Science.gov

Sample records for infrared double-flash experiments

  1. Musicians have enhanced audiovisual multisensory binding: experience-dependent effects in the double-flash illusion.

    PubMed

    Bidelman, Gavin M

    2016-10-01

    Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.

  2. A dynamic fMRI study of illusory double-flash effect on human visual cortex.

    PubMed

    Zhang, Nanyin; Chen, Wei

    2006-06-01

    Functional MRI (fMRI) combined with the paired-stimuli paradigms (referred as dynamic fMRI) was used to study the "illusory double-flash" effect on brain activity in the human visual cortex. Three experiments were designed. The first two experiments aimed to examine the cross-modal neural interaction between the visual and auditory sensory systems caused by the illusory double-flash effect using combined auditory (beep sound) and visual (light flash) stimuli. The fMRI signal in the visual cortex was significantly increased in response to the illusory double flashes compared to the physical single flash when the inter-stimuli delay between the auditory and visual stimuli was 25 ms. This increase disappeared when the delay was prolonged to approximately 300 ms. These results reveal that the illusory double-flash effect can significantly affect the brain activity in the visual cortex, and the degree of this effect is dynamically sensitive to the inter-stimuli delay. The third experiment was to address the spatial differentiation of brain activation in the visual cortex in response to the illusory double-flash stimulation. It was found that the illusory double-flash effect in the human visual cortex is much stronger in the periphery than the fovea. This finding suggests that the periphery may be involved in high-level brain processing beyond the retinotopic visual perception. The behavioral measures conducted in this study indicate an excellent correlation between the fMRI results and behavioral performance. Finally, this work demonstrates a unique merit of fMRI for providing both temporal and spatial information regarding cross-modal neural interaction between different sensory systems.

  3. Enlarged temporal integration window in schizophrenia indicated by the double-flash illusion.

    PubMed

    Haß, Katharina; Sinke, Christopher; Reese, Tanya; Roy, Mandy; Wiswede, Daniel; Dillo, Wolfgang; Oranje, Bob; Szycik, Gregor R

    2017-03-01

    In the present study we were interested in the processing of audio-visual integration in schizophrenia compared to healthy controls. The amount of sound-induced double-flash illusions served as an indicator of audio-visual integration. We expected an altered integration as well as a different window of temporal integration for patients. Fifteen schizophrenia patients and 15 healthy volunteers matched for age and gender were included in this study. We used stimuli with eight different temporal delays (stimulus onset asynchronys (SOAs) 25, 50, 75, 100, 125, 150, 200 and 300 ms) to induce a double-flash illusion. Group differences and the widths of temporal integration windows were calculated on percentages of reported double-flash illusions. Patients showed significantly more illusions (ca. 36-44% vs. 9-16% in control subjects) for SOAs 150-300. The temporal integration window for control participants went from SOAs 25 to 200 whereas for patients integration was found across all included temporal delays. We found no significant relationship between the amount of illusions and either illness severity, chlorpromazine equivalent doses or duration of illness in patients. Our results are interpreted in favour of an enlarged temporal integration window for audio-visual stimuli in schizophrenia patients, which is consistent with previous research.

  4. Undergraduate Infrared Spectroscopy Experiments.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick; Bowman, Susan J.

    1982-01-01

    Highlights procedures and results of an experiment using atomic absorption spectroscope to illustrate a fundamental chemical concept. The experiment demonstrates the dependence of the solubility product of lead sulfate on ionic strength in the presence of a slight excess of anion. (Author/JN)

  5. Undergraduate Infrared Spectroscopy Experiments.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick; Bowman, Susan J.

    1982-01-01

    Highlights procedures and results of an experiment using atomic absorption spectroscope to illustrate a fundamental chemical concept. The experiment demonstrates the dependence of the solubility product of lead sulfate on ionic strength in the presence of a slight excess of anion. (Author/JN)

  6. The cosmic infrared background experiment

    NASA Astrophysics Data System (ADS)

    Bock, James; Battle, John; Cooray, Asantha; Kawada, Mitsunobu; Keating, Brian; Lange, Andrew; Lee, Dae-Hea; Matsumoto, Toshio; Matsuura, Shuji; Pak, Soojong; Renbarger, Tom; Sullivan, Ian; Tsumura, Kohji; Wada, Takehiko; Watabe, Toyoki

    2006-03-01

    The extragalactic background, based on absolute measurements reported by DIRBE and IRTS at 1.2 and 2.2 μm, exceeds the brightness derived from galaxy counts by up to a factor 5. Furthermore, both DIRBE and the IRTS report fluctuations in the near-infrared sky brightness that appear to have an extra-galactic origin, but are larger than expected from local ( z = 1-3) galaxies. These observations have led to speculation that a new class of high-mass stars or mini-quasars may dominate primordial star formation at high-redshift ( z ˜ 10-20), which, in order to explain the excess in the near-infrared background, must be highly luminous but produce a limited amount of metals and X-ray photons. Regardless of the nature of the sources, if a significant component of the near-infrared background comes from first-light galaxies, theoretical models generically predict a prominent near-infrared spectral feature from the redshifted Lyman cutoff, and a distinctive fluctuation power spectrum. We are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The cameras will search for spatial fluctuations in the background on angular scales from 7″ to 2°, where a first-light galaxy signature is expected to peak, over a range of angular scales poorly covered by previous experiments. CIBER will determine if the fluctuations reported by the IRTS arise from first-light galaxies or have a local origin. In a short rocket flight CIBER has sensitivity to probe fluctuations 100× fainter than IRTS/DIRBE, with sufficient resolution to remove local-galaxy correlations. By jointly observing regions of the sky studied by Spitzer and ASTRO-F, CIBER will build a multi-color view of the near-infrared

  7. An Introductory Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H.

    1995-01-01

    Describes a project designed to introduce infrared spectroscopy as a structure-determination technique. Students are introduced to infrared spectroscopy fundamentals then try to determine the identity of an unknown liquid from its infrared spectrum and molecular weight. The project demonstrates that only rarely can the identity of even simple…

  8. An Introductory Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H.

    1995-01-01

    Describes a project designed to introduce infrared spectroscopy as a structure-determination technique. Students are introduced to infrared spectroscopy fundamentals then try to determine the identity of an unknown liquid from its infrared spectrum and molecular weight. The project demonstrates that only rarely can the identity of even simple…

  9. The Cosmic Infrared Background Experiment

    NASA Astrophysics Data System (ADS)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  10. A Quantitative Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Krahling, Mark D.; Eliason, Robert

    1985-01-01

    Although infrared spectroscopy is used primarily for qualitative identifications, it is possible to use it as a quantitative tool as well. The use of a standard curve to determine percent methanol in a 2,2,2-trifluoroethanol sample is described. Background information, experimental procedures, and results obtained are provided. (JN)

  11. A Quantitative Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Krahling, Mark D.; Eliason, Robert

    1985-01-01

    Although infrared spectroscopy is used primarily for qualitative identifications, it is possible to use it as a quantitative tool as well. The use of a standard curve to determine percent methanol in a 2,2,2-trifluoroethanol sample is described. Background information, experimental procedures, and results obtained are provided. (JN)

  12. Fourier transform infrared spectrometery: an undergraduate experiment

    NASA Astrophysics Data System (ADS)

    Lerner, L.

    2016-11-01

    Simple apparatus is developed, providing undergraduate students with a solid understanding of Fourier transform (FT) infrared (IR) spectroscopy in a hands on experiment. Apart from its application to measuring the mid-IR spectra of organic molecules, the experiment introduces several techniques with wide applicability in physics, including interferometry, the FT, digital data analysis, and control theory.

  13. Diffraction experiments with infrared remote controls

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-02-01

    In this paper we describe an experiment in which radiation emitted by an infrared remote control is passed through a diffraction grating. An image of the diffraction pattern is captured using a cell phone camera and then used to determine the wavelength of the radiation.

  14. Experiment S-191 visible and infrared spectrometer

    NASA Technical Reports Server (NTRS)

    Linnell, E. R.

    1974-01-01

    The design, development, fabrication test, and utilization of the visible and infrared spectrometer portion of the S-191 experiment, part of the Earth Resources Experiment Package, on board Skylab is discussed. The S-191 program is described, as well as conclusions and recommendations for improvement of this type of instrument for future applications. Design requirements, instrument design approaches, and the test verification program are presented along with test results, including flight hardware calibration data. A brief discussion of operation during the Skylab mission is included. Documentation associated with the program is listed.

  15. Double-flash, large-fraction radiation therapy as palliative treatment of malignant superior vena cava syndrome in the elderly.

    PubMed

    Lonardi, Federico; Gioga, Gloria; Agus, Graziella; Coeli, Manuela; Campostrini, Franco

    2002-03-01

    Rapid control of symptoms is mandatory in cancer-induced superior vena cava syndrome (SVCS), but older patients often do not tolerate aggressive approaches. In order to maximize symptom relief and minimize treatment-related discomfort of aged patients in poor health we adopted a short-course, large-fraction radiation therapy (RT) schedule. Twenty-three consecutive patients aged over 70 who were suffering from solid-malignancy-related SVCS were enrolled. A total dose of 12 Gy was given in two 6-Gy fractions, 1 week apart, mainly in an out-patient setting. Completion of therapy to give up to 37-40 Gy was planned in the best-responding patients. Symptom relief was experienced by 8 patients as early as 4-5 days after the first fraction. The overall response rate was 87%. Despite some mild systemic side effects (chest pain, fever) reported by 5 patients (22%), overall toxicity was negligible. Short-course, double-flash RT stands as an effective and safe tool in the palliative treatment of malignant SVCS in older patients. Fractions larger than 6 Gy can be avoided in order to minimize side and toxic effects.

  16. STS-26 infrared communications flight experiment (IRCFE) developer J. Prather

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Aerospace communications technologist Joseph L. Prather is pictured with the infrared communications flight experiment (IRCFE) which will fly aboard Discovery, Orbiter Vehicle (OV) 103, on STS-26. Prather has worked on communications using infrared light, rather than radio waves, since he started at JSC as a cooperative education student in 1981. His work and research led to the development of the experiment.

  17. [Study on photographing experiment of infrared detector].

    PubMed

    Wang, De-Jiang; Zhang, Tao

    2011-01-01

    Infrared detectors are widely used in multi spectral remote sensing systems, and in order to verify photographing principles of infrared time delay integration (TDI) detector, and make preparations for future research, a verification system for infrared TDI camera is proposed in the present paper. Experimental methods are explained thoroughly and two major factors which affect image quality are analyzed. First, the causes of image motion and their effects on the quality of image are studied, and a novel architecture using high precision DC-speed machine is presented, then the relationship between velocity of precision turntable and detectors line transfer frequency is determined by Kalman algorithm. Second, four focusing means are analyzed and compared, and video signal amplitude method is selected according to practical application. Finally, a genuine demo system is established in national supervision and test center for optics mechanics quality. 5.3, 6.4 and 9.2 mm drones are chosen for testing. Experimental results indicate that the obtained drone is vivid, and camera's resolution achieves 11.3 lines per mm, which satisfies preliminary aims.

  18. The Shuttle Infrared Leeside Temperature Sensing (SILTS) experiment

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Zoby, E. V.; Kantsios, A. G.

    1985-01-01

    The Shuttle Infrared Leeside Temperature Sensing (SILTS) experiment is described. The SILTS experiment will obtain high-spatial-resolution measurements of the temperatures of Shuttle orbiter leeside surfaces during atmospheric entry. The data will be obtained by means of an imaging, infrared radiometer, located atop the orbiter's vertical tail, which will view the orbiter fuselage and left wing. Implementation of the SILTS experiment required a significant change to the configuration of the orbiter's vertical tail fintip. The orbiter Columbia has been modified to carry the SILTS experiment which will be active on Columbia's next flight, currently scheduled for mid-1985.

  19. Low-Resolution Near-infrared Stellar Spectra Observed by the Cosmic Infrared Background Experiment (CIBER)

    NASA Astrophysics Data System (ADS)

    Kim, Min Gyu; Lee, Hyung Mok; Arai, Toshiaki; Bock, James; Cooray, Asantha; Jeong, Woong-Seob; Kim, Seong Jin; Korngut, Phillip; Lanz, Alicia; Lee, Dae Hee; Lee, Myung Gyoon; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Onishi, Yosuke; Shirahata, Mai; Smidt, Joseph; Tsumura, Kohji; Yamamura, Issei; Zemcov, Michael

    2017-02-01

    We present near-infrared (0.8-1.8 μm) spectra of 105 bright ({m}J < 10) stars observed with the low-resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All-Sky Survey photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.

  20. Infrared Sensing Aeroheating Flight Experiment: STS-96 Flight Results

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Wilmoth, Richard G.; Glass, Christopher E.; Merski, N. Ronald, Jr.; Berry, Scott A.; Bozung, Timothy J.; Tietjen, Alan; Wendt, Jodean; Dawson, Don

    2001-01-01

    Major elements of an experiment called the Infrared Sensing Aeroheating Flight Experiment are discussed. The primary experiment goal is to provide reentry global temperature images from infrared measurements to define the characteristics of hypersonic boundary-layer transition during flight. Specifically, the experiment is to identify, monitor, and quantity hypersonic boundary layer windward surface transition of the X-33 vehicle during flight. In addition, the flight data will serve as a calibration and validation of current boundary layer transition prediction techniques, provide benchmark laminar, transitional, and fully turbulent global aeroheating data in order to validate existing wind tunnel and computational results, and to advance aeroheating technology. Shuttle Orbiter data from STS-96 used to validate the data acquisition and data reduction to global temperatures, in order to mitigate the experiment risks prior to the maiden flight of the X-33, is discussed. STS-96 reentry midwave (3-5 micron) infrared data were collected at the Ballistic Missile Defense Organization/Innovative Sciences and Technology Experimentation Facility site at NASA-Kennedy Space Center and subsequently mapped into global temperature contours using ground calibrations only. A series of image mapping techniques have been developed in order to compare each frame of infrared data with thermocouple data collected during the flight. Comparisons of the ground calibrated global temperature images with the corresponding thermocouple data are discussed. The differences are shown to be generally less than about 5%, which is comparable to the expected accuracy of both types of aeroheating measurements.

  1. Fluctuations In The Cosmic Infrared Background Using the Cosmic Infrared Background ExpeRiment (CIBER).

    NASA Astrophysics Data System (ADS)

    Smidt, Joseph; Arai, T.; Battle, J.; Bock, J. J.; Cooray, A.; Frazer, C.; Hristov, V.; Keating, B.; Kim, M.; Lee, D.; Mason, P.; Matsumoto, T.; Mitchell-Wynne, K.; Nam, U.; Renbarger, T.; Smith, A.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2012-01-01

    The clustering properties of faint unresolved sources may be probed by examining the anisotropies they create in the Cosmic Infrared Background (CIB). Using information from fluctuations in the CIB at different wavelengths allows us to disentangle how clustering relates to redshift. In this talk, preliminary measurements of clustering using data from the Cosmic Infrared Background ExpeRiment (CIBER), a rocket-borne experiment designed to detect the signatures of unresolved infrared galaxies during reionization, will be discussed. The CIBER payload contains four instruments including two wide field imagers designed to measure fluctuations in the near IR cosmic infrared background (CIB) at 1.0 and 1.6 microns on scales between 0.2 and 100 arcmin in both bands, where the clustering of high-redshift sources is expected to peak. CIBER observations may be combined with Akari/NEP and Spitzer/NDWFS near-infrared surveys to check systematic errors and to fully characterize the electromagnetic spectrum of CIB fluctuations.

  2. International Cooperation of the Cosmic Infrared Background Experiment

    NASA Astrophysics Data System (ADS)

    Lee, D.-H.; Nam, U.-W.; Lee, S.; Jin, H.; Yuk, I.-S.; Kim, K.-H.; Pak, S.

    2006-12-01

    A Korean team (Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Kyung Hee University) takes part in an international cooperation project called CIBER (Cosmic Infrared Background ExpeRiment), which has begun with Jet Propulsion Laboratory (JPL) in USA and Institute of Space and Astronautical Science (ISAS) in Japan. CIBER is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The Korean team is in charge of the ground support electronics and manufacturing of optical parts of the narrow-band spectrometer, which will provide excellent opportunities for science and technology to Korean infrared groups.

  3. Stray light analysis of the Diffuse Infrared Background Experiment (DIRBE)

    NASA Technical Reports Server (NTRS)

    Breault, R. P.

    1984-01-01

    The straylight analysis of the diffuse infrared background experiment (DIRBE) on the cosmic background explorer (COBE) mission is discussed. From the statement of work (SOW), the purpose of DIRBE is to measure, or set upper limits on, the spectral and spatial character of the diffuse extra galactic infrared radiation. Diffuse infrared sources within our own galaxy are measured. The required reduction of the unwanted radiation imposes severe design and operating restrictions on the DIRBE instrument. To accomplish its missions, it will operate at a multitude of wavelengths ranging from 1.25 um out to 200 to 300 microns. The operating bands and the required point source normalized irradiance transmittance (PSNIT) are shown. The important straylight concepts in the DIRBE design are reviewed. The model and assumptions used in APART analysis are explained. The limitations due to the scalar theory used in the analysis are outlined.

  4. Conceptual design study for Infrared Limb Experiment (IRLE)

    NASA Technical Reports Server (NTRS)

    Baker, Doran J.; Ulwick, Jim; Esplin, Roy; Batty, J. C.; Ware, Gene; Tew, Craig

    1989-01-01

    The phase A engineering design study for the Infrared Limb Experiment (IRLE) instrument, the infrared portion of the Mesosphere-Lower Thermosphere Explorer (MELTER) satellite payload is given. The IRLE instrument is a satellite instrument, based on the heritage of the Limb Infrared Monitor of the Stratosphere (LIMS) program, that will make global measurements of O3, CO2, NO, NO2, H2O, and OH from earth limb emissions. These measurements will be used to provide improved understanding of the photochemistry, radiation, dynamics, energetics, and transport phenomena in the lower thermosphere, mesosphere, and stratosphere. The IRLE instrument is the infrared portion of the MELTER satellite payload. MELTER is being proposed to NASA Goddard by a consortium consisting of the University of Michigan, University of Colorado and NASA Langley. It is proposed that the Space Dynamics Laboratory at Utah State University (SDL/USU) build the IRLE instrument for NASA Langley. MELTER is scheduled for launch in November 1994 into a sun-synchronous, 650-km circular orbit with an inclination angle of 97.8 deg and an ascending node at 3:00 p.m. local time.

  5. Infrared Imaging of Boundary Layer Transition Flight Experiments

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J., Jr.; Schwartz, Richard; Ross, Martin; Anderson, Brian; Campbell, Charles H.

    2008-01-01

    The Hypersonic Thermodynamic Infrared Measurement (HYTHIRM) project is presently focused on near term support to the Shuttle program through the development of an infrared imaging capability of sufficient spatial and temporal resolution to augment existing on-board Orbiter instrumentation. Significant progress has been made with the identification and inventory of relevant existing optical imaging assets and the development, maturation, and validation of simulation and modeling tools for assessment and mission planning purposes, which were intended to lead to the best strategies and assets for successful acquisition of quantitative global surface temperature data on the Shuttle during entry. However, there are longer-term goals of providing global infrared imaging support to other flight projects as well. A status of HYTHIRM from the perspective of how two NASA-sponsored boundary layer transition flight experiments could benefit by infrared measurements is provided. Those two flight projects are the Hypersonic Boundary layer Transition (HyBoLT) flight experiment and the Shuttle Boundary Layer Transition Flight Experiment (BLT FE), which are both intended for reducing uncertainties associated with the extrapolation of wind tunnel derived transition correlations for flight application. Thus, the criticality of obtaining high quality flight data along with the impact it would provide to the Shuttle program damage assessment process are discussed. Two recent wind tunnel efforts that were intended as risk mitigation in terms of quantifying the transition process and resulting turbulent wedge locations are briefly reviewed. Progress is being made towards finalizing an imaging strategy in support of the Shuttle BLT FE, however there are no plans currently to image HyBoLT.

  6. COBE diffuse infrared background experiment observations of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Weiland, J. L.; Arendt, R. G.; Berriman, G. B.; Dwek, E.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Mitra, M.; Moseley, S. H.

    1994-01-01

    Low angular resolution maps of the Galactic bulge at 1.25, 2.2, 3.5, and 4.9 micrometers obtained by the Diffuse Infrared Background Experiment (DIRBE) onboard NASA's Cosmic Background Explorer (COBE) are presented. After correction for extinction and subtraction of an empirical model for the Galactic disk, the surface brightness distribution of the bulge resembles a flattened ellipse with a minor-to-major axis ratio of approximately 0.6. The bulge minor axis scale height is found to be 2.1 deg +/- 0.2 deg for all four near-infrared wavelengths. Asymmetries in the longitudinal distribution of bulge brightness contours are qualitatively consistent with those expected for a triaxial bar with its near end in the first Galactic quadrant (0 deg less than l less than 90 deg). There is no evidence for an out-of-plane tilt of such a bar.

  7. Flying the Infrared Skies: An Authentic SOFIA Educator Experience

    NASA Astrophysics Data System (ADS)

    Manning, J. G.

    2015-11-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) flagship education effort is its Airborne Astronomy Ambassadors (AAA) program. The program flies teams of teachers on SOFIA research flights as part of an educator professional development effort enabling these teachers to experience first-hand the workings of the airborne observatory, to interact with scientists and technologists, to observe research in progress and how scientists use technology—all in support of national STEM goals. The presenter will share his own experience as an EPO escort on a recent SOFIA flight including two educator teams, providing a first-hand account of how an “authentic” science experience can exploit unique NASA assets to improve science teaching, inspire students, inform local communities, and contribute to the elevation of public science literacy.

  8. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER

    SciTech Connect

    Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K.; Battle, J.; Bock, J.; Brown, S.; Lykke, K.; Smith, A.; Cooray, A.; Hristov, V.; Levenson, L. R.; Mason, P.; Keating, B.; Renbarger, T.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Sullivan, I.; and others

    2013-08-15

    Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  9. The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Tsumura, K.; Arai, T.; Battle, J.; Bock, J.; Brown, S.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Lykke, K.; Mason, P.; Matsumoto, T.; Matsuura, S.; Murata, K.; Nam, U. W.; Renbarger, T.; Smith, A.; Sullivan, I.; Suzuki, K.; Wada, T.; Zemcov, M.

    2013-08-01

    Absolute spectrophotometric measurements of diffuse radiation at 1 μm to 2 μm are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a λ/Δλ ~ 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 μm <λ < 2.1 μm. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  10. Far-Infrared Interferometric Telescope Experiment : I. Interferometer Optics

    NASA Astrophysics Data System (ADS)

    Kato, Eri; Shibai, Hiroshi; Kawada, Mitsunobu; Narita, Masanao; Matsuo, Taro; Ohkubo, Atsushi; Suzuki, Miki; Kanoh, Tetsuo; Yamamoto, Koudai; Fite Team

    We have developed a far-infrared interferometer (Far-Infrared Interferometric Telescope Experiment: FITE). It will be the first astronomical infrared interferometer working in space. FITE is a balloon-borne telescope, and operated in the stratosphere (the altitude of 35 km). The aim of the FITE project is to achieve a high spatial resolution of 1 arcsecond at the wavelength of 100 micrometers. FITE is a Michelson stellar interferometer, and is able to realize a long base line beyond the size of the collecting mirror by using four plane mirrors. The first flight is scheduled for November 2008 in Brazil, and the aim is to measure the interference fringes with a spatial resolution of 2.5 arcseconds. In order to achieve this, the two beams must be focused within 2.5 arcsecond accuracy in the imaging quality, within 10 arcsecond accuracy in the beam alignment and within 30 micrometers accuracy in the optical path length between the two beams. In order to archive these accuracies, the structural parts of the telescope were made of carbon-fiber reinforced plastics, which have very low thermal expansion coefficient and large Young's modulus. During observation of a target, the optical alignment is actively adjusted and the orientation of the telescope is stabilized by the three-axis control.

  11. Development of the Far-Infrared Interferometric Telescope Experiment

    NASA Astrophysics Data System (ADS)

    Kanoh, T.; Shibai, H.; Fukagawa, M.; Matsuo, T.; Kato, E.; Itoh, Y.; Kawada, M.; Watabe, T.; Kohyama, T.; Matsumoto, Y.; Morishita, H.; Yamamoto, K.; Kanoh, R.; Nakashima, A.; Tanabe, M.; Narita, M.

    2009-08-01

    We have developed the Far-Infrared Interferometric Telescope Experiment (FITE). It will be the first astronomical infrared interferometer working in space. FITE is a balloon-borne telescope, and will operate in the stratosphere (at an altitude of 35 kilometers). FITE is a Michelson-type stellar interferometer, and has a long baseline of 20 meters (at maximum). The purpose of the FITE project is to achieve a high spatial resolution of 1 arcsecond at a wavelength of 100 micrometers. For its first flight, FITE has an 8-meter baseline, and the aim is to measure the interference fringes with a spatial resolution of 2.5 arcseconds. In order to achieve this aim, the two beams must be focused within 2.5 arcseconds accuracy in the imaging quality, within 10 arcseconds of accuracy in the beam alignment, and within 30 micrometers accuracy in the optical path length between the two beams. Also, the orientation of the telescope must be controlled within 2.5 arcseconds accuracy. To achieve such accuracy, the structural parts of the telescope are made of carbon-fiber reinforced plastics that have very low thermal expansion coefficient and a large Young's modulus. During observation, the optical alignment is actively adjusted by the alignment mechanisms. We also adopt a three-axis attitude control system to stabilize the orientation of the telescope with high accuracy. FITE is a very unique approach, and it serves as a step in the further development of larger-scale infrared interferometry in space.

  12. A near-infrared SETI experiment: instrument overview

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Werthimer, Dan; Treffers, Richard R.; Maire, Jérôme; Marcy, Geoffrey W.; Stone, Remington P. S.; Drake, Frank; Meyer, Elliot; Dorval, Patrick; Siemion, Andrew

    2014-07-01

    We are designing and constructing a new SETI (Search for Extraterrestrial Intelligence) instrument to search for direct evidence of interstellar communications via pulsed laser signals at near-infrared wavelengths. The new instrument design builds upon our past optical SETI experiences, and is the first step toward a new, more versatile and sophisticated generation of very fast optical and near-infrared pulse search devices. We present our instrumental design by giving an overview of the opto-mechanical design, detector selection and characterization, signal processing, and integration procedure. This project makes use of near-infrared (950 - 1650 nm) discrete amplification Avalanche Photodiodes (APD) that have > 1 GHz bandwidths with low noise characteristics and moderate gain (~104). We have investigated the use of single versus multiple detectors in our instrument (see Maire et al., this conference), and have optimized the system to have both high sensitivity and low false coincidence rates. Our design is optimized for use behind a 1m telescope and includes an optical camera for acquisition and guiding. A goal is to make our instrument relatively economical and easy to duplicate. We describe our observational setup and our initial search strategies for SETI targets, and for potential interesting compact astrophysical objects.

  13. The cosmic infrared background experiment (CIBER): instrumentation and first results

    NASA Astrophysics Data System (ADS)

    Zemcov, M.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Lee, D. H.; Levenson, L.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.

    2010-07-01

    Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z ~ 6; the wavelength of these photons has been redshifted by (1 + z) into the near infrared today and can be measured using instruments situated above the Earth's atmosphere. First flying in February 2009, the Cosmic Infrared Background ExpeRiment (CIBER) comprises four instruments housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband imaging instruments, make a detailed characterization of the spectral shape of the IR background using a low resolution spectrometer, and measure the absolute brightness of the Zodiacal light foreground with a high resolution spectrometer in each of our six science fields. The scientific motivation for CIBER and details of its first and second flight instrumentation will be discussed. First flight results on the color of the zodiacal light around 1 μm and plans for the future will also be presented.

  14. NIFTE: The Near Infrared Faint-Object Telescope Experiment

    NASA Technical Reports Server (NTRS)

    Bock, James J.; Lange, Andrew E.; Matsumoto, T.; Eisenhardt, Peter B.; Hacking, Perry B.; Schember, Helene R.

    1994-01-01

    The high sensitivity of large format InSb arrays can be used to obtain deep images of the sky at 3-5 micrometers. In this spectral range cool or highly redshifted objects (e.g. brown dwarfs and protogalaxies) which are not visible at shorter wavelengths may be observed. Sensitivity at these wavelengths in ground-based observations is severly limited by the thermal flux from the telescope and from the earth's atmosphere. The Near Infrared Faint-Object Telescope Experiment (NIFTE), a 50 cm cooled rocket-borne telescope combined with large format, high performance InSb arrays, can reach a limiting flux less than 1 micro-Jy(1-sigma) over a large field-of-view in a single flight. In comparison, the Infrared Space Observatory (ISO) will require days of observation to reach a sensitivity more than one order of magnitude worse over a similar area of the sky. The deep 3-5 micrometer images obtained by the rocket-borne telescope will assist in determining the nature of faint red objects detected by ground-based telescopes at 2 micrometers, and by ISO at wavelengths longer than 5 micrometers.

  15. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bezard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K.; hide

    2004-01-01

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  16. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment.

    PubMed

    Kunde, V G; Flasar, F M; Jennings, D E; Bézard, B; Strobel, D F; Conrath, B J; Nixon, C A; Bjoraker, G L; Romani, P N; Achterberg, R K; Simon-Miller, A A; Irwin, P; Brasunas, J C; Pearl, J C; Smith, M D; Orton, G S; Gierasch, P J; Spilker, L J; Carlson, R C; Mamoutkine, A A; Calcutt, S B; Read, P L; Taylor, F W; Fouchet, T; Parrish, P; Barucci, A; Courtin, R; Coustenis, A; Gautier, D; Lellouch, E; Marten, A; Prangé, R; Biraud, Y; Ferrari, C; Owen, T C; Abbas, M M; Samuelson, R E; Raulin, F; Ade, P; Césarsky, C J; Grossman, K U; Coradini, A

    2004-09-10

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  17. Infrared observations of Comet Austin (1990 V) by the COBE/Diffuse Infrared Background Experiment

    NASA Technical Reports Server (NTRS)

    Lisse, C. M.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Moseley, S. H.; Reach, W. T.; Silverberg, R. F.

    1994-01-01

    Comet Austin was observed by the Cosmic Background Explorer (COBE)/Diffuse Infrared Background Experiment (DIRBE) with broadband photometry at 1-240 micrometers during the comet's close passage by Earth in 1990 May. A 6 deg long (6 x 10(exp 6) km) dust tail was found at 12 and 25 micrometers, with detailed structure due to variations in particle properties and mass-loss rate. The spectrum of the central 42 x 42 sq arcmin pixel was found to agree with that of a graybody of temperature 309 +/- 5 K and optical depth 7.3 +/- 10(exp -8). Comparison with IUE and ground-based obervations indicates that particles of radius greater than 20 micrometers predominate by surface area. A mass-loss rate of 510 (+510/-205) kg/s and a total tail mass of 7 +/- 2 x 10(exp 10) kg was found for a model dust tail composed of Mie spheres with a differential particle mass distribution dn/d log m approx. m(exp -0.63) and 2:1 silicate:amorphous carbon composition by mass.

  18. A single- and double-flash flash photolysis study of the sequential biphotonic photoprocesses of Cu(I) phenanthrolines. Comparison of the helicate complex, [Cu2(1,3-bis(9-methyl-1,10-phenanthrolin-2-yl)propane)2]2+, and [Cu(2,9-dimethyl-1,10-phenanthroline)2]+ photoprocesses.

    PubMed

    Lemus, L; Ferraudi, G; Lappin, A Graham

    2013-06-28

    Photochemical processes induced when two photons are sequentially absorbed by the helicate complex [Cu2(mphenpr)2](2+), where mphenpr = 1,3-bis(9-methyl-1,10-phenanthrolin-2-yl)propane, and [Cu(dmp)2](+) were investigated in CH2Cl2 containing solvents. A strong resemblance was observed between the fs-ns photophysics of [Cu2(mphenpr)2](2+) and Cu(I) phenanthroline complexes having a large steric hindrance. In the biphotonic regime, single-flash flash-photolyzed solutions were used for the determination of the product concentrations and quantum yields. The concentration of Cl(-) produced by the photoinduced decomposition of CH2Cl2 increases linearly with flash intensity as expected for a monophotonic process. In contrast, the concentration of a decomposed Cu(I) complex exhibits the quadratic dependence on flash intensity of a biphotonic process. Results of a sequential double-flash flash photolysis experiment are consistent with the decomposition of CH2Cl2 ahead of the flattened excited state formation and with the absorption of the second photon by the flattened MLCT excited state.

  19. Infrared experiments for spaceborne planetary atmospheres research. Full report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The role of infrared sensing in atmospheric science is discussed and existing infrared measurement techniques are reviewed. Proposed techniques for measuring planetary atmospheres are criticized and recommended instrument developments for spaceborne investigations are summarized for the following phenomena: global and local radiative budget; radiative flux profiles; winds; temperature; pressure; transient and marginal atmospheres; planetary rotation and global atmospheric activity; abundances of stable constituents; vertical, lateral, and temporal distribution of abundances; composition of clouds and aerosols; radiative properties of clouds and aerosols; cloud microstructure; cloud macrostructure; and non-LTE phenomena.

  20. Infrared Spectrum of Methanol: A First-Year Student Experiment.

    ERIC Educational Resources Information Center

    Boehm, Garth; Dwyer, Mark

    1981-01-01

    Describes an experiment providing an experimental introduction to vibrational spectroscopy and experience in using an elementary vacuum line. The experiment, using a gas cell charged with methanol, is completed in a three-hour laboratory period and is directed toward understanding vibrational spectroscopy rather than the diagnostic value of the…

  1. Infrared Spectrum of Methanol: A First-Year Student Experiment.

    ERIC Educational Resources Information Center

    Boehm, Garth; Dwyer, Mark

    1981-01-01

    Describes an experiment providing an experimental introduction to vibrational spectroscopy and experience in using an elementary vacuum line. The experiment, using a gas cell charged with methanol, is completed in a three-hour laboratory period and is directed toward understanding vibrational spectroscopy rather than the diagnostic value of the…

  2. Small helium-cooled infrared telescope experiment for Spacelab-2 (IRT)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1990-01-01

    The Infrared Telescope (IRT) experiment, flown on Spacelab-2, was used to make infrared measurements between 2 and 120 microns. The objectives were multidisciplinary in nature with astrophysical goals of mapping the diffuse cosmic emission and extended infrared sources and technical goals of measuring the induced Shuttle environment, studying properties of superfluid helium in space, and testing various infrared telescope system designs. Astrophysically, new data were obtained on the structure of the Galaxy at near-infrared wavelengths. A summary of the large scale diffuse near-infrared observations of the Galaxy by the IRT is presented, as well as a summary of the preliminary results obtained from this data on the structure of the galactic disk and bulge. The importance of combining CO and near-infrared maps of similar resolution to determine a 3-D model of galactic extinction is demonstrated. The IRT data are used, in conjunction with a proposed galactic model, to make preliminary measurements of the global scale parameters of the Galaxy. During the mission substantial amounts of data were obtained concerning the induced Shuttle environment. An experiment was also performed to measure spacecraft glow in the IR.

  3. Shuttle Infrared Leeside Temperature Sensing (SILTS) experiment - STS-35 and STS-40 preliminary results

    NASA Technical Reports Server (NTRS)

    Throckmorton, David A.; Zoby, E. V.; Dunavant, James C.; Myrick, David L.

    1992-01-01

    Preliminary results from the STS-35 and STS-40 flight of the Shuttle Infrared Leeside Temperature Sensing (SILTS) experiment aboard the Shuttle Orbiter Columbia are presented. Infrared images are shown in false-color indicating the level and distribution of surface temperature over the vehicle's leeside fuselage during entry. Features evident in the imagery are related to their causative aerodynamic flow phenomena. Quantitative comparisons of the infrared image data with in situ temperature measurements obtained with thermocouples located at the aerodynamic surface of the thermal protection materials are presented.

  4. Shuttle Infrared Leeside Temperature Sensing (SILTS) experiment - STS-28 preliminary results

    NASA Technical Reports Server (NTRS)

    Throckmorton, David A.; Zoby, E. Vincent; Dunavant, James C.; Myrick, David L.

    1990-01-01

    Preliminary results from the STS-28 flight of the Shuttle Infrared Leeside Temperature Sensing (SILTS) experiment aboard the Shuttle Orbiter Columbia are presented. Infrared images are shown in false-color indicating the level and distribution of surface temperature on the leeside of the left wing during entry. Features evident in the imagery are related to their causative aerodynamic flow phenomena. Quantitative comparisons of the infrared image data with in situ temperature measurements obtained with thermocouples located at the aerodynamic surface of the thermal protection system materials are presented.

  5. X-Ray Shadowing Experiments Toward Infrared Dark Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, L. E.; Snowden, S.; Bania, T. M.

    2009-01-01

    We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.

  6. Scientific support of the Apollo infrared scanning radiometer experiment

    NASA Technical Reports Server (NTRS)

    Mendell, W. W.

    1976-01-01

    The Infrared Scanning Radiometer (ISR) was designed to map the thermal emission of the lunar surface from the service module of the orbiting Apollo 17 spacecraft. Lunar surface nighttime temperatures, which are extremely difficult to map from earth based telescopes were measured. The ISR transmitted approximately 90 hours of lunar data spread over 5 days in lunar orbit. Approximately 10 to the 8th power independent lunar temperature measurements were made with an absolute accuracy of 2K. Spatial resolution at nadir was approximately 2.2 km (depending on orbital altitude), exceeding that of earth based measurements by at least an order of magnitude. Preliminary studies of the data reveal the highest population of thermal anomalies (or hot spots) in Oceanus Procellarum. Very few anomalies exist on the far side of the moon as was predicted from the association of anomalies with mare on the near side. A number of negative anomalies (or cold spots) have also been found.

  7. An Inorganic Laboratory Experiment Involving Photochemistry, Liquid Chromatography, and Infrared Spectroscopy.

    ERIC Educational Resources Information Center

    Post, Elroy W.

    1980-01-01

    Presents an experiment involving photochemical legand displacement on a metal carbonyl, separation of the product mixture by chromotography, and identification of the components by use of infrared spectroscopy and group theory. The chromatography and spectroscopy are combined as complementary tools in this experiment. (Author/JN)

  8. An Inorganic Laboratory Experiment Involving Photochemistry, Liquid Chromatography, and Infrared Spectroscopy.

    ERIC Educational Resources Information Center

    Post, Elroy W.

    1980-01-01

    Presents an experiment involving photochemical legand displacement on a metal carbonyl, separation of the product mixture by chromotography, and identification of the components by use of infrared spectroscopy and group theory. The chromatography and spectroscopy are combined as complementary tools in this experiment. (Author/JN)

  9. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  10. The cosmic infrared background experiment-2 (CIBER-2) for studying the near-infrared extragalactic background light

    NASA Astrophysics Data System (ADS)

    Shirahata, Mai; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Enokuchi, Akito; Hristov, Viktor; Kanai, Yoshikazu; Kim, Min Gyu; Korngut, Phillip; Lanz, Alicia; Lee, Dae-Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Ohnishi, Yosuke; Park, Won-Kee; Sano, Kei; Takeyama, Norihide; Tsumura, Kohji; Wada, Takehiko; Wang, Shiang-Yu; Zemcov, Michael

    2016-07-01

    We present the current status of the Cosmic Infrared Background ExpeRiment-2 (CIBER-2) project, whose goal is to make a rocket-borne measurement of the near-infrared Extragalactic Background Light (EBL), under a collaboration with U.S.A., Japan, South Korea, and Taiwan. The EBL is the integrated light of all extragalactic sources of emission back to the early Universe. At near-infrared wavelengths, measurement of the EBL is a promising way to detect the diffuse light from the first collapsed structures at redshift z˜10, which are impossible to detect as individual sources. However, recently, the intra-halo light (IHL) model is advocated as the main contribution to the EBL, and our new result of the EBL fluctuation from CIBER-1 experiment is also supporting this model. In this model, EBL is contributed by accumulated light from stars in the dark halo regions of low- redshift (z<2) galaxies, those were tidally stripped by the interaction of satellite dwarf galaxies. Thus, in order to understand the origin of the EBL, both the spatial fluctuation observations with multiple wavelength bands and the absolute spectroscopic observations for the EBL are highly required. After the successful initial CIBER- 1 experiment, we are now developing a new instrument CIBER-2, which is comprised of a 28.5-cm aluminum telescope and three broad-band, wide-field imaging cameras. The three wide-field (2.3×2.3 degrees) imaging cameras use the 2K×2K HgCdTe HAWAII-2RG arrays, and cover the optical and near-infrared wavelength range of 0.5-0.9 μm, 1.0-1.4 μm and 1.5-2.0 μm, respectively. Combining a large area telescope with the high sensitivity detectors, CIBER-2 will be able to measure the spatial fluctuations in the EBL at much fainter levels than those detected in previous CIBER-1 experiment. Additionally, we will use a linear variable filter installed just above the detectors so that a measurement of the absolute spectrum of the EBL is also possible. In this paper, the scientific

  11. Mobile infrared scene projection for aviation applications: issues and experiences

    NASA Astrophysics Data System (ADS)

    Zabel, Kenneth W.; Stumpf, Richard; Casey, Mark A.; Martin, Larry

    2002-07-01

    The U.S. Army Aviation Technical Test Center (ATTC) provides developmental test support to the Army's aviation community. An increasing dependence on modeling and simulation activities has been required to obtain more data as funding decreases for traditional flight-testing. The Mobile Infrared Scene Projector (MIRSP) system, maintained and operated by ATTC, is being used to gather initial data to measure the progress of developmental Forward Looking IR (FLIR) system activities. The Army continues to upgrade and add new features and algorithms to their FLIR sensors. The history with MIRSP shows that it can benefit the FLIR system development engineers with immediate feedback on algorithm changes. ATTC is also heavily involved with testing pilotage FLIR sensors that typically are less algorithm intensive. The more subjective nature of the pilotage sensor performance specifications requires a unique test approach when using IRSP technologies. This paper will highlight areas where IRSP capabilities have benefited the aviation community to date, describe lessons that ATTC has gained using a mobile system, and outline the areas being planned for upgrades and future support efforts to include pilotage sensors.

  12. A near-Infrared SETI Experiment: Alignment and Astrometric precision

    NASA Astrophysics Data System (ADS)

    Duenas, Andres; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan

    2016-06-01

    Beginning in March 2015, a Near-InfraRed Optical SETI (NIROSETI) instrument aiming to search for fast nanosecond laser pulses, has been commissioned on the Nickel 1m-telescope at Lick Observatory. The NIROSETI instrument makes use of an optical guide camera, SONY ICX694 CCD from PointGrey, to align our selected sources into two 200µm near-infrared Avalanche Photo Diodes (APD) with a field-of-view of 2.5"x2.5" each. These APD detectors operate at very fast bandwidths and are able to detect pulse widths extending down into the nanosecond range. Aligning sources onto these relatively small detectors requires characterizing the guide camera plate scale, static optical distortion solution, and relative orientation with respect to the APD detectors. We determined the guide camera plate scale as 55.9+- 2.7 milli-arcseconds/pixel and magnitude limit of 18.15mag (+1.07/-0.58) in V-band. We will present the full distortion solution of the guide camera, orientation, and our alignment method between the camera and the two APDs, and will discuss target selection within the NIROSETI observational campaign, including coordination with Breakthrough Listen.

  13. Experiment requirements document for reflight of the small helium-cooled infrared telescope experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The four astronomical objectives addressed include: the measurement and mapping of extended low surface brightness infrared emission from the galaxy; the measurement of diffuse emission from intergalactic material and/or galaxies and quasi-stellar objects; the measurement of the zodiacal dust emission; and the measurement of a large number of discrete infrared sources.

  14. NIR-VCD, vibrational circular dichroism in the near-infrared: experiments, theory and calculations.

    PubMed

    Abbate, Sergio; Castiglioni, Ettore; Gangemi, Fabrizio; Gangemi, Roberto; Longhi, Giovanna

    2009-01-01

    The first well documented experiments of Near Infrared Vibrational Circular Dichroism (NIR-VCD) were performed around 1975. We review the thirty year history of NIR-VCD, encompassing both instrumental development and theoretical/computational methods that allow interpretation of experimental spectra, harvesting useful structural information therefrom. We hope to stimulate interest in this still scarcely explored spectroscopy of chiral molecules.

  15. The Vinyl Acetate Content of Packaging Film: A Quantitative Infrared Experiment.

    ERIC Educational Resources Information Center

    Allpress, K. N.; And Others

    1981-01-01

    Presents an experiment used in laboratory technician training courses to illustrate the quantitative use of infrared spectroscopy which is based on industrial and laboratory procedures for the determination of vinyl acetate levels in ethylene vinyl acetate packaging films. Includes three approaches to allow for varying path lengths (film…

  16. Definition phase effort of the Spacelab-2 Infrared Telescope Experiment (IRT)

    NASA Technical Reports Server (NTRS)

    Fazio, G.

    1981-01-01

    Activities associated with a proposal for the reflight of the small helium cooled infrared telescope scheduled to make its maiden voyage on Spacelab-2 are reported. The experiments requirements document was revised and updated and an investigation development plan was prepared for the refurbishment and reflight of the telescope. The summary of a briefing held to discuss Spacelab interfaces for the proposal is included.

  17. The Vinyl Acetate Content of Packaging Film: A Quantitative Infrared Experiment.

    ERIC Educational Resources Information Center

    Allpress, K. N.; And Others

    1981-01-01

    Presents an experiment used in laboratory technician training courses to illustrate the quantitative use of infrared spectroscopy which is based on industrial and laboratory procedures for the determination of vinyl acetate levels in ethylene vinyl acetate packaging films. Includes three approaches to allow for varying path lengths (film…

  18. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    SciTech Connect

    Zemcov, M.; Bock, J.; Hristov, V.; Levenson, L. R.; Mason, P.; Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Wada, T.; Battle, J.; Cooray, A.; Keating, B.; Renbarger, T.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Sullivan, I.; Suzuki, K.

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  19. The Cosmic Infrared Background Experiment (CIBER): A Sounding Rocket Payload to Study the near Infrared Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Zemcov, M.; Arai, T.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Tsumura, K.; Wada, T.

