Sample records for infrared double-flash experiments

  1. Investigation of multi-scale flash-weakening of rock surfaces during high speed slip

    NASA Astrophysics Data System (ADS)

    Barbery, M. R.; Saber, O.; Chester, F. M.; Chester, J. S.

    2017-12-01

    A significant reduction in the coefficient of friction of rock can occur if sliding velocity approaches seismic rates as a consequence of weakening of microscopic sliding contacts by flash heating. Using a high-acceleration and -speed biaxial apparatus equipped with a high-speed Infra-Red (IR) camera to capture thermographs of the sliding surface, we have documented the heterogeneous distribution of temperature on flash-heated decimetric surfaces characterized by linear arrays of high-temperature, mm-size spots, and streaks. Numerical models that are informed by the character of flash heated surfaces and that consider the coupling of changes in temperature and changes in the friction of contacts, supports the hypothesis that independent mechanisms of flash weakening operate at different contact scales. Here, we report on new experiments that provide additional constraints on the life-times and rest-times of populations of millimeter-scale contacts. Rock friction experiments conducted on Westerly granite samples in a double-direct shear configuration achieve velocity steps from 1 mm/s to 900 mm/s at 100g accelerations over 2 mm of displacement with normal stresses of 22-36 MPa and 30 mm of displacement during sustained high-speed sliding. Sliding surfaces are machined to roughness similar to natural fault surfaces and that allow us to control the characteristics of millimeter-scale contact populations. Thermographs of the sliding surface show temperatures up to 200 C on millimeter-scale contacts, in agreement with 1-D heat conduction model estimates of 180 C. Preliminary comparison of thermal modeling results and experiment observations demonstrate that we can distinguish the different life-times and rest-times of contacts in thermographs and the corresponding frictional weakening behaviors. Continued work on machined surfaces that lead to different contact population characteristics will be used to test the multi-scale and multi-mechanism hypothesis for flash weakening during seismic slip on rough fault surfaces.

  2. Spectral measurements of muzzle flash with multispectral and hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Piątkowski, T.; Polakowski, H.

    2011-08-01

    The paper presents some practical aspects of the measurements of muzzle flash signatures. Selected signatures of sniper shot in typical scenarios has been presented. Signatures registered during all phases of muzzle flash were analyzed. High precision laboratory measurements were made in a special ballistic laboratory and as a result several flash patterns were registered. The field measurements of a muzzle flash were also performed. During the tests several infrared cameras were used, including the measurement class devices with high accuracy and frame rates. The registrations were made in NWIR, SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Some typical infrared shot signatures were presented. Beside the cameras, the LWIR imaging spectroradiometer HyperCam was also used during the laboratory experiments and the field tests. The signatures collected by the HyperCam device were useful for the determination of spectral characteristics of the muzzle flash, whereas the analysis of thermal images registered during the tests provided the data on temperature distribution in the flash area. As a result of the measurement session the signatures of several types handguns, machine guns and sniper rifles were obtained which will be used in the development of passive infrared systems for sniper detection.

  3. Muzzle flash issues related to the Waco FLIR analysis

    NASA Astrophysics Data System (ADS)

    Grant, Barbara G.; Hardy, David T.

    2001-09-01

    The controversy surrounding the origin of flashes on the Mt. Carmel FLIR videotape acquired on April 19, 1993, is introduced. The characteristics of muzzle flash are reviewed. A comparative weapons description is offered. The temporal, spatial, and radiance characteristics of thermal infrared muzzle flash are addressed. Data acquired from a field experiment are presented. The authors conclude that the spatial characteristics of muzzle flash enable its detection by equipment such as the FLIR in use at Mt. Carmel on April 19, 1993; that while flashes obtained in the field appear highly radiant, measurements are necessary to quantify their values; and that the temporal behavior of muzzle flash deserves further study.

  4. Musicians have enhanced audiovisual multisensory binding: experience-dependent effects in the double-flash illusion.

    PubMed

    Bidelman, Gavin M

    2016-10-01

    Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.

  5. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    NASA Astrophysics Data System (ADS)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  6. Innovative FEL schemes using variable-gap undulators

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2017-06-01

    We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.

  7. Development and performance characteristics of flash lamp pumped Yb:YAG, Cr:Tm:Ho:YAG, Er:Tm:Ho:YLF laser sources and investigation of their potential biological applications

    NASA Astrophysics Data System (ADS)

    Karadimitriou, N.; Klinkenberg, B.; Papadopoulos, D. N.; Serafetinides, A. A.

    2007-07-01

    Laser ablation for the formation of apodized patterns on intraocular lenses, as an alternative of the conventional injection molding, has been proved to be a very promising new technique. For the precise lenses ablation, the use of suitable laser wavelength and pulse duration, resulting in a small optical penetration depth in the lens and in confinement of the energy deposition in a small volume, as well as the reduced thermal damage to the surrounding tissue, is essential. Mid-infrared laser wavelengths, at which the organic biological simulators absorption coefficient is large, meet well the above conditions. Towards the complete understanding of the intraocular lens ablation procedure and therefore the choice of the optimum laser beam characteristics for the most accurate, efficient and safe surgical application, the comparative study of various mid-infrared laser sources is of great interest. In this work we investigate the potential of the development of three different mid-infrared laser sources, namely the Yb:YAG, the Cr:Tm:Ho:YAG and the Er:Tm:Ho:YLF laser, operating at 1029 nm, 2060 nm and 2080 nm respectively and their ability in forming patterns on biomaterials. Pumping was achieved with conventional Xe flash lamps in a double elliptical pump chamber. A properly designed Pulse-Forming- Network capable of delivering energy up to 800 J, in variable lamp illumination durations is used. Several hundreds of mJoules were achieved from the Yb:YAG laser oscillator and several Joules from the Ho:YAG and Ho:YLF laser oscillators. Free running and Q-switched laser operation studies and preliminary experiments on laser and biomaterials (biopolymers and animal tissues) interactions will be reported.

  8. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: Matrix infrared spectra and anharmonic frequency calculations

    NASA Astrophysics Data System (ADS)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-01

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  9. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  10. THz pulse doubler at FLASH: double pulses for pump–probe experiments at X-ray FELs

    PubMed Central

    Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Stojanovic, Nikola

    2018-01-01

    FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine’s full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented. PMID:29271749

  11. THz pulse doubler at FLASH: double pulses for pump-probe experiments at X-ray FELs.

    PubMed

    Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Schreiber, Siegfried; Stojanovic, Nikola

    2018-01-01

    FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine's full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented.

  12. Application of lightning data to satellite-based rainfall estimation

    NASA Technical Reports Server (NTRS)

    Martin, David W.; Hinton, Barry B.; Auvine, Brian A.

    1991-01-01

    Information on lightning may improve rain estimates made from infrared images of a geostationary satellite. We address this proposition through a case from the Cooperative Huntsville Meteorological Experiment (COHMEX). During the afternoon and evening of 13 July 1986 waves of showers and thunderstorms developed over and near the lower Tennessee River Valley. For the shower and thunderstorm region within 200 km of the National Weather Service radar at Nashville, Tennessee, we measure cold-cloud area in a sequence of GOES infrared images covering all but the end of the shower and thunderstorm period. From observations of the NASA/Marshall direction-finding network in this small domain, we also count cloud-to-ground lightning flashes and, from scans of the Nashville radar, we calculate volume rain flux. Using a modified version of the Williams and Houze scheme, over an area within roughly 240 km of the radar (the large domain), we identify and track cold cloud systems. For these systems, over the large domain, we measure area and count flashes; over the small domain, we calculate volume rain flux. For a temperature threshold of 235K, peak cloud area over the small domain lags both peak rain flux and peak flash count by about four hours. At a threshold of 226K, the lag is about two hours. Flashes and flux are matched in phase. Over the large domain, nine storm systems occur. These range in size from 300 to 60,000 km(exp 2); in lifetime, from about 2 1/2 h to 6 h or more. Storm system area lags volume rain flux and flash count; nevertheless, it is linked with these variables. In essential respects the associations were the same when clouds were defined by a threshold of 226K. Tentatively, we conclude that flash counts complement infrared images in providing significant additional information on rain flux.

  13. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiangang

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  14. Gabapentin for hot flashes in 420 women with breast cancer: a randomised double-blind placebo-controlled trial

    PubMed Central

    Pandya, K J; Morrow, G R; Roscoe, J A; Hickok, J T; Zhao, H; Pajon, E; Sweeney, T J; Banerjee, T K; Flynn, P J

    2005-01-01

    Summary Background Most women receiving systemic therapy for breast cancer experience hot flashes. We undertook a randomised, double-blind, placebo-controlled, multi-institutional trial to assess the efficacy of gabapentin in controlling hot flashes in women with breast cancer. Methods 420 women with breast cancer who were having two or more hot flashes per day were randomly assigned placebo, gabapentin 300 mg/day, or gabapentin 900 mg/day by mouth in three divided doses for 8 weeks. Each patient kept a 1-week, self-report diary on the frequency, severity, and duration of hot flashes before the start of the study and during weeks 4 and 8 of treatment. Analyses were by intention to treat. Findings Evaluable data were available on 371 participants at 4 weeks (119 placebo, 123 gabapentin 300 mg, and 129 gabapentin 900 mg) and 347 at 8 weeks (113 placebo, 114 gabapentin 300 mg, and 120 gabapentin 900 mg). The percentage decreases in hot-flash severity score between baseline and weeks 4 and 8, respectively were: 21% (95% CI 12 to 30) and 15% (1 to 29) in the placebo group; 33% (23 to 43) and 31% (16 to 46) in the group assigned gabapentin 300 mg; and 49% (42 to 56) and 46% (34 to 58) in the group assigned gabapentin 900 mg. The differences between the groups were significant (p=0.0001 at 4 weeks and p=0.007 at 8 weeks by ANCOVA for overall treatment effect, adjusted for baseline values); only the higher dose of gabapentin was associated with significant decreases in hot-flash frequency and severity. Interpretation Gabapentin is effective in the control of hot flashes at a dose of 900 mg/day, but not at a dose of 300 mg/day. This drug should be considered for treatment of hot flashes in women with breast cancer. PMID:16139656

  15. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink

    PubMed Central

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-01

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215

  16. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink.

    PubMed

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-25

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm).

  17. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  18. Super-resolution depth information from a short-wave infrared laser gated-viewing system by using correlated double sampling

    NASA Astrophysics Data System (ADS)

    Göhler, Benjamin; Lutzmann, Peter

    2017-10-01

    Primarily, a laser gated-viewing (GV) system provides range-gated 2D images without any range resolution within the range gate. By combining two GV images with slightly different gate positions, 3D information within a part of the range gate can be obtained. The depth resolution is higher (super-resolution) than the minimal gate shift step size in a tomographic sequence of the scene. For a state-of-the-art system with a typical frame rate of 20 Hz, the time difference between the two required GV images is 50 ms which may be too long in a dynamic scenario with moving objects. Therefore, we have applied this approach to the reset and signal level images of a new short-wave infrared (SWIR) GV camera whose read-out integrated circuit supports correlated double sampling (CDS) actually intended for the reduction of kTC noise (reset noise). These images are extracted from only one single laser pulse with a marginal time difference in between. The SWIR GV camera consists of 640 x 512 avalanche photodiodes based on mercury cadmium telluride with a pixel pitch of 15 μm. A Q-switched, flash lamp pumped solid-state laser with 1.57 μm wavelength (OPO), 52 mJ pulse energy after beam shaping, 7 ns pulse length and 20 Hz pulse repetition frequency is used for flash illumination. In this paper, the experimental set-up is described and the operating principle of CDS is explained. The method of deriving super-resolution depth information from a GV system by using CDS is introduced and optimized. Further, the range accuracy is estimated from measured image data.

  19. Synchronized Electronic Shutter System (SESS) for Thermal Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.

    2001-01-01

    The purpose of this paper is to describe a new method for thermal nondestructive evaluation. This method uses a synchronized electronic shutter system (SESS) to remove the heat lamp's influence on the thermal data during and after flash heating. There are two main concerns when using flash heating. The first concern is during the flash when the photons are reflected back into the camera. This tends to saturate the detectors and potentially introduces unknown and uncorrectable errors when curve fitting the data to a model. To address this, an electronically controlled shutter was placed over the infrared camera lens. Before firing the flash lamps, the shutter is opened to acquire the necessary background data for offset calibration. During flash heating, the shutter is closed to prevent the photons from the high intensity flash from saturating the camera's detectors. The second concern is after the flash heating where the lamps radiate heat after firing. This residual cooling introduces an unwanted transient thermal response into the data. To remove this residual effect, a shutter was placed over the flash lamps to block the infrared heat radiating from the flash head after heating. This helped to remove the transient contribution of the flash. The flash lamp shutters were synchronized electronically with the camera shutter. Results are given comparing the use of the thermal inspection with and without the shutter system.

  20. A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  1. Normalized Temperature Contrast Processing in Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.

  2. Microstructure and microchemistry of flash sintered K 0.5Na 0.5NbO 3

    DOE PAGES

    Corapcioglu, Gulcan; Gulgun, Mehmet Ali; Kisslinger, Kim; ...

    2016-04-30

    In this paper, flash sintering experiments were performed, for the first time, on sodium potassium niobate (KNN) ceramics. A theoretical density of 94% was achieved in 30 s under 250 V/cm electric-field at 990°C. These conditions are ~100°C lower and faster than the conventional sintering conditions. Grains tended to grow after 30 s. flash sintering duration under constant electric-field. Detailed microstructural and chemical investigations of the sample showed that there was inhomogenous Na, K distribution and it resembles a core–shell structure where K is more in the shell and Na is more in the core region. The inhomogenous distribution ofmore » Na and K was correlated with the doubling of the unit cell within the grain along 002 direction. Compositional equilibrium is achieved after a heat treatment at 1000°C for 4 h. Finally, the compositional variations appeared to have been linked to grain boundary melting during flash and consequent recrystallization as the sample cooled.« less

  3. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  4. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    DOE R&D Accomplishments Database

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  5. The absence of attenuating effect of red light exposure on pre-existing melanopsin-driven post-illumination pupil response.

    PubMed

    Lei, Shaobo; Goltz, Herbert C; Sklar, Jaime C; Wong, Agnes M F

    2016-07-01

    It has been proposed that after activation by blue light, activated melanopsin is converted back to its resting state by long wavelength red light exposure, a putative mechanism of melanopsin chromophore recovery in vivo. We tested this hypothesis by investigating whether red light attenuates the ongoing post-illumination pupil response (PIPR) induced by melanopsin-activating blue light. Pupillary light responses were tested using "Blue+Red" double flashes and "Blue Only" single flash stimuli in 10 visually normal subjects. For "Blue+Red" conditions, PIPR was induced with an intense blue flash, followed by experimental red light exposure of variable intensity and duration (Experiment 1) immediately or 9s after the offset of the blue flash (Experiment 2). For "Blue Only" conditions, only the PIPR-inducing blue stimuli were presented (reference condition). PIPR was defined as the mean pupil size from 10 to 30s (Experiment 1) and from 25 to 60s (Experiment 2) after the offset of blue light stimuli. The results showed that PIPR from "Blue+Red" conditions did not differ significantly from those of "Blue Only" conditions (p=0.55) in Experiment 1. The two stimulation conditions also did not differ in Experiment 2 (p=0.38). We therefore conclude that red light exposure does not alter the time course of PIPR induced by blue light. This finding does not support the hypothesis that long wavelength red light reverses activated melanopsin; rather it lends support to the hypothesis that the wavelengths of stimuli driving both the forward and backward reactions of melanopsin may be similar. Copyright © 2016. Published by Elsevier Ltd.

  6. Active infrared thermal imaging technology to detect the corrosion defects in aircraft cargo door

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Zhang, Cunlin; Zeng, Zhi; Xing, Chunfei; Li, Yanhong

    2009-11-01

    Aircraft fuselage material corrosion problems have been major aviation security issues, which hinder the development of aviation industry. How can we use non-destructive testing methods to detect the internal corrosion defects from the outside of the fuselage, to find the hidden safety problems in advance and update the defective equipment and materials, has great significance for the prevention of accidents. Nowadays, the active infrared thermal imaging technology as a new nondestructive technology has been gradually used on a wide variety of materials, such as composite, metal and so on. This article makes use of this technology on an aircraft cargo door specimen to detect the corrosion defects. Firstly, use High-energy flash pulse to excite the specimen, and use the thermal image processing software to splice the thermal images, so the thermal images of the overall specimen can be showed. Then, heat the defects by ultrasonic excitation, this will cause vibration and friction or thermoelastic effects in the places of defects, so the ultrasonic energy will dissipate into heat and manifested in the uneven temperature of surface. An Infrared camera to capture the changes of temperature of material surface, send data to the computer and records the thermal information of the defects. Finally, extracting data and drawing infrared radiation-time curve of some selected points of interest to analyze the signal changes in heat of defects further more. The results of the experiments show that both of the two ways of heat excitation show a clear position and shape of defects, and the ultrasonic method has more obvious effect of excitation to the defects, and a higher signal to noise ratio than the flash pulse excitation, but flash pulse method do not contact the specimen in the process of excitation, and shows the location and shape of defects in the overall of the specimen has its advantages.

  7. Optical bullet-tracking algorithms for weapon localization in urban environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R S; Breitfeller, E F

    2006-03-31

    Localization of the sources of small-arms fire, mortars, and rocket propelled grenades is an important problem in urban combat. Weapons of this type produce characteristic signatures, such as muzzle flashes, that are visible in the infrared. Indeed, several systems have been developed that exploit the infrared signature of muzzle flash to locate the positions of shooters. However, systems based on muzzle flash alone can have difficulty localizing weapons if the muzzle flash is obscured or suppressed. Moreover, optical clutter can be problematic to systems that rely on muzzle flash alone. Lawrence Livermore National Laboratory (LLNL) has developed a projectile trackingmore » system that detects and localizes sources of small-arms fire, mortars and similar weapons using the thermal signature of the projectile rather than a muzzle flash. The thermal signature of a projectile, caused by friction as the projectile travels along its trajectory, cannot be concealed and is easily discriminated from optical clutter. The LLNL system was recently demonstrated at the MOUT facility of the Aberdeen Test Center [1]. In the live-fire demonstration, shooters armed with a variety of small-arms, including M-16s, AK-47s, handguns, mortars and rockets, were arranged at several positions in around the facility. Experiments ranged from a single-weapon firing a single-shot to simultaneous fire of all weapons on full automatic. The LLNL projectile tracking system was demonstrated to localize multiple shooters at ranges up to 400m, far greater than previous demonstrations. Furthermore, the system was shown to be immune to optical clutter that is typical in urban combat. This paper describes the image processing and localization algorithms designed to exploit the thermal signature of projectiles for shooter localization. The paper begins with a description of the image processing that extracts projectile information from a sequence of infrared images. Key to the processing is an adaptive spatio-temporal filter developed to suppress scene clutter. The filtered image sequence is further processed to produce a set of parameterized regions, which are classified using several discriminate functions. Regions that are classified as projectiles are passed to a data association algorithm that matches features from these regions with existing tracks, or initializes new tracks as needed. A Kalman filter is used to smooth and extrapolate existing tracks. Shooter locations are determined by solving a combinatorial least-squares solution for all bullet tracks. It also provides an error ellipse for each shooter, quantifying the uncertainty of shooter location. The paper concludes with examples from the live-fire exercise at the Aberdeen Test Center.« less

  8. Enlarged temporal integration window in schizophrenia indicated by the double-flash illusion.

    PubMed

    Haß, Katharina; Sinke, Christopher; Reese, Tanya; Roy, Mandy; Wiswede, Daniel; Dillo, Wolfgang; Oranje, Bob; Szycik, Gregor R

    2017-03-01

    In the present study we were interested in the processing of audio-visual integration in schizophrenia compared to healthy controls. The amount of sound-induced double-flash illusions served as an indicator of audio-visual integration. We expected an altered integration as well as a different window of temporal integration for patients. Fifteen schizophrenia patients and 15 healthy volunteers matched for age and gender were included in this study. We used stimuli with eight different temporal delays (stimulus onset asynchronys (SOAs) 25, 50, 75, 100, 125, 150, 200 and 300 ms) to induce a double-flash illusion. Group differences and the widths of temporal integration windows were calculated on percentages of reported double-flash illusions. Patients showed significantly more illusions (ca. 36-44% vs. 9-16% in control subjects) for SOAs 150-300. The temporal integration window for control participants went from SOAs 25 to 200 whereas for patients integration was found across all included temporal delays. We found no significant relationship between the amount of illusions and either illness severity, chlorpromazine equivalent doses or duration of illness in patients. Our results are interpreted in favour of an enlarged temporal integration window for audio-visual stimuli in schizophrenia patients, which is consistent with previous research.

  9. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  10. Technology of uncooled fast polycrystalline PbSe focal plane arrays in systems for muzzle flash detection

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; PiÄ tkowski, Tadeusz; Polakowski, Henryk; Barela, Jaroslaw; Firmanty, Krzysztof; Trzaskawka, Piotr; Vergara, German; Linares, Rodrigo; Gutierrez, Raul; Fernandez, Carlos; Montojo Supervielle, Maria Teresa

    2014-05-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe 32×32 and 80×80 detectors FPA operating at room temperature (uncooled performance). These sensors, which detect in MWIR (3 - 5 microns region) and are manufactured using proprietary technology from New Infrared Technologies (VPD PbSe - Vapor Phase Deposition of polycrystalline PbSe), can be applied to muzzle flash detection. The system based in the uncooled 80×80 FPA monolithically integrated with the CMOS readout circuitry has allowed image recording with frame rates over 2000 Hz (true snapshot acquisition), whereas the lower density, uncooled 32×32 FPA is suitable for being used in low cost infrared imagers sensitive in the MWIR band with frame rates above 1000 Hz. The FPA detector, read-out electronics and processing electronics (allows the implementation of some algorithms for muzzle flash detection) of both systems are presented. The systems have been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The theoretical analysis of possibility detection of muzzle flash and initial results of testing of some algorithms for muzzle flash detection have been presented too.

  11. Nano- and micro-structuring of fused silica using time-delay adjustable double flash ns-laser radiation

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zhao, Xiongtao; Ehrhardt, Martin; Zagoranskiy, Igor; Zimmer, Klaus; Han, Bing

    2018-02-01

    Large area, high speed, nanopatterning of surfaces by laser ablation is challenging due to the required high accuracy of the optical and mechanical systems fulfilling the precision of nanopatterning process. Utilization of self-organization approaches can provide an alternative decoupling spot precision and field of machining. The laser-induced front side etching (LIFE) and laser-induced back side dry etching (LIBDE) of fused silica were studied using single and double flash nanosecond laser pulses with a wavelength of 532 nm where the time delay Δτ of the double flash laser pulses was adjusted from 50 ns to 10 μs. The fused silica can be etched at both processes assisted by a 10 nm chromium layer where the etching depth Δz at single flash laser pulses is linear to the laser fluence and independent on the number of laser pulses, from 2 to 12 J/cm2, it is Δz = δLIFE/LIBDE . Φ with δLIFE 16 nm/(J/cm2) and δLIBDE 5.2 nm/(J/cm2) 3 . δLIFE. At double flash laser pulses, the Δz is dependent on the time delay Δτ of the laser pulses and the Δz slightly increased at decreasing Δτ. Furthermore, the surface nanostructuring of fused silica using IPSM-LIFE (LIFE using in-situ pre-structured metal layer) method with a single double flash laser pulse was tested. The first pulse of the double flash results in a melting of the metal layer. The surface tension of the liquid metal layer tends in a droplet formation process and dewetting process, respectively. If the liquid phase life time ΔtLF is smaller than the droplet formation time the metal can be "frozen" in an intermediated state like metal bare structures. The second laser treatment results in a evaporation of the metal and in a partial evaporation and melting of the fused silica surface, where the resultant structures in the fused silica surface are dependent on the lateral geometry of the pre-structured metal layer. A successful IPSM-LIFE structuring could be achieved assisted by a 20 nm molybdenum layer at Δτ >= 174 ns. That path the way for the high speed ultra-fast nanostructuring of dielectric surfaces by self-organizing processes. The different surface structures were analyzed by scanning electron microscopy (SEM) and white light interferometry (WLI).

  12. High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grijalva, R. L.; Sanemitsu, S. K.

    1978-11-01

    Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less

  13. NASA MUST Paper: Infrared Thermography of Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla; Koshti, Ajay

    2010-01-01

    The focus of this project is to use Infrared Thermography, a non-destructive test, to detect detrimental cracks and voids beneath the surface of materials used in the space program. This project will consist of developing a simulation model of the Infrared Thermography inspection of the Graphite/Epoxy specimen. The simulation entails finding the correct physical properties for this specimen as well as programming the model for thick voids or flat bottom holes. After the simulation is completed, an Infrared Thermography inspection of the actual specimen will be made. Upon acquiring the experimental test data, an analysis of the data for the actual experiment will occur, which includes analyzing images, graphical analysis, and analyzing numerical data received from the infrared camera. The simulation will then be corrected for any discrepancies between it and the actual experiment. The optimized simulation material property inputs can then be used for new simulation for thin voids. The comparison of the two simulations, the simulation for the thick void and the simulation for the thin void, provides a correlation between the peak contrast ratio and peak time ratio. This correlation is used in the evaluation of flash thermography data during the evaluation of delaminations.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corapcioglu, Gulcan; Gulgun, Mehmet Ali; Kisslinger, Kim

    In this paper, flash sintering experiments were performed, for the first time, on sodium potassium niobate (KNN) ceramics. A theoretical density of 94% was achieved in 30 s under 250 V/cm electric-field at 990°C. These conditions are ~100°C lower and faster than the conventional sintering conditions. Grains tended to grow after 30 s. flash sintering duration under constant electric-field. Detailed microstructural and chemical investigations of the sample showed that there was inhomogenous Na, K distribution and it resembles a core–shell structure where K is more in the shell and Na is more in the core region. The inhomogenous distribution ofmore » Na and K was correlated with the doubling of the unit cell within the grain along 002 direction. Compositional equilibrium is achieved after a heat treatment at 1000°C for 4 h. Finally, the compositional variations appeared to have been linked to grain boundary melting during flash and consequent recrystallization as the sample cooled.« less

  15. An upconverted photonic nonvolatile memory.

    PubMed

    Zhou, Ye; Han, Su-Ting; Chen, Xian; Wang, Feng; Tang, Yong-Bing; Roy, V A L

    2014-08-21

    Conventional flash memory devices are voltage driven and found to be unsafe for confidential data storage. To ensure the security of the stored data, there is a strong demand for developing novel nonvolatile memory technology for data encryption. Here we show a photonic flash memory device, based on upconversion nanocrystals, which is light driven with a particular narrow width of wavelength in addition to voltage bias. With the help of near-infrared light, we successfully manipulate the multilevel data storage of the flash memory device. These upconverted photonic flash memory devices exhibit high ON/OFF ratio, long retention time and excellent rewritable characteristics.

  16. Multispectral signature analysis measurements of selected sniper rifles and small arms

    NASA Astrophysics Data System (ADS)

    Law, David B.; Carapezza, Edward M.; Csanadi, Christina J.; Edwards, Gerald D.; Hintz, Todd M.; Tong, Ronald M.

    1997-02-01

    During October 1995 - June 1996, the Naval Command, Control and Ocean Surveillance Center RDT&E Division (NRaD), under sponsorship from Defense Advanced Research Projects Agency (DARPA), conducted an intensive series of multi-spectral signature analyses of typical sniper weapons. Multi-spectral signatures of the muzzle flashes from rifles and pistols and some imagery of the bullets in flight were collected. Multi- spectral signatures of the muzzle flash were collected in the infrared (2.5 - 14.5 microns), visible -- near-IR (400 - 1200 nanometers), and the ultra-violet (185 - 400 nanometers) wavelength regions. These measurements consisted of high spectral resolution (0.0159 micron) measurements of the spectral radiance of the muzzle flash. A time history plot of the muzzle flash as it evolves just forward of the end of the muzzle is provided. These measurements were performed with a CI Systems Model SR5000 IR/Visible spectroradiometer and an Ocean Optics Model PC1000 UV spectroradiometer. Muzzle flash infrared imagery is provided to show the effect that specific muzzle breaks have on the resulting muzzle flash. The following set of sniper weapons were included in this test: AK-47, SKS, M16A2, M-14, FN-FAL, SMLE IIa, 03 Springfield, SVD Dragunov, 50 caliber McMillan, and a 45 caliber ACP pistol. The results of this signature analysis show that important measurable electro-optical differences do exist between all these weapons in terms of spectral radiance of the flash, spectral content of the gun powders, and spectral shapes/geometries of the muzzle flashes. These differences were sufficient such that, after a more complete data base is collected, it will be possible to develop a passive electro-optical weapon and ammunition identifier.

  17. Adaptive P300 based control system

    PubMed Central

    Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa

    2015-01-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing interference from items adjacent to targets. 14-flash A also reduced adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that accuracy and bit rate of the adaptive system were higher than the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naïve users. PMID:21474877

  18. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  19. Joint effects of smoking and gene variants involved in sex steroid metabolism on hot flashes in late reproductive-age women.

    PubMed

    Butts, Samantha F; Freeman, Ellen W; Sammel, Mary D; Queen, Kaila; Lin, Hui; Rebbeck, Timothy R

    2012-06-01

    Although smoking has a known association with hot flashes, the factors distinguishing smokers at greatest risk for menopausal symptoms have not been well delineated. Recent evidence supports a relationship between menopausal symptoms and variants in several genes encoding enzymes that metabolize substrates such as sex steriods, xenobiotics, and catechols. It is currently not known whether the impact of smoking on hot flashes is modified by the presence of such variants. The objective of the study was to investigate the relationship between smoking and hot flash occurrence as a function of genetic variation in sex steroid-metabolizing enzymes. A cross-sectional analysis of data from the Penn Ovarian Aging study, an ongoing population-based cohort of late reproductive-aged women, was performed. Smoking behavior was characterized. Single-nucleotide polymorphisms in five genes were investigated: COMT Val158Met (rs4680), CYP1A2*1F (rs762551), CYP1B1*4 (Asn452Ser, rs1800440), CYP1B1*3 (Leu432Val, rs1056836), and CYP3A4*1B (rs2740574). Compared with nonsmokers, European-American COMT Val158Met double-variant carriers who smoked had increased odds of hot flashes [adjusted odds ratio (AOR) 6.15, 95% confidence interval (CI) 1.32-28.78)]; European-American COMT Val158Met double-variant carriers who smoked heavily had more frequent moderate or severe hot flashes than nonsmokers (AOR 13.7, 95% CI 1.2-154.9). European-American CYP 1B1*3 double-variant carriers who smoked described more frequent moderate or severe hot flashes than nonsmoking (AOR 20.6, 95% CI 1.64-257.93) and never-smoking (AOR 20.59, 95% CI 1.39-304.68) carriers, respectively. African-American single-variant CYP 1A2 carriers who smoked were more likely to report hot flashes than the nonsmoking carriers (AOR 6.16, 95% CI 1.11-33.91). This is the first report demonstrating the effects of smoking within the strata of gene variants involved in sex steroid metabolism on hot flashes in late reproductive-age women. The identification of individuals with a genetic susceptibility to smoking-related menopausal symptoms could contribute to interventions targeted at reducing reproductive morbidity both in the menopause and across the reproductive life course.

  20. Porosity Measurement in Laminated Composites by Thermography and FEA

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.

  1. Statistical Analysis of an Infrared Thermography Inspection of Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2011-01-01

    Each piece of flight hardware being used on the shuttle must be analyzed and pass NASA requirements before the shuttle is ready for launch. One tool used to detect cracks that lie within flight hardware is Infrared Flash Thermography. This is a non-destructive testing technique which uses an intense flash of light to heat up the surface of a material after which an Infrared camera is used to record the cooling of the material. Since cracks within the material obstruct the natural heat flow through the material, they are visible when viewing the data from the Infrared camera. We used Ecotherm, a software program, to collect data pertaining to the delaminations and analyzed the data using Ecotherm and University of Dayton Log Logistic Probability of Detection (POD) Software. The goal was to reproduce the statistical analysis produced by the University of Dayton software, by using scatter plots, log transforms, and residuals to test the assumption of normality for the residuals.

  2. Infrared contrast data analysis method for quantitative measurement and monitoring in flash infrared thermography

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.

  3. PAIR-DOMINATED GeV-OPTICAL FLASH IN GRB 130427A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M., E-mail: indrek.vurm@gmail.com

    2014-07-10

    We show that the light curve of the double GeV+optical flash in GRB 130427A is consistent with radiation from the blast wave in a wind-type medium with density parameter A = ρr {sup 2} ∼ 5 × 10{sup 10} g cm{sup –1}. The peak of the flash is emitted by copious e {sup ±} pairs created and heated in the blast wave; our first-principle calculation determines the pair-loading factor and temperature of the shocked plasma. Using detailed radiative transfer simulations, we reconstruct the observed double flash. The optical flash is dominated by synchrotron emission from the thermal plasma behind the forward shock, andmore » the GeV flash is produced via inverse Compton (IC) scattering by the same plasma. The seed photons for IC scattering are dominated by the prompt MeV radiation during the first tens of seconds, and by the optical to X-ray afterglow thereafter. IC cooling of the thermal plasma behind the forward shock reproduces all GeV data from a few seconds to ∼1 day. We find that the blast wave Lorentz factor at the peak of the flash is Γ ≈ 200, and the forward shock magnetization is ε{sub B} ∼ 2 × 10{sup –4}. An additional source is required by the data in the optical and X-ray bands at times >10{sup 2} s; we speculate that this additional source may be a long-lived reverse shock in the explosion ejecta.« less

  4. Joint Effects of Smoking and Gene Variants Involved in Sex Steroid Metabolism on Hot Flashes in Late Reproductive-Age Women

    PubMed Central

    Freeman, Ellen W.; Sammel, Mary D.; Queen, Kaila; Lin, Hui; Rebbeck, Timothy R.

    2012-01-01

    Background: Although smoking has a known association with hot flashes, the factors distinguishing smokers at greatest risk for menopausal symptoms have not been well delineated. Recent evidence supports a relationship between menopausal symptoms and variants in several genes encoding enzymes that metabolize substrates such as sex steriods, xenobiotics, and catechols. It is currently not known whether the impact of smoking on hot flashes is modified by the presence of such variants. Objective: The objective of the study was to investigate the relationship between smoking and hot flash occurrence as a function of genetic variation in sex steroid-metabolizing enzymes. Methods: A cross-sectional analysis of data from the Penn Ovarian Aging study, an ongoing population-based cohort of late reproductive-aged women, was performed. Smoking behavior was characterized. Single-nucleotide polymorphisms in five genes were investigated: COMT Val158Met (rs4680), CYP1A2*1F (rs762551), CYP1B1*4 (Asn452Ser, rs1800440), CYP1B1*3 (Leu432Val, rs1056836), and CYP3A4*1B (rs2740574). Results: Compared with nonsmokers, European-American COMT Val158Met double-variant carriers who smoked had increased odds of hot flashes [adjusted odds ratio (AOR) 6.15, 95% confidence interval (CI) 1.32–28.78)]; European-American COMT Val158Met double-variant carriers who smoked heavily had more frequent moderate or severe hot flashes than nonsmokers (AOR 13.7, 95% CI 1.2–154.9). European-American CYP 1B1*3 double-variant carriers who smoked described more frequent moderate or severe hot flashes than nonsmoking (AOR 20.6, 95% CI 1.64–257.93) and never-smoking (AOR 20.59, 95% CI 1.39–304.68) carriers, respectively. African-American single-variant CYP 1A2 carriers who smoked were more likely to report hot flashes than the nonsmoking carriers (AOR 6.16, 95% CI 1.11–33.91). Conclusion: This is the first report demonstrating the effects of smoking within the strata of gene variants involved in sex steroid metabolism on hot flashes in late reproductive-age women. The identification of individuals with a genetic susceptibility to smoking-related menopausal symptoms could contribute to interventions targeted at reducing reproductive morbidity both in the menopause and across the reproductive life course. PMID:22466345

  5. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  6. Morphology and FT-IR analysis of anti-pollution flashover coatings with adding nano SiO2 particles

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Du, Yishu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong

    2017-12-01

    By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM), infrared spectrometer (FT-IR) and EDS characterization were carried out on the coating surface analysis. Those results has been use to optimize the further design and platform of the enhanced K-PRTV pollution flash coating experiment. It is also to improve the plan formulation, formulation optimization and preparation of the hydrophobic modified K-PRTV which is based on anti-pollution coating experiment. More importantly, the anti-pollution flashover K-PRTV coating with super hydrophobic modified is the great significance for K-PRTV coating.

  7. Flash Diffusivity Technique Applied to Individual Fibers

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Yowell, Leonard; Wang, Hsin

    2007-01-01

    A variant of the flash diffusivity technique has been devised for determining the thermal diffusivities, and thus the thermal conductivities, of individual aligned fibers. The technique is intended especially for application to nanocomposite fibers, made from narrower fibers of polyphenylene benzobisthiazole (PBZT) and carbon nanotubes. These highly aligned nanocomposite fibers could exploit the high thermal conductivities of carbon nanotubes for thermal-management applications. In the flash diffusivity technique as practiced heretofore, one or more heat pulse(s) is (are) applied to the front face of a plate or disk material specimen and the resulting time-varying temperature on the rear face is measured. Usually, the heat pulse is generated by use of a xenon flash lamp, and the variation of temperature on the rear face is measured by use of an infrared detector. The flash energy is made large enough to produce a usefully high temperature rise on the rear face, but not so large as to significantly alter the specimen material. Once the measurement has been completed, the thermal diffusivity of the specimen is computed from the thickness of the specimen and the time dependence of the temperature variation on the rear face. Heretofore, the infrared detector used in the flash diffusivity technique has been a single-point detector, which responds to a spatial average of the thermal radiation from the rear specimen surface. Such a detector cannot distinguish among regions of differing diffusivity within the specimen. Moreover, two basic assumptions of the thermaldiffusivity technique as practiced heretofore are that the specimen is homogeneous and that heat flows one-dimensionally from the front to the rear face. These assumptions are not valid for an inhomogeneous (composite) material.

  8. Spectroscopic temperature measurements in interior ballistic environments

    NASA Astrophysics Data System (ADS)

    Klingenberg, G.; Mach, H.

    1984-11-01

    Spectroscopic temperature measurements during the interior ballistic cycle of a 20 mm test fixture gun and inside the muzzle flash of a 7.62 mm rifle are described. The investigation yields information on temperature distribution in the burning propellant charge of the 20 mm test fixture and on radial temperature profiles in the 7.62 mm muzzle flash region. A technique to obtain temperature during the ignition and combustion within the 20 mm propellant charge is presented. Additional in-bore measurements by quartz windows mounted into bores along the barrel and emission-absorption measurements inside the muzzle flash of the 20 mm test fixture yield a complete temperature profile for the gun system. Spectroscopic infrared measurements inside the muzzle flash of a 7.62 mm rifle complete the investigation.

  9. Effect of Escitalopram on Hot Flash Interference: A Randomized, Controlled Trial

    PubMed Central

    Carpenter, Janet S.; Guthrie, Katherine A.; Larson, Joseph C.; Freeman, Ellen W.; Joffe, Hadine; Reed, Susan D.; Ensrud, Kristine E.; LaCroix, Andrea Z.

    2012-01-01

    Objectives To estimate the effect of escitalopram 10–20 mg/day versus placebo for reducing hot flash interference in daily life and understand correlates and predictors of reductions in hot flash interference, a key measure of quality of life. Design Multi-site, randomized, double-blind, placebo-controlled clinical trial. Patients 205 midlife women (46% African-American) who met criteria participated. Setting MsFLASH clinical sites in Boston, Indianapolis, Oakland, and Philadelphia. Intervention After baseline, women were randomized to 1 pill of escitalopram 10 mg/day (n=104) or placebo (n=101) with follow-up at 4- and 8-weeks. At week 4, those not achieving 50% fewer hot flashes were increased to 2 pills daily (20 mg/day or 2 placebo pills). Main outcome measures The Hot Flash Related Daily Interference Scale; Correlates were variables from hot flash diaries; Predictors were baseline demographics, clinical variables, depression, anxiety, sleep quality, and hot flashes. Results Compared to placebo, escitalopram significantly reduced hot flash interference by 6.0 points at week 4 and 3.4 points at week 8 more than placebo (p=0.012). Reductions in hot flash interference correlated with changes in hot flash diary variables. However, baseline variables did not significantly predict reductions in hot flash interference. Conclusions Escitalopram 10–20mg/day for 8 weeks improves women’s quality of life and this benefit did not vary by demographic, clinical, mood, sleep, or hot flash variables. PMID:22480818

  10. Pyrolysis of the Simplest Carbohydrate, Glycolaldehyde (CHO-CH2OH), and Glyoxal in a Heated Microreactor.

    PubMed

    Porterfield, Jessica P; Baraban, Joshua H; Troy, Tyler P; Ahmed, Musahid; McCarthy, Michael C; Morgan, Kathleen M; Daily, John W; Nguyen, Thanh Lam; Stanton, John F; Ellison, G Barney

    2016-04-14

    Both glycolaldehyde and glyoxal were pyrolyzed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from CHO-CH2OH and HCO-CHO were detected and identified by vacuum ultraviolet (VUV) photoionization mass spectrometry. Complementary product identification was provided by argon matrix infrared absorption spectroscopy. Pyrolysis pressures in the microreactor were about 100 Torr, and contact times with the microreactors were roughly 100 μs. At 1200 K, the products of glycolaldehyde pyrolysis are H atoms, CO, CH2═O, CH2═C═O, and HCO-CHO. Thermal decomposition of HCO-CHO was studied with pulsed 118.2 nm photoionization mass spectrometry and matrix infrared absorption. Under these conditions, glyoxal undergoes pyrolysis to H atoms and CO. Tunable VUV photoionization mass spectrometry provides a lower bound for the ionization energy (IE)(CHO-CH2OH) ≥ 9.95 ± 0.05 eV. The gas-phase heat of formation of glycolaldehyde was established by a sequence of calorimetric experiments. The experimental result is ΔfH298(CHO-CH2OH) = -75.8 ± 1.3 kcal mol(-1). Fully ab initio, coupled cluster calculations predict ΔfH0(CHO-CH2OH) of -73.1 ± 0.5 kcal mol(-1) and ΔfH298(CHO-CH2OH) of -76.1 ± 0.5 kcal mol(-1). The coupled-cluster singles doubles and noniterative triples correction calculations also lead to a revision of the geometry of CHO-CH2OH. We find that the O-H bond length differs substantially from earlier experimental estimates, due to unusual zero-point contributions to the moments of inertia.

  11. NIR small arms muzzle flash

    NASA Astrophysics Data System (ADS)

    Montoya, Joseph; Kennerly, Stephen; Rede, Edward

    2010-04-01

    Utilization of Near-Infrared (NIR) spectral features in a muzzle flash will allow for small arms detection using low cost silicon (Si)-based imagers. Detection of a small arms muzzle flash in a particular wavelength region is dependent on the intensity of that emission, the efficiency of source emission transmission through the atmosphere, and the relative intensity of the background scene. The NIR muzzle flash signature exists in the relatively large Si spectral response wavelength region of 300 nm-1100 nm, which allows for use of commercial-off-the-shelf (COTS) Si-based detectors. The alkali metal origin of the NIR spectral features in the 7.62 × 39-mm round muzzle flash is discussed, and the basis for the spectral bandwidth is examined, using a calculated Voigt profile. This report will introduce a model of the 7.62 × 39-mm NIR muzzle flash signature based on predicted source characteristics. Atmospheric limitations based on NIR spectral regions are investigated in relation to the NIR muzzle flash signature. A simple signal-to-clutter ratio (SCR) metric is used to predict sensor performance based on a model of radiance for the source and solar background and pixel registered image subtraction.

  12. Airborne atmospheric electricity experiments

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.

    1985-01-01

    During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.

  13. Multi- and unisensory visual flash illusions.

    PubMed

    Courtney, Jon R; Motes, Michael A; Hubbard, Timothy L

    2007-01-01

    The role of stimulus structure in multisensory and unisensory interactions was examined. When a flash (17 ms) was accompanied by multiple tones (each 7 ms, SOA < or =100 ms) multiple flashes were reported, and this effect has been suggested to reflect the role of stimulus continuity in multisensory interactions. In experiments 1 and 2 we examined if stimulus continuity would affect concurrently presented stimuli. When a relatively longer flash (317 ms) was accompanied by multiple tones (each 7 ms), observers reported perceiving multiple flashes. In experiment 3 we tested whether a flash presented near fixation would induce an illusory flash further in the periphery. One flash (17 ms) presented 5 degrees below fixation was reported as multiple flashes if presented with two flashes (each 17 ms, SOA =100 ms) 2 degrees above fixation. The extent to which these data support a phenomenological continuity principle and whether this principle applies to unisensory perception is discussed.

  14. Moclobemide in the treatment of hot flashes in postmenopausal women.

    PubMed

    Tarim, Ebru; Bagis, Tayfun; Kilicdag, Esra; Erkanli, Serkan; Aslan, Erdogan; Kuscu, Esra

    2002-01-01

    This randomized, prospective, double-blind study evaluated the efficacy and tolerability of moclobemide, a reversible, selective inhibitor of monoamine oxidase-A, in reducing the frequency and severity of hot flashes. Thirty postmenopausal women were enrolled, and 28 were allocated to 5 weeks of treatment with moclobemide 150 mg (group 1, n = 10), moclobemide 300 mg (group 2, n = 11), or placebo (group 3, n = 9). Data on hot flashes were recorded in a daily diary. Mean reductions in the hot flash severity score were 24.4% in the placebo group, 69.8% in group 1, and 35.0% in group 2. This large difference suggests that the beneficial effects were not due to a placebo effect. Moclobemide may be a new nonhormonal option for reducing the incidence, severity, and duration of hot flashes in postmenopausal women who do not wish to take estrogen or have contraindications to its use.

  15. Water types and their relaxation behavior in partially rehydrated CaFe-mixed binary oxide obtained from CaFe-layered double hydroxide in the 155-298 K temperature range.

    PubMed

    Bugris, Valéria; Haspel, Henrik; Kukovecz, Ákos; Kónya, Zoltán; Sipiczki, Mónika; Sipos, Pál; Pálinkó, István

    2013-10-29

    Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

  16. Electro-optical muzzle flash detection

    NASA Astrophysics Data System (ADS)

    Krieg, Jürgen; Eisele, Christian; Seiffer, Dirk

    2016-10-01

    Localizing a shooter in a complex scenario is a difficult task. Acoustic sensors can be used to detect blast waves. Radar technology permits detection of the projectile. A third method is to detect the muzzle flash using electro-optical devices. Detection of muzzle flash events is possible with focal plane arrays, line and single element detectors. In this paper, we will show that the detection of a muzzle flash works well in the shortwave infrared spectral range. Important for the acceptance of an operational warning system in daily use is a very low false alarm rate. Using data from a detector with a high sampling rate the temporal signature of a potential muzzle flash event can be analyzed and the false alarm rate can be reduced. Another important issue is the realization of an omnidirectional view required on an operational level. It will be shown that a combination of single element detectors and simple optics in an appropriate configuration is a capable solution.

  17. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  18. FLASH_TISA_Terra+Aqua_Version3C

    Atmospheric Science Data Center

    2018-04-04

    ... Cloud Particle Phase Cloud Infrared Emissivity Cloud Base Pressure Surface (Radiative) Flux TOA Flux Surface Types Albedo LW Flux Order Data:  Earthdata Search:  Order Data Guide Documents:  ...

  19. Compatibility of motion facilitates visuomotor synchronization.

    PubMed

    Hove, Michael J; Spivey, Michael J; Krumhansl, Carol L

    2010-12-01

    Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1, synchronization success rates increased dramatically for spatiotemporal sequences of both geometric and biological forms over flashing sequences. In Experiment 2, synchronization performance was best when target sequences and movements were directionally compatible (i.e., simultaneously down), followed by orthogonal stimuli, and was poorest for incompatible moving stimuli and flashing stimuli. In Experiment 3, synchronization performance was best with auditory sequences, followed by compatible moving stimuli, and was worst for flashing and fading stimuli. Results indicate that visuomotor synchronization improves dramatically with compatible spatial information. However, an auditory advantage in sensorimotor synchronization persists.

  20. How MLA Works

    NASA Image and Video Library

    2012-12-03

    NASA Mercury Laser Altimeter MLA is shown ranging to Mercury surface from orbit. In this animation, yellow flashes represent near-infrared laser pulses that can reflect off terrain in shadow as well as in sunlight.

  1. Infrared thermal wave nondestructive technology on the defect in the shell of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Song, Yuanjia; Yang, Zhengwei; Li, Ming; Tian, Gan

    2010-10-01

    Based on the active infrared thermography nondestructive testing (NDT) technology, which is an emerging method and developed in the areas of aviation, spaceflight and national defence, the samples including glass fiber flat bottom hole sample, glass fiber inclusion sample and steel flat bottom hole sample that the shell materials of Solid Rocket Motor (SRM) were heated by a high energy flash lamp. The subsurface flaws can be detected through measuring temperature difference between flaws and materials. The results of the experiments show that: 1) the technique is a fast and effective inspection method, which is used for detecting the composites more easily than the metals. And it also can primarily identify the defect position and size according to the thermal image maps. 2) A best inspection time at when the area of hot spot is the same with that of defect is exited, which can be used to estimate the defect size. The bigger the defect area, the easier it could be detected and also the less of the error for estimating defect area. 3). The infrared thermal images obtained from experiments always have high noise, especially for metal materials due to high reflectivity and environmental factors, which need to be further processed.

  2. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; hide

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  3. New stimulation pattern design to improve P300-based matrix speller performance at high flash rate

    NASA Astrophysics Data System (ADS)

    Polprasert, Chantri; Kukieattikool, Pratana; Demeechai, Tanee; Ritcey, James A.; Siwamogsatham, Siwaruk

    2013-06-01

    Objective. We propose a new stimulation pattern design for the P300-based matrix speller aimed at increasing the minimum target-to-target interval (TTI). Approach. Inspired by the simplicity and strong performance of the conventional row-column (RC) stimulation, the proposed stimulation is obtained by modifying the RC stimulation through alternating row and column flashes which are selected based on the proposed design rules. The second flash of the double-flash components is then delayed for a number of flashing instants to increase the minimum TTI. The trade-off inherited in this approach is the reduced randomness within the stimulation pattern. Main results. We test the proposed stimulation pattern and compare its performance in terms of selection accuracy, raw and practical bit rates with the conventional RC flashing paradigm over several flash rates. By increasing the minimum TTI within the stimulation sequence, the proposed stimulation has more event-related potentials that can be identified compared to that of the conventional RC stimulations, as the flash rate increases. This leads to significant performance improvement in terms of the letter selection accuracy, the raw and practical bit rates over the conventional RC stimulation. Significance. These studies demonstrate that significant performance improvement over the RC stimulation is obtained without additional testing or training samples to compensate for low P300 amplitude at high flash rate. We show that our proposed stimulation is more robust to reduced signal strength due to the increased flash rate than the RC stimulation.

  4. Echoes of a Stellar Ending

    NASA Image and Video Library

    2012-03-14

    Listed as Cassiopeia A, this remnant of the supernova is one of the brightest radio sources in the known universe. More recently, NASA WISE telescope detected infrared echoes of the flash of light rippling outwards from the supernova.

  5. A first look at global flash drought: long term change and short term predictability

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Wang, Linying; Ji, Peng

    2017-04-01

    "Flash drought" became popular after the unexpected 2012 central USA drought, mainly due to its rapid development, low predictability and devastating impacts on water resources and crop yields. A pilot study by Mo and Lettenmaier (2015) found that flash drought, based on a definition of concurrent heat extreme, soil moisture deficit and evapotranspiration (ET) enhancement at pentad scale, were in decline over USA during recent 100 years. Meanwhile, a recent work indicated that the occurrence of flash drought in China was doubled during the past 30 years, where a severe flash drought in the summer of 2013 ravaged 13 provinces in southern China. As global warming increases the frequency of heat waves and accelerates the hydrological cycle, the flash drought is expected to increase in general, but its trend might also be affected by interannual to decadal climate oscillations. To consolidate the hotspots of flash drought and the effects of climate change on flash drought, a global inventory is being conducted by using multi-source observations (in-situ, satellite and reanalysis), CMIP5 historical simulations and future projections under different forcing scenarios, as well as global land surface hydrological modeling for key variables including surface air temperature, soil moisture and ET. In particular, a global picture of the flash drought distribution, the contribution of naturalized and anthropogenic forcings to global flash drought change, and the risk of global flash drought in the future, will be presented. Besides investigating the long-term change of flash drought, providing reliable early warning is also essential to developing adaptation strategies. While regional drought early warning systems have been emerging in recent decade, forecasting of flash drought is still at an exploratory stage due to limited understanding of flash drought predictability. Here, a set of sub-seasonal to seasonal (S2S) hindcast datasets are being used to assess the short term predictability of flash drought via a perfect model assumption.

  6. Compact and reliable triggering method for near muzzle flash radiography

    NASA Astrophysics Data System (ADS)

    Lee, Eun S.; Hwang, Eul H.; Yim, Dong W.; Song, So Y.

    1993-01-01

    Precise timing for x-ray bursts is crucial in acquiring useful information from flash radiographic experiments. Triggering the flash x-ray system near the muzzle is a difficult task because of the intrinsic nature of the muzzle blast. In this work a compact and reliable triggering method for near muzzle flash radiography is introduced; a piezoelectric pin probe attached at the end of the barrel. These types of probes have not been activated by the precursor shock wave, but they have been activated by the main blast wave only. Reliability in triggering the flash x-ray system has been confirmed throughout a series of flash radiographic experiments near the muzzle for gun barrels with calibers up to 105 mm.

  7. Determination of molecular spectroscopic parameters and energy-transfer rates by double-resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.; Foy, B.; Hetzler, J.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Coy, S.

    1990-01-01

    The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia.

