Science.gov

Sample records for infrared multispectral pancam

  1. Spectral Variability among Rocks in Visible and Near Infrared Multispectral Pancam Data Collected at Gusev Crater: Examinations using Spectral Mixture Analysis and Related Techniques

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Bell, J. F., III; Johnson, J. R.; Squyres, S. W.; Soderblom, J.; Ming, D. W.

    2006-01-01

    Visible and Near Infrared (VNIR) multispectral observations of rocks made by the Mars Exploration Rover Spirit s Panoramic camera (Pancam) have been analysed using a spectral mixture analysis (SMA) methodology. Scenes have been examined from the Gusev crater plains into the Columbia Hills. Most scenes on the plains and in the Columbia Hills could be modeled as three endmember mixtures of a bright material, rock, and shade. Scenes of rocks disturbed by the rover s Rock Abrasion Tool (RAT) required additional endmembers. In the Columbia Hills there were a number of scenes in which additional rock endmembers were required. The SMA methodology identified relatively dust-free areas on undisturbed rock surfaces, as well as spectrally unique areas on RAT abraded rocks. Spectral parameters from these areas were examined and six spectral classes were identified. These classes are named after a type rock or area and are: Adirondack, Lower West Spur, Clovis, Wishstone, Peace, and Watchtower. These classes are discriminable based, primarily, on near-infrared (NIR) spectral parameters. Clovis and Watchtower class rocks appear more oxidized than Wishstone class rocks and Adirondack basalts based on their having higher 535 nm band depths. Comparison of the spectral parameters of these Gusev crater rocks to parameters of glass-dominated basaltic tuffs indicates correspondence between measurements of Clovis and Watchtower classes, but divergence for the Wishstone class rocks which appear to have a higher fraction of crystalline ferrous iron bearing phases. Despite a high sulfur content, the rock Peace has NIR properties resembling plains basalts.

  2. Pancam: A Multispectral Imaging Investigation on the NASA 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

    2003-01-01

    One of the six science payload elements carried on each of the NASA Mars Exploration Rovers (MER; Figure 1) is the Panoramic Camera System, or Pancam. Pancam consists of three major components: a pair of digital CCD cameras, the Pancam Mast Assembly (PMA), and a radiometric calibration target. The PMA provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. The calibration target provides a set of reference color and grayscale standards for calibration validation, and a shadow post for quantification of the direct vs. diffuse illumination of the scene. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover in up to 12 unique wavelengths. The major characteristics of Pancam are summarized.

  3. VNIR multispectral observations of rocks at Cape York, Endeavour crater, Mars by the Opportunity rover's Pancam

    NASA Astrophysics Data System (ADS)

    Farrand, William H.; Bell, James F.; Johnson, Jeffrey R.; Rice, Melissa S.; Hurowitz, Joel A.

    2013-07-01

    From its arrival at the portion of the rim of Endeavour crater known informally as Cape York, the Mars Exploration Rover Opportunity has made numerous visible and near infrared (VNIR) multispectral observations of rock surfaces. This paper describes multispectral observations from Opportunity's arrival at Cape York to its winter-over location at Greeley Haven. Averages of pixels from the Pancam's left and right eyes were joined to form 11 point spectra from numerous observations and were examined via a number of techniques. These included principal components analysis, a sequential maximum angle convex cone approach, examination of spectral parameters, and a hierarchical clustering approach. The end result of these analyses was the determination of six primary spectral (PS) classes describing spectrally unique materials observed on Cape York. These classes consisted of a "standard" outcrop spectrum that was observed on the clasts and matrix comprising the upper unit of the Shoemaker formation, a class representing rock surfaces exposed around Odyssey crater and typified by the rocks of the Tisdale series, pebbles occurring in and weathered out of the upper unit of the Shoemaker formation that appear red in 1009, 904, 754 nm color composites, patches on Tisdale rocks exhibiting a 864 nm band minimum that were spectrally anomalous in root mean square error images derived from spectral mixture analyses, clasts with a high 904 nm band depth occurring in the Greeley Haven location, and gypsum veins typified by the vein Homestake. Comparisons of three of these classes that had well defined band minima between 800 and 1009 nm with spectral library spectra of ferrous silicates and ferric oxide, oxyhydroxide and ferric sulfate minerals indicated tentative matches of the "red" pebbles with orthopyroxenes, of the spectrally anomalous 864 nm band minimum material with hematite or ferric sulfates, and of the high 904 nm band depth material with an orthopyroxene

  4. Large Multispectral and Albedo Panoramas Acquired by the Pancam Instruments on the Mars Exploration Rovers Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Arneson, H. M.; Farrand, W. H.; Goetz, W.; Hayes, A. G.; Herkenhoff, K.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.

    2005-01-01

    Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.

  5. Mars Exploration Rover Pancam Multispectral Imaging of Rocks, Soils, and Dust at Gusev Crater and Meridiani Planum. Chapter 13

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Calvin, W. M.; Farrand, W.; Greeley, R.; Johnson, J. R.; Jolliff, B.; Morris, R. V.; Sullivan, R. J.; Thompson, S.; Wang, A.; hide

    2007-01-01

    Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.

  6. Multispectral VNIR Observations by the Opportunity Rover Pancam of Multiple Episodes of Aqueous Alteration in Marathon Valley, Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Arvidson, Raymond E.; Mittlefehldt, David W.; Ruff, Steven W.; Rice, Melissa S.

    2016-01-01

    Since early 2015, the Mars Exploration Rover Opportunity has been exploring the break in the rim of Endeavour Crater dubbed Marathon Valley by the rover team. Marathon Valley was identified by orbital hyperspectral data from the MRO CRISM as having a relatively strong spectral feature in the 2.3 micrometer region indicative of an Mg or Fe-OH combination overtone absorption band indicative of smectite clay. Earlier in its mission, Opportunity examined the Matijevic Hill region on the more northerly Cape York crater rim segment and found evidence for smectite clays in a stratigraphically lower, pre-impact formed unit dubbed the Matijevic formation. However, the smectite exposures in Marathon Valley appear to be associated with the stratigraphically higher Shoemaker formation impact breccia. Evidence for alteration in this unit in Marathon Valley is provided by Pancam multispectral observations in the 430 to 1010 nm visible/near infrared (VNIR) spectral range. Sinuous troughs ("red zones") contain fragmented cobbles and pebbles displaying higher blue-to-red slopes, moderately higher 535 nm band depths, elevated 754 to 934 nm, and negative 934 to 1009 nm slopes. The lack of an absorption at 864 to 904 nm indicates the lack of crystalline red hematite in these red zones, but likely an enrichment in nanophase ferric oxides. The negative 934 to 1009 nm slope is potentially indicative of the presence of adsorbed or structurally bound water. A scuff in a red zone near the southern wall of Marathon Valley uncovered light-toned soils and a pebble with an 803 to 864 nm absorption resembling that of light-toned Fe-sulfate bearing soils uncovered by the Spirit rover in the Columbia Hills of Gusev crater. APXS chemical measurements indicated enrichments of Mg and S in the scuff soils and the pebble, Joseph Field, with the strongest 803 nm band- consistent with Mg and Fe sulfates. The presence of Fe and Mg sulfates can be interpreted as evidence of a potentially later episode of

  7. Pancam multispectral imaging results from the opportunity Rover at Meridiani Planum

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; Grotzinger, J.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Noe Dobrea, E.Z.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.M.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Weitz, C.M.; Wolff, M.J.

    2004-01-01

    Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.

  8. Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; Grotzinger, J.; Guinness, E.; Hayes, A. G.; Hubbard, M. Y. H.; Herkenhoff, K. E.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K. M.; Lemmon, M. T.; Li, R.; Madsen, M. B.; Maki, J. N.; Malin, M.; McCartney, E.

    2004-01-01

    Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.

  9. Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; hide

    2004-01-01

    Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.

  10. Multispectral infrared imaging interferometer

    NASA Technical Reports Server (NTRS)

    Potter, A. E., Jr.

    1971-01-01

    Device permitting simultaneous viewing of infrared images at different wavelengths consists of imaging lens, Michelson interferometer, array of infrared detectors, data processing equipment for Fourier transformation of detector signal, and image display unit. Invention is useful in earth resources applications, nondestructive testing, and medical diagnoses.

  11. Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry

    USGS Publications Warehouse

    Johnson, J. R.; Sohl-Dickstein, J.; Grundy, W.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Graff, T.; Guinness, E.A.; Kinch, K.; Morris, Robert; Shepard, M.K.

    2006-01-01

    Laboratory visible/near-infrared multispectral observations of Mars Exploration Rover Pancam calibration target materials coated with different thicknesses of Mars spectral analog dust were acquired under variable illumination geometries using the Bloomsburg University Goniometer. The data were fit with a two-layer radiative transfer model that combines a Hapke formulation for the dust with measured values of the substrate interpolated using a He-Torrance approach. We first determined the single-scattering albedo, phase function, opposition effect width, and amplitude for the dust using the entire data set (six coating thicknesses, three substrates, four wavelengths, and phase angles 3??-117??). The dust exhibited single-scattering albedo values similar to other Mars analog soils and to Mars Pathfinder dust and a dominantly forward scattering behavior whose scattering lobe became narrower at longer wavelengths. Opacity values for each dust thickness corresponded well to those predicted from the particles sizes of the Mars analog dust. We then restricted the number of substrates, dust thicknesses, and incidence angles input to the model. The results suggest that the dust properties are best characterized when using substrates whose reflectances are brighter and darker than those of the deposited dust and data that span a wide range of dust thicknesses. The model also determined the dust photometric properties relatively well despite limitations placed on the range of incidence angles. The model presented here will help determine the photometric properties of dust deposited on the MER rovers and to track the multiple episodes of dust deposition and erosion that have occurred at both landing sites. Copyright 2006 by the American Geophysical Union.

  12. Pancam multispectral imaging results from the Spirit Rover at Gusev crater

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  13. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A. G.; Hubbard, M. Y. H.; Herkenhoff, K. E.; Johnson, M. J.; Maki, J. N.; Ming, D. W.; Morris, R. V.; Parker, T. J.

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  14. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.

    PubMed

    Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A

    2004-08-06

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  15. Pancam Multispectral and APXS Chemical Examination of Rocks and Soils in Marathon Valley and Points South Along the Rim of Endeavour Crater

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D. W.; Gellert, R.; VanBommel, S.; Arvidson, R. E.; Schroder, C.

    2017-01-01

    The Mars Exploration Rover Opportunity has concluded its exploration of Marathon Valley, a 100-meter-wide valley in the western rim of the 22-kilometer-diameter Endeavour crater. Orbital observations from CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) indicated the presence of Fe smectites in Marathon Valley. Since leaving the valley, Opportunity has been traversing along the inner rim of the crater, and currently towards the outer rim. This presentation describes the Pancam 430 to 1009 nanometer (VNIR - Visible and Near Infared) multispectral reflectance and APXS (Alpha Particle X-ray Spectrometer) chemical compositions of rock and soil units observed during the latter portions of the Marathon Valley campaign on the Knudson Ridge area and observations of those materi-als along the traverse to the south. Full Pancam spectral coverage of rock targets consists of 13 filter (13f) data collections with 11 spectrally unique channels with data processing. Data were examined using spectral parameters, decorrelation stretch composites, and spectral mixture analysis. Note that color terms used here refer to colors in various false-color renditions, not true colors. The APXS determines major and select trace element compositions of targets.

  16. Multispectral Evidence of Alteration from Murray Ridge to Marathon Valley Observed by the Opportunity Pancam on the Rim of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Mittlefehldt, D. W.; Bell, J. F.; Johnson, J. R.

    2015-01-01

    The Mars Exploration Rover Opportunity has been traversing the rim of the Noachian-aged, 22 km diameter Endeavour crater. Circa sol 3390 of its mission, Opportunity reached the northern tip of the rim segment known as Solander Point and has since been traversing the rim to the south to its current location at the break in the rim known as Marathon Valley. The rocks making up the rim are dominated by impact breccias consisting of clasts and a finer-grained matrix. Several segments of the rim are transected by fractures as observed from orbital HiRISE imagery. Pancam multispectral observations of outcrop in these fracture regions, including part of the rim crest dubbed Murray Ridge, the Hueytown fracture, and Marathon Valley have been made. Over the range of 430 to 1010 nm there are changes in the multispectral reflectance signature of the breccia matrix with an increase in 535 nm and 904 nm band depth. This is attributed to oxidation and an increase in ferric oxides in these areas. In situ observations by the rover's APXS also indicate chemical differences associated with the matrix along these fractures, including increasing Fe/Mn southward from Solander Point to a region having an Al-OH signature in CRISM spectra, and generally higher SO3 in the Hueytown fracture region and the area around Spirit of St. Louis. Overturned rocks observed on Murray Ridge were determined by the APXS to have elevated Mn and Pancam spectra of the high Mn spots have a characteristic red, featureless slope. This spectrum was also observed in association with some coatings on blocks of the sulfate-rich Grasberg formation. Spectra resembling red hematite are observed in some zones in association with the craterform feature Spirit of St. Louis outside the mouth (to the west) of Marathon Valley. Marathon Valley itself has been observed from orbital hyperspectral observations by the CRISM sensor to host occurrences of Fe/Mg smectite minerals- indicating extensive aqueous alteration in this

  17. Spectral variability among rocks in visible and near-infrared mustispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques

    USGS Publications Warehouse

    Farrand, W. H.; Bell, J.F.; Johnson, J. R.; Squyres, S. W.; Soderblom, J.; Ming, D. W.

    2006-01-01

    Visible and near-infrared (VNIR) multispectral observations of rocks made by the Mars Exploration Rover Spirit's Panoramic camera (Pancam) have been analyzed using a spectral mixture analysis (SMA) methodology. Scenes have been examined from the Gusev crater plains into the Columbia Hills. Most scenes on the plains and in the Columbia Hills could be modeled as three end-member mixtures of a bright material, rock, and shade. Scenes of rocks disturbed by the rover's Rock Abrasion Tool (RAT) required additional end-members. In the Columbia Hills, there were a number of scenes in which additional rock end-members were required. The SMA methodology identified relatively dust-free areas on undisturbed rock surfaces as well as spectrally unique areas on RAT abraded rocks. Spectral parameters from these areas were examined, and six spectral classes were identified. These classes are named after a type rock or area and are Adirondack, Lower West Spur, Clovis, Wishstone, Peace, and Watchtower. These classes are discriminable based, primarily, on near-infrared (NIR) spectral parameters. Clovis and Watchtower class rocks appear more oxidized than Wishstone class rocks and Adirondack basalts based on their having higher 535 nm band depths. Comparison of the spectral parameters of these Gusev crater rocks to parameters of glass-dominated basaltic tuffs indicates correspondence between measurements of Clovis and Watchtower classes but divergence for the Wishstone class rocks, which appear to have a higher fraction of crystalline ferrous iron-bearing phases. Despite a high sulfur content, the rock Peace has NIR properties resembling plains basalts. Copyright 2006 by the American Geophysical Union.

  18. Visible and near-infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity

    USGS Publications Warehouse

    Farrand, W. H.; Bell, J.F.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; McLennan, S.M.; Squyres, S. W.; Calvin, W.M.; Grotzinger, J.P.; Morris, R.V.; Soderblom, J.; Thompson, S.D.; Watters, W.A.; Yen, A. S.

    2007-01-01

    Multispectral measurements in the visible and near infrared of rocks at Meridiani Planum by the Mars Exploration Rover Opportunity's Pancam are described. The Pancam multispectral data show that the outcrops of the Burns formation consist of two main spectral units which in stretched 673, 535, 432 nm color composites appear buff- and purple-colored. These units are referred to as the HFS and LFS spectral units based on higher and lower values of 482 to 535 nm slope. Spectral characteristics are consistent with the LFS outcrop consisting of less oxidized, and the HFS outcrop consisting of more oxidized, iron-bearing minerals. The LFS surfaces are not as common and appear, primarily, at the distal ends of outcrop layers and on steep, more massive surfaces, locations that are subject to greater eolian erosion. Consequently, the HFS surfaces are interpreted as a weathering rind. Further inherent spectral differences between layer's and between different outcrop map units, both untouched and patches abraded by the rover's Rock Abrasion Tool, are also described. Comparisons of the spectral parameters of the Meridiani outcrop with a set of laboratory reflectance measurements of Fe3+-bearing minerals show that the field of outcrop measurements plots near the fields of hematite, ferrihydrite, poorly crystalline goethite, and schwertmannite. Rind and fracture fill materials, observed intermittently at outcrop exposures, are intermediate in their spectral character between both the HFS and LFS spectral classes and other, less oxidized, surface materials (basaltic sands, spherules, and cobbles). Copyright 2007 by the American Geophysical Union.

  19. The Athena Pancam and Color Microscopic Imager (CMI)

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Herkenhoff, K. E.; Schwochert, M.; Morris, R. V.; Sullivan, R.

    2000-01-01

    The Athena Mars rover payload includes two primary science-grade imagers: Pancam, a multispectral, stereo, panoramic camera system, and the Color Microscopic Imager (CMI), a multispectral and variable depth-of-field microscope. Both of these instruments will help to achieve the primary Athena science goals by providing information on the geology, mineralogy, and climate history of the landing site. In addition, Pancam provides important support for rover navigation and target selection for Athena in situ investigations. Here we describe the science goals, instrument designs, and instrument performance of the Pancam and CMI investigations.

  20. VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D.W.

    2016-01-01

    The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley.

  1. Multi-spectral black meta-infrared detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2016-09-01

    There is an increased emphasis on obtaining imaging systems with on-demand spectro-polarimetric information at the pixel level. Meta-infrared detectors in which infrared detectors are combined with metamaterials are a promising way to realize this. The infrared region is appealing due to the low metallic loss, large penetration depth of the localized field and the larger feature sizes compared to the visible region. I will discuss approaches to realize multispectral detectors including our recent work on double metal meta-material design combined with Type II superlattices that have demonstrated enhanced quantum efficiency (collaboration with Padilla group at Duke University).

  2. Color coded data obtained by JPL's Shuttle Multispectral Infrared radiometer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Color coded data obtained from Baja California, Mexico to Texas by JPL's Shuttle Multispectral Infrared radiometer is pictured. The map shows where data was obtained on the 19th orbit of the mission. Yellow and green areas represent water. The first brown segment at left is Baja California, and the second begins at the coast of mainland Mexico and extends into Texas. The dark brown strips at the right are clouds.

  3. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J. N.; Arneson, H. M.; Brown, D.; Collins, S. A.; Dingizian, A.; Elliot, S. T.; Hagerott, E. C.; Hayes, A. G.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M. T.; Morris, R. V.; Scherr, L.; Schwochert, M.; Shepard, M. K.; Smith, G. H.; Sohl-Dickstein, J. N.; Sullivan, R. J.; Sullivan, W. T.; Wadsworth, M.

    2003-11-01

    The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360° in azimuth and +/-90° in elevation. Each Pancam camera utilizes a 1024 × 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio of f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16° × 16°. Each rover's two Pancam ``eyes'' are separated by 30 cm and have a 1° toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55° to +5°C. An onboard calibration target and fiducial marks provide the

  4. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M.T.; Morris, R.V.; Scherr, L.; Schwochert, M.; Shepard, M.K.; Smith, G.H.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Sullivan, W.T.; Wadsworth, M.

    2003-01-01

    The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360?? in azimuth and ??90?? in elevation. Each Pancam camera utilizes a 1024 ?? 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16?? ?? 16??. Each rover's two Pancam "eyes" are separated by 30 cm and have a 1?? toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55?? to +5??C. An onboard calibration target and fiducial marks provide the capability

  5. GRIN optics for multispectral infrared imaging

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Nguyen, Vinh; Sanghera, Jas; Kotov, Mikhail; Drake, Gryphon

    2015-06-01

    Graded index (GRIN) optics offer potential for both weight savings and increased performance but have so far been limited to visible and NIR bands (wavelengths shorter than about 0.9 μm). NRL is developing a capability to extend GRIN optics to longer wavelengths in the infrared by exploiting diffused IR transmitting chalcogenide glasses. These IR-GRIN lenses are compatible with all IR wavebands (SWIR, MWIR and LWIR) and can be used alongside conventional wideband materials. Traditional multiband IR imagers require many elements for correction of chromatic aberrations, making them large and heavy and not well-suited for weight sensitive platforms. IR-GRIN optical elements designed with simultaneous optical power and chromatic correction can reduce the number of elements in wideband systems, making multi-band IR imaging practical for platforms including small UAVs and soldier handheld, helmet or weapon mounted cameras. The IR-GRIN lens technology, design space and anti-reflection considerations are presented in this paper.

  6. Detection of infrared stealth aircraft through their multispectral signatures

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Shao, Xiaopeng; Han, Pingli; Xiangli, Bin; Yang, Cui

    2014-09-01

    A concise band selection method employing multispectral signatures of stealth aircraft whose infrared radiation was remarkably reduced was proposed for precise target detection. The key step was to select two or more optimal bands which could clearly signify the radiation difference between the target and its background. The principle of preliminary selection was based on the differences of radiation characteristics for the two main constituents of the aircraft's plume gas, i.e., CO2 and H2O. Two narrow bands of 2.86 to 3.3 and 4.17 to 4.55 μm were finally selected after detailed analyses on contrast characteristics between the target and background. Also, the stability of the selected bands was tested under varying environments. Further simulations and calculations demonstrated that the multispectral detection method utilizing the two selected narrow bands could markedly improve the essential performances of target detection systems and increase their achievable detection distance. The stability of the aircraft's multispectral signatures enabled this target detection method to achieve excellent results.

  7. Polarization controllable multispectral symmetry-breaking absorberin mid-infrared

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Pitchappa, Prakash; Ho, Chong Pei; Hasan, Dihan; Kropelnicki, Piotr; Alioto, Massimo; Lee, Chengkuo

    2016-08-01

    The versatility of mid-infrared metamaterial absorbers along with the ease of fabrication has been widely used in thermal imaging, molecule sensing, and many other applications. Controllable multispectral absorption is highly required for small footprint, multi-purpose, and real-time sensing applications. In this paper, we present the polarization control of interchangeable multispectral absorption based on the dual-band metamaterial absorber in split mode. Large modulation depth of absorption is obtained during multi-band transition through polarization control. We perform theoretical and numerical analysis to explain the results by formulating an equivalent circuit for the asymmetric cross resonator. Thermal controllability is also demonstrated to show the reversible and repeatable manipulation of absorption intensity at a given wavelength. Moreover, we characterized the limitation of this device under extreme high temperature. This work offers a design methodology for interchangeable multispectral metamaterial absorber from a new perspective by adopting polarization of incident light as a control mechanism, and this will open up possibilities for many valuable applications in the future.

  8. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  9. Multispectral glass transparent from visible to thermal infrared

    NASA Astrophysics Data System (ADS)

    Brehault, A.; Calvez, L.; Pain, T.; Adam, P.; Rollin, J.; Zhang, X. H.

    2014-06-01

    The thermal imaging market has experienced a strong growth during the recent years due to continued cost reduction of night vision devices. The development of uncooled focal plane detector arrays is the major reason for the cost reduction. Another reason is the continuous improvement of the optical solution. In this paper, we present a new multispectral material which responds to the increasing demand for optics operating simultaneously in the visible/SWIR (Short Wave InfraRed) and the thermal infrared region. The most important properties of some glasses from the GeS2-Ga2S3- CsCl system are highlighted in this study. A stable composition 15Ga2S3-75GeS2-10CsCl allowed the synthesis of a large glass without crystallization. The refractive index of this glass was precisely measured from 0.6 to 10.4μm by using the Littrow method. The chromatic dispersion was then calculated and compared with other multispectral materials.

  10. Multispectral, thermal infrared satellite data for geologic applications

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Andre, C. G.; Marcell, R.; Minor, T. B.