    2013-08-01

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  20. Near- and far-infrared observations of interplanetary dust bands from the COBE diffuse infrared background experiment

    NASA Technical Reports Server (NTRS)

    Spiesman, William J.; Hauser, Michael G.; Kelsall, Thomas; Lisse, Carey M.; Moseley, S. Harvey, Jr.; Reach, William T.; Silverberg, Robert F.; Stemwedel, Sally W.; Weiland, Janet L.

    1995-01-01

    Data from the Diffuse Infrared Background Experiment (DIRBE) instrument aboard the Cosmic Background Explorer Satellite (COBE) spacecraft have been used to examine the near and far infrared signatures of the interplanetary dust (IPD) bands. Images of the dust band pairs at ecliptic latitudes of +/- 1.4 deg and +/- 10 deg have been produced at DIRBE wavelengths from 1.25 to 100 micrometers. The observations at the shorter wavelengths provide the first evidence of scattered sunlight from particles responsible for the dust bands. It is found that the grains in the bands and those in the smooth IPD cloud have similar spectral energy distributions, suggesting similar compositions and possibly a common origin. The scattering albedos from 1.25 to 3.5 micrometers for the grains in the dust bands and those in the IPD cloud are 0.22 and 0.29, respectively. The 10 deg band pair is cooler (185 +/- 10 K) than the smooth interplanetary dust cloud (259 +/- 10 K). From both parallactic and thermal analyses, the implied location of the grains responsible for the peak brightness of the 10 deg band pair is 2.1 +/- 0.1 AU the Sun A parallactic distance of 1.4 +/- 0.2 AU is found for the peak of the 1.4 deg band pair.

  1. Near- and far-infrared observations of interplanetary dust bands from the COBE diffuse infrared background experiment

    NASA Technical Reports Server (NTRS)

    Spiesman, William J.; Hauser, Michael G.; Kelsall, Thomas; Lisse, Carey M.; Moseley, S. Harvey, Jr.; Reach, William T.; Silverberg, Robert F.; Stemwedel, Sally W.; Weiland, Janet L.

    1995-01-01

    Data from the Diffuse Infrared Background Experiment (DIRBE) instrument aboard the Cosmic Background Explorer Satellite (COBE) spacecraft have been used to examine the near and far infrared signatures of the interplanetary dust (IPD) bands. Images of the dust band pairs at ecliptic latitudes of +/- 1.4 deg and +/- 10 deg have been produced at DIRBE wavelengths from 1.25 to 100 micrometers. The observations at the shorter wavelengths provide the first evidence of scattered sunlight from particles responsible for the dust bands. It is found that the grains in the bands and those in the smooth IPD cloud have similar spectral energy distributions, suggesting similar compositions and possibly a common origin. The scattering albedos from 1.25 to 3.5 micrometers for the grains in the dust bands and those in the IPD cloud are 0.22 and 0.29, respectively. The 10 deg band pair is cooler (185 +/- 10 K) than the smooth interplanetary dust cloud (259 +/- 10 K). From both parallactic and thermal analyses, the implied location of the grains responsible for the peak brightness of the 10 deg band pair is 2.1 +/- 0.1 AU the Sun A parallactic distance of 1.4 +/- 0.2 AU is found for the peak of the 1.4 deg band pair.

  2. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  3. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  4. Infrared horizon sensor modeling for attitude determination and control: Analysis and mission experience

    NASA Technical Reports Server (NTRS)

    Phenneger, M. C.; Singhal, S. P.; Lee, T. H.; Stengle, T. H.

    1985-01-01

    The work performed by the Attitude Determination and Control Section at the National Aeronautics and Space Administration/Goddard Space Flight Center in analyzing and evaluating the performance of infrared horizon sensors is presented. The results of studies performed during the 1960s are reviewed; several models for generating the Earth's infrared radiance profiles are presented; and the Horizon Radiance Modeling Utility, the software used to model the horizon sensor optics and electronics processing to computer radiance-dependent attitude errors, is briefly discussed. Also provided is mission experience from 12 spaceflight missions spanning the period from 1973 to 1984 and using a variety of horizon sensing hardware. Recommendations are presented for future directions for the infrared horizon sensing technology.

  5. Studying extragalactic background fluctuations with the Cosmic Infrared Background ExpeRiment 2 (CIBER-2)

    NASA Astrophysics Data System (ADS)

    Lanz, Alicia; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2014-08-01

    Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including

  6. Build up and integration of the rocket-borne Cosmic Infrared Background ExpeRiment-2

    NASA Astrophysics Data System (ADS)

    Lanz, Alicia E.; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha R.; Hristov, Viktor; Kojima, Tomoya; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Nguyen, Chi; Shirahata, Mai; Takahashi, Aoi; Tsumurai, Kohji; Wada, Takehiko; Wang, Shiang-Yu; Zemcov, Michael B.

    2017-01-01

    The Cosmic Infrared Background ExpeRiment, CIBER-2, is a near-infrared rocket-borne instrument designed to conduct comprehensive multi-band measurements of extragalactic background light anisotropy on arcsecond to degree angular scales. Recent measurements of the near-infrared Extragalactic Background Light (EBL) anisotropy find excess spatial power above the level predicted by known galaxy populations at large angular scales. CIBER-2 is designed to make measurements of the EBL anisotropy with the sensitivity, spectral range, and spectral resolution required to disentangle the contributions to the EBL from various sources throughout cosmic history.CIBER-2 consists of a 28.5 cm Cassegrain telescope assembly, imaging optics, and cryogenics mounted aboard a sounding rocket. Two dichroic beam-splitters spectrally subdivide the incident radiation into three optical paths, which are further subdivided in two wavelength bands per path, for a total of six observational wavelength bands that span the optical to the near-infrared and produce six 1.2 by 2.4 degree images recorded by three 2048 x 2048 HAWAII-2RG detector arrays. A small portion of each detector is also dedicated to absolute spectrophotometric imaging provided by a linear-variable filter. The instrument has several novel cryogenic mechanisms, a cryogenically-cooled pop-up baffle that extends during observations to provide radiative shielding and an electromagnetic cold shutter. We provide an overview of the instrument and current integration.

  7. A near-infrared SETI experiment: commissioning, data analysis, and performance results

    NASA Astrophysics Data System (ADS)

    Maire, Jérôme; Wright, Shelley A.; Dorval, Patrick; Drake, Frank D.; Duenas, Andres; Isaacson, Howard; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan

    2016-08-01

    Over the last two decades, Optical Search for Extra-Terrestrial Intelligence experiments have been conducted to search for either continuous or pulsed visible-light laser beacons that could be used for interstellar communication or energy transmission. Near-infrared offers a compelling window for signal transmission since there is a decrease in interstellar extinction and Galactic background compared to optical wavelengths. An innovative Near-InfraRed and Optical SETI (NIROSETI) instrument has been designed and constructed to take advantage of a new generation of fast (> 1 Ghz) low-noise near-infrared avalanche photodiodes to search for nanosecond pulsed near-infrared (850 - 1650 nm) pulses. The instrument was successfully installed and commissioned at the Nickel (1m) telescope at Lick Observatory in March 2015. We will describe the overall design of the instrument with a focus on methods developed for data acquisition and reduction for near-infrared SETI. Time and height analyses of the pulses produced by the detectors are performed to search for periodicity and coincidences in the signals. We will further discuss our NIROSETI survey plans.

  8. Shuttle Infrared Leeside Temperature Sensing (SILTS) experiment - STS 61-C results

    NASA Technical Reports Server (NTRS)

    Throckmorton, David A.; Dunavant, James C.; Myrick, David L.

    1988-01-01

    The operation of the Shuttle Infrared Leeside Temperature Sensing experiment on mission STS 61-C of the Space Shuttle Orbiter Columbia is described. False-color video images are shown of surface temperatures on the leeside wing and fuselage areas during entry. Features evident in the imagery are related to aerodynamic flow phenomena such as shock interactions, leeside vortices, and elevon gap effects. Significant anomalies in experiment hardware operation occurred on this flight. The anomalous hardware performance resulted in requirements for major modification to the postflight data reduction procedures. The data collected provide a qualitative, but not a fully quantitative, look at leeside surface heating.

  9. Infrared spectrometry and radiometry of high-explosive detonations: the Los Alamos experiments

    SciTech Connect

    Rogers, E H; Williams, R L; Frazier, E N; Stone, D K; Herr, K C; Young, R M; Robbins, R G

    1982-11-01

    The purpose of these experiments was to determine whether the infrared spectra of high-explosive detonations can be used to infer the type of explosive material and/or the containment material employed. Infrared spectra and radiometric traces were measured during a test series of twenty-three detonations; some were contained and some uncontained. A variety of high-explosive materials and containment materials were included. The explosive charge was typically about 175 g. Infrared spectra were taken at the rate of 250 spectra/sec. This rate was too slow to characterize the very early gas expansion or burn pase of these explosions. The infrared spectra of the delayed or afterburn phase of these explosions often displayed molecular emission and absorption features. Absorption by NH/sub 3/ was observed when C-4 was the high-explosive material, and not observed for any other material. Emissions from H/sub 2/O and CO/sub 2/ were observed part of the time. Their occurence does not seem to be correlated with the type of containment or type of high-explosive material, or peak temperature reached in the afterburn. From the radiometric traces, one concludes that the relative peak radiance from the burn and afterburn phases depend strongly on the type of high-explosive material. For similar devices the burn phase is consistent from shot to shot, whereas the afterburn is very inconsistent. The answer to the question whether infrared spectra of high-explosive detonations can be used to infer the type of explosive material and/or the containment material must await spectral observations of the burn phase. We now believe that spectra of the burn phase are likely to be the ones most useful in identifying the high-explosive or containment material.

  10. Experiment research on infrared targets signature in mid and long IR spectral bands

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Hong, Pu; Lei, Bo; Yue, Song; Zhang, Zhijie; Ren, Tingting

    2013-09-01

    Since the infrared imaging system has played a significant role in the military self-defense system and fire control system, the radiation signature of IR target becomes an important topic in IR imaging application technology. IR target signature can be applied in target identification, especially for small and dim targets, as well as the target IR thermal design. To research and analyze the targets IR signature systematically, a practical and experimental project is processed under different backgrounds and conditions. An infrared radiation acquisition system based on a MWIR cooled thermal imager and a LWIR cooled thermal imager is developed to capture the digital infrared images. Furthermore, some instruments are introduced to provide other parameters. According to the original image data and the related parameters in a certain scene, the IR signature of interested target scene can be calculated. Different background and targets are measured with this approach, and a comparison experiment analysis shall be presented in this paper as an example. This practical experiment has proved the validation of this research work, and it is useful in detection performance evaluation and further target identification research.

  11. The Cosmic Infrared Background Experiment: Flight Characterization Of The Ciber Narrow Band Spectrometer.

    NASA Astrophysics Data System (ADS)

    Levenson, Louis R.; Battle, J.; Bock, J. J.; Cooray, A.; Hristov, V.; Keating, B.; Lee, D.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Wada, T.; Zemcov, M.

    2011-01-01

    Subtraction of the Zodiacal light foreground is the dominant source of uncertainty in absolute photometric measurements of the extra-galactic background at near-infrared to optical wavelengths. The second flight of the Cosmic Infrared Background ExpeRiment (CIBER) occurred on July 10th, 2010. CIBER is a NASA sounding rocket experiment carrying four co-aligned instruments including two imaging telescopes with wide passbands centered at 1 and 1.6 microns, respectively, as well as a low resolution spectrometer and a narrow-band spectrometer. THE CIBER spectrometers are absolutely calibrated in collaboration with NIST. The narrow-band spectrometer filter is centered on the Ca II solar Fraunhofer line at 854.2 nm and is designed to measure the equivalent width of the solar line reflected by the interplanetary dust in order to obtain an absolute measurement of the Zodiacal contribution to the infrared sky at that wavelength. In conjunction with measured low resolution spectrum from 700 to 1900 nm, this will provide an accurate independent check of the DIRBE Zodiacal light models. Here we describe the NBS instrument, calibration and in-flight characterization.

  12. Control software and user interface for the Canarias Infrared Camera Experiment (CIRCE)

    NASA Astrophysics Data System (ADS)

    Marín-Franch, Antonio; Eikenberry, Stephen S.; Charcos-Llorens, Miguel V.; Edwards, Michelle L.; Varosi, Frank; Hon, David B.; Raines, Steven N.; Warner, Craig D.; Rashkin, David

    2006-06-01

    The Canarias InfraRed Camera Experiment (CIRCE) is a near-infrared visitor instrument for the 10.4-meter Gran Telescopio Canarias (GTC). This document shows CIRCE software. It will have two major functions: instrument control and observatory interface. The instrument control software is based on the UFLIB library, currently used to operate FLAMINGOS-1 and T-ReCS (as well as the CanariCam and FLAMINGOS-2 instruments under development in the University of Florida). The software interface with the telescope will be based on a CORBA server-client architecture. Finally, the user interface will consist of two java-based interfaces for the mechanism/detector control, and for quick look and analysis of data.

  13. Static and dynamic thermal infrared signatures measured during the FESTER experiment: first results

    NASA Astrophysics Data System (ADS)

    Gunter, W. H.; February, F.; Seiffer, D. P.; Eisele, C.

    2016-10-01

    The First European South African Experiment (FESTER) was conducted over about a 10 month period at the Institute of Maritime Technology (IMT) in False Bay, South Africa. One of the principal goals was recording of static and dynamic thermal infrared signatures under different environmental conditions for both validations of existing thermal equilibrium signature prediction codes, but also to aid development of dynamic thermal signature models. A small scientific work boat (called Sea Lab) was used as the principal target and sensor platform. Painted metal plates of different thicknesses were also used as infrared targets on-board Sea Lab to study static/dynamic thermal signatures and were also fitted with pyrgeometers, pyrometers and iButton temperature sensors/loggers. First results focused on the variable of thermal signatures as function of environmental conditions and the accuracy of calculated source temperatures (from measured radiometric temperatures) compared to the physical temperature measurements of the plates.

  14. Are classical rain erosion experiments of infrared materials used in high-velocity seekers representative?

    NASA Astrophysics Data System (ADS)

    Deom, Alain A.; Luc, A.; Flamand, C.; Gouyon, Remi; Balageas, Daniel L.

    1997-06-01

    With increasing speed of missiles, rain erosion becomes a more and more worrying problem for seekers and particularly for infrared domes and windows, since infrared materials are relatively brittle. In the last twenty years some efforts have been done to measure the rain erosion resistance of these materials and to rank them. These measurements were performed at room temperature. In fact, the increase in velocity is followed by an increase in temperature of the infrared materials. Consequently, the real rain erosion resistance can be different of the one determined at room temperature. ONERA made in 1989 a first attempt to measure the influence of temperature by using a special holder in the SAAB-SCANIA rotating arm. The samples were heated at the extremity of the arm during the rain erosion experiments. Preliminary results were obtained but the temperature domain was limited to about 100 degrees Celsius by the high value of the convection transfert coefficient due to the arm rotation. More recently, such experiments were performed in our lab using a water jet generator. In this case there is no displacement of the sample, thus its temperature can be higher than in rotating arm experiments and well known. Rain erosion measurements were performed up to 200 degrees Celsius. The strong influence of temperature on the rain erosion resistance was confirmed but one can wonder if the decrease of rain erosion resistance with temperature is due to a decrease of the mechanical characteristics of the material or a thermal shock effect. Some basic experiments were done to answer this question and computations were performed to determine if, during a typical flight, there is a risk of thermal shock due to the difference of temperature between droplets and the window material.

  15. Fiber mode scrambler experiments for the Subaru Infrared Doppler Instrument (IRD)

    NASA Astrophysics Data System (ADS)

    Ishizuka, M.; Kotani, T.; Nishikawa, J.; Tamura, M.; Kurokawa, T.; Mori, T.; Kokubo, T.

    2016-08-01

    We report the results of fiber mode scrambler experiments for the Infra-Red Doppler instrument (IRD) on the Subaru 8.2-m telescope. IRD is a near infrared, high-precision radial velocity (RV) instrument to search for exoplanets around M dwarfs. It is a fiber-fed, high-resolution (R 70000) spectrograph with an Echelle grating and a state-of-the art laser frequency comb. Expected precision of RV measurements is 1m/s. To achieve 1m/s accuracy, we must reduce modal noise, which is intensity instability of light at the end of multimode fibers. Modal noise is caused by interference of finite number of propagating modes of light. This noise can cause false RV signals, which reduce the accuracy of RV measurements. A mode scrambler is a mechanism to reduce modal noise. However, the best mode scrambler system at near infrared wavelengths is still unknown. Thus, we tested many kinds of mode scramblers, various length fibers, a double scrambler, and octagonal fibers, as static scramblers. We also tested dynamic scramblers, which make output uniform by moving optical fibers dynamically. We report the effects of these mode scramblers.

  16. Study on shortwave infrared long-distance imaging performance based on multiband imaging experiments

    NASA Astrophysics Data System (ADS)

    Junwei, Lang; Yueming, Wang; Xizhong, Xiao; Xiaoqiong, Zhuang; Shengwei, Wang; Jun, Liu; Jianyu, Wang

    2013-04-01

    Balloon-borne or ground-based high resolution long range observation has extensive applications in border monitoring and area surveillance. Performance of long-distance oblique or horizontal imaging systems is closely related to the atmospheric transmittance of the observing spectral band. Compared with visible and near infrared, the shortwave infrared (SWIR) band benefits from less scattering effects, which enables it to provide better quality images under harsh atmospheric conditions. We present a signal-to-noise ratio (SNR) model including atmospheric influences. Based on the model, image SNR was calculated in the spectral range of 0.4 μm to 2.5 μm. In order to validate the imaging performance model of SWIR, a multi-band camera was designed and spectral imaging experiments were conducted. The results clearly demonstrated the advantage of SWIR imaging. The experiments show that the contrast and SNR of SWIR images reduced insignificantly for long distances and under low visibility conditions. This advantage makes SWIR multiband cameras suitable for long-distance remote sensing and for observing through haze.

  17. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  18. Planned investigation of infrared emissions associated with the induced spacecraft glow: A shuttle infrared glow experiment (SIRGE)

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Jennings, D. E.

    1985-01-01

    The characteristics of infrared molecular emissions induced by energetic collisions between ambient atmospheric species and surfaces in Earth orbit are investigated, using a low-nitrogen-cooled filter wheel photometer covering the wavelength range 0.9-.5 microns with a resolving power Lambda/Delta Lambda of approximately 100. This resolving power is sufficient for identification of the molecular or atomic fluorescent spaces causing the glow.

  19. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE WIDE-FIELD IMAGERS

    SciTech Connect

    Bock, J.; Battle, J.; Sullivan, I.; Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Cooray, A.; Mitchell-Wynne, K.; Smidt, J.; Hristov, V.; Lam, A. C.; Levenson, L. R.; Mason, P.; Keating, B.; Renbarger, T.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Suzuki, K.; and others

    2013-08-15

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' Multiplication-Sign 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with {Delta}{lambda}/{lambda} {approx} 0.5 bandpasses centered at 1.1 {mu}m and 1.6 {mu}m to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  20. The Cosmic Infrared Background Experiment (CIBER): The Wide-field Imagers

    NASA Astrophysics Data System (ADS)

    Bock, J.; Sullivan, I.; Arai, T.; Battle, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lam, A. C.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Mitchell-Wynne, K.; Nam, U. W.; Renbarger, T.; Smidt, J.; Suzuki, K.; Tsumura, K.; Wada, T.; Zemcov, M.

    2013-08-01

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2° × 2° field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' × 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with Δλ/λ ~ 0.5 bandpasses centered at 1.1 μm and 1.6 μm to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  1. Experiment of monitoring thermal discharge drained from nuclear plant through airborne infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Difeng; Pan, Delu; Li, Ning

    2009-07-01

    The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.

  2. A tapered undulator experiment at the ELBE far infrared hybrid-resonator oscillator free electron laser.

    PubMed

    Asgekar, V; Lehnert, U; Michel, P

    2012-01-01

    A tapered undulator experiment was carried out at the ELBE far-infrared free electron laser (FEL). The oscillator FEL makes use of a hybrid optical resonator. The main motivation was to see whether the presence of a dispersive medium in the form of a waveguide in the resonator has any effect on the outcome. The FEL saturated power and the wavelength shifts have been measured as a function of both positive as well as negative undulator field amplitude tapering. In contrast to the typical high-gain FELs where positive tapering proves beneficial for the output power we observed an improvement of performance at negative taper. During the same experiments we studied the characteristics of the detuning curves. The width of the curves indicates a maximum small signal gain for zero taper while the output peak power increases with negative taper. The saturated power output, the detuning curve characteristics, and the wavelength shifts agrees with the theoretical predictions. Details of the experiment are presented.

  3. A near-infrared SETI experiment: probability distribution of false coincidences

    NASA Astrophysics Data System (ADS)

    Maire, Jérôme; Wright, Shelley A.; Werthimer, Dan; Treffers, Richard R.; Marcy, Geoffrey W.; Stone, Remington P. S.; Drake, Frank; Siemion, Andrew

    2014-07-01

    A Search for Extraterrestrial Life (SETI), based on the possibility of interstellar communication via laser signals, is being designed to extend the search into the near-infrared spectral region (Wright et al, this conference). The dedicated near-infrared (900 to 1700 nm) instrument takes advantage of a new generation of avalanche photodiodes (APD), based on internal discrete amplification. These discrete APD (DAPD) detectors have a high speed response (< 1 GHz) and gain comparable to photomultiplier tubes, while also achieving significantly lower noise than previous APDs. We are investigating the use of DAPD detectors in this new astronomical instrument for a SETI search and transient source observations. We investigated experimentally the advantages of using a multiple detector device operating in parallel to remove spurious signals. We present the detector characterization and performance of the instrument in terms of false positive detection rates both theoretically and empirically through lab measurements. We discuss the required criteria that will be needed for laser light pulse detection in our experiment. These criteria are defined to optimize the trade between high detection efficiency and low false positive coincident signals, which can be produced by detector dark noise, background light, cosmic rays, and astronomical sources. We investigate experimentally how false coincidence rates depend on the number of detectors in parallel, and on the signal pulse height and width. We also look into the corresponding threshold to each of the signals to optimize the sensitivity while also reducing the false coincidence rates. Lastly, we discuss the analytical solution used to predict the probability of laser pulse detection with multiple detectors.

  4. Cosmic Infrared Background ExpeRiment (CIBER): A probe of Extragalactic Background Light from reionization

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha; Bock, Jamie; Kawada, Mitsunobu; Keating, Brian; Lange, Andrew; Lee, Dae-Hee; Levenson, Louis; Matsumoto, Toshio; Matsuura, Shuji; Renbarger, Tom; Sullivan, Ian; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2012-08-01

    The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown in February 2009 and July 2010 and four more flights are planned by 2014, including an upgrade (CIBER-II). We propose, after several additional flights of CIBER-I, an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times larger than existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.

  5. Cosmic Infrared Background Experiment (CIBER): A Probe of Extragalactic Background Light from Reionization

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha; Bock, Jamie; Kawada, Mitsunobu; Keating, Brian; Lee, Dae-Hee; Levenson, Louis; Matsumoto, Toshio; Matsuura, Shuji; Renbarger, Tom; Sullivan, Ian; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2010-11-01

    The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown on February 25th, 2009 and is expected to be flown three more times over the next two years at six month intervals. CIBER-II is a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high sigma detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With an etendue (a figure-of-merit for survey studies) a factor of 50 to 500 larger than existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.

  6. Cosmic Infrared Background ExpeRiment (CIBER): A Probe of Extragalactic Background Light from Reionization

    NASA Astrophysics Data System (ADS)

    Cooray, A.; Bock, J.; Kawada, M.; Keating, B.; Lange, A.; Lee, D.-H.; Levenson, L.; Matsumoto, T.; Matsuura, S.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-12-01

    The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown on February 25th, 2009 and has one more planned flight in early 2010. We propose, after several additional flights of CIBER-I an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times larger than existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.

  7. Regional Sediment Management Experiment Using the Visible/Infrared Imager/Radiometer Suite and the Landsat Data Continuity Mission Sensor

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    The central aim of this RPC (Rapid Prototyping Capability) experiment is to demonstrate the use of VIIRS (Visible/Infrared Imager/ Radiometer Suite and LDCM (Landsat Data Continuity Mission) sensors as key input to the RSM (Regional Sediment Management) GIS (geographic information system) DSS (Decision Support System). The project affects the Coastal Management National Application.

  8. The Infrared Spectral Imaging Radiometer and Laser Altimeter on STS-85 (an Aircraft Style Experiment Flown in Space)

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1999-01-01

    Improvements in the remote sensing of clouds from space in the future will come from instruments with higher spatial and spectral resolution on more platforms and supported by active sounding. The space shuttle hitchhiker system allows new measurements to be prototyped in space with costs, operating flexibility and data volumes similar to aircraft experiments. The Infrared Spectral Imaging Radiometer and Shuttle Laser Altimeter hitchhiker experiment was flown in 1997. The experiment tested the use of uncooled thermal infrared imaging, laser cloud altitude measurements and high spatial resolution, tri-spectral sensing of cloud particle size and phase. A 1/4 km resolution, fifty orbit data set was obtained from STS-85. The presentation will focus on the use of the shuttle as an experiment platform and cover possible transition to the space station in the future.

  9. Pulse-to-pulse normalization of time-resolved Fourier transform emission experiments in the near infrared

    SciTech Connect

    Lindner, J.; Lundberg, J.K.; Williams, R.M.; Leone, S.R.

    1995-04-01

    The signal-to-noise ratio in a time-resolved Fourier transform (FT) infrared emission experiment is improved by pulse-to-pulse normalization. The signal from the FT spectrometer is normalized by the total infrared fluorescence produced on each laser pulse. A factor of 20 enhancement in signal-to-noise ratio is demonstrated with normalization when the fluctuation of the laser pulse energy is the dominant noise source. Applications are discussed pertaining to cases where other noise sources such as detector and amplifier noise cannot be neglected and when information from the time evolution of the spectrum is required.

  10. Observations of the Infrared Solar Spectrum from Space by the ATMOS Experiment

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Goldman, A.; Gunson, M. R.; Rinsland, C. P.; Zander, R.

    1999-01-01

    The final flight of the Atmospheric Trace Molecule Spectroscopy experiment as part of the Atmospheric na Laboratory for Applications and Science (ATLAS-3) Space Shuttle mission in 1994 provided a new opportunity to measure broadband 625-4800/ cm, 2.1 - 16 micron infrared solar spectra at an unapodized resolution of 0.0l/ cm from space. The majority of the observations were obtained as exoatmospheric, of near Sun center, absorption spectra, which were later ratioed to grazing atmospheric measurements to compute the atmospheric transmission of the Earth's atmosphere and analyzed for vertical profiles of minor and trace gases. Relative to the SPACELAB-3 mission that produced 4800 high Sun spectra (which were averaged into four grand average spectra), the ATLAS-3 mission produced some 40,000 high Sun spectra (which have been similarly averaged) with an improvement in signal-to-noise ratio of a factor of 3-4 in the spectral region between 1000 and 4800/ cm. A brief description of the spectral calibration and spectral quality is given as well as the location of electronic archives of these spectra.

  11. Infrared polar brightening on Jupiter. III - Spectrometry from the Voyager 1 IRIS experiment

    NASA Technical Reports Server (NTRS)

    Kim, S. J.; Caldwell, J.; Rivolo, A. R.; Wagener, R.; Orton, G. S.

    1985-01-01

    Spectra from the Voyager 1 IRIS experiment confirm the existence of enhanced infrared emission near Jupiter's north magnetic pole in March 1979. The spectral characteristics of the enhanced emission are consistent with a Planck source function. A temperature-pressure profile is derived for the region near the north magnetic pole, from which quantitative abundance estimates of minor species are made. Some species previously detected on Jupiter, including CH3D, C2H2, and C2H6, have been observed again near the pole. Newly discovered species, not previously observed on Jupiter, include C2H4, C3H4, and C6H6. All of these species except CH3D appear to have enhanced abundances at the north polar region with respect to midlatitudes. Upper limits are determined for C4H2 and C3H8. The quantitative results are compared with model calculations based on ultraviolet results from the IUE satellite. The plausibility of the C6H6 identification is discussed in terms of the literature on C2H2 polymerization. The relation of C6H6 to cuprene is also discussed.

  12. Brain activity during the flow experience: a functional near-infrared spectroscopy study.

    PubMed

    Yoshida, Kazuki; Sawamura, Daisuke; Inagaki, Yuji; Ogawa, Keita; Ikoma, Katsunori; Sakai, Shinya

    2014-06-24

    Flow is the holistic experience felt when an individual acts with total involvement. Although flow is likely associated with many functions of the prefrontal cortex (PFC), such as attention, emotion, and reward processing, no study has directly investigated the activity of the PFC during flow. The objective of this study was to examine activity in the PFC during the flow state using functional near-infrared spectroscopy (fNIRS). Twenty right-handed university students performed a video game task under conditions designed to induce psychological states of flow and boredom. During each task and when completing the flow state scale for occupational tasks, change in oxygenated hemoglobin (oxy-Hb) concentration in frontal brain regions was measured using fNIRS. During the flow condition, oxy-Hb concentration was significantly increased in the right and left ventrolateral prefrontal cortex. Oxy-Hb concentration tended to decrease in the boredom condition. There was a significant increase in oxy-Hb concentration in the right and left dorsolateral prefrontal cortex, right and left frontal pole areas, and left ventrolateral PFC when participants were completing the flow state scale after performing the task in the flow condition. In conclusion, flow is associated with activity of the PFC, and may therefore be associated with functions such as cognition, emotion, maintenance of internal goals, and reward processing.

  13. Far infrared tangential interferometry/polarimetry on the National Spherical Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Park, H. K.; Domier, C. W.; Geck, W. R.; Luhmann, N. C.

    1999-01-01

    Measurement of the core BT(r,t) value is essential in the National Spherical Tokamak Experiment (NSTX), since the effects of paramagnetism and diamagnetism in the NSTX are expected to be considerably greater than that in higher aspect ratio tokamaks. Therefore, without independent BT(r,t) measurement, plasma parameters dependent upon BT such as the q profile and local β value cannot be evaluated. Tangential interferometer/polarimeter systems (eight channels) [H. Park, L. Guttadora, C. Domier, W. R. Geck, and N. C. Luhman, Jr., First and Second NSTX Research Forums, Princeton, NJ, 1997 (unpublished)] for the NSTX will provide temporally and radially resolved toroidal field profile [BT(r,t)] and two-dimensional electron density profile [ne(r,t)] data. The outcome of the proposed system is extremely important to the study of confinement, heating, and stability of the NSTX plasmas. The research task is largely based on utilizing existing hardware from the TFTR multichannel infrared interferometer system [D. K. Mansfield, H. K. Park, L. C. Johnson, H. Anderson, S. Foote, B. Clifton, and C. H. Ma, Appl. Opt. 26, 4469 (1987) and H. K. Park, D. K. Mansfield, and C. L. Johnson, Proceedings of the 3rd International Symposium on Laser-Aided Plasma Diagnostic, Los Angeles, CA, 28-30 Oct. 1987 (unpublished), pp. 96-104] which will be reconfigured into a tangential system for NSTX, and to develop the additional hardware required to complete the system.

  14. COBE diffuse infrared background experiment observations of Galactic reddening and stellar populations

    NASA Technical Reports Server (NTRS)

    Arendt, R. G.; Berriman, G. B.; Boggess, N.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H.; Murdock, T. L.; Odegard, N.; Silverberg, R. F.

    1994-01-01

    This Letter describes the results of an initial study of Galactic extinction and the colors of Galactic stellar populations in the near-IR using the Diffuse Infrared Background Experiment (DIRBE) aboard the Cosmic Background Explorer (COBE) spacecraft. The near-IR reddening observed by DIRBE is consistent with the extinction law tabulated by Rieke & Lebofsky (1985). The distribution of dust and stars in most of the first and fourth quadrants of the Galactic plane (0 deg less than l less than 90 deg, and 270 deg less than l less than 360 deg, respectively) can be modeled as a stellar background source seen through up to approximately 4 mag of extinction at 1.25 micrometers. The unreddened near-IR colors of the Galactic disk are similar to those of late-K and M giants. The Galactic bulge exhibits slightly bluer colors in the 2.2-3.5 micrometers range, as noted by Terndrup et al. (1991). Star-forming regions exhibit colors that indicate the presence of a approximately 900 K continuum produced by hot dust or polycyclic aromatic hydrocarbons (PAHs) contributing at wavelengths as short as 3.5 micrometers.

  15. Retrieval of spectral and dynamic properties from two-dimensional infrared pump-probe experiments.

    PubMed

    Chelli, Riccardo; Volkov, Victor V; Righini, Roberto

    2008-07-15

    We have developed a fitting algorithm able to extract spectral and dynamic properties of a three level oscillator from a two-dimensional infrared spectrum (2D-IR) detected in time resolved nonlinear experiments. Such properties go from the frequencies of the ground-to-first and first-to-second vibrational transitions (and hence anharmonicity) to the frequency-fluctuation correlation function. This last is represented through a general expression that allows one to approach the various strategies of modeling proposed in the literature. The model is based on the Kubo picture of stochastic fluctuations of the transition frequency as a result of perturbations by a fluctuating surrounding. To account for the line-shape broadening due to pump pulse spectral width in double-resonance measurements, we supply the fitting algorithm with the option to perform the convolution of the spectral signal with a Lorentzian function in the pump-frequency dimension. The algorithm is tested here on 2D-IR pump-probe spectra of a Gly-Ala dipeptide recorded at various pump-probe delay times. Speedup benchmarks have been performed on a small Beowulf cluster. The program is written in FORTRAN language for both serial and parallel architectures and is available free of charge to the interested reader.

  16. Infrared absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison between experiment and theory

    NASA Astrophysics Data System (ADS)

    Bravo, IváN.; Aranda, Alfonso; Hurley, Michael D.; Marston, George; Nutt, David R.; Shine, Keith P.; Smith, Kevin; Wallington, Timothy J.

    2010-12-01

    Experimentally and theoretically determined infrared spectra are reported for a series of straight-chain perfluorocarbons: C2F6, C3F8, C4F10, C5F12, C6F14, and C8F18. Theoretical spectra were determined using both density functional (DFT) and ab initio methods. Radiative efficiencies (REs) were determined using the method of Pinnock et al. (1995) and combined with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). Theoretically determined absorption cross sections were within 10% of experimentally determined values. Despite being much less computationally expensive, DFT calculations were generally found to perform better than ab initio methods. There is a strong wavenumber dependence of radiative forcing in the region of the fundamental C-F vibration, and small differences in wavelength between band positions determined by theory and experiment have a significant impact on the REs. We apply an empirical correction to the theoretical spectra and then test this correction on a number of branched chain and cyclic perfluoroalkanes. We then compute absorption cross sections, REs, and GWPs for an additional set of perfluoroalkenes.

  17. Investigating Lava Properties using Experiments, Video Analysis, Infrared Thermometry and Numerical Flow Models

    NASA Astrophysics Data System (ADS)

    Lev, E.; Spiegelman, M.; Karson, J.; Wysocki, R.

    2012-12-01

    The thermal and mechanical properties of lava provide primary controls on lava flow behavior and are critical parameters in flow simulations. However, these properties are difficult to measure at field conditions or correctly extrapolate from the scale of small-size samples. We address this challenge by conducting controlled experiments using lab-made, meter scale basaltic lava flows and carefully monitoring their cooling and deformation using high spatial and temporal resolution video and infrared cameras. Our experimental setup is part of the Syracuse University Lava Project (\\url{http://lavaproject.syr.edu}) and includes a large furnace capable of melting up to 450 kg of basalt at temperatures well above the basalt liquidus. The lava is poured onto tilted planes or channels made of sand, steel, clay or gravel, to produce meters-long flows. This experimental setup is probably the only facility that allows such large scale controlled lava flows made of natural basaltic material. We record the motion of the lava using a high-resolution video camera placed directly above the flows, and the temperature using forward-looking infrared (FLIR) cameras and thermocouples. After the experiments, we analyze the images for lava deformation and cooling behavior. We compare the observations with numerical forward-models to constrain the thermal and rheological parameters and laws which best describe the lava. For the video analysis, we employ the technique of differential optical flow, which uses the time-variations of the spatial gradients of the image intensity to estimate velocity between consecutive frames. An important benefit for using optical flow, compared with other velocimetry methods, is that it outputs a spatially coherent flow field rather than point measurements. We demonstrate that the optical flow results agree with other measures of the flow velocity, and estimate the error due to noise and time-variability to be under 30 percent of the measured velocity. Our

  18. Near-IR Extragalactic Background Results from the Cosmic Infrared Background Experiment (CIBER)

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; CIBER

    2016-01-01

    The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so represents the total emission from all galaxies along the line of sight up to ancient first-light objects present during the epoch of reionization (EOR). This EOR emission necessarily comprises part of the background, and indeed a minimum level is required to supply enough photons to ionize the intergalactic medium, corresponding to an EBL brightness less than 1 nW m^-2 sr^-1, about one tenth of the integrated galactic light (IGL). In addition to emission from these IGL and EOR populations, low surface brightness tidal streams of stars stripped by gravitational interactions during galaxy formation at low redshifts, called intrahalo light (IHL), may also contribute a significant fraction of the EBL. Models for these components can be constrained both through direct photometric measurements, as well as the new technique of EBL anisotropy intensity mapping that takes advantage of the fact that the Zodiacal Light is spatially smooth while distant populations produce anisotropies with distinct spatial and spectral characteristics. This talk will present recent results from the Cosmic Infrared Background Experiment (CIBER), a sounding rocket borne payload designed to measure both the fluctuations and direct photometric emission of the extra-galactic background light. The anisotropy of the near-IR EBL suggests the presence of a bright component approximately as bright as the IGL component near 1 micron which we interpret as the aggregate emission from low-redshift IHL. New direct photometric measurements from CIBER's low resolution spectrometer will also be discussed.

  19. Nonlinear effects in infrared action spectroscopy of silicon and vanadium oxide clusters: experiment and kinetic modeling.

    PubMed

    Calvo, Florent; Li, Yejun; Kiawi, Denis M; Bakker, Joost M; Parneix, Pascal; Janssens, Ewald

    2015-10-21

    For structural assignment of gas phase compounds, infrared action spectra are usually compared to computed linear absorption spectra. However, action spectroscopy is highly nonlinear owing to the necessary transfer of the excitation energy and its subsequent redistribution leading to statistical ionization or dissociation. Here, we examine by joint experiment and dedicated modeling how such nonlinear effects affect the spectroscopic features in the case of selected inorganic clusters. Vibrational spectra of neutral silicon clusters are recorded by tunable IR-UV two-color ionization while IR spectra for cationic vanadium oxide clusters are obtained by IR multiphoton absorption followed by dissociation of the bare cluster or of its complex with Xe. Our kinetic modeling accounts for vibrational anharmonicities, for the laser interaction through photon absorption and stimulated emission rates, as well as for the relevant ionization or dissociation rates, all based on input parameters from quantum chemical calculations. Comparison of the measured and calculated spectra indicates an overall agreement as far as trends are concerned, except for the photodissociation of the V3O7(+)-Xe messenger complex, for which anharmonicities are too large and poorly captured by the perturbative anharmonic model. In all systems studied, nonlinear effects are essentially manifested by variations in the intensities as well as spectral broadenings. Differences in some band positions originate from inaccuracies of the quantum chemical data rather than specific nonlinear effects. The simulations further yield information on the average number of photons absorbed, which is otherwise unaccessible information: several to several tens of photons need to be absorbed to observe a band through dissociation, while three to five photons can be sufficient for detection of a band via IR-UV ionization.

  20. GeSn/Ge quantum well photodetectors for short-wave infrared photodetection: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Ho; Chang, Guo-En

    2017-05-01

    Group-IV GeSn material systems have recently considered as a new material for sensitive photodetection in the short-wave infrared (SWIR) region. The introduction of Sn into Ge can effectively narrow the bandgap energies, thereby extending the absorption edges toward the longer wavelengths and enabling effective photodetection in SWIR region. Here we present an experimental and modeling study of GeSn/Ge quantum well (QW) photodetectors on silicon substrates for effective SRIW photodetection. Epitaxial growth of pseudomorphic GeSn/Ge QW structures was realized on Ge-buffered silicon substrates using low-temperature molecular beam epitaxy. Normal incident GeSn/Ge QW photodetectors were then fabricated and characterized. The optical responsivity experiments demonstrate that the photodetection cutoff wavelengths is extended to beyond 1800 nm, enabling effective photodetection in SWIR spectral region. We then develop theoretical models to calculate the composition-dependent strained electron band structures, oscillation strengths, and optical absorption spectra for the pseudomorphic GeSn/Ge QW structures. The results show that Ge1-xSnx well sandwiched by Ge barriers can achieve a critical type-I alignment at Γ point to provide necessary quantum confinement of carriers. With an increase in the Sn content, the band offsets between the GeSn well and Ge barreirs increases, thus enhancing the oscillation strengths of direct interband transitions. In addition, despite stronger quantum confinement with increasing Sn content, the absorption edge can be effectively shifted to longer wavelengths due to the direct bandgap reduction caused by Sn-alloying. These results suggest that GeSn/Ge QW photodetectors are promising for low-cost, high-performance SWIR photodetection applications.

  1. Near Infrared Photoimmunotherapy in the Treatment of Pleural Disseminated NSCLC: Preclinical Experience

    PubMed Central

    Sato, Kazuhide; Nagaya, Tadanobu; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Pleural metastases are common in patients with advanced thoracic cancers and are a cause of considerable morbidity and mortality yet is difficult to treat. Near Infrared Photoimmunotherapy (NIR-PIT) is a cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to NIR-light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of pleural disseminated non-small cell lung carcinoma (NSCLC). In vitro and in vivo experiments were conducted with a HER2, luciferase and GFP expressing NSCLC cell line (Calu3-luc-GFP). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized. In vitro NIR-PIT cytotoxicity was assessed with dead staining, luciferase activity, and GFP fluorescence intensity. In vivo NIR-PIT was performed in mice with tumors implanted intrathoracic cavity or in the flank, and assessed by tumor volume and/or bioluminescence and fluorescence thoracoscopy. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. In vivo NIR-PIT led significant reductions in both tumor volume (p = 0.002 vs. APC) and luciferase activity (p = 0.0004 vs. APC) in a flank model, and prolonged survival (p < 0.0001). Bioluminescence indicated that NIR-PIT lead to significant reduction in pleural dissemination (1 day after PIT; p = 0.0180). Fluorescence thoracoscopy confirmed the NIR-PIT effect on disseminated pleural disease. In conclusion, NIR-PIT has the ability to effectively treat pleural metastases caused by NSCLC in mice. Thus, NIR-PIT is a promising therapy for pleural disseminated tumors. PMID:25897335

  2. Study of the γD-Crystallin Protein Using Two-Dimensional Infrared (2DIR) Spectroscopy: Experiment and Simulation

    PubMed Central

    Moran, S. D.; Preketes, N. K.; Zhang, T. O.; Zanni, M. T.; Mukamel, S.

    2013-01-01

    Cataracts is a misfolding protein disease in which one of its major components is the γD-crystallin protein. The conformational structure of the aggregated γD-crystallin and the interactions that cause aggregation are largely unknown. A recent experimental two-dimensional infrared (2DIR) spectroscopy study determined that the C-terminal domain has a high propensity to form β-sheets whereas the N-terminal domain forms a disordered structure in the fiber state. We present a combined computational molecular dynamics (MD) and infrared spectroscopy study of the local dynamics of these domains. The computed 2DIR signals agree remarkably well with experiment. We show that both domains having a Greek key structural fold experience different electrostatic environments, which may be related to the fact that the C-terminal domain is more structurally stable than the N-terminal domain. We correlate the vibrational couplings to known energy dissipation mechanisms and reveal their origin. PMID:23972032

  3. A near-infrared SETI experiment: A multi-time resolution data analysis

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Duenas, Andres; Marcy, Geoffrey W.; Stone, Remington P. S.; Treffers, Richard R.; Werthimer, Dan; NIROSETI

    2016-06-01

    We present new post-processing routines which are used to detect very fast optical and near-infrared pulsed signals using the latest NIROSETI (Near-Infrared Optical Search for Extraterrestrial Intelligence) instrument. NIROSETI was commissioned in 2015 at Lick Observatory and searches for near-infrared (0.95 to 1.65μ) nanosecond pulsed laser signals transmitted by distant civilizations. Traditional optical SETI searches rely on analysis of coincidences that occur between multiple detectors at a fixed time resolution. We present a multi-time resolution data analysis that extends our search from the 1ns to 1ms range. This new feature greatly improves the versatility of the instrument and its search parameters for near-infrared SETI. We aim to use these algorithms to assist us in our search for signals that have varying duty cycles and pulse widths. We tested the fidelity and robustness of our algorithms using both synthetic embedded pulsed signals, as well as data from a near-infrared pulsed laser installed on the instrument. Applications of NIROSETI are widespread in time domain astrophysics, especially for high time resolution transients, and astronomical objects that emit short-duration high-energy pulses such as pulsars.

  4. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    NASA Technical Reports Server (NTRS)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  5. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    NASA Technical Reports Server (NTRS)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  6. Infrared information testing and numerical experiment analysis of the tensile necking-down phenomena of metal specimens

    NASA Astrophysics Data System (ADS)

    Wang, Laigui; Zhao, Na

    2008-11-01

    Under the action of tensile load obvious necking-down phenomena will occur in the metal test-piece. The tensile experiment about the metal test-piece has been studied, but the finite element simulation of the tensile necking-down phenomena has not been reported. The paper first studies the experiment of the mental test-piece, using the universal testing machine of WE-10A and WI-60T to load the mental test-piece and using IZ-910 infrared thermal imager to test the change process of infrared radiation temperature fields, then works out the finite element program to simulate the tensile necking-down phenomena of the metal test-piece with the elastic-plastic model. The experiment result shows that the infrared thermal effect of the metal test-piece in the process of loading is obvious, before the sample fracture will appear the omen of high temperature in the position where the future fracture will occur; in stress concentration the microcracks concentrate and the thermal figure is obvious; in the whole loading process the fracture starts from the local part, develops and evolutes gradually; with the stress change on the metal test-piece the infrared radiation temperature of the test-piece surface changes, having the temperature-rising tendency in the total and the temperature rising trend in the local fracture position is obvious. This is because the metal test-piece material or the force is uneven and the stress concentration is formed, In the position of the stress concentration the deformation destruction firstly occurs. Because the energy is released in the process of deformation destruction, so the temperature change is obvious in the fracture position. After the experiment the obvious necking-down phenomena occurs in the test-piece. At the same time, in order to provide the theoretical basis for the experiment, with the finite element software of FEPG the finite element program is worked out, with the elastic-plastic model and the uneven material the fracture

  7. Investigation Development Plan for Reflight of the Small Helium-cooled Infrared Telescope Experiment. Volume 1: Investigation and Technical/management

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Infrared Telescope (IRT) is designed to survey extended celestial sources of infrared radiation between 4 and 120 micrometers wavelength. It will provide data regarding Space Shuttle induced environmental contamination and the zodical light. And, it will provide experience in the management of large volumes of superfluid helium in the space environment.