  8. Chemical, Biological, Radiological, Nuclear, and High-Yield Explosives Consequences Management

    DTIC Science & Technology

    2006-10-02

    cause three types of injuries: blast, thermal and radiation, as well as electromagnetic pulse (EMP) effects described further in a later section. (1...occur with conventional explosives and are further described in the next section. (2) Thermal injuries present as flash burns (burns from direct...exposure to the thermal radiation pulse, typically ultraviolet, visible, and infrared waves) or flame burns (burns from materials set afire by the infrared

  9. Remote collection and analysis of witness reports on flash floods

    NASA Astrophysics Data System (ADS)

    Gourley, Jonathan; Erlingis, Jessica; Smith, Travis; Ortega, Kiel; Hong, Yang

    2010-05-01

    Typically, flash floods are studied ex post facto in response to a major impact event. A complement to field investigations is developing a detailed database of flash flood events, including minor events and null reports (i.e., where heavy rain occurred but there was no flash flooding), based on public survey questions conducted in near-real time. The Severe Hazards Analysis and Verification Experiment (SHAVE) has been in operation at the National Severe Storms Laboratory (NSSL) in Norman, OK, USA during the summers since 2006. The experiment employs undergraduate students to analyse real-time products from weather radars, target specific regions within the conterminous US, and poll public residences and businesses regarding the occurrence and severity of hail, wind, tornadoes, and now flash floods. In addition to providing a rich learning experience for students, SHAVE has been successful in creating high-resolution datasets of severe hazards used for algorithm and model verification. This talk describes the criteria used to initiate the flash flood survey, the specific questions asked and information entered to the database, and then provides an analysis of results for flash flood data collected during the summer of 2008. It is envisioned that specific details provided by the SHAVE flash flood observation database will complement databases collected by operational agencies and thus lead to better tools to predict the likelihood of flash floods and ultimately reduce their impacts on society.

  10. Kappa Agonists as a Novel Therapy for Menopausal Hot Flashes

    PubMed Central

    Oakley, Amy E.; Steiner, Robert A.; Chavkin, Charles; Clifton, Donald K.; Ferrara, Laura K.; Reed, Susan D.

    2015-01-01

    Objective Postmenopausal hot flash etiology is poorly understood, making it difficult to develop and target ideal therapies. A network of hypothalamic estrogen-sensitive neurons producing Kisspeptin, Neurokinin B, and Dynorphin (KNDy neurons), located adjacent to the thermoregulatory center, regulate pulsatile secretion of GnRH and LH. Dynorphin may inhibit this system by binding kappa opioid receptors within the vicinity of KNDy neurons. We hypothesize that hot flashes are reduced by KNDy neuron manipulation. Methods A double-blind, cross-over, placebo-controlled pilot study evaluated the effect of a kappa agonist (KA).Hot flash frequency was the primary outcome. Twelve healthy postmenopausal women with moderate-severe hot flashes, ages 48-60 years, were randomized. Eight women with sufficient baseline hot flashes for statistical analysis completed all 3 interventions: placebo, standard Pentazocine/Naloxone (50/0.5 mg) or low-dose Pentazocine/Naloxone (25/0.25 mg). In an inpatient research setting, each participant received the 3 interventions, in randomized order, on 3 separate days. On each day, an intravenous catheter was inserted for luteinizing hormone (LH) blood sampling, and skin conductance and Holter monitors were placed. Subjective hot flash frequency and severity were recorded. Results Mean hot flash frequency 2-7 hours following therapy initiation was lower than that for placebo (KA standard-dose: 4.75 ± 0.67; KA low-dose: 4.50 ± 0.57; and placebo: 5.94 ± 0.78 hot flashes/5 hours; p =0.025). Hot flash intensity did not vary between interventions. LH pulsatility mirrored objective hot flashes in some, but not all women. Conclusions This pilot suggests that kappa agonists may affect menopausal vasomotor symptoms. PMID:25988798

  11. Egocentric and Allocentric Localization During Induced Motion

    PubMed Central

    Post, Robert B.; Welch, Robert B.; Whitney, David

    2009-01-01

    This research examined motor measures of the apparent egocentric location and perceptual measures of the apparent allocentric location of a target that was being seen to undergo induced motion (IM). In Experiments 1 and 3, subjects fixated a stationary dot (IM target) while a rectangular surround stimulus (inducing stimulus) oscillated horizontally. The inducing stimulus motion caused the IM target to appear to move in the opposite direction. In Experiment 1, two dots (flashed targets) were flashed above and below the IM target when the surround had reached its leftmost or rightmost displacement from the subject’s midline. Subjects pointed open loop at either the apparent egocentric location of the IM target or at the bottom of the two flashed targets. On separate trials, subjects made judgments of the Vernier alignment of the IM target with the flashed targets at the endpoints of the surround’s oscillation. The pointing responses were displaced in the direction of the previously seen IM for the IM target and to a lesser degree for the bottom flashed target. However, the allocentric Vernier judgments demonstrated no perceptual displacement of the IM target relative to the flashed targets. Thus, IM results in a dissociation of egocentric location measures from allocentric location measures. In Experiment 2, pointing and Vernier measures were obtained with stationary horizontally displaced surrounds and there was no dissociation of egocentric location measures from allocentric location measures. These results indicate that the Roelofs effect did not produce the pattern of results in Experiment 1. In Experiment 3, pointing and Vernier measures were obtained when the surround was at the midpoint of an oscillation. In this case, egocentric pointing responses were displaced in the direction of surround motion (opposite IM) for the IM target and to a greater degree for the bottom flashed target. However, there was no apparent displacement of the IM target relative to the flashed targets in the allocentric Vernier judgments. Therefore, in Experiment 3 egocentric location measures were again dissociated from allocentric location measures. The results of this experiment also demonstrate that IM does not generate an allocentric displacement illusion analogous to the “flash-lag” effect. PMID:18751688

  12. HALESIS projet: Hight Altitude Luminous Events Studied by Infrared Spectro-imagery

    NASA Astrophysics Data System (ADS)

    Croizé, Laurence; Payan, Sébastien; Bureau, Jérome; Duruisseau, Fabrice; Huret, Nathalie

    2014-05-01

    During the last two decades, the discovery of transient luminous events (TLEs) in the high atmosphere [1], as well as the observation of gamma ray flashes of terrestrial origin (Terrestrial Gamma Flashes or TGF) [2] demonstrated the existence of another interaction processes between the different atmospheric layers (troposphere, stratosphere, mesosphere and ionosphere). Indeed, the frequency of occurrence of these phenomena over thunderstorm cells, and the energies involved provide evidence for an impulsive energy transfer between the troposphere and the highest atmospheric layers, which was not considered before. HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery) is an innovative project based on hyperspectral imagery. The purpose of this experience is to measure the atmospheric perturbation in the minutes following the occurrence of Transient Luminous Events (TLEs) from a stratospheric balloon in the altitude range of 20 to 40 km. The first part of the study has been dedicated to establish the project feasibility. To do that, we have simulated spectral perturbation induced by an isolated blue jet. Theoretical predictions [3] have been used to simulate the radiative perturbation due to O3, NO, NO2, NO+ concentration induced by the blue jet. Simulations have been performed using the line by line radiative transfer model LBLRM [4] taking into account of the Non Local Thermodynamic Equilibrium hypotheses. Then, the expected signatures have been compared to the available instrumentation. During this talk, HALESIS project and the results of the feasibility study will be presented. Then, the estimated spectral signatures will be confronted with the technical capabilities of different kind of hyperspectral imagers. We will conclude on the project feasibility, but also on the challenges that lie ahead for an imager perfectly suited for experiences like HALESIS. 1. Franz R, Nemzek R, Winckler J. Television image of a large upward electrical discharge above a thunderstorm system. Science 1990,249:48-51. 2. Fishman GJ, Bhat P, Mallozzi R, Horack J, Koshut T, Kouveliotou C, et al. Discovery of intense gamma-ray flashes of atmospheric origin: National Aeronautics and Space Administration; 1994. 3. Duruisseau Fabrice, Huret N. Private communication In. 4. Clough SA, Iacono MJ, Moncet JL. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. Journal of Geophysical Research: Atmospheres (1984-2012) 1992,97:15761-15785.

  13. Remote collection and analysis of witness reports on flash floods

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Erlingis, J. M.; Smith, T. M.; Ortega, K. L.; Hong, Y.

    2010-11-01

    SummaryTypically, flash floods are studied ex post facto in response to a major impact event. A complement to field investigations is developing a detailed database of flash flood events, including minor events and null reports (i.e., where heavy rain occurred but there was no flash flooding), based on public survey questions conducted in near-real time. The Severe hazards analysis and verification experiment (SHAVE) has been in operation at the National Severe Storms Laboratory (NSSL) in Norman, OK, USA during the summers since 2006. The experiment employs undergraduate students to analyse real-time products from weather radars, target specific regions within the conterminous US, and poll public residences and businesses regarding the occurrence and severity of hail, wind, tornadoes, and now flash floods. In addition to providing a rich learning experience for students, SHAVE has also been successful in creating high-resolution datasets of severe hazards used for algorithm and model verification. This paper describes the criteria used to initiate the flash flood survey, the specific questions asked and information entered to the database, and then provides an analysis of results for flash flood data collected during the summer of 2008. It is envisioned that specific details provided by the SHAVE flash flood observation database will complement databases collected by operational agencies (i.e., US National Weather Service Storm Data reports) and thus lead to better tools to predict the likelihood of flash floods and ultimately reduce their impacts on society.

  14. An investigation of life circumstances associated with the experience of hot flashes in Campeche, Mexico.

    PubMed

    Huicochea-Gómez, Laura; Sievert, Lynnette Leidy; Cahuich-Campos, Diana; Brown, Daniel E

    2017-01-01

    The purpose of this study was to better understand the experience of calores (hot flashes) in the state of Campeche, Mexico, and characteristics of women's lives. This study was carried out to understand the sociocultural context of women's lives before conducting a larger semistructured survey in the same communities. Eighty-five women from rural and urban settings participated in open-ended interviews about the menopausal transition, with particular attention to hot flashes. Univariate and logistic regression analyses identified potential determinants of hot flashes. Qualitative responses were analyzed for central themes from the 40 women who experienced "calores" associated with menopause at the time of interview. The word "calores" was used to describe a variety of sensations and experiences related to the hot climate, infections, going in and out of air-conditioning, emotional stress, and physical exertion, as well as the symptom associated with menopause. In quantitative analyses, the likelihood of experiencing hot flashes varied by menopause status and rural/urban residence. In qualitative analyses, themes that characterized the lives of women with hot flashes were as follows: the search for, and the availability of, biomedical care; presence or absence of networks of social support; marital status and quality of the relationship; and occupational stress. Hot flash questionnaires can elicit different symptom frequencies depending on the language used and the sociocultural context of women's lives. Qualitative findings suggest that the themes most likely to influence the perception and experience of hot flashes in Campeche are biomedicine, social support, marriage, and stress.

  15. Combining spectral material properties in the infrared and the visible spectral range for qualification and nondestructive evaluation of components

    NASA Astrophysics Data System (ADS)

    Eisler, K.; Goldammer, M.; Rothenfusser, M.; Arnold, W.; Homma, C.

    2012-05-01

    The spectral selective thermography with infrared filters can be used to determine or to distinguish materials such as contaminations on a metallic component. With additional visual information, the indications by the IR signal can be selectively accentuated or suppressed for easier evaluation of passive and active thermography measurements. For flash thermography the detected IR signal between 3.4 and 5.1 μm is analyzed with regard to the spectral material information. The presented hybrid camera uses beam overlapping to obtain combined images of both in the infrared and the visual range.

  16. Double-pulse dichromatic photolysis of fac-CIRe(CO){sub 3}L{sub 2} (L=4-phenylpyridine or 4-cyanopyridine): Photohomolysis of Re-L bonds insuced by irradiation of photochemically unreactive charge transfer states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feliz, M.; Ferraudi, G.

    1992-04-02

    Photochemical reactions of fac-ClRe(CO){sub 3}L{sub 2} (L=4-phenylpyridine or 4-cyanopyridine), were investigated by sequential biphotonic excitations: one laser flash was used for the preparation of the compounds in the lowest lying MLCT (Re{r_arrow}) state and another flash for the irradiation of the compounds in such excited states. These photolyses led to photodecompostions into CIRe(CO){sub 3}L{sup +} and L{sup .} in a charge transfer state placed 40 Kk above ground state. Quantum yields determined or various excitation energies show that not all the excited state populated in monophotonic excitations can be reached under the sequential biphotonic regime. Therefore, photogeneration of the biradicalmore » intermediate, ClRe(CO){sub 3}L{sup +} and L{sup .}, from ligand-centered states has not been detected in these experiments. Results from monophotonic and biphotonic excitations have been used for a semiquantitative mapping of the excited-state potential surfaces. 41 refs., 6 figs.« less

  17. Phase transformation in the alumina-titania system during flash sintering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, S. K.; Lebrun, J. M.; Raj, R.

    2016-02-01

    We show that phase transformation in the alumina–titania system, which produces aluminum-titanate, follows an unusual trajectory during flash sintering. The experiments begin with mixed powders of alumina–titania and end in dense microstructures that are transformed into aluminum-titanate. The sintering and the phase transformation are separated in time, with the sintering occurs during Stage II, and phase transformation during Stage III of the flash sintering experiment. Stage III is the steady-state condition of flash activated state that is established under current control, while Stage II is the period of transition from voltage to current control. The extent of phase transformation increasesmore » with the current density and the hold time in Stage III.« less

  18. Measurement of O and Ti atom displacements in TiO 2 during flash sintering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Bola; Yadav, Devinder; Raj, Rishi

    In-situ flash experiments on rutile TiO 2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X-ray scattering measurements yielded mean-square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. Thus, these large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash.

  19. Measurement of O and Ti atom displacements in TiO 2 during flash sintering experiments

    DOE PAGES

    Yoon, Bola; Yadav, Devinder; Raj, Rishi; ...

    2017-12-29

    In-situ flash experiments on rutile TiO 2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X-ray scattering measurements yielded mean-square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. Thus, these large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash.

  20. Point target detection utilizing super-resolution strategy for infrared scanning oversampling system

    NASA Astrophysics Data System (ADS)

    Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei

    2017-11-01

    To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.

  1. Safety and efficacy of low-dose esterified estrogens and methyltestosterone, alone or combined, for the treatment of hot flashes in menopausal women: a randomized, double-blind, placebo-controlled study.

    PubMed

    Liu, James; Allgood, Adam; Derogatis, Leonard R; Swanson, Stephen; O'Mahony, Michael; Nedoss, Bertrand; Soper, Herbert; Zbella, Edward; Prokofieva, Svetlana Vladimirovna; Zipfel, Lisa; Guo, Chun-Yuan

    2011-01-01

    This study evaluated safety and efficacy of esterified estrogens and methyltestosterone administered alone or in combination for the treatment of hot flashes in menopausal women. The 0.30-mg esterified estrogens and 0.30-mg methyltestosterone combination was the lowest effective dose, and our results are consistent with the known safety profile of estrogen and androgen combination products. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. FlashPhotol: Using a Flash Photolysis Apparatus Simulator to Introduce Students to the Kinetics of Transient Species and Fast Reactions

    ERIC Educational Resources Information Center

    Bigger, Stephen W.

    2016-01-01

    FlashPhotol is an educational software package that introduces students to the kinetics of transient species and fast reactions. This is achieved by means of a computer-simulated flash photolysis apparatus that comprises all major functional elements and that students can use to perform various experiments. The experimental interface presents a…

  3. Modeling experimental plasma diagnostics in the FLASH code: Thomson scattering

    NASA Astrophysics Data System (ADS)

    Weide, Klaus; Flocke, Norbert; Feister, Scott; Tzeferacos, Petros; Lamb, Donald

    2017-10-01

    Spectral analysis of the Thomson scattering of laser light sent into a plasma provides an experimental method to quantify plasma properties in laser-driven plasma experiments. We have implemented such a synthetic Thomson scattering diagnostic unit in the FLASH code, to emulate the probe-laser propagation, scattering and spectral detection. User-defined laser rays propagate into the FLASH simulation region and experience scattering (change in direction and frequency) based on plasma parameters. After scattering, the rays propagate out of the interaction region and are spectrally characterized. The diagnostic unit can be used either during a physics simulation or in post-processing of simulation results. FLASH is publicly available at flash.uchicago.edu. U.S. DOE NNSA, U.S. DOE NNSA ASC, U.S. DOE Office of Science and NSF.

  4. Daidzein-rich isoflavone aglycones are potentially effective in reducing hot flashes in menopausal women.

    PubMed

    Khaodhiar, Lalita; Ricciotti, Hope A; Li, Linglin; Pan, Weijun; Schickel, Mary; Zhou, Jinrong; Blackburn, George L

    2008-01-01

    The aim of this study was to determine the effect of DRIs on hot flash symptoms in menopausal women. This was a randomized, double-blind, placebo-controlled trial of menopausal women, aged 38 to 60 years, who experienced 4 to 14 hot flashes per day. After a 1-week run-in period, a total of 190 menopausal women were randomized to receive a placebo or 40 or 60 mg/day of a DRI for 12 weeks. The primary outcome was the mean changes from baseline to week 12 in the frequency of hot flashes recorded in the participant diary. The secondary outcomes included changes in quality of life and hormonal profiles. A total of 147 women (77%) completed the study. It was found that 40 and 60 mg of DRI improved hot flash frequency and severity equally. At 8 weeks hot flash frequency was reduced by 43% in the 40-mg DRI group and by 41% in the 60-mg DRI group, compared with 32% in the placebo group (P = not significant vs placebo). The corresponding numbers for 12 weeks were 52%, 51%, and 39%, respectively (P = 0.07 and 0.09 vs placebo). When comparing the two treatment groups with the placebo group, there were significant reductions in mean daily hot flash frequency. The supplement (either 40 or 60 mg) reduced hot flash frequency by 43% at 8 weeks (P = 0.1) and 52% at 12 weeks (P = 0.048) but did not cause any significant changes in endogenous sex hormones or thyroid hormones. Menopausal quality of life improved in all three groups, although there were no statistically significant differences between groups. DRI supplementation may be an effective and acceptable alternative to hormone treatment for menopausal hot flashes.

  5. Modeling midwave infrared muzzle flash spectra from unsuppressed and flash-suppressed large caliber munitions

    NASA Astrophysics Data System (ADS)

    Steward, Bryan J.; Perram, Glen P.; Gross, Kevin C.

    2012-07-01

    Time-resolved infrared spectra of firings from a 152 mm howitzer were acquired over an 1800-6000 cm-1 spectral range using a Fourier-transform spectrometer. The instrument collected primarily at 32 cm-1 spectral and 100 Hz temporal resolutions. Munitions included unsuppressed and chemically flash suppressed propellants. Secondary combustion occurred with unsuppressed propellants resulting in flash emissions lasting ˜100 ms and dominated by H2O and CO2 spectral structure. Non-combusting plume emissions were one-tenth as intense and approached background levels within 20-40 ms. A low-dimensional phenomenological model was used to reduce the data to temperatures, soot absorbances, and column densities of H2O, CO2, CH4, and CO. The combusting plumes exhibit peak temperatures of ˜1400 K, areas of greater than 32 m2, low soot emissivity of ˜0.04, with nearly all the CO converted to CO2. The non-combusting plumes exhibit lower temperatures of ˜1000 K, areas of ˜5 m2, soot emissivity of greater than 0.38 and CO as the primary product. Maximum fit residual relative to peak intensity are 14% and 8.9% for combusting and non-combusting plumes, respectively. The model was generalized to account for turbulence-induced variations in the muzzle plumes. Distributions of temperature and concentration in 1-2 spatial regions demonstrate a reduction in maximum residuals by 40%. A two-region model of combusting plumes provides a plausible interpretation as a ˜1550 K, optically thick plume core and ˜2550 K, thin, surface-layer flame-front. Temperature rate of change was used to characterize timescales and energy release for plume emissions. Heat of combustion was estimated to be ˜5 MJ/kg.

  6. Does underwater flash photography affect the behaviour, movement and site persistence of seahorses?

    PubMed

    Harasti, D; Gladstone, W

    2013-11-01

    The effect of flash photography on seahorse species has never been tested. An experiment was established to test the effect of flash photography and the handling of Hippocampus whitei, a medium-sized seahorse species endemic to Australia, on their behavioural responses, movements and site persistence. A total of 24 H. whitei were utilized in the experiment with eight in each of the three treatments (flash photography, handling and control). The effect of underwater flash photography on H. whitei movements was not significant; however, the effect of handling H. whitei to take a photograph had a significant effect on their short-term behavioural responses to the photographer. Kaplan-Meier log-rank test revealed that there was no significant difference in site persistence of H. whitei from each of the three treatments and that flash photography had no long-term effects on their site persistence. It is concluded that the use of flash photography by divers is a safe and viable technique with H. whitei, particularly if photographs can be used for individual identification purposes. © 2013 The Fisheries Society of the British Isles.

  7. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  8. Counter sniper: a localization system based on dual thermal imager

    NASA Astrophysics Data System (ADS)

    He, Yuqing; Liu, Feihu; Wu, Zheng; Jin, Weiqi; Du, Benfang

    2010-11-01

    Sniper tactics is widely used in modern warfare, which puts forward the urgent requirement of counter sniper detection devices. This paper proposed the anti-sniper detection system based on a dual-thermal imaging system. Combining the infrared characteristics of the muzzle flash and bullet trajectory of binocular infrared images obtained by the dual-infrared imaging system, the exact location of the sniper was analyzed and calculated. This paper mainly focuses on the system design method, which includes the structure and parameter selection. It also analyzes the exact location calculation method based on the binocular stereo vision and image analysis, and give the fusion result as the sniper's position.

  9. Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys.

    PubMed

    Tsunoda, Kazushige; Hanazono, Gen; Inomata, Koichi; Kazato, Yoko; Suzuki, Wataru; Tanifuji, Manabu

    2009-07-01

    Diffuse flash stimuli applied to the ocular fundus evoke light reflectance decreases of the fundus illuminated with infrared observation light. This phenomenon, which is independent of the photopigment bleaching observed as an increase in the reflectance of visible light, is called intrinsic signals. Intrinsic signals, in general, are stimulus-evoked light reflectance changes of neural tissues due to metabolic changes, and they have been extensively investigated in the cerebral cortex. This noninvasive objective technique of functional imaging has good potential as a tool for the early detection of retinal dysfunction. Once the signal properties were studied in detail, however, it became apparent that the intrinsic signals observed in the retina have uniquely interesting properties of their own due to the characteristic layered structure of the retina. Experiments on anesthetized macaque monkeys are reviewed, and the possible origins of the intrinsic signals of the retina are discussed.

  10. Theoretical and experimental study of the formation conditions of stepped leaders in negative flashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shijun, E-mail: sj-xie@163.com; State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084; Zeng, Rong

    2015-08-15

    Natural lightning flashes are stochastic and uncontrollable, and thus, it is difficult to observe the formation process of a downward negative stepped leader (NSL) directly and in detail. This situation has led to some dispute over the actual NSL formation mechanism, and thus has hindered improvements in the lightning shielding analysis model. In this paper, on the basis of controllable long air gap discharge experiments, the formation conditions required for NSLs in negative flashes have been studied. First, a series of simulation experiments on varying scales were designed and carried out. The NSL formation processes were observed, and several ofmore » the characteristic process parameters, including the scale, the propagation velocity, and the dark period, were obtained. By comparing the acquired formation processes and the characteristic parameters with those in natural lightning flashes, the similarity between the NSLs in the simulation experiments and those in natural flashes was proved. Then, based on the local thermodynamic equation and the space charge estimation method, the required NSL formation conditions were deduced, and the space background electric field (E{sub b}) was proposed as the primary parameter for NSL formation. Finally, the critical value of E{sub b} required for the formation of NSLs in natural flashes was determined to be approximately 75 kV/m by extrapolation of the results of the simulation experiments.« less

  11. [Nondestructive Evaluation (NDE) Capabilities

    NASA Technical Reports Server (NTRS)

    Born, Martin

    2010-01-01

    These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)

  12. The Triple-Flash Illusion Reveals a Driving Role of Alpha-Band Reverberations in Visual Perception.

    PubMed

    Gulbinaite, Rasa; İlhan, Barkın; VanRullen, Rufin

    2017-07-26

    The modulatory role of spontaneous brain oscillations on perception of threshold-level stimuli is well established. Here, we provide evidence that alpha-band (∼10 Hz) oscillations not only modulate perception of threshold-level sensory inputs but also can drive perception and generate percepts without a physical stimulus being present. We used the "triple-flash" illusion: Occasional perception of three flashes when only two spatially coincident veridical ones, separated by ∼100 ms, are presented. The illusion was proposed to result from superposition of two hypothetical oscillatory impulse response functions generated in response to each flash: When the delay between flashes matches the period of the oscillation, the superposition enhances a later part of the oscillation that is normally damped; when this enhancement crosses perceptual threshold, a third flash is erroneously perceived (Bowen, 1989). In Experiment 1, we varied stimulus onset asynchrony and validated Bowen's theory: The optimal stimulus onset asynchrony for illusion to occur was correlated, across human subjects (both genders), with the subject-specific impulse response function period determined from a separate EEG experiment. Experiment 2 revealed that prestimulus parietal, but no occipital, alpha EEG phase and power, as well as poststimulus alpha phase-locking, together determine the occurrence of the illusion on a trial-by-trial basis. Thus, oscillatory reverberations create something out of nothing: A third flash where there are only two. SIGNIFICANCE STATEMENT We highlight a novel property of alpha-band (∼10 Hz) oscillations based on three experiments (two EEG and one psychophysics) by demonstrating that alpha-band oscillations do not merely modulate perception, but can also drive perception. We show that human participants report seeing a third flash when only two are presented (the "triple-flash" illusion) most often when the interflash delay matches the period of participant's oscillatory impulse response function reverberating in alpha. Within-subject, the phase and power of ongoing parietal, but not occipital, alpha-band oscillations at the time of the first flash determine illusory percept on a trial-by-trial basis. We revealed a physiologically plausible mechanism that validates and extends the original theoretical account of the triple-flash illusion proposed by Bowen in 1989. Copyright © 2017 the authors 0270-6474/17/377219-12$15.00/0.

  13. Anxiogenic CO2 Stimulus Elicits Exacerbated Hot Flash-like Responses in a Rat Menopause Model and Hot Flashes in Menopausal Women

    PubMed Central

    Federici, Lauren M.; Roth, Sarah Dorsey; Krier, Connie; Fitz, Stephanie D.; Skaar, Todd; Shekhar, Anantha; Carpenter, Janet S.; Johnson, Philip L.

    2016-01-01

    Objective Since longitudinal studies determined that anxiety is a strong risk factor for hot flashes, we hypothesized that an anxiogenic stimulus that signals air hunger (hypercapnic, normoxic gas) would trigger an exacerbated hot flash-associated increase in tail skin temperature (TST) in a rat ovariectomy (OVEX) model of surgical menopause and hot flashes in symptomatic menopausal women. We also assessed TST responses in OVEX serotonin transporter (SERT)+/− rats that models a common polymorphism that is associated with increased climacteric symptoms in menopausal women and increases in anxiety traits. Methods OVEX and sham-OVEX rats (initial experiment) and wildtype and SERT+/− OVEX rats (subsequent experiment) were exposed to a 5 min infusion of 20%CO2 normoxic gas while measuring TST. Menopausal women were given brief 20% and 35%CO2 challenges, and hot flashes were self-reported and objectively verified. Results Compared to controls, OVEX rats had exacerbated increases in TST, and SERT+/− OVEX rats had prolonged TST increases following CO2. Most women reported mild/moderate hot flashes after CO2 challenges, and the hot flash severity to CO2 was positively correlated with daily hot flash frequency. Conclusions The studies demonstrate that this anxiogenic stimulus is capable of inducing cutaneous vasomotor responses in OVEX rats, and eliciting hot flashes in menopausal women. In rats, the severity of the response was mediated by loss of ovarian function and increased anxiety traits (SERT+/−), and, in women, by daily hot flash frequency. These findings may provide insights into anxiety related triggers and genetic risk factors for hot flashes in thermoneutral environments. PMID:27465717

  14. Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.

    2012-01-01

    Wireless sensors connected in a local network offer revolutionary exploration capabilities, but the current solutions do not work in extreme environments of low temperatures (200K) and low to moderate radiation levels (<50 krad). These sensors (temperature, radiation, infrared, etc.) would need to operate outside the spacecraft/ lander and be totally independent of power from the spacecraft/lander. Flash memory field-programmable gate arrays (FPGAs) are being used as the main signal processing and protocol generation platform in a new receiver. Flash-based FPGAs have been shown to have at least 100 reduced standby power and 10 reduction operating power when compared to normal SRAM-based FPGA technology.

  15. Generalizing the flash technique in the front-face configuration to measure the thermal diffusivity of semitransparent solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza

    2014-10-15

    In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.

  16. Sniper detection using infrared camera: technical possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2010-04-01

    The paper discusses technical possibilities to build an effective system for sniper detection using infrared cameras. Descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. Cooled and uncooled detectors were considered. Three phases of sniper activities were taken into consideration: before, during and after the shot. On the basis of experimental data the parameters defining the target were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets. The simulation of detection ranges was done for the assumed scenario of sniper detection task. The infrared sniper detection system was discussed, capable of fulfilling the requirements. The discussion of the results of analysis and simulations was finally presented.

  17. A Randomized, Controlled, Double-Blinded Clinical Trial of Gabapentin 300mg versus 900mg versus Placebo for Anxiety Symptoms in Breast Cancer Survivors

    PubMed Central

    Lavigne, Jill E.; Mustian, Karen; Mathews, Jennifer L; Heckler, Charles; Palesh, Oxana; Amos, Eric; Morrow, Gary R

    2015-01-01

    BACKGROUND Gabapentin is used for the treatment of hot flashes and neuropathic pain in breast cancer survivors, and is commonly used off-label for the treatment of anxiety. Yet, clinical trial evidence to support the use of gabapentin for anxiety symptoms is lacking. METHODS In a randomized, double-blinded controlled trial we compared 300mg gabapentin versus 900mg gabapentin versus placebo. Subjects were 420 breast cancer patients who had completed all chemotherapy cycles. Anxiety traits and current (state) anxiety were measured using the Speilberger Strait-Trait Anxiety Inventory at baseline, 4 weeks and 8 weeks. Pain was measured at baseline using a 10-point scale. Analyses included analysis of covariance (ANCOVA) and ordinary least squares regression. RESULTS At 4 weeks, state anxiety change scores were significantly better for gabapentin 300mg and 900mg (p=0.005) compared to placebo. The magnitude of improvement was proportional to baseline state anxiety. At 8 weeks, the anxiolytic effects of gabapentin compared to placebo persisted (p < 0.005). We found no significant interactions. CONCLUSIONS Given its similar pharmacology, efficacy in the treatment of hot flashes, and low cost, gabapentin may provide a low cost and parsimonious alternative treatment choice for breast cancer survivors presenting in primary care practices with anxiety symptoms. Gabapentin is effective for hot flashes, and therefore may provide therapeutic benefit for both anxiety and hot flashes at a generic drug price. For patients reluctant to take a controlled substance, such as a benzodiazepine, gabapentin may offer an alternative therapy. Similarly, patients with a history of substance use may benefit from gabapentin without risk of addiction or abuse. For cancer survivors experiencing both hot flashes and anxiety, gabapentin may provide a single effective treatment for both and is an alternative therapy for anxiety for patients unwilling to take a benzodiazepine or those with a history of substance use. PMID:23053645

  18. Novel conformal organic antireflective coatings for advanced I-line lithography

    NASA Astrophysics Data System (ADS)

    Deshpande, Shreeram V.; Nowak, Kelly A.; Fowler, Shelly; Williams, Paul; Arjona, Mikko

    2001-08-01

    Flash memory chips are playing a critical role in semiconductor devices due to increased popularity of hand held electronic communication devices such as cell phones and PDAs (personal Digital Assistants). Flash memory offers two primary advantages in semiconductor devices. First, it offers flexibility of in-circuit programming capability to reduce the loss from programming errors and to significantly reduce commercialization time to market for new devices. Second, flash memory has a double density memory capability through stacked gate structures which increases the memory capability and thus saves significantly on chip real estate. However, due to stacked gate structures the requirements for manufacturing of flash memory devices are significantly different from traditional memory devices. Stacked gate structures also offer unique challenges to lithographic patterning materials such as Bottom Anti-Reflective Coating (BARC) compositions used to achieve CD control and to minimize standing wave effect in photolithography. To be applicable in flash memory manufacturing a BARC should form a conformal coating on high topography of stacked gate features as well as provide the normal anti-reflection properties for CD control. In this paper we report on a new highly conformal advanced i-line BARC for use in design and manufacture of flash memory devices. Conformal BARCs being significantly thinner in trenches than the planarizing BARCs offer the advantage of reducing BARC overetch and thus minimizing resist thickness loss.

  19. Compatibility of Motion Facilitates Visuomotor Synchronization

    ERIC Educational Resources Information Center

    Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.

    2010-01-01

    Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…

  20. Non-invasive online wavelength measurements at FLASH2 and present benchmark

    PubMed Central

    Braune, Markus; Buck, Jens; Kuhlmann, Marion; Grunewald, Sören; Düsterer, Stefan; Viefhaus, Jens; Tiedtke, Kai

    2018-01-01

    At FLASH2, the free-electron laser radiation wavelength is routinely measured by an online spectrometer based on photoionization of gas targets. Photoelectrons are detected with time-of-flight spectrometers and the wavelength is determined by means of well known binding energies of the target species. The wavelength measurement is non-invasive and transparent with respect to running user experiments due to the low gas pressure applied. Sophisticated controls for setting the OPIS operation parameters have been created and integrated into the distributed object-oriented control system at FLASH2. Raw and processed data can be stored on request in the FLASH data acquisition system for later correlation with data from user experiments or re-analysis. In this paper, the commissioning of the instrument at FLASH2 and the challenges of space charge effects on wavelength determination are reported. Furthermore, strategies for fast data reduction and online data processing are presented. PMID:29271744

  1. FLASH2: Operation, beamlines, and photon diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plönjes, Elke, E-mail: elke.ploenjes@desy.de; Faatz, Bart; Kuhlmann, Marion

    2016-07-27

    FLASH2, a major extension of the soft X-ray free-electron laser FLASH at DESY, turns FLASH into a multi-user FEL facility. A new undulator line is located in a separate accelerator tunnel and driven additionally by the FLASH linear accelerator. First lasing of FLASH2 was achieved in August 2014 with simultaneous user operation at FLASH1. The new FLASH2 experimental hall offers space for up to six experimental end stations, some of which will be installed permanently. The wide wavelength range spans from 4-60 nm and 0.8 nm in the 5{sup th} harmonic and in the future deep into the water windowmore » in the fundamental. While this is of high interest to users, it is challenging from the beamline instrumentation point of view. Online diagnostics - which are mostly pulse resolved - for beam intensity, position, wavelength, wave front, and pulse length have been to a large extent developed at FLASH(1) and have now been optimized for FLASH2. Pump-probe facilities for XUV-XUV, XUV optical and XUV-THz experiments will complete the FLASH2 user facility.« less

  2. Investigations in x-radiation stimulation

    NASA Astrophysics Data System (ADS)

    Gupta, K. D.

    1982-03-01

    The objective is to invent a crystal x-ray laser. Investigations in the Radiation Research Lab. at Texas Tech University have established in a very straightforward way the line narrowing associated with a threshold pumping and a nonlinear rise in intensity. Recent work on x-ray Borrmann channeling via monocrystals has demonstrated the existence of a monochromatic x-ray beam without any vertical divergence. This would allow the transport of x-ray energy in space for thousands of miles without any loss of power. Preliminary experiments with a monocrystal excited by pulsed x-rays at Air Force Weapons Laboratory, KAFB, Albuquerque, seem to indicate a gain in intensity of the nondivergent hot spot with a concomitant fading of the regular Laue pattern. Current investigations in this line indicates that with proper doping of the monocrystal the nondivergent beam could be increased in intensity using a flash x-ray tube to pump the doped monocrystal. A concial target double beam flash x-ray line source instrument has been constructed to obtain a beam of nondivergent, stimulated, coherent, and monochromatic x-rays from doped monocrystals. A generation of stimulated x-rays using bunched electrons from pulsed high power klystron striking a monocrystal has been conceived.

  3. Quantum ratchet effect in a time non-uniform double-kicked model

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  4. Efficacy of Crocus sativus (saffron) in treatment of major depressive disorder associated with post-menopausal hot flashes: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Kashani, Ladan; Esalatmanesh, Sophia; Eftekhari, Farzaneh; Salimi, Samrand; Foroughifar, Tahereh; Etesam, Farnaz; Safiaghdam, Hamideh; Moazen-Zadeh, Ehsan; Akhondzadeh, Shahin

    2018-03-01

    Due to concerns regarding the side effects of hormone therapy, many studies have focused on the development of non-hormonal agents for treatment of hot flashes. The aim of this study was to evaluate the efficacy and safety of saffron (stigma of Crocus sativus) in treatment of major depressive disorder associated with post-menopausal hot flashes. Sixty women with post-menopausal hot flashes participated in this study. The patients randomly received either saffron (30 mg/day, 15 mg twice per day) or placebo for 6 weeks. The patients were assessed using the Hot Flash-Related Daily Interference Scale (HFRDIS), Hamilton Depression Rating Scale (HDRS) and the adverse event checklist at baseline and also at the second, fourth, and sixth weeks of the study. Fifty-six patients completed the trial. Baseline characteristics of the participants did not differ significantly between the two groups. General linear model repeated measures demonstrated significant effect for time × treatment interaction on the HFRDIS score [F (3, 162) = 10.41, p = 0.0001] and HDRS score [F (3, 162) = 5.48, p = 0.001]. Frequency of adverse events was not significantly different between the two groups. Results from this study revealed that saffron is a safe and effective treatment in improving hot flashes and depressive symptoms in post-menopausal healthy women. On the other hand, saffron, with fewer side effects, may provide a non-hormonal and alternative herbal medicine option in treatment of women with hot flashes.

  5. Measuring hot flash phenomenonology using ambulatory prospective digital diaries

    PubMed Central

    Fisher, William I.; Thurston, Rebecca C.

    2016-01-01

    Objective This study provides the description, protocol, and results from a novel prospective ambulatory digital hot flash phenomenon diary. Methods This study included 152 midlife women with daily hot flashes who completed an ambulatory electronic hot flash diary continuously for the waking hours of 3 consecutive days. In this diary, women recorded their hot flashes and accompanying characteristics and associations as the hot flashes occurred. Results Self-reported hot flash severity on the digital diaries indicated that the majority of hot flashes were rated as mild (41.3%) or moderate (43.7%). Severe (13.1%) and very severe (1.8%) hot flashes were less common. Hot flash bother ratings were rated as mild (43%), or moderate (33.5%), with fewer hot flashes reported bothersome (17.5%) or very bothersome (6%). The majority of hot flashes were reported as occurring on the on the face (78.9%), neck (74.7%), and chest (61.3%). Prickly skin was reported concurrently with 32% of hot flashes, 7% with anxiety and 5% with nausea. A novel finding, 38% of hot flashes were accompanied by a premonitory aura. Conclusion A prospective electronic digital hot flash diary allows for a more precise quantitation of hot flashes while overcoming many of the limitations of commonly employed retrospective questionnaires and paper diaries. Unique insights into the phenomenology, loci and associated characteristics of hot flashes were obtained using this device. The digital hot flash phenomenology diary is recommended for future ambulatory studies of hot flashes as a prospective measure of the hot flash experience. PMID:27404030

  6. Measuring hot flash phenomenonology using ambulatory prospective digital diaries.

    PubMed

    Fisher, William I; Thurston, Rebecca C

    2016-11-01

    This study provides the description, protocol, and results from a novel prospective ambulatory digital hot flash phenomenon diary. This study included 152 midlife women with daily hot flashes who completed an ambulatory electronic hot flash diary continuously for the waking hours of three consecutive days. In this diary, women recorded their hot flashes and accompanying characteristics and associations as the hot flashes occurred. Self-reported hot flash severity on the digital diaries indicated that the majority of hot flashes were rated as mild (41.3%) or moderate (43.7%). Severe (13.1%) and very severe (1.8%) hot flashes were less common. Hot flash bother ratings were rated as mild (43%), or moderate (33.5%), with fewer hot flashes reported bothersome (17.5%) or very bothersome (6%). The majority of hot flashes were reported as occurring on the face (78.9%), neck (74.7%), and chest (61.3%). Of all reported hot flashes, 32% occurred concurrently with prickly skin, 7% with anxiety, and 5% with nausea. A novel finding from the study was that 38% of hot flashes were accompanied by a premonitory aura. A prospective electronic digital hot flash diary allows for a more precise quantitation of hot flashes while overcoming many of the limitations of commonly used retrospective questionnaires and paper diaries. Unique insights into the phenomenology, loci, and associated characteristics of hot flashes were obtained using this device. The digital hot flash phenomenology diary is recommended for future ambulatory studies of hot flashes as a prospective measure of the hot flash experience.

  7. Evaluation of fiber reinforced polymers using active infrared thermography system with thermoelectric cooling modules

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Gorący, Krzysztof

    2018-04-01

    Active infrared thermography is increasingly used for nondestructive testing of various materials. Properties of this method are creating a unique possibility to utilize it for inspection of composites. In the case of active thermography, an external energy source is usually used to induce a thermal contrast inside tested objects. The conventional heating methods (like halogen lamps or flash lamps) are utilized for this purpose. In this study, we propose to use a cooling unit. The proposed system consists of a thermal imaging infrared camera, which is used to observe the surface of the inspected specimen and a specially designed cooling unit with thermoelectric modules (the Peltier modules).

  8. A Modern Apparatus for Performing Flash Chromatography: An Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Naumiec, Gregory R.; Del Padre, Angela N.; Hooper, Matthew M.; Germaine, Alison St.; DeBoef, Brenton

    2013-01-01

    A modern apparatus for performing flash chromatography using commercially available, prepacked silica cartridges has been developed. The key advantage of this system, when compared to traditional flash chromatography, is its use of commercially available silica cartridges, which obviates the need for students to handle silica gel. The apparatus…

  9. Infrared weak corrections to strongly interacting gauge boson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Urbano, Alfredo

    2010-04-15

    We evaluate the impact of electroweak corrections of infrared origin on strongly interacting longitudinal gauge boson scattering, calculating all-order resummed expressions at the double log level. As a working example, we consider the standard model with a heavy Higgs. At energies typical of forthcoming experiments (LHC, International Linear Collider, Compact Linear Collider), the corrections are in the 10%-40% range, with the relative sign depending on the initial state considered and on whether or not additional gauge boson emission is included. We conclude that the effect of radiative electroweak corrections should be included in the analysis of longitudinal gauge boson scattering.

  10. Combined hostile fire and optics detection

    NASA Astrophysics Data System (ADS)

    Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars

    2013-10-01

    Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.

  11. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup.

    PubMed

    Norlyk, Annelise; Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients' experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients' experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an "flash of insight" is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients' experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients' experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  12. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    PubMed Central

    Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience. PMID:22076123

  13. FLASH_SSF_Terra-FM1-MODIS_Version3C

    Atmospheric Science Data Center

    2018-04-04

    ... Tool:  CERES Order Tool  (netCDF) Subset Data:  CERES Search and Subset Tool (HDF4 & netCDF) ... Cloud Layer Area Cloud Infrared Emissivity Cloud Base Pressure Surface (Radiative) Flux TOA Flux Surface Types TOT ... Radiance SW Filtered Radiance LW Flux Order Data:  Earthdata Search:  Order Data Guide Documents:  ...

  14. Submerged passively-safe power plant

    DOEpatents

    Herring, J. Stephen

    1993-01-01

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  15. Efficacy of a non-hormonal treatment, BRN-01, on menopausal hot flashes: a multicenter, randomized, double-blind, placebo-controlled trial.

    PubMed

    Colau, Jean-Claude; Vincent, Stéphane; Marijnen, Philippe; Allaert, François-André

    2012-09-01

    Homeopathic medicines have a place among the non-hormonal therapies for the treatment of hot flashes during the menopause. The objective of this study was to evaluate the efficacy of the non-hormonal treatment BRN-01 in reducing hot flashes in menopausal women. This was a multicenter, randomized, double-blind, placebo-controlled study carried out between June 2010 and July 2011. The study was conducted in 35 active centers in France (gynecologists in private practice). One hundred and eight menopausal women, ≥ 50 years of age, were enrolled in the study. The eligibility criteria included menopause for <24 months and ≥ 5 hot flashes per day with a significant negative effect on the women's professional and/or personal life. Treatment was either BRN-01 tablets, a registered homeopathic medicine containing Actaea racemosa (4 centesimal dilutions [4CH]), Arnica montana (4CH), Glonoinum (4CH), Lachesis mutus (5CH), and Sanguinaria canadensis (4CH), or identical placebo tablets, prepared by Laboratoires Boiron according to European Pharmacopoeia standards. Oral treatment (2 to 4 tablets per day) was started on day 3 after study enrollment and was continued for 12 weeks. The main outcome measure was the hot flash score (HFS) compared before, during, and after treatment. Secondary outcome criteria were the quality of life (QoL) [measured using the Hot Flash Related Daily Interference Scale (HFRDIS)], severity of symptoms (measured using the Menopause Rating Scale), evolution of the mean dosage, and compliance. All adverse events (AEs) were recorded. One hundred and one women were included in the final analysis (intent-to-treat population: BRN-01, n = 50; placebo, n = 51). The global HFS over the 12 weeks, assessed as the area under the curve (AUC) adjusted for baseline values, was significantly lower in the BRN-01 group than in the placebo group (mean ± SD 88.2 ± 6.5 versus 107.2 ± 6.4; p = 0.0411). BRN-01 was well tolerated; the frequency of AEs was similar in the two treatment groups, and no serious AEs were attributable to BRN-01. BRN-01 seemed to have a significant effect on the HFS, compared with placebo. According to the results of this clinical trial, BRN-01 may be considered a new therapeutic option with a safe profile for hot flashes in menopausal women who do not want or are not able to take hormone replacement therapy or other recognized treatments for this indication. Trial registration number (EudraCT): 2009-016959-21.

  16. Cloud-to-ground lightning flash characteristics from June 1984 through May 1985

    NASA Technical Reports Server (NTRS)

    Orville, Richard E.; Weisman, Robert A.; Pyle, Richard B.; Henderson, Ronald W.; Orville, Richard E., Jr.

    1987-01-01

    A magnetic direction-finding network for the detection of lightning cloud-to-ground strikes has been installed along the east coast of the United States. Time, location, flash polarity, stroke count, and peak signal amplitude are recorded in real time. The data were recorded from Maine to North Carolina and as far west as Ohio; analyses were restricted to flashes within 300 km of a direction finder. Measurements of peak signal strength have been obtained from 720,284 first return strokes lowering negative charge. The resulting distribution indicates that few negative strokes have peak currents exceeding 100 kA. Measurements have also been obtained of peak signal strength from 17,694 first return strokes lowering positive charge. These strokes have a median peak current of 45 kA, with some peak currents reaching 300-400 kA. The median peak signal strength and the peak current, double from summer to winter for both negative and positive first return strokes. The polarity of ground flashes is observed to be less than 5 percent positive throughout the summer and early fall, then increases to over 50 percent during the winter, and returns to less than 10 percent in early spring. The percent of positive flashes with one stroke is observed to be approximately 90 percent throughout the year. The percent of negative flashes with one stroke is observed to increase from 40 percent in the summer to approximately 80 percent in January, returning to less than 50 percent in the spring.

  17. Additions and improvements to the high energy density physics capabilities in the FLASH code

    NASA Astrophysics Data System (ADS)

    Lamb, D.; Bogale, A.; Feister, S.; Flocke, N.; Graziani, C.; Khiar, B.; Laune, J.; Tzeferacos, P.; Walker, C.; Weide, K.

    2017-10-01

    FLASH is an open-source, finite-volume Eulerian, spatially-adaptive radiation magnetohydrodynamics code that has the capabilities to treat a broad range of physical processes. FLASH performs well on a wide range of computer architectures, and has a broad user base. Extensive high energy density physics (HEDP) capabilities exist in FLASH, which make it a powerful open toolset for the academic HEDP community. We summarize these capabilities, emphasizing recent additions and improvements. We describe several non-ideal MHD capabilities that are being added to FLASH, including the Hall and Nernst effects, implicit resistivity, and a circuit model, which will allow modeling of Z-pinch experiments. We showcase the ability of FLASH to simulate Thomson scattering polarimetry, which measures Faraday due to the presence of magnetic fields, as well as proton radiography, proton self-emission, and Thomson scattering diagnostics. Finally, we describe several collaborations with the academic HEDP community in which FLASH simulations were used to design and interpret HEDP experiments. This work was supported in part at U. Chicago by DOE NNSA ASC through the Argonne Institute for Computing in Science under FWP 57789; DOE NNSA under NLUF Grant DE-NA0002724; DOE SC OFES Grant DE-SC0016566; and NSF Grant PHY-1619573.

  18. A study on flash sintering and related phenomena in titania and its composite with alumina

    NASA Astrophysics Data System (ADS)

    Shikhar

    In 2010, Cologna et. al. [1] reported that with a help of small electric field 120 Vcm-1, the sintering temperature of 3 mol % yittria stabilized zirconia could be brought down to 850°C from 1450°C. On top of reducing the temperature requirements, the green sample could be sintered from starting density of 50% to near full density in mere 5 seconds, a sintering rate three orders of magnitude higher than conventional methods. This discovery led to the emergence of a new field of enhanced sintering with electric field, named "Flash Sintering". The objective of this thesis is to understand the phenomenological behavior of flash-sintering and related phenomena on titania and its composites with alumina at elevated temperature. The possible mechanisms to explain flash sintering are discussed: Joule heating and the avalanche of defect generation [2], both induced by the rapid rise in conductivity just before the onset of the flash. Apparently, both mechanisms play a role. The thesis covers the response of pure titania and composites of titania-alumina under flash and compared with conventional sintering. We start with the sintering behavior of pure titania and observe lowering of sintering temperature requirements with higher applied electric field. The conductivity of titania during flash is also measured, and compared with the nominal conductivity of titania at equivalent temperatures. The conductivity during flash is determined to be have a different activation energy. For the composites of titania-alumina, effect of flash on the constrained sintering was studied. It is a known fact that sintering of one component of composite slows down when the other component of a different densification rate is added to it, called constrained sintering. In our case, large inclusions of alumina particles were added to nano-grained titania green compact that hindered its densification. Flash sintering was found to be overcoming this problem and near full densification was achieved. In another experiment, effect of high current density and hold time under flash on the chemical reaction (phase transformation) of titania and alumina to form Al2TiO5 is studied. It was found that not only flash enhances the kinetics of reaction when compared with conventional heating at equivalent temperatures, but also brought down the phase transformation temperature for this spinel formation, as reported by the phase diagram. In-situ X-ray diffraction experiments were performed at the synchrotron facility in Argonne National Laboratory. The specimen temperature were measured during the experiment on the basis of peak shift with temperature and were found to be matching with our predicted values by Black-Body-Radiation model. We also observed the instant evolution of texture in grain orientation of pure titania under flash and their disappearance as the fields were switched off. Study on chemical kinetics between titania and alumina were also performed which supported our findings of in-house experiments.

  19. WE-FG-202-01: Early Prediction of Radiotherapy Induced Skin Reactions Using Dynamic Infrared Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, N; Cifter, G; Sun, J

    Purpose: To predict radiotherapy induced skin reactions using dynamic infrared imaging. Methods: Thermal images were captured by our homebuilt system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 oC from ∼1 ms flashes. The camera then captured a series of IR images for 10 seconds. For each image, a baseline skin temperature was recorded for 0.5sec before heat impulse. The temporal temperature gradients were calculated between a reference point (immediately after the flash) and at a time point 9sec after that. Thermal effusivity, an intrinsic thermalmore » property of a material, was calculated from the surface temperature decay of skin. We present experimental data in five patients undergoing radiation therapy, of which 2 were Head & Neck, 1 was Sarcoma and 2 were Breast cancer patients. The prescribed doses were 45 – 60 Gy in 25 – 30 fractions. Each patient was imaged before treatment and after every fifth fraction until end of the treatment course. An area on the skin, outside the radiation field, was imaged as control region. During imaging, each patient’s irradiated skins were scored based on RTOG skin morbidity scoring criteria. Results: Temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue. It was observed that, the skin temperature and temporal temperature gradient increases with delivered radiation dose and skin RTOG score. The treatment does not change effusivity of superficial skin layer, however there was a significant difference in effusivity between treated and control areas at depth of ∼ 1.5 – 1.8 mm, increases with dose. Conclusion: The higher temporal temperature gradient and effusivity from irradiated areas suggest that there is more fluid under the irradiated skin, which causes faster temperature recovery. The mentioned effects may be predictors of Moist Desquamation.« less

  20. Optimising Camera Traps for Monitoring Small Mammals

    PubMed Central

    Glen, Alistair S.; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce

    2013-01-01

    Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera’s field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera’s field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats ( Mustela erminea ), feral cats (Felis catus) and hedgehogs ( Erinaceus europaeus ). Trigger speeds of 0.2–2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera’s field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps. PMID:23840790

  1. Analyzing Hydrogen Recombination Lines in the Infrared and Optical to Determine Extinction and SFRs of Local LIRGs

    NASA Astrophysics Data System (ADS)

    Payne, Anna; Inami, Hanae

    2015-01-01

    We report on measurements for dust extinction and star formation rates (SFRs) for luminous infrared galaxies (LIRGs). We utilized the hydrogen recombination lines Brα, Hα, and Hβ observed in the infrared and optical wavelengths with AKARI and the Lick Observatory's Kast Double spectrograph to produce spectra. By calculating Brα/Hα ratios for the target galaxies, extinction is estimated. A possible correlation between higher LIR, IR/UV, specific SFRs and higher Brα/Hα has been found. Through comparisons with Hα/Hβ, it may be possible to determine if Hα is, in fact, underestimating extinction, since Hα is more strongly affected by extinction compared to longer wavelengths such as Brα. The accuracy of using Hα in extinction corrections is important for SFR studies, and, thus, one goal is to find a more accurate reddening correction factor. Payne was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  2. Three-dimensional dynamic thermal imaging of structural flaws by dual-band infrared computed tomography

    NASA Astrophysics Data System (ADS)

    DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.

    1993-11-01

    We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.

  3. Submerged passively-safe power plant

    DOEpatents

    Herring, J.S.

    1993-09-21

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

  4. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    DOE PAGES

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; ...

    2016-03-31

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  5. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  6. A randomized, controlled, double-blinded clinical trial of gabapentin 300 versus 900 mg versus placebo for anxiety symptoms in breast cancer survivors.