    1985-01-01

    The value of multispectral thermal infrared satellite data for geologic mapping was assessed, applying the principal component and canonical analysis techniques to the images of the central part of the Arabian Peninsula (a 200 x 300 km area). Low resolution thermal infrared (TIR) data from the Nimbus 5 Surface Composition Mapping Radiometer (SCMR) and the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) were used. Color images included an 8.8 micrometer (SCMR) and 3.7 and 10.8 micrometer (AVHRR-night) data, ratioed AVHRR day/night TIR data, ratioed AVHRR reflected radiation data, and transformed 8- and 10-band TIR plus reflected radiation data. The results clearly demonstrated the potential geologic value of multispectral TIR data. Igneous and metamorphic units could be separated as a class (although not from each other except for young calc-alkaline granites). Some previously unmapped extensions of mapped faults below thick sedimentary units could be delineated. No single enhancement technique displayed all the potential information, implying that they should be used together.

  11. The NASA 2003 Mars Exploration Rover Panoramic Camera (Pancam) Investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Morris, R. V.; Athena Team

    2002-12-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360o of azimuth and from zenith to nadir, providing a complete view of the scene around the rover. Pancam utilizes two 1024x2048 Mitel frame transfer CCD detector arrays, each having a 1024x1024 active imaging area and 32 optional additional reference pixels per row for offset monitoring. Each array is combined with optics and a small filter wheel to become one "eye" of a multispectral, stereoscopic imaging system. The optics for both cameras consist of identical 3-element symmetrical lenses with an effective focal length of 42 mm and a focal ratio of f/20, yielding an IFOV of 0.28 mrad/pixel or a rectangular FOV of 16o\\x9D 16o per eye. The two eyes are separated by 30 cm horizontally and have a 1o toe-in to provide adequate parallax for stereo imaging. The cameras are boresighted with adjacent wide-field stereo Navigation Cameras, as well as with the Mini-TES instrument. The Pancam optical design is optimized for best focus at 3 meters range, and allows Pancam to maintain acceptable focus from infinity to within 1.5 meters of the rover, with a graceful degradation (defocus) at closer ranges. Each eye also contains a small 8-position filter wheel to allow multispectral sky imaging, direct Sun imaging, and surface mineralogic studies in the 400-1100 nm wavelength region. Pancam has been designed and calibrated to operate within specifications from -55oC to +5oC. An onboard calibration target and fiducial marks provide

  12. Large-format and multispectral QWIP infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Goldberg, Arnold C.; Choi, Kwong-Kit; Jhabvala, Murzy; La, Anh; Uppal, Parvez N.; Winn, Michael L.

    2003-09-01

    The next generation of infrared (IR) focal plane arrays (FPAs) will need to be a significant improvement in capability over those used in present-day second generation FLIRs. The Army's Future Combat System requires that the range for target identification be greater than the range of detection for an opposing sensor. To accomplish this mission, the number of pixels on the target must be considerably larger than that possible with 2nd generation FLIR. Therefore, the 3rd generation FLIR will need to be a large format staring FPA with more than 1000 pixels on each side. In addition, a multi-spectral capability will be required to allow operability in challenging ambient environments, discriminate targets from decoys, and to take advantage of the smaller diffraction blur in the MWIR for enhanced image resolution. We report on laboratory measurements of a large format (1024 x 1024 pixels) single-color LWIR IR FPA made using the corrugated quantum well infrared photodetector (QWIP) structure by the ARL/NASA team. The pixel pitch is 18 μm and the spectral response peaks at 8.8 μm with a 9.2 μm cutoff. We report on recent results using a MWIR/LWIR QWIP FPA to image the boost phase of a launch vehicle for missile defense applications and a LWIR/LWIR FPA designed specifically for detecting the disturbed soil associated with buried land mines. Finally, we report on the fabrication of a new read-out integrated circuit (ROIC) specifically designed for multi-spectral operation.

  13. Infrared optical coatings for the EarthCARE Multispectral Imager.

    PubMed

    Hawkins, Gary; Woods, David; Sherwood, Richard; Djotni, Karim

    2014-10-20

    The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures, and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method, and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses, and mirror coatings to discriminate wavelengths at 8.8, 10.8, and 12.0 μm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented.

  14. Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars

    USGS Publications Warehouse

    Johnson, J. R.; Bell, J.F.; Cloutis, E.; Staid, M.; Farrand, W. H.; McCoy, T.; Rice, M.; Wang, A.; Yen, A.

    2007-01-01

    The Mars Exploration Rover (MER) Spirit excavated sulfur-rich soils exhibiting high albedo and relatively white to yellow colors at three main locations on and south of Husband Hill in Gusev crater, Mars. The multispectral visible/near-infrared properties of these disturbed soils revealed by the Pancam stereo color camera vary appreciably over small spatial scales, but exhibit spectral features suggestive of ferric sulfates. Spectral mixture models constrain the mineralogy of these soils to include ferric sulfates in various states of hydration, such as ferricopiapite [Fe2/32+Fe43+ (SO4)6(OH)2??20(H2O)], hydronium jarosite [(H3O)Fe33+ (SO4)2(OH)6], fibroferrite [Fe3+(SO4)(OH)??5(H2O)], rhomboclase [HFe3+(SO4)2??4 (H2O)], and paracoquimbite [Fe23+ (SO4)3.9(H2O)]. Copyright 2007 by the American Geophysical Union.

  15. Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Kemsri, Thitikorn; Li, Lin; Gu, Guiru; Lu, Xuejun

    2017-10-01

    In this paper, we report a concentric circular ring and nanodisk plasmonic optical antenna (POA) enhanced multispectral quantum dot infrared photodetector (QDIP). The circular ring and the nanodisk POA structures are designed to have plasmonic resonant wavelengths in the longwave infrared (LWIR) and the midwave infrared (MWIR) spectral regimes, respectively. The electric field (E-field) distributions are simulated and show spectral localization due to the distinct plasmonic resonant wavelengths of the POA structures. The circular ring is found to enhance the E-fields in the nanodisk regions due to the mutual coupling. A concentric circular ring and nanodisk POA enhanced multispectral QDIP was fabricated and tested. Multispectral enhancement was observed. The enhancement is compared to that of a QDIP with only the circular ring POA structure. The experiment data agree with the simulation. The concentric circular ring and nanodisk POA provides a compact planar structure for multispectral QDIP enhancement.

  16. Pancam Spectral Variations Across Home Plate: Bonestell Panorama, Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Bell, J. F.; Rice, M. S.; Farrand, W. H.; Schmidt, M. E.; Herkenhoff, K. E.; Wang, A.

    2008-12-01

    Visible/near-infrared color variations across the surface of the Home Plate (HP) structure were first observed by the Spirit Pancam multispectral camera using images acquired from the top of Husband Hill on sol 595, ~700m away from HP. Orbital imaging by the HiRISE camera on sol 1325 showed consistent color trends with Pancam in which the western edge of HP was "redder" than the "bluer" eastern portion. This suggested the eastern rim materials of HP are not as contaminated by airfall dust and/or are less oxidized. Pancam spectra of brushed rock targets indicate that western dust-free rock surfaces have higher 535nm band depths (consistent with higher Fe3+/Fe measured by the Mossbauer spectrometer), potentially caused by finely crystalline red hematite. The western rocks also exhibited less negative 601nm band depths than in the east, which could result from lower pyroxene/olivine ratios or the presence of goethite. The spectral variations across HP combined with in situ geochemical data around the rim suggest that the volcanic and/or hydrothermal nature of the HP system resulted in localized, high temperature events on the eastern side, compared to lower temperature alteration on the western side that produced greater amounts of nanophase ferric oxides. This hypothesis is being investigated using 13 band scenes acquired from Spirit's winter location on the northern rim of HP. Pancam began imaging on sol 1477 as part of an extensive mosaic (the "Bonestell Panorama"). Preliminary analyses confirm higher red/blue ratios along the western rim, but also redder regions on the eastern rim not as obvious in Sol 595 images. HiRISE acquired a color image of HP on Sol 1591 that shows less color variability on HP than the sol 1325 image. Dust fallout from the 2007 dust storm (sols 1240 to 1330) may be the cause of these temporal color variations. Additional analysis is required to determine whether surficial dust deposits are the dominant cause of the original color dichotomy

  17. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor

    PubMed Central

    Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong

    2016-01-01

    When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications. PMID:28036073

  18. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor.

    PubMed

    Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong

    2016-12-29

    When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications.

  19. Interpretation of multispectral and infrared thermal surveys of the Suez Canal Zone, Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Hady, M. A. A. H.; Hafez, M. A. A.; Salman, A. B.; Morsy, M. A.; Elrakaiby, M. M.; Alaassy, I. E. E.; Kamel, A. F.

    1977-01-01

    Remote sensing airborne surveys were conducted, as part of the plan of rehabilitation, of the Suez Canal Zone using I2S multispectral camera and Bendix LN-3 infrared passive scanner. The multispectral camera gives four separate photographs for the same scene in the blue, green, red, and near infrared bands. The scanner was operated in the microwave bands of 8 to 14 microns and the thermal surveying was carried out both at night and in the day time. The surveys, coupled with intensive ground investigations, were utilized in the construction of new geological, structural lineation and drainage maps for the Suez Canal Zone on a scale of approximately 1:20,000, which are superior to the maps made by normal aerial photography. A considerable number of anomalies belonging to various types were revealed through the interpretation of the executed multispectral and infrared thermal surveys.

  20. Self-Organized Quantum Dots for High-Performance Multi-Spectral Infrared Photodetectors

    DTIC Science & Technology

    2010-06-29

    31, 2009 Program Managers: Donald Silversmith (AFOSR) PI: Anupam Madhukar University of Southern California Los Angeles, CA 90089-0241 Tel...Quantum Dots for High- Performance Multi-Spectral Infrared Photodetectors” (Jul. 1, 2006- Dec. 31, 2009) Program Managers: Donald Silversmith (AFOSR

  1. Recent Results from the Mars Exploration Rover Opportunity Pancam Instruments

    NASA Astrophysics Data System (ADS)

    Bell, James F., III; Arvidson, Raymond; Farrand, William; Johnson, Jeffrey; Rice, James; Rice, Melissa; Ruff, Steven; Squyres, Steven; Wang, Alian

    2013-04-01

    The Mars Exploration Rover (MER) Panoramic Camera (Pancam) instruments [1] are multispectral, stereoscopic CCD cameras that have acquired high resolution color images from the Spirit rover field site in Gusev crater and the Opportunity rover field site in Meridiani Planum. Spirit's mission ended in March 2010 after 2209 sols of operation and acquisition of more than 81,000 Pancam images. Opportunity's mission is ongoing, now spanning more than 3180 sols of operation as of early January 2013. As of this writing, the Opportunity Pancam instruments have acquired more than 106,000 images. Approximately 21% of those images have been acquired as part of 11-color multispectral "image cubes" used to characterize the color properties of the surface and atmosphere at wavelengths between 432 and 1009 nm. Most of the remainder of the imaging part of the rovers' downlink (which is the vast majority of the overall downlink) has been used for monochrome or limited-filter tactical imaging of targets of interest, stereo Navcam or Hazcam imaging in support of rover driving and/or rover arm instrument chemical, mineralogical, or Microscopic Imager measurements, photometric experiments, atmospheric dynamics and aerosol observations, and even occasional astronomical observations like solar transits of Phobos and Deimos. Less than 2% of the downlinked bits have been used for calibration observations (bias, dark current, flatfield, calibration target) over the course of the mission. During the past Mars year, Opportunity arrived at Cape York, a northwestern segment of the rim of 22 km diameter Endeavour crater, and has been used to characterize the geology, geochemistry, and mineralogy of this ancient Noachian terrain. Pancam multispectral images have provided important data with which to help identify basaltic impact breccias within the crater rim materials, as well as gypsum-rich veins within the Meridiani plains sedimentary rocks adjacent to the rim. The continuing study of light

  2. Pancam Imaging of the Mars Exploration Rover Landing Sites in Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.

    2004-01-01

    The Mars Exploration Rovers carry four Panoramic Camera (Pancam) instruments (two per rover) that have obtained high resolution multispectral and stereoscopic images for studies of the geology, mineralogy, and surface and atmospheric physical properties at both rover landing sites. The Pancams are also providing significant mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach imaging products.

  3. Multi-spectral imaging with mid-infrared semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wang, Yang; Le, Han Q.

    2006-01-01

    Multi-spectral laser imaging can be a useful technology for target discrimination, classification, and identification based on object spectral signatures. The mid-IR region (~3-14 μm) is particularly rich of molecular spectroscopic fingerprints, but the technology has been under utilized. Compact, potentially inexpensive semiconductor lasers may allow more cost-effective applications. This paper describes a development of semiconductor-laser-based multi-spectral imaging for both near-IR and mid-IR, and demonstrates the potential of this technology. The near-IR study employed 7 wavelengths from 0.635-1.55 μm, and used for system engineering evaluation as well as for studying the fundamental aspects of multi-spectral laser imaging. These include issues of wavelength-dependence scattering as a function of incident and receiving angle and the polarization effects. Stokes vector imaging and degree-of-linear-polarization were shown to reveal significant information to characterize the targets. The mid-IR study employed 4 wavelengths from 3.3-9.6 μm, and was applied to diverse targets that consist of natural and man-made materials and household objects. It was shown capable to resolve and distinguish small spectral differences among various targets, thanks to the laser radiometric and spectral accuracy. Colorless objects in the visible were shown with "colorful" signatures in the mid-IR. An essential feature of the study is an advanced system architecture that employs wavelength-division-multiplexed laser beams for high spectral fidelity and resolution. In addition, unlike conventional one-transmitter and one receiver design, the system is based on a scalable CDMA network concept with multiple transmitters and receivers to allow efficient information acquisition. The results suggest that multi-spectral laser imaging in general can be a unique and powerful technology for wide ranging applications.

  4. Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.; Meeks, G. R.

    1985-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction.

  5. Middle infrared multispectral aircraft scanner data: analysis for geological applications.

    PubMed

    Kahle, A B; Madura, D P; Soha, J M

    1980-07-15

    Multispectral middle IR (8-13-microm) data were acquired with an aircraft scanner over Utah. Because these digital image data were dominated by temperature, all six channels were highly correlated. Extensive processing was required to allow geologic photointerpretation based on subtle variations in spectral emittance between rock types. After preliminary processing, ratio images were produced and color ratio composites created from these. Sensor calibration and an atmospheric model allowed determination of surface brightness, temperature, emittance, and color composite emittance images. The best separation of major rock types was achieved with a principal component transformation, followed by a Gaussian stretch, followed by an inverse transformation to the original axes.

  6. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.; Lemmon, M.T.; Bell, J.F.; Johnson, M.J.; Deen, R.; Arvidson, R. E.; Farrand, W. H.; Guinness, E.; Hayes, A.G.; Herkenhoff, K. E.; Seelos, F.; Soderblom, J.; Squyres, S.

    2006-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover Opportunity acquired visible/near-infrared multispectral observations of soils and rocks under varying viewing and illumination geometries that were modeled using radiative transfer theory to improve interpretations of the microphysical and surface scattering nature of materials in Meridiani Planum. Nearly 25,000 individual measurements were collected of rock and soil units identified by their color and morphologic properties over a wide range of phase angles (0-150??) at Eagle crater, in the surrounding plains, in Endurance crater, and in the plains between Endurance and Erebus craters through Sol 492. Corrections for diffuse skylight incorporated sky models based on observations of atmospheric opacity throughout the mission. Disparity maps created from Pancam stereo images allowed inclusion of local facet orientation estimates. Outcrop rocks overall exhibited the highest single scattering albedos (???0.9 at 753 nm), and most spherule-rich soils exhibited the lowest (???0.6 at 753 nm). Macroscopic roughness among outcrop rocks varied but was typically larger than spherule-rich soils. Data sets with sufficient phase angle coverage (resulting in well-constrained Hapke parameters) suggested that models using single-term and two-term Henyey-Greenstein phase functions exhibit a dominantly broad backscattering trend for most undisturbed spherule-rich soils. Rover tracks and other compressed soils exhibited forward scattering, while outcrop rocks were intermediate in their scattering behaviors. Some phase functions exhibited wavelength-dependent trends that may result from variations in thin deposits of airfall dust that occurred during the mission. Copyright 2006 by the American Geophysical Union.

  7. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.; Lemmon, M.T.; Bell, J.F.; Johnson, M.J.; Deen, R.G.; Arvidson, R. E.; Farrand, W. H.; Guinness, E.A.; Hayes, A.G.; Herkenhoff, K. E.; Seelos, F.; Soderblom, J.; Squyres, S.

    2006-01-01

    Multispectral observations of rocks and soils were acquired under varying illumination and viewing geometries in visible/near-infrared wavelengths by the Panoramic Camera (Pancam) on the Spirit Mars Exploration Rover to provide constraints on the physical and mineralogical nature of geologic materials in Gusev Crater. Data sets were acquired at six sites located near the landing site, in the surrounding plains, and in the West Spur and Husband Hill regions of the Columbia Hills. From these ???600 images, over 10,000 regions of interest were selected of rocks and soils over a wide range of phase angles (0-130??). Corrections for diffuse skylight incorporated sky models based on observations of atmospheric opacity throughout the mission. Disparity maps created from Pancam stereo images allowed inclusion of estimates of local facet orientations in the sky models. Single-term and two-term phase functions derived from Hapke scattering models exhibit a dominantly broad backscattering trend for soils and "Red" rocks inferred to be covered with variable amounts of dust and other coatings, consistent with the results from the Viking Lander and Imager for Mars Pathfinder cameras. Darker "Gray" rock surfaces (inferred to be relatively less dust covered) display more narrow, forward scattering behaviors, consistent with particles exhibiting little internal scattering. Gray and Red rocks are macroscopically rougher than most soil units, although a "dust-cleaning" event observed near the Paso Robles site caused an increase in soil surface roughness in addition to a substantial decrease in surface single scattering albedo. Gray rocks near the rim of Bonneville Crater exhibit the largest macroscopic roughness (????) among all units, as well as the greatest backscattering among Gray rocks. Photometric properties of coated Red rocks vary in the West Spur region, possibly as a result of weathering differences related to elevation-dependent aeolian regimes. Copyright 2006 by the

  8. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Grundy, William M.; Lemmon, Mark T.; Bell, James F.; Johnson, Miles J.; Deen, Robert; Arvidson, R. E.; Farrand, W. H.; Guinness, E.; Hayes, Alexander G.; Herkenhoff, K. E.; Seelos, F.; Soderblom, J.; Squyres, S.

    2006-12-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover Opportunity acquired visible/near-infrared multispectral observations of soils and rocks under varying viewing and illumination geometries that were modeled using radiative transfer theory to improve interpretations of the microphysical and surface scattering nature of materials in Meridiani Planum. Nearly 25,000 individual measurements were collected of rock and soil units identified by their color and morphologic properties over a wide range of phase angles (0-150°) at Eagle crater, in the surrounding plains, in Endurance crater, and in the plains between Endurance and Erebus craters through Sol 492. Corrections for diffuse skylight incorporated sky models based on observations of atmospheric opacity throughout the mission. Disparity maps created from Pancam stereo images allowed inclusion of local facet orientation estimates. Outcrop rocks overall exhibited the highest single scattering albedos (<=0.9 at 753 nm), and most spherule-rich soils exhibited the lowest (<=0.6 at 753 nm). Macroscopic roughness among outcrop rocks varied but was typically larger than spherule-rich soils. Data sets with sufficient phase angle coverage (resulting in well-constrained Hapke parameters) suggested that models using single-term and two-term Henyey-Greenstein phase functions exhibit a dominantly broad backscattering trend for most undisturbed spherule-rich soils. Rover tracks and other compressed soils exhibited forward scattering, while outcrop rocks were intermediate in their scattering behaviors. Some phase functions exhibited wavelength-dependent trends that may result from variations in thin deposits of airfall dust that occurred during the mission.

  9. Estimating evapotranspiration of riparian vegetation using high resolution multispectral, thermal infrared and lidar data

    NASA Astrophysics Data System (ADS)

    Neale, Christopher M. U.; Geli, Hatim; Taghvaeian, Saleh; Masih, Ashish; Pack, Robert T.; Simms, Ronald D.; Baker, Michael; Milliken, Jeff A.; O'Meara, Scott; Witherall, Amy J.

    2011-11-01

    High resolution airborne multispectral and thermal infrared imagery was acquired over the Mojave River, California with the Utah State University airborne remote sensing system integrated with the LASSI imaging Lidar also built and operated at USU. The data were acquired in pre-established mapping blocks over a 2 day period covering approximately 144 Km of the Mojave River floodplain and riparian zone, approximately 1500 meters in width. The multispectral imagery (green, red and near-infrared bands) was ortho-rectified using the Lidar point cloud data through a direct geo-referencing technique. Thermal Infrared imagery was rectified to the multispectral ortho-mosaics. The lidar point cloud data was classified to separate ground surface returns from vegetation returns as well as structures such as buildings, bridges etc. One-meter DEM's were produced from the surface returns along with vegetation canopy height also at 1-meter grids. Two surface energy balance models that use remote sensing inputs were applied to the high resolution imagery, namely the SEBAL and the Two Source Model. The model parameterizations were slightly modified to accept high resolution imagery (1-meter) as well as the lidar-based vegetation height product, which was used to estimate the aerodynamic roughness length. Both models produced very similar results in terms of latent heat fluxes (LE). Instantaneous LE values were extrapolated to daily evapotranspiration rates (ET) using the reference ET fraction, with data obtained from a local weather station. Seasonal rates were obtained by extrapolating the reference ET fraction according to the seasonal growth habits of the different species. Vegetation species distribution and area were obtained from classification of the multispectral imagery. Results indicate that cottonwood and salt cedar (tamarisk) had the highest evapotranspiration rates followed by mesophytes, arundo, mesquite and desert shrubs. This research showed that high

  10. Multi-spectral imaging with infrared sensitive organic light emitting diode

    PubMed Central

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  11. Non-contact temperature field measurement of solids by infrared multispectral thermotransmittance

    NASA Astrophysics Data System (ADS)

    Pradere, C.; Ryu, M.; Sommier, A.; Romano, M.; Kusiak, A.; Battaglia, J. L.; Batsale, J. C.; Morikawa, J.

    2017-02-01

    This work aims to achieve contactless absolute-temperature measurements of infrared-semi-transparent solids using an infrared thermal and spectroscopic imaging technique. The multispectral thermo-transmittance coefficient fields in the 3-5 μm wavelength range for Sapphire, KBr, and Silicon are determined to be 6 × 10-4 K-1, 4 × 10-4 K-1, and -3 × 10-3 K-1, respectively. The most interesting result is the high temperature-dependent transmittance coefficient in the middle wave infrared region. With these coefficients, the absolute temperature fields in a range from room temperature to 140 °C are shown.

  12. Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.

    1992-01-01

    Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.

  13. Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.

    1992-01-01

    Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.

  14. A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability.

    PubMed

    Tittl, Andreas; Michel, Ann-Katrin U; Schäferling, Martin; Yin, Xinghui; Gholipour, Behrad; Cui, Long; Wuttig, Matthias; Taubner, Thomas; Neubrech, Frank; Giessen, Harald

    2015-08-19

    A switchable perfect absorber with multispectral thermal imaging capability is presented. Aluminum nanoantenna arrays above a germanium antimony telluride (GST) spacer layer and aluminum mirror provide efficient wavelength-tunable absorption in the mid-infrared. Utilizing the amorphous-to-crystalline phase transition in GST, this device offers switchable absorption with strong reflectance contrast at resonance and large phase-change-induced spectral shifts.

