24H 12 (+) (Out isomers) were calculated to be the most stable ones. From the comparison between the experimental and calculated spectra, we could derive that, (i) for [CpFeC 24H 12] (+) complexes, the (1)A Out isomer appears to be the best candidate to be formed in the experiment but the presence of the (1)A In higher energy isomer in minor abundance is also plausible; and (ii) for [Cp*FeC 24H 12] (+) complexes, the three calculated Out isomers of similar energy are likely to be present simultaneously, in qualitative agreement with the observed dissociation patterns. This study also emphasizes the threshold effect in the IRMPD spectrum below which IR bands cannot be observed and evidence strong mode coupling effects in the [XFeC 24H 12] (+) species. The effect of the coordination of Fe in weakening the bands of C 24H 12 (+) in the 1000-1600 cm (-1) region is confirmed, which is of interest to search for such complexes in interstellar environments.

  8. The birth of the electric machines: a commentary on Faraday (1832) 'Experimental researches in electricity'.

    PubMed

    Al-Khalili, Jim

    2015-04-13

    The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject-the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750145

  9. Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.

    PubMed

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876

  10. Terahertz modulation of the Faraday rotation by laser pulses via the optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Subkhangulov, R. R.; Mikhaylovskiy, R. V.; Zvezdin, A. K.; Kruglyak, V. V.; Rasing, Th.; Kimel, A. V.

    2016-02-01

    The magneto-optical Faraday effect played a crucial role in the elucidation of the electromagnetic nature of light. Today it is powerful means to probe magnetism and the basic operational principle of magneto-optical modulators. Understanding the mechanisms allowing for modulation of the magneto-optical response at terahertz frequencies may have far-reaching consequences for photonics, ultrafast optomagnetism and magnonics, as well as for future development of ultrafast Faraday modulators. Here we suggest a conceptually new approach for an ultrafast tunable magneto-optical modulation with the help of counter-propagating laser pulses. Using terbium gallium garnet (Tb3Ga5O12) we demonstrate the feasibility of such magneto-optical modulation with a frequency up to 1.1 THz, which is continuously tunable by means of an external magnetic field. Besides the novel concept for ultrafast magneto-optical polarization modulation, our findings reveal the importance of accounting for propagation effects in the interpretation of pump-probe magneto-optical experiments.

  11. Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.

    PubMed

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-10-14

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.

  12. Implementation and automation of a Faraday experiment for the magneto-optical characterization of ferrofluids

    NASA Astrophysics Data System (ADS)

    Velásquez, A. A.; Urquijo, J. P.

    2016-01-01

    This work presents the design, assembly and automation of a Faraday experiment for use in characterization of the magneto-optical response of fluids and ferrofluids. The magneto-optical Faraday experiment was automated using programmable equipment, controlled through the IEEE-488 port via Standard Commands for Programmable Instruments executed from a graphical interface developed in LabVIEW software. To calibrate the system the Verdet constants of distilled water and isopropyl alcohol were measured, obtaining an error percentage less than 2% for both fluids. Subsequently we used the system for measuring the Verdet constant of a ferrofluid of iron oxide nanoparticles diluted in distilled water, which was synthesized and, before its dilution, characterized by scanning electron microscopy, room temperature Mössbauer spectroscopy and vibrating sample magnetometry. We found that the Verdet constant of the diluted ferrofluid was smaller than that of distilled water, indicating opposite contributions of the effects of the diamagnetic and paramagnetic phases present in the ferrofluid to the magneto-optical effect. Details of the assembly, control of the experiment and development of the measurements are presented in this paper.

  13. The birth of the electric machines: a commentary on Faraday (1832) 'Experimental researches in electricity'.

    PubMed

    Al-Khalili, Jim

    2015-04-13

    The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject-the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  14. Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET

    SciTech Connect

    Boboc, A.; Zabeo, L.; Murari, A.

    2006-10-15

    The change in the ellipticity of a laser beam that passes through plasma due to the Cotton-Mouton effect can provide additional information on the plasma density. This approach, complementary to the more traditional interferometric methods, has been implemented recently using the JET interferometer-polarimeter with a new setup. Routine Cotton-Mouton phase shift measurements are made on the vertical central chords simultaneously with the Faraday rotation angle data. These new data are used to provide robust line-integrated density measurements in difficult plasma scenarios, with strong Edge Localized Modes (ELMs) or pellets. These always affect interferometry, causing fringe jumps and preventing good control of the plasma density. A comparison of line-integrated density from polarimetry and interferometry measurements shows an agreement within 10%. Moreover, in JET the measurements can be performed close to a reactor relevant range of parameters, in particular, at high densities and temperatures. This provides a unique opportunity to assess the quality of the Faraday rotation and Cotton-Mouton phase shift measurements where both effects are strong and mutual nonlinear interaction between the two effects takes place.