    PubMed

    Lavigne, Jill E; Heckler, Charles; Mathews, Jennifer L; Palesh, Oxana; Kirshner, Jeffrey J; Lord, Raymond; Jacobs, Andrew; Amos, Eric; Morrow, Gary R; Mustian, Karen

    2012-11-01

    Gabapentin is used for the treatment of hot flashes and neuropathic pain in breast cancer survivors, and is commonly used off-label for the treatment of anxiety. Yet, clinical trial evidence to support the use of gabapentin for anxiety symptoms is lacking. In a randomized, double-blinded controlled trial we compared 300 mg gabapentin versus 900 mg gabapentin versus placebo. Subjects were 420 breast cancer patients who had completed all chemotherapy cycles. Anxiety traits and current (state) anxiety were measured using the Speilberger Strait-Trait Anxiety Inventory at baseline, 4 and 8 weeks. Pain was measured at baseline using a 10-point scale. Analyses included analysis of covariance and ordinary least squares regression. At 4 weeks, state anxiety change scores were significantly better for gabapentin 300 and 900 mg (p = 0.005) compared to placebo. The magnitude of improvement was proportional to baseline state anxiety. At 8 weeks, the anxiolytic effects of gabapentin compared to placebo persisted (p < 0.005). We found no significant interactions. The lower dose (300 mg) was associated with the best treatment outcomes for all patients except those with the highest baseline anxiety. Given its similar pharmacology, efficacy in the treatment of hot flashes, and low cost, gabapentin may provide a low cost and parsimonious alternative treatment choice for breast cancer survivors presenting in primary care practices with anxiety symptoms. Gabapentin is effective for hot flashes, and, therefore, may provide therapeutic benefit for both anxiety and hot flashes at a generic drug price. For patients reluctant to take a controlled substance, such as a benzodiazepine, gabapentin may offer an alternative therapy. Similarly, patients with a history of substance use may benefit from gabapentin without risk of addiction or abuse. For cancer survivors experiencing both hot flashes and anxiety, gabapentin may provide a single effective treatment for both and is an alternative therapy for anxiety for patients unwilling to take a benzodiazepine or those with a history of substance use.

  7. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.

  8. An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    NASA Technical Reports Server (NTRS)

    Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.; hide

    2012-01-01

    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the aircraft data and WRF-Chem model and observed flash rates, average NO(x) production per flash can be estimated. Ozone production downwind of observed storms can be estimated from the WRF-Chem simulations and the specific downwind flights.

  9. Hot flash report and measurement among Bangladeshi migrants, their London neighbors, and their community of origin.

    PubMed

    Sievert, L L; Begum, K; Sharmeen, T; Murphy, L; Whitcomb, B W; Chowdhury, O; Muttukrishna, S; Bentley, G R

    2016-12-01

    To examine hot flashes in relation to climate and activity patterns, and to compare subjective and objective hot flashes among Bangladeshi immigrants to London, their white London neighbors, and women still living in their community of origin, Sylhet, Bangladesh ("sedentees"). Ninety-five women, aged 40-55, wore the Biolog ambulatory hot flash monitor. Objective measurements and subjective hot flash reports were examined in relation to demographic, reproductive, anthropometric, and lifestyle variables; temperature and humidity at 12:00 and 18:00; and time spent on housework and cooking. Concordance of objective and subjective hot flashes was assessed by Kappa statistics and by sensitivity of hot flash classification. During the study period, Bangladeshi sedentees reported more subjective hot flashes (p < .05), but there was no difference in number of objective hot flashes. White Londoners were more likely to describe hot flashes on their face and neck compared to Bangladeshis (p < .05). Sedentees were more likely to describe hot flashes on their feet (p < .05). Postmenopausal status, increasing parity, and high levels of housework were significant determinants of subjective hot flashes, while ambient temperature and humidity were not. Measures of subjective/objective concordance were low but similar across groups (10-20%). The proportion of objective hot flashes that were also self-reported was lowest among immigrants. Hot flashes were not associated with warmer temperatures, but were associated with housework and with site-specific patterns of cooking. The number of objective hot flash measures did not differ, but differences in subjective experience suggest the influence of culture. © 2016 Wiley Periodicals, Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  11. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    PubMed Central

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne

    2016-01-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918

  12. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne

    2016-12-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  13. Infrared/Terahertz Double Resonance for Chemical Remote Sensing: Signatures and Performance Predictions

    DTIC Science & Technology

    2011-01-01

    remote sensing , such as Fourier-transform infrared spectroscopy, has limited recognition specificity because of atmospheric pressure broadening. Active interrogation techniques promise much greater chemical recognition that can overcome the limits imposed by atmospheric pressure broadening. Here we introduce infrared - terahertz (IR/THz) double resonance spectroscopy as an active means of chemical remote sensing that retains recognition specificity through rare, molecule-unique coincidences between IR molecular absorption and a line-tunable CO2

  14. Film cooling: case of double rows of staggered jets.

    PubMed

    Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L

    2001-05-01

    An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate.

  15. Fermi GBM Observations of Terrestrial Gamma-ray Flashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Michael S.

    2011-09-21

    Terrestrial Gamma-ray Flashes are short pulses of energetic radiation associated with thunderstorms and lightning. While the Gamma-ray Burst Monitor (GBM) on Fermi was designed to observe gamma-ray bursts, its large BGO detectors are excellent for observing TGFs. Using GBM, TGF pulses are seen to either be symmetrical or have faster rise time than fall times. Some TGFs are resolved into double, partially overlapping pulses. Using ground-based radio observations of lightning from the World Wide Lightning Location Network (WWLLN), TGFs and their associated lightning are found to be simultaneous to {approx_equal}40 {mu} s. The lightning locations are typically within 300 kmmore » of the sub-spacecraft point.« less

  16. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    DOE PAGES

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; ...

    2017-04-10

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less

  17. A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine

    DTIC Science & Technology

    2006-12-01

    Experiments were performed in the Air Force Research Laboratory (AFRL) Pulsed Detonation Research Facility at Wright Patterson AFB, Ohio. The PDE ...AFRL-MN-EG-TP-2006-7420 A HYDROCARBON FUEL FLASH VAPORIZATION SYSTEM FOR A PULSED DETONATION ENGINE (PREPRINT) K. Colin Tucker...85,7<&/$66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine K

  18. Mistaking the recent past for the present: false seeing by older adults.

    PubMed

    Jacoby, Larry L; Rogers, Chad S; Bishara, Anthony J; Shimizu, Yujiro

    2012-03-01

    Results of three experiments revealed that older, as compared to young, adults are more reliant on context when "seeing" a briefly flashed word that was preceded by a prime. In a congruent condition, the prime was the same word as flashed (e.g., DIRT dirt) whereas in an incongruent condition, the prime differed in a single letter from the word that was flashed (DART dirt). Following their attempt to identify the flashed word, participants were asked to report whether they had "seen" the flashed word or, instead, had responded on some other basis (knowing or guessing). Older adults showed dramatically higher false seeing by reporting the prime on incongruent trials and claiming to have seen it flashed. This was true even though a titration procedure was used to equate the performance of young and older adults on baseline trials which did not provide a biasing context. Results of Experiment 3 related age differences in false seeing to willingness to respond when given the option to withhold responses. Convergence of results with those showing higher false memory and false hearing are interpreted as evidence that older adults are less able to avoid misleading effects of context. That lessened ability may be associated with decline in frontal lobe functioning.

  19. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  20. Solar White

    NASA Image and Video Library

    2017-11-20

    Robert Youngquist, Ph.D., tests a sample disk with a "Solar White" cryogenic selective surface coating with a flash light, demonstrating the coating’s reflective properties. The innovative coating is predicted to reflect more than 99.9 percent of the simulated solar infrared radiation. This technology could enable storing super-cold, or cryogenic, liquids and support systems that shield astronauts against radiation during the Journey to Mars.

  1. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.

    1993-12-31

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. The authors mapped surface temperature differences of 0.2 to 0.6 C for 5 to 14 % thickness losses within corroded lap splices at 0.4 seconds after the heat flash. The procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). They established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels whichmore » had thickness losses from milled flat-bottom holes. The authors mapped the lap splice composite thermal inertia, (k{rho}c){sup 1/2}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where they observed ``pillowing`` from volume build-up of corrosion by-products.« less

  2. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.

    1993-11-01

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. We mapped surface temperature differences of 0.2 to 0.6 {degrees}C for 5 to 14% thickness losses within corroded lap splices at 0.4 seconds after the heat flash. Our procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). We established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels which had thicknessmore » losses from milled flat-bottom holes. We mapped the lap splice composite thermal inertia, (kpc){sup {1/2}}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where we observed ``pillowing`` from volume build-up of corrosion by-products.« less

  3. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  4. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE PAGES

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-08-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  5. Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium

    NASA Astrophysics Data System (ADS)

    Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.

    2013-05-01

    In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.

  6. Studing the Post Merger Evolution of White Dwarf Mergers with FLASH

    NASA Astrophysics Data System (ADS)

    Jenks, Malia

    2017-06-01

    There is still uncertainty as to the progenitor systems of type Ia supernova (SN Ia). Both single and double degenerate systems have been suggested as progenitors. In a double degenerate system a merger between the two white dwarfs, with total mass at or exceeding the Chandrasekhar mass, leads to the supernova. If the explosion occurs during the merging process it is a violent merger. If an explosion doesn't occur while the stars merge the system becomes a white dwarf of unstable mass. For mergers of this type with differing starting masses it has been shown that during the viscous evolution carbon burning starts far from the center and stably converts the star to oxygen and neon. In this case the star will eventually collapse to a neutron star and not produce an SN Ia. The case of similar mass mergers has been much less explored. Using the results of a smooth particle hydrodynamic merger we simulate the viscous evolution of an equal mass model with FLASH. These simulations test if a similar mass merger can lead to an SN Ia.

  7. Optimal flash rate and duty cycle for flashing visual indicators.

    NASA Technical Reports Server (NTRS)

    Markowitz, J.

    1971-01-01

    This experiment examined the ability of observers to determine, as quickly as possible, whether a visual indicator was steadily on or flashing. Six flash rates (periods) were combined factorially with three duty cycles (on-off ratios) to define 18 ?types' of intermittent signals. Experimental sessions were divided into six runs of 100 trials, each run utilizing one of the six flash rates. On any given trial in a run, the probability of a steady signal occurring was 0.5 and the probability of a flashing signal occurring was 0.5. A different duty cycle was employed daily for each experimental session. In all, 400 trials were devoted to each of the flash rates at each duty cycle. Accuracy and latency of response were the dependent variables of interest. The results show that the observers view the light for an interval of time appropriate to the expected flash rate and duty cycle; whether they judge the light to be steady or intermittent depends upon whether the light is extinguished during the predetermined waiting period. Adoption of this temporal criterion delays responding in comparison to those tasks involving responses to light onset. The decision or response criteria held by the observers are also sensitive to the parameters of the flashing light: observers become increasingly willing to call a flashing light ?steady' as flash duration increases.

  8. From the tunneling dimer to the onset of microsolvation: Infrared spectroscopy of allyl radical water aggregates in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-03-01

    The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

  9. Transfer of learned perception of sensorimotor simultaneity.

    PubMed

    Pesavento, Michael J; Schlag, John

    2006-10-01

    Synchronizing a motor response to a predictable sensory stimulus, like a periodic flash or click, relies on feedback (somesthetic, auditory, visual, or other) from the motor response. Practically, this results in a small (<50 ms) asynchrony in which the motor response leads the sensory event. Here we show that the perceived simultaneity in a coincidence-anticipation task (line crossing) is affected by changing the perceived simultaneity in a different task (pacing). In the pace task, human subjects were instructed to press a key in perfect synchrony with a red square flashed every second. In training sessions, feedback was provided by flashing a blue square with each key press, below the red square. There were two types of training pace sessions: one in which the feedback was provided with no delay, the other (adapting), in which the feedback was progressively delayed (up to 100 ms). Subjects' asynchrony was unchanged in the first case, but it was significantly increased in the pace task with delay. In the coincidence-anticipation task, a horizontally moving vertical bar crossed a vertical line in the middle of a screen. Subjects were instructed to press a key exactly when the bar crossed the line. They were given no feedback on their performance. Asynchrony on the line-crossing task was tested after the training pace task with feedback. We found that this asynchrony to be significantly increased even though there never was any feedback on the coincidence-anticipation task itself. Subjects were not aware that their sensorimotor asynchrony had been lengthened (sometimes doubled). We conclude that perception of simultaneity in a sensorimotor task is learned. If this perception is caused by coincidence of signals in the brain, the timing of these signals depends on something-acquired by experience-more adaptable than physiological latencies.

  10. Clusters in intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Bostedt, Christoph

    2012-06-01

    Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster plasma. The results will be compared to theoretical predictions and discussed in light of current developments at free-electron laser sources.

  11. Monitoring the development of volcanic eruptions through volcanic lightning - Using a lightning mapping array, seismic and infrasound array, and visual plume analysis

    NASA Astrophysics Data System (ADS)

    Smith, C. M.; Thompson, G.; McNutt, S. R.; Behnke, S. A.; Edens, H. E.; Van Eaton, A. R.; Gaudin, D.; Thomas, R. J.

    2017-12-01

    The period of 28 May - 7 June 2015 at Sakurajima Volcano, Japan witnessed a multitude of Vulcanian eruptive events, which resulted in plumes reaching 500-3000m above the vent. These plumes varied from white, gas-rich plumes to dark grey and black ash-rich plumes, and were recorded on lowlight and infrared cameras. A nine-station lightning mapping array (LMA) was deployed to locate sources of VHF (67-73 MHz) radiation produced by lightning flashes and other types of electrical activity such as `continuous RF (radio frequency)'. Two Nanometrics Trillium broadband seismometers and six BSU infrasound sensors were deployed. Over this ten day period we recorded 1556 events that consisted of both seismic and infrasound signals, indicating explosive activity. There are an additional 1222 events that were recorded as only seismic or infrasound signals, which may be a result of precursory seismic signals or noise contamination. Plume discharge types included both distinct lightning flashes and `continuous RF'. The LMA ran continuously for the duration of the experiment. On 30 May 2015 at least seven lightning flashes were also detected by the Vaisala Global Lightning Detection 360 network, which detects VLF (3-30 kHz) radiation. However the University of Washington's World Wide Lightning Location Network, which also detects VLF radiation, detected no volcanic lightning flashes in this time period. This indicates that the electrical activity in Sakurajima's plume occurs near the lower limits of the VLF detection threshold. We investigate relationships between the plume dynamics, the geophysical signal and the corresponding electrical activity through: plume velocity and height; event waveform cross-correlation; volcano acoustic-seismic ratios; overall geophysical energy; RSAM records; and VHF sources detected by the LMA. By investigating these relationships we hope to determine the seismic/infrasound energy threshold required to generate measurable electrical activity. Seismic and infrasound are two of the most common volcanic monitoring methods. By developing the relationships between plume electrification and these geophysical methods we hope to expand the use of lightning for active volcano monitoring.

  12. Using Artificial Soil and Dry-Column Flash Chromatography to Simulate Organic Substance Leaching Process: A Colorful Environmental Chemistry Experiment

    ERIC Educational Resources Information Center

    de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv

    2012-01-01

    Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…

  13. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    PubMed Central

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.

    2015-01-01

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096

  14. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; hide

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  15. Optimal visual simulation of the self-tracking combustion of the infrared decoy based on the particle system

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Duan, Jin; Wang, LiNing; Zhai, Di

    2016-09-01

    The high-efficiency simulation test of military weapons has a very important effect on the high cost of the actual combat test and the very demanding operational efficiency. Especially among the simulative emulation methods of the explosive smoke, the simulation method based on the particle system has generated much attention. In order to further improve the traditional simulative emulation degree of the movement process of the infrared decoy during the real combustion cycle, this paper, adopting the virtual simulation platform of OpenGL and Vega Prime and according to their own radiation characteristics and the aerodynamic characteristics of the infrared decoy, has simulated the dynamic fuzzy characteristics of the infrared decoy during the real combustion cycle by using particle system based on the double depth peeling algorithm and has solved key issues such as the interface, coordinate conversion and the retention and recovery of the Vega Prime's status. The simulation experiment has basically reached the expected improvement purpose, effectively improved the simulation fidelity and provided theoretical support for improving the performance of the infrared decoy.

  16. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  17. Dissolution of Oxygen Precipitate Nuclei in n-Type CZ-Si Wafers to Improve Their Material Quality: Experimental Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, Bhushan; Basnyat, Prakash; Devayajanam, Srinivas

    2017-01-01

    We present experimental results which show that oxygen-related precipitate nuclei (OPN) present in p-doped, n-type, Czochralski wafers can be dissolved using a flash-annealing process, yielding very high quality wafers for high-efficiency solar cells. Flash annealing consists of heating a wafer in an optical furnace to temperature between 1150 and 1250 degrees C for a short time. This process produces a large increase in the minority carrier lifetime (MCLT) and homogenizes each wafer. We have tested wafers from different axial locations of two ingots. All wafers reach nearly the same high value of MCLT. The OPN dissolution is confirmed by oxygenmore » analysis using Fourier transform infrared spectra and injection-level dependence of MCLT.« less

  18. Electric Field and Lightning Observations in the Core of Category 5 Hurricane Emily

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Mach, Doug M.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Significant electric fields and lightning activity associated with Hurricane Emily were observed from a NASA high-altitude ER-2 aircraft on July 17, 2005 while this storm developed as a compact but intense category 5 hurricane in the Caribbean south of Cuba. The electrical measurements were acquired as part of the NASA sponsored Tropical Cloud Systems and Processes (TCSP) experiment. In addition to the electrical measurements, the aircraft's remote sensing instrument complement also included active radars, passive microwave, visible and infrared radiometers, and a temperature sounder providing details on the dynamical, microphysical, and environmental structure, characteristics and development of this intense storm. Cloud-to-ground lightning location data from Vaisala's long range lightning detection network were also acquired and displayed in real-time along with electric fields measured at the aircraft. These data and associated display also supported aircraft guidance and vectoring during the mission. During the observing period, flash rates in excess of 3 to 5 flashes per minute, as well as large electric field and field change values were observed as the storm appeared to undergo periods of intensification, especially in the northwest quadrant in the core eyewall regions. This is in contrast to most hurricanes that tend to be characterized by weak electrification and little or no lightning activity except in the outer rain bands. It should be noted that this storm also had significant lightning associated with its rain bands.

  19. Temporal Binding Window of the Sound-Induced Flash Illusion in Amblyopia.

    PubMed

    Narinesingh, Cindy; Goltz, Herbert C; Wong, Agnes M F

    2017-03-01

    Amblyopia is a neurodevelopmental visual disorder caused by abnormal visual experience in childhood. In addition to known visual deficits, there is evidence for changes in audiovisual integration in amblyopia using explicit tasks. We examined audiovisual integration in amblyopia using an implicit task that is more relevant in a real-world context. A total of 11 participants with amblyopia and 16 controls were tested binocularly and monocularly on the sound-induced flash illusion, in which flashes and beeps are presented concurrently and the perceived number of flashes is influenced by the number of beeps. The task used 1 to 2 rapid peripheral flashes presented with 0 to 2 beeps, at 5 stimulus onset asynchronies, that is, beep (-200 milliseconds, -100 milliseconds) or flash leading (100 milliseconds, 200 milliseconds) or simultaneous (0 milliseconds). Participants reported the number of perceived flashes. Susceptibility was indicated by a "2 flashes" response to "fission" (1 flash, 2 beeps) or "1 flash" to "fusion" (2 flashes, 1 beep). For fission with the beep leading during binocular viewing, controls showed an expected decrease in illusion strength as stimulus onset asynchronies increased, whereas the illusion strength remained constant in participants with amblyopia, indicating a wider temporal binding window in amblyopia (P = 0.007). For fusion, participants with amblyopia showed reduced illusion strength during amblyopic eye viewing (P = 0.044) with the flash leading. Amblyopia is associated with the widening of the temporal binding window, specifically for fission when viewing binocularly with the beep leading. This suggests a developmental adaptation to delayed amblyopic eye visual processing to optimize audiovisual integration.

  20. Dual-band infrared (DBIR) imaging inspections of Boeing 737 and KC-135 aircraft panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.

    1993-08-27

    We apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft, and several Boeing KC-135 aircraft panels. Our analyses are discussed in this report. After flash-heating the aircraft skin, we record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. We analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness lossesmore » from corrosion. We established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum reference panels. Based on this correlation, lap splice temperatures rise 1{degrees}C per 24 {plus_minus} 5 % material loss at 0.4 s after the heat flash. We show tables, charts and temperature maps of typical lap splice material losses for the riveted (and bonded) Boeing 737, and the riveted (but unbonded) Boeing KC-135. We map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterize shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur. Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.« less

  1. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüler, Emil; Trovati, Stefania; King, Gregory

    Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). Methods and Materials: We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlomore » and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Results: Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. Conclusions: We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community.« less

  2. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes.

    PubMed

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2015-11-10

    Rupture fronts can cause fault displacement, reaching speeds up to several ms(-1) within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in fault frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to earthquakes propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic rupture in carbonate-bearing fault patches.

  3. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    PubMed

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  4. Report on in-situ studies of flash sintering of uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, Alicia Marie

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamosmore » National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO 2. The critical field studies are complete for UO 2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to fabricate nuclear fuel. First, the pure UO 2-based system shows promising behavior with flash sintering, but composite systems are likely to show better sintering behavior with spark plasma sintering. Efforts to develop these methods should therefore be tailored towards the likelihood of success. Additionally, modeling is a rapidly developing aspect of current flash sintering research and should be used in parallel with experiments. Ultimately, ongoing flash sintering studies on various materials, like those summarized in this report, are rapidly contributing to the feasibility of controlling this method for use in the future.« less

  5. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  6. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  7. SU-E-J-273: Skin Temperature Recovery Rate as a Potential Predictor for Radiation-Induced Skin Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, N C; Wu, Z; Chu, J

    Purpose: To assess the potential of dynamic infrared imaging to evaluate early skin reactions during radiation therapy in cancer patients. Methods: Thermal images were captured by our home-built system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 °C from ∼1 ms short flashes; the camera then captured a series of IR images for 10 seconds. For each image series, a basal temperature was recorded for 0.5 seconds before flash was triggered. The temperature gradients (ε) were calculated between a reference point (immediately after the flash) andmore » at a time point of 2sec, 4sec and 9sec after that. A 1.0 cm region of interest (ROI) on the skin was drawn; the mean and standard deviations of the ROIs were calculated. The standard ε values for normal human skins were evaluated by imaging 3 healthy subjects with different skin colors. All of them were imaged on 3 separate days for consistency checks. Results: The temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue, i.e. thermal conductivity. The average ε for three volunteers averaged over 3 measurements were 0.64±0.1, 0.72±0.2 and 0.80±0.3 at 2sec, 4sec and 9sec respectively. The standard deviations were within 1.5%–3.2%. One of the volunteers had a prior small skin burn on the left wrist and the ε values for the burned site were around 9% (at 4sec) and 13% (at 9sec) lower than that from the nearby normal skin. Conclusion: The temperature gradients from the healthy subjects were reproducible within 1.5%–3.2 % and that from a burned skin showed a significant difference (9%–13%) from the normal skin. We have an IRB approved protocol to image head and neck patients scheduled for radiation therapy.« less

  8. Circulating interleukin-8 and tumor necrosis factor-α are associated with hot flashes in healthy postmenopausal women.

    PubMed

    Huang, Wan-Yu; Hsin, I-Lun; Chen, Dar-Ren; Chang, Chia-Chu; Kor, Chew-Teng; Chen, Ting-Yu; Wu, Hung-Ming

    2017-01-01

    Hot flashes have been postulated to be linked to systemic inflammation. This study aimed to investigate the relationship between hot flashes, pro-inflammatory factors, and leukocytes in healthy, non-obese postmenopausal women. In this cross-sectional study, a total of 202 women aged 45-60 years were stratified into one of four groups according to their hot-flash status: never experienced hot flashes (Group N), mild hot flashes (Group m), moderate hot flashes (Group M), and severe hot flashes (Group S). Variables measured in this study included clinical parameters, hot flash experience, leukocytes, and fasting plasma levels of nine circulating cytokines/chemokines measured by using multiplex assays. Multiple linear regression analysis was used to evaluate the associations of hot flashes with these pro-inflammatory factors. The study was performed in a hospital medical center. The mean values of leukocyte number were not different between these four groups. The hot flash status had a positive tendency toward increased levels of circulating IL-6 (P-trend = 0.049), IL-8 (P-trend < 0.001), TNF-α (P-trend = 0.008), and MIP1β (P-trend = 0.04). Multivariate linear regression analysis revealed that hot-flash severity was significantly associated with IL-8 (P-trend < 0.001) and TNFα (P-trend = 0.007) among these nine cytokines/chemokines after adjustment for age, menopausal duration, BMI and FSH. Multivariate analysis further revealed that severe hot flashes were strongly associated with a higher IL-8 (% difference, 37.19%; 95% confidence interval, 14.98,63.69; P < 0.001) and TNFα (51.27%; 6.64,114.57; P < 0.05). The present study provides evidence that hot flashes are associated with circulating IL-8 and TNF-α in healthy postmenopausal women. It suggests that hot flashes might be related to low-grade systemic inflammation.

  9. Circulating interleukin-8 and tumor necrosis factor-α are associated with hot flashes in healthy postmenopausal women

    PubMed Central

    Huang, Wan-Yu; Hsin, I-Lun; Chen, Dar-Ren; Chang, Chia-Chu; Kor, Chew-Teng; Chen, Ting-Yu

    2017-01-01

    Introduction Hot flashes have been postulated to be linked to systemic inflammation. This study aimed to investigate the relationship between hot flashes, pro-inflammatory factors, and leukocytes in healthy, non-obese postmenopausal women. Participants and design In this cross-sectional study, a total of 202 women aged 45–60 years were stratified into one of four groups according to their hot-flash status: never experienced hot flashes (Group N), mild hot flashes (Group m), moderate hot flashes (Group M), and severe hot flashes (Group S). Variables measured in this study included clinical parameters, hot flash experience, leukocytes, and fasting plasma levels of nine circulating cytokines/chemokines measured by using multiplex assays. Multiple linear regression analysis was used to evaluate the associations of hot flashes with these pro-inflammatory factors. Settings The study was performed in a hospital medical center. Results The mean values of leukocyte number were not different between these four groups. The hot flash status had a positive tendency toward increased levels of circulating IL-6 (P-trend = 0.049), IL-8 (P-trend < 0.001), TNF-α (P-trend = 0.008), and MIP1β (P-trend = 0.04). Multivariate linear regression analysis revealed that hot-flash severity was significantly associated with IL-8 (P-trend < 0.001) and TNFα (P-trend = 0.007) among these nine cytokines/chemokines after adjustment for age, menopausal duration, BMI and FSH. Multivariate analysis further revealed that severe hot flashes were strongly associated with a higher IL-8 (% difference, 37.19%; 95% confidence interval, 14.98,63.69; P < 0.001) and TNFα (51.27%; 6.64,114.57; P < 0.05). Conclusion The present study provides evidence that hot flashes are associated with circulating IL-8 and TNF-α in healthy postmenopausal women. It suggests that hot flashes might be related to low-grade systemic inflammation. PMID:28846735

  10. Performance and applications of a hypertemporal hyperspectral Fourier-transform infrared spectroradiometer

    NASA Astrophysics Data System (ADS)

    King, Bruce H.; Ellis, Thomas; Old, Tom E.

    2009-05-01

    A fast-scanning, high-resolution FTIR spectroradiometer has been designed and built for use in remote sensing, stand-off detection, and spectral-temporal characterization of fast, energetic infrared events. The instrument design uses a Michelson-type interferometer with a rotary modulator which is capable of continuous measurement of infrared spectra at a rate of 1000 scans per second with 4 cm-1 resolution in the 2 - 25 micron spectral range. Sensitivity, spectral accuracy, and radiometric precision are discussed along with specific design parameters. This instrument can be used for passive sensing as a stand-alone sensor, or for active sensing as a receiver when used in conjunction with a highenergy excitation source such as a laser. Applications include muzzle flash signature measurement, ordnance detonation characterization, missile plume identification, and rocket motor combustion diagnostics.

  11. Discrimination of short-duration (two-pulse) flashes as a function of signal luminance and method of measurement.

    DOT National Transportation Integrated Search

    1971-11-01

    The recent introduction of strobe lights for anticollision purposes raises the possibility of using temporal patterns of short duration flashes as information carrying signals. The current experiments are concerned with the detection of the minimum d...

  12. Opacplot2: Enabling tabulated EoS and opacity compatibility for HEDLP simulations with the FLASH code

    NASA Astrophysics Data System (ADS)

    Laune, Jordan; Tzeferacos, Petros; Feister, Scott; Fatenejad, Milad; Yurchak, Roman; Flocke, Norbert; Weide, Klaus; Lamb, Donald

    2017-10-01

    Thermodynamic and opacity properties of materials are necessary to accurately simulate laser-driven laboratory experiments. Such data are compiled in tabular format since the thermodynamic range that needs to be covered cannot be described with one single theoretical model. Moreover, tabulated data can be made available prior to runtime, reducing both compute cost and code complexity. This approach is employed by the FLASH code. Equation of state (EoS) and opacity data comes in various formats, matrix-layouts, and file-structures. We discuss recent developments on opacplot2, an open-source Python module that manipulates tabulated EoS and opacity data. We present software that builds upon opacplot2 and enables easy-to-use conversion of different table formats into the IONMIX format, the native tabular input used by FLASH. Our work enables FLASH users to take advantage of a wider range of accurate EoS and opacity tables in simulating HELP experiments at the National Laser User Facilities.

  13. Is frictional heating needed to cause dramatic weakening of nanoparticle gouge during seismic slip? Insights from friction experiments with variable thermal evolutions

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Ma, Shengli; Niemeijer, André R.; Shimamoto, Toshihiko; Platt, John D.

    2016-07-01

    To examine whether faults can be lubricated by preexisting and newly formed nanoparticles, we perform high-velocity friction experiments on periclase (MgO) nanoparticles and on bare surfaces of Carrara marble cylinders/slices, respectively. Variable temperature conditions were simulated by using host blocks of different thermal conductivities. When temperature rises are relatively low, we observe high friction in nano-MgO tests and unexpected slip strengthening following initial weakening in marble slice tests, suggesting that the dominant weakening mechanisms are of thermal origin. Solely the rolling of nanoparticles without significant temperature rise is insufficient to cause dynamic fault weakening. For nano-MgO experiments, comprehensive investigations suggest that flash heating is the most likely weakening mechanism. In marble experiments, flash heating controls the unique evolutions of friction, and the competition between bulk temperature rise and wear-induced changes of asperity contact numbers seems to strongly affect the efficiency of flash heating.

  14. Suppressing the memory state of floating gate transistors with repeated femtosecond laser backside irradiations

    NASA Astrophysics Data System (ADS)

    Chambonneau, Maxime; Souiki-Figuigui, Sarra; Chiquet, Philippe; Della Marca, Vincenzo; Postel-Pellerin, Jérémy; Canet, Pierre; Portal, Jean-Michel; Grojo, David

    2017-04-01

    We demonstrate that infrared femtosecond laser pulses with intensity above the two-photon ionization threshold of crystalline silicon induce charge transport through the tunnel oxide in floating gate Metal-Oxide-Semiconductor transistor devices. With repeated irradiations of Flash memory cells, we show how the laser-produced free-electrons naturally redistribute on both sides of the tunnel oxide until the electric field of the transistor is suppressed. This ability enables us to determine in a nondestructive, rapid and contactless way the flat band and the neutral threshold voltages of the tested device. The physical mechanisms including nonlinear ionization, quantum tunneling of free-carriers, and flattening of the band diagram are discussed for interpreting the experiments. The possibility to control the carriers in memory transistors with ultrashort pulses holds promises for fast and remote device analyses (reliability, security, and defectivity) and for considerable developments in the growing field of ultrafast microelectronics.

  15. FLASH hydrodynamic simulations of experiments to explore the generation of cosmological magnetic fields

    NASA Astrophysics Data System (ADS)

    Scopatz, A.; Fatenejad, M.; Flocke, N.; Gregori, G.; Koenig, M.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Ravasio, A.; Tzeferacos, P.; Weide, K.; Yurchak, R.

    2013-03-01

    We report the results of FLASH hydrodynamic simulations of the experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation de Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. The simulations show that the result of the laser illuminating the target is a series of complex hydrodynamic phenomena.

  16. Shapes displayed with durations in the microsecond range do not obey Bloch's law of temporal summation

    PubMed Central

    Greene, Ernest; Ogden, R. Todd

    2013-01-01

    Shape patterns were displayed with simultaneous brief flashes from a light-emitting diode array. Flash durations in the microsecond range and luminous intensities were adjusted to vary the degree of successful shape recognition. Four experiments were conducted to test whether Bloch's law would apply in this task. Bloch's law holds that for very brief flashes the perceptual threshold is determined by the total number of photons being delivered, i.e., there is reciprocity of intensity and duration. The present results did not find that effectiveness of flashes was based on the total quantity of photons, as predicted by Bloch's law. Additionally, the evidence points to a visual mechanism that has ultra-high temporal precision that either registers the rate of photon flux or the duration of flashes. PMID:24349700

  17. How do silanes affect the lubricating properties of cationic double chain surfactant on silica surfaces?

    PubMed

    Beauvais, Muriel; Serreau, Laurence; Heitz, Caroline; Barthel, Etienne

    2009-03-01

    The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.

  18. Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Ren, Delun; Wang, Chao; Mao, Chensheng; Yang, Lei

    2018-02-01

    Ultrafast time stretch imaging offers unprecedented imaging speed and enables new discoveries in scientific research and engineering. One challenge in exploiting time stretch imaging in mid-infrared is the lack of high-quality diffractive optical elements (DOEs), which encode the image information into mid-infrared optical spectrum. This work reports the design and optimization of mid-infrared DOE with high diffraction-efficiency, broad bandwidth and large field of view. Using various typical materials with their refractive indices ranging from 1.32 to 4.06 in ? mid-infrared band, diffraction efficiencies of single-layer and double-layer DOEs have been studied in different wavelength bands with different field of views. More importantly, by replacing the air gap of double-layer DOE with carefully selected optical materials, one optimized ? triple-layer DOE, with efficiency higher than 95% in the whole ? mid-infrared window and field of view greater than ?, is designed and analyzed. This new DOE device holds great potential in ultrafast mid-infrared time stretch imaging and spectroscopy.

  19. Thermographic imaging for high-temperature composite materials: A defect detection study

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Bodis, James R.; Bishop, Chip

    1995-01-01

    The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.

  20. Role of Cerenkov radiation in the eye-flashes observed by Apollo astronauts.

    PubMed

    McNulty, P J; Pease, V P; Bond, V P

    1976-01-01

    Visual phenomena in the form of colorless flashes of light were observed by astronauts in deep space when their eyes were closed and adapted to darkness. We describe in this paper laboratory experiments and calculations which indicate that many of these flashes are the result of visible light generated within the astronauts' eyeball in the form of Cerenkov radiation when a relativistic HZE particle traverses it. The sensitivity to Cerenkov radiation measured for three subjects exposed to pulses of pions and muons and the visual phenomena observed were found to be consistent with the reports of flashes observed at rates as high as 2 per minute on Apollo missions 11 through 17.

  1. Circulating leptin and adiponectin are associated with insulin resistance in healthy postmenopausal women with hot flashes.

    PubMed

    Huang, Wan-Yu; Chang, Chia-Chu; Chen, Dar-Ren; Kor, Chew-Teng; Chen, Ting-Yu; Wu, Hung-Ming

    2017-01-01

    Hot flashes have been postulated to be linked to the development of metabolic disorders. This study aimed to evaluate the relationship between hot flashes, adipocyte-derived hormones, and insulin resistance in healthy, non-obese postmenopausal women. In this cross-sectional study, a total of 151 women aged 45-60 years were stratified into one of three groups according to hot-flash status over the past three months: never experienced hot flashes (Group N), mild-to-moderate hot flashes (Group M), and severe hot flashes (Group S). Variables measured in this study included clinical parameters, hot flash experience, fasting levels of circulating glucose, lipid profiles, plasma insulin, and adipocyte-derived hormones. Multiple linear regression analysis was used to evaluate the associations of hot flashes with adipocyte-derived hormones, and with insulin resistance. The study was performed in a hospital medical center. The mean (standard deviation) of body-mass index was 22.8(2.7) for Group N, 22.6(2.6) for Group M, and 23.5(2.4) for Group S, respectively. Women in Group S displayed statistically significantly higher levels of leptin, fasting glucose, and insulin, and lower levels of adiponectin than those in Groups M and N. Multivariate linear regression analysis revealed that hot-flash severity was significantly associated with higher leptin levels, lower adiponectin levels, and higher leptin-to-adiponectin ratio. Univariate linear regression analysis revealed that hot-flash severity was strongly associated with a higher HOMA-IR index (% difference, 58.03%; 95% confidence interval, 31.00-90.64; p < 0.001). The association between hot flashes and HOMA-IR index was attenuated after adjusting for leptin or adiponectin and was no longer significant after simultaneously adjusting for leptin and adiponectin. The present study provides evidence that hot flashes are associated with insulin resistance in postmenopausal women. It further suggests that hot flash association with insulin resistance is dependent on the combination of leptin and adiponectin variables.

  2. The Thermal Diffusivity Measurement of the Two-layer Ceramics Using the Laser Flash Methodn

    NASA Astrophysics Data System (ADS)

    Akoshima, Megumi; Ogwa, Mitsue; Baba, Tetsuya; Mizuno, Mineo

    Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.

  3. Lunar impact flashes - tracing the NEO size distribution

    NASA Astrophysics Data System (ADS)

    Avdellidou, Chrysa; Koschny, Detlef; NELIOTA Team

    2017-10-01

    Almost 20 years ago, we started to monitor the lunar surface with small telescopes to detect light flashes resulting from the hypervelocity collisions of meteoroids. The initial purpose was to understand the flux of impactors on Earth. The estimation of the flux of near Earth Objects (NEOs) is important not only for the protection of the human civilisation (meter-sized, see Chelyabinsk event in 2013), but also for the protection of the space assets (cm-sized objects). Apart from the NEO flux, the lunar surface helps the study of the impact events per se. The European Space Agency (ESA) is directing and funding lunar observations at 1.2 m Kryoneri telescope in Peloponnese, Greece. This telescope is equipped with a dichroic beam-splitter that directs the light onto two sCMOS cameras, that observe in visible and infrared wavelengths, using Rc and Ic Cousin filters respectively. Currently it is the largest telescope in the world that performs dedicated lunar impact flashes observations. We present the first flash observations in two bands, allowing us to measure flash temperatures for the first time. We find that the temperatures have a range that agrees with the theoretical approaches. Since the temperature can now be calculated, we have a more accurate estimation of the impactor’s mass and the size of the radiated ejecta plume.Having the Moon as a large-scale laboratory, new horizons are set towards the understanding of the nature of impacts, the impactor's material type and the energy partitioning, that is a constant puzzle in impact studies. This can now happen as more impact parameters can be determined and combined, such as the impactor’s mass and speed, flash luminosity, radiating volume, crater size when applicable etc. Future statistics can determine the different lunar regolith properties at different impact sites, especially during a meteoroid stream where the impactors share a common origin and possibly composition.

  4. An analysis of soil moisture and vegetation conditions during a period of rapid subseasonal oscillations between drought and pluvials over Texas during 2015

    NASA Astrophysics Data System (ADS)

    Hunt, E. D.; Otkin, J.; Zhong, Y.

    2017-12-01

    Flash drought, characterized by the rapid onset of abnormally warm and dry weather conditions that leads to the rapid depletion of soil moisture and rapid deteriorations in vegetation health. Flash recovery, on the other hand, is characterized by a period(s) of intense precipitation where drought conditions are quickly eradicated and may be replaced by saturated soils and flooding. Both flash drought and flash recovery are closely tied to the rapid depletion or recharge of root zone soil moisture; therefore, soil moisture observations are very useful for monitoring their evolution. However, in-situ soil moisture observations tend to be concentrated over small regions and thus other methods are needed to provide a spatially continuous depiction of soil moisture conditions. One option is to use top soil moisture retrievals from the Soil Moisture Active Passive (SMAP) sensor. SMAP provides routine coverage of surface soil moisture (0-5 cm) over most of the globe, including the timespan (2015) and region of interest (Texas) that are the focus of our study. This region had an unusual sequence of flash recovery-flash drought-flash recovery during an six-month period during 2015 that provides a valuable case study of rapid transitions between extreme soil moisture conditions. During this project, SMAP soil moisture retrievals are being used in combination with in-situ soil moisture observations and assimilated into the Land Information System (LIS) to provide information about soil moisture content. LIS also provides greenness vegetation fraction data over large regions. The relationship between soil moisture and vegetation conditions and the response of the vegetation to the rapidly changing conditions are also assessed using the satellite thermal infrared based Evaporative Stress Index (ESI) that depicts anomalies in evapotranspiration, along with other vegetation datasets (leaf area index, greenness fraction) derived using MODIS observations. Preliminary results with the Noah land surface model (inside of LIS) shows that it broadly captured the soil moisture evolution during the 2015 sequence but tended to underestimate the magnitude of soil moisture anomalies. The ESI also showed negative anomalies during the drought. These and other results will be presented at the annual meeting.

  5. Infrared Photothermal Radiometry.

    DTIC Science & Technology

    1984-04-10

    changes whenever the transmitted thermal wave crosses a void. This provides a means of nondestructive subsurface imaging of defects, and Busse found that...15 In the flash excitation, the excitation beam is modulated by a broad spectrum of Fourier modulation frequencies. In all cases of subsurface imaging , the...technique of Nordal and Kanstad 2 1t 23 is not only good for spectroscopic detection, but also for subsurface imaging applications as well. 2.4 Pulsed

  6. Structural and optical properties of tin disulphide thin films grown by flash evaporation

    NASA Astrophysics Data System (ADS)

    Banotra, Arun; Padha, Naresh

    2018-04-01

    Tin Disulphide thin films were deposited by Flash Evaporation method on corning Glass Substrate at different substrate temperatures. The deposited films were undertaken for Structural, Optical and compositional characterizations. Compositional analysis of the films exhibited decrease in the sulphur content enabling S/Sn ratio to vary from 2.05 to 1.32 with increasing substrate temperature. X-ray diffraction reveals amorphous nature of the as-deposited films with varying substrate temperatures. Optical measurements estimated from absorbance spectra suggest higher absorbance at λ≤500nm and higher transmission at λ≥500nm with bandgap changes from 2.45eV to 2.09eV. The 323K as-deposited films were undertaken for annealing which transforms the films into crystalline form corresponding to hexagonal SnS2 phase at 423K and above. However, the optical response for the annealed samples shows a higher transmission of 70% in the visible region which increases further in the Infrared region of the spectrum achieving maximum transmission upto 98%. This higher transmission in the Visible to Infrared region of the solar spectrum in amorphous as well as crystalline form makes the film suitable for their use as a window layer in the Solar Cell Design.

  7. Electro-optical system for gunshot detection: analysis, concept, and performance

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Madura, H.; Trzaskawka, P.; Bieszczad, G.; Sosnowski, T.

    2011-08-01

    The paper discusses technical possibilities to build an effective electro-optical sensor unit for sniper detection using infrared cameras. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. At first, the analysis was presented of three distinguished phases of sniper activity: before, during and after the shot. On the basis of experimental data the parameters defining the relevant sniper signatures were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets and the descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. The analyzed infrared systems were simulated using NVTherm software. The calculations for several cameras, equipped with different lenses and detector types were performed. The simulation of detection ranges was performed for the selected scenarios of sniper detection tasks. After the analysis of simulation results, the technical specifications of infrared sniper detection system were discussed, required to provide assumed detection range. Finally the infrared camera setup was proposed which can detected sniper from 1000 meters range.

  8. Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems

    NASA Astrophysics Data System (ADS)

    Wang, Yongkun; Goda, Kazuo; Kitsuregawa, Masaru

    Recently, flash memory is emerging as the storage device. With price sliding fast, the cost per capacity is approaching to that of SATA disk drives. So far flash memory has been widely deployed in consumer electronics even partly in mobile computing environments. For enterprise systems, the deployment has been studied by many researchers and developers. In terms of the access performance characteristics, flash memory is quite different from disk drives. Without the mechanical components, flash memory has very high random read performance, whereas it has a limited random write performance because of the erase-before-write design. The random write performance of flash memory is comparable with or even worse than that of disk drives. Due to such a performance asymmetry, naive deployment to enterprise systems may not exploit the potential performance of flash memory at full blast. This paper studies the effectiveness of using non-in-place-update (NIPU) techniques through the IO path of flash-based transaction processing systems. Our deliberate experiments using both open-source DBMS and commercial DBMS validated the potential benefits; x3.0 to x6.6 performance improvement was confirmed by incorporating non-in-place-update techniques into file system without any modification of applications or storage devices.

  9. Studying white dwarf merger remnants with FLASH

    NASA Astrophysics Data System (ADS)

    Jenks, Malia

    2017-01-01

    There is still uncertainty as to the progenitor systems of type Ia supernova (SN Ia). Both single and double degenerate systems have been suggested as progenitors. In a double degenerate system a merger between the two white dwarfs, with total mass at or exceeding the Chandrasekhar mass, leads to the supernova. If the explosion occurs during the merging process it is a violent merger. If an explosion doesn't occur while the stars merge the system becomes a white dwarf of unstable mass. For mergers of this type with differing starting masses it has been shown that during the viscous evolution carbon burning starts far from the center and stably converts the star to oxygen and neon. In this case the star will eventually collapse to a neutron star and not produce an SN Ia. The case of similar mass mergers has been much less explored. Using the results of a smooth particle hydrodynamic merger we simulate the viscous evolution of models of different mass ratios with FLASH. These simulations test if a similar mass merger can lead to an SN Ia, and begin to probe where the transition from similar to dissimilar mass occurs.

  10. Infrared photorefractive effect in doped KNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Medrano, C.; Zgonik, M.; Liakatas, I.; Günter, P.

    1996-11-01

    The photorefractive sensitivity of potassium niobate crystals doped with Ce, Co, Cu, Fe, Mn, Ni, and Rh and double-doped with Mn and Rh is investigated over an extended spectral range. We present experimental evidence on extrinsic properties important for the photorefractive effect, such as absorption and effective trap density. Photorefractive gratings are investigated with two-wave mixing experiments. Results on exponential gain, response time, and photorefractive sensitivity at near-infrared wavelengths are reported. The best photorefractive sensitivities at 860 and 1064 nm were obtained in crystals doped with Rh, Fe, Mn, and Mn-Rh. This makes them suitable for applications at laser-diode wavelengths; at 1064 nm, however, Rh:KNbO3 shows a better photorefractive sensitivity than the others. .

  11. Collecting Response Times using Amazon Mechanical Turk and Adobe Flash

    PubMed Central

    Simcox, Travis; Fiez, Julie A.

    2017-01-01

    Crowdsourcing systems like Amazon's Mechanical Turk (AMT) allow data to be collected from a large sample of people in a short amount of time. This use has garnered considerable interest from behavioral scientists. So far, most experiments conducted on AMT have focused on survey-type instruments because of difficulties inherent in running many experimental paradigms over the Internet. This article investigated the viability of presenting stimuli and collecting response times using Adobe Flash to run ActionScript 3 code in conjunction with AMT. First, the timing properties of Adobe Flash were investigated using a phototransistor and two desktop computers running under several conditions mimicking those that may be present in research using AMT. This experiment revealed some strengths and weaknesses of the timing capabilities of this method. Next, a flanker task and a lexical decision task implemented in Adobe Flash were administered to participants recruited with AMT. The expected effects in these tasks were replicated. Power analyses were conducted to describe the number of participants needed to replicate these effects. A questionnaire was used to investigate previously undescribed computer use habits of 100 participants on AMT. We conclude that a Flash program in conjunction with AMT can be successfully used for running many experimental paradigms that rely on response times, although experimenters must understand the limitations of the method. PMID:23670340

  12. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes

    PubMed Central

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2015-01-01

    Rupture fronts can cause fault displacement, reaching speeds up to several ms−1 within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in fault frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to earthquakes propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic rupture in carbonate-bearing fault patches. PMID:26552964

  13. The Thermal Structure of Triton's Atmosphere: Results from the 1993 and 1995 Occultations

    NASA Astrophysics Data System (ADS)

    Olkin, C. B.; Elliot, J. L.; Hammel, H. B.; Cooray, A. R.; McDonald, S. W.; Foust, J. A.; Bosh, A. S.; Buie, M. W.; Millis, R. L.; Wasserman, L. H.; Dunham, E. W.; Young, L. A.; Howell, R. R.; Hubbard, W. B.; Hill, R.; Marcialis, R. L.; McDonald, J. S.; Rank, D. M.; Holbrook, J. C.; Reitsema, H. J.

    1997-09-01

    This paper presents new results about Triton's atmospheric structure from the analysis of all ground-based stellar occultation data recorded to date, including one single-chord occultation recorded on 1993 July 10 and nine occultation lightcurves from the double-star event on 1995 August 14. These stellar occultation observations made both in the visible and in the infrared have good spatial coverage of Triton, including the first Triton central-flash observations, and are the first data to probe the altitude level 20-100 km on Triton. The small-planet lightcurve model of J. L. Elliot and L. A. Young (1992,Astron. J.103,991-1015) was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude, indicating that Triton's atmosphere is spherically symmetric at ∼50-km altitude to within the error of the measurements; however, asymmetry observed in the central flash indicates the atmosphere is not homogeneous at the lowest levels probed (∼20-km altitude). From the average of the 1995 occultation data, the equivalent-isothermal temperature of the atmosphere is 47 ± 1 K and the atmospheric pressure at 1400-km radius (∼50-km altitude) is 1.4 ± 0.1 μbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989 (D. F. Strobel, X. Zhu, M. E. Summers, and M. H. Stevens, 1996,Icarus120,266-289). The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the model. In our opinion, the disagreement in temperature and pressure is probably due to modeling problems at the microbar level, since measurements at this level have not previously been made. Alternatively, the difference could be due to seasonal change in Triton's atmospheric structure.

  14. The Flash ADC system and PMT waveform reconstruction for the Daya Bay experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yongbo; Chang, Jinfan; Cheng, Yaping; Chen, Zhang; Hu, Jun; Ji, Xiaolu; Li, Fei; Li, Jin; Li, Qiuju; Qian, Xin; Jetter, Soeren; Wang, Wei; Wang, Zheng; Xu, Yu; Yu, Zeyuan

    2018-07-01

    To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved.

  15. Nonsequential double ionization with mid-infrared laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less

  16. Nonsequential double ionization with mid-infrared laser fields

    DOE PAGES

    Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai; ...

    2016-11-18

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less

  17. Total Lightning and Radar Storm Characteristics Associated with Severe Storms in Central Florida

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J; Raghavan, R.; Buechler, Dennis; Hodanish, S.; Sharp, D.; Williams, E.; Boldi, B.; Matlin, A.; Weber, M.

    1998-01-01

    This paper examines the three dimensional characteristics of lightning flashes and severe storms observed in Central Florida during 1997-1998. The lightning time history of severe and tornadic storms were captured during the on-going ground validation campaign supporting the Lightning Imaging Sensor (LIS) experiment on the Tropical Rainfall Measuring Mission (TRMM). The ground validation campaign is a collaborative experiment that began in 1997 and involves scientists at the Global Hydrology and Climate Center, MIT/Lincoln Laboratories, and the NWS Forecast Office at Melbourne, FL. Lightning signatures that may provide potential early warning of severe storms are being evaluated by the forecasters at the NWS/MLB office. Severe storms with extreme flash rates sometimes exceeding 300 per minute and accompanying rapid increases in flash rate prior to the onset of the severe weather (hall, damaging winds, tornadoes) have been reported by Hodanish et al. and Williams et al. (1998-this conference). We examine the co-evolving changes in storm structure (mass, echo top, shear, latent heat release) and kinematics associated with these extreme and rapid flash rate changes over time. The flash frequency and density are compared with the three dimensional radar reflectivity structure of the storm to help interpret the possible mechanisms producing the extreme and rapidly increasing flash rates. For two tornadic storms examined thus far, we find the burst of lightning is associated with the development of upper level rotation in the storm. In one case, the lightning burst follows the formation of a bounded weak echo region (BWER). The flash rates diminish with time as the rotation develops to the ground in conjunction with the decent of the reflectivity core. Our initial findings suggest the dramatic increase of flash rates is associated with a sudden and dramatic increase in storm updraft intensity which we hypothesize is stretching vertical vorticity as well as enhancing the development of the mixed phase region of the storm. We discuss the importance of these factors in producing both the observed extreme flash rates and the severe weather that follows in these storms and others to be presented.

  18. Risk of long-term hot flashes after natural menopause: evidence from the Penn Ovarian Aging Study cohort.

    PubMed

    Freeman, Ellen W; Sammel, Mary D; Sanders, Richard J

    2014-09-01

    This study aims to estimate the risk of hot flashes relative to natural menopause and to evaluate the associations of hormone levels, behavioral variables, and demographic variables with the risk of hot flashes after menopause. We performed annual assessment of 255 women who were premenopausal at baseline and reached natural menopause within 16 years of follow-up. The prevalence of moderate/severe hot flashes increased in each premenopausal year, reaching a peak of 46% in the first 2 years after the final menstrual period (FMP). Hot flashes decreased slowly after menopause and did not return to premenopausal levels until 9 years after the FMP. The mean (SD) duration of moderate/severe hot flashes after the FMP was 4.6 (2.9) years (for any hot flashes, 4.9 [3.1] y). One third of women at 10 years or more after menopause continued to experience moderate/severe hot flashes. African-American women (obese and nonobese) and obese white women had significantly greater risks of hot flashes compared with nonobese white women (interaction, P = 0.01). In multivariable analysis, increasing follicle-stimulating hormone levels before the FMP (P < 0.001), decreasing estradiol (odds ratio, 0.87; 95% CI, 0.78-0.96; P = 0.008), and increasing anxiety (odds ratio, 1.05; 95% CI, 1.03-1.06; P < 0.001) were significant risk factors for hot flashes, whereas higher education levels were protective (odds ratio, 0.66; 95% CI, 0.47-0.91; P = 0.011). Moderate/severe hot flashes continue, on average, for nearly 5 years after menopause; more than one third of women observed for 10 years or more after menopause have moderate/severe hot flashes. Continuation of hot flashes for more than 5 years after menopause underscores the importance of determining individual risks/benefits when selecting hormone or nonhormone therapy for menopausal symptoms.