  8. Altered visual experience and acute visual deprivation affect predatory targeting by infrared-imaging Boid snakes.

    PubMed

    Grace, M S; Woodward, O M

    2001-11-23

    Boid and Crotaline snakes use both their eyes and infrared-imaging facial pit organs to target homeothermic prey. These snakes can target in complete darkness, but the eyes can also effectively direct predatory strikes. We investigated the behavioral correlates of boid snakes' simultaneous use of two imaging systems by testing whether congenital unilateral visual deprivation affects targeting performance. Normally sighted Burmese pythons exhibited average targeting angle of zero (on the midline axis of the head), but three unilaterally anophthalmic Burmese pythons targeted preferentially on the sighted side. A unilaterally anophthalmic amethystine python also targeted on the sighted side, and a unilaterally anophthalmic Brazilian rainbow boa tended to target on the sighted side, though its mean targeting angle was not significantly different from zero. When unilaterally anophthalmic Burmese pythons were temporarily blinded, mean strike angle changed to that of normally sighted snakes. These results show that while infrared-imaging snakes can shift between visual and infrared information under acute experimental conditions, loss of part of the visual field during development results in abnormal predatory targeting behavior. In contrast, normally sighted snakes subjected to temporary unilateral blinding do not target preferentially on the sighted side. Therefore, while loss of part of the visual field may be compensated for by infrared input in normal snakes, partial absence of visual input during development may alter central organization of visual information. Conversely, absence of half the visual field during development does not alter targeting performance based upon infrared input alone, suggesting that organization of the central infrared map does not depend upon normal organization of visual input.

  9. Intensity Mapping of the History of Stellar Emission with the Cosmic Infrared Background ExpeRiment-2

    NASA Astrophysics Data System (ADS)

    Lanz, Alicia E.; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha R.; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Onishi, Yosuke; Shirahata, Mai; Tsumurai, Kohji; Wada, Takehiko; Zemcov, Michael B.

    2016-01-01

    Recent measurements of the near-infrared Extragalactic Background Light (EBL) anisotropy find excess spatial power above the level predicted by known galaxy populations at large angular scales. These anisotropies trace spatial variations in integrated photon production, so measurements of EBL surface brightness fluctuations provide a complete census of the emission from stars summed over cosmic history. As a result, EBL fluctuations contain contributions from objects forming during the Epoch of Reionization (EOR), from the integrated galactic light (IGL), and faint, extended components such as intra-halo light (IHL) from stars tidally stripped from galaxies during merger events. Additional measurements with greater sensitivity, spectral range, and spectral resolution are required to disentangle these contributions.The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) is an instrument optimized for the measurement of near-infrared EBL anisotropies. As the Earth's atmosphere generates time-varying near-infrared emission, CIBER-2 is launched on a sounding rocket from which it will carry out multiwavelength imaging in six spectral bands that span the visible to near-infrared. The 2.4 square degree images allow CIBER-2 to produce measurements of EBL fluctuations with high fidelity on large angular scales. The Lyman break feature from EOR sources provides a unique spectral feature which can be used to disentangle the high from the low redshift contributions to the anisotropy signal. Measurement in six independent wavebands allows detailed cross-correlation studies to constrain the source of the excess fluctuations at large angular scales. We provide an overview of the CIBER-2 instrument and explain CIBER-2 spectral feature identification and cross-correlation study methodologies.

  10. Pioneer 11 infrared radiometer experiment: the global heat balance of jupiter.

    PubMed

    Ingersoll, A P; Münch, G; Neugebauer, G; Diner, D J; Orton, G S; Schupler, B; Schroeder, M; Chase, S C; Ruiz, R D; Trafton, L M

    1975-05-02

    Data obtained by the infrared radiometers on the Pioneer 10 and Pioneer 11 spacecraft, over a large range of emission angles, have indicated an effective temperature for Jupiter of 125 degrees +/- 3 degrees K. The implied ratio of planetary thermal emission to solar energy absorbed is 1.9+/-0.2, a value not significantly different from the earth-based estimate of 2.5+/-0.5.

  11. Monitoring of spatiotemporal patterns in the oscillatory chemical reactions with the infrared camera: experiments and model interpretation.

    PubMed

    Pekala, Katarzyna; Wiśniewski, Albin; Jurczakowski, Rafał; Wiśniewski, Tomasz; Wojdyga, Małgorzata; Orlik, Marek

    2010-08-05

    An infrared camera was used for the first time to monitor the progress of traveling fronts in oscillatory chemical reactions, taking the Belousov-Zhabotinsky (BZ) reaction as the test system. The experiments involved comparative visual imaging and infrared thermography measurements for the thin-layer of the BZ solution in the Petri dish, including both aqueous and gel media, the latter one hindering the convection. Infrared thermography experiments that supply information on the temperature distribution at the solution surface were compared with the bulk temperature variations of the stirred solution with BZ reaction, measured simultaneously with the oscillatory variations of the Pt electrode potential. The experimentally observed correlation between the ferroin catalyst concentration and the temperature distribution was compared with the results of numerical modeling of these distributions in 2-D reactor space, based on the classical Oregonator. Analogous experiments were performed for the oscillatory oxidation of thiocyanates with hydrogen peroxide, catalyzed with Cu(2+) ions, in search of factors causing the development of traveling fronts, previously reported. The inhomogeneous distribution of the free surface temperature that could contribute to surface instabilities was found. Also, periodical increase and decrease in temperature of solution surface was reported. This was interpreted as periodically predominating cooling of the surface in contact with the surroundings because for the bulk, thermally isolated stirred solution, the temperature monotonically increases. In terms of our nine-variable kinetic model of this system, it was possible to identify the reaction steps responsible for the experimentally observed temperature dynamics and ascribe the appropriate heat effects to them. Our results constitute the first contribution to the thermochemical characteristics of the H(2)O(2)-SCN(-)-OH(-)-Cu(2+) oscillator.

  12. Infrared thermography applied to the study of heated and solar pavement: from numerical modeling to small scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Le Touz, N.; Toullier, T.; Dumoulin, J.

    2017-05-01

    The present study addresses the thermal behaviour of a modified pavement structure to prevent icing at its surface in adverse winter time conditions or overheating in hot summer conditions. First a multi-physic model based on infinite elements method was built to predict the evolution of the surface temperature. In a second time, laboratory experiments on small specimen were carried out and the surface temperature was monitored by infrared thermography. Results obtained are analyzed and performances of the numerical model for real scale outdoor application are discussed. Finally conclusion and perspectives are proposed.

  13. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2016-09-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  14. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2017-07-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  15. Extinction of visible and infrared radiation in rain Comparison of theory and experiment

    NASA Technical Reports Server (NTRS)

    Ulbrich, C. W.; Atlas, D.

    1985-01-01

    A critical review is given of the experimental and theoretical results concerning the measurement of rainfall using optical extinction, i.e., the attenuation of radiation with wavelength less than or equal to that of the infrared band. It is shown that rainfall rates found from an empirical relation involving optical extinction generally display average deviations without regard for sign of only 25 percent when compared with those measured by raingages directly beneath the optical beam. It is also shown that the differences between experimental and theoretical results can be explained in terms of variations of the shape of the raindrop size distribution, i.e., deviations from exponentiality.

  16. Midcourse Space Experiment: Off-Axis Rejection Performance of the Infrared Sensor

    DTIC Science & Technology

    2005-11-28

    presents an analysis of NRER observed at altitudes in the range from approximately 90 to 660 km in the four MSX LWIR radiome - ter bands using the Air...by the MSX SPIRIT III radiome - (BTH) line of sight intersecting the Earth’s surface. Limb radiance ter in Earth limb views was estimated in prelaunch...the three other long wavelength infrared (LWIR) radiome - the integral in Eq. (Al) for a series of boresight elevation angles and ter bands (11.1-13.2

  17. Submillimeter and Far Infrared Experiment for SOFIA (SAFIRE): Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Shafer, R. A.; Moseley, S. H.; Benford, D. J.; Chervenak, J. A.; Dwek, E.; Staguhn, J. G.; Irwin, K. D.; Pajot, F.; Stacey, G. J.

    2002-01-01

    SAFIRE/SOFIA is a versatile imaging Fabry-Perot spectrograph covering 100 less than lambda less than 655 microns, with spectral resolving power of approx. l0(exp 3). Selected as a "PI" instrument for the airborne Stratospheric Observatory for Infrared Astronomy (SOFIA), SAFIRE will apply two dimensional pop-up bolometer arrays to provide background limited imaging spectrometry. We describe the instrument design, its application to a range of astro- physical investigations, and current progress and results in the innovative detector and instrument design. SAFIRE/SOFIA is on track for availability in 2006.

  18. Sentinel node biopsy in breast cancer using infrared laser system first experience with PDE camera

    PubMed Central

    Polom, Karol; Murawa, Dawid; Michalak, Michał; Murawa, Paweł

    2011-01-01

    Background Sentinel node biopsy (SNB) is a gold standard in staging of early breast cancer. Nowadays, routine mapping of lymphatic tract is based on two tracers: human albumin with radioactive technetium, with or without blue dye. Recent years have seen a search for new tracers to examine sentinel node as well as lymphatic network. One of them is indocyanine green (ICG) visible in infrared light. Aim The aim of this study is to evaluate clinical usage of ICG in comparison with standard tracer, i.e. nanocoll, in SNB of breast cancer patients. Materials and methods In the 1st Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, 13 female breast cancer patients have benn operated since September 2010. All these patients had sentinel node biopsy with nanocoll (human albumin with radioactive technetium), and with indocyanine green. The feasibility of this new method was assessed in comparison with the standard nanocoll. Results A lymphatic network between the place of injection of ICG and sentinel node was seen in infrared light. An area where a sentinel node was possibly located was confirmed by gamma probe. Sensitivity of this method was 100%. Conclusion SNB using ICG is a new, promising diagnostics technique. This procedure is not without drawbacks; nevertheless it opens new horizons in lymphatic network diagnostics. PMID:24376962

  19. Ice clouds optical properties in the Far Infrared from the ECOWAR-COBRA Experiment

    NASA Astrophysics Data System (ADS)

    Rizzi, Rolando; Tosi, Ennio

    ECOWAR-COBRA (Earth COoling by WAter vapouR emission -Campagna di Osservazioni della Banda Rotazionale del vapor d'Acqua) field campaign took place in Italy from 3 to 17 March 2007 with the main goal of studying the scarcely sensed atmospheric emission occurring beyond 17 microns. Instrumentation involved in the campaign included two different Fourier Transforms Spectrometers (FTS) : REFIR-PAD (at Testa Grigia Station, 3500 m a.s.l.) and FTIR-ABB (at Cervinia Station, 1990 m a.s.l.). In this work cloudy sky data have been ana-lyzed. A cloud properties retrieval methodology (RT-RET), based on high spectral resolution measurements in the atmospheric window (800-1000 cm-1), is applied to both FTS sensors. Cloud properties determined from the infrared retrievals are compared with those obtained from Raman lidar taken by the BASIL Lidar system that was operating at Cervinia station. Cloud microphysical and optical properties retrieved by RT-RET are used to perform forward simulations over the entire FTSs measurements spectral interval. Results are compared to FTS data to test the ability of single scattering ice crystals models to reproduce cloudy sky radiances in the Far Infra-Red (FIR) part of the spectrum. New methods to retrieve cloud optical and microphysical properties exploiting high spectral resolution FIR measurements are also investigated.

  20. Constructal thermodynamics combined with infrared experiments to evaluate temperature differences in cells.

    PubMed

    Lucia, Umberto; Grazzini, Giuseppe; Montrucchio, Bartolomeo; Grisolia, Giulia; Borchiellini, Romano; Gervino, Gianpiero; Castagnoli, Carlotta; Ponzetto, Antonio; Silvagno, Francesca

    2015-06-23

    The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields. Experimental validation of the principle was carried out on two cellular models exposed to electromagnetic fields. By infrared thermography we were able to assess small changes in heat dissipation measured as a variation in cell internal energy. The experimental data thus obtained are in agreement with the theoretical calculation, because they show a different thermal dispersion pattern when normal and immortalized cells are exposed to electromagnetic fields. By using two methods that support and validate each other, we have demonstrated that the cell/environment interaction can be exploited to enhance cell behavior differences, in particular heat dissipation. We propose infrared thermography as a technique effective in discriminating distinct patterns of thermal dispersion and therefore able to distinguish a normal phenotype from a transformed one.

  1. Constructal thermodynamics combined with infrared experiments to evaluate temperature differences in cells

    PubMed Central

    Lucia, Umberto; Grazzini, Giuseppe; Montrucchio, Bartolomeo; Grisolia, Giulia; Borchiellini, Romano; Gervino, Gianpiero; Castagnoli, Carlotta; Ponzetto, Antonio; Silvagno, Francesca

    2015-01-01

    The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields. Experimental validation of the principle was carried out on two cellular models exposed to electromagnetic fields. By infrared thermography we were able to assess small changes in heat dissipation measured as a variation in cell internal energy. The experimental data thus obtained are in agreement with the theoretical calculation, because they show a different thermal dispersion pattern when normal and immortalized cells are exposed to electromagnetic fields. By using two methods that support and validate each other, we have demonstrated that the cell/environment interaction can be exploited to enhance cell behavior differences, in particular heat dissipation. We propose infrared thermography as a technique effective in discriminating distinct patterns of thermal dispersion and therefore able to distinguish a normal phenotype from a transformed one. PMID:26100383

  2. Acupuncture or low frequency infrared treatment for low back pain in Chinese patients: a discrete choice experiment.

    PubMed

    Chen, Li-Chia; Cheng, Li-Jen; Zhang, Yan; He, Xin; Knaggs, Roger D

    2015-01-01

    Acupuncture is a popular but controversial treatment option for low back pain. In China, it is practised as traditional Chinese medicine; other treatment strategies for low back pain are commonly practised as Western medicine. Research on patient preference for low back-pain treatment options has been mainly conducted in Western countries and is limited to a willingness-to-pay approach. A stated-preference, discrete choice experiment was conducted to determine Chinese patient preferences and trade-offs for acupuncture and low frequency infrared treatment in low back pain from September 2011 to August 2012 after approval from the Department of Scientific Research in the study settings. Eight-six adult outpatients who visited the 'traditional medicine department' at a traditional Chinese medicine hospital and the 'rehabilitation department' at a Western medicine hospital in Guangdong Province of China for chronic low back pain during study period participated in an interview survey. A questionnaire containing 10 scenarios (5 attributes in each scenario) was used to ask participants' preference for acupuncture, low frequency infrared treatment or neither option. Validated responses were analysed using a nested-logit model. The decision on whether to receive a therapy was not associated with the expected utility of receiving therapy, female gender and higher out-of-pocket payment significantly decreased chance to receive treatments. Of the utility of receiving either acupuncture or low frequency infrared treatment, the treatment sensation was the most important attribute as an indicator of treatment efficacy, followed by the maximum efficacy, maintenance duration and onset of efficacy, and the out-of-pocket payment. The willingness-to-pay for acupuncture and low frequency infrared treatment were about $618.6 and $592.4 USD per course respectively, demonstrated patients' demand of pain management. The treatment sensation was regarded as an indicator of treatment

  3. Acupuncture or Low Frequency Infrared Treatment for Low Back Pain in Chinese Patients: A Discrete Choice Experiment

    PubMed Central

    Chen, Li-Chia; Cheng, Li-Jen; Zhang, Yan; He, Xin; Knaggs, Roger D.

    2015-01-01

    Acupuncture is a popular but controversial treatment option for low back pain. In China, it is practised as traditional Chinese medicine; other treatment strategies for low back pain are commonly practised as Western medicine. Research on patient preference for low back-pain treatment options has been mainly conducted in Western countries and is limited to a willingness-to-pay approach. A stated-preference, discrete choice experiment was conducted to determine Chinese patient preferences and trade-offs for acupuncture and low frequency infrared treatment in low back pain from September 2011 to August 2012 after approval from the Department of Scientific Research in the study settings. Eight-six adult outpatients who visited the ‘traditional medicine department’ at a traditional Chinese medicine hospital and the ‘rehabilitation department’ at a Western medicine hospital in Guangdong Province of China for chronic low back pain during study period participated in an interview survey. A questionnaire containing 10 scenarios (5 attributes in each scenario) was used to ask participants' preference for acupuncture, low frequency infrared treatment or neither option. Validated responses were analysed using a nested-logit model. The decision on whether to receive a therapy was not associated with the expected utility of receiving therapy, female gender and higher out-of-pocket payment significantly decreased chance to receive treatments. Of the utility of receiving either acupuncture or low frequency infrared treatment, the treatment sensation was the most important attribute as an indicator of treatment efficacy, followed by the maximum efficacy, maintenance duration and onset of efficacy, and the out-of-pocket payment. The willingness-to-pay for acupuncture and low frequency infrared treatment were about $618.6 and $592.4 USD per course respectively, demonstrated patients' demand of pain management. The treatment sensation was regarded as an indicator of treatment

  4. The Zugspitze radiative closure experiment: quantification of the near-infrared water vapor continuum from atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Sussmann, Ralf; Rettinger, Markus

    2016-04-01

    Inaccuracies in the description of atmospheric radiative processes are among the major shortcomings of current climate models. Especially the contribution by water vapor, the primary greenhouse gas in the Earth's atmosphere, currently still lacks sufficiently accurate quantification. The main focus of our study is on the so-called water vapor continuum absorption in the near-infrared spectral range, which is of crucial importance for atmospheric radiative processes. To date, the quantification of this contribution originates exclusively from laboratory experiments which show contradictory results and whose findings are not unambiguously transferable to atmospheric conditions. The aim of the Zugspitze radiative closure study is therefore to obtain, to our knowledge for the first time, an exact characterization of the near-infrared water vapor continuum absorption using atmospheric measurements. This enables validation and, if necessary, improvements of the radiative transfer codes used in current climate models. The closure experiment comprises near-infrared spectral radiance measurements using a solar absorption FTIR spectrometer. These measurements are then compared to synthetic radiance spectra computed by means of a high-resolution radiative transfer model. The spectral residuals, i.e. the difference between measured and calculated spectral radiances can then be used to quantify errors in the description of water vapor absorption. Due to the extensive permanent instrumentation available at the Zugspitze observatory, the atmospheric state used as an input to the model calculations can be constrained with high accuracy. Additionally, we employ a novel radiometric calibration strategy for the solar FTIR spectral radiance measurements based on a combination of the Langley method and measurements of a medium-temperature blackbody source. These prerequisites enable accurate quantification of the water vapor continuum in the near-infrared spectral region, where

  5. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE NARROW-BAND SPECTROMETER

    SciTech Connect

    Korngut, P. M.; Bock, J.; Renbarger, T.; Keating, B.; Arai, T.; Matsumoto, T.; Matsuura, S.; Battle, J.; Hristov, V.; Lanz, A.; Levenson, L. R.; Mason, P.; Brown, S. W.; Lykke, K. R.; Smith, A. W.; Cooray, A.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Shultz, B.; and others

    2013-08-15

    We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight.

  6. Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics

    NASA Astrophysics Data System (ADS)

    Lloyd, David T.; O'Keeffe, Kevin; Wyatt, Adam S.; Anderson, Patrick N.; Treacher, Daniel; Hooker, Simon M.

    2017-02-01

    We report the operation of an optical parametric amplifier (OPA) capable of producing gigawatt peak-power laser pulses with tunable wavelength in either the visible or near-infrared spectrum. The OPA has two distinct operation modes (i) generation of > 350 μJ, sub 100 fs pulses, tunable between 1250 - 1550 nm; (ii) generation of > 170 μJ, sub 150 fs pulses tunable between 490 - 530 nm. We have recorded high-order harmonic spectra over a wide range of driving wavelengths. This flexible source of femtosecond pulses presents a useful tool for exploring the wavelength-dependence of strong-field phenomena, in both the multi-photon and tunnel ionization regimes.

  7. The Cosmic Infrared Background Experiment (CIBER): The Narrow-Band Spectrometer

    NASA Astrophysics Data System (ADS)

    Korngut, P. M.; Renbarger, T.; Arai, T.; Battle, J.; Bock, J.; Brown, S. W.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lanz, A.; Lee, D. H.; Levenson, L. R.; Lykke, K. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Shultz, B.; Smith, A. W.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2013-08-01

    We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight.

  8. A novel calibration method for an infrared thermography system applied to heat transfer experiments

    NASA Astrophysics Data System (ADS)

    Ochs, M.; Horbach, T.; Schulz, A.; Koch, R.; Bauer, H.-J.

    2009-07-01

    In heat transfer measurements with highly non-uniform wall heat fluxes, high spatial resolution of wall temperatures is required to fully capture the complex thermal situation. Infrared thermography systems provide that spatial resolution. To meet the thermal accuracy, they are usually calibrated in situ using thermocouples embedded in the test surface, which have to cover the complete temperature range of interest. However, thermocouples which are placed in regions of high temperature and heat flux gradients often cannot be used for the calibration and the overall accuracy of the calibration decreases significantly. Therefore, in the present work a novel in situ calibration method is presented which does not require thermocouples over the complete surface temperature range. The number of free parameters of the calibration function is reduced by an optimized insensitivity of the system with respect to changes in operating conditions. Reference measurements demonstrate the advantages of the new method.

  9. Status and first results of the Canarias infrared camera experiment (CIRCE) for the Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Garner, Alan; Stelter, Richard D.; Eikenberry, Stephen S.; Lasso-Cabrera, Nestor; Raines, Steven N.; Charcos, Miguel; Edwards, Michelle; Marín-Franch, Antonio; Ackley, Kendall; Cenarro, A. Javier; Bennett, John G.; Chinn, Brian; Frommeyer, Raymond; Herlevich, Michael D.; Miller, Paola; Murphey, Charles H.; Packham, Christopher

    2014-07-01

    CIRCE is a near-infrared (1-2.5 micron) imager, polarimeter and low-resolution spectrograph intended as a visitor instrument for the Gran Telescopio Canarias 10.-4m telescope. It was built largely by graduate students and postdocs, with help from the UF astronomy engineering group, and is funded by the University of Florida and the U.S. National Science Foundation. CIRCE is intended to help fill the gap in time between GTC first light and the arrival of EMIR, and will also provide the following scientific capabilities to compliment EMIR after its arrival: high- resolution imaging, narrowband imaging, high-time-resolution photometry, imaging- and spectro- polarimetry, low-resolution spectroscopy. In this poster, we review the lab testing results for CIRCE from 2013 and describe the instrument status (currently in shipment to GTC).

  10. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Rongbo; Li, Shengfu; Zhou, Weijun; Luo, Zhen-Xiong; Meng, Jianhua; Tian, Jianhua; He, Lihua; Cheng, Xianchao

    2017-09-01

    An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR). Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.

  11. Spontaneous and stimulated Smith-Purcell radiation experiments in the far-infrared

    NASA Astrophysics Data System (ADS)

    Urata, John M. N.

    1997-09-01

    Metal diffraction gratings of rectangular profile mounted in the focal region of a modified scanning electron microscope were used to produce Smith-Purcell radiation at far-infrared wavelengths. Electron beam energies of 30-40 keV were used. First and second order spontaneous radiation with wavelengths from 342 to 875 μm and peak powers of 100's of pW was produced. The wavelengths and power levels observed were in accordance with theory. As the beam current density was increased beyond a certain point, the radiated power went from a linear current dependence to a super-linear dependence, signifying the operation of a stimulated radiation mechanism. When running in the stimulated emission mode, peak powers as high as 10 nW were measured.

  12. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  13. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  14. Experience with an imaging infrared radiometer in a simulated space environment

    NASA Astrophysics Data System (ADS)

    Siebes, Georg; Johnson, Kenneth R.; McAffee, Doug

    1996-03-01

    A commercially available imaging infrared radiometer, an Inframetrics 760 system, was subjected to simulated space and Martian environments in JPL's 25 ft and 10 ft space simulators for a total of 108 hours. Initially, the IR camera was integrated with the Satellite Test Assistant Robot (STAR) system which demonstrated successful operation in late 1994. During this initial demonstration, the IR camera experienced 24 hours of a hard vacuum with simulated space temperatures between minus 190 degrees Celsius to plus 25 degrees Celsius. Subsequently, the IR camera was subjected to 12 hours of a simulated space and 72 hours of a simulated Martian environment during the Mars Rover test. Equipped only with thermostatically controlled heaters to prevent undercooling, the IR camera operated continuously during these periods and provided numerous images of the simulator interior, a reference target, and the Mars Rover. The reference target consisted of nine samples of different materials used in typical aerospace thermal designs. The emittance range covered 0.02 to 0.90. The target temperature range was varied from minus 80 degrees Celsius to 55 degrees Celsius. The IR camera was reliable and provided quality images throughout this range but measurement accuracy was a strong function of target temperature and emittance. Best results for high emittance targets were within 12 degrees Celsius at minus 80 degrees Celsius to within 1 degree Celsius at plus 55 degrees Celsius.

  15. GeSn/SiGeSn photonic devices for mid-infrared applications: experiments and calculations

    NASA Astrophysics Data System (ADS)

    Han, Genquan; Zhang, Qingfang; Liu, Yan; Zhang, Chunfu; Hao, Yue

    2016-11-01

    In this work, a fully strained GeSn photodetector with Sn atom percent of 8% is fabricated on Ge buffer on Si(001) substrate. The wavelength λ of light signals with obvious optical response for Ge0.92Sn0.08 photodetector is extended to 2 μm. The impacts of compressive strain introduced during the epitaxial growth of GeSn on Ge/Si are studied by simulation. Besides, the tensile strain engineering of GeSn photonic devices is also investigated. Lattice-matched GeSn/SiGeSn double heterostructure light emitting diodes (LEDs) with Si3N4 tensile liner stressor are designed to promote the further mid-infrared applications of GeSn photonic devices. With the releasing of the residual stress in Si3N4 liner, a large biaxial tensile strain is induced in GeSn active layer. Under biaxial tensile strain, the spontaneous emission rate rsp and internal quantum efficiency ηIQE for GeSn/SiGeSn LED are significantly improved.

  16. Intracranial Hematoma Detection by Near Infrared Spectroscopy in a Helicopter Emergency Medical Service: Practical Experience

    PubMed Central

    Bossers, Sebastiaan M.

    2017-01-01

    In (helicopter) emergency medical services, (H)EMS, the prehospital detection of intracranial hematomas should improve patient care and the triage to specialized neurosurgical hospitals. Recently, noninvasive detection of intracranial hematomas became possible by applying transcranial near infrared spectroscopy (NIRS). Herein, second-generation devices are currently available, for example, the Infrascanner 2000 (Infrascan), that appear suited also for prehospital (H)EMS applications. Since (H)EMS operations are time-critical, we studied the Infrascanner 2000 as a “first-time-right” monitor in healthy volunteers (n = 17, hospital employees, no neurologic history). Further, we studied the implementation of the Infrascanner 2000 in a European HEMS organization (Lifeliner 1, Amsterdam, The Netherlands). The principal results of our study were as follows: The screening for intracranial hematomas in healthy volunteers with first-time-right intention resulted in a marked rate of virtual hematomas (false positive results, i.e., 12/17), rendering more time consuming repeat measurements advisable. The results of the implementation of the Infrascanner in HEMS suggest that NIRS-based intracranial hematoma detection is feasible in the HEMS setting. However, some drawbacks exist and their possible solutions are discussed. Future studies will have to demonstrate how NIRS-based intracranial hematoma detection will improve prehospital decision making in (H)EMS and ultimately patient outcome. PMID:28717647

  17. Infrared spectrum and stability of the H2O-HO complex: experiment and theory.

    PubMed

    Soloveichik, Pesia; O'Donnell, Bridget A; Lester, Marsha I; Francisco, Joseph S; McCoy, Anne B

    2010-01-28

    Infrared action spectroscopy is utilized to characterize the gas-phase, hydrogen-bonded H(2)O-HO complex, a primary interaction in the hydration of the hydroxyl radical. The OH radical stretch of the H(2)O-HO complex is identified at 3490 cm(-1), shifted 78 cm(-1) to lower frequency of the OH monomer transition. The stability of the complex, D(0) < or = 5.14 kcal mol(-1), is derived from the highest observed OH product channel in the associated product state distribution. The assignment is supported by high level ab initio calculations of the spectral shift of the binary complex from free OH and its dissociation energy, D(e)(CBS-infinity) = 5.6 kcal mol(-1). A second weaker feature, appearing 15 cm(-1) to lower frequency at 3475 cm(-1), is attributed to a hot band, the OH radical stretch originating from an out-of-plane H(2)O bending state, based on two-dimensional calculations of frequencies and strengths of transitions involving the coupled vibrational modes.

  18. Instrumentation on the Remote Atmospheric and Ionospheric Detection System Experiment: Extreme-ultraviolet spectrometer, photometer, and near infrared spectrometer

    SciTech Connect

    Christensen, A.B.; Kayser, D.C.; Pranke, J.B.; Straus, P.R.; Gutierrez, D.G. . Space and Environment Technology Center); Chakrabarti, S. . Center for Space Physics); McCoy, R.P.; Meier, R.R.; Wolfram, K.D.; Picone, J.M. . E.O. Hulbert Center for Space Research)

    1993-12-01

    The Remote Atmospheric and Ionospheric Detection System experiment consists of eight instruments spanning the wavelength range from the extreme ultraviolet (55 nm) to the near infrared (800 nm) oriented to view the Earth's limb from the National Oceanic and Atmospheric Administration TIROS-J spacecraft to be launched into a circular orbit in 1993. Through measurements of the natural optical emissions and scattered sunlight originating in the upper atmosphere including the mesosphere and thermosphere, state variables such as temperature, composition, density, and ion concentration of this region will be inferred. The subset of instruments fabricated or otherwise provided by the Space and Environment Technology Center (formerly Space Sciences Laboratory) at The Aerospace Corporation are described.

  19. Infrared Spectroscopic Data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), SDSS-III Data Release 10

    DOE Data Explorer

    Sloan Digital Sky Survey (SDSS) Data Release 10 is the first spectroscopic release from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), including spectra and derived stellar parameters for more than 50,000 stars. APOGEE is an ongoing survey of ~100,000 stars accessing all parts of the Milky Way. By operating in the infrared (H-band) portion of the electromagnetic spectrum, APOGEE is better able to detect light from stars lying in dusty regions of the Milky Way than surveys conducted in the optical, making this survey particularly well-suited for exploring the Galactic disk and bulge. APOGEE's high resolution spectra provide detailed information about the stellar atmospheres; DR10 provides derived effective temperatures, surface gravities, overall metallicities, and information on the abundances of several chemical elements. [copied from http://www.sdss3.org/dr10/irspec/

  20. MODIS airborne simulator visible and near-infrared calibration, 1992 ASTEX field experiment. Calibration version: ASTEX King 1.0

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared (near-IR) channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1992 Atlantic Stratocumulus Transition Experiment (ASTEX) field deployment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Tests during the ASTEX deployment were conducted to calibrate the hemisphere and then the MAS. This report summarizes the ASTEX hemisphere calibration, and then describes how the MAS was calibrated from the hemisphere data. All MAS calibration measurements are presented and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. In addition, comparisons to an independent MAS calibration by Ames personnel using their 30-inch integrating sphere is discussed.

  1. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum

    NASA Astrophysics Data System (ADS)

    Sussmann, Ralf; Reichert, Andreas; Rettinger, Markus

    2016-09-01

    Quantitative knowledge of water vapor radiative processes in the atmosphere throughout the terrestrial and solar infrared spectrum is still incomplete even though this is crucial input to the radiation codes forming the core of both remote sensing methods and climate simulations. Beside laboratory spectroscopy, ground-based remote sensing field studies in the context of so-called radiative closure experiments are a powerful approach because this is the only way to quantify water absorption under cold atmospheric conditions. For this purpose, we have set up at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.) a long-term radiative closure experiment designed to cover the infrared spectrum between 400 and 7800 cm-1 (1.28-25 µm). As a benefit for such experiments, the atmospheric states at the Zugspitze frequently comprise very low integrated water vapor (IWV; minimum = 0.1 mm, median = 2.3 mm) and very low aerosol optical depth (AOD = 0.0024-0.0032 at 7800 cm-1 at air mass 1). All instruments for radiance measurements and atmospheric-state measurements are described along with their measurement uncertainties. Based on all parameter uncertainties and the corresponding radiance Jacobians, a systematic residual radiance uncertainty budget has been set up to characterize the sensitivity of the radiative closure over the whole infrared spectral range. The dominant uncertainty contribution in the spectral windows used for far-infrared (FIR) continuum quantification is from IWV uncertainties, while T profile uncertainties dominate in the mid-infrared (MIR). Uncertainty contributions to near-infrared (NIR) radiance residuals are dominated by water vapor line parameters in the vicinity of the strong water vapor bands. The window regions in between these bands are dominated by solar Fourier transform infrared (FTIR) calibration uncertainties at low NIR wavenumbers, while uncertainties due to AOD become an increasing and dominant contribution towards higher NIR wavenumbers

  2. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience

    PubMed Central

    Verbeek, Floris P.R.; Troyan, Susan L.; Mieog, J. Sven D.; Liefers, Gerrit-Jan; Moffitt, Lorissa A.; Rosenberg, Mireille; Hirshfield-Bartek, Judith; Gioux, Sylvain; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.; Frangioni, John V.

    2014-01-01

    NIR fluorescence imaging using indocyanine green (ICG) has the potential to improve the SLN procedure by facilitating percutaneous and intraoperative identification of lymphatic channels and SLNs. Previous studies suggested that a dose of 0.62 mg (1.6 ml of 0.5 mM) ICG is optimal for SLN mapping in breast cancer. The aim of this study was to evaluate the diagnostic accuracy of near-infrared (NIR) fluorescence for sentinel lymph node (SLN) mapping in breast cancer patients when used in conjunction with conventional techniques. Study subjects were 95 breast cancer patients planning to undergo SLN procedure at either the Dana-Farber/Harvard Cancer Center (Boston, MA, USA) or the Leiden University Medical Center (Leiden, the Netherlands) between July 2010 and January 2013. Subjects underwent the standard-of-care SLN procedure at each institution using 99Technetium-colloid in all subjects and patent blue in 27 (28%) of the subjects. NIR fluorescence-guided SLN detection was performed using the Mini-FLARE imaging system. SLN identification was successful in 94 of 95 subjects (99%) using NIR fluorescence imaging or a combination of both NIR fluorescence imaging and radioactive guidance. In 2 of 95 subjects, radioactive guidance was necessary for initial in vivo identification of SLNs. In 1 of 95 subjects, NIR fluorescence was necessary for initial in vivo identification of SLNs. A total of 177 SLNs (mean = 1.9, range = 1–5) were resected: 100% NIR fluorescent, 88% radioactive, and 78% (of 40 nodes) blue. In 2 of 95 subjects (2.1%), SLNs containing macrometastases were found only by NIR fluorescence, and in 1 patient this led to upstaging to N1. This study demonstrates the safe and accurate application of NIR fluorescence imaging for the identification of SLNs in breast cancer patients, but calls into question what technique should be used as the gold standard in future studies. PMID:24337507

  3. Infrared overtone spectroscopy and vibrational analysis of a Fermi resonance in nitric acid: Experiment and theory.

    PubMed

    Konen, Ian M; Li, Eunice X J; Lester, Marsha I; Vázquez, Juana; Stanton, John F

    2006-08-21

    High resolution infrared spectra of nitric acid have been recorded in the first OH overtone region under jet-cooled conditions using a sequential IR-UV excitation method. Vibrational bands observed at 6933.39(3), 6938.75(4), and 6951.985(3) cm(-1) (origins) with relative intensities of 0.42(1), 0.38(1), and 0.20(1) are attributed to strongly mixed states involved in a Fermi resonance. A vibrational deperturbation analysis suggests that the optically bright OH overtone stretch (2nu1) at 6939.2(1) cm(-1) is coupled directly to the nu1 + 2nu2 state at 6946.4(1) cm(-1) and indirectly to the 3nu2 + nu3 + nu7 state at 6938.5(1) cm(-1). Both the identity of the zero-order states and the indirect coupling scheme are deduced from complementary CCSD(T) calculations in conjunction with second-order vibrational perturbation theory. The deperturbation analysis also yields the experimental coupling between 2nu1 and nu1 + 2nu2 of -6.9(1) cm(-1), and that between the two dark states of +5.0(1) cm(-1). The calculated vibrational energies and couplings are in near quantitative agreement with experimentally derived values except for a predicted twofold stronger coupling of 2nu1 to nu1 + 2nu2. Weaker coupling of the strongly mixed states to a dense background of vibrational states via intramolecular vibrational energy redistribution is evident from the experimental linewidths of 0.08 and 0.25 cm(-1) for the higher energy and two overlapping lower energy bands, respectively. A comprehensive rotational analysis of the higher energy band yields spectroscopic parameters and the direction of the OH overtone transition dipole moment.

  4. Monitoring of microvascular free flaps following oropharyngeal reconstruction using infrared thermography: first clinical experiences.

    PubMed

    Just, Maren; Chalopin, Claire; Unger, Michael; Halama, Dirk; Neumuth, Thomas; Dietz, Andreas; Fischer, Miloš

    2016-09-01

    The aim of this study is to investigate static and dynamic infrared (IR) thermography for intra- and postoperative free-flap monitoring following oropharyngeal reconstruction. Sixteen patients with oropharyngeal reconstruction by free radial forearm flap were included in this prospective, clinical study (05/2013-08/2014). Prior ("intraop_pre") and following ("intraop_post") completion of the microvascular anastomoses, IR thermography was performed for intraoperative flap monitoring. Further IR images were acquired one day ("postop_1") and 10 days ("postop_10") after surgery for postoperative flap monitoring. Of the 16, 15 transferred free radial forearm flaps did not show any perfusion failure. A significant decreasing mean temperature difference (∆T: temperature difference between the flap surface and the surrounding tissue in Kelvin) was measured at all investigation points in comparison with the temperature difference at "intraop_pre" (mean values on all patients: ∆T intraop_pre = -2.64 K; ∆T intraop_post = -1.22 K, p < 0.0015; ∆T postop_1 = -0.54 K, p < 0.0001; ∆T postop_10 = -0.58 K, p < 0.0001). Intraoperative dynamic IR thermography showed typical pattern of non-pathological rewarming due to re-established flap perfusion after completion of the microvascular anastomoses. Static and dynamic IR thermography is a promising, objective method for intraoperative and postoperative monitoring of free-flap reconstructions in head and neck surgery and to detect perfusion failure, before macroscopic changes in the tissue surface are obvious. A lack of significant decrease of the temperature difference compared to surrounding tissue following completion of microvascular anastomoses and an atypical rewarming following a thermal challenge are suggestive of flap perfusion failure.

  5. The influence of experiment design on the model precision in the noninvasive glucose sensing by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Chen, Wenliang; Xu, Kexin

    2007-11-01

    In the sensing of blood glucose by the near-infrared spectroscopy, building a robust and effective model is the precondition to obtain an accurate and reasonable prediction result of glucose concentration. In the chemometrics analysis, training set should be representative, reasonable distribution and cover the scope of prediction set. So the experiment designs became one of most difficult challenges for the noninvasive glucose sensing, especially for the in vivo experiments. In this paper, the oral glucose tolerance tests of two diabetics were carried out. The transcutaneous diffuse reflectance spectra were collected by a custom-build spectrometer and the glucose reference were measured by an invasive portable glucose meter. Then the influence of different experiment designs including the error in the references, the time delay between glucose in blood and interstitial fluid, the change in physiological temperature and different validation methods were analyzed. The result showed that, the error induced by the uncertainty in the reference was lower than that by the time delay, which could be up to 15.4%. And the proportion of error induced by temperature change is more than 50%, which is the most significant. Furthermore, the prediction error was restricted by the validation set selection and the way to change the blood glucose concentration.

  6. Quantitative Investigations of Biodiesel Fuel Using Infrared Spectroscopy: An Instrumental Analysis Experiment for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Ault, Andrew P.; Pomeroy, Robert

    2012-01-01

    Biodiesel has gained attention in recent years as a renewable fuel source due to its reduced greenhouse gas and particulate emissions, and it can be produced within the United States. A laboratory experiment designed for students in an upper-division undergraduate laboratory is described to study biodiesel production and biodiesel mixing with…

  7. Infrared Emission Spectrum of the Hydroxyl Radical: A Novel Experiment in Molecular Spectroscopy.

    ERIC Educational Resources Information Center

    Henderson, Giles; And Others

    1982-01-01

    Describes an experiment in which parameters from an "ab-initio" potential are used to calculate vibrational-rotational energy levels and construct a "stick spectrum" for the overtone emission of the hydroxyl radical. Provides background information on ab-initio spectrum, experimental procedures, and analysis of data. (Author/JN)

  8. Quantitative Investigations of Biodiesel Fuel Using Infrared Spectroscopy: An Instrumental Analysis Experiment for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Ault, Andrew P.; Pomeroy, Robert

    2012-01-01

    Biodiesel has gained attention in recent years as a renewable fuel source due to its reduced greenhouse gas and particulate emissions, and it can be produced within the United States. A laboratory experiment designed for students in an upper-division undergraduate laboratory is described to study biodiesel production and biodiesel mixing with…

  9. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience.

    PubMed

    Verbeek, Floris P R; Troyan, Susan L; Mieog, J Sven D; Liefers, Gerrit-Jan; Moffitt, Lorissa A; Rosenberg, Mireille; Hirshfield-Bartek, Judith; Gioux, Sylvain; van de Velde, Cornelis J H; Vahrmeijer, Alexander L; Frangioni, John V

    2014-01-01

    Near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) has the potential to improve the sentinel lymph node (SLN) procedure by facilitating percutaneous and intraoperative identification of lymphatic channels and SLNs. Previous studies suggested that a dose of 0.62 mg (1.6 mL of 0.5 mM) ICG is optimal for SLN mapping in breast cancer. The aim of this study was to evaluate the diagnostic accuracy of NIR fluorescence for SLN mapping in breast cancer patients when used in conjunction with conventional techniques. Study subjects were 95 breast cancer patients planning to undergo SLN procedure at either the Dana-Farber/Harvard Cancer Center (Boston, MA, USA) or the Leiden University Medical Center (Leiden, the Netherlands) between July 2010 and January 2013. Subjects underwent the standard-of-care SLN procedure at each institution using (99)Technetium-colloid in all subjects and patent blue in 27 (28 %) of the subjects. NIR fluorescence-guided SLN detection was performed using the Mini-FLARE imaging system. SLN identification was successful in 94 of 95 subjects (99 %) using NIR fluorescence imaging or a combination of both NIR fluorescence imaging and radioactive guidance. In 2 of 95 subjects, radioactive guidance was necessary for initial in vivo identification of SLNs. In 1 of 95 subjects, NIR fluorescence was necessary for initial in vivo identification of SLNs. A total of 177 SLNs (mean 1.9, range 1-5) were resected: 100 % NIR fluorescent, 88 % radioactive, and 78 % (of 40 nodes) blue. In 2 of 95 subjects (2.1 %), SLNs-containing macrometastases were found only by NIR fluorescence, and in one patient this led to upstaging to N1. This study demonstrates the safe and accurate application of NIR fluorescence imaging for the identification of SLNs in breast cancer patients, but calls into question what technique should be used as the gold standard in future studies.

  10. An overview of the spectroscopy of the atmosphere using far infrared emission experiment (SAFIRE)

    NASA Technical Reports Server (NTRS)

    Russell, James M., III

    1991-01-01

    The SAFIRE experiment was conceived to satisfy a long-standing need for simultaneous middle atmosphere observations of ozone and important O(y), HO(y), NO(y), ClO(y), and BrO(y) gases, coupled with dynamics data. This will be accomplished using interferometry and broadband radiometry to sound the Earth limb in the far IR and mid IR, respectively. The experiment will employ the latest developments in detector and cryogenic cooling technology in order to achieve the measurement objectives. Detailed instrument and simulated atmospheric retrieval studies show that important gases such as OH, HO2, H2O2, HDO, N2O5, and HOCl can be observed with good accuracy.

  11. Infrared background signature survey experiment (IBSS) - Test results of the optical subsystem

    NASA Astrophysics Data System (ADS)

    Kampf, D.; Rippel, H.

    1989-10-01

    The IR Background Signature Experiment Optical Subsystem (IBSS), which encompasses a spectrometer and radiometer in conjunction with a diffraction-limited telescope, is cryocooled to 5-20 K with supercritical He. Several cooling cycles were run in order to ascertain the IBSS's image quality, detector performance, and spectral resolution. Attention is given to overall instrument configuration, warm image quality and intensity distribution, typical spectrometer detector noise data, and typical radiometer pixel noise spectrum.

  12. Visible and near infrared observation on the Global Aerosol Backscatter Experiment (GLOBE)

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Cavanaugh, John F.; Chudamani, S.; Bufton, Jack L.; Sullivan, Robert J.

    1991-01-01

    The Global Aerosol Backscatter Experiment (GLOBE) was intended to provide data on prevailing values of atmospheric backscatter cross-section. The primary intent was predicting the performance of spaceborne lidar systems, most notably the Laser Atmospheric Wind Sounder (LAWS) for the Earth Observing System (EOS). The second and related goal was to understand the source and characteristics of atmospheric aerosol particles. From the GLOBE flights, extensive data was obtained on the structure of clouds and the marine planetary boundary layer. A notable result for all observations is the consistency of the large increases in the aerosol scattering ratio for the marine boundary layer. Other results are noted.

  13. Studying the effects of smell and taste experience in the pediatric population using functional near infrared spectroscopy: a hypothesis.