  15. Multispectral infrared reflectography to differentiate features in paintings.

    PubMed

    Daffara, Claudia; Fontana, Raffaella

    2011-10-01

    Infrared reflectography is a well-known technique based on wideband imaging in the near-infrared (NIR) range used for painting diagnostics in conservation laboratories.. This work is focused on the application of multiband reflectography for analysis of pictorial layers and differentiated detection of painting features. This technique generates a set of narrowband NIR images of the painting. Starting from a dataset that is registered, metrically correct, and calibrated, the capability of collecting both spectral and spatial information has been exploited by processing the image cube with interplane techniques. Examples on artworks by Caravaggio, Veronese, Bronzino, and Schiavone are presented.

  16. Joint spatio-spectral based edge detection for multispectral infrared imagery.

    SciTech Connect

    Krishna, Sanjay; Hayat, Majeed M.; Bender, Steven C.; Sharma, Yagya D.; Jang, Woo-Yong; Paskalva, Biliana S.

    2010-06-01

    Image segmentation is one of the most important and difficult tasks in digital image processing. It represents a key stage of automated image analysis and interpretation. Segmentation algorithms for gray-scale images utilize basic properties of intensity values such as discontinuity and similarity. However, it is possible to enhance edge-detection capability by means of using spectral information provided by multispectral (MS) or hyperspectral (HS) imagery. In this paper we consider image segmentation algorithms for multispectral images with particular emphasis on detection of multi-color or multispectral edges. More specifically, we report on an algorithm for joint spatio-spectral (JSS) edge detection. By joint we mean simultaneous utilization of spatial and spectral characteristics of a given MS or HS image. The JSS-based edge-detection approach, termed Spectral Ratio Contrast (SRC) edge-detection algorithm, utilizes the novel concept of matching edge signatures. The edge signature represents a combination of spectral ratios calculated using bands that enhance the spectral contrast between the two materials. In conjunction with a spatial mask, the edge signature give rise to a multispectral operator that can be viewed as a three-dimensional extension of the mask. In the extended mask, the third (spectral) dimension of each hyper-pixel can be chosen independently. The SRC is verified using MS and HS imagery from a quantum-dot in a well infrared (IR) focal plane array, and the Airborne Hyperspectral Imager.

  17. MEMS for tunable multi-spectral infrared sensor arrays

    NASA Astrophysics Data System (ADS)

    Faraone, L.

    2005-09-01

    A monolithically integrated low temperature MEMS and HgCdTe infrared detector technology has been implemented and characterised. The MEMS-based optical filter, integrated with an infrared detector, selects narrow wavelength bands in the range from 1.6 to 2.5 μm within the short-wavelength infrared (SWIR) region of the electromagnetic spectrum. The entire fabrication process is compatible with two-dimensional infrared focal plane array technology. The fabricated device consists of an HgCdTe SWIR photoconductor, two distributed Bragg mirrors formed of Ge-SiO-Ge, a sacrificial spacer layer within the cavity, which is then removed to leave an air-gap, and a silicon nitride membrane for structural support. The tuning spectrum from fabricated MEMS filters on photoconductive detectors shows high percentage transmission and a wide tuning range which is achieved with a tuning voltage of only 7.5 V. The FWHM ranged from 95-105 nm over a tuning range of 2.2 μm to 1.85 μm. Finite element modelling of various geometries for the silicon nitride membrane is also presented. The modelling is used to determine the best geometry in terms of fill factor, voltage displacement prediction and membrane bowing. The results of stress response of low-temperature plasma-enhanced chemical vapour deposited silicon nitride thin films to thermal cycling are also presented.

  18. PbTe(Ga) -- New multispectral infrared photodetector

    SciTech Connect

    Belogorokhov, A.L.; Ivanchik, I.I.; Khokhlov, D.R.

    1998-12-31

    Doping of the lead telluride--narrow-gap semiconductor--with gallium results under certain conditions in the Fermi level pinning in the gap thus providing the semi insulating state of material. Besides that, the persistent photoconductivity effect is observed at temperatures T < {Tc} = 80 K. The photoresponse kinetics consists of two parts: the slow one with the characteristic time t{sub char} going up to 10{sup 4} s at T = 4.2 K, and the fast part with t{sub char} of the order of 10 ms. The authors have measured the spectra of a fast part of the photoresponse using the Fourier-transform spectrometer Bruker IFS-113v. The photoconductivity is observed in two spectral regions: in the middle- and far-infrared. Response in the middle-infrared consists of the ordinary fundamental band and a strong superimposed resonance-like structure just at the bandgap energy. The position of this spectral line may be tuned in a wide range (3.5--5.5) {micro}m by variation of temperature and/or composition of a lead telluride-based alloy. This middle-infrared photoresponse becomes considerable already at T = 160 K. The photoresponse in the far-infrared may be depending on the excitation conditions an analogous resonance-like structure at a wavelength 70 {micro}m, or a broad band with the cutoff wavelength at least higher than 500 {micro}m, which is the highest cutoff wavelength for the photon detectors observed up to date.

  19. Multispectral concealed weapon detection in visible, infrared, and terahertz

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Kastek, Mariusz; Polakowski, Henryk; Palka, Norbert; Piszczek, Marek; Szustakowski, Mieczyslaw

    2014-05-01

    Detection of concealed dangerous objects is a very demanding problem of public safety. So far, the problem of detecting objects hidden under clothing was considered only in the case of airports but it is becoming more and more important for public places like metro stations, and government buildings. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. It has been proved that objects hidden under clothing can be detected and visualized using terahertz (THz) cameras. However, passive THz cameras still offer too low image resolution for objects recognition. On the other hand new infrared cameras offer sufficient parameters to detect objects covered with fabrics in some conditions, as well as high image quality and big pixel resolutions. The purpose of the studies is to investigate the possibilities of using various cameras operating in different spectral ranges for detection of concealed objects. In the article, we present the measurement setup consisting of medium wavelength infrared (MWIR), long wavelength infrared (LWIR), THz and visible cameras and the initial results of measurements with various types of clothing and test objects.

  20. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  1. Multispectral uncooled infrared enhanced-vision system for flight test

    NASA Astrophysics Data System (ADS)

    Tiana, Carlo L.; Kerr, Richard; Harrah, Steven D.

    2001-08-01

    The 1997 Final Report of the 'White House Commission on Aviation Safety and Security' challenged industrial and government concerns to reduce aviation accident rates by a factor of five within 10 years. In the report, the commission encourages NASA, FAA and others 'to expand their cooperative efforts in aviation safety research and development'. As a result of this publication, NASA has since undertaken a number of initiatives aimed at meeting the stated goal. Among these, the NASA Aviation Safety Program was initiated to encourage and assist in the development of technologies for the improvement of aviation safety. Among the technologies being considered are certain sensor technologies that may enable commercial and general aviation pilots to 'see to land' at night or in poor visibility conditions. Infrared sensors have potential applicability in this field, and this paper describes a system, based on such sensors, that is being deployed on the NASA Langley Research Center B757 ARIES research aircraft. The system includes two infrared sensors operating in different spectral bands, and a visible-band color CCD camera for documentation purposes. The sensors are mounted in an aerodynamic package in a forward position on the underside of the aircraft. Support equipment in the aircraft cabin collects and processes all relevant sensor data. Display of sensor images is achieved in real time on the aircraft's Head Up Display (HUD), or other display devices.

  2. Soft nanomaterial-based targeting polymersomes for near-infrared fluorescence multispectral in vivo imaging

    NASA Astrophysics Data System (ADS)

    Li, Zuhong; Wu, Liyuan; Hu, Peiran; Han, Sihai; Zhang, Tao; Fan, Hongliang; Jin, Wei; Jin, Qinhan; Mu, Ying

    2012-10-01

    We report here the soft nanomaterial-based targeting polymersomes for near-infrared (NIR) fluorescence imaging to carry out in vivo tumor detection. Two polymersome-based NIR fluorescent probes were prepared through the self-assembly of amphiphilic block copolymers, poly(butadiene-b-ethylene oxide) (PEO-b-PBD). Each of them was encapsulated with distinct hydrophobic near-infrared dyes (DiD and DiR) and modified with different targeting ligands (anti-CEA antibody and anti-EGFR antibody), respectively. After simultaneous injection of these two probes into the tumor-bearing mice via tail vein, multispectral near-infrared fluorescence images were obtained. The results indicate that both probes are successfully directed to the tumor foci, where two distinguishable fluorescent signals were detected through the unmixed fluorescence images. By taking advantage of two targeting polymersome-based probes with distinct fluorescent features, the proposed multispectral near-infrared fluorescence imaging method can greatly improve the specificity and accuracy for in vivo tumor detection.

  3. Thermal Infrared Multispectral Analysis of Mafic Volcanic Rocks Near Gila Bend, Arizona

    NASA Astrophysics Data System (ADS)

    Knudson, A. T.; Christensen, P. R.

    2001-12-01

    Mapping the variability of rocks on the surface of Mars provides one means of studying the geologic history of the planet. The primary igneous rocks identified on Mars using the Thermal Emission Spectrometer (TES) include basaltic to andesitic compositions. While these rock types have been distinguished in the thermal infrared using the spectral resolutions afforded by spectrometers, they have not been well characterized using multispectral instruments such as the Thermal Emission Imaging System (THEMIS) currently en route to Mars. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Thermal Infrared Multispectral Scanner (TIMS) offer an opportunity to study terrestrial mafic rock compositions with multispectral instruments where there is the opportunity to compare results to field based studies and laboratory analysis of collected samples. Both the TIMS and ASTER instruments have coarser spectral resolution than THEMIS. TIMS provides 6 bands and ASTER provides 5, in contrast to the 9 unique bands for THEMIS. However, if these rock types are distinguishable at lower spectral resolutions in field conditions on Earth, THEMIS is likely to exceed their abilities at Mars. In this study, several basaltic to andesitic flows ranging in age from Tertiary ( ~20 Ma) to Quaternary (3 Ma) in the Gila Bend Mountains of southwestern Arizona are analyzed using ASTER and TIMS remote sensing data. The multispectral remote sensing data are deconvolved using laboratory mineral spectra resampled to the ASTER and TIMS instrument spectral resolutions. Comparison to laboratory and portable spectrometer data, as well as thin section analysis, provides the means to determine the accuracy of the deconvolution. Since these rocks differ in age, they exhibit variable amounts of weathering and rock varnish. These variable properties can be used to determine the proportion of the spectral signature that is due to coatings and weathering rinds versus host rock

  4. Application of combined Landsat thematic mapper and airborne thermal infrared multispectral scanner data to lithologic mapping in Nevada

    USGS Publications Warehouse

    Podwysocki, M.H.; Ehmann, W.J.; Brickey, D.W.

    1987-01-01

    Future Landsat satellites are to include the Thematic Mapper (TM) and also may incorporate additional multispectral scanners. One such scanner being considered for geologic and other applications is a four-channel thermal-infrared multispectral scanner having 60-m spatial resolution. This paper discusses the results of studies using combined Landsat TM and airborne Thermal Infrared Multispectral Scanner (TIMS) digital data for lithologic discrimination, identification, and geologic mapping in two areas within the Basin and Range province of Nevada. Field and laboratory reflectance spectra in the visible and reflective-infrared and laboratory spectra in the thermal-infrared parts of the spectrum were used to verify distinctions made between rock types in the image data sets.

  5. Direct, trans-irradiation and multispectral infrared imaging of a Titian canvas

    NASA Astrophysics Data System (ADS)

    Daffara, Claudia; Monti, Francesca; Fontana, Raffaella; Artoni, Paola; Salvadori, Ornella

    2013-05-01

    Near infrared imaging is a powerful technique for the analysis of ancient paintings, allowing the nondestructive examination of features underneath the pictorial surface. Beyond the unique nature of the artwork (materials and layer stratigraphy), the effectiveness of the technique in detecting any painting features is determined by the device performance (spectral sensitivity, acquisition band narrowness, spatial resolution) as well as by the irradiation setup. We performed multi-modal infrared imaging on a XVI century masterpiece by Titian using an InGaAs camera and different measurement setup. Acquisition was carried out in conventional reflection geometry and in trans-irradiation mode, as well as in wideband and multispectral modes. Preliminary results are presented and the potentialities of such infrared analysis discussed.

  6. Mapping Hydration with the Mars Exploration Rover (MER) Pancam Instruments: Recent Results from Opportunity at Endeavour Crater

    NASA Astrophysics Data System (ADS)

    Rice, Melissa S.; Bell, James F., III; Arvidson, Raymond E.; Farrand, William H.; Johnson, Jeffrey R.; Rice, James W.; Ruff, Steven W.; Squyres, Steven W.; Wang, Alian

    2013-04-01

    Using the Mars Exploration Rover (MER) Panoramic Camera (Pancam) instruments, we have developed a "hydration signature" for mapping H2O- and/or OH-bearing materials at Mars landing sites with multispectral visible to near-infrared (Vis-NIR) images. Pancam's 13 narrowband geology filters cover 11 unique wavelengths in the visible and near infrared (434 to 1009 nm) [1-2]. The hydration signature is based on a negative slope from 934 to 1009 nm [3] that characterizes the spectra of hydrated silica-rich rocks and soils observed by MER Spirit; this feature is likely due to the 2ν1 + ν3 H2O combination band and/or the 3νOH overtone centered near ~1000 nm, whose positions vary slightly depending on bonding to nearest-neighbor atoms [4]. The hydration signature is sensitive to many - but not all - hydrated minerals, including silica, gypsum and water ice. At Gusev Crater, the hydration signature is widespread along Spirit's traverse in the Columbia Hills, which adds to the growing body of evidence that aqueous alteration has played a significant role in the complex geologic history of this site [4]. At Meridiani Planum, the hydration signature is associated with a specific stratigraphic layer ("Smith") exposed within the walls of Victoria Crater [5], in addition to light-toned veins composed of calcium sulfate at Cape York on the rim of Endeavour Crater [6]. Recently, Opportunity has completed a traverse loop at Matijevic Hill at the southern end of Cape York and has encountered numerous small, light-toned, fracture-filling veins that may be indicative of fluid flow. Spectra of these veins are also consistent with hydrated materials, as are spectra of "Whitewater Lake" outcrops at Matijevic Hill, which may contain phyllosilicate minerals [7-8]. Here we also discuss limitations to the use of the hydration signature, which can give false detections under specific viewing geometries. For example, the Pancam calibration model assumes that the calibration target behaves as a

  7. Detection of pathological aortic tissues by infrared multispectral imaging and chemometrics.

    PubMed

    Bonnier, F; Bertrand, D; Rubin, S; Ventéo, L; Pluot, M; Baehrel, B; Manfait, M; Sockalingum, G D

    2008-06-01

    Processing of multispectral images is becoming an important issue, especially in terms of data mining for disease diagnosis. We report here an original image analysis procedure developed in order to compare 42 infrared multispectral images acquired on human ascending aortic healthy and pathological tissues. Each image contained about 2500 infrared absorption spectra, each composed of 1641 variables (wavenumbers). To process this large data set, we have restricted the spectral window used to the 1800-950 cm(-1) spectral range and selected 100 spectra from the aortic media, which is the most altered part of the aortic tissue in aneurysms. Prior to this selection, a spectral quality test was performed to eliminate 'bad' spectra. Our data set was first subjected to a discriminant analysis, which allowed separation of aortic tissues in two groups corresponding respectively to normal and aneurysmal states. Then a K-means analysis, based on 20 groups, allowed reconstruction of infrared images using false-colours and discriminated between pathological and healthy tissues. These results demonstrate the usefulness of such data processing methods for the analysis and comparison of a set of spectral images.

  8. The ExoMars PanCam Instrument

    NASA Astrophysics Data System (ADS)

    Griffiths, Andrew; Coates, Andrew; Muller, Jan-Peter; Jaumann, Ralf; Josset, Jean-Luc; Paar, Gerhard; Barnes, David

    2010-05-01

    The ExoMars mission has evolved into a joint European-US mission to deliver a trace gas orbiter and a pair of rovers to Mars in 2016 and 2018 respectively. The European rover will carry the Pasteur exobiology payload including the 1.56 kg Panoramic Camera. PanCam will provide multispectral stereo images with 34 deg horizontal field-of-view (580 microrad/pixel) Wide-Angle Cameras (WAC) and (83 microrad/pixel) colour monoscopic "zoom" images with 5 deg horizontal field-of-view High Resolution Camera (HRC). The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage [1]. Integrated with the WACs and HRC into the PanCam optical bench (which helps the instrument meet its planetary protection requirements) is the PanCam interface unit (PIU); which provides image storage, a Spacewire interface to the rover and DC-DC power conversion. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission [2] as well as providing multispectral geological imaging, colour and stereo panoramic images and solar images for water vapour abundance and dust optical depth measurements. The High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls. Additionally HRC will be used to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. In short, PanCam provides the overview and context for the ExoMars experiment locations, required to enable the exobiology aims of the mission. In addition to these baseline capabilities further enhancements are possible to PanCam to enhance it's effectiveness for astrobiology and planetary exploration: 1. Rover Inspection Mirror (RIM) 2. Organics Detection by Fluorescence Excitation (ODFE) LEDs [3-6] 3. UVIS broadband UV Flux and Opacity Determination (UVFOD) photodiode This paper will discuss the scientific objectives and resource

  9. Lunar PanCam: Adapting ExoMars PanCam for the ESA Lunar Lander

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Griffiths, A. D.; Leff, C. E.; Schmitz, N.; Barnes, D. P.; Josset, J.-L.; Hancock, B. K.; Cousins, C. R.; Jaumann, R.; Crawford, I. A.; Paar, G.; Bauer, A.; the PanCam Team

    2012-12-01

    A scientific camera system would provide valuable geological context from the surface for lunar lander missions. Here, we describe the PanCam instrument from the ESA ExoMars rover and its possible adaptation for the proposed ESA lunar lander. The scientific objectives of the ESA ExoMars rover are designed to answer several key questions in the search for life on Mars. The ExoMars PanCam instrument will set the geological and morphological context for that mission. We describe the PanCam scientific objectives in geology, and atmospheric science, and 3D vision objectives. We also describe the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has a filter wheel, and a High Resolution Camera for close up investigations. The cameras are housed in an optical bench (OB) and electrical interface is provided via the PanCam Interface Unit (PIU). Additional hardware items include a PanCam Calibration Target (PCT). We also briefly discuss some PanCam testing during field trials. In addition, we examine how such a 'Lunar PanCam' could be adapted for use on the Lunar surface on the proposed ESA lunar lander.

  10. A multispectral study of an extratropical cyclone with Nimbus 3 medium resolution infrared radiometer data

    NASA Technical Reports Server (NTRS)

    Holub, R.; Shenk, W. E.

    1973-01-01

    Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement.

  11. Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Realmuto, V.J.; Hon, K.; Kahle, A.B.; Abbott, E.A.; Pieri, D.C.

    1992-01-01

    Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10?? C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense. ?? 1992 Springer-Verlag.

  12. Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images

    USGS Publications Warehouse

    Crowley, J.K.; Hook, S.J.

    1996-01-01

    Efflorescent salt crusts and associated sediments in Death Valley, California, were studied with remote-sensing data acquired by the NASA thermal infrared multispectral scanner (TIMS). Nine spectral classes that represent a variety of surface materials were distinguished, including several classes that reflect important aspects of the playa groundwater chemistry and hydrology. Evaporite crusts containing abundant thenardite (sodium sulfate) were mapped along the northern and eastern margins of the Cottonball Basin, areas where the inflow waters are rich in sodium. Gypsum (calcium sulfate) crusts were more common in the Badwater Basin, particularly near springs associated with calcic groundwaters along the western basin margin. Evaporite-rich crusts generally marked areas where groundwater is periodically near the surface and thus able to replenish the crusts though capillary evaporation. Detrital silicate minerals were prevalent in other parts of the salt pan where shallow groundwater does not affect the surface composition. The surface features in Death Valley change in response to climatic variations on several different timescales. For example, salt crusts on low-lying mudflats form and redissolve during seasonal-to-interannual cycles of wetting and desiccation. In contrast, recent flooding and erosion of rough-salt surfaces in Death Valley probably reflect increased regional precipitation spanning several decades. Remote-sensing observations of playas can provide a means for monitoring changes in evaporite facies and for better understanding the associated climatic processes. At present, such studies are limited by the availability of suitable airborne scanner data. However, with the launch of the Earth Observing System (EOS) AM-1 Platform in 1998, multispectral visible/near-infrared and thermal infrared remote-sensing data will become globally available. Copyright 1996 by the American Geophysical Union.

  13. Mineral Classification of the Martian Surface Using THEMIS Multi-Spectral Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Osterloo, M. M.; Brumby, S. P.; Funsten, H. O.; Feldman, W. C.

    2004-12-01

    Recent advancements in multi-spectral imaging and image analysis techniques have greatly enhanced our ability to do planetary research. Much has been discovered about Mars through recent missions such as Mars Global Surveyor, 2001 Mars Odyssey, and the Mars Exploration Rovers. The Thermal Emission Spectrometer on board the Mars Global Surveyor has allowed the mapping of surface mineralogies on Mars at several kilometers scale through hyperspectral imaging [1]. Here, we use the high resolution multi-spectral imagery of THEMIS (THermal Emission Imaging System) on board the 2001 Mars Odyssey to identify different mineral classes at spatial scales of hundreds of meters. THEMIS contains two independent multi-spectral imaging systems: a 10-band thermal infrared imager (IR) with a resolution of 100m/pixel, and a 5-band visible imager with a resolution of 10m/pixel. Here we will use the IR data. The 9 IR bands are centered from 6.8 microns to 14 .9 microns [2]. Using Arizona State University's online spectral library[3], we have been investigating the extent to which we can differentiate between different mineral classes. By identifying certain mineral classes we can better understand the geologic processes which created them and detect areas of interest for further study. Linear mixing of minerals and dust is investigated to estimate ratios of minerals and their resulting spectra. We then compare these spectra to observations of several regions on Mars. We compare these results with TES data and previous mineralogical maps. [1] Christensen et al, (2001) JGR 106, E10; [2] Christensen et al, (2002) Space Science Reviews 110, 1; [3] Christensen et al, (2000) JGR 105, E4

  14. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  15. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  16. Quantitative evaluation of water bodies dynamic by means of thermal infrared and multispectral surveys on the Venetian lagoon

    NASA Technical Reports Server (NTRS)

    Alberotanza, L.; Lechi, G. M.

    1977-01-01

    Surveys employing a two channel Daedalus infrared scanner and multispectral photography were performed. The spring waning tide, the velocity of the water mass, and the types of suspended matter were among the topics studied. Temperature, salinity, sediment transport, and ebb stream velocity were recorded. The bottom topography was correlated with the dynamic characteristics of the sea surface.

  17. Optical assembly of a visible through thermal infrared multispectral imaging system

    SciTech Connect

    Henson, T.; Bender, S.; Byrd, D.; Rappoport, W.; Shen, G.Y.

    1998-06-01

    The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

  18. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification

    NASA Astrophysics Data System (ADS)

    Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian

    2012-07-01

    Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.