  19. RISK OF LONG TERM HOT FLASHES AFTER NATURAL MENOPAUSE: EVIDENCE FROM THE PENN OVARIAN AGING COHORT

    PubMed Central

    Freeman, Ellen W.; Sammel, Mary D.; Sanders, Richard J.

    2015-01-01

    Objectives To estimate the risk of hot flashes relative to natural menopause and evaluate associations of hormone levels, behavioral and demographic variables with the risk of hot flashes following menopause. Methods Annual assessments of 255 women who were premenopausal at baseline and reached natural menopause during 16 years of follow-up. Results The prevalence of moderate/severe hot flashes increased in each premenopausal year, reaching a peak of 46% in the first two years after the final menstrual period (FMP). Hot flashes decreased slowly following menopause and did not return to premenopausal levels until 9 years after FMP. The mean duration of moderate/severe hot flashes after FMP was 4.6 (SD2.9) years (4.9, SD3.1 years for any hot flashes). One-third of women at 10 or more years following menopause continued to experience moderate/severe hot flashes. African American women (obese and non-obese) and obese white women had significantly greater risk of hot flashes compared to non-obese white women (interaction P=0.01). In multivariable analysis, increasing FSH levels before FMP (P<0.001), decreasing estradiol (OR 0.87, 95% CI: 0.78–0.96, P=0.008), and increasing anxiety (OR 1.05, 95% CI: 1.03–1.06, P<0.001) were significant risk factors for hot flashes, while higher education levels were protective (OR 0.66, 95% CI: 0.47–0.91, P=0.011). Conclusions Moderate/severe hot flashes continued on average for nearly 5 years following menopause; more than one- third of women observed for 10 or more years following menopause had moderate/severe hot flashes. Continuation of hot flashes for more than 5 years following menopause underscores the importance of determining individual risk/benefit when selecting hormone or non-hormonal therapy for menopausal symptoms. PMID:24473530

  20. Visually evoked changes in the rat retinal blood flow measured with Doppler optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tan, Bingyao; Mason, Erik; MacLellan, Ben; Bizheva, Kostadinka

    2017-02-01

    Visually evoked changes of retinal blood flow can serve as an important research tool to investigate eye disease such as glaucoma and diabetic retinopathy. In this study we used a combined, research-grade, high-resolution Doppler OCT+ERG system to study changes in the retinal blood flow (RBF) and retinal neuronal activity in response to visual stimuli of different intensities, durations and type (flicker vs single flash). Specifically, we used white light stimuli of 10 ms and 200 ms single flash, 1s and 2s for flickers stimuli of 20% duty cycle. The study was conducted in-vivo in pigmented rats. Both single flash (SF) and flicker stimuli caused increase in the RBF. The 10 ms SF stimulus did not generate any consistent measurable response, while the 200 ms SF of the same intensity generated 4% change in the RBF peaking at 1.5 s after the stimulus onset. Single flash stimuli introduced 2x smaller change in RBF and 30% earlier RBF peak response compared to flicker stimuli of the same intensity and duration. Doubling the intensity of SF or flicker stimuli increased the RBF peak magnitude by 1.5x. Shortening the flicker stimulus duration by 2x increased the RBF recovery rate by 2x, however, had no effect on the rate of RBF change from baseline to peak.

  1. Demonstration of a Bias Tunable Quantum Dots-in-a-Well Focal Plane Array

    DTIC Science & Technology

    2009-01-01

    uniformity and mea- sured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original...first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature...infrared photodetectors ( QWIPs ) with various doping and impurities have produced FPAs capable of detection across much of the infrared spectrum from

  2. Impact Flash Physics: Modeling and Comparisons With Experimental Results

    NASA Astrophysics Data System (ADS)

    Rainey, E.; Stickle, A. M.; Ernst, C. M.; Schultz, P. H.; Mehta, N. L.; Brown, R. C.; Swaminathan, P. K.; Michaelis, C. H.; Erlandson, R. E.

    2015-12-01

    Hypervelocity impacts frequently generate an observable "flash" of light with two components: a short-duration spike due to emissions from vaporized material, and a long-duration peak due to thermal emissions from expanding hot debris. The intensity and duration of these peaks depend on the impact velocity, angle, and the target and projectile mass and composition. Thus remote sensing measurements of planetary impact flashes have the potential to constrain the properties of impacting meteors and improve our understanding of impact flux and cratering processes. Interpreting impact flash measurements requires a thorough understanding of how flash characteristics correlate with impact conditions. Because planetary-scale impacts cannot be replicated in the laboratory, numerical simulations are needed to provide this insight for the solar system. Computational hydrocodes can produce detailed simulations of the impact process, but they lack the radiation physics required to model the optical flash. The Johns Hopkins University Applied Physics Laboratory (APL) developed a model to calculate the optical signature from the hot debris cloud produced by an impact. While the phenomenology of the optical signature is understood, the details required to accurately model it are complicated by uncertainties in material and optical properties and the simplifications required to numerically model radiation from large-scale impacts. Comparisons with laboratory impact experiments allow us to validate our approach and to draw insight regarding processes that occur at all scales in impact events, such as melt generation. We used Sandia National Lab's CTH shock physics hydrocode along with the optical signature model developed at APL to compare with a series of laboratory experiments conducted at the NASA Ames Vertical Gun Range. The experiments used Pyrex projectiles to impact pumice powder targets with velocities ranging from 1 to 6 km/s at angles of 30 and 90 degrees with respect to horizontal. High-speed radiometer measurements were made of the time-dependent impact flash at wavelengths of 350-1100 nm. We will present comparisons between these measurements and the output of APL's model. The results of this validation allow us to determine basic relationships between observed optical signatures and impact conditions.

  3. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  4. Hypnosis for Hot Flashes and Associated Symptomsin Women with Breast Cancer.

    PubMed

    Roberts, R Lynae; Na, Hyeji; Yek, Ming Hwei; Elkins, Gary

    2017-10-01

    Women with breast cancer experience a host of physical and psychological symptoms, including hot flashes, sleep difficulties, anxiety, and depression. Therefore, treatment for women with breast cancer should target these symptoms and be individualized to patients' specific presentations. The current article reviews the common symptoms associated with breast cancer in women, then examines clinical hypnosis as a treatment for addressing these symptoms and improving the quality of life of women with breast cancer. Clinical hypnosis is an effective, nonpharmaceutical treatment for hot flashes and addressing many symptoms typically experienced by breast cancer patients. A case example is provided to illustrate the use of clinical hypnosis for the treatment of hot flashes with a patient with breast cancer.

  5. Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models.

    PubMed

    König, Anke; Zöller, Nadja; Kippenberger, Stefan; Bernd, August; Kaufmann, Roland; Layer, Paul G; Heselich, Anja

    2018-01-01

    Ionizing and near-infrared radiation are both part of the therapeutic spectrum in cancer treatment. During cancer therapy ionizing radiation is typically used for non-invasive reduction of malignant tissue, while near-infrared photobiomodulation is utilized in palliative medical approaches, e.g. for pain reduction or impairment of wound healing. Furthermore, near-infrared is part of the solar wavelength spectrum. A combined exposure of these two irradiation qualities - either intentionally during medical treatment or unintentionally due to solar exposure - is therefore presumable for cancer patients. Several studies in different model organisms and cell cultures show a strong impact of near-infrared pretreatment on ionizing radiation-induced stress response. To investigate the risks of non-thermal near-infrared (NIR) pretreatment in patients, a human in vitro full thickness skin models (FTSM) was evaluated for radiation research. FTSM were pretreated with therapy-relevant doses of NIR followed by X-radiation, and then examined for DNA-double-strand break (DSB) repair, cell proliferation and apoptosis. Double-treated FTSM revealed a clear influence of NIR on X-radiation-induced stress responses in cells in their typical tissue environment. Furthermore, over a 24h time period, double-treated FTSM presented a significant persistence of DSBs, as compared to samples exclusively irradiated by X-rays. In addition, NIR pretreatment inhibited apoptosis induction of integrated fibroblasts, and counteracted the radiation-induced proliferation inhibition of basal keratinocytes. Our work suggests that cancer patients treated with X-rays should be prevented from uncontrolled NIR irradiation. On the other hand, controlled double-treatment could provide an alternative therapy approach, exposing the patient to less radiation. Copyright © 2017. Published by Elsevier B.V.

  6. The impact of red light running camera flashes on younger and older drivers' attention and oculomotor control.

    PubMed

    Wright, Timothy J; Vitale, Thomas; Boot, Walter R; Charness, Neil

    2015-12-01

    Recent empirical evidence has suggested that the flashes associated with red light running cameras (RLRCs) distract younger drivers, pulling attention away from the roadway and delaying processing of safety-relevant events. Considering the perceptual and attentional declines that occur with age, older drivers may be especially susceptible to the distracting effects of RLRC flashes, particularly in situations in which the flash is more salient (a bright flash at night compared with the day). The current study examined how age and situational factors potentially influence attention capture by RLRC flashes using covert (cuing effects) and overt (eye movement) indices of capture. We manipulated the salience of the flash by varying its luminance and contrast with respect to the background of the driving scene (either day or night scenes). Results of 2 experiments suggest that simulated RLRC flashes capture observers' attention, but, surprisingly, no age differences in capture were observed. However, an analysis examining early and late eye movements revealed that older adults may have been strategically delaying their eye movements in order to avoid capture. Additionally, older adults took longer to disengage attention following capture, suggesting at least 1 age-related disadvantage in capture situations. Findings have theoretical implications for understanding age differences in attention capture, especially with respect to capture in real-world scenes, and inform future work that should examine how the distracting effects of RLRC flashes influence driver behavior. (c) 2015 APA, all rights reserved).

  7. The Impact of Red Light Running Camera Flashes on Younger and Older Drivers' Attention and Oculomotor Control

    PubMed Central

    Wright, Timothy J.; Vitale, Thomas; Boot, Walter R; Charness, Neil

    2015-01-01

    Recent empirical evidence suggests that the flashes associated with red light running cameras (RLRCs) distract younger drivers, pulling attention away from the roadway and delaying processing of safety-relevant events. Considering the perceptual and attentional declines that occur with age, older drivers may be especially susceptible to the distracting effects of RLRC flashes, particularly in situations in which the flash is more salient (a bright flash at night compared to the day). The current study examined how age and situational factors potentially influence attention capture by RLRC flashes using covert (cuing effects) and overt (eye movement) indices of capture. We manipulated the salience of the flash by varying its luminance and contrast with respect to the background of the driving scene (either day or night scenes). Results of two experiments suggest that simulated RLRC flashes capture observers' attention, but, surprisingly, no age differences in capture were observed. However, an analysis examining early and late eye movements revealed that older adults may have been strategically delaying their eye movements in order to avoid capture. Additionally, older adults took longer to disengage attention following capture, suggesting at least one age-related disadvantage in capture situations. Findings have theoretical implications for understanding age differences in attention capture, especially with respect to capture in real-world scenes, and inform future work that should examine how the distracting effects of RLRC flashes influence driver behavior. PMID:26479014

  8. Additions and improvements to the high energy density physics capabilities in the FLASH code

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Flocke, N.; Graziani, C.; Tzeferacos, P.; Weide, K.

    2016-10-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation magnetohydrodynamics code that has the capabilities to treat a broad range of physical processes. FLASH performs well on a wide range of computer architectures, and has a broad user base. Extensive high energy density physics (HEDP) capabilities have been added to FLASH to make it an open toolset for the academic HEDP community. We summarize these capabilities, emphasizing recent additions and improvements. In particular, we showcase the ability of FLASH to simulate the Faraday Rotation Measure produced by the presence of magnetic fields; and proton radiography, proton self-emission, and Thomson scattering diagnostics with and without the presence of magnetic fields. We also describe several collaborations with the academic HEDP community in which FLASH simulations were used to design and interpret HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under Grant PHY-0903997.

  9. Flash photolysis of rhodopsin in the cat retina

    PubMed Central

    1981-01-01

    The bleaching of rhodopsin by short-duration flashes of a xenon discharge lamp was studied in vivo in the cat retina with the aid of a rapid, spectral-scan fundus reflectometer. Difference spectra recorded over a broad range of intensities showed that the bleaching efficacy of high-intensity flashes was less than that of longer duration, steady lights delivering the same amount of energy. Both the empirical results and those derived from a theoretical analysis of flash photolysis indicate that, under the conditions of these experiments, the upper limit of the flash bleaching of rhodopsin in cat is approximately 90%. Although the fact that a full bleach could not be attained is attributable to photoreversal, i.e., the photic regeneration of rhodopsin from its light-sensitive intermediates, the 90% limit is considerably higher than the 50% (or lower) value obtained under other experimental circumstances. Thus, it appears that the duration (approximately 1 ms) and spectral composition of the flash, coupled with the kinetic parameters of the thermal and photic reactions in the cat retina, reduce the light-induced regeneration of rhodopsin to approximately 10%. PMID:7252476

  10. Simulation of the vibrational chemistry and the infrared signature induced by a Sprite streamer in the mesosphere

    NASA Astrophysics Data System (ADS)

    Romand, F.; Payan, S.; Croize, L.

    2017-12-01

    Since their first observation in 1989, effect of TLEs on the atmospheric composition has become an open and important question. The lack of suitable experimental data is a shortcoming that hampers our understanding of the physics and chemistry induced by these effects. HALESIS (High-Altitude Luminous Events Studied by Infrared Spectro-imagery) is a future experiment dedicated to the measurement of the atmospheric perturbation induced by a TLE in the minutes following its occurrence, from a stratospheric balloon flying at an altitude of 25 km to 40 km. This work aims to quantify the local chemical impact of sprites in the stratosphere and mesosphere. In this paper, we will present the development of a tool which simulates (i) the impact of a sprite on the vibrational chemistry, (ii) the resulting infrared signature and (iii) the propagation of this signature through the atmosphere to an observer. First the Non Local Thermodynamic Equilibrium populations of a background atmosphere were computed using SAMM2 code. The initial thermodynamic and chemical description of atmosphere comes from the Whole Atmosphere community Climate Model (WACCM). Then a perturbation was applied to simulate a sprite. Chemistry due to TLEs was computed using Gordillo-Vazquez kinetic model. Rate coefficients that depend on the electron energy distribution function were calculated from collision cross-section data by solving the electron Boltzmann equation (BE). Time evolutions of the species densities and of vibrational populations in the non-thermal plasma consecutive to sprite discharge were simulated using the computer code ZDPlasKin (S. Pancheshn et al.). Finally, the resulting infrared signatures were propagated from the disturbed area through the atmosphere to an instrument placed in a limb line of sight using a line by line radiative transfer model. We will conclude that sprite could produce a significant infrared signature that last a few tens of seconds after the visible flash.

  11. Analog pixel array detectors.

    PubMed

    Ercan, A; Tate, M W; Gruner, S M

    2006-03-01

    X-ray pixel array detectors (PADs) are generally thought of as either digital photon counters (DPADs) or X-ray analog-integrating pixel array detectors (APADs). Experiences with APADs, which are especially well suited for X-ray imaging experiments where transient or high instantaneous flux events must be recorded, are reported. The design, characterization and experimental applications of several APAD designs developed at Cornell University are discussed. The simplest design is a ;flash' architecture, wherein successive integrated X-ray images, as short as several hundred nanoseconds in duration, are stored in the detector chips for later off-chip digitization. Radiography experiments using a prototype flash APAD are summarized. Another design has been implemented that combines flash capability with the ability to continuously stream X-ray images at slower (e.g. milliseconds) rates. Progress is described towards radiation-hardened APADs that can be tiled to cover a large area. A mixed-mode PAD, design by combining many of the attractive features of both APADs and DPADs, is also described.

  12. Propellant Charge with Reduced Muzzle Smoke and Flash Characteristics.

    DTIC Science & Technology

    a conventional double base extruded propellant as well as more energetic nitramine composition and a microencapsulated oxamide coolant additive for...cooling the gases exiting the weapons barrel. In the preferred embodiment, the oxamide is encapsulated with a gelatin and the resulting microcapsules ...of this invention to provide a novel microencapsulated propellant additive which will pass through the propellant flame zone intact and decompose

  13. Circulating leptin and adiponectin are associated with insulin resistance in healthy postmenopausal women with hot flashes

    PubMed Central

    Huang, Wan-Yu; Chang, Chia-Chu; Chen, Dar-Ren; Kor, Chew-Teng; Chen, Ting-Yu; Wu, Hung-Ming

    2017-01-01

    Introduction Hot flashes have been postulated to be linked to the development of metabolic disorders. This study aimed to evaluate the relationship between hot flashes, adipocyte-derived hormones, and insulin resistance in healthy, non-obese postmenopausal women. Participants and design In this cross-sectional study, a total of 151 women aged 45–60 years were stratified into one of three groups according to hot-flash status over the past three months: never experienced hot flashes (Group N), mild-to-moderate hot flashes (Group M), and severe hot flashes (Group S). Variables measured in this study included clinical parameters, hot flash experience, fasting levels of circulating glucose, lipid profiles, plasma insulin, and adipocyte-derived hormones. Multiple linear regression analysis was used to evaluate the associations of hot flashes with adipocyte-derived hormones, and with insulin resistance. Settings The study was performed in a hospital medical center. Results The mean (standard deviation) of body-mass index was 22.8(2.7) for Group N, 22.6(2.6) for Group M, and 23.5(2.4) for Group S, respectively. Women in Group S displayed statistically significantly higher levels of leptin, fasting glucose, and insulin, and lower levels of adiponectin than those in Groups M and N. Multivariate linear regression analysis revealed that hot-flash severity was significantly associated with higher leptin levels, lower adiponectin levels, and higher leptin-to-adiponectin ratio. Univariate linear regression analysis revealed that hot-flash severity was strongly associated with a higher HOMA-IR index (% difference, 58.03%; 95% confidence interval, 31.00–90.64; p < 0.001). The association between hot flashes and HOMA-IR index was attenuated after adjusting for leptin or adiponectin and was no longer significant after simultaneously adjusting for leptin and adiponectin. Conclusion The present study provides evidence that hot flashes are associated with insulin resistance in postmenopausal women. It further suggests that hot flash association with insulin resistance is dependent on the combination of leptin and adiponectin variables. PMID:28448547

  14. HST/WFC3 Characteristics: gain, post-flash stability, UVIS low-sensitivity pixels, persistence, IR flats and bad pixel table

    NASA Astrophysics Data System (ADS)

    Gunning, Heather C.; Baggett, Sylvia; Gosmeyer, Catherine M.; Long, Knox S.; Ryan, Russell E.; MacKenty, John W.; Durbin, Meredith

    2015-08-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on the Hubble Space Telescope (HST). Installed in May 2009, WFC3 is comprised of two observational channels covering wavelengths from UV/Visible (UVIS) to infrared (IR); both have been performing well on-orbit. We discuss the gain stability of both WFC3 channel detectors from ground testing through present day. For UVIS, we detail a low-sensitivity pixel population that evolves during the time between anneals, but is largely reset by the annealing procedure. We characterize the post-flash LED lamp stability, used and recommended to mitigate CTE effects for observations with less than 12e-/pixel backgrounds. We present mitigation options for IR persistence during and after observations. Finally, we give an overview on the construction of the IR flats and provide updates on the bad pixel table.

  15. Development of IR Contrast Data Analysis Application for Characterizing Delaminations in Graphite-Epoxy Structures

    NASA Technical Reports Server (NTRS)

    Havican, Marie

    2012-01-01

    Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.

  16. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Shiroto, T.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  17. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Nagatomo, H.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  18. Effects of botanicals and combined hormone therapy on cognition in postmenopausal women.

    PubMed

    Maki, Pauline M; Rubin, Leah H; Fornelli, Deanne; Drogos, Lauren; Banuvar, Suzanne; Shulman, Lee P; Geller, Stacie E

    2009-01-01

    The aim of this study was to characterize the effects of red clover, black cohosh, and combined hormone therapy on cognitive function in comparison to placebo in women with moderate to severe vasomotor symptoms. In a phase II randomized, double-blind, placebo-controlled study, 66 midlife women (of 89 from a parent study; mean age, 53 y) with 35 or more weekly hot flashes were randomized to receive red clover (120 mg), black cohosh (128 mg), 0.625 mg conjugated equine estrogens plus 2.5 mg medroxyprogesterone acetate (CEE/MPA), or placebo. Participants completed measures of verbal memory (primary outcome) and other cognitive measures (secondary outcomes) before and during the 12th treatment month. A subset of 19 women completed objective, physiological measures of hot flashes using ambulatory skin conductance monitors. Neither of the botanical treatments had an impact on any cognitive measure. Compared with placebo, CEE/MPA led to a greater decline in verbal learning (one of five verbal memory measures). This effect just missed statistical significance (P = 0.057) in unadjusted analyses but reached significance (P = 0.02) after adjusting for vasomotor symptoms. Neither of the botanical treatment groups showed a change in verbal memory that differed from the placebo group (Ps > 0.28), even after controlling for improvements in hot flashes. In secondary outcomes, CEE/MPA led to a decrease in immediate digit recall and an improvement in letter fluency. Only CEE/MPA significantly reduced objective hot flashes. Results indicate that a red clover (phytoestrogen) supplement or black cohosh has no effects on cognitive function. CEE/MPA reduces objective hot flashes but worsens some aspects of verbal memory.

  19. Effects of Botanicals and Combined Hormone Therapy on Cognition in Postmenopausal Women

    PubMed Central

    Maki, Pauline M.; Rubin, Leah H.; Fornelli, Deanne; Drogos, Lauren; Banuvar, Suzanne; Shulman, Lee P.; Geller, Stacie E.

    2009-01-01

    Objective To characterize the effects of red clover, black cohosh, and combined hormone therapy on cognitive function in comparison to placebo in women with moderate to severe vasomotor symptoms. Design In a Phase II randomized, double-blind, placebo-controlled study, 66 midlife women (out of 89 from a parent study; mean age=53 y) with ≥ 35 weekly hot flashes were randomized to receive red clover (120 mg), black cohosh (128 mg), CEE/MPA (0.625 mg conjugated equine estrogens plus 2.5 mg medroxyprogesterone acetate), or placebo. Participants completed measures of verbal memory (primary outcome) and other cognitive measures (secondary outcomes) before and during the 12th treatment month. A subset of 19 women completed objective, physiological measures of hot flashes using ambulatory skin conductance monitors. Results There was no impact of either of the botanical treatments on any cognitive measure. Compared to placebo, CEE/MPA led to greater decline in verbal learning (one of five verbal memory measures). This effect just missed statistical significance (p=0.057) in unadjusted analyses, but reached significance (p=.02) after adjusting for vasomotor symptoms. Neither botanical treatment group showed a change in verbal memory that differed from the placebo group (ps>0.28), even after controlling for improvements in hot flashes. In secondary outcomes, CEE/MPA led to a decrease in immediate digit recall and an improvement in letter fluency. Only CEE/MPA significantly reduced objective hot flashes. Conclusions Results indicate no effects of a red clover (phytoestrogen) supplement or black cohosh on cognitive function. CEE/MPA reduces objective hot flashes but worsens some aspects of verbal memory. PMID:19590458

  20. Relationship between convective precipitation and lightning activity using radar quantitative precipitation estimates and total lightning data

    NASA Astrophysics Data System (ADS)

    Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.

    2009-09-01

    Thunderstorms can be characterized by both rainfall and lightning. The relationship between convective precipitation and lightning activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and lightning activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and lightning in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and lightning is usually quantified as the Rainfall-Lightning ratio (RLR). This ratio estimates the convective rainfall volume per lightning flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of lightning flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and lightning in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total lightning data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2=0.74). The daily RLR found has a mean value of 86 10^3m3 rainfall volume per CG flash. The daily range of variation is quite wide, as it goes from 19 to 222 10^3m3 per CG flash. This variation has a seasonal component, related to changes in the convective regime. Summer days (July to middle September) had a mean RLR of 57 10^3m3 rainfall volume per CG flash, while from middle September to the end of October the rainfall volume per CG flash doubles (mean of 125 10^3m3 per CG flash).

  1. Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.

    2017-03-01

    We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.

  2. A comparative study on the effect of "black cohosh" and "evening primrose oil" on menopausal hot flashes.

    PubMed

    Mehrpooya, Maryam; Rabiee, Soghra; Larki-Harchegani, Amir; Fallahian, Amir-Mohammad; Moradi, Abbas; Ataei, Sara; Javad, Masoumeh Taravati

    2018-01-01

    Hot flashes are considered to be a common experience for menopausal women and they can compromise the quality of life. The objective of this study is to assess the efficacy of Cimicifuga racemosa in comparison with evening primrose oil (EPO) in postmenopausal women with menopause-related symptoms. This study was performed on 80 postmenopausal women with hot flashes. The participants were randomly divided into two groups by blocked randomization. The participants of one group received black cohosh and the other group received EPO for 8 weeks. The severity and number of hot flashes and quality of life were measured by four-point scale, and the Menopause-Specific Quality of Life (MENQOL) questionnaire at pre-intervention, 1 st , 4 th , and 8 th weeks after treatment. Data were analyzed in SPSS Version 16 using independent t -test, Chi-square, and Fisher's exact test. Average severity of hot flashes in both groups and number of hot flashes in black cohosh group in 8 th week were significantly lower than 1 st week ( P < 0.001), but number of hot flashes in primrose oil group in 8 th week showed no significant differences ( P = 0.32). The number of hot flashes and quality of life score in black cohosh arm compared to EPO showed a significant decrease in the 8 th week ( P < 0.05). All MENQOL scores were significantly improved in two groups ( P < 0.05), but the percentage of improvement in black cohosh arm was significantly superior to EPO group. Both herbs were effective in reduction of severity of hot flashes and improvement of the quality of life, but it seems that black cohosh is more effective than primrose oil because it was able to reduce the number of hot flashes too.

  3. A comparison of colour, shape, and flash induced illusory line motion.

    PubMed

    Hamm, Jeff P

    2017-04-01

    When a bar suddenly appears between two boxes, the bar will appear to shoot away from the box that matches it in colour or in shape-a phenomenon referred to as attribute priming of illusory line motion (ILM; colour ILM and shape ILM, respectively). If the two boxes are identical, ILM will still occur away from a box if it changes luminance shortly before the presentation of the bar ( flash ILM). This flash condition has been suggested to produce the illusory motion due to the formation of an attentional gradient surrounding the flashed location. However, colour ILM and shape ILM cannot be explained by an attentional gradient as there is no way for attention to select the matching box prior to the presentation of the bar. These findings challenge the attentional gradient explanation for ILM, but only if it is assumed that ILM arises for the same underlying reason. Two experiments are presented that address the question of whether or not flash ILM is the same as colour ILM or shape ILM. The results suggest that while colour ILM and shape ILM reflect a common illusion, flash ILM arises for a different reason. Therefore, the attentional gradient explanation for flash ILM is not refuted by the occurrence of colour ILM or shape ILM, which may reflect transformational apparent motion (TAM).

  4. Undergraduate Separations Utilizing Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Horowitz, G.

    2000-02-01

    This article describes the procedures used to carry out four flash chromatography experiments: the isolation of the carotenes, chlorophylls and xanthophylls from a spinach extract; the separation of ß-carotene from tetraphenyl cyclopentadienone; the isolation of (+) and (-) carvone from caraway and spearmint oil; and the purification of benzil from benzoin. Apparatus used is nonbreakable, easy to use, and inexpensive.

  5. Infrared small target tracking based on SOPC

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin

    2011-01-01

    The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.

  6. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  7. THz pulses from 4th generation X-ray light sources: Perspectives for fully synchronized THz pump X-ray probe experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gensch, M.

    2010-02-03

    In this paper the prospects of terahertz (THz) pulses generated at 4th generation X-ray light sources are presented on the example of recent results from a prototype set-up at the soft X-ray FEL FLASH. It is shown, that the THz pulses from the relativistic ultra short electron bunches have unique properties, that at FLASH are utilized for novel THz pump X-ray probe experiments with a robust few fs resolution. Based on these experiences it is discussed, how future facilities can benefit from implementation of similar or further improved instrumentation.

  8. Infrared particle detection for battery electrode foils

    NASA Astrophysics Data System (ADS)

    Just, P.; Ebert, L.; Echelmeyer, T.; Roscher, M. A.

    2013-11-01

    Failures of electrochemical cells caused by internal shorts still are an important issue to be faced by the cell manufacturers and their customers. A major cause for internal shorts are contaminated electrode foils. These contaminations have to be detected securely via a non-destructive inspection technique integrated into the electrode manufacturing process. While optical detection already is state of the art, infrared detection of particles finds a new field of application in the battery electrode manufacturing process. This work presents two approaches focusing on electrode inspection by electromagnetic radiation (visible and infrared). Copper foils with a carbon based coating were intentionally contaminated by slivers of aluminum and copper as well as by abraded coating particles. Optical excitation by a flash and a luminescent lamp was applied at different angles in order to detect the reflected visible radiation. A laser impulse was used to heat up the specimen for infrared inspection. Both approaches resulted in setups providing a high contrast between contaminations and the coated electrode foil. It is shown that infrared detection offers a higher security thanks to its reliance on absorbance and emissivity instead of reflectivity as it is used for optical detection. Infrared Detection offers a potential since it is hardly influenced by the particle's shape and orientation and the electrode's waviness.

  9. Near-infrared transillumination photography of intraocular tumours.

    PubMed

    Krohn, Jørgen; Ulltang, Erlend; Kjersem, Bård

    2013-10-01

    To present a technique for near-infrared transillumination imaging of intraocular tumours based on the modifications of a conventional digital slit lamp camera system. The Haag-Streit Photo-Slit Lamp BX 900 (Haag-Streit AG) was used for transillumination photography by gently pressing the tip of the background illumination cable against the surface of the patient's eye. Thus the light from the flash unit was transmitted into the eye, leading to improved illumination and image resolution. The modification for near-infrared photography was done by replacing the original camera with a Canon EOS 30D (Canon Inc) converted by Advanced Camera Services Ltd. In this camera, the infrared blocking filter was exchanged for a 720 nm long-pass filter, so that the near-infrared part of the spectrum was recorded by the sensor. The technique was applied in eight patients: three with anterior choroidal melanoma, three with ciliary body melanoma and two with ocular pigment alterations. The good diagnostic quality of the photographs made it possible to evaluate the exact location and extent of the lesions in relation to pigmented intraocular landmarks such as the ora serrata and ciliary body. The photographic procedure did not lead to any complications. We recommend near-infrared transillumination photography as a supplementary diagnostic tool for the evaluation and documentation of anteriorly located intraocular tumours.

  10. Vibrational states and optical transitions in hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.

    1998-03-01

    Proton energies in hydrogen bonds are mostly calculated using a double Morse potential (the DMP model). This form, however, does not reproduce the experimentally observed correlation between the proton stretching frequency and the bond length in an extended bond-length region sufficiently well. An alternative potential is proposed in the present paper. The quantum states of this non-symmetric double-well potential are calculated numerically using the Numerov (Fox-Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds in various substances can be well approximated on the basis of the transition frequencies and intensities predicted by the present model. For weakly interacting OH impurities in 0953-8984/10/10/008/img1, the overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds are traced back to the influence of the reduced height of the central barrier. The model is also extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies are discussed with respect to most recent infra-red experiments on ice under strong compression. A possible artificial infra-red signal from strained diamond anvils is thereby noted.

  11. Dissecting a Light Echo

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation

    This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one.

    The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow.

    When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time.

    As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  12. Fusion of visible and near-infrared images based on luminance estimation by weighted luminance algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zhun; Cheng, Feiyan; Shi, Junsheng; Huang, Xiaoqiao

    2018-01-01

    In a low-light scene, capturing color images needs to be at a high-gain setting or a long-exposure setting to avoid a visible flash. However, such these setting will lead to color images with serious noise or motion blur. Several methods have been proposed to improve a noise-color image through an invisible near infrared flash image. A novel method is that the luminance component and the chroma component of the improved color image are estimated from different image sources [1]. The luminance component is estimated mainly from the NIR image via a spectral estimation, and the chroma component is estimated from the noise-color image by denoising. However, it is challenging to estimate the luminance component. This novel method to estimate the luminance component needs to generate the learning data pairs, and the processes and algorithm are complex. It is difficult to achieve practical application. In order to reduce the complexity of the luminance estimation, an improved luminance estimation algorithm is presented in this paper, which is to weight the NIR image and the denoised-color image and the weighted coefficients are based on the mean value and standard deviation of both images. Experimental results show that the same fusion effect at aspect of color fidelity and texture quality is achieved, compared the proposed method with the novel method, however, the algorithm is more simple and practical.

  13. A facile and low-cost micro fabrication material: flash foam.

    PubMed

    He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong

    2015-08-28

    Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost.

  14. Lightning-Generated NO(x) Seen By OMI during NASA's TC-4 Experiment: First Results

    NASA Technical Reports Server (NTRS)

    Bucsela, Eric; Pickering, Kenneth E.; Huntemann, Tabitha; Cohen, Ronald; Perring, Anne; Gleason, James; Blakeslee, Richard; Navarro, Dylana Vargas; Segura, Ileana Mora; Hernandez, Alexia Pacheco; hide

    2009-01-01

    We present here case studies identifying upper-tropospheric NO2 produced in convective storms during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TCi)n July and August 2007. DC8 aircraft missions, flown from the mission base in Costa Rica, recorded in situ NO2 profiles near active storms and in relatively quiet areas. We combine these data with measurements from the Ozone Monitoring Instrument (OMI) on the Aura satellite to estimate the amount of NO2 produced by lightning (LN02) above background levels in the regions influenced by storms. In our analysis, improved off-line processing techniques are employed to minimize known artifacts in the OM1 data. Information on lightning flashes (primarily CG) observed by the surface network operated by the Instituto Costarricense de Electricidad are examined upwind of regions where OM1 indicates enhanced LNO2. Comparisons of the observed flash data with measurements by the TRMM/LIS satellite instrument are used to obtain the lightning detection efficiency for total flashes. Finally, using the NO/NO2 ratio estimated from DC-8 observations, we estimate the average NO(x) production per lightning flash for each case in this study. The magnitudes of the measured NO(x) enhancements are compared with those observed by the DC-8 and with similar OM1 measurements analyzed in mid-latitude experiments.

  15. Audio-visual integration through the parallel visual pathways.

    PubMed

    Kaposvári, Péter; Csete, Gergő; Bognár, Anna; Csibri, Péter; Tóth, Eszter; Szabó, Nikoletta; Vécsei, László; Sáry, Gyula; Tamás Kincses, Zsigmond

    2015-10-22

    Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction. Copyright © 2015. Published by Elsevier B.V.

  16. Flash characteristics of plasma induced by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Long, Renrong; Zhang, Qingming; Xue, Yijiang; Ju, Yuanyuan

    2016-08-01

    Using a two-stage light gas gun, a series of hypervelocity impact experiments was conducted in which 6.4-mm-diameter spherical 2024-aluminum projectiles impact 23-mm-thick targets made of the same material at velocities of 5.0, 5.6, and 6.3 km/s. Both an optical pyrometer composed of six photomultiplier tubes and a spectrograph were used to measure the flash of the plasma during hypervelocity impact. Experimental results show that, at a projectile velocity of 6.3 km/s, the strong flash lasted about 10 μs and reached a temperature of 4300 K. Based on the known emission lines of AL I, spectral methods can provide the plasma electron temperature. An electron-temperature comparison between experiment and theoretical calculation indicates that single ionization and secondary ionization are the two main ionizing modes at velocities 5.0-6.3 km/s.

  17. Flash characteristics of plasma induced by hypervelocity impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Beijing Automotive Technology Center, Beijing 100021; Long, Renrong, E-mail: longrenrong@bit.edu.cn, E-mail: qmzhang@bit.edu.cn

    2016-08-15

    Using a two-stage light gas gun, a series of hypervelocity impact experiments was conducted in which 6.4-mm-diameter spherical 2024-aluminum projectiles impact 23-mm-thick targets made of the same material at velocities of 5.0, 5.6, and 6.3 km/s. Both an optical pyrometer composed of six photomultiplier tubes and a spectrograph were used to measure the flash of the plasma during hypervelocity impact. Experimental results show that, at a projectile velocity of 6.3 km/s, the strong flash lasted about 10 μs and reached a temperature of 4300 K. Based on the known emission lines of AL I, spectral methods can provide the plasma electron temperature. An electron-temperaturemore » comparison between experiment and theoretical calculation indicates that single ionization and secondary ionization are the two main ionizing modes at velocities 5.0–6.3 km/s.« less

  18. Preliminary study on the Validation of FY-4A Lightning Mapping Imager

    NASA Astrophysics Data System (ADS)

    Cao, D.; Lu, F.; Qie, X.; Zhang, X.; Huang, F.; Wang, D.

    2017-12-01

    The FengYun-4 (FY-4) geostationary meteorological satellite is the second generation of China's geostationary meteorological satellite. The FY-4A was launched on December 11th, 2016. It includes a new instrument Lightning Mapping Imager (LMI) for total lightning (cloud and cloud-to-ground flashes) detection. The LMI operates at a wavelength of 777.4nm with 1.9ms integrated time. And it could observe lightning activity continuously day and night with spatial resolution of 7.8 km (sub satellite point) over China region. The product algorithm of LMI consists of false signal filtering and flash clustering analysis. The false signal filtering method is used to identify and remove non-lightning artifacts in optical events. The flash clustering analysis method is used to cluster "event" into "group" and "flash" using specified time and space threshold, and the other non-lightning optical events are filtered further more in the clustering analysis. The ground-based lightning location network (LLN) in China and WWLLN (World Wide Lightning Location Network) were both used to make preliminary validation of LMI. The detection efficiency for cloud-to-ground lightning, spatial and temporal accuracy of LMI were estimated by the comparison of lightning observations from ground-based network and LMI. The day and night biases were also estiamted. Although the LLN and WWLLN mainly observe return strokes in cloud-to-ground flash, the accuracy of LMI still could be estimated for that it was not associated with the flash type mostly. The false alarm efficiency of LMI was estimated using the Geostationary Interferometric Infrared Sounder (GIIRS), another payloads on the FY-4A satellite. The GIIRS could identify the convective cloud region and give more information about the cloud properties. The GIIRS products were used to make a rough evaluation of false alarm efficiency of LMI. The results of this study reveal details of characteristics of LMI instrument. It is also found that the product algorithm of LMI is effective and the LMI products could be used for the analysis of lightning activity in China in a certain extent.

  19. floodX: urban flash flood experiments monitored with conventional and alternative sensors

    NASA Astrophysics Data System (ADS)

    Moy de Vitry, Matthew; Dicht, Simon; Leitão, João P.

    2017-09-01

    The data sets described in this paper provide a basis for developing and testing new methods for monitoring and modelling urban pluvial flash floods. Pluvial flash floods are a growing hazard to property and inhabitants' well-being in urban areas. However, the lack of appropriate data collection methods is often cited as an impediment for reliable flood modelling, thereby hindering the improvement of flood risk mapping and early warning systems. The potential of surveillance infrastructure and social media is starting to draw attention for this purpose. In the floodX project, 22 controlled urban flash floods were generated in a flood response training facility and monitored with state-of-the-art sensors as well as standard surveillance cameras. With these data, it is possible to explore the use of video data and computer vision for urban flood monitoring and modelling. The floodX project stands out as the largest documented flood experiment of its kind, providing both conventional measurements and video data in parallel and at high temporal resolution. The data set used in this paper is available at https://doi.org/10.5281/zenodo.830513.

  20. Laboratory-scale photoredox catalysis using hydrated electrons sustainably generated with a single green laser.

    PubMed

    Naumann, Robert; Kerzig, Christoph; Goez, Martin

    2017-11-01

    The ruthenium-tris-bipyridyl dication as catalyst combined with the ascorbate dianion as bioavailable sacrificial donor provides the first regenerative source of hydrated electrons for chemical syntheses on millimolar scales. This electron generator is operated simply by illumination with a frequency-doubled Nd:YAG laser (532 nm) running at its normal repetition rate. Much more detailed information than by product studies alone was obtained by photokinetical characterization from submicroseconds (time-resolved laser flash photolysis) up to one hour (preparative photolysis). The experiments on short timescales established a reaction mechanism more complex than previously thought, and proved the catalytic action by unchanged concentration traces of the key transients over a number of flashes so large that the accumulated electron total surpassed the catalyst concentration many times. Preparative photolyses revealed that the sacrificial donor greatly enhances the catalyst stability through quenching the initial metal-to-ligand charge-transfer state before destructive dd states can be populated from it, such that the efficiency of this electron generator is no longer limited by catalyst decomposition but by electron scavenging by the accumulating oxidation products of the ascorbate. Applications covered dechlorinations of selected aliphatic and aromatic chlorides and the reduction of a model ketone. All these substrates are impervious to photoredox catalysts exhibiting lower reducing power than the hydrated electron, but the combination of an extremely negative standard potential and a long unquenched life allowed turnover numbers up to 1400 with our method.

  1. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  2. Double arch mirror study. Part 3: Fabrication and test report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  3. Broadband infrared absorbers with stacked double chromium ring resonators

    DOE PAGES

    Deng, Huixu; Stan, Liliana; Czaplewski, David A.; ...

    2017-10-31

    A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less

  4. Broadband infrared absorbers with stacked double chromium ring resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Huixu; Stan, Liliana; Czaplewski, David A.

    A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less

  5. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation.

    PubMed

    Noguchi, Takumi

    2015-01-01

    Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Diurnal rhythm and concordance between objective and subjective hot flashes: the Hilo Women's Health Study.

    PubMed

    Sievert, Lynnette L; Reza, Angela; Mills, Phoebe; Morrison, Lynn; Rahberg, Nichole; Goodloe, Amber; Sutherland, Michael; Brown, Daniel E

    2010-01-01

    The aims of this study were to test for a diurnal pattern in hot flashes in a multiethnic population living in a hot, humid environment and to examine the rates of concordance between objective and subjective measures of hot flashes using ambulatory and laboratory measures. Study participants aged 45 to 55 years were recruited from the general population of Hilo, HI. Women wore a Biolog hot flash monitor (UFI, Morro Bay, CA), kept a diary for 24 hours, and also participated in 3-hour laboratory measures (n = 199). Diurnal patterns were assessed using polynomial regression. For each woman, objectively recorded hot flashes that matched subjective experience were treated as true-positive readings. Subjective hot flashes were considered the standard for computing false-positive and false-negative readings. True-positive, false-positive, and false-negative readings were compared across ethnic groups by chi analyses. Frequencies of sternal, nuchal, and subjective hot flashes peaked at 1500 +/- 1 hours with no difference by ethnicity. Laboratory results supported the pattern seen in ambulatory monitoring. Sternal and nuchal monitoring showed the same frequency of true-positive measures, but nonsternal electrodes picked up more false-positive readings. Laboratory monitoring showed very low frequencies of false negatives. There were no ethnic differences in the frequency of true-positive or false-positive measures. Women of European descent were more likely to report hot flashes that were not objectively demonstrated (false-negative measures). The diurnal pattern and peak in hot flash occurrence in the hot humid environment of Hilo were similar to results from more temperate environments. Lack of variation in sternal versus nonsternal measures and in true-positive measures across ethnicities suggests no appreciable effect of population variation in sweating patterns.

  7. Diurnal rhythm and concordance between objective and subjective hot flashes: The Hilo Women’s Health Study

    PubMed Central

    Sievert, Lynnette L.; Reza, Angela; Mills, Phoebe; Morrison, Lynn; Rahberg, Nichole; Goodloe, Amber; Sutherland, Michael; Brown, Daniel E.

    2010-01-01

    Objective To test for a diurnal pattern in hot flashes in a multi-ethnic population living in a hot, humid environment. To examine rates of concordance between objective and subjective measures of hot flashes using ambulatory and laboratory measures. Methods Study participants aged 45–55 were recruited from the general population of Hilo, Hawaii. Women wore a Biolog hot flash monitor, kept a diary for 24-hours, and also participated in 3-hour laboratory measures (n=199). Diurnal patterns were assessed using polynomial regression. For each woman, objectively recorded hot flashes that matched subjective experience were treated as true positive readings. Subjective hot flashes were considered the standard for computing false positive and false negative readings. True positive, false positive, and false negative readings were compared across ethnic groups by chi-square analyses. Results Frequencies of sternal, nuchal and subjective hot flashes peaked at 15:00 ± 1 hour with no difference by ethnicity. Laboratory results supported the pattern seen in ambulatory monitoring. Sternal and nuchal monitoring showed the same frequency of true positive measures, but non-sternal electrodes picked up more false positive readings. Laboratory monitoring showed very low frequencies of false negatives. There were no ethnic differences in the frequency of true positive or false positive measures. Women of European descent were more likely to report hot flashes that were not objectively demonstrated (false negative measures). Conclusions The diurnal pattern and peak in hot flash occurrence in the hot humid environment of Hilo was similar to results from more temperate environments. Lack of variation in sternal vs. non-sternal measures, and in true positive measures across ethnicities suggests no appreciable effect of population variation in sweating patterns. PMID:20220538

  8. Light flash phenomena induced by HzE particles

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Pease, V. P.

    1980-01-01

    Astronauts and Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes are closed and adapted to darkness. These phenomena have been collectively labelled as light flashes. Visual phenomena which are similar in appearance to those observed in space have been demonstrated at the number of accelerator facilities by expressing the eyes of human subjects to beams of various types of radiation. In some laboratory experiments Cerenkov radiation was found to be the basis for the flashes observed while in other experiments Cerenkov radiation could apparently be ruled out. Experiments that differentiate between Cerenkov radiation and other possible mechanisms for inducing visual phenomena was then compared. The phenomena obtained in the presence and absence of Cerenkov radiation were designed and conducted. A new mechanism proposed to explain the visual phenomena observed by Skylab astronauts as they passed through the South Atlantic Anomaly, namely nuclear interactions in and near the sensitive layer of the retina, is covered. Also some studies to search for similar transient effects of space radiation on sensors and microcomputer memories are described.

  9. An Evaluation of Lightning Flash Rate Parameterizations Based on Observations of Colorado Storms during DC3

    NASA Astrophysics Data System (ADS)

    Basarab, B.; Fuchs, B.; Rutledge, S. A.

    2013-12-01

    Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare to observed flash rates. For the 6 June storm, a preliminary analysis of aircraft observations of storm inflow and outflow is presented in order to place flash rates (and other lightning statistics) in the context of storm chemistry. An approach to a possibly improved LNOx parameterization scheme using different lightning metrics such as flash area will be discussed.

  10. Flash Location, Size, and Rates Relative to the Evolving Kinematics and Microphysics of the 29 May 2012 DC3 Supercell Storm

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.; DiGangi, E.; Ziegler, C.; Biggerstaff, M. I.; Betten, D.; Bruning, E. C.

    2014-12-01

    A supercell thunderstorm was observed on 29 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. This storm was part of a cluster of severe storms and produced 5" hail, an EF-1 tornado, and copious lightning over the course of a few hours. During a period in which flash rates were increasing rapidly, observations were obtained from mobile polarimetric radars and a balloon-borne electric field meter (EFM) and particle imager, while aircraft sampled the chemistry of the inflow and anvil. In addition, the storm was within the domain of the 3-dimensional Oklahoma Lightning Mapping Array (LMA) and the S-band KTLX WSR-88D radar. The focus of this paper is the evolution of flash rates, the location of flash initiations, and the distribution of flash size and flash extent density as they relate to the evolving kinematics and microphysics of the storm for the approximately 30-minute period in which triple-Doppler coverage was available. Besides analyzing reflectivity structure and three-dimensional winds for the entire period, we examine mixing ratios of cloud water, cloud ice, rain, and graupel/hail that have been retrieved by a Lagrangian analysis for three select times, one each at the beginning, middle, and end of the period. Flashes in an around the updraft of this storm were typically small. Flash size tended to increase, and flash rates tended to decrease as distance from the updraft increased. Although flash initiations were most frequent near the updraft, some flashes were initiated near the edge of 30 dBZ cores and propagated into the anvil. Later, some flashes were initiated in the anvil itself, in vertical cells that formed and became electrified tens of kilometers downshear of the main body of the storm. Considerable lightning structure was inferred to be in regions dominated by cloud ice in the upper part of the storm. The continual small discharges in the overshooting top of the storm tended to be near or within 15 dBZ contours, although occasional discharges appeared to extend above the storm.

  11. Graphics performance in rich Internet applications.

    PubMed

    Hoetzlein, Rama C

    2012-01-01

    Rendering performance for rich Internet applications (RIAs) has recently focused on the debate between using Flash and HTML5 for streaming video and gaming on mobile devices. A key area not widely explored, however, is the scalability of raw bitmap graphics performance for RIAs. Does Flash render animated sprites faster than HTML5? How much faster is WebGL than Flash? Answers to these questions are essential for developing large-scale data visualizations, online games, and truly dynamic websites. A new test methodology analyzes graphics performance across RIA frameworks and browsers, revealing specific performance outliers in existing frameworks. The results point toward a future in which all online experiences might be GPU accelerated.

  12. Pressure Studies of Protein Dynamics

    DTIC Science & Technology

    1989-02-26

    infrared flash photolysis system with the monitoring light produced by a Spectra-Physics/ Laser Analytics tunable- diode laser and detected by a liquid...refrigerator. Time range extends from about 100 ms to 100 s. The diode laser current is modulated at 10 kHz and the signal is amplified with a PAR 5101...Photolysis is obtained with a Phase-R D 121OOC dye laser using rhodamine 6G (pulse 4 width 500 ns, 0.3 J). Kinetic spectra are obtained from about 10

  13. Night Operations - The Soviet Approach

    DTIC Science & Technology

    1978-06-09

    4 ,. ,,4 sized engineer equipments. Passive infrared field glasses are provided to Soviet troops and selected marksmen are armed with the Dravunov...up to 300 m Conversation of a few men up to 300 m Steps of a single man up to 40 m Axe blow , sound of a saw up to 500 m Blows of shovels and pickaxes...rocking frame simulators. Electric lightbulbs are popped to simulate the dazzle from the tank’s main gun muzzle flash. At Site Two, individual crew

  14. An infrared flash contemporaneous with the gamma-rays of GRB 041219a.

    PubMed

    Blake, C H; Bloom, J S; Starr, D L; Falco, E E; Skrutskie, M; Fenimore, E E; Duchêne, G; Szentgyorgyi, A; Hornstein, S; Prochaska, J X; McCabe, C; Ghez, A; Konopacky, Q; Stapelfeldt, K; Hurley, K; Campbell, R; Kassis, M; Chaffee, F; Gehrels, N; Barthelmy, S; Cummings, J R; Hullinger, D; Krimm, H A; Markwardt, C B; Palmer, D; Parsons, A; McLean, K; Tueller, J

    2005-05-12

    The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

  15. A flash photolysis resonance fluorescence investigation of the reaction OH + CH3CCl3 yields H2O + CH2CCl3. [in troposphere

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Anderson, P. C.; Klais, O.

    1979-01-01

    The absolute rate constant for the reaction OH + CH3CCl3 yields H2O + CH2CCl3 was determined by the flash photolysis resonance fluorescence method from 253 to 363K. The use of the Arrhenius equation with atmospheric observational data on methyl chloroform nearly doubles the predicted tropospheric OH reaction sink strength for the removal of atmospheric gases whose lifetimes are controlled by OH. The increased use of methyl chloroform instead of the restricted trichloroethylene focused attention to its role in stratospheric ozone depletion, producing modeling analyses to determine the amount of released methyl chloroform which reaches the stratosphere. Since the primary atmospheric loss of CH3CCl3 is considered by reaction with OH radicals, these data are used to compute an average tropospheric OH concentration and the strength of the 'global tropospheric OH reaction sink'.

  16. A parametric study of perforated muzzle brakes

    NASA Astrophysics Data System (ADS)

    Dillon, Robert E., Jr.; Nagamatsu, H. T.

    1993-07-01

    A firing test was conducted to study the parameters influencing the recoil efficiency and the blast characteristics of perforated muzzle brakes. Several scaled (20 mm) devices were tested as candidates for the 105 mm Armored Gun System (AGS). Recoil impulse, blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash were obtained. A total of nine different perforated brakes were tested as well as a scaled M 198 double muzzle brake.

  17. Observations of Stratiform Lightning Flashes and Their Microphysical and Kinematic Environments

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Williams, Earle

    2016-01-01

    During the Midlatitude Continental Convective Clouds Experiment (MC3E), combined observations of clouds and precipitation were made from airborne and ground-based in situ and remote sensing platforms. These observations were coordinated for multiple mesoscale convective systems (MCSs) that passed over the MC3E domain in northern Oklahoma. Notably, during a storm on 20 May 2011 in situ and remote sensing airborne observations were made near the times and locations of stratiform positive cloud-to-ground (+CG) lightning flashes. These +CGs resulted from extremely large stratiform lightning flashes that were hundreds of km in length and lasted several seconds. This dataset provides an unprecedented look at kinematic and microphysical environments in the vicinity of large, powerful, and long-lived stratiform lightning flashes. We will use this dataset to understand the influence of low liquid water contents (LWCs) in the electrical charging of MCS stratiform regions.

  18. Observations of Stratiform Lightning Flashes and Their Microphysical and Kinematic Environments

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Williams, Earle

    2017-01-01

    During the Midlatitude Continental Convective Clouds Experiment (MC3E), combined observations of clouds and precipitation were made from airborne and ground-based in situ and remote sensing platforms. These observations were coordinated for multiple mesoscale convective systems (MCSs) that passed over the MC3E domain in northern Oklahoma. Notably, during a storm on 20 May 2011 in situ and remote sensing airborne observations were made near the times and locations of stratiform positive cloud-to-ground (+CG) lightning flashes. These +CGs resulted from extremely large stratiform lightning flashes that were hundreds of km in length and lasted several seconds. This dataset provides an unprecedented look at kinematic and microphysical environments in the vicinity of large, powerful, and long-lived stratiform lightning flashes. We will use this dataset to understand the influence of low liquid water contents (LWCs) in the electrical charging of MCS stratiform regions.

  19. Models for Total-Dose Radiation Effects in Non-Volatile Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip Montgomery; Wix, Steven D.