    PubMed

    Rohlfs-Domínguez, Paloma

    2014-01-01

    There are different postnatal sensitive periods throughout the development course of sensory functions. During sensitive periods, there is a biological display of an extreme neural sensitivity to the storage of experience-driven sensory information that is not present outside these developmental stages. This neural property is reflected in subjects' reported preferences for sensory stimuli, such as odors and tastes. The human brain mapping approach (HBA) has demonstrated that disease-free human postnatal and later development of any sensory function parallels morphological and functional development of the CNS and that this development correlates with signal changes that have been acquired by means of neuroimaging techniques. Whether experience with tastes and/or odors has a stronger effect on the perception of gustatory and/or olfactory stimuli the earlier subjects are exposed to certain odors and tastes is still unknown. It is also unknown, whether as well as how this effect is reflected in brain activation patterns and whether we are currently able to identify sensitive periods of gustatory and olfactory development from the imaging signals. To answer these research questions, repeated exposure to tastes and/or odors should be applied in children of different age ranges in order to induce different age-related degrees of olfactory/gustatory preferences as well as different aged-related patterns of oxyhemoglobin (OH) and deoxyhemoglobin (DOH) changes that should be measured by means of the functional near-infrared spectroscopy (fNIRS) technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Interactive Visualization of Infrared Spectral Data: Synergy of Computation, Visualization, and Experiment for Learning Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lahti, Paul M.; Motyka, Eric J.; Lancashire, Robert J.

    2000-05-01

    A straightforward procedure is described to combine computation of molecular vibrational modes using commonly available molecular modeling programs with visualization of the modes using advanced features of the MDL Information Systems Inc. Chime World Wide Web browser plug-in. Minor editing of experimental spectra that are stored in the JCAMP-DX format allows linkage of IR spectral frequency ranges to Chime molecular display windows. The spectra and animation files can be combined by Hypertext Markup Language programming to allow interactive linkage between experimental spectra and computationally generated vibrational displays. Both the spectra and the molecular displays can be interactively manipulated to allow the user maximum control of the objects being viewed. This procedure should be very valuable not only for aiding students through visual linkage of spectra and various vibrational animations, but also by assisting them in learning the advantages and limitations of computational chemistry by comparison to experiment.

  15. Design and fabrication of an infrared optical pyrometer ASIC as a diagnostic for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Gordon, Jared

    Optical pyrometry is the sensing of thermal radiation emitted from an object using a photoconductive device to convert photons into electrons, and is an important diagnostic tool in shock physics experiments. Data obtained from an optical pyrometer can be used to generate a blackbody curve of the material prior to and after being shocked by a high speed projectile. The sensing element consists of an InGaAs photodiode array, biasing circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from the noisy dark current into a signal that can eventually be digitized. Once the circuit elements have been defined, more often than not commercial-off-the-shelf (COTS) components are inadequate to satisfy every requirement for the diagnostic, and therefore a custom application specific design has to be considered. This thesis outlines the initial challenges with integrating the photodiode array block with multiple COTS transimpedance amplifiers onto a single chip, and offers a solution to a comparable optical pyrometer that uses the same type of photodiodes in conjunction with a re-designed transimpedance amplifier integrated onto a single chip. The final design includes a thorough analysis of the transimpedance amplifier along with modeling the circuit behavior which entails schematics, simulations, and layout. An alternative circuit is also investigated that incorporates an approach to multiplex the signals from each photodiode onto one data line and not only increases the viable real estate on the chip, but also improves the behavior of the photodiodes as they are subjected to less thermal load. The optical pyrometer application specific integrated circuit (ASIC) for shock physic experiments includes a transimpedance amplifier (TIA) with a 100 kΩ gain operating at bandwidth of 30 MHz, and an input-referred noise RMS current of 50 nA that is capable of driving a 50 Ω load.

  16. CoCo: an experiment in infrared coronagraphy at the IRTF

    NASA Astrophysics Data System (ADS)

    Toomey, Douglas W.; Ftaclas, Christo; Brown, Robert H.; Trilling, David

    1998-08-01

    Imaging planets, brown dwarfs and disks around nearby stars is a challenging endeavor due to the required scene contrast. Success requires imaging down to m equals 20-25 within arcseconds of stars that are 4th-6th magnitude. Light scattered and diffracted from a variety of sources increases the background flux in the area of interest by orders of magnitude masking the target objects. As first shown by M. B. Lyot in 1939 masks can be placed in the focal pane and pupil planes of a camera to occult the bright central source making it possible to image the faint extensions around it. CoCo is an experiment in using a coronagraphic camera, for IR observations, on a large telescope in an effort to understand how a coronagraph can help and how to properly design one of the new generation of large telescopes. Recent result with CoCo show a factor of 5-10 reduction in background levels in the area from 2-7 arcseconds from the central object. This paper will describe those result and summarize what has been learned towards building coronagraphic cameras for today's large telescopes.

  17. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiou, E. W.; McCormick, M. P.; McMaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-03-01

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30°N and 50°S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30°N and 50°S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere.

  18. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    SciTech Connect

    Chiou, E.W.; Larsen, J.C. ); McCormick, M.P.; McMaster, L.R.; Chu, W.P. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30[degrees]N and 50[degrees]S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30[degrees]N and 50[degrees]S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere. 32 refs., 14 figs., 2 tabs.

  19. Combining Computer Game-Based Behavioural Experiments With High-Density EEG and Infrared Gaze Tracking

    PubMed Central

    Yoder, Keith J.; Belmonte, Matthew K.

    2010-01-01

    Experimental paradigms are valuable insofar as the timing and other parameters of their stimuli are well specified and controlled, and insofar as they yield data relevant to the cognitive processing that occurs under ecologically valid conditions. These two goals often are at odds, since well controlled stimuli often are too repetitive to sustain subjects' motivation. Studies employing electroencephalography (EEG) are often especially sensitive to this dilemma between ecological validity and experimental control: attaining sufficient signal-to-noise in physiological averages demands large numbers of repeated trials within lengthy recording sessions, limiting the subject pool to individuals with the ability and patience to perform a set task over and over again. This constraint severely limits researchers' ability to investigate younger populations as well as clinical populations associated with heightened anxiety or attentional abnormalities. Even adult, non-clinical subjects may not be able to achieve their typical levels of performance or cognitive engagement: an unmotivated subject for whom an experimental task is little more than a chore is not the same, behaviourally, cognitively, or neurally, as a subject who is intrinsically motivated and engaged with the task. A growing body of literature demonstrates that embedding experiments within video games may provide a way between the horns of this dilemma between experimental control and ecological validity. The narrative of a game provides a more realistic context in which tasks occur, enhancing their ecological validity (Chaytor & Schmitter-Edgecombe, 2003). Moreover, this context provides motivation to complete tasks. In our game, subjects perform various missions to collect resources, fend off pirates, intercept communications or facilitate diplomatic relations. In so doing, they also perform an array of cognitive tasks, including a Posner attention-shifting paradigm (Posner, 1980), a go/no-go test of motor

  20. Combining computer game-based behavioural experiments with high-density EEG and infrared gaze tracking.

    PubMed

    Yoder, Keith J; Belmonte, Matthew K

    2010-12-16

    Experimental paradigms are valuable insofar as the timing and other parameters of their stimuli are well specified and controlled, and insofar as they yield data relevant to the cognitive processing that occurs under ecologically valid conditions. These two goals often are at odds, since well controlled stimuli often are too repetitive to sustain subjects' motivation. Studies employing electroencephalography (EEG) are often especially sensitive to this dilemma between ecological validity and experimental control: attaining sufficient signal-to-noise in physiological averages demands large numbers of repeated trials within lengthy recording sessions, limiting the subject pool to individuals with the ability and patience to perform a set task over and over again. This constraint severely limits researchers' ability to investigate younger populations as well as clinical populations associated with heightened anxiety or attentional abnormalities. Even adult, non-clinical subjects may not be able to achieve their typical levels of performance or cognitive engagement: an unmotivated subject for whom an experimental task is little more than a chore is not the same, behaviourally, cognitively, or neurally, as a subject who is intrinsically motivated and engaged with the task. A growing body of literature demonstrates that embedding experiments within video games may provide a way between the horns of this dilemma between experimental control and ecological validity. The narrative of a game provides a more realistic context in which tasks occur, enhancing their ecological validity (Chaytor & Schmitter-Edgecombe, 2003). Moreover, this context provides motivation to complete tasks. In our game, subjects perform various missions to collect resources, fend off pirates, intercept communications or facilitate diplomatic relations. In so doing, they also perform an array of cognitive tasks, including a Posner attention-shifting paradigm (Posner, 1980), a go/no-go test of motor

  1. High performance visible and near-infrared charge-coupled-device array for spectroscopy applications. [in Shuttle Image Spectrometer Experiment

    NASA Technical Reports Server (NTRS)

    Wang, Weng-Lyang; Hudson, Leland R.; Tseng, Hsin-Fu

    1987-01-01

    This paper describes the design and performance of a scientific CCD array for use in NASA's Shuttle Image Spectrometer Experiment. The device is a four-phase, buried-channel CCD structure that operates in the frame-transfer mode. The sensor consists of 64 x 404 pixels, has a 100 percent fill factor, and operates in the visible and near-infrared spectral regions. In operation, the 404 horizontal elements provide spatial information, while the 64 vertical elements give spectral information covering the wavelength range of 400 to 1000 nm in 10 nm increments. The high full-well capacity of each pixel and low noise floor yield a dynamic range of more than 95 dB. In addition, the device has been designed to have good linearity characteristics. The unique dual-output structure allows a horizontal row to be read out to the right or to the left, or it can be split from the middle to both right and left output circuits simultaneously for high speed applications. The power dissipation of the device is about 60 mW.

  2. Robot-assisted nerve-sparing radical prostatectomy using near-infrared fluorescence technology and indocyanine green: initial experience.

    PubMed

    Mangano, Mario S; De Gobbi, Alberto; Beniamin, Francesco; Lamon, Claudio; Ciaccia, Matteo; Maccatrozzo, Luigino

    2017-05-23

    Indocyanine green (ICG) is a fluorescent molecule that provokes detectable photon emission. The use of ICG with near-infrared (NIR) imaging system (Akorn, Lake Forest, IL) has been described during robotic partial nephrectomy (RAPN) as an adjunctive means of identifying renal artery and parenchymal perfusion.We propose the use of the ICG with NIR fluorescence during laparoscopic robot-assisted radical prostatectomy (RARP), to identify the benchmark artery improving the preservation of neurovascular bundle and to improve the visualization of the vascularization and then the hemostasis. From April 2015 to February 2016, 62 patients underwent to RARP in our Urology Unit. In 26 consecutive patients, in the attempt to have a better visualization of neurovascular bundles, we used to inject ICG during the procedure. We evaluated the percentage of identification of neurovascular bundles using NIR fluorescence. Then, we evaluated complications related to injection of ICG and operative time differences between RARP with and without ICG injection performed by the same surgeons. We identified prostatic arteries and neurovascular bundles using NIR fluorescence technology in all patients (100%). There was not any increase in the operative time compared with RARP without ICG injection performed by the same surgeons. Complications related to injection of ICG did not occurred. In our experience, even if on a limited number of patients, the application of ICG with NIR fluorescence during RARP is helpful to identify the benchmark artery of neurovascular bundle.

  3. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Wilson, John C.; Hearty, Fred; Skrutskie, Michael F.; Majewski, Steven; Schiavon, Ricardo; Eisenstein, Daniel; Gunn, Jim; Blank, Basil; Henderson, Chuck; Smee, Stephen; Barkhouser, Robert; Harding, Al; Fitzgerald, Greg; Stolberg, Todd; Arns, Jim; Nelson, Matt; Brunner, Sophia; Burton, Adam; Walker, Eric; Lam, Charles; Maseman, Paul; Barr, Jim; Leger, French; Carey, Larry; MacDonald, Nick; Horne, Todd; Young, Erick; Rieke, George; Rieke, Marcia; O'Brien, Tom; Hope, Steve; Krakula, John; Crane, Jeff; Zhao, Bo; Carr, Mike; Harrison, Craig; Stoll, Robert; Vernieri, Mary A.; Holtzman, Jon; Shetrone, Matt; Allende-Prieto, Carlos; Johnson, Jennifer; Frinchaboy, Peter; Zasowski, Gail; Bizyaev, Dmitry; Gillespie, Bruce; Weinberg, David

    2010-07-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) will use a dedicated 300-fiber, narrow-band (1.5-1.7 micron), high resolution (R~30,000), near-infrared spectrograph to survey approximately 100,000 giant stars across the Milky Way. This survey, conducted as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of kinematical and chemical enrichment histories of all Galactic stellar populations. The instrument, currently in fabrication, will be housed in a separate building adjacent to the 2.5 m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous technological challenges and innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation must be minimized, a large (290 mm x 475 mm elliptically-shaped recorded area) mosaic-VPH, an f/1.4 sixelement refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4 m x 2.3 m x 1.3 m.

  4. Satellite Characterization of Biomass Burning: Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope Study of Combustion Experiments

    NASA Astrophysics Data System (ADS)

    Padilla, D.; Steiner, J. C.

    2005-12-01

    Fourier Transform Infrared (FTIR) examination of the combustion products of selected forest materials using a meeker burner flame at temperatures up to 500 degrees Celsius produces a cluster of broad distinct peaks throughout the 400 to 4000 cm-1 wavenumber interval. Distinct bands bracketed by wavenumbers 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 show variable intensity with an average difference between the least absorbing and most strongly absorbing species of approximately fifty percent. Given that spectral band differences of ten percent are within the range of modern satellite spectrometers, these band differences are of potential value for discriminating between fires that are impacting a range of vegetation types. Corresponding scanning electron microscope and energy dispersive micro-chemical (SEM/ED) analysis establishes that the evolved soot particles exhibit a characteristic rounded morphology, are carbon rich and host a wide range of adsorbed elements, including calcium, aluminum, potassium, silicon, sulfur and trace nitrogen. Combustion experiments involving leaves and branches as a subset of the biomass experiments at 200-500 degrees Celsius yield a similar broad background, but with peak shifts for maxima residing at less than 1700 cm-1. Additional peaks appear in the ranges 1438-1444, 875 and 713 cm-1. These peak are of potential use for discriminating between hot and smoldering fires, and between soot and smoke yields from green woods and whole-wood or lumber. The spectral shifts noted for low temperature smoldering conditions are in the vicinity of those cited for green vegetation and may not be resolved by present satellite platforms. Nevertheless, the experimental peak data set is of potential use for discriminating between a conflagration or accentuated fire and one characterized by smoldering at low temperature. SEM/ED analysis of the combusted leaf, branch, bark and various crown assemblages yields comparable morphological and

  5. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiment (A0056)

    NASA Technical Reports Server (NTRS)

    Hawkins, Gary J.; Seeley, John S.; Hunneman, Roger

    1992-01-01

    Infrared optical multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. The effects are summarized of that environment on the physical and optical properties of the filters and materials flown.

  6. A modified algorithm for continuous wave near infrared spectroscopy applied to in-vivo animal experiments and on human skin

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Hopman, Jeroen C. W.; Liem, K. Djien; de Roode, Rowland; Verdaasdonk, Rudolf M.; Thijssen, Johan M.

    2008-02-01

    Continuous wave Near Infrared Spectroscopy is a well known non invasive technique for measuring changes in tissue oxygenation. Absorption changes (ΔO2Hb and ΔHHb) are calculated from the light attenuations using the modified Lambert Beer equation. Generally, the concentration changes are calculated relative to the concentration at a starting point in time (delta time method). It is also possible, under certain assumptions, to calculate the concentrations by subtracting the equations at different wavelengths (delta wavelength method). We derived a new algorithm and will show the possibilities and limitations. In the delta wavelength method, the assumption is that the oxygen independent attenuation term will be eliminated from the formula even if its value changes in time, we verified the results with the classical delta time method using extinction coefficients from different literature sources for the wavelengths 767nm, 850nm and 905nm. The different methods of calculating concentration changes were applied to the data collected from animal experiments. The animals (lambs) were in a stable normoxic condition; stepwise they were made hypoxic and thereafter they returned to normoxic condition. The two algorithms were also applied for measuring two dimensional blood oxygen saturation changes in human skin tissue. The different oxygen saturation levels were induced by alterations in the respiration and by temporary arm clamping. The new delta wavelength method yielded in a steady state measurement the same changes in oxy and deoxy hemoglobin as the classical delta time method. The advantage of the new method is the independence of eventual variation of the oxygen independent attenuations in time.

  7. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of 1,2-Dichloroethylene: A Physical Experiment

    ERIC Educational Resources Information Center

    Craig, Norman C.; Lacuesta, Nanette N.

    2004-01-01

    A study of the vibrational spectroscopy of the cis and trans isomers of 1,2-dichloroethylene provides an excellent opportunity to learn the applications group theory in laboratories. The necessity of using infrared (IR) spectroscopy and Raman spectroscopy in making full vibrational assignments is illustrated.

  8. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of 1,2-Dichloroethylene: A Physical Experiment

    ERIC Educational Resources Information Center

    Craig, Norman C.; Lacuesta, Nanette N.

    2004-01-01

    A study of the vibrational spectroscopy of the cis and trans isomers of 1,2-dichloroethylene provides an excellent opportunity to learn the applications group theory in laboratories. The necessity of using infrared (IR) spectroscopy and Raman spectroscopy in making full vibrational assignments is illustrated.

  9. MID-INFRARED SIZE SURVEY OF YOUNG STELLAR OBJECTS: DESCRIPTION OF KECK SEGMENT-TILTING EXPERIMENT AND BASIC RESULTS

    SciTech Connect

    Monnier, J. D.; Tannirkulam, A.; Tuthill, P. G.; Ireland, M.; Cohen, R.; Perrin, M. D.

    2009-07-20

    The mid-infrared properties of pre-planetary disks are sensitive to the temperature and flaring profiles of disks for the regions where planet formation is expected to occur. In order to constrain theories of planet formation, we have carried out a mid-infrared ({lambda} = 10.7 {mu}m) size survey of young stellar objects using the segmented Keck telescope in a novel configuration. We introduced a customized pattern of tilts to individual mirror segments to allow efficient sparse-aperture interferometry, allowing full aperture synthesis imaging with higher calibration precision than traditional imaging. In contrast to previous surveys on smaller telescopes and with poorer calibration precision, we find that most objects in our sample are partially resolved. Here, we present the main observational results of our survey of five embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori system, and five emission-line objects of uncertain classification. The observed mid-infrared sizes do not obey the size-luminosity relation found at near-infrared wavelengths and a companion paper will provide further modeling analysis of this sample. In addition, we report imaging results for a few of the most resolved objects, including complex emission around embedded massive protostars, the photoevaporating circumbinary disk around MWC 361A, and the subarcsecond binaries T Tau, FU Ori, and MWC 1080.

  10. New approach to optimize near-infrared spectra with design of experiments and determination of milk compounds as influence factors for changing milk over time.

    PubMed

    De Benedictis, Lorenzo; Huck, Christian

    2016-12-01

    The optimization of near-infrared spectroscopic parameters was realized via design of experiments. With this new approach objectivity can be integrated into conventional, rather subjective approaches. The investigated factors are layer thickness, number of scans and temperature during measurement. Response variables in the full factorial design consisted of absorption intensity, signal-to-noise ratio and reproducibility of the spectra. Optimized factorial combinations have been found to be 0.5mm layer thickness, 64 scans and 25°C ambient temperature for liquid milk measurements. Qualitative analysis of milk indicated a strong correlation of environmental factors, as well as the feeding of cattle with respect to the change in milk composition. This was illustrated with the aid of near-infrared spectroscopy and the previously optimized parameters by detection of altered fatty acids in milk, especially by the fatty acid content (number of carboxylic functions) and the fatty acid length.

  11. Development of a stabilized low temperature infrared absorption cell for use in low temperature and collisional cooling experiments.

    PubMed

    Valentin, A; Henry, A; Claveau, C; Camy-Peyret, C; Hurtmans, D; Mantz, A W

    2004-12-01

    We have constructed a stabilized low temperature infrared absorption cell cooled by an open cycle refrigerator, which can run with liquid nitrogen from 250 to 80K or with liquid helium from 80K to a few kelvin. Several CO infrared spectra were recorded at low temperature using a tunable diode laser spectrometer. These spectra were analyzed taking into account the detailed effects of collisions on the line profile when the pressure increases. We also recorded spectra at very low pressure to accurately model the diode laser emission. Spectra of the R(2) line in the fundamental band of 13CO cooled by collisions with helium buffer gas at 10.5K and at pressures near 1 Torr have been recorded. The He-pressure broadening parameter (gamma(0) = 0.3 cm(-1) atm(-1)) has been derived from the simultaneous analysis of four spectra at different pressures.

  12. Active infrared thermography applied to defect detection and characterization on asphalt pavement samples: comparison between experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Dumoulin, J.; Ibos, L.; Ibarra-Castanedo, C.; Mazioud, A.; Marchetti, M.; Maldague, X.; Bendada, A.

    2010-10-01

    This work is devoted to the application of active infrared thermography to defect detection in pavement structures. The challenge is to localize and to determine some properties of defects (e.g. shape and depth) into a highly heterogeneous material. Experimental work was carried out in laboratory conditions using a pavement sample containing two defects (wood and air). Pulsed thermography results were compared with FLUENT numerical simulations. Different preliminary approaches were investigated to analyze data: singular value decomposition of infrared image sequences, contrast image methods and computation of thermal effusivity considering a heat transfer model in a semi-infinite material. This last method is more sensitive to experimental conditions such as the presence of natural convection at a sample surface. However, all methods allow detection of one defect into the pavement sample.

  13. The (CH2)2O-H2O hydrogen bonded complex. Ab Initio calculations and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P

    2011-03-31

    A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).

  14. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience.

    PubMed

    Verbeek, Floris P R; van der Vorst, Joost R; Schaafsma, Boudewijn E; Swijnenburg, Rutger-Jan; Gaarenstroom, Katja N; Elzevier, Henk W; van de Velde, Cornelis J H; Frangioni, John V; Vahrmeijer, Alexander L

    2013-08-01

    Near infrared fluorescence imaging is a promising technique that offers real-time visual information during surgery. In this study we report the first clinical results to our knowledge of ureteral imaging using near infrared fluorescence after a simple peripheral infusion of methylene blue. Furthermore, we assessed the optimal timing and dose of methylene blue. A total of 12 patients who underwent lower abdominal surgery were included in this prospective feasibility study. Near infrared fluorescence imaging was performed using the Mini-FLARE™ imaging system. To determine optimal timing and dose, methylene blue was injected intravenously at doses of 0.25, 0.5 or 1 mg/kg after exposure of the ureters. Imaging was performed for up to 60 minutes after injection. In all patients both ureters could be clearly visualized within 10 minutes after infusion of methylene blue. The signal lasted at least up to 60 minutes after injection. The mean signal-to-background ratio of the ureter was 2.27 ± 1.22 (4), 2.61 ± 1.88 (4) and 3.58 ± 3.36 (4) for the 0.25, 0.5 and 1 mg/kg groups, respectively. A mixed model analysis was used to compare signal-to-background ratios among dose groups and times, and to assess the relationship between dose and time. A significant difference among time points (p <0.001) was found. However, no difference was observed among dose groups (p = 0.811). This study demonstrates the first successful use of near infrared fluorescence using low dose methylene blue for the identification of the ureters during lower abdominal surgery. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10-microm band.

    PubMed

    Yoshikado, S; Aruga, T

    2000-03-20

    A trial one-dimensional (1-D) synthetic aperture infrared laser radar (SAILR) system for imaging static objects, with two CO(2) lasers as a transmitter and a local oscillator for heterodyne detection, was constructed. It has a single receiving aperture mounted on a linearly movable stage with a length of 1 m and a position accuracy of 1 microm. In an indoor short-range experiment to confirm the fundamental functions of the system and demonstrate its unique imaging process we succeeded in obtaining 1-D synthetic aperture images of close specular point targets with theoretically expected resolution.

  16. A Cryogenic, Insulating Suspension System for the High Resolution Airborne Wideband Camera (HAWC)and Submillemeter And Far Infrared Experiment (SAFIRE) Adiabatic Demagnetization Refrigerators (ADRs)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2002-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill.

  17. Electron Density Measurements in the National Spherical Torus Experiment Detached Divertor Region Using Stark Broadening of Deuterium Infrared Paschen Emission Lines

    SciTech Connect

    Soukhanovskii, V A; Johnson, D W; Kaita, R; Roquemore, A L

    2007-04-27

    Spatially resolved measurements of deuterium Balmer and Paschen line emission have been performed in the divertor region of the National Spherical Torus Experiment using a commercial 0.5 m Czerny-Turner spectrometer. While the Balmer emission lines, Balmer and Paschen continua in the ultraviolet and visible regions have been extensively used for tokamak divertor plasma temperature and density measurements, the diagnostic potential of infrared Paschen lines has been largely overlooked. We analyze Stark broadening of the lines corresponding to 2-n and 3-m transitions with principle quantum numbers n = 7-12 and m = 10-12 using recent Model Microfield Method calculations (C. Stehle and R. Hutcheon, Astron. Astrophys. Supl. Ser. 140, 93 (1999)). Densities in the range (5-50) x 10{sup 19} m{sup -3} are obtained in the recombining inner divertor plasma in 2-6 MW NBI H-mode discharges. The measured Paschen line profiles show good sensitivity to Stark effects, and low sensitivity to instrumental and Doppler broadening. The lines are situated in the near-infrared wavelength domain, where optical signal extraction schemes for harsh nuclear environments are practically realizable, and where a recombining divertor plasma is optically thin. These properties make them an attractive recombining divertor density diagnostic for a burning plasma experiment.

  18. MODIS airborne simulator visible and near-infrared calibration, 1991 FIRE-Cirrus field experiment. Calibration version: FIRE King 1.1

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.

  19. Basic research and field experiment of the enhanced infra-red burner. Final report, November 1, 1988-November 31, 1993

    SciTech Connect

    Lu, D.W.; Singh, S.; Wray, D.; Collier, D.; Roberts, J.

    1994-01-16

    An enhanced infra-red natural gas combustion technique has been developed in both the laboratory study and in the field testing. Firing rates as high as 142 KBtu/hr/sq ft were tested with a radiant efficiency better than 45%. At the normal firing rate of 120 KBtu/hr/sq ft, radiant fluxes on the order of 60 KBtu/hr sq ft were obtained. In addition, the major emission pollutants, NOx is below 20 ppm. A desired turndown rate of 2.5:1 has been achieved. The performance of the surface combustion inside the porous ceramic has been modeled. The numerical code has been used in the burner optimization design. In the field evaluation, the component durability, emissions and fuel savings, along with the productivity rate and product quality improvements have been evaluated. Even though a number of technical difficulties were encountered, the new gas fired radiant burner shows great potential for a variety of infra-red heating applications.

  20. Transfer of infrared thermography predictive maintenance technologies to Soviet-designed nuclear power plants: experience at Chernobyl

    NASA Astrophysics Data System (ADS)

    Pugh, Ray; Huff, Roy

    1999-03-01

    The importance of infrared (IR) technology and analysis in today's world of predictive maintenance and reliability- centered maintenance cannot be understated. The use of infrared is especially important in facilities that are required to maintain a high degree of equipment reliability because of plant or public safety concerns. As with all maintenance tools, particularly those used in predictive maintenance approaches, training plays a key role in their effectiveness and the benefit gained from their use. This paper details an effort to transfer IR technology to Soviet- designed nuclear power plants in Russia, Ukraine, and Lithuania. Delivery of this technology and post-delivery training activities have been completed recently at the Chornobyl nuclear power plant in Ukraine. Many interesting challenges were encountered during this effort. Hardware procurement and delivery of IR technology to a sensitive country were complicated by United States regulations. Freight and shipping infrastructure and host-country customs policies complicated hardware transport. Training activities were complicated by special hardware, software and training material translation needs, limited communication opportunities, and site logistical concerns. These challenges and others encountered while supplying the Chornobyl plant with state-of-the-art IR technology are described in this paper.

  1. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    SciTech Connect

    Fill, Matthias; Debernardi, Pierluigi; Felder, Ferdinand; Zogg, Hans

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  2. Study of the ammonia ice cloud layer in the Equatorial Region of Jupiter from the infrared interferometric experiment on Voyager

    NASA Technical Reports Server (NTRS)

    Marten, A.; Rouan, D.; Baluteau, J. P.; Gautier, D.; Conrath, B. J.; Hanel, R. A.; Kunde, V.; Samuelson, R.; Chedin, A.; Scott, N.

    1981-01-01

    Spectra from the Voyager 1 infrared interferometer spectrometer (IRIS) obtained near the time of closest approach to Jupiter were analyzed for the purpose of inferring ammonia cloud properties associated with the Equatorial Region. Comparisons of observed spectra with synthetic spectra computed from a radiative transfer formulation, that includes multiple scattering, yielded the following conclusions: (1) very few NH3 ice particles with radii less than 3 microns contribute to the cloud opacity; (2) the major source of cloud opacity arises from particles with radii in excess of 30 microns; (3) column particle densities are between 1 and 2 orders of magnitude smaller than those derived from thermochemical considerations alone, implying the presence of important atmospheric motion; and (4) another cloud system is confirmed to exist deeper in the Jovian troposphere.

  3. Performance Expectations for Future Moderate Resolution Visible and Infrared Space Instruments Based on AIRS and MODIS In-Flight Experience

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Broberg, Steven E.; Aumann, Hartmut H.; Baron, Richard L.

    2004-01-01

    Lessons learned from the Atmospheric Infrared Sounder (AIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) projects highlight areas where further technology development is needed to address future land, ocean and atmospheric measurement needs. Although not established as requirements at this time, it is anticipated that scientists will expect improvements in the areas of spatial, spectral, radiometric, polarimetric, temporal and calibration performance for future sensors. This paper addresses each of these performance areas and provides lessons learned from MODIS and AIRS. We also present expectations in performance of the system based on information from NASA Instrument Incubator Program and industry reports. Tradeoffs are presented vs orbit altitude (LEO, ME0 and GEO) and provide a 'systems' perspective to future measurement concepts.

  4. First results and future plans for the Canarias Infrared Camera Experiment (CIRCE) for the Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Garner, Alan; Eikenberry, Stephen S.; Charcos, Miguel; Dallilar, Yigit; Edwards, Michelle; Lasso-Cabrera, Nestor; Stelter, Richard D.; Marin-Franch, Antonio; Raines, S. Nicholas; Ackley, Kendall; Bennett, John G.; Cenarro, Javier A.; Chinn, Brian; Donoso, Veronica H.; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D.; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H.; Packham, Christopher; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, Anamparambu N.; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravinkumar; Gerarts, Andreas; Martín, Héctor de Paz; Calero, María. Martín.; Scarpa, Riccardo; Fernandez Acosta, Sergio; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D.; Rodríguez Losada, José A.; Nuñez, Agustín.; Tejero, Álvaro; Martín González, Carlos E.; Rodríguez, César Cabrera; Molgó Sendra, Jordi; Rodriguez, J. Esteban; Fernádez Cáceres, J. Israel; Rodríguez García, Luis A.; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Cabrera-Lavers, Antonio; Geier, Stefan; Pessev, Peter; Sarajedini, Ata; Castro-Tirado, A. J.

    2016-08-01

    CIRCE is a near-infrared (1-2.5 micron) imager (including low-resolution spectroscopy and polarimetery) in operation as a visitor instrument on the Gran Telescopio Canarias 10.-4m tele scope. It was built largely by graduate students and postdocs, with help from the UF Astronomy engineering group, and is funded by the University of Florida and the U.S. National Science Foundation. CIRCE is helping to fill the gap in time between GTC first light and the arrival of EMIR, and will also provide the following scientific capabilities to compliment EMIR after its arrival: high-resolution imaging, narrowband imaging, high-time-resolution photometry, polarimetry, and low-resolution spectroscopy. There are already scientific results from CIRCE, some of which we will review. Additionally, we will go over the observing modes of CIRCE, including the two additional modes that were added during a service and upgrading run in March 2016.

  5. Resonant infrared multiphoton dissociation spectroscopy of gas-phase protonated peptides. Experiments and Car-Parrinello dynamics at 300 K.

    PubMed

    Grégoire, G; Gaigeot, M P; Marinica, D C; Lemaire, J; Schermann, J P; Desfrançois, C

    2007-06-28

    The gas-phase structures of protonated peptides are studied by means of resonant infrared multiphoton dissociation spectroscopy (R-IRMPD) performed with a free electron laser. The peptide structures and protonation sites are obtained through comparison between experimental IR spectra and their prediction from quantum chemistry calculations. Two different analyses are conducted. It is first supposed that only well-defined conformations, sufficiently populated according to a Boltzmann distribution, contribute to the observed spectra. On the contrary, DFT-based Car-Parrinello molecular dynamics simulations show that at 300 K protonated peptides no longer possess well-defined structures, but rather dynamically explore the set of conformations considered in the first conventional approach.

  6. A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: observing system simulation experiments

    NASA Astrophysics Data System (ADS)

    Claeyman, M.; Attié, J.-L.; Peuch, V.-H.; El Amraoui, L.; Lahoz, W. A.; Josse, B.; Joly, M.; Barré, J.; Ricaud, P.; Massart, S.; Piacentini, A.; von Clarmann, T.; Höpfner, M.; Orphal, J.; Flaud, J.-M.; Edwards, D. P.

    2011-02-01

    This paper presents observing system simulation experiments (OSSEs) to compare the relative capabilities of two geostationary thermal infrared (TIR) instruments to monitor ozone (O3) and carbon monoxide (CO) for air quality (AQ) purposes over Europe. The originality of this study is to use OSSEs to assess how these infrared instruments can constrain different errors affecting AQ hindcasts and forecasts (emissions, meteorology, initial condition and the 3 parameters together). The first instrument (GEO-TIR) has a configuration optimized to monitor O3 and CO in the lowermost tr posphere (LmT; defined to be the atmosphere between the surface and 3 km), and the second instrument (GEO-TIR2) is designed to monitor temperature and humidity. Both instruments measure radiances in the same spectral TIR band. Results show that GEO-TIR could have a significant impact (GEO-TIR is closer to the reference atmosphere than GEO-TIR2) on the analyses of O3 and CO LmT column. The value of the measurements for both instruments is mainly over the Mediterranean Basin and some impact can be found over the Atlantic Ocean and Northern Europe. The impact of GEO-TIR is mainly above 1 km for O3 and CO but can also improve the surface analyses for CO. The analyses of GEO-TIR2 show low impact for O3 LmT column but a significant impact (but lower than for GEO-TIR) for CO above 1 km. The results of this study indicate the beneficial impact from an infrared instrument (GEO-TIR) dedicated to monitoring O3 and CO concentrations in the LmT, and quantify the value of this information for constraining AQ models.

  7. A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE)

    NASA Astrophysics Data System (ADS)

    Claeyman, M.; Attié, J.-L.; Peuch, V.-H.; El Amraoui, L.; Lahoz, W. A.; Josse, B.; Joly, M.; Barré, J.; Ricaud, P.; Massart, S.; Piacentini, A.; von Clarmann, T.; Höpfner, M.; Orphal, J.; Flaud, J.-M.; Edwards, D. P.

    2011-08-01

    This paper presents observing system simulation experiments (OSSEs) to compare the relative capabilities of two geostationary thermal infrared (TIR) instruments to measure ozone (O3) and carbon monoxide (CO) for monitoring air quality (AQ) over Europe. The primary motivation of this study is to use OSSEs to assess how these infrared instruments can constrain different errors affecting AQ hindcasts and forecasts (emissions, meteorology, initial condition and the 3 parameters together). The first instrument (GEO-TIR) has a configuration optimized to monitor O3 and CO in the lowermost troposphere (LmT; defined to be the atmosphere between the surface and 3 km), and the second instrument (GEO-TIR2) is designed to monitor temperature and humidity. Both instruments measure radiances in the same spectral TIR band. Results show that GEO-TIR could have a significant impact (GEO-TIR is closer to the reference atmosphere than GEO-TIR2) on the analyses of O3 and CO LmT column. The information added by the measurements for both instruments is mainly over the Mediterranean Basin and some impact can be found over the Atlantic Ocean and Northern Europe. The impact of GEO-TIR is mainly above 1 km for O3 and CO but can also improve the surface analyses for CO. The analyses of GEO-TIR2 show low impact for O3 LmT column but a significant impact (although still lower than for GEO-TIR) for CO above 1 km. The results of this study indicate the beneficial impact from an infrared instrument (GEO-TIR) with a capability for monitoring O3 and CO concentrations in the LmT, and quantify the value of this information for constraining AQ models.

  8. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Rettinger, Markus; Sussmann, Ralf

    2016-09-01

    Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (< 2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm-1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2σ) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1 % in window regions and up to 1.7 % within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm-1 range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7 % of the spectral range.

  9. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  10. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2015-03-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported.

  11. Intracoronary Near-Infrared Spectroscopy (NIRS) Imaging for Detection of Lipid Content of Coronary Plaques: Current Experience and Future Perspectives.

    PubMed

    Jaguszewski, Milosz; Klingenberg, Roland; Landmesser, Ulf

    2013-01-01

    Acute coronary syndromes are frequently caused by "vulnerable" coronary plaques with a lipid-rich core. In 1993 near-infrared spectroscopy (NIRS) was first used to detect the lipid (cholesterol) content of atherosclerotic plaques in an experimental animal study. NIRS was then carefully validated using human atherosclerotic plaques (ex vivo), and has subsequently been developed for intracoronary imaging in humans, for which now an FDA-approved catheter-based NIRS system is available. NIRS provides a "chemogram" of the coronary artery wall and is used to detect lipid-rich plaques. Using this technology, recent studies have shown that lipid-rich plaques are very frequent in the culprit lesion of patients with an acute coronary syndrome, and are also common in non-culprit coronary lesions in these patients as compared to patients with stable coronary disease. First studies are evaluating the impact of statin therapy on coronary NIRS-detected lipid cores. Intracoronary NIRS imaging represents a highly interesting method for coronary plaque characterization in humans and may become a valuable tool for the development of novel therapies aiming to impact on the biology of human coronary artery plaques, likely in combination with other intracoronary imaging techniques, such as optical coherence tomography.

  12. 3D-FEM electrical-thermal-mechanical analysis and experiment of Si-based MEMS infrared emitters

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Wang, Na; Chen, Ran-Bin; San, Hai-Sheng; Chen, Xu-Yuan

    2016-11-01

    Designs, simulations, and fabrications of silicon-based MEMS infrared (IR) emitters for gas sensing application are presented. A 3D finite element method (3D-FEM) was used to analyze the coupled electrical-thermal-mechanical properties of a bridge hotplate structure (BHS) IR emitter and closed hotplate structure (CHS) IR emitter using Joule heating and thermal expansion models of COMSOL™. The IR absorptions of n- and p-silicon were calculated for the design of self-heating structure. The BHS and CHS IR emitters were fabricated synchronously using micro-electromechanical systems technology for a direct performance comparison. Both types of IR emitters were characterized by electrical and optical measurements. The experimental results show that BHS IR emitters have higher radiation density, lower power consumption, and faster frequency-response than CHS IR emitters due to the use of a thermal isolation structure and self-heating structure. Meanwhile, the simulated results agree well with the corresponding measured results, which indicate that the 3D-FEM-model is effective and can be used in the optimal design of electro-thermal devices.

  13. Irreversible transformation of ferromagnetic ordered stripe domains in single-shot infrared-pump/resonant-x-ray-scattering-probe experiments

    NASA Astrophysics Data System (ADS)

    Bergeard, Nicolas; Schaffert, Stefan; López-Flores, Víctor; Jaouen, Nicolas; Geilhufe, Jan; Günther, Christian M.; Schneider, Michael; Graves, Catherine; Wang, Tianhan; Wu, Benny; Scherz, Andreas; Baumier, Cédric; Delaunay, Renaud; Fortuna, Franck; Tortarolo, Marina; Tudu, Bharati; Krupin, Oleg; Minitti, Michael P.; Robinson, Joe; Schlotter, William F.; Turner, Joshua J.; Lüning, Jan; Eisebitt, Stefan; Boeglin, Christine

    2015-02-01

    The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.

  14. Intercomparison of stratospheric water vapor observed by satellite experiments - Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-01-01

    A comparison is made of the stratospheric water vapor measurements made by the satellite sensors of the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus-7 LIMS, and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. It was found that, despite differences in the measurement techniques, sampling bias, and observational periods, the three experiments have disclosed a generally consistent pattern of stratospheric water vapor distribution. The only significant difference occurs at high southern altitudes in May below 18 km, where LIMS measurements were 2-3 ppmv greater than those of SAGE II and ATMOS.

  15. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    NASA Technical Reports Server (NTRS)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-01-01

    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  16. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    NASA Technical Reports Server (NTRS)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-01-01

    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  17. Bondline Infrared Spectroscopy (BIS).

    DTIC Science & Technology

    1983-01-01

    properties can be derived based upon the infrared spectrum of the propellant . The second output from this program will be a prediction of mechanical ...of mechanical properties of the propellant based upon past aging experience. IR Data and Time"i. Infrared spectra of the propellant were taken at each...303 Propellant Data 150 Mechanical Properties and Time/Temperature 150 S IR Data iid’ nme 153 SIR Dý.ta An4d.rveelian’ical

  18. Design, Construction and Calibration of a Near-Infrared Four-Color Pyrometry System for Laser-Driven High Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Ali, S. J.; Jeanloz, R.; Collins, G.; Spaulding, D. K.

    2010-12-01

    Current dynamic compression experiments, using both quasi-isentropic and shock-compression, allow access to pressure-temperature states both on and off the principle Hugoniot and over a wide range of conditions of direct relevance to planetary interiors. Such studies necessitate reliable temperature measurements below 4000-5000 K. Such relatively low temperature states are also of particular interest for materials such as methane and water that do not experience much heating under shock compression. In order to measure these temperatures as a function of time across the sample, a four-color, near-infrared pyrometry system is being developed for use at the Janus laser facility (LLNL) with channels at wavelengths of 932nm-1008nm, 1008nm-1108nm, 1108nm-1208nm, and 1208nm-1300nm. Each color band is fiber-coupled to an InGaAs PIN photodiode with a rise time of less than 60 ps, read using an 18 GHz oscilloscope in order to ensure time resolutions of under 200 ps. This will allow for high temporal resolution measurements of laser-driven shock compression experiments with total durations of 5-15 ns as well as correlation with simultaneous time-resolved velocity interferometry and visual-wavelength pyrometry. Calibration of the system is being accomplished using quartz targets, as the EOS for quartz is well known, along with a calibrated integrating sphere of known spectral radiance.

  19. A Simple Experiment in the Separation of a Solid-Phase Mixture and Infrared Spectroscopy for Introductory Chemistry

    ERIC Educational Resources Information Center

    Szalay, Paul S.

    2008-01-01

    This experiment was developed as a means of incorporating instrumental analyses into an introductory chemistry laboratory. A two-component solid mixture of caffeine and ibuprofen is separated through a series of solution extractions and precipitation and their relative amounts measured. These compounds were chosen because the combination of…

  20. A Simple Experiment in the Separation of a Solid-Phase Mixture and Infrared Spectroscopy for Introductory Chemistry

    ERIC Educational Resources Information Center

    Szalay, Paul S.

    2008-01-01

    This experiment was developed as a means of incorporating instrumental analyses into an introductory chemistry laboratory. A two-component solid mixture of caffeine and ibuprofen is separated through a series of solution extractions and precipitation and their relative amounts measured. These compounds were chosen because the combination of…

  1. Mid-infrared interferometry with K band fringe-tracking. I. The VLTI MIDI+FSU experiment

    NASA Astrophysics Data System (ADS)

    Müller, A.; Pott, J.-U.; Mérand, A.; Abuter, R.; Delplancke-Ströbele, F.; Henning, Th.; Köhler, R.; Leinert, Ch.; Morel, S.; Phan Duc, T.; Pozna, E.; Ramirez, A.; Sahlmann, J.; Schmid, C.

    2014-07-01

    Context. A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated flux measurement. Aims: To stabilize the N band interferometric signal in MIDI (MID-infrared Interferometric instrument), we use an external fringe tracker working in K band, the so-called FSU-A (fringe sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) facility at VLTI. We present measurements obtained using the newly commissioned and publicly offered MIDI+FSU-A mode. A first characterization of the fringe-tracking performance and resulting gains in the N band are presented. In addition, we demonstrate the possibility of using the FSU-A to measure visibilities in the K band. Methods: We analyzed FSU-A fringe track data of 43 individual observations covering different baselines and object K band magnitudes with respect to the fringe-tracking performance. The N band group delay and phase delay values could be predicted by computing the relative change in the differential water vapor column density from FSU-A data. Visibility measurements in the K band were carried out using a scanning mode of the FSU-A. Results: Using the FSU-A K band group delay and phase delay measurements, we were able to predict the corresponding N band values with high accuracy with residuals of less than 1 μm. This allows the coherent integration of the MIDI fringes of faint or resolved N band targets, respectively. With that method we could decrease the detection limit of correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy (vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band visibilities could be measured with a precision down to ≈2%. Based on data products from observations with ESO Telescopes at the La Silla Paranal Observatory under program ID 087.C-0824, 090.B

  2. Validation of nitrogen dioxide results measured by the limb infrared monitor of the stratosphere (LIMS) experiment on NIMBUS 7

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Remsberg, E. E.; Gille, J. C.; Bailey, P. L.; Gordley, L. L.; Drayson, S. R.; Fischer, H.; Girard, A.; Harries, J. E.; Evans, W. F. J.

    1984-01-01

    The validation of results from the nitrogen dioxide channel and the quality of the data are examined in connection with the LIMS experiment which ran from late October 1978 to late May 1979. Factors studied include: channel characteristics, experiment errors due to instrument and spacecraft effects, predicted and measured precision, predicted accuracy, and comparisons with correlative measurements made in a series of balloon underflights. Features such as profile shape and slope of the mixing ratio altitude distribution are in good agreement. The LIMS data also fall within the range of previous mixing ratio measurements and are consistent with model estimates. The calculated on-orbit precision is about 0.3 ppbv and the estimated accuracy from simulations is about 2 ppbv over the 3-10-mbar range. Accuracy is less at higher and lower pressure levels. These results provide the first day-night set of nitrogen dioxide measurements from space.

  3. Validation of nitrogen dioxide results measured by the limb infrared monitor of the stratosphere (LIMS) experiment on NIMBUS 7

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Remsberg, E. E.; Gille, J. C.; Bailey, P. L.; Gordley, L. L.; Drayson, S. R.; Fischer, H.; Girard, A.; Harries, J. E.; Evans, W. F. J.