  19. Quantitative evaluation of atherosclerotic plaque phantom by near-infrared multispectral imaging with three wavelengths

    NASA Astrophysics Data System (ADS)

    Nagao, Ryo; Ishii, Katsunori; Awazu, Kunio

    2014-03-01

    Atherosclerosis is a primary cause of critical ischemic disease. The risk of critical event is involved the content of lipid in unstable plaque. Near-infrared (NIR) range is effective for diagnosis of atherosclerotic plaque because of the absorption peaks of lipid. NIR multispectral imaging (NIR-MSI) is suitable for the evaluation of plaque because it can provide spectroscopic information and spatial image quickly with a simple measurement system. The purpose of this study is to evaluate the lipid concentrations in plaque phantoms quantitatively with a NIR-MSI system. A NIR-MSI system was constructed with a supercontinuum light, a grating spectrometer and a MCT camera. Plaque phantoms with different concentrations of lipid were prepared by mixing bovine fat and a biological soft tissue model to mimic the different stages of unstable plaque. We evaluated the phantoms by the NIR-MSI system with three wavelengths in the band at 1200 nm. Multispectral images were processed by spectral angle mapper method. As a result, the lipid areas of phantoms were effectively highlighted by using three wavelengths. In addition, the concentrations of lipid areas were classified according to the similarity between measured spectra and a reference spectrum. These results suggested the possibility of image enhancement and quantitative evaluation of lipid in unstable plaque with a NIR-MSI.

  20. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification.

    PubMed

    Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian

    2012-07-01

    Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.

  1. Mapping the Piute Mountains, CA with Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Hook, S. J.; Karlstrom, K. E.; Miller, C. F.; McCaffrey, K. J. W.

    1993-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired in 1990 over the PiuteMountains, California to evaluate their usefulness for lithologic mapping in an area ofmetamorphosed, structurally complex, igneous and sedimentary rocks. The data were calibrated,atmospherically corrected, and emissivity variations extracted from them. There was an excellentvisual correlation between the units revealed in the TIMS data and the recent mapping in the easternside of the area. It was also possible to correct, improve and extend the recent map. For example,several areas of amphibolite were identified in the TIMS data that had been incorrectly mapped asgranodioritic gneiss, and the presence of a swarm of mafic dikes, of which only a few had previouslybeen identified, was revealed...

  2. Reciprocity testing of Kodak film type SO-289 multispectral infrared aerial film

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    Kodak multispectral infrared aerial film type SO-289 was tested for reciprocity characteristics because of the variance between the I-B sensitometer exposure times (8 seconds and 4 seconds) and the camera exposure time (1/500 second) used on the ASTP stratospheric aerosol measurement project. Test exposures were made on the flight emulsion using a Mead star system sensitometer, the films were processed to ASTP control standards, and the resulting densities read and reciprocity data calculated. It was found that less exposure was required to produce a typical density (1.3) at 1/500 second exposure time than at an 8 second exposure time. This exposure factor was 2.8.

  3. Multispectral imaging in the extended near-infrared window based on endogenous chromophores

    PubMed Central

    Cao, Qian; Zhegalova, Natalia G.; Wang, Steven T.; Akers, Walter J.

    2013-01-01

    Abstract. To minimize the problem with scattering in deep tissues while increasing the penetration depth, we explored the feasibility of imaging in the relatively unexplored extended near infrared (exNIR) spectral region at 900 to 1400 nm with endogenous chromophores. This region, also known as the second NIR window, is weakly dominated by absorption from water and lipids and is free from other endogenous chromophores with virtually no autofluorescence. To demonstrate the applicability of the exNIR for bioimaging, we analyzed the optical properties of individual components and biological tissues using an InGaAs spectrophotometer and a multispectral InGaAs scanning imager featuring transmission geometry. Based on the differences in spectral properties of tissues, we utilized ratiometric approaches to extract spectral characteristics from the acquired three-dimensional “datacube”. The obtained images of an exNIR transmission through a mouse head revealed sufficient details consistent with anatomical structures. PMID:23933967

  4. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    NASA Technical Reports Server (NTRS)

    Langran, K. J.

    1985-01-01

    The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. These zones represent a spectrum of disturbance types and intensities that can be indexed by temperature, impact force, and depth of subsequent deposition. This paper describes an application of NASA's Thermal Infrared Multispectral Scanner (TIMS) in monitoring vegetation recovery patterns in disturbed areas. Preliminary study results indicate a significant correlation between measured effective radiant temperature and vegetated/nonvegetated areas, percent vegetation cover, and vegetation type.

  5. Nighttime Monitoring of Volcanic Eruptions with Satellite-Based Multispectral Infrared Radiometers

    NASA Astrophysics Data System (ADS)

    Zhizhin, M. N.; Trifonov, G.

    2015-12-01

    The Nightfire algorithm for detection of night-time infrared sources with multispectral radiometers from the Suomi NPP and Landsat 8 satellites can be used for global monitoring of volcanic activity. By searching the spatio-temporal database of the Nightfire detections in the vicinity of active volcanoes we can reconstruct the day-by-day history of recent eruptions, including the temperature and size of the lava flow. By correlation of the detections from different satellite zenith angles in some cases we can derive the 3D geometry of the lava lake. Potential application may be an early alert system to monitor remote volcanoes which are out of reach for permanent ground instrumentation network.

  6. A Near-Infrared (NIR) Global Multispectral Map of the Moon from Clementine

    NASA Technical Reports Server (NTRS)

    Eliason, E. M.; Lee, E. M.; Becker, T. L.; Weller, L. A.; Isbell, C. E.; Staid, M. I.; Gaddis, L. R.; McEwen, A. S.; Robinson, M. S.; Duxbury, T.

    2003-01-01

    In May and June of 1994, the NASA/DoD Clementine Mission acquired global, 11- band, multispectral observations of the lunar surface using the ultraviolet-visible (UVVIS) and near-infrared (NIR) camera systems. The global 5-band UVVIS Digital Image Model (DIM) of the Moon at 100 m/pixel was released to the Planetary Data System (PDS) in 2000. The corresponding NIR DIM has been compiled by the U.S. Geological Survey for distribution to the lunar science community. The recently released NIR DIM has six spectral bands (1100, 1250, 1500, 2000, 2600, and 2780 nm) and is delivered in 996 quads at 100 m/pixel (303 pixels/degree). The NIR data were radiometrically corrected, geometrically controlled, and photometrically normalized to form seamless, uniformly illuminated mosaics of the lunar surface.

  7. A scan-angle correction for thermal infrared multispectral data using side lapping images

    USGS Publications Warehouse

    Watson, K.

    1996-01-01

    Thermal infrared multispectral scanner (TIMS) images, acquired with side lapping flight lines, provide dual angle observations of the same area on the ground and can thus be used to estimate variations in the atmospheric transmission with scan angle. The method was tested using TIMS aircraft data for six flight lines with about 30% sidelap for an area within Joshua Tree National Park, California. Generally the results correspond to predictions for the transmission scan-angle coefficient based on a standard atmospheric model although some differences were observed at the longer wavelength channels. A change was detected for the last pair of lines that may indicate either spatial or temporal atmospheric variation. The results demonstrate that the method provides information for correcting regional survey data (requiring multiple adjacent flight lines) that can be important in detecting subtle changes in lithology.

  8. Determination of water surface temperature based on the use of Thermal Infrared Multispectral Scanner data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1992-01-01

    A straightforward method for compensating Thermal Infrared Multispectral Scanner (TIMS) digital data for the influence of atmospheric path radiance and the attenuation of target energy by the atmosphere is presented. A band ratioing model useful for estimating water surface temperatures, which requires no ground truth measurements, is included. A study conducted to test the potential of the model and the magnitudes of the corrections for atmosphere encountered is presented. Results of the study, which was based on data collected during an engineering evaluation flight of TIMS, indicate errors in the estimate of the surface temperature of the water fall from +/- 1.0 C for uncorrected data to +/- 0.4 C when data have been corrected according to the model presented. This value approaches the noise-limited thermal resolution of the sensor at the time of the flight.

  9. Analysis of effective radiant temperatures in a Pacific Northwest forest using Thermal Infrared Multispectral Scanner data

    NASA Technical Reports Server (NTRS)

    Sader, S. A.

    1986-01-01

    Analysis of Thermal Infrared Multispectral Scanner data collected over H. J. Andrews experimental forest in western Oregon indicated that aspect and slope gradient had a greater effect on the thermal emission of younger reforested clearcuts than of older stands. Older forest stands (older than 25 years) with greater amounts of green biomass and closed canopies, had lower effective radiant temperatures than younger, less dense stands. Aspect and slope had little effect on the effective radiant temperature of these older stands. Canopy temperature recorded at approximately 1:30 pm local time July 29, 1983 were nearly equal to maximum daily air temperature recorded at eight reference stands. The investigation provided some insights into the utility of the thermal sensor for detecting surface temperature differences related to forest composition and green biomass amounts in mountain terrain.

  10. Feature extraction of fog from multi-spectral infrared images of FY-2C geostationary satellite

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Liu, Tang-you; Xu, Wu-jun

    2007-12-01

    FY-2C is geostationary satellite which is researched and developed by China. The primary advantage of geostationary satellite is the ability to characterize the radiance by obtaining numerous views of a specific earth location at any time of a day. This allows the production of a composite image to monitor short-term weather better. This paper describes a technique that uses multi-spectral infrared composite images of FY-2C to estimate particles emission and recognize fog at night. Radiations of particles detected by FY-2C at different wavelengths are analyzed combined with solar spectral irradiance. Having several spectral bands makes the analysis algorithms more complex and inefficient, thus it is important to choose the most respective bands. By applying Karhunen-Loeve transform to raw data of FY-2C, the infrared images are analyzed. By comparing Eigen image of these infrared images with visible image in the same batch, it is concluded that data of IR3 contribute to the first Eigen image mostly, which shows that the newly added IR3 channel of FY-2C has greatly improved the ability of distinguishing short time weather phenomena. Producing composite images by calculation and analysis at sequential period of time can clearly show changes of fog coverage. The improvement of the geostationary satellite instruments that have come to pass will encourage more widespread use of these derived products in the coming years.

  11. Passive signatures concealed objects recorded by multispectral and hyperspectral systems in visible, infrared and terahertz range

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Kowalski, Marcin; Polakowski, Henryk; Lagueux, Philippe; Gagnon, Marc-André

    2014-06-01

    Risks to the safety of public zones (generally available for people) are related mainly to the presence of hidden dangerous objects (such as knives, guns, bombs etc.) and their usage. Modern system for the monitoring of such zones attempt to detect dangerous tools using multispectral cameras working in different spectral ranges: the visible radiation, near, medium and long range infrared and recently also in terahertz range. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 µm. An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 µm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for: two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.

  12. Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.; McDowell, Meryl

    2015-05-01

    Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.

  13. Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    NASA Technical Reports Server (NTRS)

    Pope, P. A.; Emery, W. J.; Radebaugh, M.

    1992-01-01

    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared

  14. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 3. Sols 500-1525

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Grundy, William M.; Lemmon, Mark T.; Bell, James F.; Deen, R. G.

    2015-03-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rovers Spirit and Opportunity acquired visible/near-infrared (432-1009 nm) multispectral observations of soils and rocks under varying viewing and illumination geometries. Data retrieved from these images were modeled using radiative transfer theory to study the microphysical and surface scattering nature of materials at both sites. Nearly 57,000 individual measurements from 1900 images were collected of rock and soil units identified by their color and morphologic properties over a wide range of phase angles (0-150°). Images were acquired between Sols 500 and 1525 in the Columbia Hills and regions around Home Plate in Gusev Crater and in the plains and craters between Erebus and Victoria Craters in Meridiani Planum. Corrections for diffuse skylight incorporated sky models based on observations of atmospheric opacity throughout the mission. Disparity maps created from Pancam stereo images allowed estimates of local facet orientations. For Spirit, soils at lower elevations near Home Plate were modeled with lower single scattering albedo (w) values than those on the summit of Husband Hill, but otherwise soils exhibited similar scattering properties to previous Gusev soils. Dark ripple sands at the El Dorado dunes were among the most forward-scattering materials modeled. Silica-rich soils and nodules near Home Plate were analyzed for the first time, and exhibited increased forward scattering behavior with increasing wavelength, consistent with microporosity inferred from previous high resolution images and thermal infrared spectroscopy. For Opportunity, the opposition effect width parameter for sandstone outcrop rocks was modeled for the first time, and demonstrated average values consistent with surfaces of intermediate porosity and/or grain size distribution between those modeled for spherule-rich soils and darker, clast-poor soils. Soils outside a wind streak emanating from the northern rim of Victoria Crater

  15. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    NASA Astrophysics Data System (ADS)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  16. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner

    NASA Technical Reports Server (NTRS)

    Ondrusek, Jaime; Christensen, Philip R.; Fink, Jonathan H.

    1993-01-01

    To investigate the effect of vesicularity on TIMS (Thermal Infrared Multispectral Scanner) imagery independent of chemical variations, we studied a large rhyolitic flow of uniform composition but textural heterogeneity. The imagery was recalibrated so that the digital number values for a lake in the scene matched a calculated ideal spectrum for water. TIMS spectra for the lava show useful differences in coarsely and finely vesicular pumice data, particularly in TIMS bands 3 and 4. Images generated by ratioing these bands accurately map out those areas known from field studies to be coarsely vesicular pumice. These texture-related emissivity variations are probably due to the larger vesicles being relatively deeper and separated by smaller septa leaving less smooth glass available to give the characteristic emission of the lava. In studies of inaccessible lava flows (as on Mars) areas of coarsely vesicular pumice must be identified and avoided before chemical variations can be interpreted. Remotely determined distributions of vesicular and glassy textures can also be related to the volatile contents and potential hazards associated with the emplacement of silicic lava flows on Earth.

  17. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    NASA Technical Reports Server (NTRS)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  18. Using the thermal infrared multispectral scanner (TIMS) to estimate surface thermal responses

    NASA Astrophysics Data System (ADS)

    Luvall, J. C.; Holbo, H. R.

    1987-07-01

    A series of measurements was conducted over the H.J. Andrews, Oregon, experimental coniferous forest, using airborne thermal infrared multispectral scanner (TIMS). Flight lines overlapped, with a 28-min time difference between flight lines. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture were used for atmospheric radiance corrections of the TIMS data. Surface temperature differences over time between flight lines were used to develop thermal response numbers (TRNs) which characterized the thermal response (in KJ/sq m/C, where K is the measured incoming solar radiation) of the different surface types. The surface types included a mature forest (canopy dominated by dense crowns of Pseudosuga menziesii, with a secondary canopy of dense Tsuga heterophylla, and also a tall shrub layer of Acer circinatum) and a two-year-old clear-cut. The temperature distribution, within TIMS thermal images was found to reflect the surface type examined. The clear-cut surface had the lowest TRN, while mature Douglas fir the highest.

  19. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner

    NASA Technical Reports Server (NTRS)

    Ondrusek, Jaime; Christensen, Philip R.; Fink, Jonathan H.

    1993-01-01

    To investigate the effect of vesicularity on TIMS (Thermal Infrared Multispectral Scanner) imagery independent of chemical variations, we studied a large rhyolitic flow of uniform composition but textural heterogeneity. The imagery was recalibrated so that the digital number values for a lake in the scene matched a calculated ideal spectrum for water. TIMS spectra for the lava show useful differences in coarsely and finely vesicular pumice data, particularly in TIMS bands 3 and 4. Images generated by ratioing these bands accurately map out those areas known from field studies to be coarsely vesicular pumice. These texture-related emissivity variations are probably due to the larger vesicles being relatively deeper and separated by smaller septa leaving less smooth glass available to give the characteristic emission of the lava. In studies of inaccessible lava flows (as on Mars) areas of coarsely vesicular pumice must be identified and avoided before chemical variations can be interpreted. Remotely determined distributions of vesicular and glassy textures can also be related to the volatile contents and potential hazards associated with the emplacement of silicic lava flows on Earth.

  20. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array

    PubMed Central

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine

    2016-01-01

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme. PMID:27721506

  1. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array

    NASA Astrophysics Data System (ADS)

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine

    2016-10-01

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.

  2. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array.

    PubMed

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J; Urbas, Augustine

    2016-10-10

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed "algorithmic spectrometry". We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.

  3. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  4. Retrieving Land Surface Temperature and Emissivity from Multispectral and Hyperspectral Thermal Infrared Instruments

    NASA Astrophysics Data System (ADS)

    Hook, Simon; Hulley, Glynn; Nicholson, Kerry

    2017-04-01

    Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.

  5. Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Iron Hill, Colorado

    USGS Publications Warehouse

    Watson, K.; Rowan, L.C.; Bowers, T.L.; Anton-Pacheco, C.; Gumiel, P.; Miller, S.H.

    1996-01-01

    Airborne thermal-infrared multispectral scanner (TIMS) data of the Iron Hill carbonatite-alkalic igneous rock complex in south-central Colorado are analyzed using a new spectral emissivity ratio algorithm and confirmed by field examination using existing 1:24 000-scale geologic maps and petrographic studies. Color composite images show that the alkalic rocks could be clearly identified and that differences existed among alkalic rocks in several parts of the complex. An unsupervised classification algorithm defines four alkalic rock classes within the complex: biotitic pyroxenite, uncompahgrite, augitic pyroxenite, and fenite + nepheline syenite. Felsic rock classes defined in the surrounding country rock are an extensive class consisting of tuff, granite, and felsite, a less extensive class of granite and felsite, and quartzite. The general composition of the classes can be determined from comparisons of the TIMS spectra with laboratory spectra. Carbonatite rocks are not classified, and we attribute that to the fact that dolomite, the predominant carbonate mineral in the complex, has a spectral feature that falls between TIMS channels 5 and 6. Mineralogical variability in the fenitized granite contributed to the nonuniform pattern of the fenite-nepheline syenite class. The biotitic pyroxenite, which resulted from alteration of the pyroxenite, is spatially associated and appears to be related to narrow carbonatite dikes and sills. Results from a linear unmixing algorithm suggest that the detected spatial extent of the two mixed felsic rock classes was sensitive to the amount of vegetation cover. These results illustrate that spectral thermal infrared data can be processed to yield compositional information that can be a cost-effective tool to target mineral exploration, particularly in igneous terranes.

  6. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  7. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  8. Lipid volume fraction in atherosclerotic plaque phantoms classified under saline conditions by multispectral angioscopy at near-infrared wavelengths around 1200 nm.

    PubMed

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-05-01

    To identify high-risk atherosclerotic lesions, we require detailed information on the stability of atherosclerotic plaques. In this study, we quantitatively classified the lipid volume fractions in atherosclerotic plaque phantoms by a novel angioscope combined with near-infrared multispectral imaging. The multispectral angioscope was operated at peak absorption wavelengths of lipid in vulnerable plaques (1150, 1200, and 1300 nm) and at lower absorption wavelengths of water. The potential of the multispectral angioscope was demonstrated in atherosclerotic plaque phantoms containing 10-60 vol.% lipid and immersed in saline solution. The acquired multispectral data were processed by a spectral angle mapper algorithm, which enhanced the simulated plaque areas. Consequently, we classified the lipid volume fractions into five categories (0-5, 5-15, 15-30, 30-50, and 50-60 vol.%). Multispectral angioscopy at wavelengths around 1200 nm is a powerful tool for quantitatively evaluating the stability of atherosclerotic plaques based on the lipid volume fractions.

  9. RIS4E at Kilauea's December 1974 Flow: Assessing the Integration of Portable Infrared Multispectral Imaging into Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Ito, G.; Rogers, D.; Bleacher, J. E.; Young, K. E.; Edwards, C. S.; Glotch, T. D.

    2015-12-01

    Portable, hand-held geochemical and mineralogical instruments are potentially valuable tools to be used in sample collection and site documentation activities during future human missions to planetary bodies. The main purpose of these instruments is to allow fast in situ analyses of rocks and soils so that astronauts can quickly document sample characteristics and context, and make strategic decisions on sample selection in the context of predefined scientific objectives. As part of the Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) investigation, we test the performance of candidate instruments and operational procedures through fieldwork expeditions that simulate lunar and asteroid environments on Earth. Our field site, Kilauea Volcano in Hawaii, is a lava field with landscape and mineralogy that represent a reasonable analog to the Moon and some differentiated asteroids. In this paper, we focus on one of the candidate instruments, the infrared multispectral imager. During field expeditions in 2014 and 2015, we explored the applicability of the multispectral imager in manned surface operations. From these expeditions, our instrument calibration techniques and data collection procedures matured. Current work focuses on assessment of data product usefulness, through comparison with detailed laboratory chemical and spectral measurements, and field descriptions of surface textures. Our field expeditions will continue in other analog locations to obtain improved understanding of the multispectral imager and its role in sampling workflow so that science return can be maximized in future human missions.

  10. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  11. Pancam Mast Assembly on Mars Rover

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.; Cross, Mike; Harvison, Doug

    2004-01-01

    The Pancam Mast Assembly (PMA) for the 2003 Mars Rover is a deployable structure that provides an elevated platform for several cameras. The PMA consists of several mechanisms that enable it to raise the cameras as well as point the cameras in all directions. This paper describes the function of the various mechanisms as well as a description of the mechanisms and some test parameters. Designing these mechanisms to operate on the surface of Mars presented several challenges. Typical spacecraft mechanisms must operate in zero-gravity and high vacuum. These mechanisms needed to be designed to operate in Martian gravity and atmosphere. Testing conditions were a little easier because the mechanisms are not required to operate in a vacuum. All of the materials are vacuum compatible, but the mechanisms were tested in a dry nitrogen atmosphere at various cold temperatures.

  12. Pancam Peek into 'Victoria Crater' (Stereo)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA08776

    [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA08776

    A drive of about 60 meters (about 200 feet) on the 943rd Martian day, or sol, of Opportunity's exploration of Mars' Meridiani Planum region (Sept. 18, 2006) brought the NASA rover to within about 50 meters (about 160 feet) of the rim of 'Victoria Crater.' This crater has been the mission's long-term destination for the past 21 Earth months. Opportunity reached a location from which the cameras on top of the rover's mast could begin to see into the interior of Victoria. This stereo anaglyph was made from frames taken on sol 943 by the panoramic camera (Pancam) to offer a three-dimensional view when seen through red-blue glasses. It shows the upper portion of interior crater walls facing toward Opportunity from up to about 850 meters (half a mile) away. The amount of vertical relief visible at the top of the interior walls from this angle is about 15 meters (about 50 feet). The exposures were taken through a Pancam filter selecting wavelengths centered on 750 nanometers.

    Victoria Crater is about five times wider than 'Endurance Crater,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle Crater,' where Opportunity first landed. The great lure of Victoria is the expectation that a thick stack of geological layers will be exposed in the crater walls, potentially several times the thickness that was previously studied at Endurance and therefore, potentially preserving several times the historical record.

  13. Multispectral photography for earth resources

    NASA Technical Reports Server (NTRS)

    Wenderoth, S.; Yost, E.; Kalia, R.; Anderson, R.

    1972-01-01

    A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning.

  14. Near-infrared multispectral scattering for assessing internal quality of apple fruit

    NASA Astrophysics Data System (ADS)

    Lu, Renfu

    2004-03-01

    Firmness and sweetness are key quality attributes that determine the acceptability of apple fruit to the consumer. The objective of this research was to investigate a multispectral imaging system for simultaneous acquisition of multispectral scattering images from apple fruit to predict firmness and soluble solids content (SSC). A circular broadband light beam was used to generate light backscattering at the surface of apple fruit and scattering images were acquired, using a common aperture multispectral imaging system, from Red Delicious and Golden Delicious apple fruit for wavelengths at 680, 880, 905, and 940 nm. Scattering images were radially averaged to produce one-dimensional spectral scattering profiles, which were then input into a backpropagation neural network for predicting apple fruit firmness and SSC. It was found that the neural network performed best when 10 neurons and 20 epochs were used. With inputing three ratios of spectral profiles involving all four wavelengths, the neural network gave firmness predictions with the correlation (r) of 0.76 and the standard error for validation (SEV) of 6.2 N for Red Delicious apples and r=0.73 and SEV=8.9 N for Golden Delicious apples. Relatively good SSC predictions were obtained for both varieties with SEV=0.9° Brix.