    The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models andmore » compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.« less

  20. Correlation of individual cosmic ray nuclei with the observation of light flashes by Apollo astronauts. [nuclear emulsion detector design and operation

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1975-01-01

    A nuclear emulsion detector known as the Apollo Light Flash Moving Emulsion Detector (ALFMED) was designed: (1) to record tracks of primary cosmic rays; (2) to provide time-of-passage information via a relative plate translation technique; (3) to provide particle trajectory information; and (4) to fit into a masklike device that could be located about the head and eyes of an astronaut. An ALFMED device was worn by an astronaut observing light flashes for 60 minutes on each of the last two Apollo missions. During the Apollo 17 experiment seventeen separate flashes were reported by the observer. With one-third of the total plate area completely analyzed, two definite correlations have been found between Z greater than 8 cosmic ray nuclei traversing an eye and the reports of visual sensations.

  1. Timing in a FLASH

    NASA Astrophysics Data System (ADS)

    Hoek, M.; Cardinali, M.; Corell, O.; Dickescheid, M.; Ferretti B., M. I.; Lauth, W.; Schlimme, B. S.; Sfienti, C.; Thiel, M.

    2017-12-01

    A prototype detector, called FLASH (Fast Light Acquiring Start Hodoscope), was built to provide precise Time-of-Flight (TOF) measurements and reference timestamps for detector setups at external beam lines. Radiator bars, made of synthetic fused silica, were coupled to a fast MCP-PMT with 64 channels and read out with custom electronics using Time-over-Threshold (TOT) for signal characterization. The TRB3 system, a high-precision TDC implemented in an FPGA, was used as data acquisition system. The performance of a system consisting of two FLASH units was investigated at a dedicated test experiment at the Mainz Microtron (MAMI) accelerator using its 855 MeV electron beam. The TOT measurement enabled time walk corrections and an overall TOF resolution of ∼70 ps could be achieved which translates into a resolution of ∼50 ps per FLASH unit. The intrinsic resolution of the frontend electronics including the TDC was measured to be less than 25 ps.

  2. Presentation and response timing accuracy in Adobe Flash and HTML5/JavaScript Web experiments.

    PubMed

    Reimers, Stian; Stewart, Neil

    2015-06-01

    Web-based research is becoming ubiquitous in the behavioral sciences, facilitated by convenient, readily available participant pools and relatively straightforward ways of running experiments: most recently, through the development of the HTML5 standard. Although in most studies participants give untimed responses, there is a growing interest in being able to record response times online. Existing data on the accuracy and cross-machine variability of online timing measures are limited, and generally they have compared behavioral data gathered on the Web with similar data gathered in the lab. For this article, we took a more direct approach, examining two ways of running experiments online-Adobe Flash and HTML5 with CSS3 and JavaScript-across 19 different computer systems. We used specialist hardware to measure stimulus display durations and to generate precise response times to visual stimuli in order to assess measurement accuracy, examining effects of duration, browser, and system-to-system variability (such as across different Windows versions), as well as effects of processing power and graphics capability. We found that (a) Flash and JavaScript's presentation and response time measurement accuracy are similar; (b) within-system variability is generally small, even in low-powered machines under high load; (c) the variability of measured response times across systems is somewhat larger; and (d) browser type and system hardware appear to have relatively small effects on measured response times. Modeling of the effects of this technical variability suggests that for most within- and between-subjects experiments, Flash and JavaScript can both be used to accurately detect differences in response times across conditions. Concerns are, however, noted about using some correlational or longitudinal designs online.

  3. Low Temperature Testing of a Radiation Hardened CMOS 8-Bit Flash Analog-to-Digital (A/D) Converter

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Hammond, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.; Overton, Eric; Ghaffarian, Reza; Ramesham, Rajeshuni; Agarwal, Shri G.

    2001-01-01

    Power processing electronic systems, data acquiring probes, and signal conditioning circuits are required to operate reliably under harsh environments in many of NASA:s missions. The environment of the space mission as well as the operational requirements of some of the electronic systems, such as infrared-based satellite or telescopic observation stations where cryogenics are involved, dictate the utilization of electronics that can operate efficiently and reliably at low temperatures. In this work, radiation-hard CMOS 8-bit flash A/D converters were characterized in terms of voltage conversion and offset in the temperature range of +25 to -190 C. Static and dynamic supply currents, ladder resistance, and gain and offset errors were also obtained in the temperature range of +125 to -190 C. The effect of thermal cycling on these properties for a total of ten cycles between +80 and - 150 C was also determined. The experimental procedure along with the data obtained are reported and discussed in this paper.

  4. Flame Spread and Damaged Properties of RCD Cases by Tracking

    NASA Astrophysics Data System (ADS)

    Choi, Chung-Seog; Kim, Hyang-Kon; Shong, Kil-Mok; Kim, Dong-Woo

    In this paper, the flame spread and damaged properties of residual current protective devices (RCDs) by tracking were analyzed. Pictures of tracking process were taken by High Speed Imaging System (HSIS), and fire progression was observed by timeframe. During the tracking process of RCD, it seemed to explode just once in appearance, but in the results of HSIS analysis, a small fire broke out and disappeared repeatedly 35 times and a flash of light repeated 15 times. Finally, an explosion with a flash of light occurred and lots of particles were scattered. Electric muffle furnace was used for heat treatment of RCD cases. The surface characteristics of specimens due to heat treatment and tracking deterioration were taken by Scanning Electron Microscope (SEM). Chemical and thermal properties of these deteriorated specimens were analyzed by Fourier Transform Infrared Spectrometer (FT-IR) and Differential Thermal Analyzer (DTA). The carbonization characteristics showed different chemical properties due to energy sources, and the results could be applicable to judge the accident causes.

  5. Theoretical Characterizaiton of Visual Signatures (Muzzle Flash)

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Scales, A. N.; Vanderley, D. L.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.

    2014-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet and infrared spectra of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. We are currently employing quantum chemistry methods at various levels of sophistication to optimize molecular geometries, compute vibrational frequencies, and determine the optical spectra of specific gas-phase molecules and radicals of interest. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A comparison of computational results to experimental values found in the literature is used to assess the affect of basis set and functional choice on calculation accuracy. The current status of this work will be presented at the conference. Work supported by the ARL, and USMA.

  6. Inner surface flash-over of insulator of low-inductance high-voltage self-breakdown gas switch and its application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-bo, E-mail: walkman67@163.com; Liu, Jin-liang

    2014-04-15

    In this paper, the inner surface flash-over of high-voltage self-breakdown switch, which is used as a main switch of pulse modulator, is analyzed in theory by employing the method of distributed element equivalent circuit. Moreover, the field distortion of the switch is simulated by using software. The results of theoretical analysis and simulation by software show that the inner surface flash-over usually starts at the junction points among the stainless steel, insulator, and insulation gas in the switch. A switch with improved structure is designed and fabricated according to the theoretical analysis and simulation results. Several methods to avoid innermore » surface flash-over are used to improve the structure of switch. In experiment, the inductance of the switch is no more than 100 nH, the working voltage of the switch is about 600 kV, and the output voltage and current of the accelerator is about 500 kV and 50 kA, respectively. And the zero-to-peak rise time of output voltage at matched load is less than 30 ns due to the small inductance of switch. The original switch was broken-down after dozens of experiments, and the improved switch has been worked more than 200 times stably.« less

  7. The flash memory battle: How low can we go?

    NASA Astrophysics Data System (ADS)

    van Setten, Eelco; Wismans, Onno; Grim, Kees; Finders, Jo; Dusa, Mircea; Birkner, Robert; Richter, Rigo; Scherübl, Thomas

    2008-03-01

    With the introduction of the TWINSCAN XT:1900Gi the limit of the water based hyper-NA immersion lithography has been reached in terms of resolution. With a numerical aperture of 1.35 a single expose resolution of 36.5nm half pitch has been demonstrated. However the practical resolution limit in production will be closer to 40nm half pitch, without having to go to double patterning alike strategies. In the relentless Flash memory market the performance of the exposure tool is stretched to the limit for a competitive advantage and cost-effective product. In this paper we will present the results of an experimental study of the resolution limit of the NAND-Flash Memory Gate layer for a production-worthy process on the TWINSCAN XT:1900Gi. The entire gate layer will be qualified in terms of full wafer CD uniformity, aberration sensitivities for the different wordlines and feature-center placement errors for 38, 39, 40 and 43nm half pitch design rule. In this study we will also compare the performance of a binary intensity mask to a 6% attenuated phase shift mask and look at strategies to maximize Depth of Focus, and to desensitize the gate layer for lens aberrations and placement errors. The mask is one of the dominant contributors to the CD uniformity budget of the flash gate layer. Therefore the wafer measurements are compared to aerial image measurements of the mask using AIMSTM 45-193i to separate the mask contribution from the scanner contribution to the final imaging performance.

  8. Apollo-Soyuz pamphlet no. 6: Cosmic ray dosage. [experimental designiradiation hazards and dosage

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The radiation hazard inside spacecraft is discussed with emphasis on its effects on the crew, biological specimens, and spacecraft instruments. The problem of light flash sensations in the eyes of astronauts is addressed and experiment MA-106 is described. In this experiment, light flashes seen by blindfolded astronauts were counted and high energy cosmic ray intensity in the command module cabin were measured. The damage caused by cosmic ray hits on small living organisms was investigated in the Biostack 3 experiment (MA-107). Individual cosmic rays were tracked through layers of bacterial spores, small seeds, and eggs interleaved with layers of AgCl-crystal wafers, special plastic, and special photographic film that registered each cosmic ray particle passed.

  9. Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2011-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma- Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for these TGF observations. On several occasions, intense beams of high-energy electrons and positrons have been observed at the geomagnetic conjugate points of TGFs.

  10. Pluto occultation on 2015 June 29 UTC with central flash and atmospheric spikes just before the New Horizons flyby

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, Bryce A.; Durst, Rebecca F.; Seeger, Christina H.; Levine, Stephen E.; Bosh, Amanda S.; Person, Michael J.; Sickafoose, Amanda A.; Zuluaga, Carlos A.; Kosiarek, Molly R.; Abe, Fumio; Nagakane, Masayuki; Suzuki, Daisuke; Tristram, Paul J.; Arredondo, Anicia

    2017-11-01

    We observed the occultation by Pluto of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 2015 June 29 UTC. At the Univ. of Canterbury Mt. John Observatory (New Zealand), under clear skies throughout, we used a POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. At the Auckland Observatory, we used a POETS and a PICO on 0.5-m and 0.4-m telescopes, with 0.4 s and 2 s cadences, respectively, obtaining ingress observations before clouds moved in. The Mt. John light curves show a central flash, indicating that we were close to the center of the occultation path. Analysis of our light curves show that Pluto's atmosphere remains robust. The presence of spikes at both sites in the egress and ingress shows atmospheric layering. We coordinated our observations with aircraft observations (Bosh et al., 2017) with the Stratospheric Observatory for Infrared Astronomy (SOFIA). Our chords helped constrain the path across Pluto that SOFIA saw. Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days before the flyby of NASA's New Horizons spacecraft.

  11. A facile and low-cost micro fabrication material: flash foam

    PubMed Central

    He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong

    2015-01-01

    Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost. PMID:26314247

  12. Synchronized flash photolysis and pulse deposition in matrix isolation experiments

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1978-01-01

    An apparatus is described which permits flash photolysis of a pulse-deposited gas mixture in a matrix isolation experiment. This technique obviates the limitations of in situ photolysis imposed by the cage effect and by secondary photolysis. The matrix is deposited in pulses at 30-s intervals and photolyzed sequentially by four synchronized flashlamps approximately 1 ms before the pulse strikes the cold surface. Pulsed deposition maintains adequate isolation and causes line narrowing, which enhances spectral sensitivity. The efficacy of flash photolysis combined with pulsed deposition for producing and trapping transient species was demonstrated by infrated detection of CF3 (from photolysis of CF3I/Ar mixtures) and of ClCO (from photolysis of Cl2/CO/Ar mixtures). The apparatus was used to study the photolytic decomposition of gaseous tricarbonylironcyclobutadiene, C4H4Fe(CO)3. The results indicate that the primary photolytic step is not elimination of C4H4, as suggested earlier, but rather of CO.

  13. Pathological proof of cellular death in radiofrequency ablation therapy and correlation with flash echo imaging--an experiment study.

    PubMed

    Fujiki, Kei

    2004-01-01

    The aims of this study were to clarify the geographic distribution of complete cell death in the radiofrequency ablated area in a porcine liver experiment, and to evaluate the efficacy of ultrasonography using contrast media in detecting the area of Radiofrequency-induced cell death. Radiofrequency ablation was performed at 3 sites in each liver in seven swine with a RF2000TM radiofrequency generator using an expandable type needle electrode. The ablation area was investigated histologically by Hematoxylin-Eosin staining and NADH staining. The area of radiofrequency-induced cell death was correlated to the ultrasonographic findings using contrast media, by means of contrast harmonic imaging, flash echo imaging-subtraction and flash echo imaging-power Doppler. The ablation area showed three distinct regions. Although the HE staining did not indicate necrosis, the NADH staining showed a complete loss of cellular activity in the inner and middle layers of the ablation area. However, in the outer layer cells displaying cellular integrity were intermingled with the necrotic cells, indicating that some of the cells in this layer had a chance to survive. Further, in some cases the outer layer of the ablated area had irregular margins. The flash-echo power-doppler images were accurately correlated in size and shape to the pathologically proved region of complete cell death in the radiofrequency-induced lesions. In the marginal part of the radiofrequency ablation area, cell death was incomplete. Flash echo imaging-power doppler was a useful and sensitive real time imaging technique for accurate evaluation of the region of complete cell death.

  14. Jamming effect analysis of infrared reticle seeker for directed infrared countermeasures

    NASA Astrophysics Data System (ADS)

    Bae, Tae-Wuk; Kim, Byoung-Ik; Kim, Young-Choon; Ahn, Sang-Ho

    2012-09-01

    In directed infrared countermeasures (DIRCM), the purpose of jamming toward missiles is making missiles miss the target (aircraft of our forces) in the field of view. Since the DIRCM system directly emits the pulsing flashes of infrared (IR) energy to missiles, it is more effective than present flare method emitting IR source to omni-direction. In this paper, we implemented a reticle seeker simulation tool using MATLAB-SIMULINK, in order to analyze jamming effect of spin-scan and con-scan reticle missile seeker used widely in the world, though it was developed early. Because the jammer signal has influence on the missile guidance system using its variable frequency, it is very important technique among military defense systems protecting our forces from missiles of enemy. Simulation results show that jamming effect is greatly influenced according to frequency, phase and intensity of jammer signal. Especially, jammer frequency has the largest influence on jamming effect. Through our reticle seeker simulation tool, we can confirm that jamming effect toward missiles is significantly increased when jammer frequency is similar to reticle frequency. Finally, we evaluated jamming effect according to jammer frequencies, by using correlation coefficient as an evaluation criterion of jamming performance in two reticle missile seekers.

  15. The Use of MCNP in Flash Radiographic Applications at AWE

    NASA Astrophysics Data System (ADS)

    Quillin, S.; Crotch, I.; McAlpin, S.; O'Malley, J.

    AWE performs experiments to investigate the hydrodynamic behavior of explosive metal systems in order to underwrite the UK nuclear deterrent. The experiments involve the manufacture of a device to mock up some aspect of the weapon. Inert simulant materials replace fissile weapon components. The device is then detonated under remote control within specially designed explosive containment buildings called firing chambers. During the experiment a very brief, intense, collimated flash of high energy x-rays are used to take a snapshot of the implosion (see Fig. 1). Prom the resulting image measurements of the dynamic configuration and density distribution of the components in the device are inferred. These are then used to compare with calculations of the hydrodynamic operation of the weapon and understand how the device would perform under various conditions. This type of experiment is known as a core punch experiment.

  16. Opposite ERP effects for conscious and unconscious semantic processing under continuous flash suppression.

    PubMed

    Yang, Yung-Hao; Zhou, Jifan; Li, Kuei-An; Hung, Tifan; Pegna, Alan J; Yeh, Su-Ling

    2017-09-01

    We examined whether semantic processing occurs without awareness using continuous flash suppression (CFS). In two priming tasks, participants were required to judge whether a target was a word or a non-word, and to report whether the masked prime was visible. Experiment 1 manipulated the lexical congruency between the prime-target pairs and Experiment 2 manipulated their semantic relatedness. Despite the absence of behavioral priming effects (Experiment 1), the ERP results revealed that an N4 component was sensitive to the prime-target lexical congruency (Experiment 1) and semantic relatedness (Experiment 2) when the prime was rendered invisible under CFS. However, these results were reversed with respect to those that emerged when the stimuli were perceived consciously. Our findings suggest that some form of lexical and semantic processing can occur during CFS-induced unawareness, but are associated with different electrophysiological outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Thermonuclear flashes on hydrogen/helium accreting carbon monoxide white dwarfs and structure of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Mitchell, Joseph P.

    We studied H-shell flashes on CO WDs accreting Hydrogen rich matter in regimes where they are believed to be on the border of stable accretion and of having dynamical mass loss. These systems are believed to be progenitors of SNe Ia, however, there is still some question of what range of accretion rates and WD masses allow for growth to the Chandrasekhar mass, if any do at all. Flashes that result in mass loss are also of interest as they enrich the Inter Stellar Medium. Use of an explicit hydro code has allowed for the observation of a new physical effect from wave dissipation. With our high time resolution, energy transport via waves, and detailed EOS, we found that at the onset of the flash, a reduction in the degeneracy pressure due to electron captures, results in a reduction of the total pressure. With a gravitational acceleration on the order of 108 in the shell, a reduction of the total pressure by 1% results in an in fall acceleration of 10 kms2 . With such a strong in fall, compressional heating results in a hotter flash, with results showing temperatures over a billion degrees in all models. These high temperatures had consequences on the nucleosynthesis, as they allowed for rp-breakout during the flash. The effect of a "double" flash was found in one model. This resulted when the flash stalled in the H-shell, resulting in high temperature burning in only a portion of the shell. Once the H was exhausted in the flash region, cooling occurred and there was contraction of the H exhausted region. This contraction caused an in fall of the un-exhausted region which via compressional heating resulted in the flash to occur in the un-exhausted region. Such an effect may happen in any progenitor system in which the flash stalls and compression afterwards is suitable for a re-start of the flash. This effect may be observable with the current generation of instruments. With the high temperatures found in the flashes, rp-breakout nucleosynthesis was found to occur. Occurrence of rp-nucleosynthesis in these objects may make important sources of the chemical enrichment of isotopes below the iron group that are not know to be synthesized in hydrostatic stellar burning. The existence of rp-breakout in the flashes, shows the importance of nuclear physics in these objects. More precise nuclear reaction rate data are needed for proper energy generation and chemical evolution. With the occurrence of rp-nucleosynthesis in our models, it is especially advantageous to study radioactive proton rich nuclei. These studies are not without many difficulties in the laboratory, as many of the studies require the use of low intensity radioactive beams making clean, high statistic studies difficult. To address this issue, the hybrid target technique was used. This target technique was found to be a great tool for studying resonant proton scattering with exotic beams. It has been used to measure elastic and inelastic excitation functions in the study of 8B via 7Be+p scattering, as well as 12N+p elastic scattering. With such success, the hybrid target technique can be a very useful tool for studying reactions that are important in the rp-process. We have studied the structure of the astrophysically important, radioactive isotope 8B. Three new resonances have been suggested, a 0+1,2+2 , and 1+2 which were predominantly in the inelastic channel and never before seen in previous studies. However, due to their high excitation energies and narrow width, none of the resonances are expected to effect the astrophysically important 7Be(p, gamma) reaction rate. Results were compared to continuum shell model as well as ab initio calculations and found to be in good agreement with both sets of predictions, with the notable exception of the 2+2 state. (Abstract shortened by UMI.)

  18. Remotely Triggered Solar Blind Signaling Using Deep Ultraviolet (UV) LEDs

    DTIC Science & Technology

    2011-06-01

    Setup used to measure intensity as a function of current. Due to the large difference in intensity between the LEDs of different lens types, the...duty cycle has the smaller rate of intensity drop. Even though the duration of the pulse is double that of the other current, the extra time...neutral troops. If activated, the prototype responds by emitting ten 300 ms flashes followed by a return to passive mode. The dimensions of the

  19. The kinematic and microphysical control of lightning rate, extent, and NOX production

    NASA Astrophysics Data System (ADS)

    Carey, Lawrence D.; Koshak, William; Peterson, Harold; Mecikalski, Retha M.

    2016-07-01

    This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX = NO + NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC + cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6 km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC + CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6 km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6 km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, ρ ≥ 0.8) but are less correlated to total flash extent (ρ ≥ 0.6) and total LNOX production (ρ ≥ 0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation.

  20. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  1. Effects of estradiol and venlafaxine on insomnia symptoms and sleep quality in women with hot flashes.

    PubMed

    Ensrud, Kristine E; Guthrie, Katherine A; Hohensee, Chancellor; Caan, Bette; Carpenter, Janet S; Freeman, Ellen W; LaCroix, Andrea Z; Landis, Carol A; Manson, JoAnn; Newton, Katherine M; Otte, Julie; Reed, Susan D; Shifren, Jan L; Sternfeld, Barbara; Woods, Nancy F; Joffe, Hadine

    2015-01-01

    Determine effects of low-dose estradiol and low-dose venlafaxine on self-reported sleep measures in menopausal women with hot flashes. 3-arm double-blind randomized trial. Participants assigned in a 2:2:3 ratio to 17β estradiol 0.5 mg/day (n = 97), venlafaxine XR 75 mg/day (n = 96), or placebo (n = 146) for 8 weeks. Academic research centers. 339 community-dwelling perimenopausal and postmenopausal women with ≥2 bothersome hot flashes per day. Insomnia symptoms (Insomnia Severity Index [ISI]) and sleep quality (Pittsburgh Sleep Quality Index [PSQI]) at baseline, week 4 and 8; 325 women (96%) provided ISI data and 312 women (92%) provided PSQI data at baseline and follow-up. At baseline, mean (SD) hot flash frequency was 8.1/day (5.3), mean ISI was 11.1 (6.0), and mean PSQI was 7.5 (3.4). Mean (95% CI) change from baseline in ISI at week 8 was -4.1 points (-5.3 to -3.0) with estradiol, -5.0 points (-6.1 to -3.9) with venlafaxine, and -3.0 points (-3.8 to -2.3) with placebo (P overall treatment effect vs. placebo 0.09 for estradiol and 0.007 for venlafaxine). Mean (95% CI) change from baseline in PSQI at week 8 was -2.2 points (-2.8 to -1.6) with estradiol, -2.3 points (-2.9 to -1.6) with venlafaxine, and -1.2 points (-1.7 to -0.8) with placebo (P overall treatment effect vs. placebo 0.04 for estradiol and 0.06 for venlafaxine). Among perimenopausal and postmenopausal women with hot flashes, both low dose oral estradiol and low-dose venlafaxine compared with placebo modestly reduced insomnia symptoms and improved subjective sleep quality. NCT01418209 at www.clinicaltrials.gov. © 2014 Associated Professional Sleep Societies, LLC.

  2. Optical design of infrared pyramid wavefront sensor for the MMT

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Sivanandam, Suresh; Liu, Siqi; Veran, Jean-Pierre; Hinz, Phil; Mieda, Etsuko; Hardy, Tim; Lardiere, Olivier

    2017-09-01

    We report the optical design of an infrared (0.85-1.8 μm) pyramid wavefront sensor (IRPWFS) that is designed for the 6.5m MMT on telescope adaptive optics system using the latest developments in low-noise infrared avalanche photodiode arrays. The comparison between the pyramid and the double-roof prism based wavefront sensors and the evaluation of their micro pupils' quality are presented. According to our analysis, the use of two double-roof prisms with achromatic materials produces the competitive performance when compared to the traditional pyramid prism, which is difficult to manufacture. The final micro pupils on the image plane have the residual errors of pupil position, chromatism, and distortion within 1/10 pixel over the 2×2 arcsecond field of view, which meet the original design goals.

  3. Reconstruction of Axial Energy Deposition in Magnetic Liner Inertial Fusion Based on PECOS Shadowgraph Unfolds Using the AMR Code FLASH

    NASA Astrophysics Data System (ADS)

    Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre; U. Rochester-Sandia Collaboration

    2017-10-01

    Magnetic Liner Inertial Fusion (MagLIF) experiments incorporate a laser to preheat a deuterium filled capsule before compression via a magnetically imploding liner. In this work, we focus on the blast wave formed in the fuel during the laser preheat component of MagLIF, where approximately 1kJ of energy is deposited in 3ns into the capsule axially before implosion. To model blast waves directly relevant to experiments such as MagLIF, we inferred deposited energy from shadowgraphy of laser-only experiments preformed at the PECOS target chamber using the Z-Beamlet laser. These energy profiles were used to initialize 2-dimensional simulations using by the adaptive mesh refinement code FLASH. Gradients or asymmetries in the energy deposition may seed instabilities that alter the fuel's distribution, or promote mix, as the blast wave interacts with the liner wall. The AMR capabilities of FLASH allow us to study the development and dynamics of these instabilities within the fuel and their effect on the liner before implosion. Sandia Natl Labs is managed by NTES of Sandia, LLC., a subsidiary of Honeywell International, Inc, for the U.S. DOEs NNSA under contract DE-NA0003525.

  4. One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2017-06-16

    Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.

  5. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.

  6. Simulation Experiments of Reacting Two-Phase Flow

    DTIC Science & Technology

    1987-04-06

    to 50 % of the lower gas explosion limit (4 % ofhydrogen in the surrounding air ). Then, this device automatically stops the filling procedure...and the discharge of the rifle into air 68 36. Final chamber pressure versus time (Charge pr’,ssure P, = 12 MPa; closed bomb mode) 70 37. Final...surrounding air , which is entrained turbulently, a combustion process can take place that results in a high intensity flash, called muzzle flash [6

  7. Physics Flash December 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    This is the December 2016 issue of Physics Flash, the newsletter of the Physics Division of Los Alamos National Laboratory (LANL). In this issue, the following topics are covered: Novel liquid helium technique to aid highly sensitive search for a neutron electrical dipole moment; Silverleaf: Prototype Red Sage experiments performed at Q-site; John L. Kline named 2016 APS Fellow; Physics students in the news; First Entropy Engine quantum random number generator hits the market; and celebrating service.

  8. Analog front-end design of the STS/MUCH-XYTER2—full size prototype ASIC for the CBM experiment

    NASA Astrophysics Data System (ADS)

    Kleczek, Rafal

    2017-01-01

    The design of the analog front-end of the STS/MUCH-XYTER2 ASIC, a full-size prototype chip for the Silicon Tracking System (STS, based on double-sided silicon strip sensors) and Muon Chamber (MUCH, based on gas sensors) detectors is presented. The ASIC contains 128 charge processing channels, each built of a charge sensitive amplifier, a polarity selection circuit and two pulse shaping amplifiers forming two parallel signal paths. The first path is used for timing measurement with a fast discriminator. The second path allows low-noise amplitude measurement with a 5-bit continuous-time flash ADC. Different operating conditions and constraints posed by two target detectors' applications require front-end electronics flexibility to meet extended system-wise requirements. The presented circuit implements switchable shaper peaking time, gain switching and trimming, input amplifier pulsed reset circuit, fail-safe measures. The power consumption is scalable (for the STS and the MUCH modes), but limited to 10 mW/channel.

  9. Therapeutic options for the management of hot flashes in breast cancer survivors: an evidence-based review.

    PubMed

    Bordeleau, Louise; Pritchard, Kathleen; Goodwin, Pamela; Loprinzi, Charles

    2007-02-01

    Women with breast cancer may experience treatment-induced menopausal symptoms or natural menopause. Menopausal symptoms, particularly hot flashes, are reported at a high frequency in this group and tend to be more severe, distressing, and of greater duration than in controls. Because of the contribution of sex hormones to breast cancer, the use of hormonal agents for the control of hot flashes is problematic in these women. Safer nonhormonal alternatives are recommended for this patient group. This was a systematic review of the therapeutic options for the treatment of hot flashes in breast cancer survivors. MEDLINE was searched from 1990 to July 2006 using the disease-specific term breast neoplasms and the subheadings menopause and hot flashes. EMBASE was searched from 1990 to March 2006 using the disease-specific subject headings breast tumor/ breast cancer and menopause and the key word hot flashes. The reference lists of the identified articles and relevant review articles were examined for additional publications. Pertinent articles and abstracts of large randomized controlled trials focusing on the treatment of hot flashes in breast cancer survivors were selected for review. Pilot studies were excluded. A number of nonpharmacologic approaches are available for the treatment of hot flashes in breast cancer survivors, although they appear to be of limited effectiveness. Complementary alternative medicine therapies and vitamin E have been found to have modest effectiveness at best, and data on their long-term safety are not available. Centrally active agents such as the antidepressants venlafaxine and paroxetine and the anti seizure agent gabapentin have shown clinical effectiveness and appear to be reasonably well tolerated in this population. Centrally active agents (eg, venlafaxine, paroxetine, gabapentin) are regarded as the most promising nonhormonal treatments for hot flashes in breast cancer survivors. Nonpharmacologic and complementary alternative medicine therapies have limited effectiveness.

  10. Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging.

    PubMed

    Fu, Ling; Gu, Min

    2006-05-15

    A 1 x 2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1 dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.

  11. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2015-03-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported.

  12. Neural Responses in Parietal and Occipital Areas in Response to Visual Events Are Modulated by Prior Multisensory Stimuli

    PubMed Central

    Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.

    2013-01-01

    The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939

  13. A Unified Flash Flood Database across the United States

    USGS Publications Warehouse

    Gourley, Jonathan J.; Hong, Yang; Flamig, Zachary L.; Arthur, Ami; Clark, Robert; Calianno, Martin; Ruin, Isabelle; Ortel, Terry W.; Wieczorek, Michael; Kirstetter, Pierre-Emmanuel; Clark, Edward; Krajewski, Witold F.

    2013-01-01

    Despite flash flooding being one of the most deadly and costly weather-related natural hazards worldwide, individual datasets to characterize them in the United States are hampered by limited documentation and can be difficult to access. This study is the first of its kind to assemble, reprocess, describe, and disseminate a georeferenced U.S. database providing a long-term, detailed characterization of flash flooding in terms of spatiotemporal behavior and specificity of impacts. The database is composed of three primary sources: 1) the entire archive of automated discharge observations from the U.S. Geological Survey that has been reprocessed to describe individual flooding events, 2) flash-flooding reports collected by the National Weather Service from 2006 to the present, and 3) witness reports obtained directly from the public in the Severe Hazards Analysis and Verification Experiment during the summers 2008–10. Each observational data source has limitations; a major asset of the unified flash flood database is its collation of relevant information from a variety of sources that is now readily available to the community in common formats. It is anticipated that this database will be used for many diverse purposes, such as evaluating tools to predict flash flooding, characterizing seasonal and regional trends, and improving understanding of dominant flood-producing processes. We envision the initiation of this community database effort will attract and encompass future datasets.

  14. P-Compensated and P-Doped Superlattice Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Khoshakhlagh, Arezou (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2017-01-01

    Barrier infrared detectors configured to operate in the long-wave (LW) infrared regime are provided. The barrier infrared detector systems may be configured as pin, pbp, barrier and double heterostructrure infrared detectors incorporating optimized p-doped absorbers capable of taking advantage of high mobility (electron) minority carriers. The absorber may be a p-doped Ga-free InAs/InAsSb material. The p-doping may be accomplished by optimizing the Be doping levels used in the absorber material. The barrier infrared detectors may incorporate individual superlattice layers having narrower periodicity and optimization of Sb composition to achieve cutoff wavelengths of.about.10.mu.m.

  15. MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: Part I. Concept and expected performance

    NASA Astrophysics Data System (ADS)

    Bellucci, G.; Saggin, B.; Fonti, S.; Biondi, D.; Cerulli, P.; De Luca, M.; Altieri, F.; Mattana, A.; Alberti, E.; Marzo, G.; Zasova, L.

    2007-10-01

    The Mars Infrared MApper (MIMA) is a FT-IR miniaturised spectrometer which is being developed for ESA ExoMars Pasteur mission. The Martian Infrared MApper Fourier Spectrometer is designed to provide remote measurements of mineralogy and atmosphere of the scene surrounding a Martian rover and guide it to key targets for detailed in situ measurements by other rover experiments. Among the main scientific objectives of the MIMA instrument are to assist the rover in rock/soils selection for further in-situ investigation and to identify rocks and soils on the Martian surface which provide evidence of past/present biological activity. The instrument is also designed to measure the water vapour abundance and vertical distribution and its diurnal and seasonal variation, dust opacity, optical properties, composition, diurnal and seasonal variation. The instrument is a double pendulum interferometer providing spectra in the 2 - 25 μm wavelength domain with a resolving power of 1000 at 2 μm and 80 at 25 μm. The radiometric performances are SNR > 40 in the near infrared and a NEDe = 0.002 in the thermal region. The instrument design is very compact, with a total mass of 1kg and an average power consumption of 5 W.

  16. Chromatic induction in space and time.

    PubMed

    Coia, Andrew J; Shevell, Steven K

    2018-04-01

    The color appearance of a light depends on variation in the complete visual field over both space and time. In the spatial domain, a chromatic stimulus within a patterned chromatic surround can appear a different hue than the same stimulus within a uniform surround. In the temporal domain, a stimulus presented as an element of a continuously changing chromaticity can appear a different color compared to the identical stimulus, presented simultaneously but viewed alone. This is the flash-lag effect for color, which has an analog in the domain of motion: a pulsed object seen alone can appear to lag behind an identical pulsed object that is an element of a motion sequence. Studies of the flash-lag effect for motion have considered whether it is mediated by a neural representation for the moving physical stimulus or, alternatively, for the perceived motion. The current study addresses this question for the flash-lag effect for color by testing whether the color flash lag depends on a representation of only the changing chromatic stimulus or, alternatively, its color percept, which can be altered by chromatic induction. baseline measurements for spatial chromatic induction determined the chromaticity of a flashed ring within a uniform surround that matched a flashed ring within a patterned surround. Baseline measurements for the color flash-lag effect determined the chromaticity of a pulsed ring presented alone (within a uniform surround) that matched a pulsed ring presented in a sequence of changing chromaticity over time (also within a uniform surround). Finally, the main experiments combined chromatic induction from a patterned surround and the flash-lag effect, in three conditions: (1) both the changing and pulsed rings were within a patterned chromatic surround; (2) the changing ring was within a patterned surround and the pulsed ring within a uniform surround; and (3) the changing ring was within a uniform surround and the pulsed ring within a patterned surround. the flash-lag measurements for a changing chromaticity were affected by perceptual changes induced by the surrounding chromatic pattern. Thus, the color shifts induced by a chromatic surround are incorporated in the neural representation mediating the flash-lag effect for color.

  17. Infrared spectrometer for Voyager

    NASA Technical Reports Server (NTRS)

    Hanel, R.; Crosby, D.; Herath, L.; Vanous, D.; Collins, D.; Creswick, H.; Harris, C.; Rhodes, M.

    1980-01-01

    The Voyager IR investigation is described, which uses a Michelson interferometer in the 180-2500/cm range, and a single-channel radiometer for the visible and near-IR, sharing a 50-cm diameter telescope. Emphasis is placed on the differences between the Voyager and the previous designs, including reductions in the field of view and in the noise equivalent spectral radiance of the instrument. Attention is given to the optical layout, the electronics module, power supply placement, thermal control heaters and flash heaters, data reduction, and calibration. A sample spectrum of Jupiter is also discussed.

  18. Studying the hydro-meteorological extremes. The benefits from the European Flash Flood research oriented HYDRATE project.

    NASA Astrophysics Data System (ADS)

    Tsanis, Ioannis K.; Koutroulis, Aristeidis G.; Daliakopoulos, Ioannis N.; Grillakis, Emmanouil G.

    2010-05-01

    The present paper summarizes the advances of flash flood research for the Greek case study, within the frame of HYDRATE EC funded project. As a first step, a collation of homogenous primary data on flash floods occurred in Greece based on various data sources resulted in 21 documented events, enriching the HYDRATE database. Specific major events were selected for further detailed data collation and analysis. A common intensive post event field survey was conducted by various researchers with different skills and experience, in order to document the 18th of September 2007, Western Slovenia flash flood event. The observation strategy and the lessons learned during this campaign were applied successfully for surveying an event in Crete. Two flash flood events occurred in Crete were selected for detailed analysis, the 13th of January 1994 event occurred in Giofiros basin and the 17th of October 2006 event occurred in Almirida basin. Several techniques, like distributed rainfall-runoff modelling, hydraulic modelling, indirect and empirical peak discharge estimation, were applied for the understanding of the dominant flash flood processes and the effect of initial conditions on peak discharge. In a more general framework, the seasonality of the hydrometeorologic characteristics of floods that occurred in Crete during the period 1990-2007 and the atmospheric circulation conditions during the flood events were examined. During the three and a half years research period, many lessons have learnt from a fruitful collaboration among the project partners. HYDRATE project improved the scientific basis of flash flood research and provided research knowledge on flood risk management.

  19. Radiation predictions and shielding calculations for RITS-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick

    2005-06-01

    The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less

  1. Mobile computing device as tools for college student education: a case on flashcards application

    NASA Astrophysics Data System (ADS)

    Kang, Congying

    2012-04-01

    Traditionally, college students always use flash cards as a tool to remember massive knowledge, such as nomenclature, structures, and reactions in chemistry. Educational and information technology have enabled flashcards viewed on computers, like Slides and PowerPoint, works as tunnels of drilling and feedback for the learners. The current generation of students is more capable of information technology and mobile computing devices. For example, they use their Mobile phones much more intensively everyday day. Trends of using Mobile phone as an educational tool is analyzed and a educational technology initiative is proposed, which use Mobile phone flash cards applications to help students learn biology and chemistry. Experiments show that users responded positively to these mobile flash cards.

  2. Defining the unknowns of sonoluminescence

    NASA Astrophysics Data System (ADS)

    Barber, Bradley P.; Hiller, Robert A.; Löfstedt, Ritva; Putterman, Seth J.; Weninger, Keith R.

    1997-03-01

    As the intensity of a standing sound wave is increased the pulsations of a bubble of gas trapped at a velocity node attain sufficient amplitude so as to emit picosecond flashes of light with a broadband spectrum that increases into the ultraviolet. The acoustic resonator can be tuned so that the flashes of light occur with a clocklike regularity: one flash for each cycle of sound with a jitter in the time between flashes that is also measured in picoseconds. This phenomenon (sonoluminescence or “SL”) is remarkable because it is the only means of generating picosecond flashes of light that does not use a laser and the input acoustic energy density must be concentrated by twelve orders of magnitude in order to produce light. Light scattering measurements indicate that the bubble wall is collapsing at more than 4 times the ambient speed of sound in the gas just prior to the light emitting moment when the gas has been compressed to a density determined by its van der Waals hard core. Experiments indicate that the collapse is remarkably spherical, water is the best fluid for SL, some noble gas is essential for stable SL, and that the light intensity increases as the ambient temperature is lowered. In the extremely stable experimental configuration consisting of an air bubble in water, measurements indicate that the bubble chooses an ambient radius that is not explained by mass diffusion. Experiments have not yet been able to map out the complete spectrum because above 6 eV it is obscured by the cutoff imposed by water, and furthermore experiments have only determined an upper bound on the flash widths. In addition to the above puzzles, the theory for the light emitting mechanism is still open. The scenario of a supersonic bubble collapse launching an imploding shock wave which ionizes the bubble contents so as to cause it to emit Bremsstrahlung radiation is the best candidate theory but it has not been shown how to extract from it the richness of this phenomenon. Most exciting is the issue of whether SL is a classical effect or whether Planck's constant should be invoked to explain how energy which enters a medium at the macroscopic scale holds together and focuses so as to be emitted at the microscopic scale.

  3. Power Balance Analysis of the Prototype-Material Plasma Exposure eXperiment

    NASA Astrophysics Data System (ADS)

    Showers, M. A.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Lumsdaine, A.; Owen, L.; Rapp, J.; Youchison, D.; Beers, C. J.; Donovan, D. C.; Kafle, N.; Ray, H. B.

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a test bed for the plasma source concept for the planned Material Plasma Exposure eXperiment (MPEX), a steady-state linear device studying plasma material interactions for fusion reactors. A power balance of Proto-MPEX attempts to identify machine operating parameters that will improve Proto-MPEX's performance, potentially impacting the MPEX design concept. A power balance has been performed utilizing an extensive diagnostic suite to identify mechanisms and locations of power loss from the main plasma. The diagnostic package includes infrared cameras, double Langmuir probes, fluoroptic probes, Mach probes, a Thomson scattering diagnostic, a McPherson spectrometer and in-vessel thermocouples. Radiation losses are estimated with absolute calibrated spectroscopic signals. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  4. Optical modulation of quantum cascade laser with optimized excitation wavelength.

    PubMed

    Yang, Tao; Chen, Gang; Tian, Chao; Martini, Rainer

    2013-04-15

    The excitation wavelength for all-optical modulation of a 10.6 μm mid-infrared (MIR) quantum cascade laser (QCL) was varied in order to obtain maximum modulation depth. Both amplitude and wavelength modulation experiments were conducted at 820 nm and 1550 nm excitation respectively, whereby the latter matches the interband transition in the QCL active region. Experimental results show that for continuous-wave mode-operated QCL, the efficiency of free carrier generation is doubled under 1550 nm excitation compared with 820 nm excitation, resulting in an increase of the amplitude modulation index from 19% to 36%. At the same time, the maximum wavelength shift is more than doubled from 1.05 nm to 2.80 nm. Furthermore, for the first time to our knowledge, we demonstrated the optical switching of a QCL operated in pulse mode by simple variation of the excitation wavelength.

  5. Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang

    2018-01-01

    Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.

  6. High-energy, high-average-power laser with Nd:YLF rods corrected by magnetorheological finishing.

    PubMed

    Bagnoud, Vincent; Guardalben, Mark J; Puth, Jason; Zuegel, Jonathan D; Mooney, Ted; Dumas, Paul

    2005-01-10

    A high-energy, high-average-power laser system, optimized to efficiently pump a high-performance optical parametric chirped-pulse amplifier at 527 nm, has been demonstrated. The crystal large-aperture ring amplifier employs two flash-lamp-pumped, 25.4-mm-diameter Nd:YLF rods. The transmitted wave front of these rods is corrected by magnetorheological finishing to achieve nearly diffraction-limited output performance with frequency-doubled pulse energies up to 1.8 J at 5 Hz.

  7. The effect of global warming on lightning frequencies

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1990-01-01

    The first attempt to model global lightning distributions by using the Goddard Institute for Space Studies (GISS) GCM is reported. Three sets of observations showing the relationship between lightning frequency and cloud top height are shown. Zonally averaged lightning frequency observed by satellite are compared with those calculated using the GISS GCM, and fair agreement is found. The change in lightning frequency for a double CO2 climate is calculated and found to be nearly 2.23 x 10 exp 6 extra lightning flashes per day.

  8. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  9. Far from thunderstorm UV transient events in the atmosphere measured by Vernov satellite

    NASA Astrophysics Data System (ADS)

    Morozenko, Violetta; Klimov, Pavel; Khrenov, Boris; Gali, Garipov; Margarita, Kaznacheeva; Mikhail, Panasyuk; Sergei, Svertilov; Robert, Holzworth

    2016-04-01

    The steady self-contained classification of events such as sprites, elves, blue jets emerged for the period of transient luminous events (TLE) observation. In accordance with TLE origin theories the presence of the thunderstorm region where the lightnings with the large peak current generating in is necessary. However, some far-from-thunderstorm region events were also detected and revealed to us another TLE generating mechanisms. For the discovering of the TLE nature the Universitetsky-Tatiana-2 and Vernov satellites were equipped with ultraviolet (240-400 nm) and red-infrared ( >610 nm) detectors. In both detector it was carried out regardless the lightnings with the guidance by the flashes in the UV wavelength where lightning's emitting is quite faint. The lowered threshold on the Vernov satellite allowed to select the great amount of TLE with the numerous far-from-thunderstorm region events examples. such events were not conjuncted with lightning activity measured by global lightning location network (WWLLN) on the large area of approximately 107 km2 for 30 minutes before and after the time of registration. The characteristic features of this type of event are: the absence of significant signal in the red-infrared detector's channel; a relatively small number of photons (less than 5 ṡ 1021). A large number of without lightning flash were detected at high latitudes over the ocean (30°S - 60°S). Lightning activity in the magnetic conjugate point also was analyzed. The relationship of far-from-thunderstorm region events with the specific lightning discharges didn't confirmed. Far-from-thunderstorm events - a new type of transient phenomena in the upper atmosphere is not associated with the thunderstorm activity. The mechanism of such discharges is not clear, though it was accumulated a sufficient amount of experimental facts of the existence of such flashes. According to the data of Vernov satellite the temporal profile, duration, location with earth coordinates and the number of photons generated in the far-from-thunderstorm atmospheric events has been analyzed and the discussion of these events origin is in progress.

  10. Storm Physics and Lightning Properties over Northern Alabama during DC3

    NASA Astrophysics Data System (ADS)

    Matthee, R.; Carey, L. D.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep moist convection (DMC) and the production of nitrogen oxides (NOx) via lightning (LNOx). The focus of this study will be to examine integrated storm microphysics and lightning properties of DMC across northern Alabama (NA) during the DC3 campaign through use of polarimetric radar [UAHuntsville's Advanced Radar for Meteorological and Operational Radar (ARMOR)] and lightning mapping [National Aeronautical and Space Administration's (NASA) north Alabama Lightning Mapping Array (NA LMA)] platforms. Specifically, ARMOR and NA LMA are being used to explore the ability of radar inferred microphysical (e.g., ice mass, graupel volume) measurements to parameterize flash rates (F) and flash area for estimation of LNOX production in cloud resolving models. The flash area was calculated by using the 'convex hull' method. This method essentially draws a polygon around all the sources that comprise a flash. From this polygon, the convex hull area that describes the minimum polygon that circumscribes the flash extent is calculated. Two storms have been analyzed so far; one on 21 May 2012 (S1) and another on 11 June 2012 (S2), both of which were aircraft-penetrated during DC3. For S1 and S2, radar reflectivity (Z) estimates of precipitation ice mass (M) within the mixed-phase zone (-10°C to -40°C) were well correlated to the trend of lightning flash rate. However, a useful radar-based F parameterization must provide accurate quantification of rates in addition to proper trends. The difference reflectivity was used to estimate Z associated with ice and then a single Z-M relation was employed to calculate M in the mixed-phase zone. Using this approach it was estimated that S1 produced an order of magnitude greater M, but produced about a third of the total amount of flashes compared to S2. Expectations based on the non-inductive charging (NIC) theory suggest that the M-to-F ratio (M/F) should be stable from storm-to-storm, amongst other factors, all else being equal. Further investigation revealed that the mean mixed-phase Z was 11 dB higher in S1 compared to S2, suggesting larger diameters and lower concentrations of ice particles in S1. Reduction by an order of magnitude of the intercept parameter (N0) of an assumed exponential ice particle size distribution within the Z-M relation for S1 resulted in a proportional reduction in S1's inferred M and therefore a more comparable M/F ratio between the storms. Flash statistics between S1 and S2 revealed the following: S1 produced 1.92 flashes/minute and a total of 102 flashes, while S2 produced 3.45 flashes/minute and a total of 307 flashes. On average, S1 (S2) produced 212 (78) sources per flash and an average flash area of 89.53 km2 (53.85 km2). Thus, S1 produced fewer flashes, a lower F, but more sources per flash and larger flash areas as compared to S2. Ongoing analysis is exploring the tuning of N0 within the Z-M relation by the mean Z in the mixed-phase zone. The suitability of various M estimates and other radar properties (graupel volume, ice fluxes, anvil ice mass) for parameterizing F, flash area and LNOX will be investigated on different storm types across NA.

  11. Long-Range Lightning Products for Short Term Forecasting of Tropical Cyclogenesis

    NASA Astrophysics Data System (ADS)

    Businger, S.; Pessi, A.; Robinson, T.; Stolz, D.

    2010-12-01

    This paper will describe innovative graphical products derived in real time from long-range lightning data. The products have been designed to aid in short-term forecasting of tropical cyclone development for the Tropical Cyclone Structure Experiment 2010 (TCS10) held over the western Pacific Ocean from 17 August to 17 October 2010 and are available online at http://www.soest.hawaii.edu/cgi-bin/pacnet/tcs10.pl. The long-range lightning data are from Vaisala’s Global Lightning Data 360 (GLD360) network and include time, location, current strength, polarity, and data quality indication. The products currently provided in real time include i. Infrared satellite imagery overlaid with lighting flash locations, with color indication of current strength and polarity (shades of blue for negative to ground and red for positive to ground). ii. A 15x15 degree storm-centered tile of IR imagery overlaid with lightning data as in i). iii. A pseudo reflectivity product showing estimates of radar reflectivity based on lightning rate - rain rate conversion derived from TRMM and PacNet data. iv. A lightning history product that plots each hour of lightning flash locations in a different color for a 12-hour period. v. Graphs of lightning counts within 50 or 300 km radius, respectively, of the storm center vs storm central sea-level pressure. vi. A 2-D graphic showing storm core lightning density along the storm track. The first three products above can be looped to gain a better understanding of the evolution of the lightning and storm structure. Examples of the graphics and their utility will be demonstrated and discussed. Histogram of lightning counts within 50 km of the storm center and graph of storm central pressure as a function of time.

  12. Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts

    PubMed Central

    Van Grootel, Tom J.; Van der Willigen, Robert F.; Van Opstal, A. John

    2012-01-01

    How the brain maintains an accurate and stable representation of visual target locations despite the occurrence of saccadic gaze shifts is a classical problem in oculomotor research. Here we test and dissociate the predictions of different conceptual models for head-unrestrained gaze-localization behavior of macaque monkeys. We adopted the double-step paradigm with rapid eye-head gaze shifts to measure localization accuracy in response to flashed visual stimuli in darkness. We presented the second target flash either before (static), or during (dynamic) the first gaze displacement. In the dynamic case the brief visual flash induced a small retinal streak of up to about 20 deg at an unpredictable moment and retinal location during the eye-head gaze shift, which provides serious challenges for the gaze-control system. However, for both stimulus conditions, monkeys localized the flashed targets with accurate gaze shifts, which rules out several models of visuomotor control. First, these findings exclude the possibility that gaze-shift programming relies on retinal inputs only. Instead, they support the notion that accurate eye-head motor feedback updates the gaze-saccade coordinates. Second, in dynamic trials the visuomotor system cannot rely on the coordinates of the planned first eye-head saccade either, which rules out remapping on the basis of a predictive corollary gaze-displacement signal. Finally, because gaze-related head movements were also goal-directed, requiring continuous access to eye-in-head position, we propose that our results best support a dynamic feedback scheme for spatial updating in which visuomotor control incorporates accurate signals about instantaneous eye- and head positions rather than relative eye- and head displacements. PMID:23118883

  13. Bitopertin in Negative Symptoms of Schizophrenia-Results From the Phase III FlashLyte and DayLyte Studies.

    PubMed

    Bugarski-Kirola, Dragana; Blaettler, Thomas; Arango, Celso; Fleischhacker, Wolfgang W; Garibaldi, George; Wang, Alice; Dixon, Mark; Bressan, Rodrigo A; Nasrallah, Henry; Lawrie, Stephen; Napieralski, Julie; Ochi-Lohmann, Tania; Reid, Carol; Marder, Stephen R

    2017-07-01

    There is currently no standard of care for treatment of negative symptoms of schizophrenia, although some previous results with glutamatergic agonists have been promising. Three (SunLyte [WN25308], DayLyte [WN25309], and FlashLyte [NN25310]) phase III, multicenter, randomized, 24-week, double-blind, parallel-group, placebo-controlled studies evaluated the efficacy and safety of adjunctive bitopertin in stable patients with persistent predominant negative symptoms of schizophrenia treated with antipsychotics. SunLyte met the prespecified criteria for lack of efficacy and was declared futile. Key inclusion criteria were age ≥18 years, DSM-IV-TR diagnosis of schizophrenia, score ≥40 on the sum of the 14 Positive and Negative Syndrome Scale negative symptoms and disorganized thought factors, unaltered antipsychotic treatment, and clinical stability. Following a 4-week prospective stabilization period, patients were randomly assigned 1:1:1 to bitopertin (5 mg and 10 mg [DayLyte] and 10 mg and 20 mg [FlashLyte]) or placebo once daily for 24 weeks. The primary efficacy end point was mean change from baseline in Positive and Negative Syndrome Scale negative symptom factor score at week 24. The intent-to-treat population in DayLyte and FlashLyte included 605 and 594 patients, respectively. At week 24, mean change from baseline showed improvement in all treatment arms but no statistically significant separation from placebo in Positive and Negative Syndrome Scale negative symptom factor score and all other end points. Bitopertin was well tolerated. These studies provide no evidence for superior efficacy of adjunctive bitopertin in any of the doses tested over placebo in patients with persistent predominant negative symptoms of schizophrenia. Copyright © 2017. Published by Elsevier Inc.

  14. Thin film electroluminescent cells on the basis of Ce-doped CaGa2S4 and SrGa2S4 prepared by flash evaporation method

    NASA Astrophysics Data System (ADS)

    Gambarov, E.; Bayramov, A.; Kato, A.; Iida, S.

    2006-09-01

    Ce-doped CaGa2S4 and SrGa2S4 thin film electroluminescent (TFEL) devices were prepared for the first time on the basis of films deposited by flash evaporation method. Significant crystallization, stoichiometry improvement of the films and increase of photoluminescence intensity were found after annealing in H2S and O2 gas stream. EL spectra of the cells exhibited the characteristic double-band emission similar to that seen for Ce3+ activated CaGa2S4 and SrGa2S4 films under photon excitation. Applied voltage and frequency dependences of the electroluminescence were studied. Low voltage operation as low as 20 V was observed for these cells. Luminance of about 4 cd/m2 at 100 V operating voltage with 2.5 kHz frequency was achieved for the TFEL cell with films annealed in O2 gas stream.

  15. Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution

    NASA Astrophysics Data System (ADS)

    Nejati, Kamellia; Davary, Soheila; Saati, Marziye

    2013-09-01

    The hydrotalcite-like compound of Cu-Fe-layered double hydroxide was studied as a potential adsorbent of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The nanoparticles of Cu-Fe layered double hydroxide were prepared by Cu/Fe molar ratio of 2:1 using a coprecipitation method at pH 8.5 and characterized by the X-ray powder diffraction (XRD), the Fourier transform infrared spectroscopy (FT-IR), the thermal gravimetric analysis (TGA) and the elemental analysis. The size and morphology of nanoparticles were examined by the transmission electron microscopy (TEM). The adsorption experiments on LDH, on the other hand, were conducted in three different procedures, namely, time-dependent, pH-dependent and temperature-dependent. Characterization of the adsorption products by the XRD method indicates that the intercalation of 2,4-D between the LDH layers has not occurred and the surface adsorption had taken place. The adsorption kinetic was tested for pseudo-first-order, pseudo-second-order, Elovich and Intra-particle diffusion kinetic models and the rate constants were calculated. The equilibrium adsorption data were described by Langmuir and Freundlich equations. It was observed that, the Langmuir isotherm slightly better fitted to the experimental data rather than that of Freundlich. In the adsorption experiments, the Gibbs free energy values, ΔG°, the enthalpy, ΔH°, and the entropy, ΔS° were also determined.