  15. Faraday Rotation Measure Gradients from a Helical Magnetic Field in 3C273

    SciTech Connect

    Zavala, Robert T.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park

    2005-06-06

    Using high frequency (12-22 GHz) VLBA observations we confirm the existence of a Faraday rotation measure gradient of {approx}500 rad m{sup -2} mas{sup -1} transverse to the jet axis in the quasar 3C273. The gradient is seen in two epochs spaced roughly six months apart. This stable transverse rotation measure gradient is expected if a helical magnetic field wraps around the jet. The overall order to the magnetic field in the inner projected 40 parsecs is consistent with a helical field. However, we find an unexpected increase in fractional polarization along the edges of the source, contrary to expectations. This high fractional polarization rules out internal Faraday rotation, but is not readily explained by a helical field. After correcting for the rotation measure, the intrinsic magnetic field direction in the jet of 3C273 changes from parallel to nearly perpendicular to the projected jet motion at two locations. If a helical magnetic field causes the observed rotation measure gradient then the synchrotron emitting electrons must be separate from the helical field region. The presence or absence of transverse rotation measure gradients in other sources is also discussed.

  16. Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET

    NASA Astrophysics Data System (ADS)

    Boboc, A.; Zabeo, L.; Murari, A.

    2006-10-01

    The change in the ellipticity of a laser beam that passes through plasma due to the Cotton-Mouton effect can provide additional information on the plasma density. This approach, complementary to the more traditional interferometric methods, has been implemented recently using the JET interferometer-polarimeter with a new setup. Routine Cotton-Mouton phase shift measurements are made on the vertical central chords simultaneously with the Faraday rotation angle data. These new data are used to provide robust line-integrated density measurements in difficult plasma scenarios, with strong Edge Localized Modes (ELMs) or pellets. These always affect interferometry, causing fringe jumps and preventing good control of the plasma density. A comparison of line-integrated density from polarimetry and interferometry measurements shows an agreement within 10%. Moreover, in JET the measurements can be performed close to a reactor relevant range of parameters, in particular, at high densities and temperatures. This provides a unique opportunity to assess the quality of the Faraday rotation and Cotton-Mouton phase shift measurements where both effects are strong and mutual nonlinear interaction between the two effects takes place.

  17. Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system

    SciTech Connect

    Sun Shihai; Jiang Musheng; Liang Linmei

    2011-06-15

    The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve's attack changes slightly with the degree of the FM imperfection.

  18. Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Liang, Lin-Mei

    2011-06-01

    The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve’s attack changes slightly with the degree of the FM imperfection.

  19. Ultraviolet-visible optical isolators based on CeF{sub 3} Faraday rotator

    SciTech Connect

    Víllora, Encarnación G. Shimamura, Kiyoshi; Plaza, Gustavo R.

    2015-06-21

    The first ultraviolet (UV) and visible optical isolators based on CeF{sub 3} are demonstrated. CeF{sub 3} possesses unique properties as Faraday rotator for the UV-visible wavelength region: a wide transparency range (wavelength of >300 nm) and an outstanding Verdet constant. In contrast, currently used terbium-gallium garnets and magneto-optical glasses possess a low transparency in the visible and a small Verdet constant in the UV, respectively. The optical isolator prototypes consist of a CeF{sub 3} rod, a single ring magnet, and a couple of beam splitters. The ring magnets have been designed to guarantee a homogeneous magnetic field; for it, numerical simulations have been carried out. The two prototypes are very compact and operate in the UV at 355 and in the visible at 405 nm, respectively. The performance of these devices indicates the high potential of CeF{sub 3} as a new UV-visible Faraday rotator, specially for shorter wavelengths where at present there are no optical isolators available.

  20. FARADAY ROTATION DISTRIBUTIONS FROM STELLAR MAGNETISM IN WIND-BLOWN BUBBLES

    SciTech Connect

    Ignace, R.; Pingel, N. M. E-mail: nmpingle@wisc.edu

    2013-03-01

    Faraday rotation is a valuable tool for detecting magnetic fields. Here, the technique is considered in relation to wind-blown bubbles. In the context of spherical winds with azimuthal or split monopole stellar magnetic field geometries, we derive maps of the distribution of position angle (P.A.) rotation of linearly polarized radiation across projected bubbles. We show that the morphology of maps for split monopole fields are distinct from those produced by the toroidal field topology; however, the toroidal case is the one most likely to be detectable because of its slower decline in field strength with distance from the star. We also consider the important case of a bubble with a spherical sub-volume that is field-free to approximate crudely a 'swept-up' wind interaction between a fast wind (or possibly a supernova ejecta shell) overtaking a slower magnetized wind from a prior state of stellar evolution. With an azimuthal field, the resultant P.A. map displays two arc-like features of opposite rotation measure, similar to observations of the supernova remnant G296.5+10.0. We illustrate how P.A. maps can be used to disentangle Faraday rotation contributions made by the interstellar medium versus the bubble. Although our models involve simplifying assumptions, their consideration leads to a number of general robust conclusions for use in the analysis of radio mapping data sets.