  15. Multispectral demosaicking considering out-of-focus problem for red-green-blue-near-infrared image sensors

    NASA Astrophysics Data System (ADS)

    Kwon, Ji Yong; Kang, Moon Gi

    2016-03-01

    A near-infrared (NIR) band provides information invisible to human eyes for discriminating and recognizing objects more clearly under low lighting conditions. To capture color and NIR images simultaneously, a multispectral filter array (MSFA) sensor is used. However, because lenses have different refractive indices for different wavelengths, lenses may fail to focus all rays to the same convergence. This is the reason an out-of-focus problem occurs and images are blurred. In this paper, a demosaicking algorithm that considers the out-of-focus problem is proposed. This algorithm is used by the MSFA of a red-green-blue-NIR image sensor to obtain color and NIR images. After the energies of the multispectral (MS) channels in the MSFA image are balanced to minimize aliasing, that image is filtered by the estimated low-pass kernel to generate a panchromatic (PAN) image. When an image is acquired, the out-of-focus problem and the formation process of the PAN image are modeled. The desired MS image is estimated by solving the least squares approach of the difference between the PAN and MS images based on the models. The experimental results show that the proposed algorithm performs well in estimating high-quality MS images and reduces the out-of-focus problem.

  16. Mapping within-field variations of soil organic carbon content using UAV multispectral visible near-infrared images

    NASA Astrophysics Data System (ADS)

    Gilliot, Jean-Marc; Vaudour, Emmanuelle; Michelin, Joël

    2016-04-01

    This study was carried out in the framework of the PROSTOCK-Gessol3 project supported by the French Environment and Energy Management Agency (ADEME), the TOSCA-PLEIADES-CO project of the French Space Agency (CNES) and the SOERE PRO network working on environmental impacts of Organic Waste Products recycling on field crops at long time scale. The organic matter is an important soil fertility parameter and previous studies have shown the potential of spectral information measured in the laboratory or directly in the field using field spectro-radiometer or satellite imagery to predict the soil organic carbon (SOC) content. This work proposes a method for a spatial prediction of bare cultivated topsoil SOC content, from Unmanned Aerial Vehicle (UAV) multispectral imagery. An agricultural plot of 13 ha, located in the western region of Paris France, was analysed in April 2013, shortly before sowing while it was still bare soil. Soils comprised haplic luvisols, rendzic cambisols and calcaric or colluvic cambisols. The UAV platform used was a fixed wing provided by Airinov® flying at an altitude of 150m and was equipped with a four channels multispectral visible near-infrared camera MultiSPEC 4C® (550nm, 660nm, 735 nm and 790 nm). Twenty three ground control points (GCP) were sampled within the plot according to soils descriptions. GCP positions were determined with a centimetric DGPS. Different observations and measurements were made synchronously with the drone flight: soil surface description, spectral measurements (with ASD FieldSpec 3® spectroradiometer), roughness measurements by a photogrammetric method. Each of these locations was sampled for both soil standard physico-chemical analysis and soil water content. A Structure From Motion (SFM) processing was done from the UAV imagery to produce a 15 cm resolution multispectral mosaic using the Agisoft Photoscan® software. The SOC content was modelled by partial least squares regression (PLSR) between the

  17. Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California

    NASA Technical Reports Server (NTRS)

    Sabine, Charles; Realmuto, Vincent J.; Taranik, James V.

    1994-01-01

    We have produced images that quantitatively depict modal and chemical parameters of granitoids using an image processing algorithm called MINMAP that fits Gaussian curves to normalized emittance spectra recovered from thermal infrared multispectral scanner (TIMS) radiance data. We applied the algorithm to TIMS data from the Desolation Wilderness, an extensively glaciated area near the northern end of the Sierra Nevada batholith that is underlain by Jurassic and Cretaceous plutons that range from diorite and anorthosite to leucogranite. The wavelength corresponding to the calculated emittance minimum lambda(sub min) varies linearly with quartz content, SiO2, and other modal and chemical parameters. Thematic maps of quartz and silica content derived from lambda(sub min) values distinguish bodies of diorite from surrounding granite, identify outcrops of anorthosite, and separate felsic, intermediate, and mafic rocks.

  18. Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California

    NASA Technical Reports Server (NTRS)

    Sabine, Charles; Realmuto, Vincent J.; Taranik, James V.

    1994-01-01

    We have produced images that quantitatively depict modal and chemical parameters of granitoids using an image processing algorithm called MINMAP that fits Gaussian curves to normalized emittance spectra recovered from thermal infrared multispectral scanner (TIMS) radiance data. We applied the algorithm to TIMS data from the Desolation Wilderness, an extensively glaciated area near the northern end of the Sierra Nevada batholith that is underlain by Jurassic and Cretaceous plutons that range from diorite and anorthosite to leucogranite. The wavelength corresponding to the calculated emittance minimum lambda(sub min) varies linearly with quartz content, SiO2, and other modal and chemical parameters. Thematic maps of quartz and silica content derived from lambda(sub min) values distinguish bodies of diorite from surrounding granite, identify outcrops of anorthosite, and separate felsic, intermediate, and mafic rocks.

  19. A multispectral cloud type identification method developed for tropical ocean areas with Nimbus-3 MRIR measurements. [Medium Resolution Infrared Radiometer

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Neff, R. A.; Holub, R. J.

    1976-01-01

    A four-channel multispectral cloud type identification technique is developed on the basis of Nimbus-3 Resolution Infrared Radiometer (MRIR) measurements, with the four channels being spectrally located at 0.2-4.0, 6.5-7, 10-11, and 20-23 microns. The technique requires the use of a radiative transfer model with information on the vertical temperature and moisture profiles and climatological knowledge of the upper boundaries of cloud surfaces associated with expected cloud types within a given area. Experimental verification of the technique indicates that deletion of the 20-23 micron channel has no adverse effect on method capability, and that the 6.5-7 micron channel alone is well suited for successful mapping of the areas where cirrus is reasonably dense, while indicating the regions where cirrus is not present.

  20. Investigation of forest canopy temperatures recorded by the thermal infrared multispectral scanner at H. J. Andrews Experimental Forest

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1986-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were collected over the H. J. Andrews Experimental Forest in Western Oregon on July 29, 1983 at approximately 1:30 p.m., Pacific Standard Time. The relation of changes in canopy temperature to green leaf biomass levels in reforested clearcuts and old-growth forest was investigated. A digital data base was generated in order to isolate that portion of the thermal emission that could be attributed to surface properties other than the vegetation biomass component. The TIMS appears to be capable of detecting subtle differences in ERT as related to canopy closure and green lead biomass, however calibration techniques are needed to correct for emissivity and atmospheric effects.

  1. Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection.

    PubMed

    Alouini, Mehdi; Goudail, François; Grisard, Arnaud; Bourderionnet, Jérôme; Dolfi, Daniel; Bénière, Arnaud; Baarstad, Ivar; Løke, Trond; Kaspersen, Peter; Normandin, Xavier; Berginc, Gerard

    2009-03-10

    We report on the design and exploitation of a real-field laboratory demonstrator combining active polarimetric and multispectral functions. Its building blocks, including a multiwavelength pulsed optical parametric oscillator at the emission side and a hyperspectral imager with polarimetric capability at the reception side, are described. The results obtained with this demonstrator are illustrated on some examples and discussed. In particular it is found that good detection performances rely on joint use of intensity and polarimetric images, with these images exhibiting complementary signatures in most cases.

  2. Identification of hydrothermal mineralization in Baja California, Mexico from orbit using the Shuttle multispectral infrared radiometer

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Crowley, J. K.; Kingston, M. J.; Goetz, A. F. H.

    1983-01-01

    Data from the Space Shuttle Multispectral IR Radiometer (SMIRR), which is a 10-channel remote sensor designed to record narrow band spectral data in the 0.5-2.4 micron wavelength range, were used to identify and study a previously unreported area of hydrothermal alteration on the Baja California peninsula. Absorption at 2.17 microns, which is diagnostic of the minerals pyrophyllite, dickite, and alunite, was observed in many spectra and the presence of pyrophyllite and dickite was confirmed by X-ray diffraction analysis of field samples. Anomalously high Mo, B, Sn, Zr, and Ag were found in three samples.

  3. Simultaneous multispectral framing infrared camera using an embedded diffractive optical lenslet array

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2011-06-01

    Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.

  4. Detection of subpixel anomalies in multispectral infrared imagery using an adaptive Bayesian classifier

    SciTech Connect

    Ashton, E.A.

    1998-03-01

    The detection of subpixel targets with unknown spectral signatures and cluttered backgrounds in multispectral imagery is a topic of great interest for remote surveillance applications. Because no knowledge of the target is assumed, the only way to accomplish such a detection is through a search for anomalous pixels. Two approaches to this problem are examined in this paper. The first is to separate the image into a number of statistical clusters by using an extension of the well-known {kappa}-means algorithm. Each bin of resultant residual vectors is then decorrelated, and the results are thresholded to provide detection. The second approach requires the formation of a probabilistic background model by using an adaptive Bayesian classification algorithm. This allows the calculation of a probability for each pixel, with respect to the model. These probabilities are then thresholded to provide detection. Both algorithms are shown to provide significant improvement over current filtering techniques for anomaly detection in experiments using multispectral IR imagery with both simulated and actual subpixel targets.

  5. Surface temperature measurement of the plasma facing components with the multi-spectral infrared thermography diagnostics in tokamaks

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Gauthier, E.; Pocheau, C.; Balorin, C.; Pascal, J. Y.; Jouve, M.; Aumeunier, M. H.; Courtois, X.; Loarer, Th.; Houry, M.

    2017-03-01

    For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement. In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good

  6. 3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range

    PubMed Central

    Jacassi, Andrea; Bozzola, Angelo; Zilio, Pierfrancesco; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow 3D antennas. Each antenna has a multilayer radial structure consisting of dielectric and metallic materials not achievable in a 2D configuration. A planar metallic layer is inserted normally to the antennas. The outer dielectric shell of the antenna defines a nanometric gap between the horizontal plane and the vertical walls. Thanks to this aperture, light can tunnel to the other side of the plane, and be transmitted to the far field in a set of resonances. These are investigated with finite-elements electromagnetic calculations and with Fourier-transform infrared spectroscopy measurements. The spectral position of the resonances can be tuned by changing the lattice period and/or the antenna length. Thanks to the strong scattering provided by the 3D geometry, the transmission peaks possess a high signal-to-noise ratio even when the illuminated area is less than 2 × 2 times the operation wavelength. This opens new possibilities for multispectral imaging in the IR with wavelength-scale spatial resolution. PMID:27345517

  7. 3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range.

    PubMed

    Jacassi, Andrea; Bozzola, Angelo; Zilio, Pierfrancesco; Tantussi, Francesco; De Angelis, Francesco

    2016-06-27

    We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow 3D antennas. Each antenna has a multilayer radial structure consisting of dielectric and metallic materials not achievable in a 2D configuration. A planar metallic layer is inserted normally to the antennas. The outer dielectric shell of the antenna defines a nanometric gap between the horizontal plane and the vertical walls. Thanks to this aperture, light can tunnel to the other side of the plane, and be transmitted to the far field in a set of resonances. These are investigated with finite-elements electromagnetic calculations and with Fourier-transform infrared spectroscopy measurements. The spectral position of the resonances can be tuned by changing the lattice period and/or the antenna length. Thanks to the strong scattering provided by the 3D geometry, the transmission peaks possess a high signal-to-noise ratio even when the illuminated area is less than 2 × 2 times the operation wavelength. This opens new possibilities for multispectral imaging in the IR with wavelength-scale spatial resolution.

  8. Space weathering effects in Diviner Lunar Radiometer multispectral infrared measurements of the lunar Christiansen Feature: Characteristics and mitigation

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Greenhagen, Benjamin T.; Song, Eugenie; Arnold, Jessica A.; Lemelin, Myriam; Hanna, Kerri Donaldson; Bowles, Neil E.; Glotch, Timothy D.; Paige, David A.

    2017-02-01

    Multispectral infrared measurements by the Diviner Lunar Radiometer Experiment on the Lunar Renaissance Orbiter enable the characterization of the position of the Christiansen Feature, a thermal infrared spectral feature that laboratory work has shown is proportional to the bulk silica content of lunar surface materials. Diviner measurements show that the position of this feature is also influenced by the changes in optical and physical properties of the lunar surface with exposure to space, the process known as space weathering. Large rayed craters and lunar swirls show corresponding Christiansen Feature anomalies. The space weathering effect is likely due to differences in thermal gradients in the optical surface imposed by the space weathering control of albedo. However, inspected at high resolution, locations with extreme compositions and Christiansen Feature wavelength positions - silica-rich and olivine-rich areas - do not have extreme albedos, and fall off the albedo- Christiansen Feature wavelength position trend occupied by most of the Moon. These areas demonstrate that the Christiansen Feature wavelength position contains compositional information and is not solely dictated by albedo. An optical maturity parameter derived from near-IR measurements is used to partly correct Diviner data for space weathering influences.

  9. Mineral identification from orbit - Initial results from the Shuttle multispectral infrared radiometer

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Rowan, L. C.; Kingston, M. J.

    1982-01-01

    The Shuttle multispectral IR radiometer (SMIRR) was designed to obtain surface reflectance data in ten spectral bands in order to evaluate the usefulness of a future imaging system for remote mineral identification. Attention was given to the 2.0-2.4 micron region, which has a wealth of spectral absorption features and appeared to have potential for the identification of CO3- and OH-bearing minerals such as the kaolinite and montmorillonite clays. SMIRR radiances were normalized by using a spectrum for dune sand collected in the Kharga Depression in Egypt. Direct identifications have been made of kaolinite-containing and carbonate material, indicating an exceptional potential for future orbital platform narrowband spectral imaging systems for mineralogical mapping.

  10. Observations of rock spectral classes by the Opportunity rover's Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Bell, J. F.; Johnson, J. R.; Rice, M. S.; Jolliff, B. L.; Arvidson, R. E.

    2014-11-01

    The Opportunity rover's exploration of the portion of the rim of Endeavour crater known as Cape York included examination of the sulfate-bearing Grasberg formation and the Matijevic Hill region. Multispectral visible and near-infrared (VNIR) Pancam observations were used to characterize reflectance properties of rock units. Using spectral end-member detection and classification approaches including a principal components/n-dimensional visualization, automatic sequential maximum angle convex cone method, and classification through hierarchical clustering, six main spectral classes of rock surfaces were identified: light-toned veins, Grasberg fm., the smectite-bearing Matijevic formation, the hematitic "blueberry" spherules, resistant spherules within the Matijevic fm. dubbed "newberries," and the Shoemaker formation impact breccia. Some of these could be divided into spectral subclasses. There were three types of veins: veins in the bench unit of Cape York, thinner veins in the Matijevic fm., and boxwork pattern-forming veins. The bench unit veins had higher 535 nm band depths than the other two vein subclasses and a steeper 934 to 1009 nm slope. The Grasberg fm. has VNIR spectral features that are interpreted to indicate higher fractions of red hematite than in the sulfate-bearing Burns Fm. The Matijevic fm. includes both light-toned, fine-grained matrix, and dark-toned veneers. The latter has a weak near-infrared absorption band centered near 950 nm consistent with nontronite. Observations of Rock Abrasion Tool brushed and ground newberries indicated that cuttings from the RAT grind had a longer wavelength reflectance maximum and deeper 535 nm band depth, consistent with more oxidized materials. Greater oxidation of cementing materials in the newberries is consistent with a diagenetic concretion origin.

  11. Astrobiological considerations for the selection of the geological filters on the ExoMars PanCam instrument.

    PubMed

    Cousins, Claire R; Griffiths, Andrew D; Crawford, Ian A; Prosser, Bryan J; Storrie-Lombardi, Michael C; Davis, Lottie E; Gunn, Matthew; Coates, Andrew J; Jones, Adrian P; Ward, John M

    2010-11-01

    The Panoramic Camera (PanCam) instrument will provide visible-near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected "geological" filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50 nm ("F1-12") and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra ("F2-12"). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2 mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a

  12. Astrobiological Considerations for the Selection of the Geological Filters on the ExoMars PanCam Instrument

    NASA Astrophysics Data System (ADS)

    Cousins, Claiire R.; Griffiths, Andrew D.; Crawford, Ian A.; Prosser, Bryan J.; Storrie-Lombardi, Michael C.; Davis, Lottie E.; Gunn, Matthew; Coates, Andrew J.; Jones, Adrian P.; Ward, John M.

    2010-11-01

    The Panoramic Camera (PanCam) instrument will provide visible - near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected "geological" filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50 nm ("F1-12") and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra ("F2-12"). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2 mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a

  13. Mineral identification from orbit: Initial results from the shuttle multispectral infrared radiometer

    USGS Publications Warehouse

    Goetz, A.F.H.; Rowan, L.C.; Kingston, M.J.

    1982-01-01

    A shuttle-borne radiometer containing ten channels in the reflective infrared has demonstrated that direct identification of carbonates and hydroxyl-bearing minerals is possible by remote measurement from Earth orbit. Copyright ?? 1982 AAAS.

  14. AFRL Nanotechnology Initiative: Hybrid Nanomaterials in Photonic Crystal Cavities for Multi-Spectral Infrared Detector Arrays

    DTIC Science & Technology

    2010-03-31

    INITIATIVE) HYBRID NANOMATERIALS IN PHOTONIC CRYSTAL CAVITIES FOR MULTI -SPECTRAL INFRARED DETECTOR ARRAYS 5b. GRANT NUMBER F A9550-06-1-0482 5c...IR) photodetector using hybrid nanornaterials in photonic crystal (PC) cavities for enhanced absorption at selected wavelengths. The simultaneous...infrared photodetection, quantum dots, photonic crystal cavities, matrix-assisted pulsed laser evaporation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  15. Bio-Inspired Dynamically Tunable Polymer-Based Filters for Multi-Spectral Infrared Imaging

    DTIC Science & Technology

    2010-05-01

    Morse. Plastic Transmissive Infrared Electrochromic Devices , Macromolecular Chemistry and Physics, (07 2010): 0. doi: 10.1002/macp.201000096 2011/10/10...Publication: Holt, A.L., J. G. A. Wehner, A. Hammp and D. E. Morse. 2010. Plastic transmissive infrared electrochromic devices ...Level Device Design ( Electrochromic -Based IR Shutter): The first initiative in the device design work consisted of determining a standard device

  16. Optical assembly of a visible-through-thermal infrared multispectral imaging system

    NASA Astrophysics Data System (ADS)

    Henson, Tammy D.; Bender, Steven C.; Byrd, Donald A.; Rappoport, William M.; Shen, Gon-Yen

    1998-10-01

    The Optical Assembly (OA) for the Multispectral Thermal Imger (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing EO imaging sensor that is to be operated in low earth orbit. Along with its wide field of view, 1.82 degrees along-track and 1.38 degrees cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 micrometers . The OA has an off-axis three-mirror anastigmatic telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80 percent enpixeled energy in the visible and radiometric stability of 1 percent 1 (sigma) in the visible/near-IR and short wavelength IR, of 1.45 percent 1 (sigma) in the medium wavelength IR, and of 0.53 percent 1 (sigma) long wavelength IR, as well as its low weight and volume constraint drive the overall design configuration of the OA and fabrication requirements.

  17. Evaluation of multispectral middle infrared aircraft images for lithologic mapping the East Tintic Mountains, Utah( USA).

    USGS Publications Warehouse

    Kahle, A.B.; Rowan, L.C.

    1980-01-01

    Six channels of moultispectral middle infrared (8 to 14 micrometres) aircraft scanner data were acquired over the East Tintic mining district, Utah. The digital image data were computer processed to create a color-composite image based on principal component transformations. When combined with a visible and near infrared color-composite image from a previous flight, with limited field checking, it is possible to discriminate quartzite, carbonate rocks, quartz latitic and quartz monzonitic rocks, latitic and monzonitic rocks, silicified altered rocks, argillized altered rocks, and vegetation. -from Authors

  18. Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging

    PubMed Central

    Thi Kim Dung, Doan; Fukushima, Shoichiro; Furukawa, Taichi; Niioka, Hirohiko; Sannomiya, Takumi; Kobayashi, Kaori; Yukawa, Hiroshi; Baba, Yoshinobu; Hashimoto, Mamoru; Miyake, Jun

    2016-01-01

    Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd2O3 co-doped lanthanide nanophosphors (NPPs). A series of Gd2O3:Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation. The dependence of the upconverting (UC)/downconverting (DC) emission intensity on the dopant ratio is investigated. The optimum ratios of dopants obtained for emissions in the NIR regions at 810 nm, 1200 nm, and 1530 nm are applied to produce nanoparticles by the homogeneous precipitation (HP) method. The nanoparticles produced from the HP method are used to investigate the dual NIR and CL imaging modalities. The results indicate the possibility of using Gd2O3 co-doped Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) in correlation with NIR and CL imaging. The use of Gd2O3 promises an extension of the object dimension to the whole-body level by employing magnetic resonance imaging (MRI). PMID:28335291

  19. Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm

    NASA Astrophysics Data System (ADS)

    Salo, Daniel; Zhang, Hairong; Kim, David M.; Berezin, Mikhail Y.

    2014-08-01

    In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range.

  20. Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging.

    PubMed

    Thi Kim Dung, Doan; Fukushima, Shoichiro; Furukawa, Taichi; Niioka, Hirohiko; Sannomiya, Takumi; Kobayashi, Kaori; Yukawa, Hiroshi; Baba, Yoshinobu; Hashimoto, Mamoru; Miyake, Jun

    2016-09-06

    Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd₂O₃ co-doped lanthanide nanophosphors (NPPs). A series of Gd₂O₃:Ln(3+)/Yb(3+) (Ln(3+): Tm(3+), Ho(3+), Er(3+)) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation. The dependence of the upconverting (UC)/downconverting (DC) emission intensity on the dopant ratio is investigated. The optimum ratios of dopants obtained for emissions in the NIR regions at 810 nm, 1200 nm, and 1530 nm are applied to produce nanoparticles by the homogeneous precipitation (HP) method. The nanoparticles produced from the HP method are used to investigate the dual NIR and CL imaging modalities. The results indicate the possibility of using Gd₂O₃ co-doped Ln(3+)/Yb(3+) (Ln(3+): Tm(3+), Ho(3+), Er(3+)) in correlation with NIR and CL imaging. The use of Gd₂O₃ promises an extension of the object dimension to the whole-body level by employing magnetic resonance imaging (MRI).

  1. Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Realmuto, V.J.; Sutton, A.J.; Elias, T.

    1997-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne thermal infrared multispectral scanner (TIMS) and apply the procedure to TIMS data collected over the East Rift Zone of Kilauea Volcano, Hawaii, on September 30, 1988. These image data covered the Pu'u 'O'o and Kupaianaha vents and a skylight in the lava tube that was draining the Kupaianaha lava pond. Our estimate of the SO2 emission rate from Pu'u 'O'o (17 - 20 kg s-1) is roughly twice the average of estimates derived from correlation spectrometer (COSPEC) measurements collected 10 days prior to the TIMS overflight (10 kg s-1). The agreement between the TIMS and COSPEC results improves when we compare SO2 burden estimates, which are relatively independent of wind speed. We demonstrate the feasibility of mapping Pu'u 'O'o - scale SO2 plumes from space in anticipation of the 1998 launch of the advanced spaceborne thermal emission and reflectance radiometer (ASTER). Copyright 1997 by the American Geophysical Union.

  2. MER Atmospheric Results: Pancam and Mini-TES

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.