  16. An auroral oval at the footprint of Saturn's kilometric radio sources, colocated with the UV aurorae

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Cecconi, B.; Prangé, R.; Zarka, P.; Nichols, J. D.; Clarke, J. T.

    2009-10-01

    Similarly to other magnetized planets, Saturn displays auroral emissions generated by accelerated electrons gyrating around high-latitude magnetic field lines. They mainly divide in ultraviolet (UV) and infrared (IR) aurorae, excited by electron collisions with the upper atmosphere, and Saturn's kilometric radiation (SKR), radiated from higher altitudes by electron-wave resonance. Whereas spatially resolved UV and IR images of atmospheric aurorae reveal a continuous auroral oval around each pole, the SKR source locus was only indirectly constrained by the Voyager radio experiment to a limited local time (LT) range on the morningside, leading to interpretation of the SKR modulation as a fixed flashing light. Here, we present resolved SKR maps derived from the Cassini Radio and Plasma Wave Science (RPWS) experiment using goniopolarimetric techniques. We observe radio sources all around the planet, organized along a high-latitude continuous auroral oval. Observations of the Hubble Space Telescope obtained in January 2004 and January 2007 have been compared to simultaneous and averaged Cassini-RPWS measurements, revealing that SKR and UV auroral ovals are very similar, both significantly enhanced on the dawnside. These results imply that the SKR and atmospheric aurorae are triggered by the same populations of energetic electron beams, requiring a unified model of particle acceleration and precipitation on Saturn.

  17. Infrared and Raman spectroscopy of [Pb(Zn1/3Nb2/3)O3]0.92-[PbTiO3]0.08 and [Pb(Mg1/3Nb2/3)O3]0.71-[PbTiO3]0.29 single crystals

    NASA Astrophysics Data System (ADS)

    Kamba, S.; Buixaderas, E.; Petzelt, J.; Fousek, J.; Nosek, J.; Bridenbaugh, P.

    2003-01-01

    Far-infrared reflectivity spectra of [Pb(Zn1/3Nb2/3)O3]0.92-[PbTiO3]0.08 and [Pb(Mg1/3Nb2/3)O3]0.71-[PbTiO3]0.29 single crystals were investigated between 10 and 530 K, micro-Raman spectra were recorded between 300 and 800 K. No phonon softening was observed near either of the ferroelectric phase transitions. The low-frequency dielectric anomaly in the paraelectric phase is caused by contribution of dynamic polar nanoclusters with the main dispersion in the microwave range. Infrared and Raman spectra confirm the locally doubled unit cell (Zprim=2) in the paraelectric and ferroelectric phases due to the ordering in the perovskite B sites and occurrence of polar nanoclusters in the paraelectric phase. The lowest-frequency transverse optical (TO1) phonon mode active in the infrared spectra is underdamped in contrast to the recent result of inelastic neutron scattering, where no TO1 mode could be observed for the wave vectors q⩽0.2 Å-1. This discrepancy was explained by different q vectors probed in infrared and neutron experiments. The infrared probe couples with very long-wavelength phonons (q≈10-5 Å-1) which see the homogeneous medium averaged over the nanoclusters, whereas the neutron probe couples with phonons whose wavelength is comparable to the nanocluster size (q⩾10-2 Å-1).

  18. Layout decomposition of self-aligned double patterning for 2D random logic patterning

    NASA Astrophysics Data System (ADS)

    Ban, Yongchan; Miloslavsky, Alex; Lucas, Kevin; Choi, Soo-Han; Park, Chul-Hong; Pan, David Z.

    2011-04-01

    Self-aligned double pattering (SADP) has been adapted as a promising solution for sub-30nm technology nodes due to its lower overlay problem and better process tolerance. SADP is in production use for 1D dense patterns with good pitch control such as NAND Flash memory applications, but it is still challenging to apply SADP to 2D random logic patterns. The favored type of SADP for complex logic interconnects is a two mask approach using a core mask and a trim mask. In this paper, we first describe layout decomposition methods of spacer-type double patterning lithography, then report a type of SADP compliant layouts, and finally report SADP applications on Samsung 22nm SRAM layout. For SADP decomposition, we propose several SADP-aware layout coloring algorithms and a method of generating lithography-friendly core mask patterns. Experimental results on 22nm node designs show that our proposed layout decomposition for SADP effectively decomposes any given layouts.

  19. Numerical and experimental study of the dynamics of a superheated jet

    NASA Astrophysics Data System (ADS)

    Sinha, Avick; Gopalakrishnan, Shivasubramanian; Balasubramanian, Sridhar

    2015-11-01

    Flash-boiling is a phenomenon where a liquid experiences low pressures in a system resulting in it getting superheated. The sudden drop in pressures results in accelerated expansion and violent vapour formation. Understanding the physics behind the jet disintegration and flash-boiling phenomenon is still an open problem, with applications in automotive and aerospace combustors. The behaviour of a flash-boiling jet is highly dependent on the input parameters, inlet temperature and pressure. In the present study, the external (outside nozzle) and the internal (inside nozzle) flow characteristics of the two-phase flow has been studied numerically and experimentally. The phase change from liquid to vapour takes place over a finite period of time, modeled sing Homogeneous Relaxation Model (HRM). In order to validate the numerical results, controlled experiments were performed. Optical diagnostic techniques such as Particle Image Velocimetry (PIV) and Shadowgraphy were used to study the flow characteristics. Spray angle, penetration depth, droplet spectra were obtained which provides a better understanding of the break-up mechanism. Linear stability analysis is performed to study the stability characteristics of the jet.

  20. Studies on the nature of the primary reactions of photosystem II in photosynthesis. I. The electrochromic 515 nm absorption change as an appropriate indicator for the functional state of the photochemical active centers of system II in DCMY poisoned chloroplasts.

    PubMed

    Renger, G; Wolff, C

    1975-01-01

    The field indicating electrochromic 515 nm absorption change has been measured under different excitation conditions in DCMU poisoned chloroplasts in the presence of benzylviologen as electron acceptor. It has been found: 1. The amplitude of the 515 nm absorption change is nearly completely suppressed under repetitive single turnover flash excitation conditions which kinetically block the back reaction around system II (P. Bennoun, Biochim. Biophys. Acta 216, 357 [1970]). 2. The amplitude of the 515 nm absorption change measured under repetitive single turnover flash excitation conditions which allow the completion of the back reaction during the dark time between the flashes (measuring light beam switched off) amounts in the presence of 2 mum DCMU nearly 50% of the electrochromic 515 nm amplitude obtained in the absence of DCMU. In DCMU poisoned chloroplasts this amplitude is significantly decreased by hydroxylaminhydrochloride, but nearly doubled in the presence of CDIP+ascorbate. 3. The dependence of the 515 nm amplitude on the time td between the flashes kinetically resembles the back reaction around system ?II. The time course of the back reaction can be fairly described either by a second order reaction or by a two phase exponential kinetics. 4. 1,3-dinitrobenzene (DNE) or alpha-bromo-alpha-benzylmalodinitril (BBMD) reduce the 515 nm amplitude in DCMU poisoned chloroplasts, but seem to influecne only slightly the kinetics of the back reaction. 5. The dependence of the 515 nm amplitude on the flash light intensity (the amplitude normalized to 1 at 100% flash light intensity) is not changed by DNB. Based on these experimental data it has been concluded that in DCMU poisoned chloroplasts the amplitude of the 515 nm absorption change reflects the functional state of photosystem II centers (designated as photoelectric dipole generators II) under suitable excitation conditions. Furthermore, it is inferred that in DCMU poisoned chlorplasts the photoelectric dipole generators II either cooperate (probably as twin-pairs) or exist in two functionally different forms. With respect to BBMD and DNB it is assumed that these agents transform the phtooelectric dipole generators II into powerful nonphotochemical quenchers, which significantly reduce the variable fluorescence in DCMU-poisoned chloroplasts.

  1. Modeling Studies of Inhomogeneity Effects during Laser Flash Photolysis Experiments: A Reaction-Diffusion Approach.

    PubMed

    Dóka, Éva; Lente, Gábor

    2017-04-13

    This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.

  2. Hydrogen and helium shell burning during white dwarf accretion

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  3. The study of dopant segregation behavior during the growth of GaAs in microgravity

    NASA Technical Reports Server (NTRS)

    Matthiesen, David H.; Majewski, J. A.

    1994-01-01

    An investigation into the segregation behavior of selenium doped gallium arsenide during directional solidification in the microgravity environment was conducted using the Crystal Growth Furnace (CGF) aboard the first United States Microgravity Laboratory (USML-1). The two crystals grown were 1.5 cm in diameter and 16.5 cm in length with an initial melt length of 14 cm. Two translation periods were executed, the first at 2.5 microns/s and after a specified time, which was different between the two experiments, the translation rate was doubled to 5.0 microns/s. The translation was then stopped and the remaining sample melt was solidified using a gradient freeze technique in the first sample and a rapid solidification in the second experiment. Measurement of the selenium dopant distribution, using quantitative infrared transmission imaging, indicates that the first sample initially achieved diffusion controlled growth as desired. However, after about 1 cm of growth, the segregation behavior was driven from a diffusion controlled growth regime to a complete mixing regime. Measurements in the second flight sample indicated that the growth was always in a complete mixing regime. In both experiments, voids in the center line of the crystal, indicative of bubble entrapment, were found to correlate with the position in the crystal when the translation rates were doubled.

  4. Flash melting of tantalum in a diamond cell to 85 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karandikar, Amol; Boehler, Reinhard

    2016-02-09

    Here, we demonstrate a new level of precision in measuring melting temperatures at high pressure using laser flash-heating followed by Scanning Electron Microscopy and Focused Ion Beam Milling. Furthermore, the new measurements on tantalum put unprecedented constraints on its highly debated melting slope, calling for a reevaluation of theoretical, shock compression and diamond cell approaches to determine melting at high pressure. X-ray analysis of the recovered samples confirmed the absence of chemical reactions, which likely played a significant role in previous experiments.

  5. CFS MATLAB toolbox: An experiment builder for continuous flash suppression (CFS) task.

    PubMed

    Nuutinen, Mikko; Mustonen, Terhi; Häkkinen, Jukka

    2017-09-15

    CFS toolbox is an open-source collection of MATLAB functions that utilizes PsychToolbox-3 (PTB-3). It is designed to allow a researcher to create and run continuous flash suppression experiments using a variety of experimental parameters (i.e., stimulus types and locations, noise characteristics, and experiment window settings). In a CFS experiment, one of the eyes at a time is presented with a dynamically changing noise pattern, while the other eye is concurrently presented with a static target stimulus, such as a Gabor patch. Due to the strong interocular suppression created by the dominant noise pattern mask, the target stimulus is rendered invisible for an extended duration. Very little knowledge of MATLAB is required for using the toolbox; experiments are generated by modifying csv files with the required parameters, and result data are output to text files for further analysis. The open-source code is available on the project page under a Creative Commons License ( http://www.mikkonuutinen.arkku.net/CFS_toolbox/ and https://bitbucket.org/mikkonuutinen/cfs_toolbox ).

  6. ACOUSTIC SIGNATURES OF THE HELIUM CORE FLASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bildsten, Lars; Paxton, Bill; Moore, Kevin

    2012-01-15

    All evolved stars with masses M {approx}< 2 M{sub Sun} undergo an initiating off-center helium core flash in their M{sub c} Almost-Equal-To 0.48 M{sub Sun} He core as they ascend the red giant branch (RGB). This off-center flash is the first of a few successive helium shell subflashes that remove the core electron degeneracy over 2 Myr, converting the object into a He-burning star. Though characterized by Thomas over 40 years ago, this core flash phase has yet to be observationally probed. Using the Modules for Experiments in Stellar Astrophysics (MESA) code, we show that red giant asteroseismology enabled bymore » space-based photometry (i.e., Kepler and CoRoT) can probe these stars during the flash. The rapid ({approx}< 10{sup 5} yr) contraction of the red giant envelope after the initiating flash dramatically improves the coupling of the p-modes to the core g-modes, making the detection of l = 1 mixed modes possible for these 2 Myr. This duration implies that 1 in 35 stars near the red clump in the H-R diagram will be in their core flash phase. During this time, the star has a g-mode period spacing of {Delta}P{sub g} Almost-Equal-To 70-100 s, lower than the {Delta}P{sub g} Almost-Equal-To 250 s of He-burning stars in the red clump, but higher than the RGB stars at the same luminosity. This places them in an underpopulated part of the large frequency spacing ({Delta}{nu}) versus {Delta}P{sub g} diagram that should ease their identification among the thousands of observed red giants.« less

  7. Effect of stimulus size and luminance on the rod-, cone-, and melanopsin-mediated pupillary light reflex

    PubMed Central

    Park, Jason C.; McAnany, J. Jason

    2015-01-01

    This study determined if the pupillary light reflex (PLR) driven by brief stimulus presentations can be accounted for by the product of stimulus luminance and area (i.e., corneal flux density, CFD) under conditions biased toward the rod, cone, and melanopsin pathways. Five visually normal subjects participated in the study. Stimuli consisted of 1-s short- and long-wavelength flashes that spanned a large range of luminance and angular subtense. The stimuli were presented in the central visual field in the dark (rod and melanopsin conditions) and against a rod-suppressing short-wavelength background (cone condition). Rod- and cone-mediated PLRs were measured at the maximum constriction after stimulus onset whereas the melanopsin-mediated PLR was measured 5–7 s after stimulus offset. The rod- and melanopsin-mediated PLRs were well accounted for by CFD, such that doubling the stimulus luminance had the same effect on the PLR as doubling the stimulus area. Melanopsin-mediated PLRs were elicited only by short-wavelength, large (>16°) stimuli with luminance greater than 10 cd/m2, but when present, the melanopsin-mediated PLR was well accounted for by CFD. In contrast, CFD could not account for the cone-mediated PLR because the PLR was approximately independent of stimulus size but strongly dependent on stimulus luminance. These findings highlight important differences in how stimulus luminance and size combine to govern the PLR elicited by brief flashes under rod-, cone-, and melanopsin-mediated conditions. PMID:25788707

  8. Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)

    NASA Astrophysics Data System (ADS)

    Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin

    2013-06-01

    The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.

  9. Local thermal pressurization triggered by flash heating causes dramatic weakening in water-saturated gouges at subseismic slip rates

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko; Togo, Tetsuhiro; Chen, Jianye; Kitajima, Hiroko; Wang, Yu; He, Honglin

    2017-04-01

    High-velocity friction studies on water-saturated gouges in recent years have demonstrated that the wet gouges subjected to high-velocity shear tend to have smaller peak and steady-state friction, much shorter slip-weakening distance and lower fracture energy, as compared to the air-dry gouges. Thermal pressurization, compaction-induced pressurization, and flash heating were previously recognized to be the important weakening mechanisms in causing these behaviors. However, in spite of theoretical expectation, there is few evidence to support the occurrence of flash heating in wet gouges, mainly due to the superimposition of multiple weakening mechanisms especially for thermal pressurization. We devised friction experiments to study the role of flash heating in dynamic weakening of water-saturated gouges. In each experiment, we used a pressure vessel to impose a pore pressure of 2.0 MPa on the gouge layer sandwiched between porous ceramics blocks, and applied a long preslide of 1.0 m in displacement before starting the experiment at the target slip rate. By doing so we could (1) suppress rapid thermal pressurization in the bulk gouge layer by means of the designed drained condition and elevated temperature of phase transition of pore water; (2) suppress or even eliminate the pressurization effects due to compaction especially at the very beginning of the experiment. The experiments were performed on a granular gouge (mainly quartz, plagioclase, calcite and illite) and a clay-rich gouge (illite and chlorite ˜58 wt%), which were both collected from the Qingchuan fault of the Longmenshan fault system. For the granular gouge, the steady-state friction coefficients (μss) are 0.39-0.42 at slip rates (V ) of 100 μm/s-10 mm/s; however, at V ≥40 mm/s, the friction coefficients (μ) decrease suddenly at the onset of the slip. For instance, μ reduces by 0.29 within displacement of 0.05-0.08m at V =100 mm/s. For the clay-rich gouge, μss increases from 0.24 to 0.34 as V increasing from 10 μm/s to 100 mm/s. At V =0.4 and 1.0 m/s, the evolutions of friction are characterized by sharp weakening, quick strengthening and slight weakening as slip proceeds. It is noteworthy that the sharp initial weakening is always accompanied by a contemporaneous axial dilatancy of 10-20 μm for both gouges, and the latter friction evolutions are accompanied by axial shortening for the granular gouge and by further dilatancy for the clay-rich gouge. Moreover, microstructure observations reveal that only 40% of the gouge layer was involved in shear deformation for the granular gouge at V =10-100 mm/s, as compared to distributed shear over the entire clay-rich gouge layer at all the tested velocities. The observed data, microstructures and modeling results suggest that flash heating probably triggers thermal pressurization at asperity-contacts or within extremely localized slip zones, causing the sudden initial weakening and contemporaneous dilatancy. The difference in the efficiency of flash heating could explain the different frictional behaviors of the two gouges. Given the extremely fast weakening caused by flash heating and the resulting local thermal pressurization, seismic faults could be weakened more rapidly at much lower slip rates below characteristic weakening velocities previously recognized.

  10. Damage detection in composites using nonlinear ultrasonically modulated thermography

    NASA Astrophysics Data System (ADS)

    Malfense Fierro, G.-P.; Dionysopoulos, D.; Meo, M.; Ciampa, F.

    2018-03-01

    This paper proposes a novel nonlinear ultrasonically stimulated thermography technique for a quick and reliable assessment of material damage in carbon fibre reinforced plastic (CFRP) composite materials. The proposed nondestructive evaluation (NDE) method requires narrow sweep ultrasonic excitation using contact piezoelectric transducers in order to identify dual excitation frequencies associated with the damage resonance. High-amplitude signals and higher harmonic generation are necessary conditions for an accurate identification of these two input frequencies. Dual periodic excitation using high- and low-frequency input signals was then performed in order to generate frictional heating at the crack location that was measured by an infrared (IR) camera. To validate this concept, an impact damaged CFRP composite panel was tested and the experimental results were compared with traditional flash thermography. A laser vibrometer was used to investigate the response of the material with dual frequency excitation. The proposed nonlinear ultrasonically modulated thermography successfully detected barely visible impact damage in CFRP composites. Hence, it can be considered as an alternative to traditional flash thermography and thermosonics by allowing repeatable detection of damage in composites.

  11. NASA/NOAA's Suomi NPP Satellite's Night-time View of Cyclone Evan

    NASA Image and Video Library

    2012-12-20

    This night-time view of Cyclone Evan was taken from the Visible Infrared Imaging Radiometer Suite (VIIRS) on NASA/NOAA's Suomi National Polar-orbiting Partnership on Dec. 16, 2012. The rectangular bright object in the image is a lightning flash. "Because of the scan time as compared to how quickly lightning flashes, you get a nice streak in the data," said William Straka, of the University of Wisconsin-Madison, who provided this image. On Dec. 17 at 0900 UTC (4 a.m. EST), Cyclone Evan had maximum sustained winds near 115 knots (132 mph/213 kph). Evan was a Category 4 cyclone on the Saffir-Simpson Scale and was battering Fiji. Image Credit: NASA/NOAA/UWM/William Straka Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Separation and structural characterization of the new synthetic cannabinoid JWH-018 cyclohexyl methyl derivative "NE-CHMIMO" using flash chromatography, GC-MS, IR and NMR spectroscopy.

    PubMed

    Angerer, Verena; Bisel, Philippe; Moosmann, Bjoern; Westphal, Folker; Auwärter, Volker

    2016-09-01

    Synthetic cannabinoids have become an integral part of the drugs of abuse market since many years. The most frequent form of consumption for this class of substances is smoking of herbal mixtures purchased via the Internet. In this article the identification and structure elucidation of a new synthetic cannabinoid, [1-(cyclohexylmethyl)-1H-indol-3-yl](naphthalen-1-yl)methanone, is described. The compound was found along with 5F-ADB in a 'herbal mixture' called 'Jamaican Gold Extreme', which was sent to our laboratory in the context of a suspected intoxication. For isolation of the substance a flash chromatography separation was applied. Structure elucidation was performed using gas chromatography-mass spectrometry (GC-MS), gas chromatography solid-state infrared (GC-sIR) and nuclear magnetic resonance (NMR) analysis. The new compound can be described as the cyclohexyl methyl derivative of the first generation synthetic cannabinoid JWH-018, and the authors suggest to use "NE-CHMIMO" as a semisystematic name. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Fiber Mode Scrambler for the Subaru Infrared Doppler Instrument (IRD)

    NASA Astrophysics Data System (ADS)

    Ishizuka, Masato; Kotani, Takayuki; Nishikawa, Jun; Kurokawa, Takashi; Mori, Takahiro; Kokubo, Tsukasa; Tamura, Motohide

    2018-06-01

    We report the results of fiber mode scrambler experiments for the Infra-Red Doppler instrument (IRD) on the Subaru 8.2-m telescope. IRD is a fiber-fed, high precision radial velocity (RV) instrument to search for exoplanets around nearby M dwarfs at near-infrared wavelengths. It is a high-resolution spectrograph with an Echelle grating. The expected RV measurement precision is ∼1 m s‑1 with a state of the art laser frequency comb for the wavelength calibration. In IRD observations, one of the most significant instrumental noise is a change of intensity distribution of multi-mode fiber exit, which degrades RV measurement precision. To stabilize the intensity distribution of fiber exit an introduction of fiber mode scrambler is mandatory. Several kinds of mode scramblers have been suggested in previous research, though it is necessary to determine the most appropriate mode scrambler system for IRD. Thus, we conducted systematic measurements of performance for a variety of mode scramblers, both static and dynamic. We tested various length multi-mode fibers, an octagonal fiber, a double fiber scrambler, and two kinds of dynamic scramblers, and their combinations. We report the performances of these mode scramblers and propose candidate mode scrambler systems for IRD.

  14. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  15. Results of TLE and TGF Observation in RELEC Experiment onboard "Vernov" Mission

    NASA Astrophysics Data System (ADS)

    Klimov, Pavel; Garipov, Gali; Klimov, Stanislav; Rothkaehl, Hanna; Khrenov, Boris; Pozanenko, Alexei; Morozenko, Violetta; Iyudin, Anatoly; Bogomolov, Vitalij V.; Svertilov, Sergey; Panasyuk, Mikhail; Saleev, Kirill; Kaznacheeva, Margarita; Maximov, Ivan

    2016-07-01

    "Vernov" satellite with RELEC experiment onboard was launched on 2014 July, 8 into a polar solar-synchronous orbit. The payload includes DUV ultraviolet and red photometer and DRGE gamma-ray spectrometer providing measurements in 10-3000 keV energy range with four detectors. Both instruments directed to the atmosphere. Total area of DRGE detectors is ˜500 cm ^{2}. The data were recorded both in monitoring and gamma by gamma modes with timing accuracy ˜15 μs. Several TGF candidates with 10-40 gammas in a burst with duration <1 ms were detected. Analysis of data from other instruments on-board "Vernov" satellite shows the absence of significant electromagnetic pulses around correspondent time moments. Comparison with a world wide lightning location network (WWLLN) data base also indicates that there were no thunderstorms connected with most of detected TGF candidates. Possible connection of TGF candidates with electron precipitations is discussed. Observations of transient luminous events (TLEs) were made in UV (240-400 nm) and IR (>610 nm) wavelength bands. More than 8 thousands of flashes with duration between 1 and 128 ms were detected from the atmosphere. Time profiles of detected flashes are very diverse. There are single peak events with significant UV and IR signal, multi-peak structures visible in the both UV and IR channels and very complicated events mixed from UV and IR signals and UV flashes which can continue even during the whole waveform. In addition, there are flashes of various temporal duration and structure measured only in UV wavelength range. Number of UV photons released in the atmosphere varies in a wide range from 10 ^{20} to 10 ^{26}. Apart from the events detected in the thunderstorm regions over the continents, many flashes were observed outside of thunderstorm areas, above the ocean and even at rather high latitudes. Such events are not associated with the thunderstorm and lightning activity measured by WWLLN. Various types of UV and IR flashes measurements and their interpretation, geographical, energy and spectral distribution are presented and discussed.

  16. Computation of a spectrum from a single-beam fourier-transform infrared interferogram.

    PubMed

    Ben-David, Avishai; Ifarraguerri, Agustin

    2002-02-20

    A new high-accuracy method has been developed to transform asymmetric single-sided interferograms into spectra. We used a fraction (short, double-sided) of the recorded interferogram and applied an iterative correction to the complete recorded interferogram for the linear part of the phase induced by the various optical elements. Iterative phase correction enhanced the symmetry in the recorded interferogram. We constructed a symmetric double-sided interferogram and followed the Mertz procedure [Infrared Phys. 7,17 (1967)] but with symmetric apodization windows and with a nonlinear phase correction deduced from this double-sided interferogram. In comparing the solution spectrum with the source spectrum we applied the Rayleigh resolution criterion with a Gaussian instrument line shape. The accuracy of the solution is excellent, ranging from better than 0.1% for a blackbody spectrum to a few percent for a complicated atmospheric radiance spectrum.

  17. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Morris, C. L.; Brown, E. N.; Agee, C.; ...

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less

  18. [Design and implementation of controlling smart car systems using P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie; Hu, Bei

    2013-04-01

    Using human electroencephalogram (EEG) to control external devices in order to achieve a variety of functions has been focus of the field of brain-computer interface (BCI) research. P300 is experiments which stimulate the eye to produce EEG by using letters flashing, and then identify the corresponding letters. In this paper, some improvements based on the P300 experiments were made??. Firstly, the matrix of flashing letters were modified into words which represent a certain sense. Secondly, the BCI2000 procedures were added with the corresponding source code. Thirdly, the smart car systems were designed using the radiofrequency signal. Finally it was realized that the evoked potentials were used to control the state of the smart car.

  19. Description of an Audio-Based Paced Respiration Intervention for Vasomotor Symptoms

    PubMed Central

    Burns, Debra S.; Drews, Michael R.; Carpenter, Janet S.

    2013-01-01

    Millions of women experience menopause-related hot flashes or flushes that may have a negative effect on their quality of life. Hormone therapy is an effective treatment, however, it may be contraindicated or unacceptable for some women based on previous health complications or an undesirable risk–benefit ratio. Side effects and the unacceptability of hormone therapy have created a need for behavioral interventions to reduce hot flashes. A variety of complex, multimodal behavioral, relaxation-based interventions have been studied with women (n = 88) and showed generally favorable results. However, currently extensive resource commitments reduce the translation of these interventions into standard care. Slow, deep breathing is a common component in most interventions and may be the active ingredient leading to reduced hot flashes. This article describes the content of an audio-based program designed to teach paced breathing to reduce hot flashes. Intervention content was based on skills training theory and music entrainment. The audio intervention provides an efficient way to deliver a breathing intervention that may be beneficial to other clinical populations. PMID:23914283

  20. Hy-wire and fast electric field change measurements near an isolated thunderstorm, appendix C

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Levine, D. M.

    1983-01-01

    Electric field measurements near an isolated thunderstorm at 6.4 km distance are presented from both a tethered balloon experiment called Hy-wire and also from ground based fast and slow electric field change systems. Simultaneous measurements were made of the electric fields during several lightning flashes at the beginning of the storm which the data clearly indicate were cloud-to-ground flashes. In addition to providing a comparison between the Hy-wire technique for measuring electric fields and more traditional methods, these data are interesting because the lightning flashes occurred prior to changes in the dc electric field, although Hy-wire measured changes in the dc field of up to 750 V/m in the direction opposite to the fair weather field a short time later. Also, the dc electric field was observed to decay back to its preflash value after each flash. The data suggest that Hy-wire was at the field reversal distance from this storm and suggest the charge realignment was taking place in the cloud with a time constant on the order of 20 seconds.

  1. International multi-center evaluation of a novel chemiluminescence assay for the detection of anti-dsDNA antibodies.

    PubMed

    Bentow, C; Lakos, G; Martis, P; Wahl, E; Garcia, M; Viñas, O; Espinosa, G; Cervera, R; Sjöwall, C; Carmona-Fernandes, D; Santos, M J; Hanly, J G; Mahler, M

    2016-07-01

    Anti-double stranded desoxyribonucleic acid (anti-dsDNA) antibodies are considered fairly specific for systemic lupus erythematosus (SLE) and their quantification is useful for the clinical management of SLE patients. We assessed the diagnostic performance of the QUANTA Flash dsDNA chemiluminescent immunoassay (CIA) in comparison to an ELISA, using patients from five participating countries. The main focus was to evaluate the correlation between anti-dsDNA antibody results from the CIA and global SLE disease activity, as measured by the SLE Disease Activity Index 2000 (SLEDAI-2K). A total of 1431 samples (SLE, n = 843; disease controls, n = 588) from five countries (Canada, USA, Portugal, Sweden and Spain) were tested with QUANTA Flash dsDNA (Inova Diagnostics, San Diego, CA, USA). Data obtained with the QUANTA Lite dsDNA SC ELISA (Inova Diagnostics) were available for samples from three sites (Canada, USA and Sweden, n = 566). The SLEDAI-2K scores were available for 805 SLE patients and a cut-off of > 4 was used to define active disease. QUANTA Flash dsDNA had a sensitivity of 54.3% for the diagnosis of SLE, combined with 89.8% specificity. Anti-dsDNA antibody levels were significantly higher (p < 0.0001) in active SLE (SLEDAI-2K > 4; n = 232; median value 83.0 IU/mL) versus the inactive patients (n = 573; median value 22.3 IU/mL), and the SLEDAI-2K scoring correlated with their dsDNA antibody levels (Spearman's rho = 0.44, p < 0.0001). Similar but less pronounced findings were also found for the ELISA, in relation to disease activity. The QUANTA Flash dsDNA assay showed good clinical performance in a large international multi-center study. Additionally, the strong correlation between anti-dsDNA antibody results and SLEDAI-2K scores supported the potential utility of QUANTA Flash dsDNA for monitoring disease activity. © The Author(s) 2016.

  2. Subretinal electrical stimulation preserves inner retinal function in RCS rat retina.

    PubMed

    Ciavatta, Vincent T; Mocko, Julie A; Kim, Moon K; Pardue, Machelle T

    2013-01-01

    Previously, studies showed that subretinal electrical stimulation (SES) from a microphotodiode array (MPA) preserves electroretinography (ERG) b-wave amplitude and regional retinal structure in the Royal College of Surgeons (RCS) rat and simultaneously upregulates Fgf2 expression. This preservation appears to be associated with the increased current produced when the MPA is exposed to ERG test flashes, as weekly ERG testing produces greater neuroprotection than biweekly or no testing. Using an infrared source to stimulate the MPA while avoiding potential confounding effects from exposing the RCS retina to high luminance white light, this study examined whether neuroprotective effects from SES increased with subretinal current in a dose-dependent manner. RCS rats (n=49) underwent subretinal implantation surgery at P21 with MPA devices in one randomly selected eye, and the other eye served as the control. Naïve RCS rats (n=25) were also studied. To increase SES current levels, implanted eyes were exposed to 15 min per session of flashing infrared light (IR) of defined intensity, frequency, and duty cycle. Rats were divided into four SES groups that received ERG testing only (MPA only), about 450 µA/cm2 once per week (Low 1X), about 450 µA/cm2 three times per week (Low 3X), and about 1350 µA/cm2 once per week (High 1X). One eye of the control animals was randomly chosen for IR exposure. All animals were followed for 4 weeks with weekly binocular ERGs. A subset of the eyes was used to measure retina Fgf2 expression with real-time reverse-transcription PCR. Eyes receiving SES showed significant preservation of b-wave amplitude, a- and b-wave implicit times, oscillatory potential amplitudes, and post-receptoral parameters (Vmax and log σ) compared to untreated eyes. All SES-treated eyes had similar preservation, regardless of increased SES from IR light exposure. SES-treated eyes tended to have greater retinal Fgf2 expression than untreated eyes, but Fgf2 expression did not increase with IR light. The larger post-receptoral responses (Vmax), greater post-receptoral sensitivity (logσ), and larger oscillatory potentials suggest SES-treated eyes maintained better inner retinal function than the opposite, untreated eyes. This suggests that in addition to preserving photoreceptors in RCS rats, SES may also promote more robust signal transmission through the retinal network compared to the control eyes. These studies suggest that the protective effects of SES on RCS retinal function cannot be improved with additional subretinal current induction from the MPA, or the charge injection provided by ERG Ganzfeld flashes was not adequately mimicked by the flashing IR light used in this study.

  3. Multi-spectral black meta-infrared detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2016-09-01

    There is an increased emphasis on obtaining imaging systems with on-demand spectro-polarimetric information at the pixel level. Meta-infrared detectors in which infrared detectors are combined with metamaterials are a promising way to realize this. The infrared region is appealing due to the low metallic loss, large penetration depth of the localized field and the larger feature sizes compared to the visible region. I will discuss approaches to realize multispectral detectors including our recent work on double metal meta-material design combined with Type II superlattices that have demonstrated enhanced quantum efficiency (collaboration with Padilla group at Duke University).

  4. Gas-phase infrared spectroscopy for determination of double bond configuration of monounsaturated compounds.

    PubMed

    Attygalle, A B; Svatos, A; Wilcox, C; Voerman, S

    1994-05-15

    Gas-phase Fourier-transform infrared spectra allow unambiguous determination of the configuration of the double bonds of long-chain unsaturated compounds bearing RCH=CHR' type bonds. Although the infrared absorption at 970-967 cm-1 has been used previously for the identification of trans bonds, the absorption at 3028-3011 cm-1 is conventionally considered to be incapable of distinguishing cis and trans isomers. In this paper, we present a large number of gas-phase spectra of monounsaturated long-chain acetates which demonstrate that an absorption, highly characteristic for the cis configuration, occurs at 3013-3011 cm-1, while trans compounds fail to show any bands in this region. However, if a double bond is present at the C-2 or C-3 carbon atoms, this cis=CH stretch absorption shows a hypsochromic shift to 3029-3028 and 3018-3017 cm-1, respectively. Similarly, if a cis double bond is present at the penultimate carbon atom, this band appears at 3022-3021 cm-1. All the spectra of trans alkenyl acetates showed the expected C-H wag absorption at 968-964 cm-1. In addition, the spectra of (E)-2-alkenyl acetates show a unique three-peak "finger-print" pattern which allows the identification of the position and configuration of this bond. Furthermore, by synthesizing and obtaining spectra of appropriate deuteriated compounds, we have proved that the 3013-3011 cm-1 band is representative of the C-H stretching vibration of cis compounds of RCH=CHR' type.

  5. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy J.; Even, Jr., William R.

    2000-01-01

    A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

  6. A Spectacular Radio Flare from XRF 050416a at 40 Days and Implications for the Nature of X-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Soderberg, A. M.; Nakar, E.; Cenko, S. B.; Cameron, P. B.; Frail, D. A.; Kulkarni, S. R.; Fox, D. B.; Berger, E.; Gal-Yam, A.; Moon, D-S.; hide

    2007-01-01

    We present detailed optical, near-infrared, and radio observations of the X-ray flash 050416a obtained with Palomar and Siding Springs Observatories as well as HST and the VLA, placing this event among the best-studied X-ray flashes to date. In addition, we present an optical spectrum from Keck LRIS from which we measure the redshift of the burst, Z=0.6528. At this redshift the isotropic-equivalent prompt energy release was about 10(exp 51) erg, and using a standard afterglow synchrotron model we find that the blastwave kinetic energy is a factor of 10 larger, E-K,iso approximately equals 10 (exp 52) erg. The lack of an observed jet break to t - 20 days indicates that the opening angle is larger than 7 deg and the total beaming-corrected relativistic energy is larger than 10 exp (50) erg. We further show that the burst produced a strong radio flare at t is similar to 40 days accompanied by an observed flattening in the X-ray band which we attribute to an abrupt circumburst density jump or an episode of energy injection (either from a refreshed shock or off-axis ejecta). Late-time observations with HST show evidence for an associated supernova with peak optical luminosity roughly comparable to that of SN 1998bw. Next, we show that the host galaxy of XRF 050416a is actively forming stars at a rate of at least 2 M-solar per year with a luminosity of L-B is similar to 0.5L* and metallicity of Z is similar to 0.2-0.8 Z-solar. Finally, we discuss the nature of XRF 050416a in the context of short-hard gamma-ray bursts and under the framework of off-axis and dirty fireball models for X-ray flashes.

  7. Oxygen evolution from single- and multiple-turnover light pulses: temporal kinetics of electron transport through PSII in sunflower leaves.

    PubMed

    Oja, Vello; Eichelmann, Hillar; Laisk, Agu

    2011-12-01

    Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 μmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f. © Springer Science+Business Media B.V. 2011

  8. Experiments To Demonstrate Chemical Process Safety Principles.

    ERIC Educational Resources Information Center

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  9. Ensemble: a web-based system for psychology survey and experiment management.

    PubMed

    Tomic, Stefan T; Janata, Petr

    2007-08-01

    We provide a description of Ensemble, a suite of Web-integrated modules for managing and analyzing data associated with psychology experiments in a small research lab. The system delivers interfaces via a Web browser for creating and presenting simple surveys without the need to author Web pages and with little or no programming effort. The surveys may be extended by selecting and presenting auditory and/or visual stimuli with MATLAB and Flash to enable a wide range of psychophysical and cognitive experiments which do not require the recording of precise reaction times. Additionally, one is provided with the ability to administer and present experiments remotely. The software technologies employed by the various modules of Ensemble are MySQL, PHP, MATLAB, and Flash. The code for Ensemble is open source and available to the public, so that its functions can be readily extended by users. We describe the architecture of the system, the functionality of each module, and provide basic examples of the interfaces.

  10. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part II. Model validation and sensitivity analysis

    USDA-ARS?s Scientific Manuscript database

    A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...

  11. State-to-state rotational energy-transfer measurements in the nu(2) = 1 state of ammonia by infrared-infrared double resonance

    NASA Technical Reports Server (NTRS)

    Abel, Bernd; Coy, Stephen L.; Klaassen, Jody J.; Steinfeld, Jeffrey I.

    1992-01-01

    The state-resolved rotational (R-R, R-T) energy transfer in (N-14)H3 (for NH3-NH3 and NH3-Ar collisions) was studied using an IR double-resonance laser spectroscopic technique. Measurements of both the total rate of depopulation by collisions, and the rates of transfer into specific final rovibrational states (v,J,K) were performed using time-resolved tunable diode laser absorption spectroscopy. A kinetic master-equation analysis of time-resolved level populatons was carried out, yielding state-to-state rate constants and propensity rules for NH3-NH3 and NH3-Ar collisions.

  12. Proceedings of the Workshop on the Chemical Suppression of Rocket Afterburning and of Gun Muzzle Flash

    DTIC Science & Technology

    1987-03-01

    We report here the first results of this gun simulator used in the study of muzzle flash. The test setup used is shown in Figure 18. Pressure ports...experiments. For the first tests , the exploding wires mentioned above ignited the gas mixture. Later, "soft" ignition by means of a single tungsten...wire, placed axially in the chamber, was also tested . The voltage pulse applied across this hot wire is shown in Figure 19. This "soft" ignition

  13. Increased x-ray conversion efficiency from ultra high contrast, relativistic laser pulse irradiation of large aspect ratio, vertically aligned nanowires

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Kaymak, V.; Pukhov, A.; Capeluto, M. G.; Wang, Y.; Wang, S.; Rockwood, A.; Curtis, A.; Rocca, J. J.

    2016-10-01

    Recent experiments at Colorado State University have shown that the effective trapping of clean, Joule-level fs laser pulses of relativistic intensity in arrays of high aspect ratio aligned nanowire creates multi-kev, near solid density, large scale (>4um deep) plasmas. The drastically decreased radiative life time and increased hydrodynamic cooling time from these plasmas increases the x-ray conversion efficiency. We measured a record conversion efficiency of 10% into hv>1KeV photons (2pi steradians), and of 0.3% for hv>6KeV. The experiments used Au and Ni nanowires of 55nm, 80nm and 100nm in diameter with 12% of solid density irradiated by high contrast (>1012) pulses of 60fs FWHM duration from a frequency doubled Ti:Sa laser at intensities of I =5x1019Wcm-2. We also present preliminary results on x-ray emission from Rhodium nanowires in the 19-22KeV range and demonstrate the potential of this picosecond X-ray source in flash radiography. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079.

  14. Diffusion and imaging properties of three new lipophilic tracers, NeuroVue ™ Maroon, NeuroVue ™ Red and NeuroVue ™ Green and their use for double and triple labeling of neuronal profile.

    PubMed Central

    Fritzsch, B.; Muirhead, K.A.; Feng, Feng; D.Gray, B.; Ohlsson-Wilhelm, B. M.

    2006-01-01

    We describe here diffusion and imaging properties of three new lipophilic tracers, NeuroVue ™ Maroon (near infrared), NeuroVue ™ Red and NeuroVue ™ Green. Using pair wise comparisons between the new dyes and existing dyes (DiI, DiA, DiD, DiO, PKH2, PKH26) applied to the left and the right side of fixed spinal cord preparations, we show that NeuroVue Maroon (excitation max 647 nm) surpasses all other dyes in this study in signal to noise ratio. We also present data showing the utility of these new dyes for both double labeling and triple labeling in combination with each other or existing lipophilic tracers. Using mice bearing the PLP-eGFP transgene, we demonstrate that either NeuroVue Maroon or NeuroVue Red can readily be combined with eGFP labeling. Double labeling experiments using NeuroVue Red and eGFP allowed us to demonstrate that every fiber in the neonatal ear is surrounded by developing Schwann cells. PMID:16023922

  15. Synchronization to auditory and visual rhythms in hearing and deaf individuals

    PubMed Central

    Iversen, John R.; Patel, Aniruddh D.; Nicodemus, Brenda; Emmorey, Karen

    2014-01-01

    A striking asymmetry in human sensorimotor processing is that humans synchronize movements to rhythmic sound with far greater precision than to temporally equivalent visual stimuli (e.g., to an auditory vs. a flashing visual metronome). Traditionally, this finding is thought to reflect a fundamental difference in auditory vs. visual processing, i.e., superior temporal processing by the auditory system and/or privileged coupling between the auditory and motor systems. It is unclear whether this asymmetry is an inevitable consequence of brain organization or whether it can be modified (or even eliminated) by stimulus characteristics or by experience. With respect to stimulus characteristics, we found that a moving, colliding visual stimulus (a silent image of a bouncing ball with a distinct collision point on the floor) was able to drive synchronization nearly as accurately as sound in hearing participants. To study the role of experience, we compared synchronization to flashing metronomes in hearing and profoundly deaf individuals. Deaf individuals performed better than hearing individuals when synchronizing with visual flashes, suggesting that cross-modal plasticity enhances the ability to synchronize with temporally discrete visual stimuli. Furthermore, when deaf (but not hearing) individuals synchronized with the bouncing ball, their tapping patterns suggest that visual timing may access higher-order beat perception mechanisms for deaf individuals. These results indicate that the auditory advantage in rhythmic synchronization is more experience- and stimulus-dependent than has been previously reported. PMID:25460395

  16. Why Flash Type Matters: A Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Mecikalski, Retha M.; Bitzer, Phillip M.; Carey, Lawrence D.

    2017-09-01

    While the majority of research only differentiates between intracloud (IC) and cloud-to-ground (CG) flashes, there exists a third flash type, known as hybrid flashes. These flashes have extensive IC components as well as return strokes to ground but are misclassified as CG flashes in current flash type analyses due to the presence of a return stroke. In an effort to show that IC, CG, and hybrid flashes should be separately classified, the two-sample Kolmogorov-Smirnov (KS) test was applied to the flash sizes, flash initiation, and flash propagation altitudes for each of the three flash types. The KS test statistically showed that IC, CG, and hybrid flashes do not have the same parent distributions and thus should be separately classified. Separate classification of hybrid flashes will lead to improved lightning-related research, because unambiguously classified hybrid flashes occur on the same order of magnitude as CG flashes for multicellular storms.

  17. Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano)

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Dingwell, Donald B.

    2015-09-01

    Vigorous hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions occur at Whakaari (White Island volcano), New Zealand. Here, we investigate the influence of sample type (hydrothermally altered cemented ash tuffs and unconsolidated ash/lapilli) and fragmentation mechanism (steam flashing versus gas expansion) on fragmentation and ejection velocities as well as on particle-size and shape. Our rapid decompression experiments show that fragmentation and ejection speeds of two ash tuffs, cemented by alunite and amorphous opal, increase with increasing porosity and that both are significantly enhanced in the presence of steam flashing. Ejection speeds of unconsolidated samples are higher than ejection speeds of cemented tuffs, as less energy is consumed by fragmentation. Fragmentation dominated by steam flashing results in increased fragmentation energy and a higher proportion of fine particles. Particle shape analyses before and after fragmentation reveal that both steam flashing and pure gas expansion produce platy or bladed particles from fracturing parallel to the decompression front. Neither fragmentation mechanisms nor sample type show a significant influence on the shape. Our results emphasize that, under identical pressure and temperature conditions, eruptions accompanied by the process of liquid water flashing to steam are significantly more violent than those driven simply by gas expansion. Therefore, phase changes during decompression and cementation are both important considerations for hazard assessment and modeling of eruptions in hydrothermally active environments.

  18. KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance (USA), prepares equipment to examine a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance (USA), prepares equipment to examine a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

  19. KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with USA, points to an area of a Reinforced Carbon Carbon panel just examined using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with USA, points to an area of a Reinforced Carbon Carbon panel just examined using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

  20. KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance (USA), examines a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance (USA), examines a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

  1. KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance, sets up equipment to examine a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance, sets up equipment to examine a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

  2. Thermal wave interference with high-power VCSEL arrays for locating vertically oriented subsurface defects

    NASA Astrophysics Data System (ADS)

    Thiel, Erik; Kreutzbruck, Marc; Studemund, Taarna; Ziegler, Mathias

    2018-04-01

    Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation.

  3. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation

    NASA Astrophysics Data System (ADS)

    Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David

    2012-03-01

    The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.

  4. Phase modulation of mid-infrared radiation in double-quantum-well structures under a lateral electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.

    2017-03-15

    The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.

  5. Fabrication of hierarchical core-shell polydopamine@MgAl-LDHs composites for the efficient enrichment of radionuclides

    NASA Astrophysics Data System (ADS)

    Zhu, Kairuo; Lu, Songhua; Gao, Yang; Zhang, Rui; Tan, Xiaoli; Chen, Changlun

    2017-02-01

    Novel hierarchical core/shell structured polydopamine@MgAl-layered double hydroxides (PDA@MgAl-LDHs) composites involving MgAl-layered double hydroxide shells and PDA cores were fabricated thought one-pot coprecipitation assembly and methodically characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, scanning/transmission electron microscopy, selected area electron diffraction, elemental mapping, thermogravimetric analysis and X-ray photoelectron spectroscopy technologies. U(VI) and Eu(III) sorption experiments showed that the PDA@MgAl-LDHs exhibited higher sorption ability with a maximum sorption capacity of 142.86 and 76.02 mg/g at 298 K and pH 4.5, respectively. More importantly, according to XPS analyses, U(VI) and Eu(III) were sorbed on PDA@MgAl-LDHs via oxygen-containing functional groups, and the chemical affinity of U(VI) by oxygen-containing functional groups is higher than that of Eu(III). These observations show great expectations in the enrichment of radionuclides from aquatic environments by PDA@MgAl-LDHs.

  6. The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization

    PubMed Central

    Ding, Yi; Liu, Le; Fang, Yaowei; Zhang, Xu; Lyu, Mingsheng; Wang, Shujun

    2018-01-01

    We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg); histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption. PMID:29562655

  7. Molecular Transport in Ionic Polymer Membranes Under an Applied Voltage

    DTIC Science & Technology

    2013-11-22

    in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry, Journal of the American Chemical Society (08 2013...3. Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in situ Infrared Spectroelectrochemistry Electrochemical double layer...capacitors (EDLC), or supercapacitors , rely on electrosorption of ions by porous carbon electrodes and offer a higher power and a longer cyclic

  8. Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling

    PubMed Central

    Barbera, Elena; Sforza, Eleonora; Kumar, Sandeep; Morosinotto, Tomas; Bertucco, Alberto

    2016-01-01

    The production of biofuels from microalgae is associated with high demands of nutrients (nitrogen and phosphorus) required for growth. Recycling nutrients from the residual biomass is essential to obtain a sustainable production. In this work, the aqueous phase obtained from flash hydrolysis of Scenedesmus sp. was used as cultivation medium for a microalga of the same genus, to assess the feasibility of this technique for nutrient recycling purposes. Batch and continuous cultivations were carried out, to determine growth performances in this substrate compared to standard media, and verify if a stable biomass production could be obtained. In continuous experiments, the effect of hydrolysate inlet concentration and of residence time were assessed to optimize nutrient supply in relation to productivity. Results obtained show that nutrient recycling is feasible by treating biomass with flash hydrolysis, and Scenedesmus is capable of recycling large amounts of recovered nutrients. PMID:26868157

  9. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  10. Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Dalal, Roopa; Huie, Philip; Harris, James; Palanker, Daniel

    2015-01-01

    Purpose Prosthetic restoration of partial sensory loss leads to interactions between artificial and natural inputs. Ideally, the rehabilitation should allow perceptual fusion of the two modalities. Here we studied the interactions between normal and prosthetic vision in a rodent model of local retinal degeneration. Methods Implantation of a photovoltaic array in the subretinal space of normally sighted rats induced local degeneration of the photoreceptors above the chip, and the inner retinal neurons in this area were electrically stimulated by the photovoltaic implant powered by near-infrared (NIR) light. We studied prosthetic and natural visually evoked potentials (VEP) in response to simultaneous stimulation by NIR and visible light patterns. Results We demonstrate that electrical and natural VEPs summed linearly in the visual cortex, and both responses decreased under brighter ambient light. Responses to visible light flashes increased over 3 orders of magnitude of contrast (flash/background), while for electrical stimulation the contrast range was limited to 1 order of magnitude. The maximum amplitude of the prosthetic VEP was three times lower than the maximum response to a visible flash over the same area on the retina. Conclusions Ambient light affects prosthetic responses, albeit much less than responses to visible stimuli. Prosthetic representation of contrast in the visual scene can be encoded, to a limited extent, by the appropriately calibrated stimulus intensity, which also depends on the ambient light conditions. Such calibration will be important for patients combining central prosthetic vision with natural peripheral sight, such as in age-related macular degeneration. PMID:26618643

  11. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  12. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  13. Interactions of double patterning technology with wafer processing, OPC and design flows

    NASA Astrophysics Data System (ADS)

    Lucas, Kevin; Cork, Chris; Miloslavsky, Alex; Luk-Pat, Gerry; Barnes, Levi; Hapli, John; Lewellen, John; Rollins, Greg; Wiaux, Vincent; Verhaegen, Staf

    2008-03-01

    Double patterning technology (DPT) is one of the main options for printing logic devices with half-pitch less than 45nm; and flash and DRAM memory devices with half-pitch less than 40nm. DPT methods decompose the original design intent into two individual masking layers which are each patterned using single exposures and existing 193nm lithography tools. The results of the individual patterning layers combine to re-create the design intent pattern on the wafer. In this paper we study interactions of DPT with lithography, masks synthesis and physical design flows. Double exposure and etch patterning steps create complexity for both process and design flows. DPT decomposition is a critical software step which will be performed in physical design and also in mask synthesis. Decomposition includes cutting (splitting) of original design intent polygons into multiple polygons where required; and coloring of the resulting polygons. We evaluate the ability to meet key physical design goals such as: reduce circuit area; minimize rework; ensure DPT compliance; guarantee patterning robustness on individual layer targets; ensure symmetric wafer results; and create uniform wafer density for the individual patterning layers.

  14. Measurement of g Using a Flashing LED

    NASA Astrophysics Data System (ADS)

    Terzella, T.; Sundermier, J.; Sinacore, J.; Owen, C.; Takai, H.

    2008-10-01

    In one of the classic free-fall experiments, a small mass is attached to a strip of paper tape and both are allowed to fall through a spark timer, where sparks are generated at regular time intervals. Students analyze marks (dots) left on the tape by the timer, thereby generating distance-versus-time data, which they analyze to extract the acceleration due to gravity g with good results. The apparatus, however, is cumbersome and often frustrating for students. High-tech versions of this experiment are done with an object dropped and followed by a motion sensor connected to a computer. The sensor relies on ultrasonic ranging to record distance and time data, which may then be displayed graphically. Students inspect the graphs to determine the value of g. Although the results are excellent, the emphasis on the computer's ability to collect and analyze data leaves little analysis for the students to perform.2 Furthermore, neither technique gives an intuitive display of what is happening. The motivation for our work was to overcome these issues by developing an innovative method for measuring g. In our version of the experiment, students drop a flashing LED at a known frequency and record its trajectory using long exposure photography with a digital camera. Proper choice of flashing LED timing parameters produces an image that allows for an accurate measurement of g and at the same time helps to explain what happens during free fall. The experiment remains high-tech in the sense that students learn to use updated equipment to record data and to carry out the analysis.

  15. Turbulent spots and scalar flashes in pipe transition

    NASA Astrophysics Data System (ADS)

    Adrian, Ronald; Wu, Xiaohua; Moin, Parviz

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition experiment without the unphysical axially periodic boundary condition. Here we use this approach to address three questions: (1) What are the dynamics of turbulent spot generation in pipe transition? (2) How is the succession of scalar flashes, as observed and sketched by Osborne Reynolds, created? (3) What happens to the succession of flashes further downstream? In this study, the inlet disturbance is of radial-mode type imposed through a narrow, three-degree numerical wedge; and the simulation Reynolds number is 6500. Numerical dye is introduced at the inlet plane locally very close to the pipe axis, similar to the needle injection by O. Reynolds. Inception of infant turbulent spots occurs when normal, forward inclined hairpin packets form near the walls from the debris of the inlet perturbations. However, the young and mature turbulent spots consist almost exclusively of reverse, backward leaning hairpin vortices. Scalar flashes appear successively downstream and persist well into the fully-developed turbulent region. Their creation mechanism is addressed. RJA gratefully acknowledges support of the National Science Foundation with NSF Award CBET-0933848.