  1. Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer

    PubMed Central

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876

  2. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    NASA Astrophysics Data System (ADS)

    Tweney, Ryan D.

    2011-07-01

    James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.

  3. Faraday instability of a two-layer liquid film with a free upper surface

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2016-06-01

    We study the linear stability of a laterally extended flat two-layer liquid film under the influence of external vertical vibration. The first liquid layer rests on a vibrating solid plate and is overlaid by a second layer of immiscible fluid with deformable upper surface. Surface waves, excited as the result of the Faraday instability, can be characterized by a time-dependent relative amplitude of the displacements of the liquid-liquid and the liquid-gas interfaces. The in-phase displacements are associated with a zigzag (barotropic) mode and the antiphase displacement corresponds to the varicose thinning mode. We numerically determine the stability threshold in the vibrated two-layer film and compute the dispersion relation together with the decay rates of the surface waves in the absence of vibration. The in-phase and the antiphase displacements are strongly coupled in the vibrated system. The interplay between the Faraday and the Rayleigh-Taylor instabilities in the system with heavier fluid on top of a lighter fluid is analyzed.

  4. High Resolution Infrared and Microwave Spectra of NH3-HCCH and NH3-OCS Complexes: Studies of Weak C-H\\cdotsN Hydrogen Bond and Electric Multipole Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Xu, Yunjie

    2011-06-01

    C-H\\cdotsN weak hydrogen bond is of much current interest. We report the first high resolution infrared spectroscopic study of a prototypical C-H\\cdotsN bonded system, i.e. NH3-HCCH, at the vicinity of the ν4 band of NH3. The spectrum has been recorded using an infrared spectrometer equipped with an astigmatic multipass cell aligned for 366 passes and a room temperature external cavity quantum cascade laser at the 6 μm region. The perpendicular band spectrum of symmetric top rotor observed is consistent with the previous microwave and infrared studies at 3 μm. We also extended the previous microwave measurement to higher J and K. For the related NH3-OCS complex, microwave spectrum of J up to 6 and infrared spectrum at the vicinity of the ν4 band of NH3 have been recorded and analyzed for the first time. Comparison has been made with the previously studied isoelectronic complexes such as NH3-N2O and NH3-CO2. The source of the difference will be discussed with the aid of ab initio calculations. G.T. Fraser, K.R. Leopold, and W. Klemperer, J. Chem. Phys. 80(4), 1423, (1984) G. Hilpert, G.T. Fraser, and A.S. Pine, J. Chem. Phys. 105(15), 6183, (1996) G.T. Fraser, D.D. Nelson, JR., G.J. Gerfen, and W. Klemperer, J. Chem. Phys. 83(11), 5442, (1985) G.T. Fraser, K.R. Leopold, and W. Klemperer, J. Chem. Phys. 81(6), 2577, (1984)

  5. Why Infrared?

    ERIC Educational Resources Information Center

    Harris, J. R.

    1973-01-01

    Discusses applications of techniques developed for the remote sensing of infrared radiation. In addition to military applications, remote sensing has become important in collecting environmental data and detecting ecological problems. (JR)

  6. Study of picosecond processes of an intercalated dipyridophenazine Cr(III) complex bound to defined sequence DNAs using transient absorption and time-resolved infrared methods.

    PubMed

    Devereux, Stephen J; Keane, Páraic M; Vasudevan, Suni; Sazanovich, Igor V; Towrie, Michael; Cao, Qian; Sun, Xue-Zhong; George, Michael W; Cardin, Christine J; Kane-Maguire, Noel A P; Kelly, John M; Quinn, Susan J

    2014-12-21

    Picosecond transient absorption (TA) and time-resolved infrared (TRIR) measurements of rac-[Cr(phen)2(dppz)](3+) () intercalated into double-stranded guanine-containing DNA reveal that the excited state is very rapidly quenched. As no evidence was found for the transient electron transfer products, it is proposed that the back electron transfer reaction must be even faster (<3 ps).