    1984-01-01

    The validation of results from the nitrogen dioxide channel and the quality of the data are examined in connection with the LIMS experiment which ran from late October 1978 to late May 1979. Factors studied include: channel characteristics, experiment errors due to instrument and spacecraft effects, predicted and measured precision, predicted accuracy, and comparisons with correlative measurements made in a series of balloon underflights. Features such as profile shape and slope of the mixing ratio altitude distribution are in good agreement. The LIMS data also fall within the range of previous mixing ratio measurements and are consistent with model estimates. The calculated on-orbit precision is about 0.3 ppbv and the estimated accuracy from simulations is about 2 ppbv over the 3-10-mbar range. Accuracy is less at higher and lower pressure levels. These results provide the first day-night set of nitrogen dioxide measurements from space.

  4. Characterization of surface properties over permafrost soils using a high resolution mid-infrared camera as part of the Carbon in the Arctic Vulnerability Experiment (CARVE)

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Podest, E.; Dinardo, S. J.; Miller, C. E.

    2016-12-01

    Freeze/thaw and hydrologic cycling have important influence over surface processes in Arctic ecosystems and in Arctic carbon cycling. The seasonal freezing and thawing of soils bracket negative and positive modes of CO2 and CH4 flux of the bulk landscape. Hydrologic processes, such as seasonal inundation of thawed tundra create a complex microtopography where greenhouse-gas sources and sinks occur over short distances. Because of a high spatial variability hydrologic features must be mapped at fine resolution. These mappings can then be compared to local and regional scale observations of surface conditions, such as temperature and freeze/thaw state, to create better estimates of these important surface fields. The Carbon in the Arctic Vulnerability Experiment (CARVE) monitors carbon gas cycling in Alaskan using aircraft-deployed gas sampling instruments along with remote sensing observations of the land surface condition. A nadir-pointed, forward looking infrared (FLIR) imager mounted on the CARVE air-craft is used to measure upwelling mid-infrared spectral radiance at 3-5 microns. The FLIR instrument was operated during the spring, summer and fall seasons, 2013 through 2015. The instantaneous field of view (IFOV) of the FLIR instrument allows for a sub-meter resolution from a height of 500 m. High resolution data products allows for the discrimination of individual landscape components such as soil, vegetation and surface water features in the image footprint. We assess the effectiveness of the FLIR thermal images in monitoring thawing and inundation processes at very high resolutions. Analyses of FLIR datasets over focused study areas emphasizing exploration of the FLIR dataset utility for detailed land surface characterization as related to surface moisture and temperature. Emphasis is given to the Barrow CMDL station site and employ the tram-based data collections there. We will also examine potential at other high latitude sites of interest, e.g. Atqasuk

  5. Performance of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Wilson, John C.; Hearty, F.; Skrutskie, M. F.; Majewski, S. R.; Schiavon, R.; Eisenstein, D.; Gunn, J.; Holtzman, J.; Nidever, D.; Gillespie, B.; Weinberg, D.; Blank, B.; Henderson, C.; Smee, S.; Barkhouser, R.; Harding, A.; Hope, S.; Fitzgerald, G.; Stolberg, T.; Arns, J.; Nelson, M.; Brunner, S.; Burton, A.; Walker, E.; Lam, C.; Maseman, P.; Barr, J.; Leger, F.; Carey, L.; MacDonald, N.; Ebelke, G.; Beland, S.; Horne, T.; Young, E.; Rieke, G.; Rieke, M.; O'Brien, T.; Crane, J.; Carr, M.; Harrison, C.; Stoll, R.; Vernieri, M.; Shetrone, M.; Allende-Prieto, C.; Johnson, J.; Frinchaboy, P.; Zasowski, G.; Garcia Perez, A.; Bizyaev, D.; Cunha, K.; Smith, V. V.; Meszaros, Sz.; Zhao, B.; Hayden, M.; Chojnowski, S. D.; Andrews, B.; Loomis, C.; Owen, R.; Klaene, M.; Brinkmann, J.; Stauffer, F.; Long, D.; Jordan, W.; Holder, D.; Cope, F.; Naugle, T.; Pfaffenberger, B.; Schlegel, D.; Blanton, M.; Muna, D.; Weaver, B.; Snedden, S.; Pan, K.; Brewington, H.; Malanushenko, E.; Malanushenko, V.; Simmons, A.; Oravetz, D.; Mahadevan, S.; Halverson, S.

    2012-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) uses a dedicated 300-fiber, narrow-band near-infrared (1.51-1.7 μm), high resolution (R~22,500) spectrograph to survey approximately 100,000 giant stars across the Milky Way. This three-year survey, in operation since late-summer 2011 as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of the kinematical and chemical enrichment histories of all Galactic stellar populations. We present the performance of the instrument from its first year in operation. The instrument is housed in a separate building adjacent to the 2.5-m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation had to be minimized, a large mosaic-VPH (290 mm x 475 mm elliptically-shaped recorded area), an f/1.4 six-element refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-infrared detectors mounted in a 1 x 3 mosaic with sub-pixel translation capability, and all of these components housed within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4-m x 2.3-m x 1.3-m.

  6. Propagation experiments in the near infrared along a 150-km path and from stars in the Canarian archipelago

    NASA Astrophysics Data System (ADS)

    Comeron, Adolfo; Rubio, Juan A.; Belmonte, Aniceto M.; Garcia, Enrique; Prud'homme, Tony; Sodnik, Zoran; Connor, Chris

    2002-03-01

    Within the framework of the European Space Agency (ESA) SILEX project, aimed at experimentally demonstrating the feasibility of inter-satellite optical communications links, an Optical Ground Station (OGS) has been built by ESA in the premises of the Instituto de Astrofisica de Canarias (IAC, Institute of Astrophysics of the Canary Islands) Observatory of Teide, in the Tenerife island. The OGS is designed to test the optical communications payload on board the ESA's Artemis satellite and to perform ground-satellite optical communications experiments. As part of the OGS design study, an assessment of the impact of the atmosphere on the ground- satellite links was carried out. This assessment included experimental characterizations of the atmospheric effects through both measurements from stars in positions close to the Artemis one in bands comprising the SILEX wavelengths, using the IAC's Mons telescope in the Observatory of Teide, and measurements on a horizontal link with a transmitter near the IAC's Roque de los Muchachos Observatory in La Palma island, based on a laser diode similar to those to be used in SILEX, and a receiver in the Teide Observatory, almost 150 km apart, in the Tenerife island. The 830-nm wavelength horizontal measurements allowed checking the variations in the behavior of the atmospheric turbulence through the diurnal cycle. Besides the information relevant to assess the OGS performance, the horizontal-propagation experiments allowed to gather a considerable amount of propagation data on a very long path, most of it 2400 m above the sea.

  7. Computational Chemistry Meets Experiments for Explaining the Behavior of Bibenzyl: A Thermochemical and Spectroscopic (Infrared, Raman, and NMR) Investigation.

    PubMed

    Latouche, Camille; Barone, Vincenzo

    2014-12-09

    The structure, conformational behavior, and spectroscopic parameters of bibenzyl have been investigated by a computational protocol including proper treatment of anharmonic and hindered rotor contributions. Conventional hybrid functionals overstabilize the anti conformer while low-order post-Hartree-Fock (MP2) approaches strongly favor the gauche conformer. However, inclusion of semiempirical dispersion effects in density functionals or coupled cluster post-Hartree-Fock models agree in forecasting the simultaneous presence of both conformers in the gas phase with a slightly larger stability (0.7 kcal·mol(-1)) of the gauche conformer. Addition of thermal and entropic effects finally leads to very close Gibbs free energies for both conformers and, thus, to a slight preference for the gauche form due to statistical factors (2 vs 1). The situation remains essentially the same in solution. On these grounds, perturbative vibrational computations including both electrical and mechanical anharmonicities lead to IR and Raman spectra in remarkable agreement with experiment. Full assignment of the IR spectra explains the presence of peaks from gauche or anti conformers. Comparison between computed and experimental Raman spectra confirms that both conformers are present in liquid phase, whereas the anti conformer seems to be preponderant in the solid state. Also computed NMR parameters are in good agreement with experiment.

  8. Infrared surface temperature measurements for the surface tension driven convection experiment. M.S. Thesis - Case Western Reserve Univ., Aug. 1988

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.

    1989-01-01

    In support of the Surface Tension Driven Convection Experiment (STDCE), a planned space transportation system (STS) flight experiment, a commercially available infrared thermal imaging system is used to quantify the imposed thermal signature along the free surface. The system was tested and calibrated for the STDCE with ground-based equivalents of the STDCE hardware. Before using the system, consideration was given to the radiation characteristics of the target (silicone oil). Absorption coefficients were calculated to understand the surface depth as seen by the imager and the penetration depth of the surface heater (CO2 laser). The performance and operational specifications for the imager and image processing system are described in detail to provide an understanding of the equipment. Measurements made with the system were compared to thermocouple measurements and a calculated surface temperature distribution. This comparison showed that in certain regions the IR imager measurements were within 5 percent of the overall temperature difference across the free surface. In other regions the measurements were within + or - 10 percent of the overall temperature gradient across the free surface. The effective emissivity of silicone oil for these experimental conditions was also determined. Measurement errors and their possible solutions are discussed.

  9. Infrared Sky Surveys

    NASA Astrophysics Data System (ADS)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  10. Continuing Studies of Planetary Atmospheres Associated with Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading

  11. Continuing Studies of Planetary Atmospheres Associated With Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Goodman,Jindra; Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading

  12. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall).

  13. Implications of the stratospheric water vapor distribution as determined from the Nimbus 7 LIMS experiment. [Limb Infrared Monitor of Stratosphere

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Russell, J. M., III; Gordley, L. L.; Gille, J. C.; Bailey, P. L.

    1984-01-01

    The LIMS experiment on Nimbus 7 has provided new results on the stratospheric water vapor distribution. The data show (1) a latitudinal gradient with mixing ratios that increase by a factor of 2 from equator to + or - 60 degrees at 50 mb, (2) most of the time there is a fairly uniform mixing ratio of 5 ppmv at high latitudes, but more variation exists during winter, (3) a well-developed hygropause at low to midlatitudes of the lower stratosphere, (4) a source region of water vapor in the upper stratospehere to lower mesosphere that is consistent with methane oxidation chemistry, at least within the uncertainties of the data, (5) an apparent zonal mean H2O distribution that is consistent with the circulation proposed by Brewer in 1949, and (6) a zonal mean distribution in the lower stratosphere that is consistent with the idea of quasi-isentropic transport by eddies in the meridional direction. Limits to the use of the data in the refinement of our understanding of the stratospheric water vapor budget are noted.

  14. Inframetrics infrared scanner upgraded to a 12-bit digital thermography system for heat load measurements at nuclear fusion experiments

    NASA Astrophysics Data System (ADS)

    Denner, T.

    1999-01-01

    A commercially available Inframetrics Scanner (Modell 760) has been upgraded to 12-bit resolution in order to derive heat fluxes on tokamak devices (TEXTOR-94). The temperature resolution is high enough to detect—at the same camera settings—the small sawtoothing heat flux modulation and the large disruptive heat fluxes. Eight new boards have been developed and installed at TEXTOR-94 to perform the measurement, transmit the data from the experiment to the control room, and store the data in a PC. To ensure reliable data transmission, the data stream (1.1 MSPS) is transferred via optical fibers from the camera to the PC in the control room. The PC receives timing information from the TEXTOR-94 timing system such that a synchronization of the camera clock and the experimental clock is guaranteed. The new system includes a time reference to correct a small frequency drift of the original Inframetrics scanner. This feature permits to compare the heat flux with signals from other TEXTOR-94 diagnostics during fast events like disruptions for which the camera can also be operated in the fast line scan mode.

  15. Validation of water vapor results measured by the Limb Infrared Monitor of the Stratosphere experiment on Nimbus 7

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Remsberg, E. E.; Gille, J. C.; Bailey, P. L.; Gordley, L. L.; Fischer, H.; Girard, A.; Drayson, S. R.; Evans, W. F. J.; Harries, J. E.

    1984-01-01

    In the LIMS experiment using thermal IR limb scanning to sound the composition and structure of the upper atmosphere, one of the LIMS channels was spectrally centered at 6.9 micrometers to measure the vertical profile and global distribution of stratospheric water vapor. This channel's characteristics, the data from it, and the steps taken to validate results are described. The mean difference between the LIMS measurements and data from 13 balloon underflights is about 0.6 ppmv with LIMS mixing ratios biased high; this difference is of about the same order as estimated LIMS accuracy and less than the sum of the errors for LIMS and the balloon techniques. In-orbit precision is 0.2-0.3 ppmv and accuracy is estimated at 20-30 percent from 50 mbar to the stratopause. An unexplained diurnal variation exists in the vertical profile data which is largest at the 1-mbar level and virtually nonexistent at 10 mbar; day values are higher than night. More confidence is placed in zonal mean distributions averaged over several days than in single profiles. A zonal mean pressure-latitude cross section is described for January 5-9, 1979.

  16. The RED Experiment: An Assessment of Boundary Layer Effects in a Trade Winds Regime on Microwave and Infrared Propagation over the Sea.

    NASA Astrophysics Data System (ADS)

    Anderson, Kenneth; Brooks, Barbara; Caffrey, Peter; Clarke, Antony; Cohen, Leo; Crahan, Katie; Davidson, Kenneth; de Jong, Arie; de Leeuw, Gerrit; Dion, Denis; Doss-Hammel, Stephen; Frederickson, Paul; Friehe, Carl; Hristov, Tihomir; Khelif, Djamal; Moerman, Marcel; Reid, Jeffery S.; Reising, Steven; Smith, Michael; Terrill, Eric; Tsintikidis, Dimitris

    2004-09-01

    In the surface layer over the ocean the Monin Obukhov similarity theory is often applied to construct vertical profiles of pressure, temperature, humidity, and wind speed. In this context, the rough boundary layer is derived from empirical relations where ocean wave characteristics are neglected. For seas where wind speed is less than 10 m s-1 there is excellent agreement for both meteorological and microwave propagation theory and measurements. However, recent evidence indicates that even small waves perturb these profiles. It is, therefore, hypothesized that mechanical forcing by sea waves is responsible for modifying scalar profiles in the lowest portion of the surface layer, thereby reducing the effects of evaporation ducting on microwave signal propagation. This hypothesis, that a rough sea surface modifies the evaporation duct, was the primary motivation for the Rough Evaporation Duct (RED) experiment.RED was conducted off of the Hawaiian Island of Oahu from late August to mid-September 2001. The Scripps Institution of Oceanography Research Platform Floating Instrument Platform, moored about 10 km off the northeast coast of Oahu, hosted the primary meteorological sensor suites and the transmitters for both the microwave and the infrared propagation links. Two land sites were instrumented—one with microwave receivers and the other with an infrared receiver—two buoys were deployed, a small boat was instrumented, and two aircraft flew various tracks to sense both sea and atmospheric conditions.Through meteorological and propagation measurements, RED achieved a number of its objectives. First, although we did not experience the desired conditions of simultaneous high seas, high winds, and large surface gradients of temperature and humidity necessary to significantly affect the evaporation duct, observations verify that waves do modify the scalars within the air sea surface layer. Second, an intriguing and controversial result is the lack of agreement of the

  17. Sentinel Node Mapping Using Indocyanine Green and Near-infrared Fluorescence Imaging Technology for Uterine Malignancies: Preliminary Experience With the Da Vinci Xi System.

    PubMed

    Siesto, Gabriele; Romano, Fabrizio; Fiamengo, Barbara; Vitobello, Domenico

    2016-01-01

    Sentinel lymph node (SLN) mapping has emerged as the new frontier for the surgical staging of apparently early-stage cervical and endometrial cancer. Different colorimetric and radioactive tracers, alone and in combination, have been proposed with encouraging results. Fluorometric mapping using indocyanine green (ICG) appears to be a suitable and attractive alternative to provide reliable staging [1-4]. In this video, we present the technique of SLN mapping in 2 cases (1 endometrial and 1 cervical cancer, respectively) using ICG and the near-infrared technology provided by the newest Da Vinci Xi robotic system (Intuitive Surgical Inc., Sunnyvale, CA). Together we report the results of our preliminary experience on the first 20 cases performed. The new robotic Da Vinci Xi system was available at our institution since May 2015. Upon institutional review board/ethical committee approval, all consecutive patients with early-stage endometrial and cervical cancer who were judged suitable for robotic surgery have been enrolled for SLN mapping with ICG. We adopted the Memorial Sloan Kettering Cancer Center SLN algorithm; the tracer was delivered into the cervix in all cases. Four milliliters (1.25 mg/mL) of ICG was injected divided into the 3- and 9-o'clock positions of the cervix alone, with 1 mL deep into the stroma and 1 mL submucosally at the skin incision. Sentinel lymph nodes were examined with a protocol including both ultrastaging with immunohistochemistry [3] and 1-step nucleic acid amplification assay [5,6] under a parallel protocol of study. During the study period, 20 cases were managed; 14 and 6 patients had endometrial and cervical cancer, respectively. SLN was detected in all cases (20/20, 100%). Bilateral SLNs were detected in 17 of 20 (85.0%) cases. Based on preoperative and intraoperative findings, 13 (65.0%) patients received systematic pelvic lymphadenectomy after SLN mapping. Three (15.0%) patients had microscopic nodal metastases on SLN. No

  18. Use of CO2 laser and AgClBr infrared transmitting fibers for tympanoplasty: experiments on animal models

    NASA Astrophysics Data System (ADS)

    Grundfest, Warren S.

    1999-06-01

    One of the most common ear disease is Chronic Otitis Media that leads to a tympanic membrane perforation. The treatment of this condition is by a surgical procedure, tympanoplasty that is often done under local or general anesthesia. During this procedure an autologous fascia is applied to close the perforation. Commonly, fixation of the fascia is achieved mostly by Gel-Form. During the last several years various fascia fixation techniques were suggested. These included a welding procedure based on using an Argon laser. The disadvantages of the latter is that the visible Argon laser is not absorbed well by the relatively thin tympanic membrane and the fascia. It does not lead to strong weld and it may heat the middle of the ear, causing neural hearing loss. The CO2 laser IR radiation is much more suitable for welding of these thin tissues, because of its very high absorption in tissues. There is still a need to deliver this radiation to the weld site using a thin and flexible optical fiber. In this work we have welded fascia on the tympanic membranes of guinea pigs using a CO2 laser. Holes of diameter 2-3 mm were punctured in the membranes and apiece of fascia was placed on the holes. Laser power of the order of 0.5W was delivered to the fascia using an IR transmitting AgClBr fiber. In experiments done on 11 animals and CO2 laser welding was successfully done on in 15 years. The success of these preliminary studies in the animal models shows that CO2 laser tympanoplasty could be a very valuable surgical technique.

  19. Use of CO2 laser and AgClBr infrared transmitting fibers for tympanoplasty: experiments on animal models

    NASA Astrophysics Data System (ADS)

    Zilker, Zeev; Daykhovsky, Leon; Nageris, Ben I.; Feinmesser, R.; Papaioannou, Thanassis; Ravid, Avi; Kariv, Naam; Katzir, Abraham

    1999-06-01

    One of the most common ear disease is Chronic Otitis Media that leads to a tympanic membrane perforation. The treatment of this condition is by a surgical procedure, tympanoplasty that is often done under local or general anesthesia. During this procedure an autologous fascia is applied to close the perforation. Commonly, fixation of the fascia is achieved mostly by Gel-Form. During the last several years various fascia fixation techniques were suggested. These included a welding procedure based on using an Argon laser. The disadvantages of the latter is that the visible Argon laser is not absorbed well by the relatively thin tympanic membrane and the fascia. It does not lead to strong weld and it may heat the middle of the ear, causing neural hearing loss. The CO2 laser IR radiation is much more suitable for welding of these thin tissues, because of its very high absorption in tissues. There is still a need to deliver this radiation to the weld site using a thin and flexible optical fiber. In this work we have welded fascia on the tympanic membranes of guinea pigs using a CO2 laser. Holes of diameter 2-3 mm were punctured in the membranes and apiece of fascia was placed on the holes. Laser power of the order of 0.5W was delivered to the fascia using an IR transmitting AgClBr fiber. In experiments done on 11 animals and CO2 laser welding was successfully done on in 15 years. The success of these preliminary studies in the animal models shows that CO2 laser tympanoplasty could be a very valuable surgical technique.

  20. Infrared Measurement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Jet Propulsion Laboratory Technical Support Package (TSP) describing a technique for processing data from an infrared radiometer assisted a manufacturer of laminates for printed circuit boards. To reduce emissions and lower the cost of producing prepreg (a continuous glass cloth, or web, impregnated with epoxy resin and partially cured by applying heat), Norplex Oak switched to infrared treating towers. The TSP confirmed the company's computer prediction of heat flux patterns, provided information that allowed the company to modify infrared treaters for consistency, and furnished a basis for development of optimal heater placements. The treaters are now successfully operating at increased speeds with improved product consistency.

  1. KENNEDY SPACE CENTER, FLA. - Seen here is the infrared camera to be used during pre-assembly measurements on the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - Seen here is the infrared camera to be used during pre-assembly measurements on the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians with The Boeing Company move an infrared camera into position near the Japanese Experiment Module (JEM) for pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians with The Boeing Company move an infrared camera into position near the Japanese Experiment Module (JEM) for pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  3. Validation of the Measurement of Pollution in the Troposphere (MOPITT) Experiment by Ground-Based Infrared Solar Spectroscopic Measurements of Carbon Monoxide (CO) and Methane (CH4)

    NASA Technical Reports Server (NTRS)

    Pougatchev, Nikita

    2003-01-01

    The goal of the MOPITT experiment is to enhance our knowledge of the lower atmosphere system and particularly how it interacts with the surface/ocean/biomass systems. The particular focus is the distribution, transport, sources and sinks of carbon monoxide and methane in the troposphere. The MOPITT instrument was launched on EOS TERRA satellite December 18, 1999. After the launch and until March 22, 2000 the MOPITT instrument was in engineering and calibration mode. Beginning March 23, 2000 through May 6, 2001 the instrument was in a science measurement mode with some calibration breaks. On May 7, 2001 a criocooler on a side B died and channels 1 - 4 became inoperational. The MOPITT resumed its scientific measurements on August 25, 2001 with channels 5 - 8. With some calibration breaks the instrument currently provides the data. The project has three elements to it: hardware, data analysis and modeling. The MOPITT instrument, on the NASA EOS Terra satellite, measures the upwelling infrared radiance. Using the technique of correlation spectroscopy, information regarding the distribution of atmospheric CO and CH4 can be extracted. By using appropriate data analysis techniques, concentration profiles of CO are currently obtained on a global basis at a reasonably high horizontal (approximately 22km) and vertical resolution (approximately 3km). Column amounts of methane will be derived over the sunlit side of the orbit. These profiles are assimilated into models to study the chemistry and dynamics of CO, CH4 and other constituents of the lower atmosphere.

  4. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-03-01

    Continuous wave near-IR spectroscopy (CW-NIRS) has been increasingly applied for the noninvasive, in vivo measurement of tissue and blood chemistry. It is hypothesized that there is a quantifiable relationship between fat thickness and near infrared diffuse reflectance spectra at all wavelengths, and this relationship can be used to remove the spectral influence of the overlying fat layer from the muscle spectrum. The hypothesis was investigated at a single wavelength using Monte Carlo simulations of a two-layer structure and with phantom experiments. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. It is also shown that the optical properties of the muscle and fat layers influence this relationship under certain conditions. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm, such as on the forearm. If NIRS measurement is to be performed on an anatomical region with a thicker fat layer, a spectral correction for fat will be needed to account for its thickness and the variation in optical coefficients for both the fat and the muscle layers.

  5. On the Assessment and Uncertainty of Atmospheric Trace Gas Burden Measurements with High Resolution Infrared Solar Occultation Spectra from Space by the ATMOS Experiment

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Chang, A. Y.; Gunson, M. R.; Abbas, M. M.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.; Stiller, G. P.; Zander, R.

    1996-01-01

    The Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument is a high resolution Fourier transform spectrometer that measures atmospheric composition from low Earth orbit with infrared solar occultation sounding in the limb geometry. Following an initial flight in 1985, ATMOS participated in the Atmospheric Laboratory for Applications and Science (ATLAS) 1, 2, and 3 Space Shuttle missions in 1992, 1993, and 1994 yielding a total of 440 occultation measurements over a nine year period. The suite of more than thirty atmospheric trace gases profiled includes CO2, O3, N2O, CH4, H2O, NO, NO2, HNO3, HCl, HF, ClONO2, CCl3F, CCl2F2, CHF2Cl, and N2O5. The analysis method has been revised throughout the mission years culminating in the 'version 2' data set. The spectroscopic error analysis is described in the context of supporting the precision estimates reported with the profiles; in addition, systematic uncertainties assessed from the quality of the spectroscopic database are described and tabulated for comparisons with other experiments.

  6. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  7. Enhanced near-infrared shielding ability of (Li,K)-codoped WO3 for smart windows: DFT prediction validated by experiment.

    PubMed

    Yang, Chenxi; Chen, Jian-Feng; Zeng, Xiaofei; Cheng, Daojian; Huan, Haifeng; Cao, Dapeng

    2016-02-19

    By means of hybrid density functional theory (DFT) computations, we found that (Li,K)-codoped WO3 shows a significantly enhanced near-infrared (NIR) absorption ability for smart windows, and investigated the influence of doping through the analysis of the electronic structures of pure and doped hexagonal WO3. Furthermore, this codoped material, with a hexagonal tungsten bronze nanostructure, was successfully prepared via a simple one-step hydrothermal reaction for the first time. Transmission electron microscopy images showed that the as-prepared products possessed a nanorod-like morphology with diameters of about 5-10 nm. It was demonstrated that (Li,K)-codoped WO3 presents a better NIR absorption ability than pure, Li-monodoped or K-monodoped WO3, which is in good agreement with our theoretical predictions. The experiment and simulation results reveal that this enhanced optical property in NIR can be explained by the existence of high free electrons existing in (Li,K)-codoped WO3.

  8. Enhanced near-infrared shielding ability of (Li,K)-codoped WO3 for smart windows: DFT prediction validated by experiment

    NASA Astrophysics Data System (ADS)

    Yang, Chenxi; Chen, Jian-Feng; Zeng, Xiaofei; Cheng, Daojian; Huang, Haifeng; Cao, Dapeng

    2016-02-01

    By means of hybrid density functional theory (DFT) computations, we found that (Li,K)-codoped WO3 shows a significantly enhanced near-infrared (NIR) absorption ability for smart windows, and investigated the influence of doping through the analysis of the electronic structures of pure and doped hexagonal WO3. Furthermore, this codoped material, with a hexagonal tungsten bronze nanostructure, was successfully prepared via a simple one-step hydrothermal reaction for the first time. Transmission electron microscopy images showed that the as-prepared products possessed a nanorod-like morphology with diameters of about 5-10 nm. It was demonstrated that (Li,K)-codoped WO3 presents a better NIR absorption ability than pure, Li-monodoped or K-monodoped WO3, which is in good agreement with our theoretical predictions. The experiment and simulation results reveal that this enhanced optical property in NIR can be explained by the existence of high free electrons existing in (Li,K)-codoped WO3.

  9. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  10. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  11. Why Infrared?

    ERIC Educational Resources Information Center

    Harris, J. R.

    1973-01-01

    Discusses applications of techniques developed for the remote sensing of infrared radiation. In addition to military applications, remote sensing has become important in collecting environmental data and detecting ecological problems. (JR)

  12. Why Infrared?

    ERIC Educational Resources Information Center

    Harris, J. R.

    1973-01-01

    Discusses applications of techniques developed for the remote sensing of infrared radiation. In addition to military applications, remote sensing has become important in collecting environmental data and detecting ecological problems. (JR)

  13. Infrared astronomy

    SciTech Connect

    Neugebauer, G.; Soifer, B.T.; Matthews, K.

    1981-03-01

    Several observational programs in infrared astronomy are described and significant findings are briefly discussed. The near infrared work concentrates largely on the use of the 5 m Hale telescope in spectroscopic and photometric studies of extragalactic sources. Observations of the P alpha line profile in a low redshift quasar, X-ray bursters, reflection nebula, and cataclysmic variables are included. Millimeter continuum observations of dust emission from quasars and galactic molecular clouds are also discussed. Finally, improvements to instrumentation are reported.

  14. An Inexpensive Digital Infrared Camera

    ERIC Educational Resources Information Center

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  15. An Inexpensive Digital Infrared Camera

    ERIC Educational Resources Information Center

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  16. Sense size-dependent dust loading and emission from space using reflected solar and infrared spectral measurements: An observation system simulation experiment

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoguang; Wang, Jun; Wang, Yi; Henze, Daven K.; Zhang, Li; Grell, Georg A.; McKeen, Stuart A.; Wielicki, Bruce A.

    2017-08-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) satellite mission observes hyperspectral Earth reflected solar (RS) and emitted infrared radiance (IR). Such measurements span an additional dimension on spectrally dependent scattering and absorption of dust, the critical signals for particle size. Through a suite of observation system simulation experiments (OSSEs), this study assesses the capability of CLARREO's measurements for recovering size-dependent dust emissions in GEOS-Chem chemistry transport model (CTM). To this end, another CTM (Flow-following finite-volume Icosahedral Model-Chem, or FIM-Chem) is used for the nature run to simulate CLARREO spectral radiances. The spectral signals are then used for analyzing the sensitivities and error characteristics of dust optical depth (DOD) under three observations scenarios (IR only, RS only, and combined IR and RS) using an optimal estimation technique. Next, these synthetic data are assimilated into GEOS-Chem adjoint model to constrain dust emissions of four particle sizes with radii from 0.1 μm to 6.0 μm. The OSSEs results indicate (1) the IR spectra are most sensitive to dust of the third size bin (1.8-3.0 μm) and least sensitive to the smallest bin (0.1-1.0 μm); (2) the RS spectra are most sensitive to dust of the smallest size bin and the sensitivity decreases as dust size increases; (3) combining IR and RS spectra can fully characterize DOD across all sizes, providing the best constraints for size-resolved dust emissions; and (4) CLARREO data fail to constrain the spatial distribution of dust sources due to its narrow swath and joint observations from CLARREO-calibrated sensors with wide swath are desirable.

  17. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  18. Infrared Thermometer

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Diatek Corporation, San Diego, CA and the Jet Propulsion Lab developed the Diatek Model 7000 aural thermometer which weighs only eight ounces, and measures temperature in less than two seconds using infrared astronomy technology to measure the amount of infrared energy emitted by the eardrum (the same way temperature of stars and planets is measured). This method avoids contact with mucous membranes, virtually eliminating the possibility of cross infection, and permits temperature measurement of newborn, critically ill, or incapacitated patients. Diatek Corporation was purchased by Welch Allyn Inc. The Diatek Model 7000 is now marketed as SureTemp.

  19. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  20. Infrared Images

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Earth objects emit natural radiation invisible to the unaided human eye, but visible to infrared scanning devices such as the device developed by Inframetrics, Inc. Such devices serve a number of purposes ranging from detection of heat loss in buildings for energy conservation measures, to examining heat output of industrial machinery for trouble shooting and preventive maintenance. Representative of system is Model 525, a small, lightweight field instrument that scans infrared radiation and translates its findings to a TV picture of the temperature pattern in the scene being viewed. An accessory device permits viewing the thermal radiation in color.

  1. Infrared Thermometers

    ERIC Educational Resources Information Center

    Schaefers, John

    2006-01-01

    An infrared (IR) thermometer lab offers the opportunity to give science students a chance to measure surface temperatures, utilizing off-the-shelf technology. Potential areas of study include astronomy (exoplanets), electromagnetic spectrum, chemistry, evaporation rates, anatomy, crystal formation, and water or liquids. This article presents one…

  2. Infrared Thermometers

    ERIC Educational Resources Information Center

    Schaefers, John

    2006-01-01

    An infrared (IR) thermometer lab offers the opportunity to give science students a chance to measure surface temperatures, utilizing off-the-shelf technology. Potential areas of study include astronomy (exoplanets), electromagnetic spectrum, chemistry, evaporation rates, anatomy, crystal formation, and water or liquids. This article presents one…

  3. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  4. TIME-DEPENDENT INFRARED STUDIES.

    DTIC Science & Technology

    INFRARED RESEARCH, TIME , INFRARED PHENOMENA, INFRARED RADIATION, INFRARED SPECTROSCOPY, HIGH ALTITUDE, SOLAR ATMOSPHERE, TRANSMISSIONS(MECHANICAL), VIBRATION, QUANTUM THEORY, CALIBRATION, INFRARED SCANNING.

  5. Infrared thermal annealing device

    NASA Astrophysics Data System (ADS)

    Gladys, M. J.; Clarke, I.; O'Connor, D. J.

    2003-07-01

    A device for annealing samples within an ultrahigh vacuum (UHV) scanning tunneling microscopy system was designed, constructed, and tested. The device is based on illuminating the sample with infrared radiation from outside the UHV chamber with a tungsten projector bulb. The apparatus uses an elliptical mirror to focus the beam through a sapphire viewport for low absorption. Experiments were conducted on clean Pd(100) and annealing temperatures in excess of 1000 K were easily reached.

  6. Infrared floodlight

    DOEpatents

    Levin, Robert E.; English, George J.

    1986-08-05

    An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

  7. Infrared Arrays

    NASA Astrophysics Data System (ADS)

    McLean, I.; Murdin, P.

    2000-11-01

    Infrared arrays are small electronic imaging devices subdivided into a grid or `array' of picture elements, or pixels, each of which is made of a material sensitive to photons (ELECTROMAGNETIC RADIATION) with wavelengths much longer than normal visible light. Typical dimensions of currently available devices are about 27-36 mm square, and formats now range from 2048×2048 pixels for the near-infra...

  8. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  9. Infrared retina

    DOEpatents

    Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  10. Diamondlike Protective Coats For Infrared Windows

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Banks, Bruce A.; Mirtich, Michael J.

    1992-01-01

    Report describes experiments in which four infrared-transparent window materials were coated with diamondlike carbon films. Purpose to investigate ability of films to protect infrared windows against erosion by rain and wind-blown hard particles. Diamondlike films chosen as protective coats because they are transparent over broad spectral range and resist attack by chemicals, moisture, and abrasion. Experiments yield mixed results.

  11. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-01-01

    The Far Infrared Supplement: catalog of infrared observations summarizes all infrared astronomical observations at far infrared wavelengths published in the scientific literature between 1965 and 1982. The Supplement list contains 25% of the observations in the full catalog of infrared observations (C10), and essentially eliminates most visible stars from the listings. The Supplement is more compact than the main Catalog (it does not contain the bibliography and position index of the C10), and is intended for easy reference during astronomical observations.

  12. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  13. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  14. Cryosystems for the infrared missions German Infrared Lab. (GIRL), Infrared Background Signature (IBSS), and Infrared Space Observatory (ISO)

    NASA Astrophysics Data System (ADS)

    Seidel, Albert; Passvogel, Thomas

    1994-09-01

    For the infrared astronomy and earth atmosphere survey helium-cooled telescope and instruments are used since over 15 years. As a national program MBB (now DASA) had developed the GIRL (German Infrared Laboratory) - cryosystem from 1977 to 1985. Bases on the experience from there, the 'Infrared Background Signature Survey' (IBSS) -sensor was built, which flew successfully on Space Shuttle (STS39) in May 1991. Based on GIRL and IBSS DASA built the Payload Module (PLM) for the 'Infrared Space Observatory' (ISO) under ESA-contract. The basic designs of the GIRL-, IBSS-, and ISO-cryostats are described. Besides essential IBSS- flight data, important functional aspects of space cryostats are illustrated at the example of ISO. The flight hardware acceptance status of the ISO-PLM, which shall be launched for its 18-months IR-astronomy mission on an Ariane 4 - launcher in September 1995, is described together with important hardware elements and the total PLM.

  15. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965.

  16. Far infrared supplement: Catalog of infrared observations

    NASA Astrophysics Data System (ADS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1982-10-01

    The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965.

  17. Infrared heating

    NASA Astrophysics Data System (ADS)

    1983-11-01

    The transfer of energy by radiation whose limits lie between 1 mm and 400 mm is indicated. The radiation used lies practically completely in the infrared region. Its use therefore depends on the thermal radiation laws (black body or integral receiver laws). These laws were derived mathematically in accordance with the properties of an ideal body, the so-called ""integral receiver'' (formerly black body). According to definition this integral receiver has the property of absorbing completely all incident electromagnetic radiation. From these the following laws were deduced: (1) All bodies with a temperature above absolute zero emit a radiation. (2) The energy emitted by the integral receiver is proportional to the 4th power of the absolute temperature. (3) The emission theoretically comprizes the whole radiation. (4) The radiation comprizing the emission spectrum does not transport the same amount of energy at every wavelength.

  18. An experimental investigation to determine the effect of window cooling by mass injection for the Shuttle Infrared Leeside Temperature Sensing (SILTS) experiment

    NASA Technical Reports Server (NTRS)

    Bradley, P. F.

    1979-01-01

    The effect of mass injection on the shuttle infrared leeside temperature sensing (SILTS) pod window surfaces in reducing window heating and minimizing window lens radiation during the reentry data taking period is investigated. Heat transfer coefficients on and around the simulated windows and window cavities are determined. Heat transfer rates and window coolant flow rates are reported for the SILTS configuration. A comparison of two windows' geometries and their effects on the heat transfer rate is discussed and oil flow photographs are presented to indicate how mass injection affects the flow field near the SILTS window.

  19. A comparison between Nimbus 5 THIR and ITPR temperatures and derived winds with rawinsonde data obtained in the AVE II experiment. [Temperature-Humidity Infrared Radiometer and Infrared Temperature Profile Radiometer

    NASA Technical Reports Server (NTRS)

    Arnold, J. E.; Scoggins, J. R.; Fuelberg, H. E.

    1977-01-01

    During the second Atmospheric Variability Experiment (AVE II), atmospheric temperature profiles were computed from Nimbus 5 data, which comprised ITPR, NEMS, and SCR measurements. Rawinsonde data were obtained from NWS stations in the AVE II network and processed for each pressure contact; the soundings closest in space and time were interpolated to the Nimbus 5 sounding points for comparison purposes. Cross sections of thermal and geostrophic winds were computed from satellite-derived cross sections of temperature along the Nimbus orbital track.

  20. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations.

    PubMed

    Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes

    2015-11-19

    The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point.

  1. Infrared low-level wind shear work

    NASA Technical Reports Server (NTRS)

    Adamson, Pat

    1988-01-01

    Results of field experiments for the detection of clear air disturbance and low level wind shear utilizing an infrared airborne system are given in vugraph form. The hits, misses and nuisance alarms scores are given. Information is given on the infrared spatial resolution technique. The popular index of aircraft hazard (F= WX over g - VN over AS) is developed for a remote temperature sensor.

  2. Research on infrared imaging illumination model based on materials

    NASA Astrophysics Data System (ADS)

    Hu, Hai-he; Feng, Chao-yin; Guo, Chang-geng; Zheng, Hai-jing; Han, Qiang; Hu, Hai-yan

    2013-09-01

    In order to effectively simulate infrared features of the scene and infrared high light phenomenon, Based on the visual light illumination model, according to the optical property of all material types in the scene, the infrared imaging illumination models are proposed to fulfill different materials: to the smooth material with specular characteristic, adopting the infrared imaging illumination model based on Blinn-Phone reflection model and introducing the self emission; to the ordinary material which is similar to black body without highlight feature, ignoring the computation of its high light reflection feature, calculating simply the material's self emission and its reflection to the surrounding as its infrared imaging illumination model, the radiation energy under zero range of visibility can be obtained according to the above two models. The OpenGl rendering technology is used to construct infrared scene simulation system which can also simulate infrared electro-optical imaging system, then gets the synthetic infrared images from any angle of view of the 3D scenes. To validate the infrared imaging illumination model, two typical 3D scenes are made, and their infrared images are calculated to compare and contrast with the real collected infrared images obtained by a long wave infrared band imaging camera. There are two major points in the paper according to the experiment results: firstly, the infrared imaging illumination models are capable of producing infrared images which are very similar to those received by thermal infrared camera; secondly, the infrared imaging illumination models can simulate the infrared specular feature of relative materials and common infrared features of general materials, which shows the validation of the infrared imaging illumination models. Quantitative analysis shows that the simulation images are similar to the collected images in the aspects of main features, but their histogram distribution does not match very well, the

  3. Infrared Spectroscopy of Deuterated Compounds.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment (based on the potassium bromide pressed-pellet method) involving the infrared spectroscopy of deuterated compounds. Deuteration refers to deuterium-hydrogen exchange at active hydrogen sites in the molecule. (JN)

  4. Multi-functional Infrared Sensor

    DTIC Science & Technology

    2014-05-11

    infrared imaging; perforated gold films with Si3N4 overlayers, studied the fundamental understanding of surface plasmon polariton modes and their...we studied the underlying mechanism of surface plamon polariton modes and their angle dependence by means of experiment, theory and simulation (In

  5. Visualizing Chemistry with Infrared Imaging

    ERIC Educational Resources Information Center

    Xie, Charles

    2011-01-01

    Almost all chemical processes release or absorb heat. The heat flow in a chemical system reflects the process it is undergoing. By showing the temperature distribution dynamically, infrared (IR) imaging provides a salient visualization of the process. This paper presents a set of simple experiments based on IR imaging to demonstrate its enormous…

  6. Infrared Spectroscopy of Deuterated Compounds.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment (based on the potassium bromide pressed-pellet method) involving the infrared spectroscopy of deuterated compounds. Deuteration refers to deuterium-hydrogen exchange at active hydrogen sites in the molecule. (JN)

  7. Visualizing Chemistry with Infrared Imaging

    ERIC Educational Resources Information Center

    Xie, Charles

    2011-01-01

    Almost all chemical processes release or absorb heat. The heat flow in a chemical system reflects the process it is undergoing. By showing the temperature distribution dynamically, infrared (IR) imaging provides a salient visualization of the process. This paper presents a set of simple experiments based on IR imaging to demonstrate its enormous…

  8. Infrared Spectrometry of Inorganic Salts

    ERIC Educational Resources Information Center

    Ackermann, Martin N.

    1970-01-01

    Describes a general chemistry experiment which uses infrared spectroscopy to analyze inorganic ions and thereby serves to introduce an important instrumental method of analysis. Presents a table of eight anions and the ammonium ion with the frequencies of their normal modes, as well as the spectra of three sulfate salts. (RR)

  9. Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise.

    PubMed

    Sutter, Brad; Brown, Adrian J; Stoker, Carol R

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  10. New infrared photon absorption processes

    SciTech Connect

    Bayfield, J.E.

    1993-05-01

    The fast ionization of atoms by very short laser pulses, and its possible suppression at extreme pulse intensities, is an active new field of investigation at present. Described is an investigation of whether past techniques for infrared laser multiphoton ionization of excited hydrogen atoms and of one-dimensional microwave ionization of highly excited hydrogen atoms can be combined and extended to address the new issues. Although technically difficult and requiring further improvement of apparatus, intense-field infrared laser experiments on excited hydrogen atoms are possible and can directly test theoretical and numerical results.

  11. Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.

    1983-01-01

    Bidirectional reflectance measurements are the only type of reflectance data available to the remote observer. For compositional interpretations, data are desired not only for identification of possible mineral components but also for modal abundance. The latter requires detailed information about the strength of absorption features. Using a new laboratory facility, the RELAB, laboratory data in the near infrared are presented that document effects of particle size, mineral mixtures, and viewing geometry for selected materials with well-developed absorption bands. The commonly observed increase in reflectance with decrease in particle size is also observed for absorption bands as well as a related decrease in absorption strength. For small particles in parts of the spectrum of maximum reflectance, however, a minor decrease in reflectance with a decrese in particle size is sometimes observed. Small particles dominate the observed characteristics of particulate surfaces, which contain a range of particle sizes. The mean optical path length (transmission through particles) of reflected radiation measured for a variety of particle sizes has an apparent upper limit of about 2 mm for particles of less than 250 microns. The typical number of particles involved in the optical path is less than 50.

  12. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  13. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  14. SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes Artwork. Concepts: Based on 18 Years of Experience of Kuiper Airborne Observatory (KAO) Operation, Characteristics, Operations and Science

  15. Non-invasive measurement of right atrial pressure by near-infrared spectroscopy: preliminary experience. A report from the SICA-HF study.

    PubMed

    Pellicori, Pierpaolo; Clark, Andrew L; Kallvikbacka-Bennett, Anna; Zhang, Jufen; Urbinati, Alessia; Monzo, Luca; Dierckx, Riet; Anker, Stefan D; Cleland, John G F

    2017-07-01

    To assess the clinical value of measuring right atrial pressure (RAP) using near-infrared spectroscopy (NIRS) in patients with chronic heart failure (CHF). RAP was measured non-invasively using NIRS over the external jugular vein (Venus 1000, Mespere LifeSciences, Canada) in ambulatory patients with CHF enrolled in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF) programme. Comparing 243 patients with CHF (mean age 71 years; mean left ventricular ejection fraction (LVEF) 45%, median NT-proBNP 788 ng/L) to 49 controls (NT-proBNP ≤125 ng/L), RAP was 7 [interquartile range (IQR) 4-11] mmHg vs. 4 (IQR 3-8) mmHg (P < 0.001). Those with RAP ≥10 mmHg (n = 75) were older, had more severe clinical congestion and renal dysfunction, higher plasma NT-proBNP, larger left atrial volume, higher systolic pulmonary pressure and were more often in atrial fibrillation but their LVEF was similar to patients with lower RAP. During a median follow-up of 595 (IQR: 492-714) days, 49 patients (20%) died or were hospitalized for worsening CHF. Compared with patients with RAP ≤5 mmHg, those with RAP ≥10 mmHg had a greater risk of an event (hazard ratio 2.38, 95% confidence interval 1.19-4.75, P = 0.014). RAP measured by NIRS predicted outcome, competing with NT-proBNP in multivariable models. Measuring RAP using NIRS identifies ambulatory patients with CHF who have more severe congestion and a worse outcome. The device might be a useful objective method of monitoring RAP, especially for those inexperienced in eliciting physical signs or when measurement of natriuretic peptides is not immediately available. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  16. Intraoperative Near-Infrared Fluorescence-Guided Identification of the Ureters using Low-Dose Methylene Blue: A First-in-Human Experience

    PubMed Central

    Verbeek, Floris P.R.; van der Vorst, Joost R.; Schaafsma, Boudewijn E.; Swijnenburg, Rutger-Jan; Gaarenstroom, Katja N.; Elzevier, Henk W.; van de Velde, Cornelis J.H.; Frangioni, John V.; Vahrmeijer, Alexander L.