    2004-12-01

    Although at first glance, the Mars Exploration Rover (MER) payload may be perceived as primarily suited to geological investigation, it is in fact quite well-suited to carry out a robust and dynamic program of atmospheric monitoring and characterization with a particular emphasis on the planetary boundary layer. More to the point, it has been doing so at both the Gusev and Meridiani locations for more than 200 days. Ongoing atmospheric observations include (1) periodic thermal infrared spectra of the Martian sky by the Miniature Thermal Emission Spectrometer (Mini-TES). The actual sequences consist of both standard 200-second integrations and long ``stares'' of up to (almost) an hour. These data are highly diagnostic of vertical thermal structure (from 10 meters to 3-5 kilometers), aerosol optical depth along with particle size, and under the right conditions, the water column. (2) direct solar imaging using the Panoramic Camera (Pancam) and 440/880 nm + neutral density (ND5) filters, providing accurate measurement visible optical depths. (3) near-sun and ``sky-arc'' sequences using the full suite of geological filters, intended to capture the forward-diffraction peak and the phase function characteristics of the aerosol particles. (4) carbon dioxide (15 micrometer band) profiling of the Mini-TES surface observations, providing an average near-surface (1 m) air temperature. The above activities have been (and will continue to be) used to characterize diurnal and secular temporal trends and to examine the spatial variability of such trends. In addition, serendipity has provided the unique opportunities of watching the decay of a moderate dust storm from two widely-separated sites as well as of multiple simultaneous orbiter-rover observing ``campaigns.'' The latter includes thus far the Mars Express and Mars Global Surveyor over-flights. During our presentation, we will summarize the atmospheric results obtained and analyzed through the end of the first 200 days of

  3. Visible and near-infrared spectra of manganese oxides: Detecting high manganese phases in Curiosity Mastcam multispectral images

    NASA Astrophysics Data System (ADS)

    Hardgrove, C. J.; Lanza, N.; Bell, J. F., III; Wiens, R. C.; Johnson, J. R.; Morris, R. V.

    2014-12-01

    The Mars Science Laboratory Curiosity rover's Chemcam instrument has identified manganese in relatively high abundance on several rock surfaces. The manganese abundances are several orders of magnitude greater than has been previously identified on Mars, indicating the presence of a manganese-rich phase. Although the specific phase has yet to be identified, these results suggest that the martian surface may have been much more highly oxidizing than has previously been recognized. The presence of a manganese-rich phase could provide an additional indicator of habitable aqueous environments. Given the importance of manganese for understanding past habitability, and the high abundances identified with Chemcam, we investigate the utility of using Mastcam multispectral imaging surveys to identify areas for subsequent detailed analysis with Chemcam. Vempati et al. showed that Mn3+ affect the reflectance spectra of Mn-bearing minerals. Specifically, relatively weak features due to electronic transitions and crystal field effects are observed in Mn-enriched hematites and geothites at 454, 554, 596 and 700 nm. The Mastcam-34 medium angle camera has filter band-passes at 550, 675 and 750nm, and we will explore the utility of using these bands (or combinations thereof) to determine if there is a contribution of Mn-bearing phases on spectra, specifically those that have been identified as having elevated Mn with Chemcam. The most common Mn-bearing mineral phase in terrestrial varnishes, Birnessite, has charge-transfer features that are similar to Fe-oxides but are centered at slightly longer wavelength band positions. Longer wavelength features are also common for other Mn-oxides, and this could be used to distinguish these phases from other Fe-oxide components. In this study we will present visible to near-infrared (0.4 - 3 µm) reflectance spectra on a suite of Mn-oxide laboratory standards. The set of standards includes Mn-oxide abundances that vary from less than 1 up to

  4. An infrared remote sensor with high integration and multi-spectral bands

    NASA Astrophysics Data System (ADS)

    Zhang, Lisha; Liu, Zhaojun; Ma, Wenpo; Tang, Shaofan; Hu, Bin

    2014-11-01

    Along with the further application of optical remote sensing, it becomes main trend to realize high spatial resolution, high time resolution, high spectrum resolution and high irradiance sensitivity simultaneously. We present a new satellite-based imaging system that will provide images with these high performances. The structure of the system is compact with small size and light weight. The IR imager, a new generation of high resolution optical remote sensing, is universally acknowledged as the most effective approach to surveil dynamic changes in the environment on the earth. Pushbroom imaging fashion with high efficiency and long-array focal plane detector with passive cooling are adopted to realize area imaging relevant to the flight direction of satellite. The instrument is a dual-optical-path system with long-wave infrared (LWIR) and mid-short-wave infrared (MW-SWIR) bands - which has 4 narrow spectrum bands respectively. An IR dichroic beam-splitter is use to divide wideband incident infrared into LWIR and MW-SWIR. Then two pieces of joint filters, which are integrated in front of detectors and then enveloped by IR Dewars, are used to divide the LWIR and MWIR into 4 spectral bands separately. The focal plane arrays (FPA) are fixed on the optical imaging plane of the lens. The LWIR and MW-SWIR FPA are cooled around 80K or even below. For cooled FPA, optical system must provide a real, accessible exit pupil coupled with a fast f/number refractive component in a Dewar and very close to the FPA. Compared to traditional infrared instruments, high spatial resolution and spectrum resolution can be obtained simultaneously within mass, volume and performance constraints.

  5. Multispectral Visible/Infrared Sensors Based on Polymer-Metal Nanocomposites

    DTIC Science & Technology

    2010-01-06

    consist of metallic nanoparticles such as silver ( Ag ), gold ( Au ), or copper (Cu) embedded in a dielectric matrix such as electron transporting and hole... nanoparticles , the internal field can exceed the external field by up to a factor of 50.[5] This strong internal electric field can eject excited...extends into the near -infrared range, similar to the pure Ag , no electrical current is observed when an 850 nm long-pass filter is used. Also, the I-V

  6. A near infrared vegetation index formed with airborne multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Elvidge, Christopher D.; Rock, Barrett N.

    1987-01-01

    A near infrared vegetation index (NIVI) has been formed with the 1.24 and 1.65 micron bands on the NS001 Thematic Mapper Simulator. The NIVI was compared to the more traditional Perpendicular Vegetation Index (PVI) formed with the 0.66 and 0.83 micron bands. The PVI was found to be less susceptible to problems with rock and soil spectral variations than the VIVI.

  7. Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package

    DTIC Science & Technology

    2001-10-01

    Pumped (OP) type-II lasers The optically pumped laser devices were tested by pumping with 980 nm diode laser . Figure 29 shows the typical...Choi, and D. A. Coppeta "High-power diode - laser - pumped InAsSb/GaSb and GaInAsSb/GaSb lasers emitting from 3 to 4 µm" Appl. Phys. Lett. 64, 152 (1994...Arias, M. Zandian, R. R. Zucca, and Y.-Z. Liu "High-power diode - pumped mid-infrared semiconductor lasers ," Proc. SPIE 2382, 262

  8. Identification and tracking of ash clouds from recent explosive eruptions by using multispectral satellite infrared data

    NASA Astrophysics Data System (ADS)

    Marchese, F.; Falconieri, A.; Pergola, N.; Tramutoli, V.

    2012-04-01

    RSTASH is a specific algorithm, based on the general Robust Satellite Techniques (RST) approach, developed to identify and track ash clouds using satellite infrared data. An updated and optimized version of this algorithm, which analyzes even signal measured in the visible spectral band, has recently been developed and implemented on geostationary satellites data, for a better discrimination of ash and weather clouds in daytime. This advanced configuration was firstly tested during the Eyjafjallajökull (Iceland) eruption of April 2010 (by using Spinning Enhanced Visible and Infrared Imager sensor aboard Meteosat Second Generation), showing further improvements in terms of false positives reduction in comparison with standard RSTASH technique. Another experimental configuration of this method, analyzing signal measured in the SEVIRI sulphur dioxide absorption band (at 8.6µm), was also successfully used to qualitatively characterize volcanic plumes emitted by the same volcano in May 2010 in terms of SO2 concentration. Results of these studies are presented and discussed here, together with main achievements obtained monitoring ash cloud emitted during Shinmoedake (Japan) explosive eruption of 26-27 January 2011, exploiting the high temporal resolution of MTSAT Japanese geostationary satellites. Moreover, for both test cases, plume height estimations, obtained by applying two different literature methods, are compared with indipendent both ground- and satellite-based observations. In this work, RSTASH performances in detecting, tracking and characterizing ash clouds are discussed, focusing on main open issues and future perspectives.

  9. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE PAGES

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac; ...

    2017-05-18

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  10. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    NASA Technical Reports Server (NTRS)

    Langran, Kenneth J.

    1986-01-01

    The Mount St. Helens 1980 eruption offers an opportunity to study vegetation recovery rates and patterns in a perturbed ecosystem. The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. It was observed that during maximum daytime solar heating, surface temperatures of vegetated areas are cooler than surrounding nonvegetated areas, and that surface temperature varies with percent vegetation cover. A method of measuring the relationship between effective radiant temperature (ERT) and percent vegetation cover in the thermal infrared (8 to 12 microns) region of the electromagnetic spectrum was investigated.

  11. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector.

    PubMed

    Goldflam, Michael D; Fei, Zhe; Ruiz, Isaac; Howell, Stephen W; Davids, Paul S; Peters, David W; Beechem, Thomas E

    2017-05-29

    We have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. These simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength and wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.

  12. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho

    2016-12-01

    Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.

  13. Multispectral near-infrared imaging of composite restorations in extracted teeth

    NASA Astrophysics Data System (ADS)

    Logan, Cooper M.; Co, Katrina U.; Fried, William A.; Simon, Jacob C.; Staninec, Michal; Fried, Daniel; Darling, Cynthia L.

    2014-02-01

    One major advantage of composite restoration materials is that they can be color matched to the tooth. However, this presents a challenge when composites fail and they need to be replaced. Dentists typically spend more time repairing and replacing composites than placing new restorations. Previous studies have shown that near-infrared imaging can be used to distinguish between sound enamel and decay due to the differences in light scattering. The purpose of this study was to use a similar approach and exploit differences in light scattering to attain high contrast between composite and tooth structure. Extracted human teeth with composites (n=16) were imaged in occlusal transmission mode at wavelengths of 1300-nm, 1460-nm and 1550-nm using an InGaAs image sensor with a tungsten halogen light source with spectral filters. All samples were also imaged in the visible range using a high definition 3D digital microscope. Our results indicate that NIR wavelengths at 1460-nm and 1550-nm, coincident with higher water absorption yield the highest contrast between dental composites and tooth structure.

  14. Spectral Diversity at Gusev Crater from Coordinated Mini-TES and Pancam Observations

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Bell, James F., III; Cabrol, Nathalie; Christensen, Phil; Farrand, William H.; Ming, Doug; Moersch, Jeff; Ruff, Steve

    2005-01-01

    During the last year the Spirit rover has explored Gusev crater with the Athena payload. Two remote sensing instruments collected spectral information at visible (Pancam) and at thermal infrared Mini-TES) wavelengths. Observations for these instruments were coordinated and targeted to determine the mineralogical diversity and identify specific lithologies / end members for detailed investigations with the rest of the payload. Initial results were reported last spring. A wide range of materials have been measured including outcrops, rocks, and soils. Both natural and brushed/ratted rocks and natural and disturbed soils have also been measured permitting investigations of coating and soil structure. As of Jan 9, 2005, over 400 coordinated observations have been made.

  15. Relative dating of Hawaiian lava flows using multispectral thermal infrared images - A new tool for geologic mapping of young volcanic terranes

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.; Gillespie, Alan R.; Abbott, Elsa A.; Abrams, Michael J.; Walker, Richard E.

    1988-01-01

    The weathering of Hawaiian basalts in arid and semiarid environments is accompanied by changes in their thermal infrared emittance spectra. The spectral differences can be measured and mapped with multispectral imaging systems. The differences appear to be related to the degree of development, preservation, and alteration of glassy crusts; the oxidation of iron; and the accretion of silica-rich surface veneers. Because the measurements are quantitative and in image format, they are useful for estimating relative ages in geologic mapping of lava flows. In Hawaii this technique is most diagnostic for distinguishing among sparsely vegetated flows less than 1.5 ka in age.

  16. The PanCam instrument on the 2018 Exomars rover: Science Implementation Strategy and Integrated Surface Operations Concept

    NASA Astrophysics Data System (ADS)

    Schmitz, Nicole; Jaumann, Ralf; Coates, Andrew; Griffiths, Andrew; Hauber, Ernst; Trauthan, Frank; Paar, Gerhard; Barnes, Dave; Bauer, Arnold; Cousins, Claire

    2010-05-01

    Geologic context as a combination of orbital imaging and surface vision, including range, resolution, stereo, and multispectral imaging, is commonly regarded as basic requirement for remote robotic geology and forms the first tier of any multi-instrument strategy for investigating and eventually understanding the geology of a region from a robotic platform. Missions with objectives beyond a pure geologic survey, e.g. exobiology objectives, require goal-oriented operational procedures, where the iterative process of scientific observation, hypothesis, testing, and synthesis, performed via a sol-by-sol data exchange with a remote robot, is supported by a powerful vision system. Beyond allowing a thorough geological mapping of the surface (soil, rocks and outcrops) in 3D, using wide angle stereo imagery, such a system needs to be able to provide detailed visual information on targets of interest in high resolution, thereby enabling the selection of science targets and samples for further analysis with a specialized in-situ instrument suite. Surface vision for ESA's upcoming ExoMars rover will come from a dedicated Panoramic Camera System (PanCam). As integral part of the Pasteur payload package, the PanCam is designed to support the search for evidence of biological processes by obtaining wide angle multispectral stereoscopic panoramic images and high resolution RGB images from the mast of the rover [1]. The camera system will consist of two identical wide-angle cameras (WACs), which are arranged on a common pan-tilt mechanism, with a fixed stereo base length of 50 cm. The WACs are being complemented by a High Resolution Camera (HRC), mounted between the WACs, which allows a magnification of selected targets by a factor of ~8 with respect to the wide-angle optics. The high-resolution images together with the multispectral and stereo capabilities of the camera will be of unprecedented quality for the identification of water-related surface features (such as sedimentary

  17. Angioscopic image-enhanced observation of atherosclerotic plaque phantom by near-infrared multispectral imaging at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nagao, R.; Matsui, D.; Awazu, K.

    2015-02-01

    Spectroscopic techniques have been researched for intravascular diagnostic imaging of atherosclerotic plaque. Nearinfrared (NIR) light efficiently penetrates of biological tissues, and the NIR region contains the characteristic absorption range of lipid-rich plaques. The objective of this study is to observe atherosclerotic plaque using a NIR multispectral angioscopic imaging. Atherosclerotic plaque phantoms were prepared using a biological tissue model and bovine fat. For the study, we developed an NIR multispectral angioscopic imaging system with a halogen light, mercury-cadmiumtelluride camera, band-pass filters and an image fiber. Apparent spectral absorbance was obtained at three wavelengths, 1150, 1200 and 1300 nm. Multispectral images of the phantom were constructed using the spectral angle mapper algorithm. As a result, the lipid area, which was difficult to observe in a visible image, could be clearly observed in a multispectral image. Our results show that image-enhanced observation and quantification of atherosclerotic plaque by NIR multispectral imaging at wavelengths around 1200 nm is a promising angioscopic technique with the potential to identify lipid-rich plaques.

  18. Hematite spherules at Meridiani: results from MI, Mini-TES, and Pancam

    USGS Publications Warehouse

    Calvin, W.M.; Shoffner, J.D.; Johnson, J. R.; Knoll, A.H.; Pocock, J.M.; Squyres, S. W.; Weitz, C.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; de Souza, P. A.; Farrand, W. H.; Glotch, T.D.; Herkenhoff, K. E.; Jolliff, B.L.; Knudson, A.T.; McLennan, S.M.; Rogers, A.D.; Thompson, S.D.

    2008-01-01

    We report on observations of hematite-bearing spherules at Meridiani Planum made using the Microscopic Imager (MI), Mini-Thermal Emission Spectrometer (Mini-TES), and Panoramic Camera (Pancam) instruments on the Mars Exploration Rover Opportunity. Spherules were observed on soil surfaces and in outcrop rocks, both on undisturbed surfaces and in abraded surfaces ground using the Rock Abrasion Tool (RAT). Spherule size and shape change little along the 850 m eastward traverse from Eagle Crater to Endurance Crater, but spherules decrease and then slightly increase in size along the 6 km traverse from Endurance south to Victoria Crater. Local populations range from submillimeters to several millimeters in diameter. An additional small diameter (100 μm) size population is possible. An increase in irregular shapes is found near Victoria Crater. This, combined with the size decrease south of Endurance, suggests either a changing depositional environment, or variation in the duration and timing of diagenetic events. The dominant smaller size population observed early in the mission in aeolian areas and ripple crests is observed as the primary size population in abraded outcrop farther south. This suggests that successively younger beds are exposed at the surface along the southward traverse. Stratigraphically higher units removed by erosion could be recorded by the present surface lag deposit. Coordinated systematic observations are used to determine optical and infrared hematite indices of the surface soils in Pancam and Mini-TES. In spite of the systematic variation seen in MI, both Pancam and Mini-TES indices are highly variable based on the local surface, and neither show systematic trends south of Endurance. The lack of a 390 cm?1 feature in Mini-TES spectra suggests concentric or radial interior structure within the spherules at scales too fine for MI to observe. Mini-TES does not detect any silicate component in the spherules. A bound water component in soils or in

  19. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    NASA Technical Reports Server (NTRS)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  20. Quantitative evaluation of lipid concentration in atherosclerotic plaque phantom by near-infrared multispectral angioscope at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2015-07-01

    Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.

  1. Cloud characteristics over central Amazonia during GTE/ABLE 2B derived from multispectral visible and infrared spin scan radiometer atmospheric sounder observations

    SciTech Connect

    Menzel, W.P. ); Schmit, T.J.; Wylie, D.P. )

    1990-09-20

    Multispectral GOES/Visible and Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) observations in the carbon dioxide absorption band at 15 {mu}m have been used to calculate diurnal cloud statistics over central Amazonia region for 4 days during the Global Tropospheric Experiment/Amazon Boundary Layer Experiment (GTE/ABLE IIB). The CO{sub 2} technique calculates both cloud top pressure and effective emissivity from radiative transfer principles. Transmissive clouds that are partially transparent to terrestrial radiation have been reliably separated from opaque clouds in the statistics of cloud cover. A high incidence of transmissive clouds (about 47%) was found on the average. Diurnal characteristics of cloud cover over Amazonia have been linked to convective activity over this region. On days with afternoon convection, an increase in low-altitude opaque clouds was followed by a subsequent increase in high-altitude transmissive clouds.

  2. The use of aircraft-based Thermal Infrared Multispectral Scanner (TIMS) data to measure surface energy budgets on a landscape scale

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.

    1991-01-01

    A series of Thermal Infrared Multispectral Scanner Data (TIMS) was collected over the H. J. Andrews experimental forest in western Oregon and at the Coweeta Hydrologic Laboratory in North Carolina. Flight lines were overlapped with an 8 to 28 minute time difference between flight lines. Concurrent radiosonde measurements of atmospheric profiles of air and dew point temperatures provided inputs to LOWTRAN6 for atmospheric radiance corrections of the TIMS data. Surface temperature differences over time between flight lines allowed the development of thermal response numbers (TRN) which characterized the thermal response of the different surface types. The polygons containing mostly soil and bare rock had the lowest TRN whereas the forested polygons were the highest. Results indicate that forest canopy temperatures measured by the TIMS are comparable to needle thermocouples temperatures. ET models developed from the TIMS data obtained similar ET rates as those using energy balance techniques.

  3. The use of aircraft-based Thermal Infrared Multispectral Scanner (TIMS) data to measure surface energy budgets on a landscape scale

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.

    1991-01-01

    A series of Thermal Infrared Multispectral Scanner Data (TIMS) was collected over the H. J. Andrews experimental forest in western Oregon and at the Coweeta Hydrologic Laboratory in North Carolina. Flight lines were overlapped with an 8 to 28 minute time difference between flight lines. Concurrent radiosonde measurements of atmospheric profiles of air and dew point temperatures provided inputs to LOWTRAN6 for atmospheric radiance corrections of the TIMS data. Surface temperature differences over time between flight lines allowed the development of thermal response numbers (TRN) which characterized the thermal response of the different surface types. The polygons containing mostly soil and bare rock had the lowest TRN whereas the forested polygons were the highest. Results indicate that forest canopy temperatures measured by the TIMS are comparable to needle thermocouples temperatures. ET models developed from the TIMS data obtained similar ET rates as those using energy balance techniques.

  4. The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: A case study from Mount Etna, Sicily, July 29, 1986

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J.; Abrams, Michael J.; Buongiorno, M. Fabrizia; Pieri, David C.

    1994-01-01

    We have found that image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) can be used to make estimates of the SO2 content of volcanic plumes. TIMS image data are most applicable to the study of partially transparent SO2 plumes, such as those released during quiescent periods or nonexplosive eruptions. The estimation procedure is based on the LOWTRAN 7 radiative transfer code, which we use to model the radiance perceived by TIMS as it views the ground through an SO2 plume. The input to the procedure includes the altitudes of the aircraft and ground, the altitude and thickness of the SO2 plume, the emissivity of the ground, and altitude profiles of the atmospheric pressure, temperature, and relative humidity. We use the TIMS data to estimate both ground temperatures beneath a plume and SO2 concentrations within a plume. Applying our procedure to TIMS data acquired over Mount Etna, Sicily, on July 29, 1986, we estimate that the SO2 flux from the volcano was approximately 6700 t d(exp -1). The use of TIMS to study SO2 plumes represents a bridge between highly localized methods, such as correlation spectroscopy or direct sampling, and small-scale mapping techniques involving satellite instruments such as the Total Ozone Mapping Spectrometer or Microwave Limb Sounder. We require further airborne experiments to refine our estimation procedure. This refinement is a necessary preparation for the schedueled 1998 launch of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer, which will allow large-scale multispectral thermal infrared image data to be collected over virtually any volcano on Earth at least once every 16 days.

  5. The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: A case study from Mount Etna, Sicily, July 29, 1986

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J.; Abrams, Michael J.; Buongiorno, M. Fabrizia; Pieri, David C.

    1994-01-01

    We have found that image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) can be used to make estimates of the SO2 content of volcanic plumes. TIMS image data are most applicable to the study of partially transparent SO2 plumes, such as those released during quiescent periods or nonexplosive eruptions. The estimation procedure is based on the LOWTRAN 7 radiative transfer code, which we use to model the radiance perceived by TIMS as it views the ground through an SO2 plume. The input to the procedure includes the altitudes of the aircraft and ground, the altitude and thickness of the SO2 plume, the emissivity of the ground, and altitude profiles of the atmospheric pressure, temperature, and relative humidity. We use the TIMS data to estimate both ground temperatures beneath a plume and SO2 concentrations within a plume. Applying our procedure to TIMS data acquired over Mount Etna, Sicily, on July 29, 1986, we estimate that the SO2 flux from the volcano was approximately 6700 t d(exp -1). The use of TIMS to study SO2 plumes represents a bridge between highly localized methods, such as correlation spectroscopy or direct sampling, and small-scale mapping techniques involving satellite instruments such as the Total Ozone Mapping Spectrometer or Microwave Limb Sounder. We require further airborne experiments to refine our estimation procedure. This refinement is a necessary preparation for the schedueled 1998 launch of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer, which will allow large-scale multispectral thermal infrared image data to be collected over virtually any volcano on Earth at least once every 16 days.