  7. Infrared spectra of the CH3-MX, CH2=MHX, and CH[triple bond]MH2X- complexes formed by reaction of methyl halides with laser-ablated group 5 metal atoms.

    PubMed

    Cho, Han-Gook; Andrews, Lester

    2006-08-24

    Reactions of group 5 metal atoms and methyl halides give carbon-metal single, double, and triple bonded complexes that are identified from matrix IR spectra and vibrational frequencies computed by DFT. Two different pairs of complexes are prepared in reactions of methyl fluoride with laser-ablated vanadium and tantalum atoms. The two vanadium complexes (CH(3)-VF and CH(2)=VHF) are persistently photoreversible and show a kinetic isotope effect on the yield of CD(2)=VDF. Identification of CH(2)=TaHF and CH[triple bond]TaH(2)F(-), along with the similar anionic Nb complex, suggests that the anionic methylidyne complex is a general property of the heavy group 5 metals. Reactions of Nb and Ta with CH(3)Cl and CH(3)Br have also been carried out to understand the ligand effects on the calculated structures and the vibrational characteristics. The methylidene complexes become more distorted with increasing halogen size, while the calculated C=M bond lengths and stretching frequencies decrease and increase, respectively. The anionic methylidyne complexes are less favored with increasing halogen size. Infrared spectra show a dramatic increase of the Ta methylidenes upon annealing, suggesting that the formation of CH(3)-TaX and its conversion to CH(2)=TaHX require essentially no activation energy.

  8. Infrared spectra of the CH3-MX, CH2=MHX, and CH[triple bond]MH2X- complexes formed by reaction of methyl halides with laser-ablated group 5 metal atoms.

    PubMed

    Cho, Han-Gook; Andrews, Lester

    2006-08-24

    Reactions of group 5 metal atoms and methyl halides give carbon-metal single, double, and triple bonded complexes that are identified from matrix IR spectra and vibrational frequencies computed by DFT. Two different pairs of complexes are prepared in reactions of methyl fluoride with laser-ablated vanadium and tantalum atoms. The two vanadium complexes (CH(3)-VF and CH(2)=VHF) are persistently photoreversible and show a kinetic isotope effect on the yield of CD(2)=VDF. Identification of CH(2)=TaHF and CH[triple bond]TaH(2)F(-), along with the similar anionic Nb complex, suggests that the anionic methylidyne complex is a general property of the heavy group 5 metals. Reactions of Nb and Ta with CH(3)Cl and CH(3)Br have also been carried out to understand the ligand effects on the calculated structures and the vibrational characteristics. The methylidene complexes become more distorted with increasing halogen size, while the calculated C=M bond lengths and stretching frequencies decrease and increase, respectively. The anionic methylidyne complexes are less favored with increasing halogen size. Infrared spectra show a dramatic increase of the Ta methylidenes upon annealing, suggesting that the formation of CH(3)-TaX and its conversion to CH(2)=TaHX require essentially no activation energy. PMID:16913680

  9. Far infrared laser polarimetry and far forward scattering diagnostics for the C-2 field reversed configuration plasmas.

    PubMed

    Deng, B H; Kinley, J S; Knapp, K; Feng, P; Martinez, R; Weixel, C; Armstrong, S; Hayashi, R; Longman, A; Mendoza, R; Gota, H; Tuszewski, M

    2014-11-01

    A two-chord far infrared (FIR) laser polarimeter for high speed sub-degree Faraday rotation measurements in the C-2 field reversed configuration experiment is described. It is based on high power proprietary FIR lasers with line width of about 330 Hz. The exceptionally low intrinsic instrument phase error is characterized with figures of merit. Significant toroidal magnetic field with rich dynamics is observed. Simultaneously obtained density fluctuation spectra by far forward scattering are presented.

  10. Vibration mitigation in J-TEXT far-infrared diagnostic systems

    SciTech Connect

    Li, Q.; Chen, J.; Zhuang, G.; Wang, Z. J.; Gao, L.; Chen, W.

    2012-10-15

    Optical structure stability is an important issue for far-infrared (FIR) phase measurements. To ensure good signal quality, influence of vibration should be minimized. Mechanical amelioration and optical optimization can be taken in turn to decrease vibration's influence and ensure acceptable measurement. J-TEXT (Joint Texal Experiment Tokamak, formerly TEXT-U) has two FIR diagnostic systems: a HCN interferometer system for electron density measurement and a three-wave polarimeter-interferometer system (POLARIS) for electron density and Faraday effect measurements. All use phase detection techniques. HCN interferometer system has almost eliminated the influence of vibration after mechanical amelioration and optical optimization. POLARIS also obtained first experimental results after mechanical stability improvements and is expected to further reduce vibration's influence on Faraday angle to 0.1 Degree-Sign after optical optimization.