    2013-01-01

    Purpose Near-infrared (NIR) fluorescence imaging is a promising technique that offers, real-time, visual information during surgery. The current study reports the first clinical results of ureter imaging using NIR fluorescence after a simple peripheral infusion of methylene blue (MB). Furthermore, optimal timing and dose of MB were assessed. Materials and Methods A total of 12 patients that underwent lower abdominal surgery were included in this prospective feasibility study. NIR fluorescence imaging was performed using the Mini-FLARE™ imaging system. To determine optimal timing and dose, MB was injected intravenously at doses of 0.25, 0.5 or 1 mg/kg, after exposure of the ureters. Subsequently imaging was performed for up to 60 min following injection. Results In all patients both ureters could be clearly visualized within 10 minutes after infusion of MB. Signal lasted at least up to 60 minutes after injection. The mean signal-to-background ratio (SBR) of the ureter was 2.27 ± 1.22 (N = 4), 2.61 ± 1.88 (N = 4) and 3.58 ± 3.36 (N = 4) for the 0.25, 0.5 and 1 mg/kg groups, respectively. A mixed model analysis was used to compare SBRs between dose groups and time points and to assess the relation between dose and time. A significant difference between time points (P < 0.001) was found. However no difference between dose groups was observed (P = 0.811). Conclusions This study demonstrates the first successful use of NIR fluorescence using low-dose MB for the identification of the ureters during lower abdominal surgery. PMID:23466242

  17. A dissociative quantum mechanical/molecular mechanical molecular dynamics simulation and infrared experiments reveal characteristics of the strongly hydrolytic arsenic(III).

    PubMed

    Canaval, Lorenz R; Lutz, Oliver M D; Weiss, Alexander K H; Huck, Christian W; Hofer, Thomas S

    2014-11-17

    This work presents a hybrid ab initio quantum mechanical/molecular mechanical simulation at the RI-MP2 level of theory investigating the hydrolysis process of arsenic(III), ultimately leading to arsenous acid (H3AsO3). A newly implemented dissociative water model has been applied to treat the interactions in the classical region, which is capable of describing non-neutral water species such as hydroxide and oxonium ions. Three stages of hydrolysis have been observed during the simulation and besides profound dynamical considerations, detailed insights into structural changes and atomic partial charge shifts are presented. In particular, the geometrical properties of H-bonds involved in each of the three proton transfer events and subsequent proton hopping reactions are discussed. A Laguerre tessellation analysis has been employed to estimate the molecular volume of H3AsO3. Estimations of pKa values of the arsenic(III)-aquo-complexes have been obtained at the G4 and CBS-Q//B3 levels of theory using a thermodynamic cycle, whereas rate constants for the final hydrolysis step have been determined via reaction path optimization and transition state theory. Newly recorded Fourier transform infrared (FT-IR) spectroscopy measurements have been compared to power spectra obtained from the simulation data, confirming its quality. The simulation findings, as well as results from computational spectroscopic calculations utilizing the PT2-VSCF methodology, proved valuable for the interpretation of the experimental FT-IR data, elucidating the particularities of the strongly observed IR Raman noncoincidence effect.

  18. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    ERIC Educational Resources Information Center

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  19. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    ERIC Educational Resources Information Center

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  20. Infrared: Beyond the Visible

    NASA Image and Video Library

    Infrared: Beyond the Visible, is a fast, fun look at why infrared light matters to astronomy, and what the Webb Space Telescope will search for once it's in orbit. Caption file available at: http:/...

  1. Jupiter Scar in Infrared

    NASA Image and Video Library

    2011-01-26

    These infrared images obtained from NASA Infrared Telescope Facility in Mauna Kea, Hawaii, show before and aftereffects from particle debris in Jupiter atmosphere after an object hurtled into the atmosphere on July 19, 2009.

  2. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm-1 spectral range under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Sussmann, Ralf

    2016-09-01

    We present a first quantification of the near-infrared (NIR) water vapor continuum absorption from an atmospheric radiative closure experiment carried out at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.). Continuum quantification is achieved via radiative closure using radiometrically calibrated solar Fourier transform infrared (FTIR) absorption spectra covering the 2500 to 7800 cm-1 spectral range. The dry atmospheric conditions at the Zugspitze site (IWV 1.4 to 3.3 mm) enable continuum quantification even within water vapor absorption bands, while upper limits for continuum absorption can be provided in the centers of window regions. Throughout 75 % of the 2500 to 7800 cm-1 spectral range, the Zugspitze results agree within our estimated uncertainty with the widely used MT_CKD 2.5.2 model (Mlawer et al., 2012). In the wings of water vapor absorption bands, our measurements indicate about 2-5 times stronger continuum absorption than MT_CKD, namely in the 2800 to 3000 cm-1 and 4100 to 4200 cm-1 spectral ranges. The measurements are consistent with the laboratory measurements of Mondelain et al. (2015), which rely on cavity ring-down spectroscopy (CDRS), and the calorimetric-interferometric measurements of Bicknell et al. (2006). Compared to the recent FTIR laboratory studies of Ptashnik et al. (2012, 2013), our measurements are consistent within the estimated errors throughout most of the spectral range. However, in the wings of water vapor absorption bands our measurements indicate typically 2-3 times weaker continuum absorption under atmospheric conditions, namely in the 3200 to 3400, 4050 to 4200, and 6950 to 7050 cm-1 spectral regions.

  3. The mechanisms of the SAMS experiment flown on Nimbus 7 with particular reference to the 2 axis scanning mirror. [infrared radiometer for stratospheric and mesospheric investigations

    NASA Technical Reports Server (NTRS)

    Hadley, H.

    1980-01-01

    The stratospheric and mesospheric sounder (SAMS) experiment on Nimbus 7 includes a 2 axis scanning mirror and 7 pressure modulator cells. The SAMS experiment is a limb sounding instrument to measure the temperature profile and minor constituents of the atmosphere. The limb scan requires small mirror steps over a 3 deg range, while the scan in azimuth is in larger steps over a 15 deg range. The mirror is plane, 20 cm in diameter, and of zero expansion glass-ceramic. It is supported on two tilt tables, fitted one on the other, with the axes at right angles. The angle of tilt is adjusted by means of recirculating ball screws which are ion plated with lead for lubrication and driven by stepper motors. The seven gas filled cells are each pressure modulated by a 3 cm diameter, 0.3 cm stroke piston which is supported by diaphragm springs and driven electromagnetically at the system's mechanical resonant frequency. The mean pressure of the filling gas, which is the atmospheric constituent being measured, is changed by varying the temperature of a suitable molecular sieve.

  4. Infrared image denoising applied in infrared sound field measurement

    NASA Astrophysics Data System (ADS)

    Su, Zhiqiang; Shen, Guofeng

    2017-03-01

    The research made use of the heat property and explored the distribution of focused ultrasound field. In our experiments, we measured the distribution of heat sources, and then, calculated the distribution of focused ultrasound field via a liner relation. In the experiments, we got a series of infrared images with noise. It's such an important thing to find out a solution to get rid of the noise in those images in order to get an accurate focused ultrasound field distribution. So the investigation following is focused in finding out a filter which can remove most noise in the infrared charts and the distribution of ultrasound filed is not impacted. Experiments compared the effects of different filters by the index of - 6dB width of the temperature rise images. By this index, we can find out a filter which is the most suitable filter for keeping the distribution of focused ultrasound field in steady. All experiments, including simulations, semi-simulations and actual verification experiments used six filters to deal with the raw data to get -6dB width and signal to noise ratio. From the results of experiments, we drew a conclusion that gauss filter is the best to keep the distribution of focused ultrasound field in steady.

  5. Comparative study of thermal infrared imaging and fibre-optic distributed temperature sensing for detecting lacustrine groundwater discharge: a mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Marruedo Arricibita, Amaia I.; Lewandowski, Jörg; Krause, Stefan; Hannah, David M.

    2016-04-01

    Detecting lacustrine groundwater discharge (LGD) still remains a challenge. The buoyancy of groundwater during winter and early spring can be used for identification of groundwater up-welling related hotspots on surface water by TIR imaging (TIR). TIR has been successfully used to image and fast screen relatively large surface areas of coastal zones, lakes, reservoirs and large rivers for groundwater contributions. Still, quantitative interpretations of groundwater fluxes are hampered by the lack of understanding how the groundwater up-welling signal propagates from the sediment-water interface through the water column to the water-air interface and what perturbations and signal losses occur along this pathway. In the present study, groundwater discharge to a surface water body was simulated in a mesocosm experiment. Under winter conditions water of 14° C to 16°C was discharged at the bottom of a 10x2.8 m mesocosm where surface water varied from 4°C -7.4°C. Four layers (20, 40, 60 and 80 cm above the sediment) of the 81 cm deep mesocosm were equipped with fibre-optic distributed temperature sensing (FO-DTS) for tracing thermal patterns in the mesocosm and TIR imaging was deployed to monitor temperature pattern at the water surface in order to: (1) analyze the propagation of the temperature signal through the water column by FO-DTS and (2) characterize the spatial distribution of groundwater upwelling at the pond surface by FO-DTS and TIR. Different LGD rates were simulated in order to establish the minimum rate of GW upwelling that can be reliably detected at the water surface by TIR imaging. The experiments also allow us to benchmark scale dependencies and adequacy of both methods, FO-DTS and TIR. They also reveal that weather conditions can have important impacts on the detection of LGD at surface water-atmosphere interfaces at larger scales.

  6. Infrared and Near-Infrared Spectroscopy of Acetylacetone and Hexafluoroacetylacetone.

    PubMed

    Howard, Daryl L; Kjaergaard, Henrik G; Huang, Jing; Meuwly, Markus

    2015-07-23

    The infrared and near-infrared spectra of acetylacetone, acetylacetone-d8, and hexafluoroacetylacetone are characterized from experiment and computations at different levels. In the fundamental region, the intramolecular hydrogen bonded OH-stretching transition is clearly observed as a very broad band with substantial structure and located at significantly lower frequency compared to common OH-stretching frequencies. There is no clear evidence for OH-stretching overtone transitions in the near-infrared region, which is dominated by the CH-stretching overtones of the methine and methyl CH bonds. From molecular dynamics (MD) simulations, with a potential energy surface previously validated for tunneling splittings, the infrared spectra are determined and used in assigning the experimentally measured ones. It is found that the simulated spectrum in the region associated with the proton transfer mode is exquisitely sensitive to the height of the barrier for proton transfer. Comparison of the experimental and the MD simulated spectra establishes that the barrier height is around 2.5 kcal/mol, which favorably compares with 3.2 kcal/mol obtained from high-level electronic structure calculations.

  7. Quantifying the Efficiency of Fibre-Optic Distributed Temperature Sensing and Thermal Infrared Imaging for Detecting Lacustrine Groundwater Exfiltration: a Mesocosm Experiment

    NASA Astrophysics Data System (ADS)

    Marruedo Arricibita, A. I.; Lewandowski, J.; Krause, S.; Dämpfling, H.

    2015-12-01

    Detecting groundwater inflow into lakes and reservoirs still remains a challenge. The buoyancy of groundwater during winter and early spring can be used for identification of groundwater up-welling related hotspots on surface water by TIR imaging (TIR). TIR has been successfully used to image and fast screen relatively large surface areas of lakes, reservoirs and large rivers for groundwater contributions. Still, quantitative interpretations of groundwater fluxes are hampered by the lack of understanding how the groundwater up-welling signal is propagated from the sediment-water interface through the water column to the water-air interface and what perturbations and signal losses occur along this pathway. In the present study, groundwater discharge to a surface water body was simulated in a mesocosm experiment. Under winter conditions water of 14° C to 16°C was discharged at the bottom of a 10x2.8 m mesocosm where surface water varied from 4°C -7.4°C. Four layers (20, 40, 60 and 80 cm above the sediment) of the 81 cm deep mesocosm were equipped with fibre-optic distributed temperature sensing (FO-DTS) for tracing thermal patterns in the mesocosm and TIR imaging was deployed to monitor temperature pattern at the water surface in order to: (1) analyze the propagation of the temperature signal through the water column by FO-DTS (2) characterize the spatial distribution of groundwater-borne hot spots on the lake surface by FO-DTS and TIR and, (3) conduct inverse modelling from surface water TIR data to identify the groundwater source at the sediment-water interface. In order to assess the reliability of the model we compare modeled data with FO-DTS observations. Different exfiltration rates were simulated in order to establish the minimum rate of GW upwelling that can be reliably detected at the water surface by TIR imaging. The experiments also allow us to benchmark scale dependencies and adequacy of both methods, FO-DTS and TIR. They also reveal that weather

  8. Infrared laser induced population transfer and parity selection in {sup 14}NH{sub 3}: A proof of principle experiment towards detecting parity violation in chiral molecules

    SciTech Connect

    Dietiker, P.; Miloglyadov, E.; Quack, M. Schneider, A.; Seyfang, G.

    2015-12-28

    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference Δ{sub pv}E between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν{sub 1} and ν{sub 3} fundamentals as well as the 2ν{sub 4} overtone of {sup 14}NH{sub 3}, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν{sub 1}, ν{sub 3}, and 2ν{sub 4} levels in the context of previously known data for ν{sub 2} and its overtone, as well as ν{sub 4}, and the ground state. Thus, now, {sup 14}N quadrupole coupling constants for all

  9. Towards infrared image understanding

    NASA Astrophysics Data System (ADS)

    Foulkes, Peter

    An extensive literature survey has revealed that the majority of previous work in infrared image processing ha ignored the processes leading to the formation of infrared images. Processing has normally either been restricted to simple low-level image enhancement convolutions or has consisted of algorithms copied from computer vision without regard for the inherent differences between infrared and visible images. In this thesis, we address the problem of infrared image formation and derive an irradiance equation for simple infrared scenes. We consider the complications caused by mutual illumination of one or more bodies and indicate how the infrared irradiance equation can also be specified for more complex scenes. The infrared irradiance equation we derive is solved in closed form for some simple geometries for both Lambertian and non-Lambertian surfaces. An infrared imager has been built and is described. Images taken with the imager of a variety of scene geometries show that the experimental results compare favorably with the theoretically derived equations, indicating the validity of the theoretical analysis. We describe how a knowledge of the formation of infrared images can be used to predict the image irradiance pattern of a particular object. We also show how, with a knowledge of the radiance properties and surface geometry of the object, it is possible to detect instances of that object in a scene. Examples are given of successful object detection based on an understanding of the image irradiance. We present a brief history of infrared imagers and a description of the principles on which modern infrared imagers are based. In addition to the survey of the literature published on infrared image processing, a brief summary of some techniques from the computer vision literature and their suitability to infrared image processing is given. A selection of vision techniques are applied to both infrared and visible images to verify conclusions reached in the thesis.

  10. Towards Infrared Image Understanding

    NASA Astrophysics Data System (ADS)

    Foulkes, Peter

    Available from UMI in association with The British Library. Requires signed TDF. An extensive literature survey has revealed that the majority of previous work in infrared image processing has ignored the processes leading to the formation of infrared images. Processing has normally either been restricted to simple low-level image enhancement convolutions or has consisted of algorithms copied from computer vision without regard for the inherent differences between infrared and visible images. In this thesis, we address the problem of infrared image formation and derive an irradiance equation for simple infrared scenes. We consider the complications caused by mutual illumination of one or more bodies and indicate how the infrared irradiance equation can also be specified for more complex scenes. The infrared irradiance equation we derive is solved in closed form for some simple geometries for both Lambertian and non-Lambertian surfaces. An infrared imager has been built and is described. Images taken with the imager of a variety of scene geometries show that the experimental results compare favourably with the theoretically derived equations, indicating the validity of the theoretical analysis. We describe how a knowledge of the formation of infrared images can be used to predict the image irradiance pattern of a particular object. We also show how, with a knowledge of the radiance properties and surface geometry of the object, it is possible to detect instances of that object in a scene. Examples are given of successful object detection based on an understanding of the image irradiance. We present a brief history of infrared imagers and a description of the principles on which modern infrared imagers are based. In addition to the survey of the literature published on infrared image processing, a brief summary of some techniques from the computer vision literature and their suitability to infrared image processing is given. A selection of vision techniques are

  11. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Davidson, J. A.

    1993-01-01

    SOFIA, (Stratospheric Observatory for Infrared Astronomy) is a planned 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 46,000 feet. It will permit routine measurement of infrared radiation inaccessible from the ground-based sites, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 18 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace.

  12. Analysis of Functional Groups by Solubility and Infrared Analysis.

    ERIC Educational Resources Information Center

    Turek, William N.

    1984-01-01

    An experiment which introduces students to infrared spectroscopy and the solubility behavior of various organic compounds is described. The experiment also serves to integrate some of the basic chemical reactions of functional groups with their spectral properties. (JN)

  13. The Infrared Multiphoton Dissociation of Three Nitrolkanes.

    DTIC Science & Technology

    1986-01-24

    eam experiment, using infrared multiphoton dissociation where the concept of temperature has no place, can be quantitatively related to pyrolysis ...respectively. This large release of translational energy is suggested to be due to the nature of the transition state mechanical barrier which is largely...to pyrolysis experiments which are conducted under collisional, thermal conditions and measure phenomenological quantities such as activation energies

  14. Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becklin, Eric E.

    2001-01-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. Present and future instrumentation will allow unique astrobiology experiments to be carried out. Several experiments related to organic molecules in space will be discussed.

  15. Merged infrared catalogue

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Brown, L. W.; Mead, J. M.; Nagy, T. A.

    1978-01-01

    A compilation of equatorial coordinates, spectral types, magnitudes, and fluxes from five catalogues of infrared observations is presented. This first edition of the Merged Infrared Catalogue contains 11,201 oservations from the Two-Micron Sky Survey, Observations of Infrared Radiation from Cool Stars, the Air Force Geophysics Laboratory four Color Infrared Sky Survey and its Supplemental Catalog, and from Catalog of 10 micron Celestial Objects (HALL). This compilation is a by-product of a computerized infrared data base under development at Goddard Space Flight Center; the objective is to maintain a complete and current record of all infrared observations from 1 micron m to 1000 micron m of nonsolar system objects. These observations are being placed into a standardized system.

  16. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  17. Early infrared astronomy

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2009-07-01

    I present a short history of infrared astronomy, from the first scientific approaches of the ‘radiant heat’ in the seventeenth century to the 1970's, the time when space infrared astronomy was developing very rapidly. The beginning of millimeter and submillimeter astronomy is also covered. As the progress of infrared astronomy was strongly dependent on detectors, some details are given on their development.

  18. Optical and infrared masers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Ongoing research progress in the following areas is described: (1) tunable infrared light sources and applications; (2) precision frequency and wavelength measurements in the infrared with applications to atomic clocks; (3) zero-degree pulse propagation in resonant medium; (4) observation of Dicke superradiance in optically pumped HF gas; (5) unidirectional laser amplifier with built-in isolator; and (6) progress in infrared metal-to-metal point contact tunneling diodes.

  19. Infrared Radiation of Flames

    DTIC Science & Technology

    1961-10-01

    March 1960. 4. S. Silverman, G. A. Hornbeck, and R. C. Herman , J. Chem. Phys. 16 155 (1947). The Infrared Emission and Absorption or-the Carbon Monoxide...by Infrared Radiation. 9. S. Silverman and R. C. Herman , J. Opt. Soc. Am. 32, 216 (1949). The Infrared Emission Spectra of the Oxy- Hydrogen and Oxy...Press, 1961). 35. W. J, Pearce, Conference on Extremely High Temperatures, Fischer and Mansur , eds. (John Wiley & Sons, New York, 1958), p. 123. 36. M. P

  20. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  1. Far infrared supplement: Catalog of infrared observations, second edition

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1988-01-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  2. Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The infrared astronomical data base and its principal data product, the catalog of Infrared Observations (CIO), comprise a machine readable library of infrared (1 microns to 1000 microns astronomical observations. To date, over 1300 journal articles and 10 major survey catalogs are included in this data base, which contains about 55,000 individual observations of about 10,000 different infrared sources. Of these, some 8,000 sources are identifiable with visible objects, and about 2,000 do not have known visible counterparts.

  3. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    PubMed

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  4. A real-time infrared imaging simulation method with physical effects modeling of infrared sensors

    NASA Astrophysics Data System (ADS)

    Li, Ni; Huai, Wenqing; Wang, Shaodan; Ren, Lei

    2016-09-01

    Infrared imaging simulation technology can provide infrared data sources for the development, improvement and evaluation of infrared imaging systems under different environment, status and weather conditions, which is reusable and more economic than physical experiments. A real-time infrared imaging simulation process is established to reproduce a complete physical imaging process. Our emphasis is put on the modeling of infrared sensors, involving physical effects of both spatial domain and frequency domain. An improved image convolution method is proposed based on GPU parallel processing to enhance the real-time simulation ability with ensuring its simulation accuracy at the same time. Finally the effectiveness of the above methods is validated by simulation analysis and result comparison.

  5. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  6. Pioneer 10 infrared radiometer experiment: preliminary results.

    PubMed

    Chase, S C; Ruiz, R D; Münch, G; Neugebauer, G; Schroeder, M; Trafton, L M

    1974-01-25

    Thermal maps of Jupiter at 20 and 40 micrometers show structure closely related to the visual appearance of the planet. Peak brightness temperatures of 126 degrees and 145 degrees K have been measured on the South Equatorial Belt, for the 20- and 40-micrometer channels, respectively. Corresponding values for the South Tropical Zone are 120 degrees and 138 degrees K. No asymmetries between the illuminated sunlit and nonilluminated parts of the disk were found. A preliminary discussion of the data, in terms of simple radiative equilibrium models, is presented. The net thermal energy of the planet as a whole is twice the solar energy input.

  7. Survey Probe Infrared Celestial Experiment (SPICE).

    DTIC Science & Technology

    1985-01-01

    Accesion For 7NTI S -C RA-&I DTIC TABU ; annotinced . JjSt;tCatOj By Di-t ib ’tiO- i V Avnilabnhty Codes ii SpAv s).𔃻/7rIi , * C77-551/201 g g g...and bilevel input signals as specified herein. 2. Supply as outputs a NRZ-M PCM encoded Signal, buffered test signals, and synchronization signals as... bilevel housekeeping/diagnostic data input signals to the subcommutated frames as follows. This capacity was selected to occupy two minor frame words

  8. Measurement and infrared image prediction of a heated exhaust flow

    NASA Astrophysics Data System (ADS)

    Nelson, Edward L.; Mahan, J. Robert; Turk, Jeffrey A.; Birckelbaw, Larry D.; Wardwell, Douglas A.; Hange, Craig E.

    1994-06-01

    The focus of the current research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate CFD codes through infrared imaging. The technique of reducing the 3D field-variable domain to a 2D infrared image invokes the use of an inverse Monte-Carlo ray trace algorithm and an infrared band model for exhaust gases. This paper describes an experiment in which the above- mentioned field variables were carefully measured. Data from this experiment in the form of velocity plots are shown. The inverse Monte-Carlo ray trace technique is described. Finally, an experimentally obtained infrared image is directly compared to an infrared image predicted from the measured field variables.

  9. Electrochromic Adaptive Infrared Camouflage

    DTIC Science & Technology

    2005-12-01

    Electrochromic Adaptive Infrared Camouflage Interim Progress Report Eli Yablonovitch Period covered: August 1999...August 1999 - January 2005 4. TITLE AND SUBTITLE Electrochromic Adaptive Infrared Camouflage 5. FUNDING NUMBERS DAAD19-99-1-0316...emissivity is made possible by electrochromics . Today, electrochromics is becoming a common technology that is used, for example, in self-dimming

  10. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  11. Multispectral infrared imaging interferometer

    NASA Technical Reports Server (NTRS)

    Potter, A. E., Jr.

    1971-01-01

    Device permitting simultaneous viewing of infrared images at different wavelengths consists of imaging lens, Michelson interferometer, array of infrared detectors, data processing equipment for Fourier transformation of detector signal, and image display unit. Invention is useful in earth resources applications, nondestructive testing, and medical diagnoses.

  12. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  13. The Infrared Sky.

    ERIC Educational Resources Information Center

    Habing, Harm J.; Neugebauer, Gerry

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) is a survey instrument that has provided an overall view of the infrared sky and identified objects that merit further investigation. A description of the IRAS and examples of the types of astronomical data collected are presented. (JN)

  14. Mauna Kea Observatory infrared observations

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1974-01-01

    Galactic and solar system infrared observations are reported using a broad variety of radiometric and spectroscopic instrumentation. Infrared programs and papers published during this period are listed.

  15. Infrared signatures for remote sensing

    SciTech Connect

    McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.

    1994-04-01

    PNL`s capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm{sup {minus}1} at <10-MHz bandwidth; a Bruker Fourier-transform infrared (FTIR) spectrometer for the near- to far-infrared at 50-MHz resolution; and a stable line-tunable, 12-w cw CO{sub 2} laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at {approximately}10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl{sub 4} at 770--800 cm{sup {minus}1}. This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO{sub 2} laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks.

  16. Infrared Solar Physics.

    PubMed

    Penn, Matthew J

    The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  17. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  18. The Infrared Hunter

    NASA Image and Video Library

    2006-08-15

    NASA Spitzer Space Telescope and the National Optical Astronomy Observatory compare infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation sword.

  19. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Rockstad, Howard K. (Inventor); Reynolds, Joseph K. (Inventor)

    1994-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane which would otherwise change deflection depending upon incident infrared radiation. The resulting infrared sensor will meet or exceed the performance of all other broadband, uncooled, infrared sensors and can be miniaturized to pixel dimensions smaller than 100 .mu.m. The technology is readily implemented as a small-format linear array suitable for commercial and spacecraft applications.

  20. Optically triggered infrared photodetector.

    PubMed

    Ramiro, Íñigo; Martí, Antonio; Antolín, Elisa; López, Esther; Datas, Alejandro; Luque, Antonio; Ripalda, José M; González, Yolanda

    2015-01-14

    We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 μm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101).

  1. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  2. Saturn Rings in Infrared

    NASA Image and Video Library

    2006-10-11

    This mosaic of Saturn rings was acquired by NASA Cassini visual and infrared mapping spectrometer instrument on Sept. 15, 2006, while the spacecraft was in the shadow of the planet looking back towards the rings

  3. Infrared astronomy after IRAS

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Thompson, R. I.; Werner, M. W.; Witteborn, F. C.; Becklin, E. E.

    1986-01-01

    The development of infrared astronomy in the wake of IRAS is discussed. Attention is given to an overview of next generation infrared telescope technology, with emphasis on the Space Infrared Telescope Facility (SIRTF) which has been built to replace IRAS in the 1990s. Among the instruments to be included on SIRTF are: a wide-field high-resolution camera covering the infrared range 3-30 microns with large arrays of detectors; an imaging photometer operating in the range 3-700 microns; and a spectrograph covering the range 2.5-200 microns with resolutions of 2 and 0.1 percent. Observational missions for the SIRTF are proposed in connection with: planetary formation; star formation; cosmic energy sources; active galactic nuclei; and quasars.

  4. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  5. Infrared processing of foods

    USDA-ARS?s Scientific Manuscript database

    Infrared (IR) processing of foods has been gaining popularity over conventional processing in several unit operations, including drying, peeling, baking, roasting, blanching, pasteurization, sterilization, disinfection, disinfestation, cooking, and popping . It has shown advantages over conventional...

  6. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  7. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  8. Infrared Protein Crystallography

    SciTech Connect

    J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

    2011-12-31

    We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  9. [Infrared absorption spectrum analysis and its application to blood].

    PubMed

    Wang, Le-xin; Zhao, Zhi-min; Yao, Hong-bing; Chen, Yu-ming; Shi, Lei; Gao, Yong

    2002-12-01

    The technology of infrared absorption spectrum is a branch of optical ment measurement technology, and the research on the application of infrared spectrum plays an important role in the development of technology of optical measurement. In this paper, the analysis technology of blood infrared absorption spectrum is presented. By comparison, the difference of the spectra between normal and abnormal blood samples was obtained. The infrared absorption spectra of normal blood sample and abnormal blood sample were detected, and the differences between the spectra are presented. And the analysis results of the infrared absorption spectra of normal whole blood, serum and hyperglycemia are presented also. All of these provide an experimental basis for the diagnosis of diseases, which is valuable for application. This technology features easy operation, convenient analysis and suitability for advanced experiment. The work offers a new way in the research on the application of infrared absorption spectrum.

  10. Infrared Drying Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew R.

    In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a

  11. Infrared dynamical thermovision of the biological objects

    NASA Astrophysics Data System (ADS)

    Godik, E. E.; Guliaev, Iu. V.; Markov, A. G.; Petrov, A. V.; Taratorin, A. M.

    1987-05-01

    The dynamical infrared thermovision technique and its applications for the real-time functional diagnostic evaluation of biological objects are discussed. The synchronous image averaging technique can be used to identify breath pulsations in the human face and cardiac pulsations in hands. Application of the infrared dynamic mapping technique for the investigation of brain core functional dynamics is discussed for three groups of experiments on animals: (1) the study of the spreading depression process; (2) the study of spontaneous brain activity; and (3) the investigation of brain thermal responses under different sensory stimulations.

  12. The Infrared Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  13. Catalog of infrared observations including: Bibliography of infrared astronomy and index of infrared source positions

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-01-01

    The Catalog of Infrared Observations and its Far Infrared Supplement summarize all infrared astronomical observations at infrared wavelengths published in the scientific literature between 1965 and 1982. The Catalog includes as appendices the Bibliography of infrared astronomy which keys observations in the Catalog with the original journal references, and the index of infrared source positions which gives source positions for alphabetically listed sources in the Catalog. The Catalog data base contains over 85,000 observations of about 10,000 infrared sources, of which about 2,000 have no known visible counterpart.

  14. Ambient temperature normalization for infrared face recognition based on the second-order polynomial model

    NASA Astrophysics Data System (ADS)

    Wang, Zhengzi

    2015-08-01

    The influence of ambient temperature is a big challenge to robust infrared face recognition. This paper proposes a new ambient temperature normalization algorithm to improve the performance of infrared face recognition under variable ambient temperatures. Based on statistical regression theory, a second order polynomial model is learned to describe the ambient temperature's impact on infrared face image. Then, infrared image was normalized to reference ambient temperature by the second order polynomial model. Finally, this normalization method is applied to infrared face recognition to verify its efficiency. The experiments demonstrate that the proposed temperature normalization method is feasible and can significantly improve the robustness of infrared face recognition.

  15. Demonstration of Symmetry Control of Infrared Heated Deuterium Layers in Hohlraums

    SciTech Connect

    Koziozieski, B J; London, R A; McEachern, R L; Bittner, D N

    2003-08-22

    Infrared smoothed deuterium ice layers inside capsules have been successfully demonstrated for capsules inside cylindrical hohlraums. Improved characterization methods and infrared illumination enables low mode control in both the axial and azimuthal directions. Experimental results agree well with computer models. Results of these experiments will be used to derive accuracy requirements for an infrared heating system for ice layers in hohlraums on NIF.

  16. Near-infrared hyperspectral reflective confocal microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Yunhai; Miao, Xin; Xue, Xiaojun; Xiao, Yun

    2016-10-01

    A Near-Infrared HyperSpectral Reflective Confocal Microscopy (NIHS-RCM) is proposed in order to get high resolution images of deep biological tissues such as skin. The microscopy system uses a super-continuum laser for illumination, an acousto-optic tunable filter (AOTF) for rapid selection of near-infrared spectrum, a resonant galvanometer scanner for high speed imaging (15f/s) and near-infrared avalanche diode as detector. Porcine skin and other experiments show that the microscopy system could get deep tissue images (180 μm), and show the different ingredients of tissue with different wavelength of illumination. The system has the ability of selectively imaging of multiple ingredients at deep tissue which can be used in skin diseases diagnosis and other fields.

  17. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  18. Adaptive infrared-image details enhancement technology

    NASA Astrophysics Data System (ADS)

    Guo, Shi-yong; Zhang, Yi; Bai, Lian-fa; Chen, Qian

    2014-11-01

    In order to surmount the infrared-image object differentiation difficulty caused by the blurred image edge, a kind of adaptive filter based infrared-image nonlinear edge enhancement technology was proposed in this paper. This technology integrates image nonlinear edge-sharpening and Multi-scale analyze method. The approach of Gauss pyramid structure can enhance detail information by using non-linear algorithms in different scales. The enhanced detail information is then added back to the original image iteratively. While saving the image edge information it can filter image noise and edge distortion caused by edge-sharpening and improve image's clarity and SNR obviously. Gray scale grads was defined based on gray linear increment, image edge enhancement arithmetic can be real time realized, and has been applied in high performance thermal imager. As it is shown in experiments, this algorithm has practicality and potential application value in the field of infrared images contrast enhancement

  19. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.

    1989-01-01

    SOFIA will be a three meter class telescope operating in a Boeing 747, offering astronomers routine access to infrared wavelengths unavailable from the ground, and with the means to observe transient astronomical events from anywhere in the world. The concept is based on 15 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA will replace in the mid 1990's. SOFIA's wavelength range covers nearly four decades of the electromagnetic spectrum: from the visible, throughout the infrared and submillimeter, to the microwave region. Relative to the KAO, SOFIA will be roughly ten times more sensitive for compact sources, enabling observations of fainter objects and measurements at higher spectral resolution. Also, it will have three times the angular resolving power for wavelengths greater than 30 microns, permitting more detailed imaging at far infrared wavelengths.

  20. Infrared observations of comets

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.

    1991-01-01

    Selected comets are observed in the near infrared (1 to 2.2 micron) and thermal infrared (3.5 to 20 micron) with the NASA Infrared Telescope Facility (IRTF) and other telescopes as appropriate, in order to characterize the physical properties of the dust grains; their composition, size distribution, emissivity, and albedo. Systematic variations in these properties among comets are looked for, in order to understand the heterogeneity of comet nuclei. Spectrophotometry of the 10 micron silicate emission feature is particularly emphasized. The rate of dust production from the nucleus and its temporal variability are also determined. Knowledge of the dust environment is essential to S/C design and mission planning for NASA's CRAF mission.

  1. Infrared Astronomy After IRAS.

    PubMed

    Rieke, G H; Werner, M W; Thompson, R I; Becklin, E E; Hoffmann, W F; Houck, J R; Low, F J; Stein, W A; Witteborn, F C

    1986-02-21

    The 250,000 sources in the recently issued Infrared Astronomy Satellite (IRAS) all-sky infrared catalog are a challenge to astronomy. Many of these sources will be studied with existing and planned ground-based and airborne telescopes, but many others can no longer even be detected now that IRAS has ceased to operate. As anticipated by advisory panels of the National Academy of Sciences for a decade, study of the IRAS sources will require the Space Infrared Telescope Facility (SIRTF), a cooled, pointed telescope in space. This instrument may be the key to our understanding of cosmic birth-the formation of planets, stars, galaxies, active galactic nuclei, and quasars. Compared with IRAS and existing telescopes, SIRTF's power derives from a thousandfold gain in sensitivity over five octaves of the spectrum.

  2. Variable waveband infrared imager

    SciTech Connect

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  3. Infrared drying of strawberry.

    PubMed

    Adak, Nafiye; Heybeli, Nursel; Ertekin, Can

    2017-03-15

    The effects of different drying conditions, such as infrared power, drying air temperature and velocity, on quality of strawberry were evaluated. Drying time decreased with increased infrared power, air temperature and velocity. An increase in power from 100W to 300W, temperature from 60 to 80°C and velocity from 1.0m.s(-1) to 2.0m.s(-1) decreased fruit color quality index. For total phenol and anthocyanin content, 300W, 60°C, and 1.0m.s(-1) were superior to the other experimental conditions. The drying processes increased N, P and K and decreased Ca, Mg, Fe, Mn, Zn and Cu contents. The optimal conditions to preserve nutrients in infrared drying of strawberry were 200W, 100°C and 1.5m.s(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  5. Infrared source test

    SciTech Connect

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  6. Mechanism design of continuous infrared lens

    NASA Astrophysics Data System (ADS)

    Su, Yan-qin; Zhang, Jing-xu; Lv, Tian-yu; Yang, Fei; Wang, Fu-guo

    2013-09-01

    With the development of infrared technology and material, infrared zoom system is playing an important role in the field of photoelectric observation, the demand of infrared systems is increasing rapidly. In order to satisfy the requirement of infrared tracking imaging requirements of a car optoelectronic devices, different kinds of mechanical structure has been discussed, finally, according to the character of the optical design result, cam mechanism is adopted in zoom mechanism design, ball screw has been used in focusing mechanism design. As is known to all, cam is the key part in zoom system, the static, dynamic and thermal characteristics of the cam make great effect on the system performance because of the greater impact of the car's shaking and a larger range of temperature changes, as a result, the FEM analysis is necessary. The static performance is all right obtained by the finite element analysis results, the cam's first -order natural frequency is 97.56 Hz by modal analysis, the deformation of cam in the temperature difference of 80 °C is no more than 0. 003 mm by thermal analysis, which means the mechanical performance of the cam is fine. at last, the focusing mechanism has been designed, and analysis of focusing mechanism precision and encoder theoretical resolving power has been done, this mechanism has the advantages of simple transmission chain and low friction, as well as reducing the transmission error, an absolute encoder is chosen to detect the displacement of the focusing mechanism, the focusing precision is 5μm, the encoder theoretical resolving power is 0.015μm. In addition, the measurements on how to suppress stray radiation have been put forward. The experiment afterward showed that the infrared zoom system performs well, which provides lot of experience in infrared zoom system design and adjustment.

  7. Comparison and analysis on test methods of infrared radiant intensity of infrared decoy

    NASA Astrophysics Data System (ADS)

    Chen, Chunsheng; Dai, Mengyan; Liu, Haifeng; Fang, Guofeng; Xie, Changyou; Zhang, Tong

    2014-11-01

    The research on infrared radiant characteristics of typical target is important for the detection and recognition of target, infrared simulation calculation and design of electro-optical countermeasures. Thus it is essential to select appropriate test method and optimal calculation method to improve the test accuracy and reliability of infrared radiant intensity. In this paper, three instruments including SR5000 spectroradiometer (CI, MigdalHaEmek, Israel), remote sensing interferometer spectrometer Tensor37 (Bruker, Germany) and Image IR8325 (InfraTec Ltd, Germany) mid-infrared thermal imager were applied to test the infrared radiant (1μm-3μm - 3μm-5μm) intensity of decoy samples. Three methods were designed based on two operational principles including direct test and indirect test. The SR5000 spectroradiometer which is able to obtain the value of radian intensity immediately is regard as direct test. The other two instruments which deduce and calculate infrared radiant intensity according to Planck's law and Lambert's cosine law with some preliminary tested parameters such as the response voltage - the distribution of infrared radiant temperature of flaming samples and calibrated data by blackbody, however, are regard as indirect test. Reasons for the diversity of experiment results were provided through analysis on the concrete measurement theory and detailed calculation methods. Moreover, some rules and suggestions were put forward to improve the test accuracy and reliability of infrared radiant intensity when different methods were adopted. It is shown from experiment results that the average mid-infrared radiant intensity obtained from SR5000 was about 903W/Sr in near-infrared band - whereas Tensor 37 and Image IR8325 was about 834W/Sr and 547 W/Sr respectively. It was proved that maximum relative of calculated results from remote sensing interferometer spectrometer Tensor37 and results measured with SR5000 spectroradiometer is below 13%, which meet the

  8. Liquid explosive detection using near infrared LED

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Ito, Shiori; Sato-Akaba, Hideo; Miyato, Yuji

    2015-10-01

    A bottle scanner to detect liquid explosive has been developed using technologies of near infrared. Its detection rate of liquid explosive is quite high and its false alarm rate of safe liquids quite low. It uses a light source with wide spectrum such as a halogen lamp. Recently a variety of LEDs have been developed and some of them have near infrared spectrum. Here a near infrared LED is tested as a light source of the liquid explosive detector. Three infrared LEDs that have a main peak of spectrum at 901nm, 936nm, and 1028 nm have been used as a light source to scan liquids. Spectrum widths of these LEDs are quite narrow typically less than 100 nm. Ten typical liquids have been evaluated by these LEDs and the correlation coefficients of a spectrum by an LED and a tungsten lamp were more than 0.98. This experiment shows that the infrared LED can be used as a light source for the liquid scanner. An LED has some merits, such as long life of more than some ten thousand hours and small consumption electric power of less than 0.2 W. When the LED is used as a light source for the liquid scanner, it is also more compact and handy.

  9. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  10. Development of Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Rieke, George

    2012-01-01

    We are only two years from celebrating the hundredth anniversary of William Coblentz's first extensive measurements of stars in the infrared. However, his work was followed for fifty years by ---- almost nothing. I will describe the few initiatives in those fifty years and compare them with the dramatic beginning of modern infrared astronomy in the 1960s. I will also quantify the explosive progress of this area since then. The comparison allows us to speculate on the real prerequisites for successful breakthroughs in astronomy and astronomical technology.

  11. Infrared spectroscopy of Mars

    NASA Astrophysics Data System (ADS)

    Kirkland, Laurel Ellyn

    1999-11-01

    When measured with sufficient spectral range, resolution, and signal-to-noise ratio, nearly every mineral has a unique infrared spectral signature. However, determining which minerals are present on Mars using infrared spectroscopy has proven to be very difficult. The goal of this work is to examine complicating factors inherent to spacecraft-based infrared spectral measurements of Mars, and to determine methods to extract mineralogical information from spectra that cover the wavelength range 0.77 to 50 μm. On Earth, infrared spectra of an unknown mineral or gas can be measured under controlled conditions. However, a spacecraft spectrometer measures Mars through both atmospheric gases and aerosols, and at varying viewing geometries. Spectra of the surface of Mars have very subtle variations, so examining them requires well- calibrated spectra of excellent quality, and extended spectral range. These combined effects greatly complicate interpretations. The work presented here details a straightforward method to remove effects of varying viewing geometry on near- infrared spectra of Mars, using 1989 Phobos 2 ISM spectra. Next, it details the recovery and calibration of the 1969 Mariner Mars IRS data set, and presents IRS spectral evidence for goethite on Mars. Finally, a method is developed to utilize night spectra to examine the aerosol mineralogy, followed by a discussion of the importance of accounting for the aerosol re-emission when utilizing day measurements to examine surface mineralogy. This work utilizes spectra from all five infrared spectrometers flown to Mars. It addresses a range of issues, but the unifying theme is how to extract mineralogic information from the spectra. The results show that the most important spectral criteria for determining mineralogy from spacecraft infrared spectra are an extended spectral range, high spectral resolution, and high signal-to-noise ratio. Here, an extended spectral range is defined as coverage of at least two of the

  12. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    1991-01-01

    This task supports the application of infrared heterodyne spectroscopy and other high resolution techniques, as well as infrared arrays to ultra-high resolution studies of molecular constituents of planetary atmospheres. High spectral and spatial resolution measurement and analysis of individual spectral lines permits the retrieval of distributions of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10(exp -8) permits direct measurement of gas velocities to a few m/sec and thus, the study of dynamics. Observations are made from ground based observatories.

  13. Infrared spectroscopy in biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Artioushenko, Vjacheslav G.; Golovkina, Viktoriya N.

    1998-01-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of amino acid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  14. Exposure Time Calculations for Calibrating of Vega and G191-B2B in the Optical and Near-Infrared: Ground-based, Airborne, Balloon-based, and Rocket-borne Experiments

    NASA Astrophysics Data System (ADS)

    Allam, S.; Bohlin, R. C.; Deustua, S. E.; Kent, S. M.; Lampton, M. L.; Mostek, N.; Mufson, S. L.; Richmond, M. W.; Smith, J. A.; Tucker, D. L.; Woodgate, B. E.; SNAP

    2004-12-01

    For SNAP to succeed the science program requires an accuracy in supernova color determination over the wavelength range 0.35-1.7 microns of 2% in the optical and 3% in the near infrared. We explore the possibility of the spectrophotometric calibration of standard stars for SNAP mission in the optical and near infrared using 5 different programs. It is important to understand the impact of different calibration programs in the estimated exposure time calculation and the estimated signal to noise (SNR). We have calculated the exposure time required for imaging and spectroscopic observations of spectrophotometric standard stars (Vega and HST standard G191-B2B) using SNAP detectors and filters at specified seeing, airmass, and sky conditions at either ground/space bases.

  15. One high performance technology of infrared scene projection

    NASA Astrophysics Data System (ADS)

    Wang, Hong-jie; Qian, Li-xun; Cao, Chun; Li, Zhuo

    2014-11-01

    Infrared scenes generation technologies are used to simulate the infrared radiation characteristics of target and background in the laboratory. They provide synthetic infrared imagery for thermal imager test and evaluation application in the infrared imaging systems. At present, many Infrared scenes generation technologies have been widely used, and they make a lot of achievements. In this paper, we design and manufacture one high performance IR scene generation technology, and the whole thin film type transducer is the key, which is fabricated based on micro electro mechanical systems (MEMS). The specific MEMS technological process parameters are obtained from a large number of experiments. The properties of infrared scene generation chip are investigated experimentally. It achieves high resolution, high frame, and reliable performance, which can meet the requirements of most simulation system. The radiation coefficient of the thin film transducer is measured to be 0.86. The frame rate is 160 Hz. The emission spectrum is from 2μm to 12μm in infrared band. Illuminated by the visible light with different intensities the equivalent black body temperature of transducer could be varied in the range of 290K to 440K. The spatial resolution is more than 256×256.The geometric distortion and the uniformity of the generated infrared scene is 5 percent. The infrared scene generator based on the infrared scene generation chip include three parts, which are visual image projector, visual to thermal transducer and the infrared scene projector. The experimental results show that this thin film type infrared scene generation chip meets the requirements of most of hardware-in-the-loop scene simulation systems for IR sensors testing.

  16. Geological Characterization of Remote Field Sites Using Visible and Infrared Spectroscopy: Results from the 1999 Marsokhod Field Test

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.

    2000-01-01

    The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.

  17. Geological Characterization of Remote Field Sites Using Visible and Infrared Spectroscopy: Results from the 1999 Marsokhod Field Test

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.

    2000-01-01

    The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.