  6. The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: A case study from Mount Etna, Sicily, July 29, 1986

    SciTech Connect

    Realmuto, V.J.; Abrams, M.J.; Buongiorno, M.F.; Pieri, D.C. )

    1994-01-10

    The authors have found that image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) can be used to make estimates of the SO[sub 2] content of volcanic plumes. TIMS image data are most applicable to the study of partially transparent SO[sub 2] plumes, such as those released during quiescent periods or nonexplosive eruptions. The estimation procedure is based on the LOWTRAN 7 radiative transfer code, which the authors use to model the radiance perceived by TIMS as it views the ground through an SO[sub 2] plume. The input to the procedure includes the altitudes of the aircraft and ground, the altitude and thickness of the SO[sub 2] plume, the emissivity of the ground, and altitude profiles of the atmospheric pressure, temperature, and relative humidity. They use the TIMS data to estimate both ground temperatures beneath a plume and SO[sub 2] concentrations within a plume. Applying this procedure to TIMS data acquired over Mount Etna, Sicily, on July 29, 1986, the authors estimate that the SO[sub 2] flux from the volcano was approximately 6700 t d[sup [minus]1]. The use of TIMS to study SO[sub 2] plumes represents a bridge between highly localized methods, such as correlation spectroscopy or direct sampling, and small-scale mapping techniques involving satellite instruments such as the Total Ozone Mapping Spectrometer or Microwave Limb Sounder. The authors require further airborne experiments to refine their estimation procedure. This refinement is a necessary preparation for the scheduled 1998 launch of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer, which will allow large-scale multispectral thermal infrared image data to be collected over virtually any volcano on Earth at least once every 16 days.

  7. Observing lowermost tropospheric ozone pollution with a new multispectral synergic approach of IASI infrared and GOME-2 ultraviolet satellite measurements

    NASA Astrophysics Data System (ADS)

    Cuesta, Juan; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Coman, Adriana; Gaubert, Benjamin; Beekmann, Matthias; Liu, Xiong; Cai, Zhaonan; Von Clarmann, Thomas; Spurr, Robert; Flaud, Jean-Marie

    2014-05-01

    Tropospheric ozone is currently one of the air pollutants posing greatest threats to human health and ecosystems. Monitoring ozone pollution at the regional, continental and global scale is a crucial societal issue. Only spaceborne remote sensing is capable of observing tropospheric ozone at such scales. The spatio-temporal coverage of new satellite-based instruments, such as IASI or GOME-2, offer a great potential for monitoring air quality by synergism with regional chemistry-transport models, for both inter-validation and full data assimilation. However, current spaceborne observations using single-band either UV or IR measurements show limited sensitivity to ozone in the atmospheric boundary layer, which is the major concern for air quality. Very recently, we have developed an innovative multispectral approach, so-called IASI+GOME-2, which combines IASI and GOME-2 observations, respectively in the IR and UV. This unique multispectral approach has allowed the observation of ozone plumes in the lowermost troposphere (LMT, below 3 km of altitude) over Europe, for the first time from space. Our first analyses are focused on typical ozone pollution events during the summer of 2009 over Europe. During these events, LMT ozone plumes at different regions are produced photo-chemically in the boundary layer, transported upwards to the free troposphere and also downwards from the stratosphere. We have analysed them using IASI+GOME-2 observations, in comparison with single-band methods (IASI, GOME-2 and OMI). Only IASI+GOME-2 depicts ozone plumes located below 3 km of altitude (both over land and ocean). Indeed, the multispectral sensitivity in the LMT is greater by 40% and it peaks at 2 to 2.5 km of altitude over land, thus at least 0.8 to 1 km below that for all single-band methods. Over Europe during the summer of 2009, IASI+GOME-2 shows 1% mean bias and 21% precision for direct comparisons with ozonesondes and also good agreement with CHIMERE model simulations

  8. Stratigraphic Correlation via Opportunity's Pancam of the Burns Formation, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Thompson, S. D.; Calvin, W. M.; Farrand, W. H.

    2006-12-01

    Spectral properties of Meridiani Planum hematite-rich Burns formation observed by Opportunity's Pancam have been described previously but not at minimum spatial scales. This study is of the fine scale visible and near- infrared spectral features within the sedimentary structures over the entire lateral extent explored by Opportunity across an 8 km traverse from Endurance to Victoria craters. Investigation of the bedrock has shown sub-centimeter thinly laminated evaporite deposits with few occurrences of festoon cross-bedding, massive bedding, and subtle differences in color and texture. Pancam data analyses of rock targets where sufficient spatial resolution (<10 mm) is achieved (within 10 m) constrain spectral parameters of laminar, erosional, and possible secondary diagenetic features. Results show differences of statistical significance in iron mineral varieties and phases in both vertical section and lateral extent of the Burns formation. Spectra exhibit a steep positive slope in the visible (432-753 nm) region and subtle changes in the near infrared (753-1009 nm) region ranging from flat, concave, to convex profiles. Maxima are typically in the 750-850 nm region but can occur as low as 673 nm and as high as 1009 nm with the latter usually from the lower albedo materials (i.e., spherules and basaltic sands). Positive slopes from 934-1009 nm in this region are consistent with the presence of hematite, commonly associated with the spherules. The higher albedo surfaces tend to have greatest negative slope in the longer wavelengths. This could result from intrinsic characteristics of the outcrop material or a significantly thick (i.e. >100 micron) dust deposit. Band depth images centered at 535 nm and 904 nm provide statistics on the relative occurrences of crystalline ferric oxide minerals. Rarely iron-rich signatures are present in individual laminations and not in the adjacent layers. Such occurrences could result from multiple iron-rich sedimentary events

  9. Plasmonic Photon Sorters and Their Potential for Use in Compact Multispectral Imagers at Visible and Infrared Wavelengths

    DTIC Science & Technology

    2009-10-01

    the thermal infrared due to the thermal radiation emitted from uncooled parts of the optics, which must be prevented from reaching the detector ...format HgCdTe focal plane arrays for dual-band long-wavelength infrared detection, Proc. SPIE 7298, 72981Y (2009) [3] Tyo, J. S., Goldstein, D.L...spectral band. This leads to subsampling of the image data cube, with loss of light and loss of information. In the thermal infrared , multiband detectors

  10. Estimation of cirrus parameters from multispectral measurements in the near-infrared and statements about multilayered clouds

    NASA Astrophysics Data System (ADS)

    Costanzo, Claudio; Bakan, Stephan

    1997-01-01

    During the aircraft campaign EUCREX 94 different missions with the multispectral sensor OVID were flown inside frontal ice cloud systems. This study present estimated effective radii and cloud optical depths from measurements around 1.05 and 1.6 micrometer under the assumption of different particle shapes. The best agreement with independent measurements of other instruments result from the assumption of an irregular polycrystal. The measured effective radii vary between 18 and 46 micrometer which is compatible with published particle size distributions of moderate ambient temperatures between minus 45 and minus 55 degrees Celsius. An additional consideration of spatial features allow the distinction of cloud layers in different altitudes in the atmosphere and perhaps the estimation of cloud parameters from individual layers. This study show an example of such a recognition and discuss the potential for an operational algorithm.

  11. A multispectral sorting device for wheat kernels

    USDA-ARS?s Scientific Manuscript database

    A low-cost multispectral sorting device was constructed using three visible and three near-infrared light-emitting diodes (LED) with peak emission wavelengths of 470 nm (blue), 527 nm (green), 624 nm (red), 850 nm, 940 nm, and 1070 nm. The multispectral data were collected by rapidly (~12 kHz) blin...

  12. Characterizing tropical forests with multispectral imagery

    Treesearch

    Eileen Helmer; Nicholas R. Goodwin; Valery Gond; Carlos M. Souza, Jr.; Gregory P. Asner

    2015-01-01

    Multispectral satellite imagery, that is, remotely sensed imagery with discrete bands ranging from visible to shortwave infrared (SWIR) wavelengths, is the timeliest and most accessible remotely sensed data for monitoring tropical forests. Given this relevance, we summarize here how multispectral imagery can help characterize tropical forest attributes of widespread...

  13. Visible to Near-IR Spectral Properties of Rocks and Soils at Gusev and Meridiani from the Mars Exploration Rover Pancams

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    2004-12-01

    Mars Exploration Rover Pancam multispectral images of a wide range of rock and soil targets were acquired using as many as 11 narrowband filters with central wavelengths from 432 to 1009 nm. These images were acquired in order to characterize the overall color properties of materials at the Gusev and Meridiani landing sites, to constrain the iron-bearing mineralogy of these materials based on the nature of crystalline and/or nanophase Fe3+ (ferric) absorptions in the visible to near-IR in altered materials and Fe2+ (ferrous) absorptions in the near-IR from less-altered volcanic materials, and to aid in the selection of specific targets for detailed chemical and mineralogic investigations using the rovers' arm instruments. At Gusev during the plains traverse to the Columbia Hills, most bright soil and rock surfaces appear covered or coated by optically thick fine-grained ferric-iron rich dust. Spectra of some darker rock surfaces, including regions that were brushed or drilled by the RAT, show near-IR signatures consistent with ferrous silicates like pyroxene or olivine. Since Spirit's arrival in the Columbia Hills, Pancam images have revealed evidence for some intrinsically less dusty or less altered rock surfaces, as well as isolated occurrences of more crystalline ferric signatures that may be indicative of enhanced weathering or alteration relative to materials in the plains. At Meridiani during the exploration of Eagle crater and during the traverse to Endurance crater, a wide range of visible to near-IR spectral properties was identified among small rock clasts and spherules. For example, spectra of dark sand, some dark rock clasts, and one larger dark rock found on the plains show spectra consistent with the presence of pyroxene or olivine. Spectra of dark spherules are consistent with the presence of crystalline ferric oxides/oxyhydroxides. Bright materials, including windblown dust, bright spherules, and the sulfur-rich laminated outcrop deposits, have

  14. Gimbaled multispectral imaging system and method

    DOEpatents

    Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.

    2016-01-26

    A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.

  15. Use of Vis-SWIR imagery to aid atmospheric correction of multispectral and hyperspectral thermal infrared TIR imagery: The TIR model

    NASA Astrophysics Data System (ADS)

    Gruninger, John H.; Fox, Marsha J.; Lee, Jamine; Ratkowski, Anthony J.; Hoke, Michael L.

    2002-11-01

    The atmospheric correction of thermal infrared (TIR) imagery involves the combined tasks of separation of atmospheric transmittance, downwelling flux and upwelling radiance from the surface material spectral emissivity and temperature. The problem is ill posed and is thus hampered by spectral ambiguity among several possible feasible combinations of atmospheric temperature, constituent profiles, and surface material emissivities and temperatures. For many materials, their reflectance spectra in the Vis-SWIR provide a means of identification or at least classification into generic material types, vegetation, soil, etc. If Vis-SWIR data can be registered to TIR data or collected simultaneously as in sensors like the MASTER sensor, then the additional information on material type can be utilized to help lower the ambiguities in the TIR data. If the Vis-SWIR and TIR are collected simultaneously the water column amounts obtained form the atmospheric correction of the Vis-SWIR can also be utilized in reducing the ambiguity in the atmospheric quantities. The TIR atmospheric correction involves expansions in atmospheric and material emissivity basis sets. The method can be applied to hyperspectral and ultraspectral data, however it is particularly useful for multispectral TIR, where spectral smoothness techniques cannot be readily applied. The algorithm is described, and the approach applied to a MASTER sensor data set.

  16. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    NASA Astrophysics Data System (ADS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  17. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  18. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  19. Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm

    PubMed Central

    Salo, Daniel; Zhang, Hairong; Kim, David M.; Berezin, Mikhail Y.

    2014-01-01

    Abstract. In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range. PMID:25104414

  20. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  1. The PanCam Instrument for the ExoMars Rover

    PubMed Central

    Coates, A.J.; Jaumann, R.; Griffiths, A.D.; Leff, C.E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C.R.; Cross, R.E.; Grindrod, P.; Bridges, J.C.; Balme, M.; Gupta, S.; Crawford, I.A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J.L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G.R.

    2017-01-01

    Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars—ExoMars—Instrumentation—Geology—Atmosphere—Exobiology—Context. Astrobiology 17, 511–541.

  2. The PanCam Instrument for the ExoMars Rover

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Jaumann, R.; Griffiths, A. D.; Leff, C. E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C. R.; Cross, R. E.; Grindrod, P.; Bridges, J. C.; Balme, M.; Gupta, S.; Crawford, I. A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J. L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G. R.; PanCam Team

    2017-07-01

    The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.

  3. Multispectral Photography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.

  4. Theoretical design and material growth of Type-II Antimonide-based superlattices for multi-spectral infrared detection and imaging

    NASA Astrophysics Data System (ADS)

    Hoang, Anh Minh

    Infrared detectors find applications in many aspects of life, from night vision, target tracking for homeland security and defense, non-destructive failure detection in industry, chemical sensing in medicine, and free-space communication. Currently, the dominant technologies of photodetectors based upon HgCdTe and InSb are experiencing many limitations. Under this circumstance, the Type-II InAs/GaSb/AlSb superlattices which have been intensively studied recently appear to be an excellent candidate to give breakthroughs in the infrared technology. The Type-II SLs with theirs advantages such as great flexibility in bandgap engineering, high carrier effective mass, Auger recombination suppression and high uniformity have shown excellent device performance from MWIR to VLWIR. In the era of the third generation for infrared cameras, Type-II SLs are entering the new phase of development with high performance and multi-spectral detection. The goal of this work is to investigate quantum properties of the superlattice system, design appropriate device architectures and experimentally fabricate infrared detectors which can push further the limit of this material system and outperform existing competing technologies. The binary-binary InAs/GaSb superlattice has gone through much transformation over the years. Incorporating compounds lattice matched to the 6.1A family has invited more possibilities to band engineer the Type-II SLs. For the first time, by employing all three members of this material system, we have designed a new superlattice structure and demonstrated shortwavelength infrared (SWIR) photodiodes based on Type-II InAs/GaSb/AlSb with high electrical and optical performance. The photodiodes exhibited a quantum efficiency of 60% with very low dark current, can be operated at room temperature. In addition to the range of MWIR to VLWIR, a new channel of detection has been added to the GaSb based type-II SL material system. The new realization of SWIR photodiodes has

  5. Design and performance of 4 x 5120-element visible and 2 x 2560-element shortwave infrared multispectral focal planes

    NASA Technical Reports Server (NTRS)

    Tower, J. R.; Cope, A. D.; Pellon, L. E.; Mccarthy, B. M.; Strong, R. T.

    1986-01-01

    Two solid-state sensors for use in remote sensing instruments operating in the pushbroom mode are examined. The design and characteristics of the visible/near-infrared (VIS/NIR) device and the short-wavelength infrared (SWIR) device are described. The VIS/NIR is a CCD imager with four parallel sensor lines, each 1024 pixel long; the chip design and filter system of the VIS/NIR are studied. The performance of the VIS/NIR sensor with mask and its system performance are measured. The SWIR is a dual-band line imager consisting of palladium silicide Schottky-barrier detectors coupled to CCD multiplexers; the performance of the device is analyzed. The substrate materials and layout designs used to assemble the 4 x 5120-element VIS/NIR array and the 2 x 2560-element SWIR array are discussed, and the planarity of the butted arrays are verified using a profilometer. The optical and electrical characteristics, and the placement and butting accuracy of the arrays are evaluated. It is noted that the arrays met or exceed their expected performance.

  6. The PanCam instrument for the ExoMars 2018 rover: science objectives and instrument characteristics

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Griffiths, A. D.; Leff, C. E.; Cousins, C. R.; Jaumann, R.; Schmitz, N.; Josset, J. L.; Paar, G.; Barnes, D. P.

    2011-10-01

    The scientific objectives of the ExoMars 2018 rover are designed to answer several key questions in the search for life on Mars. The PanCam instrument will set the geological and morphological context for the mission. In this talk we will describe the PanCam scientific objectives in geology, atmospheric science and 3D vision. We will also describe the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has a filter wheel, and a High Resolution Camera for close up investigations. The cameras are housed in an optical bench and electrical interface is via the PanCam Interface Unit (PIU). We also discuss some results from PanCam testing during field trials.

  7. The PanCam instrument for the ExoMars 2018 rover: science objectives and instrument characteristics

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Griffiths, A. D.; Leff, C. E.; Cousins, C. R.; Jaumann, R.; Schmitz, N.; Josset, J.-L.; Paar, G.; Barnes, D. P.; PanCam Team

    2013-09-01

    The scientific objectives of the ExoMars 2018 rover are designed to answer several key questions in the search for life on Mars. The PanCam instrument will set the geological and morphological context for the mission. Here, we will describe the PanCam scientific objectives in geology, atmospheric science and 3D vision. We will also describe the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has a filter wheel, and a High Resolution Camera for close up investigations. The cameras are housed in an optical bench and electrical interface is via the PanCam Interface Unit (PIU). We also discuss some results from PanCam testing during field trials.

  8. Spectral Diversity in the Columbia Hills from Spirit's Mini-TES and PanCam

    NASA Astrophysics Data System (ADS)

    Blaney, D.

    2005-08-01

    Since reaching the Columbia Hills, Spirit has investigated their composition and structure with the Athena payload. Two remote sensing instruments collected spectral information at visible (PanCam) and at thermal infrared (Mini-TES) wavelengths. Observations were coordinated and targeted to determine the mineralogical diversity and identify lithologies for investigation with the rest of the payload. Spirit has measured a wide range of targets including outcrop, rocks, and disturbed soils. While there is variation within classes, materials observed fell into five rock types and two soil types. Class names derive from their general location and a representative example target. Gusev plains rocks (e.g. Adirondack) have an olivine feature in the long wavelength part of the spectrum and are the dominant rocks on the plains. While initially very rare in the Columbia hills, plains basalts have become more common as the rover has climbed into the hills. West Spur rocks (e.g. Palenque) are highly altered. Lower Husband Hill I rocks (e.g. Wishstone) are dominated spectrally by intermediate plagioclase feldspar while Lower Husband Hills II rocks (e.g. Peace) show spectral evidence for bound water. Upon reaching the ``Cumberland Ridge", two types of materials were identified. The ``Watchtower" and ``Jibsheet" outcrops represent the next class, characterized by steep slope from 700 cm-1 to 400 cm-1. Finally, the ``Methuselah" outcrop shares many of the same spectral characteristics as Lower Husband Hill I (e.g. Wishstone). Disturbed soils all have similar characteristics, except for Huron (near Paso Robles), which shows evidence for water at Mini-TES wavelengths and is significantly less ``red" than other materials measured at visible wavelengths. The complex mixture of rock types indicate that multiple processes have been at work in the formation and evolution of the Columbia Hills. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology

  9. Visualizing the size, shape, morphology, and localized surface plasmon resonance of individual gold nanoshells by near-infrared multispectral imaging microscopy.

    PubMed

    Mejac, Irena; Bryan, William W; Lee, T Randall; Tran, Chieu D

    2009-08-15

    We have successfully utilized the newly developed near-infrared multispectral imaging (NIR-MSI) microscope to observe and measure directly the localized surface plasmon absorption (LSPR) of individual gold nanoshells. The NIR-MSI is suited for this task because it can simultaneously record spectral and spatial information of a sample with high sensitivity (single pixel resolution) and high spatial resolution (approximately 0.9 microm/pixel). Importantly, the LSPR of individual nanoshells measured by the NIR-MSI microscope agrees well with the spectra calculated theoretically using Mie scattering for the nanoshells (i.e., nanoshells with silica cores approximately 800 nm in diameter and gold shell thicknesses of approximately 35 nm). Additionally, the NIR-MSI microscope enables measurement of LSPR at different positions within a single nanoshell. LSPR spectra were found to be distinct at various positions within a single nanoshell. Since LSPR spectra are known to depend on the shape and morphology of the nanoshells, these results seem to suggest that the individual nanoshells are not smooth and well-defined, but are rather rough and inhomogeneous. The LSPR spectra of single nanoshells in several different solvents were also examined using NIR-MSI and were found to depend on the dielectric constant of the medium. However, the relationship was discovered to be more complex than simply following the Drude equation. Specifically, when (lambda(max)/fwhm)(2) values of LSPR for single gold nanoshells were plotted as a function of 2n(2) (or 2epsilon) for nanoshells in six different solvents, a linear relationship was found for only three solvents: D(2)O, acetonitrile-d(3), and ethyl acetate. Acetone-d(6) showed a slight deviation, whereas formamide and pyridine-d(5) exhibited distinctly different correlations.

  10. Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method

    NASA Astrophysics Data System (ADS)

    Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.

    2016-05-01

    Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to nonopaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud τ up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, τ for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are ~100 and ~72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are ~62%. The 3.7 µm channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloud water path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle.

  11. Mineralogic variability of the Kelso Dunes, Mojave Desert, California derived from Thermal Infrared Multispectral Scanner (TIMS) data

    NASA Technical Reports Server (NTRS)

    Ramsey, Michael S.; Howard, Douglas A.; Christensen, Philip R.; Lancaster, Nicholas

    1993-01-01

    Mineral identification and mapping of alluvial material using thermal infrared (TIR) remote sensing is extremely useful for tracking sediment transport, assessing the degree of weathering and locating sediment sources. As a result of the linear relation between a mineral's percentage in a given area (image pixel) and the depth of its diagnostic spectral features, TIR spectra can be deconvolved in order to ascertain mineralogic percentages. Typical complications such as vegetation, particle size and thermal shadowing are minimized upon examination of dunes. Actively saltating dunes contain little to no vegetation, are very well sorted and lack the thermal shadows that arise from rocky terrain. The primary focus of this work was to use the Kelso Dunes as a test location for an accuracy analysis of temperature/emissivity separation and linear unmixing algorithms. Accurate determination of ground temperature and component discrimination will become key products of future ASTER data. A decorrelation stretch of the TIMS image showed clear color variations within the active dunes. Samples collected from these color units were analyzed for mineralogy, grain size, and separated into endmembers. This analysis not only revealed that the dunes contained significant mineralogic variation, but were more immature (low quartz percentage) than previously reported. Unmixing of the TIMS data using the primary mineral endmembers produced unique variations within the dunes and may indicate near, rather than far, source locales for the dunes. The Kelso Dunes lie in the eastern Mojave Desert, California, approximately 95 km west of the Colorado River. The primary dune field is contained within a topographic basin bounded by the Providence, Granite Mountains, with the active region marked by three northeast trending linear ridges. Although active, the dunes appear to lie at an opposing regional wind boundary which produces little net movement of the crests. Previous studies have estimated

  12. ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Li, D.; Li, R.; Yilmaz, A.

    2014-08-01

    ExoMars is the flagship mission of the European Space Agency (ESA) Aurora Programme. The mobile scientific platform, or rover, will carry a drill and a suite of instruments dedicated to exobiology and geochemistry research. As the ExoMars rover is designed to travel kilometres over the Martian surface, high-precision rover localization and topographic mapping will be critical for traverse path planning and safe planetary surface operations. For such purposes, the ExoMars rover Panoramic Camera system (PanCam) will acquire images that are processed into an imagery network providing vision information for photogrammetric algorithms to localize the rover and generate 3-D mapping products. Since the design of the ExoMars PanCam will influence localization and mapping accuracy, quantitative error analysis of the PanCam design will improve scientists' awareness of the achievable level of accuracy, and enable the PanCam design team to optimize its design to achieve the highest possible level of localization and mapping accuracy. Based on photogrammetric principles and uncertainty propagation theory, we have developed a method to theoretically analyze how mapping and localization accuracy would be affected by various factors, such as length of stereo hard-baseline, focal length, and pixel size, etc.

  13. Classification by Using Multispectral Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  14. Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates

    USGS Publications Warehouse

    Vaughan, Alicia F.; Johnson, Jeffrey R.; Herkenhoff, Kenneth E.; Sullivan, Robert; Landis, Geoffrey A.; Goetz, Walter; Madsen, Morten B.

    2010-01-01

    This work describes dust deposits on the Spirit Rover over 2000 sols through examination of Pancam and Microscopic Imager observations of specific locations on the rover body, including portions of the solar array, Pancam and Mini-TES calibration targets, and the magnets. This data set reveals the three "cleaning events" experienced by Spirit to date, the spectral properties of dust, and the tendency of dust particles to form aggregates 100 um and larger.