  16. Sounds can boost the awareness of visual events through attention without cross-modal integration.

    PubMed

    Pápai, Márta Szabina; Soto-Faraco, Salvador

    2017-01-31

    Cross-modal interactions can lead to enhancement of visual perception, even for visual events below awareness. However, the underlying mechanism is still unclear. Can purely bottom-up cross-modal integration break through the threshold of awareness? We used a binocular rivalry paradigm to measure perceptual switches after brief flashes or sounds which, sometimes, co-occurred. When flashes at the suppressed eye coincided with sounds, perceptual switches occurred the earliest. Yet, contrary to the hypothesis of cross-modal integration, this facilitation never surpassed the assumption of probability summation of independent sensory signals. A follow-up experiment replicated the same pattern of results using silent gaps embedded in continuous noise, instead of sounds. This manipulation should weaken putative sound-flash integration, although keep them salient as bottom-up attention cues. Additional results showed that spatial congruency between flashes and sounds did not determine the effectiveness of cross-modal facilitation, which was again not better than probability summation. Thus, the present findings fail to fully support the hypothesis of bottom-up cross-modal integration, above and beyond the independent contribution of two transient signals, as an account for cross-modal enhancement of visual events below level of awareness.

  17. Pilot plant test of the advanced flash stripper for CO2 capture.

    PubMed

    Lin, Yu-Jeng; Chen, Eric; Rochelle, Gary T

    2016-10-20

    Alternative stripping processes have been proposed to reduce energy use for CO 2 capture, but only a few have been applied to pilot-scale experiments. This paper presents the first pilot plant test results of one of the most promising stripper configurations, the advanced flash stripper with cold and warm rich solvent bypass. The campaign using aqueous piperazine was carried out at UT Austin in 2015. The advanced flash stripper improves the heat duty by over 25% compared to previous campaigns using the two-stage flash, achieving 2.1 GJ per tonne CO 2 of heat duty and 32 kJ mol -1 CO 2 of total equivalent work. The bypass control strategy proposed minimized the heat duty. The test successfully demonstrated the remarkable energy performance and the operability of this advanced system. An Aspen Plus® model was validated using the pilot plant data and used to explore optimum operating and design conditions. The irreversibility analysis showed that the pilot plant performance has attained 50% thermodynamic efficiency and further energy improvement should focus on the absorber and the cross exchanger by increasing absorption rate and solvent capacity.

  18. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  19. The Atmospheric Structure of Triton and Pluto

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    The goal of this research was to better determine the atmospheric structures of Triton and Pluto through further analysis of three occultation data sets obtained with the Kuiper Airborne Observatory (KAO.) As the research progressed, we concentrated our efforts on the Triton data, as this appeared to be the most fruitful. Three papers have been prepared as a result of this research. The first paper presents new results about Triton's atmospheric structure from the analysis of all ground-based stellar occultation data recorded to date, including one single-chord occultation recorded on 1993 July 10 and nine occultation lightcurves from the double-star event on 1995 August 14. These stellar occultation observations made both in the visible and in the infrared have good spatial coverage of Triton, including the first Triton central-flash observations, and are the first data to probe the altitude level 20-100 km on Triton. The small-planet lightcurve model of J. L. Elliot and L. A. Young was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude, indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements; however, asymmetry observed in the central flash indicates the atmosphere is not homogenous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent isothermal temperature of the atmosphere is 47 plus or minus 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 plus or minus 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989. The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the model. In our opinion, the disagreement in temperature and pressure is probably due to modeling problems at the microbar level, since measurements at this level have not previously been made. Alternatively, the difference could be due to seasonal change in Triton's atmospheric structure. The second paper reports observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. The most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years -- significantly faster than predicted by published frost model for Triton. Our results suggests that permanent polar caps on Triton play a dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto. A third paper 'Global Warming on Triton' will appear in a the January 1999 issue of Sky and Telescope.

  20. A Year in the Life of an Infrared Echo

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Supernova Remnant Cassiopeia A One Year Apart

    These Spitzer Space Telescope images, taken one year apart, show the supernova remnant Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). The pictures illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The top Spitzer image was taken on November 30, 2003, and the bottom, on December 2, 2004.

  1. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  2. The covalently bound diazo group as an infrared probe for hydrogen bonding environments.

    PubMed

    You, Min; Liu, Liyuan; Zhang, Wenkai

    2017-07-26

    Covalently bound diazo groups are frequently found in biomolecular substrates. The C[double bond, length as m-dash]N[double bond, length as m-dash]N asymmetric stretching vibration (ν as ) of the diazo group has a large extinction coefficient and appears in an uncongested spectral region. To evaluate the solvatochromism of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band for studying biomolecules, we recorded the infrared (IR) spectra of a diazo model compound, 2-diazo-3-oxo-butyric acid ethyl ester, in different solvents. The width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly dependent on the Kamlet-Taft solvent parameter, which reflects the polarizability and hydrogen bond accepting ability of the solvent. Therefore, the width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band could be used to probe these properties for a solvent. We found that the position of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly correlated with the density of hydrogen bond donor groups in the solvent. We studied the relaxation dynamics and spectral diffusion of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of a natural amino acid, 6-diazo-5-oxo-l-norleucine, in water using nonlinear IR spectroscopy. The relaxation and spectral diffusion time constants of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band were similar to those of the N[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band. We concluded that the position and width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of the diazo group could be used to probe the hydrogen bond donating and accepting ability of a solvent, respectively. These results suggest that the diazo group could be used as a site-specific IR probe for the local hydration environments.

  3. Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors.

    PubMed

    Lu, Rongwen; Levy, Alexander M; Zhang, Qiuxiang; Pittler, Steven J; Yao, Xincheng

    2013-10-01

    Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.

  4. Tracking a head-mounted display in a room-sized environment with head-mounted cameras

    NASA Astrophysics Data System (ADS)

    Wang, Jih-Fang; Azuma, Ronald T.; Bishop, Gary; Chi, Vernon; Eyles, John; Fuchs, Henry

    1990-10-01

    This paper presents our efforts to accurately track a Head-Mounted Display (HMD) in a large environment. We review our current benchtop prototype (introduced in {WCF9O]), then describe our plans for building the full-scale system. Both systems use an inside-oui optical tracking scheme, where lateraleffect photodiodes mounted on the user's helmet view flashing infrared beacons placed in the environment. Church's method uses the measured 2D image positions and the known 3D beacon locations to recover the 3D position and orientation of the helmet in real-time. We discuss the implementation and performance of the benchtop prototype. The full-scale system design includes ceiling panels that hold the infrared beacons and a new sensor arrangement of two photodiodes with holographic lenses. In the full-scale system, the user can walk almost anywhere under the grid of ceiling panels, making the working volume nearly as large as the room.

  5. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer

    NASA Astrophysics Data System (ADS)

    Lee, Seong Yun; Kim, Jae Young; Lee, Jun Young; Song, Ho Jun; Lee, Sangkug; Choi, Kyung Ho; Shin, Gyojic

    2014-06-01

    An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications.

  6. Tactical Wireless Networking in Coalition Environments: Implementing an IEEE 802.20 Wireless End-User Network Utilizing FLASH-OFDM to Provide a Secure Mobile Extension to Existing WAN

    DTIC Science & Technology

    2005-09-01

    consumption comparisons between 802.11 and 802.20 were conducted. The HP4700’s used a rechargeable 1800 mAh Lithium -ion internal battery and the expansion...jacket with 1840 mAh Lithium -ion internal rechargeable battery . The HP4700 has integrated WLAN 802.11b, Bluetooth®, Fast Infrared, IrDA, USB & Serial...weighs 1150 pounds and includes the weight of a 2 hour backup battery . [Ref 18] The power requirements for the RR are as follows: • +24VDC, -48VDC, 110

  7. Human visual response to nuclear particle exposures

    NASA Technical Reports Server (NTRS)

    Tobias, C. A.; Budinger, T. F.; Lyman, J. T.

    1972-01-01

    Experiments with accelerated helium ions were performed in an effort to localize the site of initial radiation interactions in the eye that lead to light flash observations by astronauts during spaceflight. The character and efficiency of helium ion induction of visual sensations depended on the state of dark adaptation of the retina; also, the same events were seen with different efficiencies and details when particle flux density changed. It was concluded that fast particles cause interactions in the retina, particularly in the receptor layer, and thus give rise to the sensations of light flashes, streaks, and supernovae.

  8. Improvement of pain and disability in elderly patients with degenerative osteoarthritis of the knee treated with narrow-band light therapy.

    PubMed

    Stelian, J; Gil, I; Habot, B; Rosenthal, M; Abramovici, I; Kutok, N; Khahil, A

    1992-01-01

    To evaluate the effects of low-power light therapy on pain and disability in elderly patients with degenerative osteoarthritis of the knee. Partially double-blinded, fully randomized trial comparing red, infrared, and placebo light emitters. Fifty patients with degenerative osteoarthritis of both knees were randomly assigned to three treatment groups: red (15 patients), infrared (18 patients), and placebo (17 patients). Infrared and placebo emitters were double-blinded. Self-applied treatment to both sides of the knee for 15 minutes twice a day for 10 days. Short-Form McGill Pain Questionnaire, Present Pain Intensity, and Visual Analogue Scale for pain and Disability Index Questionnaire for disability were used. We evaluated pain and disability before and on the tenth day of therapy. The period from the end of the treatment until the patient's request to be retreated was summed up 1 year after the trial. Pain and disability before treatment did not show statistically significant differences between the three groups. Pain reduction in the red and infrared groups after the treatment was more than 50% in all scoring methods (P less than 0.05). There was no significant pain improvement in the placebo group. We observed significant functional improvement in red- and infrared-treated groups (p less than 0.05), but not in the placebo group. The period from the end of treatment until the patients required treatment was longer for red and infrared groups than for the placebo group (4.2 +/- 3.0, 6.1 +/- 3.2, and 0.53 +/- 0.62 months, for red, infrared, and placebo, respectively). Low-power light therapy is effective in relieving pain and disability in degenerative osteoarthritis of the knee.

  9. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.

  10. Centering on Sea Life in the Classroom.

    ERIC Educational Resources Information Center

    Gruendike, Janis L.

    1982-01-01

    Describes an oceanography learning center for elementary/middle school students, focusing on use of games (review jeopardy), instructional tapes, flash cards, activity felt boards, picture puzzles, reading materials, science displays, and experiment stations. (JN)

  11. Moore's law realities for recording systems and memory storage components: HDD, tape, NAND, and optical

    NASA Astrophysics Data System (ADS)

    Fontana, Robert E.; Decad, Gary M.

    2018-05-01

    This paper describes trends in the storage technologies associated with Linear Tape Open (LTO) Tape cartridges, hard disk drives (HDD), and NAND Flash based storage devices including solid-state drives (SSD). This technology discussion centers on the relationship between cost/bit and bit density and, specifically on how the Moore's Law perception that areal density doubling and cost/bit halving every two years is no longer being achieved for storage based components. This observation and a Moore's Law Discussion are demonstrated with data from 9-year storage technology trends, assembled from publically available industry reporting sources.

  12. Daily Physical Activity and Hot Flashes in the Study of Women's Health Across the Nation FLASHES Study

    PubMed Central

    Gibson, Carolyn; Matthews, Karen; Thurston, Rebecca

    2014-01-01

    Objective To examine the role of physical activity in menopausal hot flashes. Competing models conceptualize physical activity as a risk or protective factor for hot flashes. Few studies have examined this relationship prospectively using physiologic measures of hot flashes and physical activity. Design Over two 48 hour-periods, 51 participants wore a physiologic hot flash monitor and activity monitor, and reported their hot flashes in an electronic diary. Physiologic hot flashes, reported hot flashes and reported hot flashes without physiological corroboration were related to activity changes using hierarchical generalized linear modeling, adjusting for potential confounders. Setting Community. Patients Midlife women. Interventions None. Main Outcome Measures Physiologically-detected hot flashes and reported hot flashes with and without physiologic corroboration. Results Hot flash reports without physiologic corroboration were more likely after activity increases (OR 1.04, 95% CI: 1.00-1.10, p=.01), particularly among women with higher levels of depressive symptoms (interaction p=.02). No other types of hot flashes were related to physical activity. Conclusion Acute increases in physical activity were associated with increased reporting of hot flashes lacking physiologic corroboration, particularly among women with depressive symptoms. Clinicians should consider the role of symptom perception and reporting in relations between physical activity and hot flashes. PMID:24491454

  13. Does evaluative conditioning depend on awareness? Evidence from a continuous flash suppression paradigm.

    PubMed

    Högden, Fabia; Hütter, Mandy; Unkelbach, Christian

    2018-02-26

    The role of awareness in evaluative learning has been thoroughly investigated with a variety of theoretical and methodological approaches. We investigated evaluative conditioning (EC) without awareness with an approach that conceptually provides optimal conditions for unaware learning - the Continuous Flash Suppression paradigm (CFS). In CFS, a stimulus presented to one eye can be rendered invisible for a prolonged duration by presenting a high-contrast dynamic pattern to the other eye. The suppressed stimulus is nevertheless processed. First, Experiment 1 established EC effects in a pseudo-CFS setup without suppression. Experiment 2 then employed CFS to suppress conditioned stimuli (CSs) from awareness while the unconditioned stimuli (USs) were visible. While Experiment 1 and 2 used a between-participants manipulation of CS suppression, Experiments 3 and 4 both manipulated suppression within participants. We observed EC effects when CSs were not suppressed, but found no EC effects when the CS was suppressed from awareness. We relate our finding to previous research and discuss theoretical implications for EC. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.

    PubMed

    Reimers, Stian; Stewart, Neil

    2016-09-01

    Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.

  15. Adverse Effects of Induced Hot Flashes on Objectively Recorded and Subjectively Reported Sleep: Results of a Gonadotropin-Releasing Hormone Agonist Experimental Protocol

    PubMed Central

    Joffe, Hadine; White, David P.; Crawford, Sybil L.; McCurnin, Kristin E.; Economou, Nicole; Connors, Stephanie; Hall, Janet E.

    2013-01-01

    Objectives The impact of hot flashes on sleep is of great clinical interest, but results are inconsistent, especially when both hot flashes and sleep are measured objectively. Using objective and subjective measurements, we examined the impact of hot flashes on sleep by inducing hot flashes with a gonadotropin-releasing hormone agonist (GnRHa). Methods The GnRHa leuprolide was administered to 20 healthy premenopausal volunteers without hot flashes or sleep disturbances. Induced hot flashes were assessed objectively (skin-conductance monitor) and subjectively (daily diary) during one-month follow-up. Changes from baseline in objective (actigraphy) and subjective sleep quality (Pittsburgh Sleep Quality Index [PSQI]) were compared between women who did and did not develop objective hot flashes, and, in parallel analyses, subjective hot flashes. Results New-onset hot flashes were recorded in 14 (70%) and reported by 14 (70%) women (80% concordance). Estradiol was universally suppressed. Objective sleep efficiency worsened in women with objective hot flashes and improved in women without objective hot flashes (median decrease 2.6%, increase 4.2%, p=0.005). Subjective sleep quality worsened more in those with than without subjective hot flashes (median increase PSQI 2.5 vs. 1.0, p=0.03). Objective hot flashes were not associated with subjective sleep quality, nor were subjective symptoms linked to objective sleep measures. Conclusions This experimental model of induced hot flashes demonstrates a causal relationship between hot flashes and poor sleep quality. Objective hot flashes result in worse objective sleep efficiency, while subjective hot flashes worsen perceived sleep quality. PMID:23481119

  16. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of long chain free fatty acid concentration in oily wastewater using the double wavenumber extrapolation technique

    USDA-ARS?s Scientific Manuscript database

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DW...

  17. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    PubMed

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.

  18. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  19. Correlation of Visually Evoked Functional and Blood Flow Changes in the Rat Retina Measured With a Combined OCT+ERG System.

    PubMed

    Tan, Bingyao; Mason, Erik; MacLellan, Benjamin; Bizheva, Kostadinka K

    2017-03-01

    To correlate visually evoked functional and blood flow changes in the rat retina measured simultaneously with a combined optical coherence tomography and electroretinography system (OCT+ERG). Male Brown Norway (n = 6) rats were dark adapted and anesthetized with ketamine/xylazine. Visually evoked changes in the retinal blood flow (RBF) and functional response were measured simultaneously with an OCT+ERG system with 3-μm axial resolution in retinal tissue and 47-kHz image acquisition rate. Both single flash (10 and 200 ms) and flicker (10 Hz, 20% duty cycle, 1- and 2-second duration) stimuli were projected onto the retina with a custom visual stimulator, integrated into the OCT imaging probe. Total axial RBF was calculated from circular Doppler OCT scans by integrating over the arterial and venal flow. Temporary increase in the RBF was observed with the 10- and 200-ms continuous stimuli (∼1% and ∼4% maximum RBF change, respectively) and the 10-Hz flicker stimuli (∼8% for 1-second duration and ∼10% for 2-second duration). Doubling the flicker stimulus duration resulted in ∼25% increase in the RBF peak magnitude with no significant change in the peak latency. Single flash (200 ms) and flicker (10 Hz, 1 second) stimuli of the same illumination intensity and photon flux resulted in ∼2× larger peak RBF magnitude and ∼25% larger RBF peak latency for the flicker stimulus. Short, single flash and flicker stimuli evoked measureable RBF changes with larger RBF magnitude and peak latency observed for the flicker stimuli.

  20. Using flash cards to engage Indonesian nursing students in reflection on their practice.

    PubMed

    Wanda, Dessie; Fowler, Cathrine; Wilson, Valerie

    2016-03-01

    Reflective practice is now widely used as a critical learning tool in undergraduate and postgraduate nursing programs in most developed countries. However in developing countries, reflective practice is in its infancy. To introduce reflective practice to postgraduate students in an Indonesian nursing education institution. This paper presents the positive meanings of reflection and reflective practice experienced by the students and the way they used reflection within their practice. A descriptive qualitative study was conducted to explore the meaning of reflection or reflective practice using flashcards. A clinical reflective practice model taking into consideration Indonesian culture was developed and applied during students' clinical placement. A few weeks post clinical placement, 21 students participated in an evaluation session. The meaning of reflection or reflective practice was explored using flash cards containing images of people and environment with different situations and events. Students were asked to choose a card that represented their viewpoints about reflective practice and share it with the group. Data were digitally captured and analyzed using thematic analysis. Reflection provided a positive experience for the students. In their own words, they discussed their journey of using reflection during the clinical placement period. The use of reflection was identified as expanding their view of nursing practice, providing a safe place to explore their experiences and clarity when they encountered challenging situations during their clinical practice. Reflecting on practice experiences resulted in increased self-awareness, and enhanced their learning. The findings indicate that reflective practice can be implemented successfully in Indonesia and may have value for other Eastern countries that share similar cultural characteristics. The use of flash cards assisted the students describe through stories their experiences of participating in this reflective practice program. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determination of testosterone in aqueous media

    NASA Astrophysics Data System (ADS)

    Tan, Yuan; Jing, Lijing; Ding, Yonghong; Wei, Tianxin

    2015-07-01

    This work aimed to prepare a novel double-layer structure molecularly imprinted polymer film (MIF) on the surface plasmon resonance (SPR) sensor chips for detection of testosterone in aqueous media. The film was synthesized by in-situ UV photo polymerization. Firstly, the modification of gold surface of SPR chip was performed by 1-dodecanethiol. Then double-layer MIF was generated on the 1-dodecanethiol modified gold surface. The non-modified and imprinted surfaces were characterized by atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy and contact angle measurements. Analysis of SPR spectroscopy showed that the imprinted sensing film displayed good selectivity for testosterone compared to other analogues and the non-imprinted polymer film (NIF). Within the concentrations range of 1 × 10-12-1 × 10-8 mol/L, the coupling angle changes of SPR were linear with the negative logarithm of testosterone concentrations (R2 = 0.993). Based on a signal/noise ratio of three, the detection limit was estimated to be 10-12 mol/L. Finally, the developed MIF was successfully applied to the seawater detection of testosterone. The results in the experiments suggested that a combination of SPR sensing with MIF was a promising alternative method for detection of testosterone in aqueous media.

  2. Theoretical and experimental study of a gas-coupled two-stage pulse tube cooler with stepped warm displacer as the phase shifter

    NASA Astrophysics Data System (ADS)

    Pang, Xiaomin; Wang, Xiaotao; Dai, Wei; Li, Haibing; Wu, Yinong; Luo, Ercang

    2018-06-01

    A compact and high efficiency cooler working at liquid hydrogen temperature has many important applications such as cooling superconductors and mid-infrared sensors. This paper presents a two-stage gas-coupled pulse tube cooler system with a completely co-axial configuration. A stepped warm displacer, working as the phase shifter for both stages, has been studied theoretically and experimentally in this paper. Comparisons with the traditional phase shifter (double inlet) are also made. Compared with the double inlet type, the stepped warm displacer has the advantages of recovering the expansion work from the pulse tube hot end (especially from the first stage) and easily realizing an appropriate phase relationship between the pressure wave and volume flow rate at the pulse tube hot end. Experiments are then carried out to investigate the performance. The pressure ratio at the compression space is maintained at 1.37, for the double inlet type, the system obtains 1.1 W cooling power at 20 K with 390 W acoustic power input and the relative Carnot efficiency is only 3.85%; while for the stepped warm displacer type, the system obtains 1.06 W cooling power at 20 K with only 224 W acoustic power input and the relative Carnot efficiency can reach 6.5%.

  3. Mid-Infrared Photonic Devices Fabricated by Ultrafast Laser Inscription

    DTIC Science & Technology

    2016-07-01

    active and passive photonic devices in single crystal, ceramic and glass substrates. This range of devices span applications such as: astrophysics [16...waveguide has been published this year in Applied Physics Letters. Reference: Macdonald, J.R., et al., Compact mid-infrared Cr:ZnSe channel...waveguide laser. Applied Physics Letters, 2013. 102(16): p. 161110. High efficiency circular cladding WG laser The initial demonstration of square double

  4. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    NASA Technical Reports Server (NTRS)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted rainfall amounts than when PW plumes occurred by themselves (i.e.. without the presence of 6.7 micron water vapor plumes). Satellite Analysis Branch (SAB) meteorologists use the 6.7 micron water and P\\V products for their QPE's (interactive Flash Flood Analyzer (IFFA) and Auto-Estimator precipitation estimates), Outlooks, and heavy precipitation briefings with the Hydrometeorological Prediction Center/National Center for Environmental Prediction.

  5. Properties and Frequency Conversion of High-Brightness Diode-Laser Systems

    NASA Astrophysics Data System (ADS)

    Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard

    An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.

  6. Multi-wavelength observations of the solar atmosphere from the August 21, 2017 total solar eclipse

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Boll, A.; Bryans, P.; Burkepile, J.; Casini, R.; DeLuca, E.; Gibson, K. L.; Judge, P. G.; McIntosh, S. W.; Samra, J.; Sewell, S. D.

    2017-12-01

    We will conduct three experiments at the August 21, 2017 total solar eclipse that we call the Rosetta Stone experiments. First, we will obtain narrow-bandpass images at infrared wavelengths of the magnetically sensitive coronal emission lines of Fe IX 2855 nm, Mg VIII 3028 nm and Si IX 3935 nm with a FLIR thermal imager. Information on the brightness of these lines is important for identifying the optimal lines for coronal magnetometry. These images will also serve as context images for the airborne AirSpec IR coronal spectroscopy experiment (Samra et al). Second, we will obtain linear polarization images of the visible emission lines of Fe X 637 nm and Fe XI 789 nm as well as the continuum polarization near 735 nm. These will be obtained with a novel detector with an integral array of linear micro-polarizers oriented at four different angles that enable polarization images without the need for liquid crystals or rotating elements. These measurements will provide information on the orientation of magnetic fields in the corona and serve to demonstrate the new detector technology. Lastly, we will obtain high cadence spectra as the moon covers and uncovers the chromosphere immediately after 2nd contact and before third contact. This so-called flash spectrum will be used to obtain information about chromospheric structure at a spatial resolution higher than is possible by other means. In this talk, we will describe the instrumentation used in these experiments and present initial results obtained with them. This work is supported by a grant from NASA, through NSF base funding of HAO/NCAR and by generous loans of equipment from our corporate partners, FLIR, 4D Technologies and Avantes.

  7. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (abovemore » ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.« less

  8. Space Radiation Effects in Advanced Flash Memories

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.

    2001-01-01

    Memory storage requirements in space systems have steadily increased, much like storage requirements in terrestrial systems. Large arrays of dynamic memories (DRAMs) have been used in solid-state recorders, relying on a combination of shielding and error-detection-and correction (EDAC) to overcome the extreme sensitivity of DRAMs to space radiation. For example, a 2-Gbit memory (with 4-Mb DRAMs) used on the Clementine mission functioned perfectly during its moon mapping mission, in spite of an average of 71 memory bit flips per day from heavy ions. Although EDAC worked well with older types of memory circuits, newer DRAMs use extremely complex internal architectures which has made it increasingly difficult to implement EDAC. Some newer DRAMs have also exhibited catastrophic latchup. Flash memories are an intriguing alternative to DRAMs because of their nonvolatile storage and extremely high storage density, particularly for applications where writing is done relatively infrequently. This paper discusses radiation effects in advanced flash memories, including general observations on scaling and architecture as well as the specific experience obtained at the Jet Propulsion Laboratory in evaluating high-density flash memories for use on the NASA mission to Europa, one of Jupiter's moons. This particular mission must pass through the Jovian radiation belts, which imposes a very demanding radiation requirement.

  9. Formation of silicon nanocrystals in silicon carbide using flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Weiss, Charlotte; Schnabel, Manuel; Prucnal, Slawomir; Hofmann, Johannes; Reichert, Andreas; Fehrenbach, Tobias; Skorupa, Wolfgang; Janz, Stefan

    2016-09-01

    During the formation of Si nanocrystals (Si NC) in SixC1-x layers via solid-phase crystallization, the unintended formation of nanocrystalline SiC reduces the minority carrier lifetime and therefore the performance of SixC1-x as an absorber layer in solar cells. A significant reduction in the annealing time may suppress the crystallization of the SiC matrix while maintaining the formation of Si NC. In this study, we investigated the crystallization of stoichiometric SiC and Si-rich SiC using conventional rapid thermal annealing (RTA) and nonequilibrium millisecond range flash lamp annealing (FLA). The investigated SixC1-x films were prepared by plasma-enhanced chemical vapor deposition and annealed at temperatures from 700 °C to 1100 °C for RTA and at flash energies between 34 J/cm2 and 62 J/cm2 for FLA. Grazing incidence X-ray diffraction and Fourier transformed infrared spectroscopy were conducted to investigate hydrogen effusion, Si and SiC NC growth, and SiC crystallinity. Both the Si content and the choice of the annealing process affect the crystallization behavior. It is shown that under certain conditions, FLA can be successfully utilized for the formation of Si NC in a SiC matrix, which closely resembles Si NC in a SiC matrix achieved by RTA. The samples must have excess Si, and the flash energy should not exceed 40 J/cm2 and 47 J/cm2 for Si0.63C0.37 and Si0.77C0.23 samples, respectively. Under these conditions, FLA succeeds in producing Si NC of a given size in less crystalline SiC than RTA does. This result is discussed in terms of nucleation and crystal growth using classical crystallization theory. For FLA and RTA samples, an opposite relationship between NC size and Si content was observed and attributed either to the dependence of H effusion on Si content or to the optical absorption properties of the materials, which also depend on the Si content.

  10. Using Technology to Teach Content in a Student Teaching Experience (and as a First Year Teacher)

    ERIC Educational Resources Information Center

    Lemon, Cheryl

    2005-01-01

    This article describes how Cheryl Lemon, a biology teacher at Gateway Regional High School, integrated technology into appropriate curricular contexts during her field experiences as a preservice teacher. She used Web-based simulations, a projection screen, an interactive white board, and Flash-based interactivity in conjunction with direct…

  11. Synthesis and adsorption properties of flower-like layered double hydroxide by a facile one-pot reaction with an eggshell membrane as assistant

    NASA Astrophysics Data System (ADS)

    Li, Songnan; Zhang, Jiawei; Jamil, Saba; Cai, Qinghai; Zang, Shuying

    In this paper, flower-like layered double hydroxides were synthesized with eggshell membrane assistant. The as-prepared samples were characterized by a series of techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity-differential thermal analysis and Nitrogen sorption/desorption. The resulting layered double hydroxides were composed of nanoplates with edge-to-face particle interactions. The specific surface area and total pore volume of the as-prepared flower-like layered double hydroxides were 160m2/g and 0.65m3/g, respectively. The adsorption capacity of flower-like layered double hydroxides to Congo Red was 258mg/g, which was higher than that of layered double hydroxides synthesized by the traditional method.

  12. Increased atmospheric carbon dioxide and climate feedback mechanisms

    NASA Technical Reports Server (NTRS)

    Cess, R. D.

    1982-01-01

    As a consequence of fossil fuel burning, the atmospheric concentration of carbon dioxide has increased from 314 ppm in 1958, when detailed measurements of this quantity began, to a present value of 335 ppm; and it is estimated that during the next century, the CO2 concentration will double relative to its assumed preindustrial value of 290 ppm. Since CO2 is an infrared-active gas, increases in its atmospheric concentration would lead to a larger infrared opacity for the atmospheric which, by normal logic, would result in a warmer Earth. A number of modeling endeavors suggest a 2 to 4 C increase in global mean surface temperature with doubling of the CO2 concentration. But such estimates of CO2-induced warming are highly uncertain because of a lack of knowledge of climate feedback mechanisms. Interactive influences upon the solar and infrared opacities of the Earth-atmosphere system can either amplify or damp a climate-forcing mechanism such as increasing CO2. Climate feedback mechanisms discussed include climate sensitivity, cloudiness-radiation feedback, climate change predictions, and interactive atmospheric chemistry.

  13. An Analysis of Total Lightning Flash Rates Over Florida

    NASA Astrophysics Data System (ADS)

    Mazzetti, Thomas O.; Fuelberg, Henry E.

    2017-12-01

    Although Florida is known as the "Sunshine State", it also contains the greatest lightning flash densities in the United States. Flash density has received considerable attention in the literature, but lightning flash rate has received much less attention. We use data from the Earth Networks Total Lightning Network (ENTLN) to produce a 5 year (2010-2014) set of statistics regarding total flash rates over Florida and adjacent regions. Instead of tracking individual storms, we superimpose a 0.2° × 0.2° grid over the study region and count both cloud-to-ground (CG) and in-cloud (IC) flashes over 5 min intervals. Results show that the distribution of total flash rates is highly skewed toward small values, whereas the greatest rate is 185 flashes min-1. Greatest average annual flash rates ( 3 flashes min-1) are located near Orlando. The southernmost peninsula, North Florida, and the Florida Panhandle exhibit smaller average annual flash rates ( 1.5 flashes min-1). Large flash rates > 100 flashes min-1 can occur during any season, at any time during the 24 h period, and at any location within the domain. However, they are most likely during the afternoon and early evening in East Central Florida during the spring and summer months.

  14. Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation

    NASA Technical Reports Server (NTRS)

    Swift, G.

    2002-01-01

    JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.

  15. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGES

    Faatz, B.; Plönjes, E.; Ackermann, S.; ...

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  16. Time-diagnostics for improved dynamics experiments at XUV FELs

    NASA Astrophysics Data System (ADS)

    Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek

    2010-10-01

    Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.

  17. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches.

    PubMed

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li

    2014-09-01

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ~40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.

  18. Kinetic determinations of accurate relative oxidation potentials of amines with reactive radical cations.

    PubMed

    Gould, Ian R; Wosinska, Zofia M; Farid, Samir

    2006-01-01

    Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.

  19. Generation of cavitation luminescence by laser-induced exothermic chemical reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung Park, Han; Diebold, Gerald J.

    2013-08-14

    Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxidemore » concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.« less

  20. Numerical design of a magnetized turbulence experiment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Feister, Scott; Tzeferacos, Petros; Meinecke, Jena; Bott, Archie; Caprioli, Damiano; Laune, Jt; Bell, Tony; Casner, Alexis; Koenig, Michel; Li, Chikang; Miniati, Francesco; Petrasso, Richard; Remington, Bruce; Reville, Brian; Ross, J. Steven; Ryu, Dongsu; Ryutov, Dmitri; Sio, Hong; Turnbull, David; Zylstra, Alex; Schekochihin, Alexander; Froula, Dustin; Park, Hye-Sook; Lamb, Don; Gregori, Gianluca

    2017-10-01

    The origin and amplification of magnetic fields remains an active astrophysical research topic. We discuss design (using three-dimensional FLASH simulations) of a magnetized turbulence experiment at the National Ignition Facility (NIF). NIF lasers drive together two counter-propagating plasma flows to form a hot, turbulent plasma at the center. In the simulations, plasma temperatures are high enough to reach super-critical values of magnetic Reynolds number (Rm). Biermann battery seed magnetic fields (generated during laser-target interaction) are advected into the turbulent region and amplified by fluctuation dynamo in the above-unity Prandtl number regime. Plasma diagnostics are modeled with FLASH for planning and direct comparison with NIF experimental data. This work was supported in part at the University of Chicago by the DOE NNSA, the DOE Office of Science, and the NSF. The numerical simulations were conducted at ALCF's Mira under the auspices of the DOE Office of Science ALCC program.

  1. Behavioral weight loss for the management of menopausal hot flashes: a pilot study.

    PubMed

    Thurston, Rebecca C; Ewing, Linda J; Low, Carissa A; Christie, Aimee J; Levine, Michele D

    2015-01-01

    Although adiposity has been considered to be protective against hot flashes, newer data suggest positive relationships between hot flashes and adiposity. No studies have been specifically designed to test whether weight loss reduces hot flashes. This pilot study aimed to evaluate the feasibility, acceptability, and initial efficacy of behavioral weight loss in reducing hot flashes. Forty overweight or obese women with hot flashes (≥ 4 hot flashes/d) were randomized to either behavioral weight loss intervention or wait-list control. Hot flashes were assessed before and after intervention via physiologic monitoring, diary, and questionnaire. Comparisons of changes in hot flashes and anthropometrics between conditions were performed via Wilcoxon tests. Study retention (83%) and intervention satisfaction (93.8%) were high. Most women (74.1%) reported that hot flash reduction was a major motivator for losing weight. Women randomized to the weight loss intervention lost more weight (-8.86 kg) than did women randomized to control (+0.23 kg; P < 0.0001). Women randomized to weight loss also showed greater reductions in questionnaire-reported hot flashes (2-wk hot flashes, -63.0) than did women in the control group (-28.0; P = 0.03)-a difference not demonstrated in other hot flash measures. Reductions in weight and hot flashes were significantly correlated (eg, r = 0.47, P = 0.006). This pilot study shows a behavioral weight loss program that is feasible, acceptable, and effective in producing weight loss among overweight or obese women with hot flashes. Findings indicate the importance of a larger study designed to test behavioral weight loss for hot flash reduction. Hot flash management could motivate women to engage in this health-promoting behavior.

  2. Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces

    PubMed Central

    Sellers, Eric W.; Wang, Xingyu

    2013-01-01

    Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects. PMID:22350331

  3. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    PubMed

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  4. Flash Photolysis Experiment of o-Methyl Red as a Function of pH: A Low-Cost Experiment for the Undergraduate Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Larsen, Molly C.; Perkins, Russell J.

    2016-01-01

    A low-cost, time-resolved spectroscopy experiment appropriate for third year physical chemistry students is presented. Students excite o-methyl red in basic solutions with a laser pointer and use a modular spectrometer with a CCD array detector to monitor the transient spectra as the higher-energy cis conformer of the molecule converts back to the…

  5. Spatial-temporal characteristics of lightning flash size in a supercell storm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng

    2017-11-01

    The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.

  6. Flash memory management system and method utilizing multiple block list windows

    NASA Technical Reports Server (NTRS)

    Chow, James (Inventor); Gender, Thomas K. (Inventor)

    2005-01-01

    The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.

  7. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.

  8. Perceived control and hot flashes in treatment-seeking breast cancer survivors and menopausal women.

    PubMed

    Carpenter, Janet S; Wu, Jingwei; Burns, Debra S; Yu, Menggang

    2012-01-01

    Lower perceived control over hot flashes has been linked to fewer coping strategies, more catastrophizing, and greater hot flash severity and distress in midlife women, yet this important concept has not yet been studied in breast cancer survivors. The aim of this study was to explore perceived control over hot flashes and hot flashes in breast cancer survivors compared with midlife women without cancer. Ninety-nine survivors and 138 midlife women completed questionnaires and a prospective, electronic hot flash diary. All data were collected at a baseline assessment before randomization in a behavioral intervention study. Both groups had moderate perceived control over hot flashes. Control was not significantly related to hot flash frequency but was significantly related to hot flash severity, bother, and interference in both groups. A significantly stronger association between control and hot flash interference was found for survivors than for midlife women. Survivors using hot flash treatments perceived less control than did survivors not using hot flash treatments, whereas the opposite was true in midlife women. Findings extend our knowledge of perceived control over hot flashes in both survivors and midlife women. Findings emphasize the importance of continued menopausal symptom assessment and management, support the importance of continuing nursing care even for survivors who are already using hot flash treatment, and suggest that nursing interventions aimed at improving perceived control over hot flashes may be more helpful for survivors than for midlife women.

  9. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation.

    PubMed

    Offenbacher, Adam R; Polander, Brandon C; Barry, Bridgette A

    2013-10-04

    Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.

  10. Synoptic-scale atmospheric conditions associated with flash flooding in watersheds of the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Teale, N. G.; Quiring, S. M.

    2015-12-01

    Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.

  11. Hot Flashes and Quality of Life Among Breast Cancer Patients

    DTIC Science & Technology

    2006-08-01

    hot flashes, 40.7% report at baseline, having used HRT and 26.8% used exercise to control hot flashes. The 12-month data indicates that 26.5% of the...entire sample who are experiencing hot flashes, tried or are using some form of HRT to control hot flashes with exercise still the most frequently...used approach to manage hot flashes with 44.2% of sample currently exercising . 15. SUBJECT TERMS Breast Cancer, Hot Flashes, Quality of Life

  12. The combined use of heat-pulse flowmeter logging and packer testing for transmissive fracture recognition

    NASA Astrophysics Data System (ADS)

    Lo, Hung-Chieh; Chen, Po-Jui; Chou, Po-Yi; Hsu, Shih-Meng

    2014-06-01

    This paper presents an improved borehole prospecting methodology based on a combination of techniques in the hydrogeological characterization of fractured rock aquifers. The approach is demonstrated by on-site tests carried out in the Hoshe Experimental Forest site and the Tailuge National Park, Taiwan. Borehole televiewer logs are used to obtain fracture location and distribution along boreholes. The heat-pulse flow meter log is used to measure vertical velocity flow profiles which can be analyzed to estimate fracture transmissivity and to indicate hydraulic connectivity between fractures. Double-packer hydraulic tests are performed to determine the rock mass transmissivity. The computer program FLASH is used to analyze the data from the flowmeter logs. The FLASH program is confirmed as a useful tool which quantitatively predicts the fracture transmissivity in comparison to the hydraulic properties obtained from packer tests. The location of conductive fractures and their transmissivity is identified, after which the preferential flow paths through the fracture network are precisely delineated from a cross-borehole test. The results provide robust confirmation of the use of combined flowmeter and packer methods in the characterization of fractured-rock aquifers, particularly in reference to the investigation of groundwater resource and contaminant transport dynamics.

  13. Tungsten Hydride Phosphorus- and Arsenic-Bearing Molecules with Double and Triple W-P and W-As Bonds.

    PubMed

    Andrews, Lester; Cho, Han-Gook; Fang, Zongtang; Vasiliu, Monica; Dixon, David A

    2018-05-07

    Laser ablation of tungsten metal provides W atoms which react with phosphine and arsine during condensation in excess argon and neon, leading to major new infrared (IR) absorptions. Annealing, UV irradiation, and deuterium substitution experiments coupled with electronic structure calculations at the density functional theory level led to the assignment of the observed IR absorptions to the E≡WH 3 and HE═WH 2 molecules for E = P and As. The potential energy surfaces for hydrogen transfer from PH 3 to the W were calculated at the coupled-cluster CCSD(T)/complete basis set level. Additional weak bands in the phosphide and arsenide W-H stretching region are assigned to the molecules with loss of H from W, E≡WH 2 . The electronic structure calculations show that the E≡WH 3 molecules have a W-E triple bond, the HE═WH 2 molecules have a W-E double bond, and the H 2 E-WH molecules have a W-E single bond. The formation of multiple E-W bonds leads to increasing stability for the isomers.

  14. Florida Thunderstorms: A Faucet of Reactive Nitrogen to the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Ridley, B.; Ott, L.; Emmons, L.; Montzka, D.; Weinheimer, A.; Knapp, D.; Grahek, F.; Li, L.; Heymsfield, G.; McGill, M.

    2004-01-01

    During the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) enhanced mixing ratios of nitric oxide were measured in the anvils of thunderstorms and in clear air downwind of storm systems on flights of a Wl3-57F high-altitude aircraft. Mixing ratios greater than l0 - 20 times background were readily observed over distances of 25-120 km due to lightning activity. In many of the Florida storms deposition of NO occurred up to near the tropopause but major deposition usually occurred 1 - 2 km below the tropopause, or mostly within the visible anvil volume formed prior to storm decay. Observations from two storms of very different anvil size and electrical activity allowed estimates of the total mass of NO, vented to the middle and upper troposphere. Using the cloud-to ground (CG) flash accumulations from the National Lightning Detection Network, climatological intra-cloud (IC) to CG ratios, and assuming that CG and IC flashes were of equivalent efficiency for NO production, the ranges of production per flash for a moderate-sized and a large storm were (0.51 - 1.0) x l0(exp 26) and (2.3 - 3.1) x 10(exp 26) molecules NO/flash, respectively. Using the recently determined average global flash rate of 44 8, a gross extrapolation of these two storms to represent possible global annual production rates yield 1.6 - 3.2 and 7.3 - 9.9 Tg(N)/yr, respectively. If the more usual assumption is made that IC efficiency is l/l0th that of CG activity, the ranges of production for the moderate-sized and large storm were (1.3 - 2.7) x l0(exp 26) and (6.0 - 8.1) x l0(exp 26) molecules NO/CG flash, respectively. The estimates from the large storm may be high because there is indirect evidence that the IC/CG ratio was larger than would be derived from climatology. These two storms and others studied did not have flash rates that scaled as approx. H(sup 5) where H is the cloud top altitude. The observed CG flash accumulations and NO(x) mass production estimate for the month of July over the Florida area were compared with a representative 3D global Chemistry-Transport Model (CTMJ that uses the Price et al. lightning parameterization. For two land grid points representing the Florida peninsula the model compared well with the observations: CG flash rates were low by only a factor of approx. 2. When the model grid points included the coastal regions of Florida the flash accumulations were lower than observed by a factor of 3.4 - 4.6. It is recommended that models using the Price et al. parameterization allow any global coastal grid point to maintain the land rather than the marine flash rate parameterization. The convection in this CTM underestimated the actual cloud top heights over Florida by 1 - 2 km and thus the total lightning flash rates and the altitude range of reactive nitrogen deposition. Broad scale (20 - 120 km) median mixing ratios of NO within anvils over Florida were significantly larger than in storms previously investigated over Colorado and New Mexico.

  15. Physiologically assessed hot flashes and endothelial function among midlife women.

    PubMed

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A

    2017-08-01

    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P < 0.05) indicated that among the younger tertile of women in the sample (age 40-53 years), the presence of hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  16. Menopausal Hot Flashes and Carotid Intima Media Thickness Among Midlife Women.

    PubMed

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; Landsittel, Doug P; Santoro, Nanette; von Känel, Roland; Matthews, Karen A

    2016-12-01

    There has been a longstanding interest in the role of menopause and its correlates in the development of cardiovascular disease (CVD) in women. Menopausal hot flashes are experienced by most midlife women; emerging data link hot flashes to CVD risk indicators. We tested whether hot flashes, measured via state-of-the-art physiologic methods, were associated with greater subclinical atherosclerosis as assessed by carotid ultrasound. We considered the role of CVD risk factors and estradiol concentrations in these associations. A total of 295 nonsmoking women free of clinical CVD underwent ambulatory physiologic hot flash assessments; a blood draw; and carotid ultrasound measurement of intima media thickness and plaque. Associations between hot flashes and subclinical atherosclerosis were tested in regression models controlling for CVD risk factors and estradiol. More frequent physiologic hot flashes were associated with higher carotid intima media thickness (for each additional hot flash: β [SE]=0.004 [0.001]; P=0.0001; reported hot flash: β [SE]=0.008 [0.002]; P=0.002, multivariable) and plaque (eg, for each additional hot flash, odds ratio [95% confidence interval] plaque index ≥2=1.07 [1.003-1.14]; P=0.04, relative to no plaque, multivariable] among women reporting daily hot flashes; associations were not accounted for by CVD risk factors or by estradiol. Among women reporting hot flashes, hot flashes accounted for more variance in intima media thickness than most CVD risk factors. Among women reporting daily hot flashes, frequent hot flashes may provide information about a woman's vascular status beyond standard CVD risk factors and estradiol. Frequent hot flashes may mark a vulnerable vascular phenotype among midlife women. © 2016 American Heart Association, Inc.

  17. Menopausal Hot Flashes and Carotid Intima Media Thickness among Midlife Women

    PubMed Central

    Thurston, Rebecca C.; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J. Richard; Landsittel, Doug P.; Santoro, Nanette; von Känel, Roland; Matthews, Karen A.

    2016-01-01

    Background and Purpose There has been a longstanding interest in the role of menopause and its correlates in the development of cardiovascular disease (CVD) in women. Menopausal hot flashes are experienced by most midlife women; emerging data link hot flashes to CVD risk indicators. We tested whether hot flashes, measured via state-of-the-art physiologic methods, were associated with greater subclinical atherosclerosis as assessed by carotid ultrasound. We considered the role of CVD risk factors and estradiol concentrations in these associations. Methods 295 nonsmoking women free of clinical CVD underwent ambulatory physiologic hot flash assessments; a blood draw; and carotid ultrasound measurement of IMT and plaque. Associations between hot flashes and subclinical atherosclerosis were tested in regression models controlling for CVD risk factors and estradiol. Results More frequent physiologic hot flashes were associated with higher carotid intima media thickness [IMT; for each additional hot flash: beta (standard error)=.004(.001), p=.0001; reported hot flash: beta (standard error)=.008(.002), p=.002, multivariable] and plaque [e.g., for each additional hot flash, odds ratio (95% confidence interval) plaque index ≥2=1.07(1.003–1.14, p=.04), relative to no plaque, multivariable] among women reporting daily hot flashes; associations were not accounted for by CVD risk factors or by estradiol. Among women reporting hot flashes, hot flashes accounted for more variance in IMT than most CVD risk factors. Conclusions Among women reporting daily hot flashes, frequent hot flashes may provide information about a woman’s vascular status beyond standard CVD risk factors and estradiol. Frequent hot flashes may mark a vulnerable vascular phenotype among midlife women. PMID:27834746

  18. Behavioral Weight Loss for the Management of Menopausal Hot Flashes: A Pilot Study

    PubMed Central

    Thurston, Rebecca C.; Ewing, Linda J.; Low, Carissa A.; Christie, Aimee J.; Levine, Michele D.

    2014-01-01

    Objective Although adiposity has been considered protective against hot flashes, newer data suggest positive relations between flashes and adiposity. No studies have been specifically designed to test whether weight loss reduces hot flashes. This pilot study aimed to evaluate the feasibility, acceptability, and initial efficacy of behavioral weight loss to reduce hot flashes. Methods Forty overweight/obese women with hot flashes (≥4/day) were randomized to a behavioral weight loss intervention or to wait list control. Hot flashes were assessed pre- and post-intervention via physiologic monitor, diary, and questionnaire. Comparisons of changes in hot flashes and anthropometrics between conditions were tested via Wilcoxon tests. Results Study retention (83%) and intervention satisfaction (93.8%) were high. Most women (74.1%) reported that hot flash reduction was a main motivator to lose weight. Women randomized to the weight loss intervention lost more weight (-8.86 kg) than did women randomized to control (+0.23 kg, p<.0001). Women randomized to weight loss also showed greater reductions in questionnaire-reported hot flashes (2-week hot flashes: −63.0) than did women in the control (−28.0, p=.03), a difference not demonstrated in other hot flash measures. Reductions in weight and hot flashes were significantly correlated (e.g., r=.47, p=.006). Conclusions This pilot study showed a behavioral weight loss program to be feasible, acceptable, and effective in producing weight loss among overweight/obese women with hot flashes. Findings indicate the importance of a larger study designed to test behavioral weight loss for hot flash reduction. Hot flash management could motivate women to engage in this health-promoting behavior. PMID:24977456

  19. Karst flash floods: an example from the Dinaric karst (Croatia)

    NASA Astrophysics Data System (ADS)

    Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T.

    2006-03-01

    Flash floods constitute one of the deadliest and costliest natural disasters worldwide. This paper explains the karst flash flood phenomenon, which represents a special kind of flash flood. As the majority of flash floods karst flash floods are caused by intensive short-term precipitation in an area whose surface rarely exceeds a few square kilometres. The characteristics of all flash floods are their short duration, small areal extent, high flood peaks and rapid flows, and heavy loss of life and property. Karst flash floods have specific characteristics due to special conditions for water circulation, which exist in karst terrains. During karst flash floods a sudden rise of groundwater levels occurs, which causes the appearance of numerous, unexpected, abundant and temporary karst springs. This paper presents in detail an example of a karst flash flood in the Marina bay (Dinaric karst region of Croatia), which occurred in December 2004.

  20. A Comprehensive Study on Energy Efficiency and Performance of Flash-based SSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seon-Yeon; Kim, Youngjae; Urgaonkar, Bhuvan

    2011-01-01

    Use of flash memory as a storage medium is becoming popular in diverse computing environments. However, because of differences in interface, flash memory requires a hard-disk-emulation layer, called FTL (flash translation layer). Although the FTL enables flash memory storages to replace conventional hard disks, it induces significant computational and space overhead. Despite the low power consumption of flash memory, this overhead leads to significant power consumption in an overall storage system. In this paper, we analyze the characteristics of flash-based storage devices from the viewpoint of power consumption and energy efficiency by using various methodologies. First, we utilize simulation tomore » investigate the interior operation of flash-based storage of flash-based storages. Subsequently, we measure the performance and energy efficiency of commodity flash-based SSDs by using microbenchmarks to identify the block-device level characteristics and macrobenchmarks to reveal their filesystem level characteristics.« less

  1. Interactions of numerical and temporal stimulus characteristics on the control of response location by brief flashes of light.

    PubMed

    Fetterman, J Gregor; Killeen, P Richard

    2011-09-01

    Pigeons pecked on three keys, responses to one of which could be reinforced after 3 flashes of the houselight, to a second key after 6, and to a third key after 12. The flashes were arranged according to variable-interval schedules. Response allocation among the keys was a function of the number of flashes. When flashes were omitted, transitions occurred very late. Increasing flash duration produced a leftward shift in the transitions along a number axis. Increasing reinforcement probability produced a leftward shift, and decreasing reinforcement probability produced a rightward shift. Intermixing different flash rates within sessions separated allocations: Faster flash rates shifted the functions sooner in real time, but later in terms of flash count, and conversely for slower flash rates. A model of control by fading memories of number and time was proposed.

  2. Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.

    2016-01-01

    The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.

  3. Far-infrared-light shadowgraphy for high extraction efficiency of extreme ultraviolet light from a CO2-laser-generated tin plasma

    NASA Astrophysics Data System (ADS)

    Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki

    2016-08-01

    The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.

  4. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector

    NASA Astrophysics Data System (ADS)

    Wang, Gaochao; Tse, Peter W.; Yuan, Maodan

    2018-02-01

    Visual inspection and assessment of the condition of metal structures are essential for safety. Pulse thermography produces visible infrared images, which have been widely applied to detect and characterize defects in structures and materials. When active thermography, a non-destructive testing tool, is applied, the necessity of considerable manual checking can be avoided. However, detecting an internal crack with active thermography remains difficult, since it is usually invisible in the collected sequence of infrared images, which makes the automatic detection of internal cracks even harder. In addition, the detection of an internal crack can be hindered by a complicated inspection environment. With the purpose of putting forward a robust and automatic visual inspection method, a computer vision-based thresholding method is proposed. In this paper, the image signals are a sequence of infrared images collected from the experimental setup with a thermal camera and two flash lamps as stimulus. The contrast of pixels in each frame is enhanced by the Canny operator and then reconstructed by a triple-threshold system. Two features, mean value in the time domain and maximal amplitude in the frequency domain, are extracted from the reconstructed signal to help distinguish the crack pixels from others. Finally, a binary image indicating the location of the internal crack is generated by a K-means clustering method. The proposed procedure has been applied to an iron pipe, which contains two internal cracks and surface abrasion. Some improvements have been made for the computer vision-based automatic crack detection methods. In the future, the proposed method can be applied to realize the automatic detection of internal cracks from many infrared images for the industry.

  5. Flash fire propensity of materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Flash fire test results on 86 materials, evaluated using the USF flash fire screening test, are presented. The materials which appear least prone to flash fires are PVC, polyphenylene oxide and sulfide, and polyether and polyaryl sulfone; these did not produce flash fires under these particular test conditions. The principal value of these screening tests at the present time is in identifying materials which appear prone to flash fires, and in identifying which formulations of a generic material are more or less prone to flash fires.

  6. Quantitative theory of driven nonlinear brain dynamics.

    PubMed

    Roberts, J A; Robinson, P A

    2012-09-01

    Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Phenomenology of the sound-induced flash illusion.