  11. Fourier-transform infrared and Raman spectra, and ab initio calculations for cadmium- n-di-iso-propylphosphorylguanidine-di-chloride (CdDPGCl 2) complex

    NASA Astrophysics Data System (ADS)

    Téllez, Claudio A.; Hollauer, Eduardo; Felcman, Judith; Lopes, Damiana C. N.; Cattapan, Renata A.

    2002-07-01

    Cadmium- n-di-isopropylphosphorylguanidine-di-chloride (CdDPGCl 2) was synthesized in the solid phase and characterized previously. The Fourier transform infrared and Raman spectra of (CdDPGCl 2) in the solid state were recorded and analyzed. Emphasis was placed on the vibrational assignment of the [(O 2P=O{CdCl 2}HN=C)] fragment of the complete molecular structure. With the aim of assisting the vibrational assignment of the experimental spectra, a comparison with the spectra of N-di-isopropylphosphorylguanidine ligand was carried out and ab initio calculations have been performed with several effective core potentials and valence basis sets (Hay-Wadt (HW) and Stevens-Basch-Krauss (SBK)). Due to our limited computational resources, hydrogen atoms replaced the isopropyl groups. The calculated geometrical parameters showed excellent agreement with the experimental, as well as the RHF/MP2 calculated infrared wave numbers, when compared to the IR/Raman experimental wave numbers.

  12. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide.

    PubMed

    Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Yu, Zhongqing; Tao, Yingying; Wu, Yanjie; Zeng, Min; Wang, Sui; Li, Xing; Zhou, Jun; Su, Xiurong

    2016-10-01

    A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2'-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become "effective," thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay. Graphical abstract Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP. PMID:27565793

  13. SMMR data set development for GARP. [impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures

    NASA Technical Reports Server (NTRS)

    Kogut, J.

    1981-01-01

    The NIMBUS 7 Scanning Multichannel Microwave Radiometer (SMMR) data are analyzed. The impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures is evaluated. The algorithms used to retrieve the geophysical parameters are tested, refined, and compared with values derived by other techniques. The technical approach taken is described and the results presented.

  14. Exact Solution of a Faraday's Law Problem that Includes a Nonlinear Term and Its Implication for Perturbation Theory.

    ERIC Educational Resources Information Center

    Fulcher, Lewis P.

    1979-01-01

    Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)

  15. Design of a tapered stripline fast Faraday cup for measurements on heavy ion beams: problems and solutions

    SciTech Connect

    Marcellini, F.; Poggi, M.

    1998-12-10

    The design of a tapered stripline fast Faraday cup (TSFFC) to perform the impedance matching between the fast cup itself and the signal line (connector, cable, and amplifier) is reported here. The frequency response of the TSFFC as a high-pass filter is analyzed from a theoretical point of view and some solutions to achieve a broadband response are given.

  16. Highlights from Faraday Discussion 182: Solid Oxide Electrolysis: Fuels and Feedstocks from Water and Air, York, UK, July 2015.

    PubMed

    Stefan, Elena; Norby, Truls

    2016-01-31

    The rising importance of converting high peak electricity from renewables to fuels has urged field specialists to organize this Faraday Discussion on Solid Oxide Electrolysis. The topic is of essential interest in order to achieve a greater utilization of renewable energy and storage at higher densities. PMID:26758816

  17. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  18. Infrared Thermometer

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Diatek Corporation, San Diego, CA and the Jet Propulsion Lab developed the Diatek Model 7000 aural thermometer which weighs only eight ounces, and measures temperature in less than two seconds using infrared astronomy technology to measure the amount of infrared energy emitted by the eardrum (the same way temperature of stars and planets is measured). This method avoids contact with mucous membranes, virtually eliminating the possibility of cross infection, and permits temperature measurement of newborn, critically ill, or incapacitated patients. Diatek Corporation was purchased by Welch Allyn Inc. The Diatek Model 7000 is now marketed as SureTemp.

  19. Infrared Images

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Earth objects emit natural radiation invisible to the unaided human eye, but visible to infrared scanning devices such as the device developed by Inframetrics, Inc. Such devices serve a number of purposes ranging from detection of heat loss in buildings for energy conservation measures, to examining heat output of industrial machinery for trouble shooting and preventive maintenance. Representative of system is Model 525, a small, lightweight field instrument that scans infrared radiation and translates its findings to a TV picture of the temperature pattern in the scene being viewed. An accessory device permits viewing the thermal radiation in color.

  20. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.