  18. Infrared Thermometer (IRT) Handbook

    SciTech Connect

    VR Morris

    2006-10-30

    The Infrared Thermometer (IRT) is a ground-based radiation pyrometer that provides measurements of the equivalent blackbody brightness temperature of the scene in its field of view. The downwelling version has a narrow field of view for measuring sky temperature and for detecting clouds. The upwelling version has a wide field of view for measuring the narrowband radiating temperature of the ground surface.

  19. Infrared Presensitization Photography.

    DTIC Science & Technology

    1984-09-01

    RD-R146 968 INFRARED PREtENSITIZATION PHOTOGRAPHYMU AIR FORCE 1/~WEAPONS LAB KIRTLAND RFB NM J M GERRY SEP 847 RRFWL-TR-84-92 UNCLASSIFIED F/G 14/5... Results ........................................... 144 Discussion ............................................ 149 j8. CONCLUSIONS AND DISCUSSION...62 3.13. Characteristic curve (specular) for 5369 ................ 62 3.14. Results from Naor’s test

  20. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  1. Ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Neugebauer, G.; Scoville, N. Z.; Madore, B. F.; Danielson, G. E.; Elias, J. H.; Matthews, K.; Persson, C. J.; Persson, S. E.

    1987-01-01

    The IRAS survey of the local universe has revealed the existence of a class of ultraluminous infrared galaxies with L(8 to 1000 micrometer) greater than 10 to the 12th L sub 0 that are slightly more numerous, and as luminous as optically selected quasars at similar redshift. Optical CCD images of these infrared galaxies show that nearly all are advanced mergers. Millimeter wave CO observations indicate that these interacting systems are extremely rich in molecular gas with total H2 masses 1 to 3 x 10 to the 10th power M sub 0. Nearly all of the ultraluminous infrared galaxies show some evidence in their optical spectra for nonthermal nuclear activity. It is proposed that their infrared luminosity is powered by an embedded active nucleus and a nuclear starburst both of which are fueled by the tremendous reservoir of molecular gas. Once these merger nuclei shed their obscuring dust, allowing the AGN to visually dominate the decaying starburst, they become the optically selected quasars.

  2. The infrared retina

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2009-12-01

    As infrared imaging systems have evolved from the first generation of linear devices to the second generation of small format staring arrays to the present 'third-gen' systems, there is an increased emphasis on large area focal plane arrays (FPAs) with multicolour operation and higher operating temperature. In this paper, we discuss how one needs to develop an increased functionality at the pixel level for these next generation FPAs. This functionality could manifest itself as spectral, polarization, phase or dynamic range signatures that could extract more information from a given scene. This leads to the concept of an infrared retina, which is an array that works similarly to the human eye that has a 'single' FPA but multiple cones, which are photoreceptor cells in the retina of the eye that enable the perception of colour. These cones are then coupled with powerful signal processing techniques that allow us to process colour information from a scene, even with a limited basis of colour cones. Unlike present day multi or hyperspectral systems, which are bulky and expensive, the idea would be to build a poor man's 'infrared colour' camera. We use examples such as plasmonic tailoring of the resonance or bias dependent dynamic tuning based on quantum confined Stark effect or incorporation of avalanche gain to achieve embodiments of the infrared retina.

  3. Ground based infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.

    1988-01-01

    Infrared spectroscopic instrumentation has been developed for ground-based measurements of astrophysical objects in the intermediate infrared. A conventional Michelson interferometer is limited for astronomical applications in the intermediate infrared by quantum noise fluctuations in the radiation form the source and/or background incident on the detector, and the multiplex advantage is no longer available. One feasible approach to recovering the multiplex advantage is post-dispersion. The infrared signal after passing through telescope and interferometer, is dispersed by a low resolution grating spectrometer onto an array of detectors. The feasibility of the post-dispersion system has been demonstrated with observations of astrophysical objects in the 5 and 10 micrometer atmospheric windows from ground-based telescopes. During FY87/88 the post-disperser was used at the Kitt Peak 4-meter telescope and McMath telescope with facility Fourier transform spectrometers. Jupiter, Saturn, Mars, and Venus were observed. On Jupiter, the resolution at 12 micrometer was 0.01/cm, considerably higher than had been acheived previously. The spectrum contains Jovian ethane and acetylene emission. Construction was begun on the large cryogenic grating spectrometer.

  4. Infrared Fibers for Sensors

    DTIC Science & Technology

    2010-06-01

    they can be used to demonstrate broadband supercontinuum sources in the infrared (figure 3) when pumped with suitable lasers. They can also be used for...doped chalcogenide glasses. Figure 3. The supercontinuum emission from preliminary IR fibers. Figure 4. Chalcogenide glass based photonic

  5. The Dynamic Infrared Sky

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; SPIRITS (Spitzer InfraRed Intensive Transients Survey) Team

    2017-01-01

    The dynamic infrared sky is hitherto largely unexplored. I will present the SPitzer InfraRed Intensive Transients Survey (SPIRITS) --- a systematic search of 194 nearby galaxies within 30 Mpc, on timescales ranging between a week to a year, to a depth of 20 mag with Spitzer's IRAC camera. SPIRITS has already uncovered over 95 explosive transients and over 1200 strong variables. Of these, 37 infrared transients are especially interesting as they have no optical counterparts whatsoever even with deep limits from Keck and HST. Interpretation of these new discoveries may include (i) the birth of massive binaries that drive shocks in their molecular cloud, (ii) stellar mergers with dusty winds, (iii) 8--10 solar mass stars experiencing e-capture induced collapse in their cores, (iv) enshrouded supernovae, or (v) formation of stellar mass black holes. SPIRITS reveals that the infrared sky is not just as dynamic as the optical sky; it also provides access to unique, elusive signatures in stellar astrophysics.

  6. Infrared Astronomy and Education: Linking Infrared Whole Sky Mapping with Teacher and Student Research

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, Bryan; Thaller, Michelle; Gorjian, Varoujan; Borders, Kyla; Pitman, Peter; Pereira, Vincent; Sepulveda, Babs; Stark, Ron; Knisely, Cindy; Dandrea, Amy; Winglee, Robert; Plecki, Marge; Goebel, Jeri; Condit, Matt; Kelly, Susan

    The Spitzer Space Telescope and the recently launched WISE (Wide Field Infrared Survey Explorer) observe the sky in infrared light. Among the objects WISE will study are asteroids, the coolest and dimmest stars, and the most luminous galaxies. Secondary students can do authentic research using infrared data. For example, students will use WISE data to mea-sure physical properties of asteroids. In order to prepare students and teachers at this level with a high level of rigor and scientific understanding, the WISE and the Spitzer Space Tele-scope Education programs provided an immersive teacher professional development workshop in infrared astronomy.The lessons learned from the Spitzer and WISE teacher and student pro-grams can be applied to other programs engaging them in authentic research experiences using data from space-borne observatories such as Herschel and Planck. Recently, WISE Educator Ambassadors and NASA Explorer School teachers developed and led an infrared astronomy workshop at Arecibo Observatory in PuertoRico. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance and age of objects in the Universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and the Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. We will outline specific steps for sec-ondary astronomy professional development, detail student involvement in infrared telescope data analysis, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional secondary professional development and student involvement in infrared astronomy. Funding was

  7. Infrared spectroscopy of ionic clusters

    SciTech Connect

    Price, J.M. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  8. All-Sky Infrared Survey

    NASA Image and Video Library

    2009-11-17

    This infrared view of the whole sky highlights the flat plane of our Milky Way galaxy line across middle of image. NASA WISE, will take a similar infrared census of the whole sky, only with much improved resolution and sensitivity.

  9. Infrared astronomy takes center stage

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick C.; Gatley, Ian; Hollenbach, David

    1991-01-01

    Characteristics of infrared astronomy, including the ability to detect cool matter, explore the hidden universe, reveal a wealth of spectral lines, and reach back to the beginning of time are outlined. Ground-based infrared observations such as observations in the thermal infrared region are discussed as well as observations utilizing infrared telescopes aboard NASA aircraft and orbiting telescopes. The Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy are described, and it is pointed out that infrared astronomers can penetrate obscuring dust to study stars and interstellar matter throughout the Milky Way galaxy. Application of various infrared instruments to the investigation of stars and planets is emphasized, and focus is placed on the discovery of clouds or disks of particles around mature stars and acquisition of high-resolution spectra of the gaseous and solid materials orbiting on the fringes of the solar system.

  10. Infrared Analysis Using Tissue Paper.

    ERIC Educational Resources Information Center

    Owen, Noel L.; Wood, Steven G.

    1987-01-01

    Described is a quick, easy, and cheap, but effective method of obtaining infrared spectra of solids and nonvolatile liquids by Fourier transform infrared spectroscopy. The technique uses tissue paper as a support matrix. (RH)

  11. Infrared spectroscopy with visible light

    NASA Astrophysics Data System (ADS)

    Kalashnikov, Dmitry A.; Paterova, Anna V.; Kulik, Sergei P.; Krivitsky, Leonid A.

    2016-02-01

    Spectral measurements in the infrared optical range provide unique fingerprints of materials, which are useful for material analysis, environmental sensing and health diagnostics. Current infrared spectroscopy techniques require the use of optical equipment suited for operation in the infrared range, components of which face challenges of inferior performance and high cost. Here, we develop a technique that allows spectral measurements in the infrared range using visible-spectral-range components. The technique is based on nonlinear interference of infrared and visible photons, produced via spontaneous parametric down conversion. The intensity interference pattern for a visible photon depends on the phase of an infrared photon travelling through a medium. This allows the absorption coefficient and refractive index of the medium in the infrared range to be determined from the measurements of visible photons. The technique can substitute and/or complement conventional infrared spectroscopy and refractometry techniques, as it uses well-developed components for the visible range.

  12. Infrared face recognition based on multiwavelet transform and PCA

    NASA Astrophysics Data System (ADS)

    Li, Xiafang; Wang, Jianmin; Xie, Zhihua

    2012-10-01

    To extract the discriminative information from the sparse representation of infrared face, infrared face recognition method combining multiwavelet transform and principal component analysis (PCA) is proposed in this paper. Firstly, the effective information in infrared face is represented by multi-wavelet transformation. Then, to integrate more useful information to infrared face recognition, we assign the corresponding weights to different sub-bands in multi-wavelet domain. Finally, based on the weighted fusion distance, the 1-NN classifier is applied to get final recognition result. The experiment results show that the recognition performance of sparse representation based on multi-wavelet representation outperforms that of method based on usual wavelet representation; and the proposed infrared face method considering the useful information in different sub-bands of multiwavelet has better recognition performance, compared with the method based on approximate sub-band.

  13. Infrared constraints on ultraviolet theories

    NASA Astrophysics Data System (ADS)

    Tsai, Yuhsin

    2012-01-01

    While our current paradigm of particle physics, the Standard Model (SM), has been extremely successful at explaining experiments, it is theoretically incomplete and must be embedded into a larger framework. In this thesis, we review the main motivations for theories beyond the SM (BSM) and the ways such theories can be constrained using low energy physics. The hierarchy problem, neutrino mass and the existence of dark matter (DM) are the main reasons why the SM is incomplete . Two of the most plausible theories that may solve the hierarchy problem are the Randall-Sundrum (RS) models and supersymmetry (SUSY). RS models usually suffer from strong flavor constraints, while SUSY models produce extra degrees of freedom that need to be hidden from current experiments. To show the importance of infrared (IR) physics constraints, we discuss the flavor bounds on the anarchic RS model in both the lepton and quark sectors. For SUSY models, we discuss the difficulties in obtaining a phenomenologically allowed gaugino mass, its relation to R-symmetry breaking, and how to build a model that avoids this problem. For the neutrino mass problem, we discuss the idea of generating small neutrino masses using compositeness. By requiring successful leptogenesis and the existence of warm dark matter (WDM), we can set various constraints on the hidden composite sector. Finally, to give an example of model independent bounds from collider experiments, we show how to constrain the DM-SM particle interactions using collider results with an effective coupling description.

  14. Infrared Constraint on Ultraviolet Theories

    SciTech Connect

    Tsai, Yuhsin

    2012-08-01

    While our current paradigm of particle physics, the Standard Model (SM), has been extremely successful at explaining experiments, it is theoretically incomplete and must be embedded into a larger framework. In this thesis, we review the main motivations for theories beyond the SM (BSM) and the ways such theories can be constrained using low energy physics. The hierarchy problem, neutrino mass and the existence of dark matter (DM) are the main reasons why the SM is incomplete . Two of the most plausible theories that may solve the hierarchy problem are the Randall-Sundrum (RS) models and supersymmetry (SUSY). RS models usually suffer from strong flavor constraints, while SUSY models produce extra degrees of freedom that need to be hidden from current experiments. To show the importance of infrared (IR) physics constraints, we discuss the flavor bounds on the anarchic RS model in both the lepton and quark sectors. For SUSY models, we discuss the difficulties in obtaining a phenomenologically allowed gaugino mass, its relation to R-symmetry breaking, and how to build a model that avoids this problem. For the neutrino mass problem, we discuss the idea of generating small neutrino masses using compositeness. By requiring successful leptogenesis and the existence of warm dark matter (WDM), we can set various constraints on the hidden composite sector. Finally, to give an example of model independent bounds from collider experiments, we show how to constrain the DM–SM particle interactions using collider results with an effective coupling description.

  15. Nimbus-5 ITPR Experiment.

    PubMed

    Smith, W L; Hilleary, D T; Fischer, J C; Howell, H B; Woolf, H M

    1974-03-01

    The Nimbus-5 infrared temperature profile radiometer (ITPR) experiment was designed to measure upwelling infrared radiation in appropriate spectral intervals and with sufficient geographical resolution for sounding the atmosphere's temperature distribution down to the earth's surface even under partly cloudy sky conditions. A primary scientific goal of the experiment was the specification of the mesoscale features of surface and atmospheric temperature and water vapor that are associated with intense weather systems. In this paper the ITPR instrument is described and some initial spacecraft results are given that demonstrate the success of the experiment in achieving its scientific goals.

  16. Mariner Jupiter/Saturn infrared instrument study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Mariner Jupiter/Saturn infrared instrumentation conceptual design study was conducted to determine the physical and operational characteristics of the instruments needed to satisfy the experiment science requirements. The design of the instruments is based on using as many proven concepts as possible. Many design features are taken from current developments such as the Mariner, Pioneer 10, Viking Orbiter radiometers, and Nimbus D spectrometer. Calibration techniques and error analysis for the instrument system are discussed.

  17. Feature Point Descriptors: Infrared and Visible Spectra

    PubMed Central

    Ricaurte, Pablo; Chilán, Carmen; Aguilera-Carrasco, Cristhian A.; Vintimilla, Boris X.; Sappa, Angel D.

    2014-01-01

    This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given. PMID:24566634

  18. Far infrared all-sky survey

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    1991-01-01

    An all-sky survey at submillimeter waves is examined. Far-infrared all-sky surveys were performed using high-thoroughput bolometric detectors from a one-meter balloon telescope. Based on the large-bodied experience obtained with the original all-sky survey telescope, a number of radically different approaches were implemented. Continued balloon measurements of the spectrum of the cosmic microwave background were performed.

  19. Verification of mesoscale objective analyses of VAS and rawinsode data using the March 1982 AVE/VAS special network data. [Atmospheric Variability Experiment/Visible-infrared spin-scan radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Doyle, James D.; Warner, Thomas T.

    1988-01-01

    Various combinations of VAS (Visible and Infrared Spin Scan Radiometer Atmospheric Sounder) data, conventional rawinsonde data, and gridded data from the National Weather Service's (NWS) global analysis, were used in successive-correction and variational objective-analysis procedures. Analyses are produced for 0000 GMT 7 March 1982, when the VAS sounding distribution was not greatly limited by the existence of cloud cover. The successive-correction (SC) Procedure was used with VAS data alone, rawinsonde data alone, and both VAS and rawinsonde data. Variational techniques were applied in three ways. Each of these techniques was discussed.

  20. The analysis of long-wave infrared polarization signal of typical material targets

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Shi, Zhi-guang; Chen, Xiao-tian; Song, Shu-li

    2016-09-01

    Infrared polarization imaging is a new kind of infrared detection technology developed in recent ten years. Different from the traditional detection method of infrared imaging, infrared polarization imaging can not only obtain infrared radiation intensity information of targets, but also obtain the infrared radiation polarization information. So the polarization of the target scene is the physical basis of infrared polarization imaging detection. On the basis of the research about infrared polarization imaging theory, the characteristics of long-wave infrared polarization detection was analyzed in this paper. Firstly, the paper studied long-wave infrared polarization state and interaction effect which coming from the spontaneous emission of target and environment, then designed the analysis experiment about long-wave infrared polarization characteristics that coming from spontaneous radiation, further and verified the forming mechanism of long wave infrared polarization. Through the several experiments that the long wave polarization information of different material objects being measured, a physical phenomenon was found that with the long-wave thermal radiation transmitting form high temperature object to low temperature object, the polarization characteristics transfer process had been happened at the same time, and the degree of this transfer was associated with the material and self-temperature of the objects.

  1. Impact Site: Infrared Image

    NASA Image and Video Library

    2017-09-15

    This montage of images, made from data obtained by Cassini's visual and infrared mapping spectrometer, shows the location on Saturn where the NASA spacecraft entered Saturn's atmosphere on Sept. 15, 2017. This view shows Saturn in the thermal infrared, at a wavelength of 5 microns. Here, the instrument is sensing heat coming from Saturn's interior, in red. Clouds in the atmosphere are silhouetted against that inner glow. This location -- the site of Cassini's atmospheric entry -- was at this time on the night side of the planet, but would rotate into daylight by the time Cassini made its final dive into Saturn's upper atmosphere, ending its remarkable 13-year exploration of Saturn. Both an annotated version and an animation are available at https://photojournal.jpl.nasa.gov/catalog/PIA21896

  2. Quantum grid infrared photodetectors

    SciTech Connect

    Rokhinson, L.P.; Chen, C.J.; Tsui, D.C.; Vawter, G.A.; Choi, K.K.

    1999-02-01

    In this letter we introduce a quantum well infrared photodetector (QWIP) structure, which we refer to as the quantum grid infrared photodetector (QGIP). In an ideal structure, a grid pattern with very narrow linewidth is created in the QWIP active region to achieve lateral electron confinement, thereby improving its absorption as well as transport characteristics. In order to realize this detector structure, we have fabricated QGIPs with line patterns of lithographical linewidths w{sub l} ranging from 0.1 to 4 {mu}m, allowing for possible sidewall depletion. Low-damage reactive ion beam etching was employed to produce vertical sidewalls. From the experimental data, although the best detector performance occurs at w{sub l}{approx}1.5 {mu}m, the detector starts to improve when w{sub l}{lt}0.5 {mu}m, indicating a possible quantum confinement effect. {copyright} {ital 1999 American Institute of Physics.}

  3. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  4. Infrared supernovae in starbursts

    SciTech Connect

    Van Buren, D.; Norman, C.A.

    1989-01-01

    The problem of uniquely confirming that the luminosity source of starburst galaxies is a young population of massive stars is considered. Unambiguous detection of the supernova explosion associated with a massive stellar population would provide proof of the starburst hypothesis. High spatial resolution narrow-band infrared imaging of starburst galaxies directly detects the cobalt synthesized in Type II supernova explosions. Coupled with observations of other infrared lines and continuum, progenitor masses can be at least roughly estimated. A statistically large sample of starburst supernovae will lead to an average starburst initial mass function. Standard candles can also be constructed, based on both individual and populations of supernovae. With current and planned instruments, K-band can be found out to cosmological distances. 27 references.

  5. Infrared floodlight assembly

    DOEpatents

    Wierzbicki, Julian J.; Chakrabarti, Kirti B.

    1987-09-22

    An infrared floodlight assembly (10) including a cast aluminum outer housing (11) defining a central chamber (15) therein. A floodlight (14), having a tungsten halogen lamp as the light source, is spacedly positioned within a heat conducting member (43) within chamber (15) such that the floodlight is securedly positioned in an aligned manner relative to the assembly's filter (35) and lens (12) components. The invention also includes venting means (51) to allow air passage between the interior of the member (43) and the adjacent chamber (15), as well as engagement means (85) for engaging a rear surface of the floodlight (14) to retain it firmly against an internal flange of the member (43). A reflector (61), capable of being compressed to allow insertion or removal, is located within the heat conducting member's interior between the floodlight (14) and filter (35) to reflect infrared radiation toward the filter (35) and spaced lens (12).

  6. Infrared Eye: Prototype 2

    DTIC Science & Technology

    2016-06-07

    The Infrared (IR) Eye was developed with support from the National Search and Rescue Secretariat (NSS), in view of improving the efficiency of...airborne search-and rescue operations. The IR Eye concept is based on the human eye and uses simultaneously two fields of view to optimize area coverage and...within the wide field and slaved to the operator’s line of sight by means of an eye -tracking system. The images from both cameras are fused and shown

  7. INFRARED TRANSMITTING MATERIALS.

    DTIC Science & Technology

    The report deals with the infrared transmitting properties of fluorite structure oxides and the heavy metal covalent oxides of bismuth and lead. Transmission data for single crystal ThO2 are given. A theoretical analysis of the vibrational modes , selection rules and IR spectra of the powders are given for alpha-Bi2O3, PbO.6Bi2O3, tetragonal PbO, orthorhombic PbO, and Sr2PbO4. (Author)

  8. The Infrared Handbook

    DTIC Science & Technology

    1978-01-01

    MLI system which is characterized by an effective emissivity, eeff. •Trademark of Dexter Paper Co. Dexiglas is a glass -fiber- mat spacer material use...radiation to longer wavelengths in the infrared than glass -envelope lamps. Studer and Van Beers [2-23] have shown the spectral deviation to be expected of...bulb is then sealed within a larger glass bulb, which is filled with an inert gas. (2) A pair of electrodes with relatively close spacing (from

  9. Infrared Target Recognition

    DTIC Science & Technology

    1991-12-01

    infrared sensors, however, Laser RADAR (LADAR), Synthetic Aperature RADAR (SAR) and Millimeter Wave (MMW) are three other sensors also being tested... inverse FFT. Ev.ry fing but the sharp changes which require higher frequency components can be restored. Based on this reasoning, Fourier com,)onents...very close approximation of an image with an inverse FFT. A 4x7 window was placed around the DC from the FFT image and the 28 components were used as

  10. Animal Infrared Technology

    DTIC Science & Technology

    1991-12-10

    cuttlefish deep in the ocean which in addition to having eyes which can see visible light, on their tails they also have heat sensitive " eyes " which can keep...antennae when they run up against radioactive radiation. Rays with wave lengths longer than that of red light are heat rays. Many animals have " eyes ...catching birds, mice and other worm blooded animals (their bodies give off infrared rays). If a rattlesnakes eyes , ears, and nose were removed, and a light

  11. Atmospheric Infrared Radiance Variability.

    DTIC Science & Technology

    1981-05-27

    RADIANCE MODEL - T. C. Degges 9 3. MODELS OF THE VARIABILITY OF ATMOSPHERIC PROPERTIES - C. H. Humphrey and C. R. Philbrick 25 4. EFFECTS OF...variations of the infrared emissions with geophysical parameters, such as latitude or magnetic activity, or with localized dynamic effects . Thus, to obtain...aurora. However, the largest heat- ing effects result from plasma interactions with the neutral atmosphere when electric and magnetic fields accelerate

  12. Infrared Thermography For Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Lucky, Brian D.; Spiegel, Lyle B.; Hudyma, Russell M.

    1992-01-01

    Infrared imaging and image-data-processing system shows temperatures of joint during welding and provides data from which rates of heating and cooling determined. Information used to control welding parameters to ensure reliable joints, in materials which microstructures and associated metallurgical and mechanical properties depend strongly on rates of heating and cooling. Applicable to variety of processes, including tungsten/inert-gas welding; plasma, laser, and resistance welding; cutting; and brazing.

  13. Thermochromic Infrared Metamaterials.

    PubMed

    Liu, Xinyu; Padilla, Willie J

    2016-02-03

    An infrared artificial thermochromic material composed of a metamaterial emitter and a bimaterial micro-electro-mechanical system is investigated. A differential emissivity of over 30% is achieved between 623 K and room temperature. The passive metamaterial device demonstrates the ability to independently control the peak wavelength and temperature dependence of the emissivity, and achieves thermal emission following a super Stefan-Boltzmann power curve.

  14. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  15. Infrared Synchrotron Radiation instrumentation and applications

    SciTech Connect

    Hirschmugl, C.

    1991-12-31

    Infrared Synchrotron Radiation (IRSR) is a blossoming field which has three working beamlines, U4IR at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 {mu} to approx 1 mm) which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the x-ray region. The central issue in all of the experiments to data has been good signal to noise, which has been the focus of the instrumentation improvements at the U4IR beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultra-high vacuum. 15 refs.

  16. Infrared Synchrotron Radiation instrumentation and applications

    SciTech Connect

    Hirschmugl, C. . Dept. of Applied Physics)

    1991-01-01

    Infrared Synchrotron Radiation (IRSR) is a blossoming field which has three working beamlines, U4IR at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 {mu} to approx 1 mm) which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the x-ray region. The central issue in all of the experiments to data has been good signal to noise, which has been the focus of the instrumentation improvements at the U4IR beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultra-high vacuum. 15 refs.

  17. Space Infrared Telescope Facility science instruments overview

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will contain three cryogenically cooled infrared instruments: the Infrared Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multiband Infrared Photometer for SIRTF (MIPS). These instruments are sensitive to infrared radiation in the 1.8-1,200 micrometer range. This paper will discuss the three instruments' functional requirements and their accommodation in the SIRTF telescope system.

  18. Infrared target array development

    NASA Astrophysics Data System (ADS)

    Scott, E. A.

    1980-04-01

    The US Army Yuma Proving Ground (USAYPG) was requested to develop and acquire a series of infrared targets with controllable thermal signatures to support the test and evaluation of the Target Acquisition Designation System/Pilot Night Vision System (TADS/PNVS) subsystems of the Advanced Attack Helicopter (AAH) Fire Control System. Prior to this development effort, no capability beyond the use of real-scene targets existed at USAYPG to provide thermally active targets with characteristic signatures in the infrared band. Three targets were acquired: (1) a detection target; (2) a recognition target; and (3) a laser scoring board. It is concluded that design goals were met and the system was delivered in time to perform its function. The system provides sufficient thermal realism and has advanced the state-of-the-art of infrared imaging system test and evaluation. It is recommended that the Field Equivalent Bar Target (FEBT) system be validated as a potential test standard and that environmentally 'hardened' targets be acquired for continued thermal sight testing.

  19. Jupiter Infrared Glow

    NASA Image and Video Library

    2015-07-07

    This still from an animation of four images shows Jupiter in infrared light as seen by NASA InfraRed Telescope Facility, or IRTF, on May 16, 2015. The observations were obtained in support of NASA's Juno mission by a team headed by Juno scientist Glenn Orton. Observations like these are helping to provide spatial and temporal context for what the science instruments on board Juno will see once the spacecraft arrives at the giant planet in mid-2016. Juno will pass very close to the planet -- coming within just a few thousand miles (or kilometers) of the cloud tops every two weeks. That up-close vantage point will be balanced by distant views of the planet that show how different features move and change over time in relation to each other. The IRTF is a three-meter telescope, optimized for infrared observations, and located at the summit of Mauna Kea, Hawaii. The observatory is operated and managed for NASA by the University of Hawaii Institute for Astronomy, Honolulu. http://photojournal.jpl.nasa.gov/catalog/PIA19640

  20. Search for the Cosmic Infrared Background Radiation using COBE Data

    NASA Technical Reports Server (NTRS)

    Hauser, Michael

    2001-01-01

    This project was initiated to allow completion of the primary investigation of the Diffuse Infrared Background Experiment (DIRBE) on NASA's Cosmic Background Explorer (CORE) mission, and to study the implications of those findings. The Principal Investigator (PI) on this grant was also the Principal Investigator on the DIRBE team. The project had two specific goals: Goal 1: Seek improved limits upon, or detections of, the cosmic infrared background radiation using data from the COBE Diffuse Infrared Background Experiment (DIRBE). Goal 2: Explore the implications of the limits and measured values of the cosmic infrared background for energy releases in the Universe since the formation of the first luminous sources. Both of these goals have been successfully accomplished.

  1. Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.

    2014-09-01

    During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November 2012) a large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high-resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 - including the fuel properties, the nature of the burn simulations, and the instrumentation employed - and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning, and for several of these compounds, this is the first time their emissions are reported for important fuel types. The main fire types included African grasses, Asian rice straw, cooking fires (open (three-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EFs) and emission ratios (ERs) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models. Crop residue fires are widespread globally and account for the most burned area in the US, but their emissions were previously poorly characterized. Extensive results are presented for burning rice and wheat straw: two major global crop residues

  2. Mid-infrared spectropolarimetry as a remote sensing tool

    NASA Technical Reports Server (NTRS)

    Johnson, Paul E.; Watne, Bruce; Shipman, Russell; Cleavlin, Chris

    1994-01-01

    A preliminary investigation of mid-infrared spectropolarimetry as a new technique to accurately measure features in the thermal spectra of planetary regoliths is described. The 5- to 12-micron polarization of igneous rocks and powders commonly found on planetary surfaces is measured to explore the viability of this technique for future groundbased and space-based experiments. Mid-infrared polarization is found to be diagnostic of composition for both whole rock and sand samples, while exhibiting less interference from surface roughness effects than with mid-infrared spectrophotometry.

  3. Mid-infrared spectropolarimetry as a remote sensing tool

    NASA Technical Reports Server (NTRS)

    Johnson, Paul E.; Watne, Bruce; Shipman, Russell; Cleavlin, Chris

    1994-01-01

    A preliminary investigation of mid-infrared spectropolarimetry as a new technique to accurately measure features in the thermal spectra of planetary regoliths is described. The 5- to 12-micron polarization of igneous rocks and powders commonly found on planetary surfaces is measured to explore the viability of this technique for future groundbased and space-based experiments. Mid-infrared polarization is found to be diagnostic of composition for both whole rock and sand samples, while exhibiting less interference from surface roughness effects than with mid-infrared spectrophotometry.

  4. Infrared thermography applied to transport infrastructures monitoring: outcomes and perspectives

    NASA Astrophysics Data System (ADS)

    Dumoulin, J.; Crinière, A.

    2017-05-01

    Long term monitoring of transport infrastructures by infrared thermography has been studied and tested on different structures. A first standalone infrared system architecture developed is presented and discussed. Results obtained with such system on different Civil Engineering structures are presented. Some data processing approaches and inverse thermal model for data analysis are introduced and discussed. Lessons learned from experiments carried out in outdoor with such system are listed and analyzed. Then, a new generation of infrared system architecture is proposed. Finally, conclusions and perspectives are addressed.

  5. Unidirectionality of an optically pumped far infrared ring laser

    NASA Astrophysics Data System (ADS)

    Matsushima, Kyoji; Higashida, Noriyoshi; Sokabe, Noburu; Ariyasu, Tomio

    1995-02-01

    An experimental and theoretical investigation has been made on the unidirectional operation of an optically pumped far infrared ring laser. A ring laser operating on the 119 μm line of CH 3OH experiences reversal of output direction in either case of (a) the pump frequency being tuned across the line center of the infrared pump transition or (b) the fir cavity being tuned across the far infrared line center. A model based on two-mode laser theory predicts the output directionality of the optically pumped fir ring laser.

  6. Infrared face recognition using texture descriptors

    NASA Astrophysics Data System (ADS)

    Akhloufi, Moulay A.; Bendada, Abdelhakim

    2010-05-01

    Face recognition is an area of computer vision that has attracted a lot of interest from the research community. A growing demand for robust face recognition software in security applications has driven the development of interesting approaches in this field. A large quantity of research in face recognition deals with visible face images. In the visible spectrum the illumination and face expressions changes represent a significant challenge for the recognition system. To avoid these problems, researchers proposed recently the use of 3D and infrared imaging for face recognition. In this work, we introduce a new framework for infrared face recognition using texture descriptors. This framework exploits linear and non linear dimensionality reduction techniques for face learning and recognition in the texture space. Active and passive infrared imaging modalities are used and comparison with visible face recognition is performed. Two multispectral face recognition databases were used in our experiments: Equinox Database (Visible, SWIR, MWIR, LWIR) and Laval University Multispectral Database (Visible, NIR, MWIR, LWIR). The obtained results show high increase in recognition performance when texture descriptors like LBP (Local Binary Pattern) and LTP (Local Ternary Pattern) are used. The best result was obtained in the short wave infrared spectrum (SWIR) using non linear dimensionality reduction techniques.

  7. Helium-cooled Michelson interferometer for far-infrared astronomy aboard German Infrared Laboratory /GIRL/

    NASA Astrophysics Data System (ADS)

    Drapatz, S.; Hofmann, R.; Katterloher, R.

    1981-01-01

    It is pointed out that high-resolution spectroscopy in the mid and far-infrared region is potentially of great importance for the study of astronomical objects. This importance is partly related to the location of the atomic and ionic emission lines of abundant elements in the considered region. In addition, this spectral region contains also the vibration and rotational line spectra of important molecules. In order to take advantage of the envisaged potential, a He-cooled Michelson interferometer is being developed for the German Infra-Red Laboratory (GIRL) which is to be flown on board of Spacelab in 1986. The considered instrument is the first He-cooled interferometer for high spectral resolution in the far-infrared region. Attention is given to the design of the experiment, its construction, the development status and future aspects.

  8. Anisotropies of the infrared background and primordial galaxies

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha R.

    2007-08-01

    We discuss anisotropies in the near-IR background between 1 to a few microns. This background is expected to contain a signature of primordial galaxies. We have measured fluctuations of resolved galaxies with Spitzer imaging data and we are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background.

  9. Report of the infrared, ultraviolet and space plasma panels

    NASA Technical Reports Server (NTRS)

    Lehmann, J.; Tanner, S. G. (Editor); Wilkerson, T. (Editor)

    1983-01-01

    The status of the payload bay and the needs of infrared, ultraviolet and space plasma experiments were discussed. Those measurements important in each area were reviewed. Issues of concern and how these environmental conditions might impact experiments were considered. Several common issues were revealed, and recommendations were made.

  10. HOT infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Martyniuk, P.; Rogalski, A.

    2013-06-01

    At present, uncooled thermal detector focal plane arrays are successfully used in staring thermal imagers. However, the performance of thermal detectors is modest, they suffer from slow response and they are not very useful in applications requiring multispectral detection. Infrared (IR) photon detectors are typically operated at cryogenic temperatures to decrease the noise of the detector arising from various mechanisms associated with the narrow band gap. There are considerable efforts to decrease system cost, size, weight, and power consumption to increase the operating temperature in so-called high-operating-temperature (HOT) detectors. Initial efforts were concentrated on photoconductors and photoelectromagnetic detectors. Next, several ways to achieve HOT detector operation have been elaborated including non-equilibrium detector design with Auger suppression and optical immersion. Recently, a new strategies used to achieve HOT detectors include barrier structures such as nBn, material improvement to lower generation-recombination leakage mechanisms, alternate materials such as superlattices and cascade infrared devices. Another method to reduce detector's dark current is reducing volume of detector material via a concept of photon trapping detector. In this paper, a number of concepts to improve performance of photon detectors operating at near room temperature are presented. Mostly three types of detector materials are considered — HgCdTe and InAsSb ternary alloys, and type-II InAs/GaSb superlattice. Recently, advanced heterojunction photovoltaic detectors have been developed. Novel HOT detector designs, so called interband cascade infrared detectors, have emerged as competitors of HgCdTe photodetectors.

  11. Frequency selective infrared sensors

    DOEpatents

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  12. Frequency selective infrared sensors

    DOEpatents

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  13. Backyard Infrared Trapping

    NASA Astrophysics Data System (ADS)

    Gibbons, Thomas C.

    2014-12-01

    In this time of concern over climate change due to the atmospheric greenhouse effect,1 teachers often choose to extend relevant classroom work by the use of physical models to test statements. Here we describe an activity in which inexpensive backyard models made from cardboard boxes covered with various household transparent materials allow students to explore how transmission of visible and infrared light can affect the temperature.2 Our basic setup is shown schematically in Fig. 1, in which a black-lined box with a thermometer in contact with the bottom is covered with transparent (to visible light) household materials.

  14. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  15. Active Pyroelectric Infrared Detector

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Zalameda, Joseph N. (Inventor); Mina, Joseph M. (Inventor)

    1995-01-01

    A noncontact pyroelectric infrared detector is described. A pyroelectric film that also has piezoelectric properties is held in place so that it is free to vibrate. It is electrically stimulated to vibrate at a resonance frequency. The vibrating film forms part of a balanced bridge circuit. As thermal radiation impinges on the film the pyroelectric effect causes the resonance frequency to change, thereby unbalancing the bridge circuit. A differential amplifier tracks the change in voltage across the bridge. The resulting voltage signal is further processed by a bandpass filter and a precision rectifier. The device allows for DC or static temperature measurements without the use of a mechanical chopping device.

  16. Complementary Barrier Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2009-01-01

    The complementary barrier infrared detector (CBIRD) is designed to eliminate the major dark current sources in the superlattice infrared detector. The concept can also be applied to bulk semiconductor- based infrared detectors. CBIRD uses two different types of specially designed barriers: an electron barrier that blocks electrons but not holes, and a hole barrier that blocks holes but not electrons. The CBIRD structure consists of an n-contact, a hole barrier, an absorber, an electron barrier, and a p-contact. The barriers are placed at the contact-absorber junctions where, in a conventional p-i-n detector structure, there normally are depletion regions that produce generation-recombination (GR) dark currents due to Shockley-Read- Hall (SRH) processes. The wider-bandgap complementary barriers suppress G-R dark current. The barriers also block diffusion dark currents generated in the diffusion wings in the neutral regions. In addition, the wider gap barriers serve to reduce tunneling dark currents. In the case of a superlattice-based absorber, the superlattice itself can be designed to suppress dark currents due to Auger processes. At the same time, the barriers actually help to enhance the collection of photo-generated carriers by deflecting the photo-carriers that are diffusing in the wrong direction (i.e., away from collectors) and redirecting them toward the collecting contacts. The contact layers are made from materials with narrower bandgaps than the barriers. This allows good ohmic contacts to be made, resulting in lower contact resistances. Previously, THALES Research and Technology (France) demonstrated detectors with bulk InAsSb (specifically InAs0.91Sb0.09) absorber lattice-matched to GaSb substrates. The absorber is surrounded by two wider bandgap layers designed to minimize impedance to photocurrent flow. The wide bandgap materials also serve as contacts. The cutoff wavelength of the InAsSb absorber is fixed. CBIRD may be considered as a modified

  17. Superlattices for Infrared Detectors.

    DTIC Science & Technology

    1992-10-30

    substrate 111-314 XRD, PC GalnSb/InAs superlattice on In-free substrate 111-322 XRD, PC, a Determine absorption coefficient 111-354 XRD, PC, Hall Gal.lnxSb...The tight-.binding transfer matrix elements superatticu it rIn t -lke (tub~ curves) and Ga. "in* nAs- are then determined from the local effective...p-on-n photojunctions to be grown. Superlattice energy gaps were shown to span the infrared, and a 10-pgm absorption coefficient comparable to that

  18. Infrared Atmospheric Emission. I.

    DTIC Science & Technology

    1982-03-01

    contract. They are (i) "The 5g Levels of Atomic Nitrogen" AO)YA ii Edward S. Chang and Hajime Sakai J. Phys. B 14, L391 (1981) (ii) "Infrared Emission...At. Idol. Phys. 14 (1981) L391 -L395. printed in Great Bjritain LETTER TO THE EDITOR INC 5g levels of atomic nitrogent Edward S Chang and Hajime Sakai...81/120391 +05$01.30 C) 1981 The Institute of Physics L391 The U.S. Qovermnt is authoried to repoduce and sem tns report. Parmb@a- or ur Uther

  19. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  20. Infrared diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  1. Infrared inhibition of embryonic hearts

    NASA Astrophysics Data System (ADS)

    Wang, Yves T.; Rollins, Andrew M.; Jenkins, Michael W.

    2016-06-01

    Infrared control is a new technique that uses pulsed infrared lasers to thermally alter electrical activity. Originally developed for nerves, we have applied this technology to embryonic hearts using a quail model, previously demonstrating infrared stimulation and, here, infrared inhibition. Infrared inhibition enables repeatable and reversible block, stopping cardiac contractions for several seconds. Normal beating resumes after the laser is turned off. The block can be spatially specific, affecting propagation on the ventricle or initiation on the atrium. Optical mapping showed that the block affects action potentials and not just calcium or contraction. Increased resting intracellular calcium was observed after a 30-s exposure to the inhibition laser, which likely resulted in reduced mechanical function. Further optimization of the laser illumination should reduce potential damage. Stopping cardiac contractions by disrupting electrical activity with infrared inhibition has the potential to be a powerful tool for studying the developing heart.

  2. New Thermal Infrared Hyperspectral Imagers

    DTIC Science & Technology

    2009-10-01

    ANSI Std Z39-18 New Thermal Infrared Hyperspectral Imagers 4 - 2 RTO-MP-SET-151 UNCLASSIFIED/UNLIMITED uncooled microbolometer detector , has...temperature does not affect on the temperature of the focal plane array, which is in constant New Thermal Infrared Hyperspectral Imagers RTO-MP-SET...Boreman, G.D., Infrared Detectors and Systems, John Wiley & Sons, (1996). [5] Kruse, P.W., Uncooled Thermal Imaging, SPIE Tutorial Texts in Optical

  3. Infrared astronomy from the Moon

    NASA Technical Reports Server (NTRS)

    Lester, Dan

    1988-01-01

    The Moon offers some remarkable opportunities for performing infrared astronomy. Although the transportation overhead can be expected to be very large compared with that for facilities in Earth orbit, certain aspects of the lunar environment should allow significant simplifications in the design of telescopes with background limited performance, at least in some parts of the thermal infrared spectrum. Why leave the Earth to perform infrared astronomy is addressed as is the reasons for going all the way to the Moon for its environment.

  4. [Microscopic infrared spectral imaging of oily core].

    PubMed

    Huang, Qiao-Song; Yu, Zhao-Xian; Li, Jing; Chen, Chen

    2009-02-01

    In the present paper, the authors examined some oily core by microscopic infrared spectral imaging methods. Those methods can be classified in three modes, referred to as "transmission mode", "reflection mode" and "attenuated total reflection (ATR) mode". The observed oily core samples belong to siltstone. The samples were made of quartz (-20%), feldspar(-50%) and other rock (igneous rock 25%, metamorphic rocks 1%, sedimentary rock 4%); a little recrystallized calcite (-1%) was in the pore, and the argillaceous matter was distributed along the edge of a pore. The experimental work has been accomplished using SHIMADZU Model IRPrestige-21 Fourier transform infrared spectrophotometer plus AIM8800 infrared microscope. For IRPrestige-21, the spectral range is 7 800-350 cm(-1) spectral resolution is 1 cm(-1), and AIM8800 microscope with motorized stages has a resolution of 1 micrometer. The experiment was preformed at room temperature. In "transmission mode" infrared spectral imaging method, the spectral range was limited in wavenumbers greater than 2 000 cm(-1) because the base glass piece has strong light absorption. In contrast with "transmission mode", in "attenuated total reflection (ATR) mode", the depth of penetration into sample is very small (1-2 micrometer), then the absorbance value has nothing to do with base glass piece light absorption. In microscopic infrared transmission spectra, the experimental result shows that there are some strong absorption peaks at 2 866, 2 928, 3 618 and 2 515 cm(-1) respectively. The former two peaks correspond to methyl(methylene) symmetrical and unsymmetrical stretch vibration mode, respectively. The latter two peaks correspond to hydroxyl-stretch vibration mode and S-H, P-H chemical bond stretch vibration mode, respectively. In microscopic longwave infrared ATR spectra, there are other stronger absorption peaks at 1 400, 1 038 and 783 cm(i1)respectively, corresponding to methyl(methylene) widing vibration mode and optical mode

  5. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  6. Heterostructure infrared photovoltaic detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, Antoni

    2000-08-01

    HgCdTe remains the most important material for infrared (IR) photodetectors despite numerous attempts to replace it with alternative materials such as closely related mercury alloys (HgZnTe, HgMnTe), Schottky barriers on silicon, SiGe heterojunctions, GaAs/AlGaAs multiple quantum wells, InAs/GaInSb strained layer superlattices, high temperature superconductors and especially two types of thermal detectors: pyroelectric detectors and silicon bolometers. It is interesting, however, that none of these competitors can compete in terms of fundamental properties. In addition, HgCdTe exhibits nearly constant lattice parameter which is of extreme importance for new devices based on complex heterostructures. The development of sophisticated controllable vapour phase epitaxial growth methods, such as MBE and MOCVD, has allowed fabrication of almost ideally designed heterojunction photodiodes. In this paper, examples of novel devices based on heterostructures operating in the long wavelength, middle wavelength and short wavelength spectral ranges are presented. Recently, more interest has been focused on p-n junction heterostructures. As infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. HgCdTe heterojunction detectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolour capability in these regions. Recent progress in two-colour HgCdTe detectors is also reviewed.

  7. Infrared diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Civiš, S.; Cihelka, J.; Matulková, I.

    2010-12-01

    Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm-1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed. Additionally, very sensitive laser absorption techniques of such velocity modulation are discussed for case of laser application in laboratory research of molecular ions. Such sensitive techniques (originally developed for lasers) contributed very much in identifying laboratory microwave spectra of a series of anions (C6H-, C4H-, C2H-, CN-) and their discovery in the interstellar space (C6H-, C4H-).

  8. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Deming, Drake; Mumma, M.

    1988-01-01

    This task supports the application of infrared heterodyne and Fourier transform spectroscopy to ultra-high resolution studies of molecular constituents of planetary astomspheres and cometary comae. High spectral and spatial resolutions are especially useful for detection and study of localized, non-thermal phenomena in low temperature and low density regions, for detection of trace constituents and for measurement of winds and dynamical phenomena such as thermal tides. Measurement and analysis of individual spectial lines permits retrieval of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10 to the minus eighth power permits direct measurements of gas velocity to a few meters/sec. Observations are made from ground based heterodyne spectrometers at the Kitt Peak McMath solar telescope and from the NASA infrared Telescope Facility on Mauna Kea, Hawaii. Wind velocities at 110km altitude on Venus were extracted approximately 1 m/sec from measurements of non-thermal emission cores of 10.3 micron CO2 lines. Results indicate a subsolar to antisolar circulationwith a small zonal retrograde component.