    PubMed

    Abadi, Richard V; Murphy, Jonathan S

    2014-07-01

    Past studies, using pairings of auditory tones and visual flashes, which were static and coincident in space but variable in time, demonstrated errors in judging the temporal patterning of the visual flashes-the sound-induced flash illusion. These errors took one of the two forms: under-reporting (sound-induced fusion) or over-reporting (sound-induced fission) of the flash numbers. Our study had three objectives: to examine the robustness of both illusions and to consider the effects of stimulus set and response bias. To this end, we used an extended range of fixed spatial location flash-tone pairings, examined stimuli that were variable in space and time and measured confidence in judging flash numbers. Our results indicated that the sound-induced flash illusion is a robust percept, a finding underpinned by the confidence measures. Sound-induced fusion was found to be more robust than sound-induced fission and a most likely outcome when high numbers of flashes were incorporated within an incongruent flash-tone pairing. Conversely, sound-induced fission was the most likely outcome for the flash-tone pairing which contained two flashes. Fission was also shown to be strongly driven by stimuli confounds such as categorical boundary conditions (e.g. flash-tone pairings with ≤2 flashes) and compressed response options. These findings suggest whilst both fission and fusion are associated with 'auditory driving', the differences in the occurrence and strength of the two illusions not only reflect the separate neuronal mechanisms underlying audio and visual signal processing, but also the test conditions that have been used to investigate the sound-induced flash illusion.

  8. How self-reported hot flashes may relate to affect, cognitive performance and sleep.

    PubMed

    Regestein, Quentin; Friebely, Joan; Schiff, Isaac

    2015-08-01

    To explain the controversy about whether midlife women who self-report hot flashes have relatively increased affective symptoms, poor cognitive performance or worse sleep. Retrospective data from 88 women seeking relief from bothersome day and night hot flashes were submitted to mixed linear regression modeling to find if estimated hot flashes, as measured by Women's Health Questionnaire (WHQ) items, or diary-documented hot flashes recorded daily, were associated with each other, or with affective, cognitive or sleep measures. Subjects averaged 6.3 daytime diary-documented hot flashes and 2.4 nighttime diary-documented hot flashes per 24h. Confounder-controlled diary-documented hot flashes but not estimated hot flashes were associated with increased Leeds anxiety scores (F=4.9; t=2.8; p=0.01) and Leeds depression scores (3.4; 2.5; 0.02), decreased Stroop Color-Word test performance (9.4; 3.5; 0.001), increased subjective sleep disturbance (effect size=0.83) and increased objective sleep disturbance (effect size=0.35). Hot flash effects were small to moderate in size. Univariate but not multivariate analyses revealed that all hot flash measures were associated with all affect measures. Different measures of hot flashes associated differently with affect, cognition and sleep. Only nighttime diary-document hot flash consistently correlated with any affect measures in multivariate analyses. The use of differing measures for hot flashes, affect, cognition and sleep may account for the continually reported inconsistencies in menopause study outcomes. This problem impedes forging a consensus on whether hot flashes correlate with neuropsychological symptoms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  10. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  11. Susceptibility to the Flash-Beep Illusion Is Increased in Children Compared to Adults

    ERIC Educational Resources Information Center

    Innes-Brown, Hamish; Barutchu, Ayla; Shivdasani, Mohit N.; Crewther, David P.; Grayden, David B.; Paolini, Antonio

    2011-01-01

    Audio-visual integration was studied in children aged 8-17 (N = 30) and adults (N = 22) using the "flash-beep illusion" paradigm, where the presentation of two beeps causes a single flash to be perceived as two flashes ("fission" illusion), and a single beep causes two flashes to be perceived as one flash ("fusion" illusion). Children reported…

  12. Near room temperature operation of a highly strained short wavelength (2.1 µm) AlAs/In0.84Ga0.16As/AlAs/InAlAs QWIP

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Missous, M.; Lai, K. T.; Haywood, S. K.

    2006-06-01

    A strain-compensated AlAs/InxGa1-xAs/AlAs/InyAl1-yAs (x ap 0.8, y ap 0.5) quantum well infrared photodetector (QWIP) structure was grown by molecular beam epitaxy (MBE). Conditions of exact stoichiometric growth were applied at a temperature of ~420 °C to produce structures capable of detecting IR radiation in the 2-5 µm mid-infrared spectrum. Double crystal x-ray diffraction (DCXRD) and room temperature photoluminescence (PL) experiments confirmed the excellent structural characteristics of the grown material system. A strong room temperature intersubband absorption peak was observed at a wavelength of 2.16 µm. Current-voltage (I-V) measurements as a function of temperature were carried out to electrically characterize the fabricated QWIP devices yielding devices working under background limited infrared photodetection (BLIP) conditions at 270 K. From the I-V curves, an activation energy of 270 meV at zero bias was extracted. This is in good agreement with a current transport mechanism which is dominated by thermionic emission. Photocurrent measurements were carried out and we demonstrate devices that are capable of working at a temperature as high as 270 K at a wavelength of 2.1 µm. The experimental results are in excellent agreement with the modelled values.

  13. Global Patterns of Lightning Properties Derived by OTD and LIS

    NASA Technical Reports Server (NTRS)

    Beirle, Steffen; Koshak, W.; Blakeslee, R.; Wagner, T.

    2014-01-01

    The satellite instruments Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) provide unique empirical data about the frequency of lightning flashes around the globe (OTD), and the tropics (LIS), which 5 has been used before to compile a well received global climatology of flash rate densities. Here we present a statistical analysis of various additional lightning properties derived from OTD/LIS, i.e. the number of so-called "events" and "groups" per flash, as well as 10 the mean flash duration, footprint and radiance. These normalized quantities, which can be associated with the flash "strength", show consistent spatial patterns; most strikingly, oceanic flashes show higher values than continental flashes for all properties. Over land, regions with high (Eastern US) 15 and low (India) flash strength can be clearly identified. We discuss possible causes and implications of the observed regional differences. Although a direct quantitative interpretation of the investigated flash properties is difficult, the observed spatial patterns provide valuable information for the 20 interpretation and application of climatological flash rates. Due to the systematic regional variations of physical flash characteristics, viewing conditions, and/or measurement sensitivities, parametrisations of lightning NOx based on total flash rate densities alone are probably affected by regional biases.

  14. Experimental study of self magnetic pinch diode as flash radiography source at 4 megavolt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etchessahar, Bertrand; Bicrel, Béatrice; Cassany, Bruno

    2013-10-15

    The Self Magnetic Pinch (SMP) diode is a potential high-brightness X-ray source for high voltage generators (2–10 MV) that has shown good reliability for flash radiography applications [D. D. Hinchelwood et al., “High power self-pinch diode experiments for radiographic applications” IEEE Trans. Plasma Sci. 35(3), 565–572 (2007)]. We have studied this diode at about 4 MV, driven by the ASTERIX generator operated at the CEA/GRAMAT [G. Raboisson et al., “ASTERIX, a high intensity X-ray generator,” in Proceedings of the 7th IEEE Pulsed Power Conference (1989), pp. 567–570]. This generator, made up of a capacitor bank and a Blumlein line, wasmore » initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode is modified in order to set up flash radiographic diodes. A previous set of radiographic experiments was carried out on ASTERIX with a Negative Polarity Rod Pinch (NPRP) diode [B. Etchessahar et al., “Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV,” Phys. Plasmas 19(9), 093104 (2012)]. The SMP diode which is examined in the present study provides an alternative operating point on the same generator and a different radiographic performance: 142 ± 11 rad at 1 m dose (Al) for a 3.46 ± 0.42 mm spot size (1.4× FWHM of the LSF). This performance is obtained in a reproducible and robust nominal configuration. However, several parametric variations were also tested, such as cathode diameter and anode/cathode gap. They showed that an even better performance is accessible after optimization, in particular, a smaller spot size (<3 mm). Numbers of electrical, optical, and X-ray diagnostics have been implemented in order to gain more insight in the diode physics and to optimize it further. For the first time in France, visible and laser imaging of the SMP diode has been realized, from a radial point of view, thus, providing key information on the electrode plasmas evolution, responsible for the gap closure.« less

  15. Time-resolved measurements of statistics for a Nd:YAG laser.

    PubMed

    Hubschmid, W; Bombach, R; Gerber, T

    1994-08-20

    Time-resolved measurements of the fluctuating intensity of a multimode frequency-doubled Nd:YAG laser have been performed. For various operating conditions the enhancement factors in nonlinear optical processes that use a fluctuating instead of a single-mode laser have been determined up to the sixth order. In the case of reduced flash-lamp excitation and a switched-off laser amplifier, the intensity fluctuations agree with the normalized Gaussian model for the fluctuations of the fundamental frequency, whereas strong deviations are found under usual operating conditions. The frequencydoubled light has in the latter case enhancement factors not so far from values of Gaussian statistics.

  16. Characteristics of Lightning Within Electrified Snowfall Events Using Lightning Mapping Arrays

    NASA Astrophysics Data System (ADS)

    Schultz, Christopher J.; Lang, Timothy J.; Bruning, Eric C.; Calhoun, Kristin M.; Harkema, Sebastian; Curtis, Nathan

    2018-02-01

    This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the data set. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km2, with a maximum flash extent of 2,300 km2, a minimum of 3 km2, and a median of 128 km2. An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN-identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human-built environment and provides an example of lightning within heavy snowfall observed by Geostationary Operational Environmental Satellite-16's Geostationary Lightning Mapper.

  17. Hot flashes in breast cancer survivors: Frequency, severity and impact.

    PubMed

    Chang, Hao-Yuan; Jotwani, Aparna C; Lai, Yeur-Hur; Jensen, Mark P; Syrjala, Karen L; Fann, Jesse R; Gralow, Julie

    2016-06-01

    To (1) determine the frequency and severity of hot flashes, (2) examine the associations between hot flash frequency and severity and quality of life, and (3) identify the predictors of hot flash activity in breast cancer survivors. The study used a cross-sectional design and mailed survey of 253 breast cancer survivors recruited from a cancer wellness clinic. Participants provided information regarding cancer history, hot flashes, pain intensity, sleep problems, physical functioning, and psychological functioning. About half of the survivors reported at least one hot flash in the past 24 h (45%) or past week (52%). The average frequency of hot flashes was 1.9 in the past 24 h and 1.8 in the past week. Hot flash severity was usually mild or asymptomatic. However, participants with hot flashes reported significantly more sleep problems and higher pain severity than those reporting no hot flashes. Moreover, the severity of hot flashes was associated with more sleep problems, higher pain severity, and more psychological dysfunction. History of hormonal suppression therapy and younger age predicted hot flash activity in the study sample. In breast cancer survivors, hot flashes are common and are associated with unpleasant symptoms and poor quality of life. Research is needed to determine if treatments that reduce the frequency and severity of hot flashes in breast cancer survivors also result in improvements in symptoms such as sleep problems, pain, and psychological dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Hot flashes in breast cancer survivors: Frequency, severity and impact

    PubMed Central

    Chang, Hao-Yuan; Jotwani, Aparna C.; Lai, Yeur-Hur; Jensen, Mark P.; Syrjala, Karen L.; Fann, Jesse R.; Gralow, Julie

    2018-01-01

    Purposes To (1) determine the frequency and severity of hot flashes, (2) examine the associations be- tween hot flash frequency and severity and quality of life, and (3) identify the predictors of hot flash activity in breast cancer survivors. Methods The study used a cross-sectional design and mailed survey of 253 breast cancer survivors recruited from a cancer wellness clinic. Participants provided information regarding cancer history, hot flashes, pain intensity, sleep problems, physical functioning, and psychological functioning. Results About half of the survivors reported at least one hot flash in the past 24 h (45%) or past week (52%). The average frequency of hot flashes was 1.9 in the past 24 h and 1.8 in the past week. Hot flash severity was usually mild or asymptomatic. However, participants with hot flashes reported significantly more sleep problems and higher pain severity than those reporting no hot flashes. Moreover, the severity of hot flashes was associated with more sleep problems, higher pain severity, and more psychological dysfunction. History of hormonal suppression therapy and younger age predicted hot flash activity in the study sample. Conclusions In breast cancer survivors, hot flashes are common and are associated with unpleasant symptoms and poor quality of life. Research is needed to determine if treatments that reduce the frequency and severity of hot flashes in breast cancer survivors also result in improvements in symptoms such as sleep problems, pain, and psychological dysfunction. PMID:27065357

  19. Characteristics of Lightning within Electrified Snowfall Events using Lightning Mapping Arrays.

    PubMed

    Schultz, Christopher J; Lang, Timothy J; Bruning, Eric C; Calhoun, Kristin M; Harkema, Sebastian; Curtis, Nathan

    2018-02-27

    This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the dataset. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km 2 , with a maximum flash extent of 2300 km 2 , a minimum of 3 km 2 , and a median of 128 km 2 . An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human built environment and provides an example of lightning within heavy snowfall observed by GOES-16's Geostationary Lightning Mapper.

  20. Synthesis of Di- and Trisubstituted Azulenes Using a Danheiser Annulation as the Key Step: An Advanced Organic Laboratory Experiment

    ERIC Educational Resources Information Center

    Thomas, Rebecca M.; Shea, Kevin M.

    2013-01-01

    This three-week advanced-level organic experiment provides students with an inquiry-based approach focused on learning traditional skills such as primary literature interpretation, reaction design, flash column chromatography, and NMR analysis. Additionally, students address higher-order concepts such as the origin of azulene's blue color,…

  1. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    NASA Astrophysics Data System (ADS)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  2. Data processing system for the Sneg-2MP experiment

    NASA Technical Reports Server (NTRS)

    Gavrilova, Y. A.

    1980-01-01

    The data processing system for scientific experiments on stations of the "Prognoz" type provides for the processing sequence to be broken down into a number of consecutive stages: preliminary processing, primary processing, secondary processing. The tasks of each data processing stage are examined for an experiment designed to study gamma flashes of galactic origin and solar flares lasting from several minutes to seconds in the 20 kev to 1000 kev energy range.

  3. Interactions of photosystem II with bicarbonate, formate and acetate.

    PubMed

    Shevela, Dmitriy; Klimov, Vyacheslav; Messinger, Johannes

    2007-01-01

    In this study, we probe the effects of bicarbonate (hydrogencarbonate), BC, removal from photosystem II in spinach thylakoids by measuring flash-induced oxygen evolution patterns (FIOPs) with a Joliot-type electrode. For this we compared three commonly employed methods: (1) washing in BC-free medium, (2) formate addition, and (3) acetate addition. Washing of the samples with buffers depleted of BC and CO2 by bubbling with argon (Method 1) under our conditions leads to an increase in the double hit parameter of the first flash (beta 1), while the miss parameter and the overall activity remain unchanged. In contrast, addition of 40-50 mM formate or acetate results in a significant increase in the miss parameter and to an approximately 50% (formate) and approximately 10% (acetate) inhibition of the overall oxygen evolution activity, but not to an increased beta 1 parameter. All described effects could be reversed by washing with formate/acetate free buffer and/or addition of 2-10 mM bicarbonate. The redox potential of the water-oxidizing complex (WOC) in samples treated by Method 1 is compared to samples containing 2 mM bicarbonate in two ways: (1) The lifetimes of the S0, S2, and S3 states were measured, and no differences were found between the two sample types. (2) The S1, S0, S(-1), and S(-2) states were probed by incubation with small concentrations of NH2OH. These experiments displayed a subtle, yet highly reproducible difference in the apparent Si/S(-i) state distribution which is shown to arise from the interaction of BC with PSII in the already reduced states of the WOC. These data are discussed in detail by also taking into account the CO2 concentrations present in the buffers after argon bubbling and during the measurements. These values were measured by membrane-inlet mass spectrometry (MIMS).

  4. Far infrared edge photoresponse and persistent edge transport in an inverted InAs/GaSb heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, G. C.; Olson, B. V.; Hawkins, S. D.

    2016-01-04

    Direct current (DC) transport and far infrared photoresponse were studied an InAs/GaSb double quantum well with an inverted band structure. The DC transport depends systematically upon the DC bias configuration and operating temperature. Surprisingly, it reveals robust edge conduction despite prevalent bulk transport in our device of macroscopic size. Under 180 GHz far infrared illumination at oblique incidence, we measured a strong photovoltaic response. We conclude that quantum spin Hall edge transport produces the observed transverse photovoltages. Overall, our experimental results support a hypothesis that the photoresponse arises from direct coupling of the incident radiation field to edge states.

  5. Magnitude of the impact of hot flashes on sleep in perimenopausal women

    PubMed Central

    de Zambotti, Massimiliano; Colrain, Ian M.; Javitz, Harold S.; Baker, Fiona C.

    2014-01-01

    Objective To quantify the impact of objectively-recorded hot flashes on objective sleep in perimenopausal women. Design Cross-sectional study. Participants underwent 1–5 laboratory-based polysomnographic recordings for a total of 63 nights, including sternal skin conductance measures, from which 222 hot flashes were identified according to established criteria. Data were analyzed with hierarchical mixed-effect models and Spearman correlations. Setting Sleep laboratory. Patients 34 perimenopausal women (Age±SD:50.4±2.7y). Intervention None. Main Outcome Measures Perceived and polysomnographic sleep measures (sleep quality, amount of wake after sleep onset and number of awakenings). Subjective (frequency and bother) and objective (frequency and amount of hot flash-associated wake time) hot flash measures. Results Women had an average of 3.5 (95%CI:2.8–4.2, range=1– 9) objective hot flashes per night. 69.4% of hot flashes were associated with an awakening. Hot flash-associated wake time per night was, on average, 16.6 min (95%CI:10.8–22.4), which accounted for 27.2% (SD 27.1) of total wakefulness per night. Hot flash-associated wake, but not frequency, was negatively associated with sleep efficiency and positively associated with wake after sleep onset. Also, self-reported wakefulness correlated with hot flash-associated wake, suggesting that women’s estimates of wakefulness are influenced by the amount of time spent awake in association with hot flashes during the night. More perceived and bothersome hot flashes correlated with more perceived wakefulness and awakenings and more objective hot flash-associated wake time and hot flash frequency. Conclusions The presence of physiological hot flashes accounts for a significant proportion of total objective wakefulness during the night in perimenopausal women. PMID:25256933

  6. Adiposity and Hot Flashes in Midlife Women: A Modifying Role of Age

    PubMed Central

    Santoro, Nanette; Matthews, Karen A.

    2011-01-01

    Background: The nature of the relationship between adiposity and hot flashes has been debated, but it has not been examined using physiological measures of hot flashes. We examined associations between body size/composition and physiologically assessed hot flashes among women with hot flashes. Methods: A subcohort of women in the Study of Women's Health Across the Nation (n = 52; 25 African-American and 27 non-Hispanic Caucasian; ages, 54 to 63 yr) who reported hot flashes, had their uterus and ovaries, and were not taking medications impacting hot flashes were recruited in 2008–2009. Women completed anthropometric measures [bioimpedance analysis of total percentage of body fat, body mass index (BMI), waist circumference], a blood draw (estradiol, SHBG, FSH, dehydroepiandrosterone sulfate), and 4 d of ambulatory sternal skin conductance monitoring with diary (physiological and reported hot flashes, respectively). Associations between anthropometrics and hot flashes were estimated with generalized estimating equations with covariates age, race, and anxiety. Results: Higher BMI (odds ratio, 0.97; 95% confidence interval, 0.94–0.99; P < 0.05) and waist circumference (odds ratio, 0.98; 95% confidence interval, 0.97–0.99; P < 0.01) were associated with fewer physiological hot flashes. Interactions by age (P < 0.05) indicated that inverse associations of body fat, BMI, and waist circumference with hot flashes were most apparent among the oldest women in the sample. Estradiol and SHBG reduced but did not eliminate age-related variations in relations between body size/composition and hot flashes. Conclusion: Higher adiposity was associated with fewer physiological hot flashes among older women with hot flashes. A modifying role of age must be considered in understanding the role of adiposity in hot flashes. PMID:21778220

  7. Adiposity and hot flashes in midlife women: a modifying role of age.

    PubMed

    Thurston, Rebecca C; Santoro, Nanette; Matthews, Karen A

    2011-10-01

    The nature of the relationship between adiposity and hot flashes has been debated, but it has not been examined using physiological measures of hot flashes. We examined associations between body size/composition and physiologically assessed hot flashes among women with hot flashes. A subcohort of women in the Study of Women's Health Across the Nation (n = 52; 25 African-American and 27 non-Hispanic Caucasian; ages, 54 to 63 yr) who reported hot flashes, had their uterus and ovaries, and were not taking medications impacting hot flashes were recruited in 2008-2009. Women completed anthropometric measures [bioimpedance analysis of total percentage of body fat, body mass index (BMI), waist circumference], a blood draw (estradiol, SHBG, FSH, dehydroepiandrosterone sulfate), and 4 d of ambulatory sternal skin conductance monitoring with diary (physiological and reported hot flashes, respectively). Associations between anthropometrics and hot flashes were estimated with generalized estimating equations with covariates age, race, and anxiety. Higher BMI (odds ratio, 0.97; 95% confidence interval, 0.94-0.99; P < 0.05) and waist circumference (odds ratio, 0.98; 95% confidence interval, 0.97-0.99; P < 0.01) were associated with fewer physiological hot flashes. Interactions by age (P < 0.05) indicated that inverse associations of body fat, BMI, and waist circumference with hot flashes were most apparent among the oldest women in the sample. Estradiol and SHBG reduced but did not eliminate age-related variations in relations between body size/composition and hot flashes. Higher adiposity was associated with fewer physiological hot flashes among older women with hot flashes. A modifying role of age must be considered in understanding the role of adiposity in hot flashes.

  8. Initial Breakdown Pulse Amplitudes in Intracloud and Cloud-to-Ground Lightning Flashes

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Smith, E. M.; Stolzenburg, M.; Karunarathne, S.; Siedlecki, R. D., II

    2017-12-01

    This study analyzes the largest initial breakdown (IB) pulse in flashes from three storms in Florida. The study was motivated in part by the possibility that IB pulses of IC flashes may cause of terrestrial gamma-ray flashes (TGFs). The range-normalized, zero-to-peak amplitude of the largest IB pulse within each flash was determined along with its altitude, duration, and occurrence time in the flash. Appropriate data were available for 40 intracloud (IC) and 32 cloud-to-ground (CG) flashes. Histograms of the magnitude of the largest IB pulse amplitude by flash type were similar, with mean (median) values of 1.49 (1.05) V/m for IC flashes and -1.35 (-0.87) V/m for CG flashes. The mean amplitude of the largest IC IB pulses are substantially smaller (roughly an order of magnitude smaller) than the few known pulse amplitudes of TGF events and TGF candidate events. The largest IB pulse in 30 IC flashes showed a weak inverse relation between pulse amplitude and altitude. Amplitude of the largest IB pulse for 25 CG flashes showed no altitude correlation. Duration of the largest IB pulse in ICs averaged twice as long as in CGs (96 μs versus 46 μs); all of the CG durations were <100 μs. Among the ICs, there is a positive relation between largest IB pulse duration and amplitude; the linear correlation coefficient is 0.385 with outliers excluded. The largest IB pulse in IC flashes typically occurred at a longer time after the first IB pulse (average 4.1 ms) than was the case in CG flashes (average 0.6 ms). In both flash types, the largest IB pulse was the first IB pulse in about 30% of the cases.

  9. Cryogenic Tm: YAG Laser in the Near Infrared

    DTIC Science & Technology

    2015-05-29

    Applications Group. The focus of his work at Lincoln Laboratory has been solid-state lasers including microchip lasers , external-cavity diode lasers ...REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < Cryogenic Tm:YAG Laser in the Near Infrared* Tso Yee Fan...Senior Member, IEEE, Juan R. Ochoa, and Patricia A. Reed Abstract- Thulium laser operation on the 3H4 - 3H6 transition at 823 nm has been demonstrated

  10. SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2

    PubMed Central

    Vennemann, Astrid; Hofmann, Thomas G.

    2013-01-01

    FLASH/Casp8AP2 is a huge multifunctional protein involved in multiple cellular processes, reaching from death receptor signaling to regulation of histone gene transcription and histone mRNA processing. Previous work has shown that FLASH localizes to Cajal bodies and promyelocytic leukemia (PML) bodies. However, the function of its nuclear body association remains unclear. Here we demonstrate that murine FLASH is covalently modified by SUMO at Lys residue 1792. Interestingly, ectopic expression of SUMO results in proteasome-dependent degradation of FLASH. A point mutant of FLASH with a mutated SUMO acceptor lysine residue, FLASHK1792R, is resistant to SUMO-induced degradation. Finally, we show that arsenic trioxide, a drug known to potentiate SUMO modification and degradation of PML, triggers recruitment of FLASH to PML bodies and concomitant loss of FLASH protein. Our data suggest that SUMO targets FLASH for proteasome-dependent degradation, which is associated with recruitment of FLASH to PML bodies. PMID:23673342

  11. The October 2014 United States Treasury bond flash crash and the contributory effect of mini flash crashes

    PubMed Central

    Levine, Zachary S.; Floridi, Luciano

    2017-01-01

    We investigate the causal uncertainty surrounding the flash crash in the U.S. Treasury bond market on October 15, 2014, and the unresolved concern that no clear link has been identified between the start of the flash crash at 9:33 and the opening of the U.S. equity market at 9:30. We consider the contributory effect of mini flash crashes in equity markets, and find that the number of equity mini flash crashes in the three-minute window between market open and the Treasury Flash Crash was 2.6 times larger than the number experienced in any other three-minute window in the prior ten weekdays. We argue that (a) this statistically significant finding suggests that mini flash crashes in equity markets both predicted and contributed to the October 2014 U.S. Treasury Bond Flash Crash, and (b) mini-flash crashes are important phenomena with negative externalities that deserve much greater scholarly attention. PMID:29091931

  12. Infrared characteristics and flow field of the exhaust plume outside twin engine nozzle

    NASA Astrophysics Data System (ADS)

    Feng, Yun-song

    2016-01-01

    For mastery of infrared radiation characteristics and flow field of exhaust plume of twin engine nozzles, first, a physical model of the double rectangular nozzles is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the twin engine nozzles, and the datum of flow field, such as temperature, pressure and density, are obtained. Finally, based on the plume temperature, the exhaust plume space is divided. The exhaust plume is equivalent to a gray-body. A calculating model of the plume infrared radiation is established, and the plume infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. The result improves that with the height increasing the temperature, press and infrared radiant intensity diminish. Compared with engine afterburning condition, temperature and infrared radiant intensity increases and press has no obvious change.

  13. Ultra-doped n-type germanium thin films for sensing in the mid-infrared

    PubMed Central

    Prucnal, Slawomir; Liu, Fang; Voelskow, Matthias; Vines, Lasse; Rebohle, Lars; Lang, Denny; Berencén, Yonder; Andric, Stefan; Boettger, Roman; Helm, Manfred; Zhou, Shengqiang; Skorupa, Wolfgang

    2016-01-01

    A key milestone for the next generation of high-performance multifunctional microelectronic devices is the monolithic integration of high-mobility materials with Si technology. The use of Ge instead of Si as a basic material in nanoelectronics would need homogeneous p- and n-type doping with high carrier densities. Here we use ion implantation followed by rear side flash-lamp annealing (r-FLA) for the fabrication of heavily doped n-type Ge with high mobility. This approach, in contrast to conventional annealing procedures, leads to the full recrystallization of Ge films and high P activation. In this way single crystalline Ge thin films free of defects with maximum attained carrier concentrations of 2.20 ± 0.11 × 1020 cm−3 and carrier mobilities above 260 cm2/(V·s) were obtained. The obtained ultra-doped Ge films display a room-temperature plasma frequency above 1,850 cm−1, which enables to exploit the plasmonic properties of Ge for sensing in the mid-infrared spectral range. PMID:27282547

  14. PIAS1 interacts with FLASH and enhances its co-activation of c-Myb

    PubMed Central

    2011-01-01

    Background FLASH is a huge nuclear protein involved in various cellular functions such as apoptosis signalling, NF-κB activation, S-phase regulation, processing of histone pre-mRNAs, and co-regulation of transcription. Recently, we identified FLASH as a co-activator of the transcription factor c-Myb and found FLASH to be tightly associated with active transcription foci. As a huge multifunctional protein, FLASH is expected to have many interaction partners, some which may shed light on its function as a transcriptional regulator. Results To find additional FLASH-associated proteins, we performed a yeast two-hybrid (Y2H) screening with FLASH as bait and identified the SUMO E3 ligase PIAS1 as an interaction partner. The association appears to involve two distinct interaction surfaces in FLASH. We verified the interaction by Y2H-mating, GST pulldowns, co-IP and ChIP. FLASH and PIAS1 were found to co-localize in nuclear speckles. Functional assays revealed that PIAS1 enhances the intrinsic transcriptional activity of FLASH in a RING finger-dependent manner. Furthermore, PIAS1 also augments the specific activity of c-Myb, and cooperates with FLASH to further co-activate c-Myb. The three proteins, FLASH, PIAS1, and c-Myb, are all co-localized with active RNA polymerase II foci, resembling transcription factories. Conclusions We conclude that PIAS1 is a common partner for two cancer-related nuclear factors, c-Myb and FLASH. Our results point to a functional cooperation between FLASH and PIAS1 in the enhancement of c-Myb activity in active nuclear foci. PMID:21338522

  15. "Know What to Do If You Encounter a Flash Flood": Mental Models Analysis for Improving Flash Flood Risk Communication and Public Decision Making.

    PubMed

    Lazrus, Heather; Morss, Rebecca E; Demuth, Julie L; Lazo, Jeffrey K; Bostrom, Ann

    2016-02-01

    Understanding how people view flash flood risks can help improve risk communication, ultimately improving outcomes. This article analyzes data from 26 mental models interviews about flash floods with members of the public in Boulder, Colorado, to understand their perspectives on flash flood risks and mitigation. The analysis includes a comparison between public and professional perspectives by referencing a companion mental models study of Boulder-area professionals. A mental models approach can help to diagnose what people already know about flash flood risks and responses, as well as any critical gaps in their knowledge that might be addressed through improved risk communication. A few public interviewees mentioned most of the key concepts discussed by professionals as important for flash flood warning decision making. However, most interviewees exhibited some incomplete understandings and misconceptions about aspects of flash flood development and exposure, effects, or mitigation that may lead to ineffective warning decisions when a flash flood threatens. These include important misunderstandings about the rapid evolution of flash floods, the speed of water in flash floods, the locations and times that pose the greatest flash flood risk in Boulder, the value of situational awareness and environmental cues, and the most appropriate responses when a flash flood threatens. The findings point to recommendations for ways to improve risk communication, over the long term and when an event threatens, to help people quickly recognize and understand threats, obtain needed information, and make informed decisions in complex, rapidly evolving extreme weather events such as flash floods. © 2015 Society for Risk Analysis.

  16. Hot Flashes and Carotid Intima Media Thickness among Midlife Women

    PubMed Central

    Thurston, Rebecca C.; Sutton-Tyrrell, Kim; Everson-Rose, Susan A.; Hess, Rachel; Powell, Lynda H.; Matthews, Karen A.

    2010-01-01

    Objective Emerging evidence suggests associations between menopausal hot flashes and cardiovascular risk. Whether hot flashes are associated with intima media thickness (IMT) or IMT changes over time is unknown. We hypothesized that reported hot flashes would be associated with greater IMT cross-sectionally and with greater IMT progression over two years. Methods Participants were 432 women ages 45-58 at baseline participating in SWAN Heart, an ancillary study to the Study of Women's Health Across the Nation. Measures at the SWAN Heart baseline and follow-up visit two years later included a carotid artery ultrasound, reported hot flashes (past two weeks: none, 1-5, ≥6 days), and a blood sample for measurement of estradiol. Results Women reporting hot flashes ≥6 days in the prior two weeks had significantly higher IMT than women without hot flashes at baseline (mean difference(SE), mm =0.02(0.01), p=0.03) and follow-up (mean difference(SE), mm =0.02(0.01), p=0.04) visits, controlling for demographic factors and cardiovascular risk factors. Reporting hot flashes at both study visits was associated with higher follow-up IMT relative to reporting hot flashes at neither visit (mean difference(SE), mm=0.03(0.01), p=0.03). Associations between hot flashes and IMT largely remained after adjusting for estradiol. An interaction between hot flashes and obesity status was observed (p=0.05) such that relations between hot flashes and IMT were observed principally among overweight/obese women. Hot flashes were not associated with IMT progression. Conclusions These findings provided some indication that women reporting hot flashes ≥6 days in the prior two weeks may have higher IMT than women without hot flashes, particularly for women who are overweight or obese. Further work should determine whether hot flashes mark adverse underlying vascular changes. PMID:21242820

  17. Understanding and Seasonal Forecasting of multiscale droughts in China

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Wang, L.; Wang, S.; Zhang, M.

    2016-12-01

    Droughts were climate anomalies that occurred naturally. But they have been altered by climate change and human interventions, and have covered a variety of spatiotemporal scales from seasonal/decadal droughts at regional to continental scales that are associated with large-scale climate anomalies and certain atmospheric circulation patterns, to flash droughts at local scales that are usually concurrent with heat extremes. Droughts have quite different implications across a number of sectors, with the considerations augmented from meteorological droughts to agricultural and hydrological droughts, where the latter could be affected by human activities directly. This raises a grand challenge to understand and predict droughts across scales in a changing environment. This presentation will be started by diagnosing an El Niño-induced meteorological drought that occurred over northern China (NC) last year, where the oceanic and atmospheric background are investigated, and the real-time prediction from Climate Forecast System version 2 (CFSv2) are diagnosed. The comparison between 2015 NC drought and other historical droughts are discussed, and a dynamical-statistical forecasting approach is being developed. Secondly, a rapidly developing agricultural drought event that termed as "flash droughts" accompanied by extreme heat, low soil moisture and high evapotranspiration (ET), occurred frequently around the world, and caused devastating impacts on crop yields and water supply. The increasing trend of flash droughts over China was tripled after the big El Niño event in 1997/98, but the warming hiatus does exist over many regions of China. The changes in flash droughts over China are being attributed by using multiple reanalysis data and the CMIP5 simulations. Lastly, the effects of human interventions on the drought propagation will be investigated over Yellow River basin in northern China. A comparison between SPI and standardized streamflow index indicates that the response of hydrological droughts to meteorological droughts becomes longer, and the duration and severity of hydrological droughts could be doubled or tripled with human interventions. The impact of human intervention on the hydrological drought predictability is being explored within the NMME/VIC forecasting framework.

  18. Pattern-reversal electroretinograms in unilateral glaucoma.

    PubMed

    Wanger, P; Persson, H E

    1983-06-01

    Pattern-reversal and flash electroretinograms (ERG) and oscillatory potentials (OP) were recorded from 11 patients with unilateral glaucoma. All glaucomatous eyes had reduced amplitudes both compared to the opposite eye in the same patient and to reference values. In 10 of the 11 cases this reduction was below the level of normal variation. The difference in pattern-reversal ERG amplitude means from glaucomatous and opposite eyes was statistically significant. No differences were observed in flash ERGs or OPs. The histopathologic correlate to the visual field defects in glaucoma is retinal ganglion cell degeneration. The present electrophysiologic findings support the view, based on results from animal experiments, that the pattern-reversal ERG reflects ganglion cell activity.

  19. Background Light Bluer Than Expected

    NASA Image and Video Library

    2014-11-06

    This plot shows data from the Cosmic Infrared Background Experiment, or CIBER, rockets launched in 2010 and 2012. The experiment measures a diffuse glow of infrared light in the sky, known as the cosmic infrared background.

  20. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  1. 50 CFR 600.730 - Facilitation of enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmitted by flashing light directed at the vessel signaled. USCG units will normally use the flashing light... your vessel instantly.” (Period (.) means a short flash of light; dash (-) means a long flash of light... authorized officer using loudhailer, radiotelephone, flashing light signal, or other means constitutes prima...

  2. 50 CFR 600.730 - Facilitation of enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmitted by flashing light directed at the vessel signaled. USCG units will normally use the flashing light... your vessel instantly.” (Period (.) means a short flash of light; dash (-) means a long flash of light... authorized officer using loudhailer, radiotelephone, flashing light signal, or other means constitutes prima...

  3. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    PubMed

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  4. KENNEDY SPACE CENTER, FLA. - Dan Phillips (left) and Donald Nielen, with United Space Alliance, watch a monitor as Jim Landy, NDE specialist with USA, prepares to examine a Reinforced Carbon Carbon panel (on the table, center) using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Dan Phillips (left) and Donald Nielen, with United Space Alliance, watch a monitor as Jim Landy, NDE specialist with USA, prepares to examine a Reinforced Carbon Carbon panel (on the table, center) using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.

  5. Kinematic and Microphysical Control of Lightning Flash Rate over Northern Alabama

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Bain, Anthony L.; Matthee, Retha; Schultz, Christopher J.; Schultz, Elise V.; Deierling, Wiebke; Petersen, Walter A.

    2015-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep convection and the production of nitrogen oxides (NO (sub x)) via lightning (LNO (sub x)). A critical step in estimating LNO (sub x) production in a cloud-resolving model (CRM) without explicit lightning is to estimate the flash rate from available model parameters that are statistically and physically correlated. As such, the objective of this study is to develop, improve and evaluate lightning flash rate parameterizations in a variety of meteorological environments and storm types using radar and lightning mapping array (LMA) observations taken over Northern Alabama from 2005-2012, including during DC3. UAH's Advanced Radar for Meteorological and Operational Research (ARMOR) and the Weather Surveillance Radar - 1988 Doppler (WSR 88D) located at Hytop (KHTX) comprises the dual-Doppler and polarimetric radar network, which has been in operation since 2004. The northern Alabama LMA (NA LMA) in conjunction with Vaisala's National Lightning Detection Network (NLDN) allow for a detailed depiction of total lightning during this period. This study will integrate ARMOR-KHTX dual Doppler/polarimetric radar and NA LMA lightning observations from past and ongoing studies, including the more recent DC3 results, over northern Alabama to form a large data set of 15-20 case days and over 20 individual storms, including both ordinary multicell and supercell convection. Several flash rate parameterizations will be developed and tested, including those based on 1) graupel/small hail volume; 2) graupel/small hail mass, and 3) convective updraft volume. Sensitivity of the flash rate parameterizations to storm intensity, storm morphology and environmental conditions will be explored.

  6. High-durability surface-discharge flash x-ray tube driven by a two-stage Marx pulser

    NASA Astrophysics Data System (ADS)

    Shikoda, Arimitsu; Sato, Eiichi; Kimura, Shingo; Oizumi, Teiji; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-02-01

    We developed a high-durability flash x-ray tube with a plate-shaped ferrite cathode for the use in the field of biomedical engineering and technology. The surface-discharge cathode was very useful for generating stable flash x rays. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, an energy-storage condenser of 97 nF, a two-stage Marx type pulser, an oil diffusion pump, and a flash x-ray tube. This x-ray tube was of a diode which was connected to the turbo molecular pump and had plate-shaped anode and cathode electrodes. The cathode electrode was made of ferrite, and its edge was covered with a thin gold film by means of the spattering in order to decrease contact resistance. The space between the anode and cathode electrodes could be regulated from the outside of the x-ray rube. The two condensers in Marx circuit were charged from 50 to 70 kV by a power supply, and the condensers were connected in series after closing a gap switch. Thus the maximum output voltages from the pulser were about two times the charged voltages. In this experiment, the maximum tube voltage and the current were about 110 kV and 0.8 kA, respectively. The pulse widths were less than 140 ns, and the maximum x-ray intensity was 1.27 (mu) C/kg at 0.5 m per pulse. The size of the focal spot and the maximum repetition rate were about 2 X 2.5 mm and 50 Hz (fps), respectively.

  7. Vasomotor symptoms among Japanese-American and European-American women living in Hilo, Hawaii.

    PubMed

    Sievert, Lynnette Leidy; Morrison, Lynn; Brown, Daniel E; Reza, Angela M

    2007-01-01

    The Hilo Women's Health Survey was designed and administered to gather baseline data on women's health in Hilo, HI. This randomized, cross-sectional study allowed for a focus on ethnic differences in symptom reporting. The results presented here focus on hot flash and night sweat experience among Japanese-American and European-American women. Survey packets were mailed to street addresses associated with parcel numbers pulled randomly from Hilo tax maps. Of the 6,401 survey packets delivered to households, 1,824 questionnaires were completed and returned. The results reported here are based on 869 women aged 40 to 60, of whom 249 described themselves to be 100% Japanese and 203 described themselves to be 100% European-American. Logistic regression analyses were used to examine whether the relationship between ethnicity and vasomotor symptoms persisted after controlling for other variables. European-American participants were more likely to have ever experienced a hot flash as compared with Japanese-American participants (72% vs 53%, P<0.01). During the 2 weeks before the survey, European-American participants were more likely to have experienced hot flashes (P<0.05) and night sweats (P<0.01). In logistic regression analyses, after controlling for age, body mass index, menopause status, level of education, financial comfort, smoking habits, alcohol intake, exercise, use of hormone therapy, and soy intake, European-American women were still significantly more likely to have experienced hot flashes (odds ratio=1.858) and night sweats (odds ratio=2.672). The results, based on self-reporting of menopausal symptoms, indicate that Japanese-American women report fewer hot flashes and night sweats than European-American women. Japanese-American women reported a higher intake of soy, but soy intake was not associated with fewer vasomotor symptoms.

  8. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flashing light units. 234.217 Section 234.217..., Inspection, and Testing Maintenance Standards § 234.217 Flashing light units. (a) Each flashing light unit.... (b) Each flashing light unit shall be maintained to prevent dust and moisture from entering the...

  9. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Flashing light units. 234.217 Section 234.217..., Inspection, and Testing Maintenance Standards § 234.217 Flashing light units. (a) Each flashing light unit.... (b) Each flashing light unit shall be maintained to prevent dust and moisture from entering the...

  10. Lunar Impact Flash Locations

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    A bright impact flash detected by the NASA Lunar Impact Monitoring Program in March 2013 brought into focus the importance of determining the impact flash location. A process for locating the impact flash, and presumably its associated crater, was developed using commercially available software tools. The process was successfully applied to the March 2013 impact flash and put into production on an additional 300 impact flashes. The goal today: provide a description of the geolocation technique developed.

  11. FLASH Interface; a GUI for managing runtime parameters in FLASH simulations

    NASA Astrophysics Data System (ADS)

    Walker, Christopher; Tzeferacos, Petros; Weide, Klaus; Lamb, Donald; Flocke, Norbert; Feister, Scott

    2017-10-01

    We present FLASH Interface, a novel graphical user interface (GUI) for managing runtime parameters in simulations performed with the FLASH code. FLASH Interface supports full text search of available parameters; provides descriptions of each parameter's role and function; allows for the filtering of parameters based on categories; performs input validation; and maintains all comments and non-parameter information already present in existing parameter files. The GUI can be used to edit existing parameter files or generate new ones. FLASH Interface is open source and was implemented with the Electron framework, making it available on Mac OSX, Windows, and Linux operating systems. The new interface lowers the entry barrier for new FLASH users and provides an easy-to-use tool for experienced FLASH simulators. U.S. Department of Energy (DOE), NNSA ASC/Alliances Center for Astrophysical Thermonuclear Flashes, U.S. DOE NNSA ASC through the Argonne Institute for Computing in Science, U.S. National Science Foundation.

  12. OTD Observations of Continental US Ground and Cloud Flashes

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2007-01-01

    Lightning optical flash parameters (e.g., radiance, area, duration, number of optical groups, and number of optical events) derived from almost five years of Optical Transient Detector (OTD) data are analyzed. Hundreds of thousands of OTD flashes occurring over the continental US are categorized according to flash type (ground or cloud flash) using US National Lightning Detection Network TM (NLDN) data. The statistics of the optical characteristics of the ground and cloud flashes are inter-compared on an overall basis, and as a function of ground flash polarity. A standard two-distribution hypothesis test is used to inter-compare the population means of a given lightning parameter for the two flash types. Given the differences in the statistics of the optical characteristics, it is suggested that statistical analyses (e.g., Bayesian Inference) of the space-based optical measurements might make it possible to successfully discriminate ground and cloud flashes a reasonable percentage of the time.

  13. Menopausal Hot Flashes and White Matter Hyperintensities

    PubMed Central

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.

    2015-01-01

    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  14. Some properties of negative cloud-to-ground flashes from observations of a local thunderstorm based on accurate-stroke-count studies

    NASA Astrophysics Data System (ADS)

    Zhu, Baoyou; Ma, Ming; Xu, Weiwei; Ma, Dong

    2015-12-01

    Properties of negative cloud-to-ground (CG) lightning flashes, in terms of number of strokes per flash, inter-stroke intervals and the relative intensity of subsequent and first strokes, were presented by accurate-stroke-count studies based on all 1085 negative flashes from a local thunderstorm. The percentage of single-stroke flashes and stroke multiplicity evolved significantly during the whole life cycle of the study thunderstorm. The occurrence probability of negative CG flashes decreased exponentially with the increasing number of strokes per flash. About 30.5% of negative CG flashes contained only one stroke and number of strokes per flash averaged 3.3. In a subset of 753 negative multiple-stroke flashes, about 41.4% contained at least one subsequent stroke stronger than the corresponding first stroke. Subsequent strokes tended to decrease in strength with their orders and the ratio of subsequent to first stroke peaks presented a geometric mean value of 0.52. Interestingly, negative CG flashes of higher multiplicity tended to have stronger initial strokes. 2525 inter-stroke intervals showed a more or less log-normal distribution and gave a geometric mean value of 62 ms. For CG flashes of particular multiplicity geometric mean inter-stroke intervals tended to decrease with the increasing number of strokes per flash, while those intervals associated with higher order strokes tended to be larger than those associated with low order strokes.

  15. Photoreceptor Layer Thickness Changes During Dark Adaptation Observed With Ultrahigh-Resolution Optical Coherence Tomography.

    PubMed

    Lu, Chen D; Lee, ByungKun; Schottenhamml, Julia; Maier, Andreas; Pugh, Edward N; Fujimoto, James G

    2017-09-01

    To examine outer retinal band changes after flash stimulus and subsequent dark adaptation with ultrahigh-resolution optical coherence tomography (UHR-OCT). Five dark-adapted left eyes of five normal subjects were imaged with 3-μm axial-resolution UHR-OCT during 30 minutes of dark adaptation following 96%, 54%, 23%, and 0% full-field and 54% half-field rhodopsin bleach. We identified the ellipsoid zone inner segment/outer segment (EZ[IS/OS]), cone interdigitation zone (CIZ), rod interdigitation zone (RIZ), retinal pigment epithelium (RPE), and Bruch's membrane (BM) axial positions and generated two-dimensional thickness maps of the EZ(IS/OS) to the four bands. The average thickness over an area of the thickness map was compared against that of the dark-adapted baselines. The time-dependent thickness changes (photoresponses) were statistically compared against 0% bleach. Dark adaptometry was performed with the same bleaching protocol. The EZ(IS/OS)-CIZ photoresponse was significantly different at 96% (P < 0.0001) and 54% (P = 0.006) bleach. At all three bleaching levels, the EZ(IS/OS)-RIZ, -RPE, and -BM responses were significantly different (P < 0.0001). The EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ time courses were similar to the recovery of rod- and cone-mediated sensitivity, respectively, measured with dark adaptometry. The maximal EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ response magnitudes doubled from 54% to 96% bleach. Both EZ(IS/OS)-RPE and EZ(IS/OS)-BM responses resembled dampened oscillations that were graded in amplitude and duration with bleaching intensity. Half-field photoresponses were localized to the stimulated retina. With noninvasive, near-infrared UHR-OCT, we characterized three distinct, spatially localized photoresponses in the outer retinal bands. These photoresponses have potential value as physical correlates of photoreceptor function.

  16. Laser-induced down-conversion and infrared phosphorescence emissivity of novel ligand-free perovskite nanomaterials

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Khafagy, Rasha M.; El-sayed, O.

    2014-03-01

    For the first time, standalone and ligand-free series of novel rare-earth-based perovskite nanomaterials are used as near infrared (NIR) and mid infrared (MIR) emitters. Nano-sized La0.7Sr0.3M0.1Fe0.9O3; where M = 0, Mn2+, Co2+ or Ni2+ were synthesized using the flash auto-combustion method and characterized using FTIR, FT-Raman, SEM and EDX. Photoluminescence spectra were spontaneously recorded during pumping the samples with 0.5 mW of green laser emitting continuously at 532 nm. La0.7Sr0.3FeO3 (where M = 0) did not result in any infrared emissivity, while intense near and mid infrared down-converted phosphorescence was released from the M-doped samples. The released phosphorescence greatly shifted among the infrared spectral region with changing the doping cation. Ni2+-doped perovskite emitted at the short-wavelength near-infrared region, while Mn2+ and Co2+-doped perovskites emitted at the mid-wavelength infrared region. The detected laser-induced spontaneous parametric down-conversion phosphorescence (SPDC) occurred through a two-photon process by emitting two NIR or MIR photons among a cooperative energy transfer between the La3+ cations and the M2+ cations. Combining SrFeO3 ceramic with both a rare earth cation (RE3+) and a transition metal cation (Mn2+, Co2+ or Ni2+), rather than introducing merely RE3+ cations, greatly improved and controlled the infrared emissivity properties of synthesized perovskites through destroying their crystal symmetry and giving rise to asymmetrical lattice vibration and the nonlinear optical character. The existence of SPDC in the M2+-doped samples verifies their nonlinear character after the absence of this character in La0.7Sr0.3FeO3. Obtained results verify that, for the first time, perovskite nanomaterials are considered as nonlinear optical crystals with intense infrared emissivity at low pumping power of visible wavelengths, which nominates them for photonic applications and requires further studies regarding their lasing ability as laser active components. Such a single infrared-emitting-perovskite nanomaterial replaced, for the first time, the need for a polymeric ligand, which was a routine approach in such an application. Also, it avoided the complicated synthesis of organic-inorganic hybrids, prevented wide spectral-range emissions usually produced by polymers, facilitated obtaining near-infrared emission spectra within certain limits of wavelengths, and is considered as a new approach for fabricating a standalone perovskite nanomaterial for phosphorescent optoelectronic components and military uses.

  17. Maintenance Downtime May 8 - 11, 2015

    Atmospheric Science Data Center

    2015-05-06

    ... The ASDC will experience a partial outage to move from old storage to new storage. ANGe ingest will be paused and production processing on ... any inconvenience this may cause.   The following data providers will be impacted: AFWA-MESH16 CloudSat FLASH GHRC NCEP ...

  18. Cardiac autonomic function and hot flashes among perimenopausal and postmenopausal women.

    PubMed

    Gibson, Carolyn J; Mendes, Wendy Berry; Schembri, Michael; Grady, Deborah; Huang, Alison J

    2017-07-01

    Abnormalities in autonomic function are posited to play a pathophysiologic role in menopausal hot flashes. We examined relationships between resting cardiac autonomic activity and hot flashes in perimenopausal and postmenopausal women. Autonomic function was assessed at baseline and 12 weeks among perimenopausal and postmenopausal women (n = 121, mean age 53 years) in a randomized trial of slow-paced respiration for hot flashes. Pre-ejection period (PEP), a marker of sympathetic activation, was measured with impedance cardiography. Respiratory sinus arrhythmia (RSA), a marker of parasympathetic activation, was measured with electrocardiography. Participants self-reported hot flash frequency and severity in 7-day symptom diaries. Analysis of covariance models were used to relate autonomic function and hot flash frequency and severity at baseline, and to relate changes in autonomic function to changes in hot flash frequency and severity over 12 weeks, adjusting for age, body mass index, and intervention assignment. PEP was not associated with hot flash frequency or severity at baseline or over 12 weeks (P > 0.05 for all). In contrast, there was a trend toward greater frequency of moderate-to-severe hot flashes with higher RSA at baseline (β = 0.43, P = 0.06), and a positive association between change in RSA and change in frequency of moderate-to-severe hot flashes over 12 weeks (β = 0.63, P = 0.04). Among perimenopausal and postmenopausal women with hot flashes, variations in hot flash frequency and severity were not explained by variations in resting sympathetic activation. Greater parasympathetic activation was associated with more frequent moderate-to-severe hot flashes, which may reflect increased sensitivity to perceiving hot flashes.

  19. Pulsed photoacoustic detection of flash-induced oxygen evolution from intact leaves and its oscillations

    PubMed Central

    Canaani, Ora; Malkin, Shmuel; Mauzerall, David

    1988-01-01

    Photoacoustic signals from intact leaves, produced upon excitation with single-turnover flashes, were shown to be dependent on their position in the flash sequence. Compared to the signal obtained from the first flash, all the others were time-shifted and had increased amplitudes. The signal from the third flash had the largest deviation, whereas that from the second flash deviated only minimally. The amplitude difference of the signals relative to that from the first flash was measured at a convenient time point (5 ms) and showed oscillations of period 4, similar to the O2-evolution pattern from algae. These oscillations were strongly damped, tending to a steady state from about the seventh flash on. The extra photoacoustic signal (relative to the first flash) was shown to be inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, heat treatment, or water infiltration. Its change with flash number, its saturation with increasing flash energy, and the above inhibition criteria indicate that it originates in pulsed O2 evolution. The sound wave produced by the first flash, however, arose by a photothermal mechanism only, as shown by its linear dependence on the flash intensity and insensitivity to the above treatments. The above flash pattern demonstrates that the photocycle of the S states (i.e., positive charge accumulation before two water molecules can be oxidized in a concerted way to produce molecular oxygen) occurs in intact leaves. It proves the applicability of the photoacoustic method for mechanistic studies of O2 evolution in leaves under physiological conditions. Water content of leaves is readily measured by this method. Images PMID:16593952

  20. Understanding the complex relationships underlying hot flashes: a Bayesian network approach.

    PubMed

    Smith, Rebecca L; Gallicchio, Lisa M; Flaws, Jodi A

    2018-02-01

    The mechanism underlying hot flashes is not well-understood, primarily because of complex relationships between and among hot flashes and their risk factors. We explored those relationships using a Bayesian network approach based on a 2006 to 2015 cohort study of hot flashes among 776 female residents, 45 to 54 years old, in the Baltimore area. Bayesian networks were fit for each outcome (current hot flashes, hot flashes before the end of the study, hot flash severity, hot flash frequency, and age at first hot flashes) separately and together with a list of risk factors (estrogen, progesterone, testosterone, body mass index and obesity, race, income level, education level, smoking history, drinking history, and activity level). Each fitting was conducted separately on all women and only perimenopausal women, at enrollment and 4 years after enrollment. Hormone levels, almost always interrelated, were the most common variable linked to hot flashes; hormone levels were sometimes related to body mass index, but were not directly related to any other risk factors. Smoking was also frequently associated with increased likelihood of severe symptoms, but not through an antiestrogenic pathway. The age at first hot flashes was related only to race. All other factors were either not related to outcomes or were mediated entirely by race, hormone levels, or smoking. These models can serve as a guide for design of studies into the causal network underlying hot flashes.

Top