  9. Infrared technology in Finland

    NASA Astrophysics Data System (ADS)

    Hartikainen, Jari A.

    2003-01-01

    This paper presents the main actors in the Finnish infrared research community in the Defense Forces, the civilian research institutes and industry. Within the Defence Forces, the Defence Forces Research Centre (PvTT) has a key role as the most important research institute dealing with military technology in Finland and as an integrator of civilian expertise. The basic research strategy of the Finnish Defense Forces is to rely on external research institutes (either domestic or foreign) and to concentrate its own resources only on the areas where external expertise is not available. Accordingly, the research focus of PvTT is on the signature research and the environmental conditions affecting the performance of infrared sensors. The paper also describes the work done at the Technical Research Centre of Finland (VTT) and at various universities. The role of the Finnish defense industry has been fairly modest, but both its own products and recent technology transfer agreements may change the situation in the long run.

  10. Adaptive infrared target detection

    NASA Astrophysics Data System (ADS)

    McBride, Jonah C.; Stevens, Mark R.; Eaton, Ross S.; Snorrason, Magnus S.

    2004-09-01

    Automatic Target Recognition (ATR) algorithms are extremely sensitive to differences between the operating conditions under which they are trained and the extended operating conditions (EOCs) in which the fielded algorithms are tested. These extended operating conditions can cause a target's signature to be drastically different from training exemplars/models. For example, a target's signature can be influenced by: the time of day, the time of year, the weather, atmospheric conditions, position of the sun or other illumination sources, the target surface and material properties, the target composition, the target geometry, sensor characteristics, sensor viewing angle and range, the target surroundings and environment, and the target and scene temperature. Recognition rates degrade if an ATR is not trained for a particular EOC. Most infrared target detection techniques are based on a very simple probabilistic theory. This theory states that a pixel should be assigned the label of "target" if a set of measurements (features) is more likely to have come from an assumed (or learned) distribution of target features than from the distribution of background features. However, most detection systems treat these learned distributions as static and they are not adapted to changing EOCs. In this paper, we present an algorithm for assigning a pixel the label of target or background based on a statistical comparison of the distributions of measurements surrounding that pixel in the image. This method provides a feature-level adaptation to changing EOCs. Results are demonstrated on infrared imagery containing several military vehicles.

  11. Theoretical calculation of ozone vibrational infrared intensities

    NASA Technical Reports Server (NTRS)

    Adler-Golden, S. M.; Langhoff, S. R.; Bauschlicher, C. W., Jr.; Carney, G. D.

    1985-01-01

    An ab initio dipole moment function for ozone has been computed using the CASSCF (complete active space self-consistent field) method, and forms the basis for a calculation of ozone infrared band intensities. Vibrational wave functions were generated using the variational method with potential energy surfaces derived from experimental force constants. Computed values of the permanent dipole moment, dipole moment derivatives, and infrared band strengths are all found to be in remarkably good agreement with experiment. Intensities are predicted for hot bands for which experimental values are unavailable, and implications for atmospheric ozone spectroscopy are discussed. As the dipole moment matrix element signs are now established for nearly all of the observed bands, further refinement of the dipole moment function is possible.

  12. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  13. Overpressure proof testing of large infrared windows for aircraft applications

    NASA Astrophysics Data System (ADS)

    Pruszynski, Charles J.

    1991-10-01

    Many commonly used infrared window materials, such as zinc sulfide and zinc selenide, are subject to structural failure due to stress-corrosion induced cracking. This failure mechanism is of critical importance in applications in which the window experiences high static pressure loading for prolonged periods in humid atmospheres, conditions typical of airborne optical windows. The most effective means of screening windows against failure due to this mechanism is by use of overpressure proof testing. In this paper, the design of overpressure proof tests for large airborne infrared windows is discussed. The underlying physical phenomena and governing mathematical relationships are presented. A hypothetical proof test design for a large infrared window to be employed in a man-rated aircraft is developed to illustrate the application of the analytical methodology. Practical considerations in the execution of large infrared window overpressure proof tests are also discussed.

  14. Evaluation of Nimbus 7 THIR/CLE and Air Force three-dimensional Nephanalysis estimates of cloud amount. [Temperature-Humidity Infrared Radiometer/Clouds Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Stowe, L. L.

    1984-01-01

    Three different estimates of the percent of fixed geographical regions (160 x 160 km) either free of cloud (clear) or covered by low, middle, and high (opaque) cloud have been intercompared. The estimates were derived by analysts interpreting geosynchronous satellite images, with concurrent meteorological observations; from Nimbus 7 temperature humidity infrared radiometer (THIR) CLOUD ERB (CLE) data; and from Air Force three dimensional nephanalysis (3DN) data. Air Force 3DN agrees better with the analyst than THIR/CLE, except for high cloud amount; the CLE and 3DN results tend to overestimate clear amount when clear amount is large and underestimate it when clear amount is small, by 10-20 percent for CLE and by 5-10 percent for 3DN, and both agree well with the analyst in the mean. Systematic and random errors for 3DN and CLE are specified. CLE estimates of cloud amount over land at night should not be used for scientific purposes unless restricted to high cloud amount. It is believed that the CLR and 3DN are the only two digitized, global cloud type and amount data sets in existence.

  15. The research on the effect of atmospheric transmittance for the measuring accuracy of infrared thermal imager

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-cun; Chen, Yi-ming; Fu, Xian-bin; Luo, Cheng

    2016-07-01

    The effect of atmospheric transmittance on infrared thermal imager temperature measuring accuracy cannot be ignored when the object is far from infrared thermal imager. In this paper, a method of reducing the influence of atmospheric transmittance is proposed for the infrared thermal imager. Firstly, the temperature measuring formula of infrared thermal imager and the effect of atmospheric transmittance on temperature measuring accuracy is analyzed. According to the composition of the atmosphere, the main factors influencing the atmosphere transmittance are determined. Secondly, the temperature measuring model of infrared thermal imager in sea level is established according to the absorption of water vapor and carbon dioxide, the scattering of air molecules and aerosol particulate, and the attenuation effects of weather conditions such as rain and snow. Finally, the correctness and feasibility of the proposed model is verified by the comparison experiments of four different environmental conditions. According to the experiments, the temperature measuring accuracy of the infrared thermal imager is improved.

  16. Incorporating geometric and radiative effects into infrared scanning computer analysis

    NASA Technical Reports Server (NTRS)

    Myrick, D. L.; Kantsios, A. G.

    1983-01-01

    A NASA program, the SILTS experiment (Shuttle Infrared Leeside Temperature Sensing) will utilize an infrared scanning system mounted at the tip of the vertical stabilizer to remotely measure the surface temperature of the leeside of the Space Shuttle during entry from orbit. Scans of the fuselage and one wing will be made alternately. The experiment will correlate real full scale data to ground-based information. In order to quantitatively assess the temperature profile of the surface, an algorithm is required which incorporates the Space Shuttle shape, location of specific materials on the surface, and the measurement geometry between the camera and the surface. This paper will discuss the algorithm.

  17. Polarimetry in the infrared.

    NASA Astrophysics Data System (ADS)

    Deming, D.; Hewagama, T.; Jennings, D. E.; Wiedemann, G.

    1991-01-01

    Polarimetry at infrared (IR) wavelengths is advantageous because the larger Zeeman splitting of IR lines results in larger net solar polarization signal. Also, oblique reflections at telescope mirror surfaces have less effect, due to the increase in the index of refraction for Aluminum films at IR wavelengths. Recent developments in IR detector arrays, and the availability of lines formed at altitudes from the deep photosphere (e.g. 1.56 μm Fe I) to the base of the chromosphere (12 μm) represent additional motivation to pursue polarimetry in the IR. Recent measurements using a CdS quarterwave plate and Ge thin-film linear polarizer successfully obtained Stokes I.Q.U. and V profiles of the 12.32 μm Mg I line at high spectral resolution. A significant result from these measurements is the finding that the 12 μm line is essentially 100% polarized in sunspots.

  18. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  19. CINE: Comet INfrared Excitation

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  20. Modulated infrared radiant source

    NASA Technical Reports Server (NTRS)

    Stewart, W. F.; Edwards, S. F.; Vann, D. S.; Mccormick, R. F.

    1981-01-01

    A modulated, infrared radiant energy source was developed to calibrate an airborne nadir-viewing pressure modulated radiometer to be used to detect from Earth orbit trace gases in the troposphere. The technique used an 8 cm long, 0.005 cm diameter platinum-iridium wire as an isothermal, thin line radiant energy source maintained at 1200 K. A + or - 20 K signal, oscillating at controllable frequencies from dc to 20 Hz, was superimposed on it. This periodic variation of the line source energy was used to verify the pressure modulated radiometer's capability to distinguish between the signal variations caused by the Earth's background surface and the signal from the atmospheric gases of interest.

  1. Multiple telescope infrared interferometry

    NASA Technical Reports Server (NTRS)

    Townes, C. H.; Sutton, E. C.

    1981-01-01

    The advantages of multiple telescope infrared interferometry are discussed in detail, using the 10 micron region as a specific example. Scale and seeing considerations are addressed, taking into account analytically the distorting effect of turbulent air and discussing the effect of water vapor on seeing. The usefulness of fringe phase determination to determine the intensities in the radiation field, and the effect of atmospheric fluctuations on their use, are considered. Astrometry by means of interferometry is extensively covered, with examples such as a plot of the fringe phase of o Ceti as a function of time compared with a theoretical fringe phase of the star with a fixed best-fit baseline. The sensitivity of an interferometer involving two receiving telescopes is considered. Finally, an example of a telescope design for 10-micron interferometry is described and depicted.

  2. Spaceborne Infrared Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas; Macenka, Steven; Kampe, Thomas

    2004-01-01

    A report describes the development of the spaceborne infrared atmospheric sounder (SIRAS) - a spectral imaging instrument, suitable for observing the atmosphere of the Earth from a spacecraft, that utilizes four spectrometers to cover the wavelength range of 12 to 15.4 m with a spectral resolution that ranges between 1 part per 900 and 1 part per 1,200 in wavelength. The spectrometers are operated in low orders to minimize filtering requirements. Focal planes receive the dispersed energy and provide a spectrum of the scene. The design of the SIRAS combines advanced, wide-field refractive optics with high-dispersion gratings in a solid-state (no moving parts), diffraction-limited optical system that is the smallest such system that can be constructed for the specified wavelength range and resolution. The primary structure of the SIRAS has dimensions of 10 by 10 by 14 cm and has a mass of only 2.03 kg

  3. Lateral conduction infrared photodetector

    DOEpatents

    Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  4. The Infrared Helix

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Helix nebula exhibits complex structure on the smallest visible scales. It is composed of gaseous shells and disks puffed out by a dying sun-like star.

    In this new image from NASA's Spitzer Space Telescope, 'cometary knots' show blue-green heads caused by excitation of their molecular material from shocks or ultraviolet radiation. The tails of the cometary knots appear redder due to being shielded from the central star's ultraviolet radiation and wind by the heads of the knots.

    This image was captured by the telescope's infrared array camera. The false color composite depicts wavelengths of 3.6 microns (blue), 4.5 microns (green), and 8.0 microns (red). The color saturation has been increased to intensify hues.

  5. Unidentified Infrared Emission Features

    NASA Astrophysics Data System (ADS)

    Joblin, Christine

    2015-03-01

    When referring to unidentified infrared emission features, one has in mind the series of aromatic IR bands (AIBs) between 3.3 and 15 μm that are observed in emission in many environments where UV photons irradiate interstellar matter. These bands are now used by astronomers to classify objects and characterize local physical conditions. However, a deep analysis cannot proceed without understanding the properties of the band carriers. Large polycyclic aromatic hydrocarbon molecules are attractive candidates but interstellar species are still poorly characterized. Various studies emphasize the need for tackling the link between molecular aromatic species, aliphatic material and very small carbonaceous grains. Other unidentified emission features such as the 6.9, 21 and 30 μm bands could be involved in the evolutionary scenario.

  6. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  7. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  8. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  9. Infrared heterodyne spectroscopy in astronomy

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1980-01-01

    A heterodyne spectrometer was constructed and applied to problems in infrared astronomical spectroscopy. The instrument offers distinct observational advantages for the detection and analysis of individual spectral lines at Doppler-limited resolution. Observations of carbon dioxide in planetary atmospheres and ammonia in circumstellar environments demonstrate the substantial role that infrared heterodyne techniques will play in the astronomical spectroscopy of the future.

  10. Current Status of Infrared Technology

    NASA Astrophysics Data System (ADS)

    Tsunawaki, Yoshiaki; Hangyo, Masanori; Hiromoto, Norihisa; Horinaka, Hiromichi

    Infrared sience and technology has been contributing to the four important national priority researches which are nano-, bio-, information- and environmental technologies. In this manuscript we discuss the current status of the infrared science and technology as well as its crucial role in the four technologies.

  11. Infrared imaging of varicose veins

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Zeeuw, Raymond; Verdaasdonk, Ruud M.; Wittens, Cees H. A.

    2004-06-01

    It has been established that varicose veins are better visualized with infrared photography. As near-infrared films are nowadays hard to get and to develop in the digital world, we investigated the use of digital photography of varicose veins. Topics that are discussed are illumination setup, photography and digital image enhancement and analysis.

  12. Martian Dunes in Infrared

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This collage of six images taken by the camera system on NASA's Mars Odyssey, shows examples of the daytime temperature patterns of martian dunes seen by the infrared camera. The dunes can be seen in this daytime image because of the temperature differences between the sunlit (warm and bright) and shadowed (cold and dark) slopes of the dunes. The temperatures in each image vary, but typically range from approximately -35 degrees Celsius (-31 degrees Fahrenheit) to -15degrees Celsius (5 degrees Fahrenheit). Each image covers an area approximately 32 by 32 kilometers (20 by 20 miles) and was acquired using the infrared Band 9, centered at 12.6 micrometers. Clockwise from the upper left, these images are: (a) Russel crater, 54 degrees south latitude, 13 degrees east longitude; (b) Kaiser crater. 45degrees south latitude, 19 degrees east longitude; (c) Rabe crater, 43south latitude, 35 east longitude; (d) 22 north latitude, 66 degrees east longitude; (e) Proctor crater. 47 degrees south latitude, 30 degrees east longitude; (f) 61 degrees south latitude, 201 degrees east longitude.

    The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

  13. An Infrared Multiwavelength Lidar for Compositional Mapping

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.; Sun, X.; Li, S. X.; Numata, K.; Neumann, G. A.; Abshire, J. B.; Smith, D. E.

    2016-10-01

    A laser altimeter that measures surface reflectance in up to seven bands in the infrared is being developed. Narrow band infrared lasers and infrared avalanche photodiode arrays have been demonstrated. The instrument can detect ppm levels of water.

  14. Infrared divergences in de Sitter space

    SciTech Connect

    Polarski, D. Service d'Astrophysique, CEN Saclay, 91191 Gif-sur-Yvette CEDEX, France)

    1991-03-15

    Infrared divergences in de Sitter space are considered. It is shown that symmetry breaking is unavoidable only when the infrared divergence is strong enough. The static vacuum has no symmetry breaking despite the presence of an infrared divergence.

  15. Characterization of a solvent-separated ion-radical pair in cationized water networks: infrared photodissociation and Ar-attachment experiments for water cluster radical cations (H2O)n+(n = 3-8).

    PubMed

    Mizuse, Kenta; Fujii, Asuka

    2013-02-07

    We present infrared spectra of nominal water cluster radical cations (H(2)O)(n)(+) (n = 3-8), or to be precise, ion-radical complexes H(+)(H(2)O)(n-1)(OH), with and without an Ar tag. These clusters are closely related to the ionizing radiation-induced processes in water and are a good model to characterize solvation structures of the ion-radical pair. The spectra of Ar-tagged species show narrower bandwidths relative to those of the bare clusters due to the reduced internal energy via an Ar-attachment. The observed spectra are analyzed by comparing with those of the similar system, H(+)(H(2)O)(n), and calculated ones. We find that the observed spectra are attributable to ion-radical-separated motifs in n ≥ 5, as reported in the previous study (Mizuse et al. Chem. Sci.2011, 2, 868-876). Beyond the structural trends found in the previous study, we characterize isomeric structures and determine the number of water molecules between the charged site and the OH radical in each cluster size. In all of the characterized cluster structures (n = 5-8), the most favorable position of OH radical is the next neighbor of the charged site (H(3)O(+) or H(5)O(2)(+)). The positions and cluster structures are governed by the balance among the hydrogen-bonding abilities of the charged site, H(2)O, and OH radical. These findings on the ionized water networks lead to understanding of the detailed processes of ionizing radiation-initiated reactions in liquid water and aqueous solutions.

  16. Large lipid-rich coronary plaques detected by near-infrared spectroscopy at non-stented sites in the target artery identify patients likely to experience future major adverse cardiovascular events.

    PubMed

    Madder, Ryan D; Husaini, Mustafa; Davis, Alan T; VanOosterhout, Stacie; Khan, Mohsin; Wohns, David; McNamara, Richard F; Wolschleger, Kevin; Gribar, John; Collins, J Stewart; Jacoby, Mark; Decker, Jeffrey M; Hendricks, Michael; Sum, Stephen T; Madden, Sean; Ware, James H; Muller, James E

    2016-04-01

    A recent study demonstrated that intracoronary near-infrared spectroscopy (NIRS) findings in non-target vessels are associated with major adverse cardiovascular and cerebrovascular events (MACCE). It is unknown whether NIRS findings at non-stented sites in target vessels are similarly associated with future MACCE. This study evaluated the association between large lipid-rich plaques (LRP) detected by NIRS at non-stented sites in a target artery and subsequent MACCE. This study evaluated 121 consecutive registry patients undergoing NIRS imaging in a target artery. After excluding stented segments, target arteries were evaluated for a large LRP, defined as a maximum lipid core burden index in 4 mm (maxLCBI4 mm) ≥400. Excluding events in stented segments, Cox regression analysis was performed to evaluate for an association between a maxLCBI4 mm ≥400 and future MACCE, defined as all-cause mortality, non-fatal acute coronary syndrome, and cerebrovascular events. NIRS detected a maxLCBI4 mm ≥400 in a non-stented segment of the target artery in 17.4% of patients. The only baseline clinical variable marginally associated with MACCE was ejection fraction (HR 0.96, 95% CI 0.93-1.00, P = 0.054). A maxLCBI4 mm ≥400 in a non-stented segment at baseline was significantly associated with MACCE during follow-up (HR 10.2, 95% CI 3.4-30.6, P < 0.001). Detection of large LRP by NIRS at non-stented sites in a target artery was associated with an increased risk of future MACCE. These findings support ongoing prospective studies to further evaluate the ability of NIRS to identify vulnerable patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  17. GIRL - The German infrared laboratory for spacelab

    NASA Astrophysics Data System (ADS)

    Lemke, D.; Grewing, M.; Offermann, D.; Drapatz, S.; Klipping, G.

    GIRL's principal components are a large cryostat, which contains a 300-liter tank for liquid helium, and a long cooled baffle system. The cryostat contains a 50-cm telescope and 4 scientific experiments. These focal plane experiments make GIRL a universal astronomical observatory, equipped with all the instruments necessary to analyze radiation from celestial objects. To fully exploit the high sensitivity of modern infrared detectors attainable under low background conditions (less than 10 to the 8th photons per sq cm per sec), the telescope, the lower part of the baffle system, and all the experiments are cooled to less than 10 K. The IR camera will be used for surveying and mapping extended regions. The photopolarimeter will be used for measuring low resolution spectra of the faintest objects, in particular galaxies. The Ebert-Fastie spectrometer is designed primarily for aeronomical measurements by limb scanning.

  18. Morphological classification of local luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Psychogyios, A.; Charmandaris, V.; Diaz-Santos, T.; Armus, L.; Haan, S.; Howell, J.; Le Floc'h, E.; Petty, S. M.; Evans, A. S.

    2016-06-01

    We present analysis of the morphological classification of 89 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) sample, using non-parametric coefficients and compare their morphology as a function of wavelength. We rely on images that were obtained in the optical (B- and I-band) as well as in the infrared (H-band and 5.8 μm). Our classification is based on the calculation of Gini and the second order of light (M20) non-parametric coefficients, which we explore as a function of stellar mass (M⋆), infrared luminosity (LIR), and star formation rate (SFR). We investigate the relation between M20, the specific SFR (sSFR) and the dust temperature (Tdust) in our galaxy sample. We find that M20 is a better morphological tracer than Gini, as it allows us to distinguish systems that were formed by double systems from isolated and post-merger LIRGs. The effectiveness of M20 as a morphological tracer increases with increasing wavelength, from the B to H band. In fact, the multi-wavelength analysis allows us to identify a region in the Gini-M20 parameter space where ongoing mergers reside, regardless of the band used to calculate the coefficients. In particular, when measured in the H band, a region that can be used to identify ongoing mergers, with minimal contamination from LIRGs in other stages. We also find that, while the sSFR is positively correlated with M20 when measured in the mid-infrared, i.e. star-bursting galaxies show more compact emission, it is anti-correlated with the B-band-based M20. We interpret this as the spatial decoupling between obscured and unobscured star formation, whereby the ultraviolet/optical size of an LIRG experience an intense dust-enshrouded central starburst that is larger that in the mid-infrared since the contrast between the nuclear to the extended disk emission is smaller in the mid-infrared. This has important implications for high redshift surveys of dusty sources, where sizes of galaxies

  19. Gerard Kuiper and the Infrared Detector

    NASA Astrophysics Data System (ADS)

    Sears, Derek

    2013-10-01

    The life and contributions of Gerard Kuiper have been documented by Dale Cruikshank in his National Academy of Sciences biography. I will argue that particularly important in this eventful life was Kuiper's war time experiences. Kuiper's wartime role evolved as the war unfolded, but towards the end he was charged by the US military with reporting German progress with war-related technologies and the activities of scientists under Nazi control. He interviewed a great many scientists, including his own PhD mentor (Ejnar Hertzsprung), and when Kuiper was the only person available, he interviewed concentration-camp victims. He carried briefing sheets that identified the technologies being sought by the allies and the major fraction of these involved infrared equipment. He sent back to the USA boxes of documents, and large amounts of equipment, and he stressed to the military his interest in these for his own research. It seems very likely that in this way an effective PbS infrared detector, so critical to Kuiper's career and the future of planetary science, came to the USA and to Robert Cashman's laboratory at Northwestern University. As the war was winding down, Cashman and Kuiper worked together to develop a practical infrared spectrometer for astronomical use. Within months, Kuiper discovered the C02 atmospheres on Mars and Venus.

  20. Wheat germ stabilization by infrared radiation.

    PubMed

    Gili, Renato D; Palavecino, Pablo M; Cecilia Penci, M; Martinez, Marcela L; Ribotta, Pablo D

    2017-01-01

    Wheat germ has an important enzymatic activity, being lipases the enzymes which cause the highest impact in the reduction of shelf life. The objective of this study was to evaluate the effects of infrared radiation on wheat germ stabilization in an attempt to extend the shelf life. The effects of treatment time, gap (sample distance to IR emitters) and infrared radiation intensity on wheat germ were analyzed through response surface methodology. Final moisture content, final temperature, color of germ and germ oil quality parameters: free fatty acid content changes and total tocopherol content were the responses evaluated using a Box-Behnken design. A combination of an infrared radiation intensity of 4800 W/m(2), a 3 min treatment and 0.2 m emitter-sample distance were the best processing condition to stabilize the wheat germ without significantly reduction of the tocopherol content. A confirmatory experiment was conducted with these optimal conditions, and the heat-treated and raw germ samples were stored for 90 days at room temperature in three layer packages to protect them against light and oxygen. The oil quality parameters indicated that the raw germ had a shelf-life of about 15 days, with the heat-treated wheat germ maintaining its quality for at least 90 days under these stored conditions.

  1. An improved infrared technique for sorting pecans

    NASA Astrophysics Data System (ADS)

    Graeve, Thorsten; Dereniak, Eustace L.; Lamonica, John A., Jr.

    1991-10-01

    This paper presents the results of a study of pecan spectral reflectances. It describes an experiment for measuring the contrast between several components of raw pecan product to be sorted. An analysis of the experimental data reveals high contrast ratios in the infrared spectrum, suggesting a potential improvement in sorting efficiency when separating pecan meat from shells. It is believed that this technique has the potential to dramatically improve the efficiency of current sorting machinery, and to reduce the cost of processing pecans for the consumer market.

  2. Choice and validation of a near infrared spectroscopic application for the identity control of starting materials. practical experience with the EU draft Note for Guidance on the use of near infrared spectroscopy by the pharmaceutical industry and the data to be forwarded in part II of the dossier for a marketing authorization.

    PubMed

    Vredenbregt, M J; Caspers, P W J; Hoogerbrugge, R; Barends, D M

    2003-11-01

    Recently the CPMP/CVMP sent out for consultation the draft Note for Guidance (dNfG) on the use of near infrared spectroscopy (NIRS) by the pharmaceutical industry and the data to be forwarded in part II of the dossier for a marketing authorization. We explored the practicability of this dNfG with respect to the verification of the correct identity of starting materials in a generic tablet-manufacturing site. Within the boundaries of the dNfG, a release procedure was developed for 12 substances containing structurally related compounds and substances differing only in particle size. For the method development literature data were also taken into consideration. Good results were obtained with wavelength correlation (WC), applied on raw spectra or second derivative spectra both without smoothing. The defined threshold of 0.98 for raw spectra differentiated between all molecular structures. Both methods were found to be robust over a period of 1 year. For the differentiation between the different particle sizes a subsequent second chemometric technique had to be used. Soft independent modelling of class analogy (SIMCA) with a probability level of 0.01 proved suitable. Internal and external validation I according to the dNfG showed no incorrect rejections or false acceptances. External validation II according to the dNfG was carried out with 95 potentially interfering substances from which 46 were tested experimentally. Macrogol 400 was not distinguished from macrogol 300. For the complete verification of the identity of macrogol 300 test A of the European Pharmacopoeia is needed in addition to the NIRS application. A release procedure developed with WC applied on raw spectra and SIMCA as a second method, which is different from the preferred method of the dNfG, was tested in practice with good results. We conclude that the dNfG has good practicability and that deviations from the preferred methods of the dNfG can also give good differentiation.

  3. Infrared Scanning For Electrical Maintenance

    NASA Astrophysics Data System (ADS)

    Eisenbath, Steven E.

    1983-03-01

    Given the technological age that we have now entered, the purpose of this paper is to relate how infrared scanning can be used for an electrical preventative maintenance program. An infrared scanner is able to produce an image because objects give off infrared radiation in relationship to their temperature. Most electrical problems will show up as an increase in temperature, thereby making the infrared scanner a useful preventative maintenance tool. Because of the sensitivity of most of the scanners, .1 to .2 of a degree, virtually all electrical problems can be pinpointed long before they become a costly failure. One of the early uses of infrared scanning was to check the power company's electrical distribution system. Most of this was performed via aircraft or truck mounted scanning devices which necessitated its semi-permanent mounting. With the advent of small hand held infrared imagers, along with more portability of the larger systems, infrared scanning has gained more popularity in checking electrical distribution systems. But the distribution systems are now a scaled down model, mainly the in-plant electrical systems. By in-plant, I mean any distribution of electricity; once it leaves the power company's grid. This can be in a hospital, retail outlet, warehouse or manufacturing facility.

  4. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  5. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  6. Search and detection comparing midwave and longwave infrared

    NASA Astrophysics Data System (ADS)

    Maurer, Tana; Deaver, Dawne M.; Flug, Eric A.; Nguyen, Oanh Tho

    2009-11-01

    To investigate the benefits of multiband infrared sensor design for target detection, search and detection experiments were conducted in the midwave infrared (MWIR) and longwave infrared (LWIR) wavebands in both rural and urban battlefields. In each battlefield environment, real imagery was collected in both bands by a single sensor using the same optics for both bands, resulting in perfect co-registration of the imagery. In order to study the performance impact of the spectral content, and not diffraction or other sensor-specific differences, the images were processed as needed so that differences in resolution due to diffraction were mitigated. The results of perception experiments, including detection probabilities, search times, and false alarm data, were compared between the wavebands.

  7. Mid-infrared tunable metamaterials

    DOEpatents

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  8. Mid-infrared tunable metamaterials

    DOEpatents

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  9. Infrared techniques for comet observations

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Tokunaga, Alan T.

    1991-01-01

    The infrared spectral region (1-1000 microns) is important for studies of both molecules and solid grains in comets. Infrared astronomy is in the midst of a technological revolution, with the development of sensitive 2D arrays leading to IR cameras and spectrometers with vastly improved sensitivity and resolution. The Halley campaign gave us tantalizing first glimpses of the comet science possible with this new technology, evidenced, for example, by the many new spectral features detected in the infrared. The techniques of photometry, imaging, and spectroscopy are reviewed in this chapter and their status at the time of the Halley observations is described.

  10. High performance pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Hu, Xu; Luo, Haosu; Ji, Yulong; Yang, Chunli

    2015-10-01

    Single infrared detector made with Relaxative ferroelectric crystal(PMNT) present excellence performance. In this paper include detector capacitance, characteristic of frequency--response, characteristic of detectivity. The measure result show that detectivity of detector made with relaxative ferroelectric crystal(PMNT) exceed three times than made with LT, the D*achieved than 1*109cmHz0.5W-1. The detector will be applied on NDIR spectrograph, FFT spectrograph and so on. The high performance pyroelectric infrared detector be developed that will be broadened application area of infrared detector.

  11. The Far Infrared Earth

    NASA Technical Reports Server (NTRS)

    Harries, John; Carli, Bruno; Rizzi, Rolando; Serio, Carmine; Mlynczak, Martin G.; Palchetti, Luca; Maestri, T.; Brindley, H.; Masiello, Guido

    2007-01-01

    The paper presents a review of the far infrared (FIR) properties of the Earth's atmosphere, and the role of these properties in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that, in recent years, we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of 288 K, and is due primarily to strong absorption of outgoing longwave energy by water vapour, carbon dioxide and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example the water vapour and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.

  12. Infrared Risley beam pointer

    NASA Astrophysics Data System (ADS)

    Harford, Steven T.; Gutierrez, Homero; Newman, Michael; Pierce, Robert; Quakenbush, Tim; Wallace, John; Bornstein, Michael

    2014-03-01

    Ball Aerospace & Technologies Corp. (BATC) has developed a Risley Beam Pointer (RBP) mechanism capable of agile slewing, accurate pointing and high bandwidth. The RBP is comprised of two wedged prisms that offer a wide Field of Regard (FOR) and may be manufactured and operated with diffraction limited optical quality. The tightly packaged mechanism is capable of steering a 4 inch beam over a 60° half angle cone with better than 60 μrad precision. Absolute accuracy of the beam steering is better than 1 mrad. The conformal nature of the RBP makes it an ideal mechanism for use on low altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) thermal compliance to maintain bearing preload and optical figure over a wide temperature range; and ii) packaging of a remote infrared sensor that periodically reports the temperature of both prisms for accurate determination of the index of refraction. The pointing control system operates each prism independently and employs an inner rate loop nested within an outer position loop. Mathematics for the transformation between line-of-sight coordinates and prism rotation are hosted on a 200 MHz microcontroller with just 516 KB of RAM.

  13. New frontiers for infrared

    NASA Astrophysics Data System (ADS)

    Corsi, C.

    2015-03-01

    Infrared (IR) science and technology has been mainly dedicated to surveillance and security: since the 70's specialized techniques have been emerging in thermal imaging for medical and cultural heritage diagnostics, building and aeronautics structures control, energy savings and remote sensing. Most of these applications were developed thanks to IR FPAs sensors with high numbers of pixels and, actually, working at room temperatures. Besides these technological achievements in sensors/ receivers, advanced developments of IR laser sources up to far IR bands have been achieved in the form QCL (quantum cascade laser), allowing wide band TLC and high sensitivity systems for security. recently new sensors and sources with improved performances are emerging in the very far IR region up to submillimeter wavelengths, the so called terahertz (THz) region. A survey of the historical growth and a forecast of the future developments in Devices and Systems for the new frontier of IR will be discussed, in particular for the key questions: "From where and when is IR coming?", "Where is it now?" and "Where will it go and when?". These questions will be treated for key systems (Military/Civil), key devices (Sensors/ Sources), and new strategic technologies (Nanotech/TeraHertz).

  14. Saturn's Infrared Temperature Snapshot

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    Scientists have discovered a wave pattern, or oscillation, in Saturn's atmosphere only visible from Earth every 15 years. The pattern ripples back and forth like a wave within Saturn's upper atmosphere. In this region, temperatures switch from one altitude to the next in a candy cane-like, striped, hot-cold pattern.

    The temperature 'snapshot' shown in these two images captures two different phases of this wave oscillation: the temperature at Saturn's equator switches from hot to cold, and temperatures on either side of the equator switch from cold to hot every Saturn half-year.

    The image on the left was taken in 1997 and shows the temperature at the equator is colder than the temperature at 13 degrees south latitude. Conversely, the image on the right taken in 2006 shows the temperature at the equator is warmer.

    These images were taken with NASA's Infrared Telescope Facility in Mauna Kea, Hawaii.

  15. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  16. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  17. Infrared sensitivity of thermoreceptors.

    PubMed

    Gingl, E; Tichy, H

    2001-07-01

    This study compares the effects of convective and radiant heat on the discharge rates of the warm cell of a thin hair-like sensillum of the tick and of the cold cells of small peg-shaped sensilla of the locust and the cockroach. The temperature rates imposed by the convective heat contained in the air stream used for stimulation are reflected by the discharge rate of the thermoreceptors. We determined the increment in radiant heat that results in the same change in discharge rate as a given increment in temperature due to convection. The amount of infrared radiation required to produce the same effect as a 1 degrees C change in temperature differs for the sensory cells of the tick, locust and cockroach, respectively, suggesting differences in the ability of the sensilla to take up and transfer radiant heat. The power of radiation required to modulate the discharge rates is very high and outside the biologically meaningful range in all cases. Obviously the adequate stimulus for the examined sensilla is convective heat and not radiant heat.

  18. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  19. Quantification of excess water loss in plant canopies warmed with infrared heating

    USDA-ARS?s Scientific Manuscript database

    Here we investigate the extent to which infrared heating used to warm plant canopies in climate manipulation experiments increases transpiration. Concerns regarding the impact of the infrared heater technique on the water balance have been raised before, but a quantification is lacking. We calculate...

  20. Cellular infrared detector appears to be contained in the centrosome.

    PubMed

    Albrecht-Buehler, G

    1994-01-01

    Previous experiments have suggested that 3T3 cells were able to extend pseudopodia toward latex particles up to 60 microns away from the cell body if the particles were irradiated by an infrared beam in the range of 700-900 nm [Albrecht-Buehler, 1991: J. Cell Biol. 114:493-502]. The present article reports that this response of cells to infrared light can be inhibited if the cell center is simultaneously irradiated with a beam of the same light. In marked contrast, the cells responded normally to the presence of infrared light scattering particles if the second beam irradiated other parts of the cell body. The results imply that the cellular mechanism of infrared detection is located at the cell center. The infrared sensing mechanism remains intact in enucleated cells and in cells which were incubated in monensin to vesiculate their Golgi apparatus and inhibit their Golgi functions. Accordingly, it is proposed that the centrosome which contains the centrioles is the only remaining candidate in the cell center for a cellular detection device for the direction of infrared signal sources. The results support an earlier suggestion that centrioles may be such detection devices [Albrecht-Buehler, 1981: Cell Motil. Cytoskeleton 1:237-245].

  1. An infrared salient object stereo matching algorithm based on epipolar rectification

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wu, Lei; Han, Jing; Bai, Lian-fa

    2016-02-01

    Due to the higher noise and less details in infrared images, general matching algorithms are prone to obtaining unsatisfying results. Combining the idea of salient object, we propose a novel infrared stereo matching algorithm which applies to unconstrained stereo rigs. Firstly, we present an epipolar rectification method introducing particle swarm optimization and K-nearest neighbor to deal with the problem of epipolar constraint. Then we make use of transition region to extract salient object in the rectified infrared image pairs. Finally, disparity map is generated by matching salient regions. Experiments show that our algorithm deals with the infrared stereo matching of unconstrained stereo rigs with better accuracy and higher speed.

  2. 110 °C range athermalization of wavefront coding infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  3. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation

    SciTech Connect

    Theberge, Francis; Chateauneuf, Marc; Roy, Gilles; Mathieu, Pierre; Dubois, Jacques

    2010-03-15

    Tunable far-infrared laser pulses were generated efficiently during two-color filamentation in air. Understanding the creation of few-cycle far-infrared laser pulses is important since it is at the frontier between two possible generation mechanisms. The first one is the four-wave mixing generation, associated to the generation of wavelengths from ultraviolet up to mid-infrared laser pulses. The second process is the formation of transient photocurrent, which was recently used to describe the generation of submillimetric (terahertz) waves. Comparison between experiments and simulations revealed that the four-wave mixing mechanism is dominant for the far-infrared generation during two-color filamentation.

  4. Io Tupan Caldera in Infrared

    NASA Image and Video Library

    2001-12-10

    Tupan Caldera, a volcanic crater on Jupiter moon Io, has a relatively cool area, possibly an island, in its center, as indicated by infrared imagery from NASA Galileo spacecraft during an Oct. 16, 2001 flyby.

  5. Focal plane infrared readout circuit

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2002-01-01

    An infrared imager, such as a spectrometer, includes multiple infrared photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear infrared multiplexer array for reading out infrared detectors with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.

  6. Infrared cubic dielectric resonator metamaterial.

    SciTech Connect

    Sinclair, Michael B.; Brener, Igal; Peters, David William; Ginn, James Cleveland, III; Ten Eyck, Gregory A.

    2010-06-01

    Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared.

  7. Complementary barrier infrared detector (CBIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  8. An Explosion of Infrared Color

    NASA Image and Video Library

    2010-12-09

    This oddly colorful nebula is the supernova remnant IC 443 as seen by NASA Wide-field Infrared Survey Explorer; the Jellyfish nebula is particularly interesting because it provides a look into how stellar explosions interact with their environment.

  9. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  10. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  11. Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Hoerz, F.; Christensen, P.; Lucey, P. G.

    2001-01-01

    We performed shock recovery experiments at JSC (17-63 GPa) on samples of Stillwater pyroxenite and anorthosite and acquired their thermal infrared spectra (3-50 micron) to investigate the degradation of spectral features at high pressures. Additional information is contained in the original extended abstract.

  12. Fundamental limits to performance of quantum well infrared detectors

    NASA Technical Reports Server (NTRS)

    Yariv, Amnon; Kinch, Michael; Borenstain, S.; Grave, I.

    1990-01-01

    Radiometric, density of states (material), and thermal considerations are used to obtain the figure of merit of the quantum-well GaAs/GaAlAs infrared detectors described by Smith et. al. The results are compared with HgCdTe, the present industry standard, as well as with recent experiments at other laboratories.

  13. Mid-infrared coronagraph for SPICA

    NASA Astrophysics Data System (ADS)

    Enya, K.; Abe, L.; Haze, K.; Tanaka, S.; Nakagawa, T.; Kataza, H.; Higuchi, S.; Miyata, T.; Sako, S.; Nakamura, T.; Tamura, M.; Nishikawa, J.; Murakami, N.; Itoh, Y.; Wakayama, T.; Sato, T.; Nakagiri, N.; Guyon, O.; Venet, M.; Bierden, P.

    2008-07-01

    The SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is a infrared space-borne telescope mission of the next generation following AKARI. SPICA will carry a telescope with a 3.5 m diameter monolithic primary mirror and the whole telescope will be cooled to 5 K. SPICA is planned to be launched in 2017, into the sun-earth L2 libration halo orbit by an H II-A rocket and execute infrared observations at wavelengths mainly between 5 and 200 micron. The large telescope aperture, the simple pupil shape, the capability of infrared observations from space, and the early launch gives us with the SPICA mission a unique opportunity for coronagraphic observation. We have started development of a coronagraphic instrument for SPICA. The primary target of the SPICA coronagraph is direct observation of extra-solar Jovian planets. The main wavelengths of observation, the required contrast and the inner working angle (IWA) of the SPICA coronagraph are set to be 5-27 micron (3.5-5 micron is optional), 10-6, and a few λ/D (and as small as possible), respectively, in which λ is the observation wavelength and D is the diameter of the telescope aperture (3.5m). For our laboratory demonstration, we focused first on a coronagraph with a binary shaped pupil mask as the primary candidate for SPICA because of its feasibility. In an experiment with a binary shaped pupil coronagraph with a He-Ne laser (λ=632.8nm), the achieved raw contrast was 6.7×10-8, derived from the average measured in the dark region without active wavefront control. On the other hand, a study of Phase Induced Amplitude Apodization (PIAA) was initiated in an attempt to achieve better performance, i.e., smaller IWA and higher throughput. A laboratory experiment was performed using a He-Ne laser with active wavefront control, and a raw contrast of 6.5×10-7 was achieved. We also present recent progress made in the cryogenic active optics for SPICA. Prototypes of cryogenic deformable by Micro Electro

  14. Infrared Data for Storm Analysis

    NASA Technical Reports Server (NTRS)

    Adler, R.

    1982-01-01

    The papers in this section include: 1) 'Thunderstorm Top Structure Observed by Aircraft Overflights with an Infrared Radiometer'; 2) 'Thunderstorm Intensity as Determined from Satellite Data'; 3) 'Relation of Satellite-Based Thunderstorm Intensity to Radar-Estimated Rainfall'; 4) 'A Simple Physical Basis for Relating Geosynchronous Satellite Infrared Observations to Thunderstorm Rainfall'; 5) 'Satellite-Observed Cloud-Top Height Changes in Tornadic Thunderstorms'; 6) 'Predicting Tropical Cyclone Intensity Using Satellite-Measured Equivalent Blackbody Temperatures of Cloud Tops'.

  15. Cellular Localization of Infrared Sources.

    DTIC Science & Technology

    1992-01-01

    metastasis. 14. SUBJECT TERMS 1S. NUMBER OF PAGES infrared, phototaxis ,mammalian cells,tissue cufture,motility, centrioles. Ili PRICE CODE 17...investigation of phototaxis and photosensitivity in general of mammalian cells in a*d;o the infrared may have far reaching consequences for all medical...suggested that the effect W was not a simple form of phototaxis , but that the cells were able to distinguish ’n_ between several individual light sources

  16. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  17. Mid-infrared spectroscopic investigation

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; Vergo, Norma; Walter, Louis

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed.

  18. [Infrared spectroscopic determinations of mannitol].

    PubMed

    Toffel-Nadolny, P

    1981-01-01

    Three different infrared-spectra of Mannit were obtained according to unused Mannit, melted Mannit, and the crystallized form out of methanol. The melting points of the three Mannit-modifications were in accordance 166.5 degrees C. Similar effects have been found with Diethylbarbituric acid. X-ray diffraction patterns and main differences of the infrared-spectra between v = 1100- and 1500 cm-1 - the range, where the molecule in bulk is characterized -, verify three different crystal structures of Mannit.

  19. Infrared transform spectral imager

    NASA Astrophysics Data System (ADS)

    Vujkovic-Cvijin, Pajo; Lee, Jamine; Gregor, Brian; Goldstein, Neil; Panfili, Raphael; Fox, Marsha

    2012-10-01

    A dispersive transform spectral imager named FAROS (FAst Reconfigurable Optical Sensor) has been developed for high frame rate, moderate-to-high resolution hyperspectral imaging. A programmable digital micromirror array (DMA) modulator makes it possible to adjust spectral, temporal and spatial resolution in real time to achieve optimum tradeoff for dynamic monitoring requirements. The system's F/2.8 collection optics produces diffraction-limited images in the mid-wave infrared (MWIR) spectral region. The optical system is based on a proprietary dual-pass Offner configuration with a single spherical mirror and a confocal spherical diffraction grating. FAROS fulfills two functions simultaneously: one output produces two-dimensional polychromatic imagery at the full focal plane array (FPA) frame rate for fast object acquisition and tracking, while the other output operates in parallel and produces variable-resolution spectral images via Hadamard transform encoding to assist in object discrimination and classification. The current version of the FAROS spectral imager is a multispectral technology demonstrator that operates in the MWIR with a 320 x 256 pixel InSb FPA running at 478 frames per second resulting in time resolution of several tens of milliseconds per hypercube. The instrument has been tested by monitoring small-scale rocket engine firings in outdoor environments. The instrument has no macro-scale moving parts, and conforms to a robust, small-volume and lightweight package, suitable for integration with small surveillance vehicles. The technology is also applicable to multispectral/hyperspectral imaging applications in diverse areas such as atmospheric contamination monitoring, agriculture, process control, and biomedical imaging, and can be adapted for use in any spectral domain from the ultraviolet (UV) to the LWIR region.

  20. Infrared transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Johnson, Linda F.; Moran, Mark B.

    2001-09-01

    A novel class of complex metal oxides that have potential as transparent conducting oxides (TCOs) for the electromagnetic-interference (EMI) shielding on IR-seeker windows and missile domes has been identified. These complex metal oxides exhibit the rhombohedral (R3m) crystalline structure of naturally occurring delafossite, CuFeO2. The general chemical formula is ABO2 where A is a monovalent metal (Me+1 such as Cu, Ag, Au, Pt or Pd, and B is a trivalent metal (Me3+) such as Al,Ti,Cr,Co,Fe,Ni,Cs,Rh,Ga,Sn,In,Y,La,Pr,Nd,Sm or Eu. By adjusting the oxygen content, the conductivity can be varied over a wide range so that the delafossites behave as insulators, semiconductors or metals. This paper presents results for films of p-type CuxAlyOz and n-type CuxCryOz deposited by reactive magnetron co-sputtering from high-purity-metal targets. Films have been deposited using conventional RF- and DC-power supplies, and a new asymmetric-bipolar-pulsed- DC-power supply. Similar to the high-temperature-copper- oxide superconductors, the presence of Cu-O bonds is critical for the unique properties. Fourier transform infrared (FTIR) and electron spectroscopy for chemical analysis (ESCA) are used to understand the relationship between the optoelectornic properties and the molecular structure of the films. For example, FTIR absorption bands at 1470 and 1395cm-1 are present only in CuxAlyOz films that exhibit enhanced electrical conductivity. When these bands are absent, the CuxAlyOz films have high values of resistivity. In addition to the 1470 and 1395cm-1 bands observed in CuxAlyOz films, another pair of bands at 1040 and 970cm-1 is present in CuxCryOz films.