  15. Multispectral imaging with vertical silicon nanowires

    PubMed Central

    Park, Hyunsung; Crozier, Kenneth B.

    2013-01-01

    Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156

  16. Multi-spectral Infrared Photodetectors and Focal Plane Arrays based on Band-engineered Type-II Indium-Arsenic / Gallium-Antimony Superlattices and its Variants

    NASA Astrophysics Data System (ADS)

    Huang, Edward Kwei-wei

    designs used in LWIR detectors were more "resistant" to the surface traps generated from the optimized ICP etching developed, than higher bandgap superlattices from the SWIR to the MWIR. Empirical evidence suggests that such a phenomenon could be explained through relative surface trap positions to the Fermi level, as well as to the conduction and valence band-edges of the designed superlattice. From an optical standpoint, high quantum efficiencies demand thick active regions and therefore high aspect ratio trenches to be defined in the semiconductor in order to preserve the optical detector volume or fill factor. Etched trenches as deep as 12microm and roughly 3microm in width have been demonstrated. These achievements provide the foundation for focal plane array development, especially for multi-spectral detectors where multiple p-n junctions are stacked together. Understanding how to etch the superlattice pixel has enabled a wide variety of hybrid IR FPAs to be demonstrated. Prior to multi-color camera development, single color cameras were first evaluated in the MWIR and LWIR. Background limited performances were achieved in both wavelength regimes with temperature sensitivities as low as 9mK (MWIR F#2.3 lens) and 19mK (LWIR F#2.0 lens) where as high as 99% of the pixels were found operable. The milestones achieved and realized make T2SLs a prime candidate for multi-color sensing. As requirements for infrared sensing become more stringent, demanding identification of the object rather than mere detection, imagers sensitive to a single waveband are no longer adequate in some applications. In these scenarios, the ability to see in multiple infrared wavebands through a single aperture camera is indispensable. In this work, dual-band material structures that sense the active SWIR to the passive LWIR were designed in combinations of SWIR/MWIR, MWIR/MWIR, MWIRL/LWIR, and LWIR/LWIR to operate as back-to-back diodes where both bands could either be imaged sequentially or

  17. Development of a multispectral imagery device devoted to weed detection

    NASA Astrophysics Data System (ADS)

    Vioix, Jean-Baptiste; Douzals, Jean-Paul; Truchetet, Frederic; Navar, Pierre

    2003-04-01

    Multispectral imagery is a large domain with number of practical applications: thermography, quality control in industry, food science and agronomy, etc. The main interest is to obtain spectral information of the objects for which reflectance signal can be associated with physical, chemical and/or biological properties. Agronomic applications of multispectral imagery generally involve the acquisition of several images in the wavelengths of visible and near infrared. This paper will first present different kind of multispectral devices used for agronomic issues and will secondly introduce an original multispectral design based on a single CCD. Third, early results obtained for weed detection are presented.

  18. Seasonal Variation of Aerosol Particle Size Using MER/Pancam Sky Imaging

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.

    2013-12-01

    Imaging of the sky taken by the Pancam cameras on-board the Mars Exploration Rovers (MER) provide a useful tool for determining the optical depth and physcial properties of aerosols above the rover. Specifically, the brightness of the sky as a function of angle away from the Sun provides a powerful constraint on the size distribution and shape of dust and water ice aerosols. More than 100 Pancam "sky surveys" were taken by each of the two MER rovers covering a time span of several Mars years and a wide range of dust loading conditions including the planet-encirclind dust storm during Mars Year 28 (Earth year 2007). These sky surveys enable the time evolution of aerosol particle size to be determined including its relation to dust loading. Radiative transfer modeling is used to model the observations. Synthetic Pancam sky brightness is computed using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and spherical geometry by integrating the source functions along curved paths in that coordinate system. We find that Mie scattering from spheres is not a good approximation for describing the angular variation of sky brightness far from the Sun (at scattering angles greater than 45 degrees). Significant seasonal variations are seen in the retrieved effective radius of the aerosols with higher optical depth strongly correlated with larger particle size.

  19. Seeing the Soils of Meridiani Planum Through the Eyes of Pancam and Microscopic Imager

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Anderson, R. C.; Bell, J. F., III; Cabrol, N. A.; Calvin, W. M.; Ehlmann, B. L.; Farrand, W. H.; Greeley, R.; Herkenhoff, K. E.; Johnson, J. R.

    2005-01-01

    We are using data from the Pancam and Microscopic Imager (MI) on the Opportunity rover to characterize the soil grains at Meridiani Planum. We have traced individual grains in all MI images of the soils using the software application ImageJ distributed by NIH, and subsequently derived size and shape properties about the grains. The resolution of the MI is 31 microns per pixel [1] so we limit our measurements to those grains larger than about 0.3 mm in size. In cases where the grain is partially or substantially buried by other grains or finer soil particles, we do not make a measurement. False-color composites from Pancam images that cover the same location imaged by MI are made from the Left 2,5,6 (753, 535, 482 nm) filters or Right 2,7,1 (753, 1009, 430 nm) filters [2] in the Red, Green, and Blue channels, respectively. These color images are then merged with the MI images to illustrate color properties of particular grains. Pancam spectra are also extracted from grains when there is sufficient spatial coverage. in diameter. Figure 2 illustrates the dominance of these small grains at this particular location, which happens to be on the southern wall of Eagle crater. The Pancam color merge with this MI image suggests that the small spherules are more consistent with the basalt grains than the blueberries (spherulitic concretions derived from outcrop rocks [7]). The resolution of Pancam images of this location is on the order of 0.5 mm so the grains are only barely resolved. A Mossbauer measurement taken on an adjacent soil (Sol 53 Vanilla) that is composed solely of these smaller spherules (Fig 1) is consistent with a basaltic composition for the grains. Their concentration at this particular location in a brighter, elongate patch along the southeastern wall compared to elsewhere inside Eagle crater suggests wind activity favored their transport and subsequent deposition here. Their spherical shape is also possibly the result of wind action rounding them during

  20. Miniature snapshot multispectral imager

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Ashe, Philip R.; Tan, Songsheng

    2011-03-01

    We present a miniature snapshot multispectral imager based on using a monolithic filter array that operates in the short wavelength infrared spectral region and has a number of defense and commercial applications. The system is low-weight, portable with a miniature platform, and requires low power. The imager uses a 4×4 Fabry-Pérot filter array operating from 1487 to 1769 nm with a spectral bandpass ~10 nm. The design of the filters is based on using a shadow mask technique to fabricate an array of Fabry-Pérot etalons with two multilayer dielectric mirrors. The filter array is installed in a commercial handheld InGaAs camera, replacing the imaging lens with a custom designed 4×4 microlens assembly with telecentric imaging performance in each of the 16 subimaging channels. We imaged several indoor and outdoor scenes. The microlens assembly and filter design is quite flexible and can be tailored for any wavelength region from the ultraviolet to the longwave infrared, and the spectral bandpass can also be customized to meet sensing requirements. In this paper we discuss the design and characterization of the filter array, the microlens optical assembly, and imager and present imaging results.

  1. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  2. Multispectral Microimager for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Farmer, Jack D.; Kieta, Andrew; Huang, Julie

    2006-01-01

    A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (i) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ii) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.

  3. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico

    USGS Publications Warehouse

    Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.

    2005-01-01

    Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.

  4. Multispectral palmprint recognition using a quaternion matrix.

    PubMed

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.

  5. Multispectral Palmprint Recognition Using a Quaternion Matrix

    PubMed Central

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049

  6. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  7. Fourier multispectral imaging.

    PubMed

    Jia, Jie; Ni, Chuan; Sarangan, Andrew; Hirakawa, Keigo

    2015-08-24

    Current multispectral imaging systems use narrowband filters to capture the spectral content of a scene, which necessitates different filters to be designed for each application. In this paper, we demonstrate the concept of Fourier multispectral imaging which uses filters with sinusoidally varying transmittance. We designed and built these filters employing a single-cavity resonance, and made spectral measurements with a multispectral LED array. The measurements show that spectral features such as transmission and absorption peaks are preserved with this technique, which makes it a versatile technique than narrowband filters for a wide range of multispectral imaging applications.

  8. Design and fabrication of multispectral optics using expanded glass map

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George

    2015-06-01

    As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.

  9. Potential for non-destructive astrochemistry using the ExoMars PanCam

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, Michael C.; Muller, J.-P.; Fisk, M. R.; Griffiths, A. D.; Coates, A. J.

    2008-06-01

    We investigate the utility of adding a 365 nm ultraviolet (UV) light source to the ExoMars panoramic camera (PanCam) scheduled for launch in 2013. The modification makes it feasible to monitor rover drill cuttings for aromatic organic molecules and provide constraints on polycyclic aromatic hydrocarbons (PAH) as a function of depth to the 2-meter limit of the ExoMars drill. This non-destructive triage allows prioritized deployment of organic detection experiments requiring sample destruction and/or expenditure of non-replaceable resources. Utilizing the Beagle 2 PanCam backup filter wheel fitted with original blue (440 nm), green (530 nm), and red (670 nm) filters we captured fluorescent images following 365 nm excitation of 3-, 4- and 5-ring PAH species doped on Mars analog peridotite grains. We demonstrate a detection limit for pyrene of 1.5 μg in granular peridotite doped at pyrene levels of 50 +/- 5 ppm for camera-to-target distance of 1 meter.

  10. Crop, soil, and geological mapping from digitized multispectral satellite photography.

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.; Kristof, S. J.; Levandowski, D. W.; Phillips, T. L.; Macdonald, R. B.

    1971-01-01

    An experimental study was conducted of digitized multispectral satellite photography to seek answers to the following two questions: what are the data handling problems and requirements of converting photographic density measurements to a usable digital form, and what surface features can be distinguished using multispectral data taken at satellite altitudes. Results include the digitization of three multiband black and white photographs and a color infrared photograph, the conversion of the results of digitization to a useful digital form, and several data analysis experiments. As a whole, they encourage the use of multiband photography as a multispectral data collection instrument.

  11. Crop, soil, and geological mapping from digitized multispectral satellite photography.

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.; Kristof, S. J.; Levandowski, D. W.; Phillips, T. L.; Macdonald, R. B.

    1971-01-01

    An experimental study was conducted of digitized multispectral satellite photography to seek answers to the following two questions: what are the data handling problems and requirements of converting photographic density measurements to a usable digital form, and what surface features can be distinguished using multispectral data taken at satellite altitudes. Results include the digitization of three multiband black and white photographs and a color infrared photograph, the conversion of the results of digitization to a useful digital form, and several data analysis experiments. As a whole, they encourage the use of multiband photography as a multispectral data collection instrument.

  12. Multispectral Filter Arrays: Recent Advances and Practical Implementation

    PubMed Central

    Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre

    2014-01-01

    Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904

  13. Digital computer processing of peach orchard multispectral aerial photography

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.

    1976-01-01

    Several methods of analysis using digital computers applicable to digitized multispectral aerial photography, are described, with particular application to peach orchard test sites. This effort was stimulated by the recent premature death of peach trees in the Southeastern United States. The techniques discussed are: (1) correction of intensity variations by digital filtering, (2) automatic detection and enumeration of trees in five size categories, (3) determination of unhealthy foliage by infrared reflectances, and (4) four band multispectral classification into healthy and declining categories.

  14. Processing Of Multispectral Data For Identification Of Rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.

    1990-01-01

    Linear discriminant analysis and supervised classification evaluated. Report discusses processing of multispectral remote-sensing imagery to identify kinds of sedimentary rocks by spectral signatures in geological and geographical contexts. Raw image data are spectra of picture elements in images of seven sedimentary rock units exposed on margin of Wind River Basin in Wyoming. Data acquired by Landsat Thematic Mapper (TM), Thermal Infrared Multispectral Scanner (TIMS), and NASA/JPL airborne synthetic-aperture radar (SAR).

  15. Nanohole-array-based device for 2D snapshot multispectral imaging

    PubMed Central

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J. L.

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems. PMID:24005065

  16. Nanohole-array-based device for 2D snapshot multispectral imaging.

    PubMed

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J L

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems.

  17. Multispectral vegetative canopy parameter retrieval

    NASA Astrophysics Data System (ADS)

    Borel, Christoph C.; Bunker, David J.

    2011-11-01

    Precision agriculture, forestry and environmental remote sensing are applications uniquely suited to the 8 bands that DigitalGlobe's WorldView-2 provides. At the fine spatial resolution of 0.5 m (panchromatic) and 2 m (multispectral) individual trees can be readily resolved. Recent research [1] has shown that it is possible for hyper-spectral data to invert plant reflectance spectra and estimate nitrogen content, leaf water content, leaf structure, canopy leaf area index and, for sparse canopies, also soil reflectance. The retrieval is based on inverting the SAIL (Scattering by Arbitrary Inclined Leaves) vegetation radiative transfer model for the canopy structure and the reflectance model PROSPECT4/5 for the leaf reflectance. Working on the paper [1] confirmed that a limited number of adjacent bands covering just the visible and near infrared can retrieve the parameters as well, opening up the possibility that this method can be used to analyze multi-spectral WV-2 data. Thus it seems possible to create WV-2 specific inversions using 8 bands and apply them to imagery of various vegetation covered surfaces of agricultural and environmental interest. The capability of retrieving leaf water content and nitrogen content has important applications in determining the health of vegetation, e.g. plant growth status, disease mapping, quantitative drought assessment, nitrogen deficiency, plant vigor, yield, etc.

  18. Automated Recognition of Geologically Significant Shapes in MER PANCAM and MI Images

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Shipman, Mark; Roush, Ted L.

    2004-01-01

    Autonomous recognition of scientifically important information provides the capability of: 1) Prioritizing data return; 2) Intelligent data compression; 3) Reactive behavior onboard robotic vehicles. Such capabilities are desirable as mission scenarios include longer durations with decreasing interaction from mission control. To address such issues, we have implemented several computer algorithms, intended to autonomously recognize morphological shapes of scientific interest within a software architecture envisioned for future rover missions. Mars Exploration Rovers (MER) instrument payloads include a Panoramic Camera (PANCAM) and Microscopic Imager (MI). These provide a unique opportunity to evaluate our algorithms when applied to data obtained from the surface of Mars. Early in the mission we applied our algorithms to images available at the mission web site (http://marsrovers.jpl.nasa.gov/gallery/images.html), even though these are not at full resolution. Some algorithms would normally use ancillary information, e.g. camera pointing and position of the sun, but these data were not readily available. The initial results of applying our algorithms to the PANCAM and MI images are encouraging. The horizon is recognized in all images containing it; such information could be used to eliminate unwanted areas from the image prior to data transmission to Earth. Additionally, several rocks were identified that represent targets for the mini-thermal emission spectrometer. Our algorithms also recognize the layers, identified by mission scientists. Such information could be used to prioritize data return or in a decision-making process regarding future rover activities. The spherules seen in MI images were also autonomously recognized. Our results indicate that reliable recognition of scientifically relevant morphologies in images is feasible.

  19. Automated Recognition of Geologically Significant Shapes in MER PANCAM and MI Images

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Shipman, Mark; Roush, Ted L.

    2004-01-01

    Autonomous recognition of scientifically important information provides the capability of: 1) Prioritizing data return; 2) Intelligent data compression; 3) Reactive behavior onboard robotic vehicles. Such capabilities are desirable as mission scenarios include longer durations with decreasing interaction from mission control. To address such issues, we have implemented several computer algorithms, intended to autonomously recognize morphological shapes of scientific interest within a software architecture envisioned for future rover missions. Mars Exploration Rovers (MER) instrument payloads include a Panoramic Camera (PANCAM) and Microscopic Imager (MI). These provide a unique opportunity to evaluate our algorithms when applied to data obtained from the surface of Mars. Early in the mission we applied our algorithms to images available at the mission web site (http://marsrovers.jpl.nasa.gov/gallery/images.html), even though these are not at full resolution. Some algorithms would normally use ancillary information, e.g. camera pointing and position of the sun, but these data were not readily available. The initial results of applying our algorithms to the PANCAM and MI images are encouraging. The horizon is recognized in all images containing it; such information could be used to eliminate unwanted areas from the image prior to data transmission to Earth. Additionally, several rocks were identified that represent targets for the mini-thermal emission spectrometer. Our algorithms also recognize the layers, identified by mission scientists. Such information could be used to prioritize data return or in a decision-making process regarding future rover activities. The spherules seen in MI images were also autonomously recognized. Our results indicate that reliable recognition of scientifically relevant morphologies in images is feasible.

  20. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets

    USGS Publications Warehouse

    Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.

    2007-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.

  1. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  2. Commercial Applications Multispectral Sensor System

    NASA Technical Reports Server (NTRS)

    Birk, Ronald J.; Spiering, Bruce

    1993-01-01

    NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.

  3. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  4. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  5. Multispectral imaging probe

    SciTech Connect

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  6. Multispectral imaging probe

    SciTech Connect

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  7. A multispectral scanner survey of the Rocky Flats Environmental Technology Site and surrounding area, Golden, Colorado

    SciTech Connect

    Brewster, S.B. Jr.; Brickey, D.W.; Ross, S.L.; Shines, J.E.

    1997-04-01

    Aerial multispectral scanner imagery was collected of the Rocky Flats Environmental Technology Site in Golden, Colorado, on June 3, 5, 6, and 7, 1994, using a Daedalus AADS1268 multispectral scanner and coincident aerial color and color infrared photography. Flight altitudes were 4,500 feet (1372 meters) above ground level to match prior 1989 survey data; 2,000 feet (609 meters) above ground level for sitewide vegetation mapping; and 1,000 feet (304 meters) above ground level for selected areas of special interest. A multispectral survey was initiated to improve the existing vegetation classification map, to identify seeps and springs, and to generate ARC/INFO Geographic Information System compatible coverages of the vegetation and wetlands for the entire site including the buffer zone. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of vegetation and wetlands. The multispectral scanner data were processed digitally while the color and color infrared photography were manually photo-interpreted to define vegetation and wetlands. Several standard image enhancement techniques were applied to the multispectral scanner data to assist image interpretation. A seep enhancement was applied and a color composite consisting of multispectral scanner channels 11, 7, and 5 (thermal infrared, mid-infrared, and red bands, respectively) proved most useful for detecting seeps, seep zones, and springs. The predawn thermal infrared data were also useful in identifying and locating seeps. The remote sensing data, mapped wetlands, and ancillary Geographic Information System compatible data sets were spatially analyzed for seeps.

  8. Intelligent multi-spectral IR image segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert

    2017-05-01

    This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.

  9. MULTISPECTRAL IDENTIFICATION OF ALKYL AND CHLOROALKYL PHOSPHATES FROM AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared mass spectroscopy) were used to identify 13 alkyl and chloralkyl pho...

  10. MULTISPECTRAL IDENTIFICATION OF ALKYL AND CHLOROALKYL PHOSPHATES FROM AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared mass spectroscopy) were used to identify 13 alkyl and chloralkyl pho...

  11. Optimization of the dust sensor in the Mars MetNet Mission; extension to in situ CO2 concentration and surface temperature measurements by infrared multispectral sensing

    NASA Astrophysics Data System (ADS)

    Cortés, F.; González, A.; Llopis, A.; de Castro, A. J.; Meléndez, J.; López, F.

    2012-12-01

    Martian atmosphere contains two main mechanisms leading the heat transfer process: CO2 and suspended dust. The flight model (FM) of the current Dust Sensor (DS) of the Mars MetNet Mission has already been fabricated providing only with the ability for measuring the particle size distribution. The optimized DS proposed in this work includes two sub-instruments more for measuring both, CO2 concentration and ground temperature. This DS will allow correlate the particle size distribution of the airborne dust, the CO2 concentration and the ground temperature, in a specific location on the Martian surface. All of these parameters will be measured as an in-situ parameter, giving very valuable information about the Martian Planetary Boundary Layer (PBL). The scope of the Mars MetNet Mission is to deploy, in successive flights, several tens of mini atmospheric stations on the Martian surface. Infrared Lab in University Carlos III (LIR- UC3M) is in charge of the design and development of the DS, a micro-sensor (mass <100 g and mean power <1W) which scope is the characterization of airborne dust and other parameters of interest in the heat transfer process. The DS detection principle is of MIE scattering wavelength dependence when particle size is similar to that., so the sensor is provided with spectral resolution,. The optimized DS incorporates angular dependence, so the data retrieval algorithm takes both spectral and angular information making the algorithm most robust. The incorporation of new parameters such as CO2 and ground temperature is possible thanks to the addition of new sensor elements, properly spectrally tuned. As in the previous DS each parameter is also measured within the MWIR range and the spectral resolution is provided by a interference filter, specifically designed for.

  12. The use of four band multispectral photography to identify forest cover types

    NASA Technical Reports Server (NTRS)

    Downs, S. W., Jr.

    1977-01-01

    Four-band multispectral aerial photography and a color additive viewer were employed to identify forest cover types in Northern Alabama. The multispectral photography utilized the blue, green, red and near-infrared spectral regions and was made with black and white infrared film. On the basis of color differences alone, a differentiation between conifers and hardwoods was possible; however, supplementary information related to forest ecology proved necessary for the differentiation of various species of pines and hardwoods.

  13. Multi-Spectral Cloud Property Retrieval

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Lynch, R

    1999-01-01

    Despite numerous studies to retrieve cloud properties using infrared measurements the information content of the data has not yet been fully exploited. In an effort to more fully utilize the information content of infrared measurements, we have developed a multi-spectral technique for retrieving effective cloud particle size, optical depth and effective cloud temperature. While applicable to all cloud types, we begin by validating our retrieval technique through analysis of MS spectral radiances obtained during the SUCCESS field campaign over the ARM SGP CART facility, and compare our retrieval product with lidar and MODIS Airborne Simulator (MAS) measurement results. The technique is then applied to the Nimbus-4 MS infrared spectral measurements to obtain global cloud information.

  14. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  15. Multispectral Internet imaging

    NASA Astrophysics Data System (ADS)

    Brettel, Hans; Schmitt, Francis J. M.

    2000-12-01

    We present a system for multispectral image acquisition which is accessible via an Internet connection. The system includes an electronically tunable spectral filter and a monochrome digital camera, both controlled from a PC-type computer acting as a Web server. In contrast to the three fixed color channels of an ordinary WebCam, our system provides a virtually unlimited number of spectral channels. To allow for interactive use of this multispectral image acquisition system through the network, we developed a set of Java servlets which provide access to the system through HyperText Transfer Protocol (HTTP) requests. Since only the standard Common Gateway Interface (CGI) mechanisms for client-server communication are used, the system is accessible from any Web browser.

  16. Galileo multispectral imaging of Earth

    NASA Astrophysics Data System (ADS)

    Geissler, Paul; Thompson, W. Reid; Greenberg, Richard; Moersch, Jeff; McEwen, Alfred; Sagan, Carl

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the ``red edge'' of chlorophyll and the depth of the 1-μm water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at ~2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-μm band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 μm, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global coverage of the Galileo data set

  17. Multispectral Imaging in Cultural Heritage Conservation

    NASA Astrophysics Data System (ADS)

    Del Pozo, S.; Rodríguez-Gonzálvez, P.; Sánchez-Aparicio, L. J.; Muñoz-Nieto, A.; Hernández-López, D.; Felipe-García, B.; González-Aguilera, D.

    2017-08-01

    This paper sums up the main contribution derived from the thesis entitled "Multispectral imaging for the analysis of materials and pathologies in civil engineering, constructions and natural spaces" awarded by CIPA-ICOMOS for its connection with the preservation of Cultural Heritage. This thesis is framed within close-range remote sensing approaches by the fusion of sensors operating in the optical domain (visible to shortwave infrared spectrum). In the field of heritage preservation, multispectral imaging is a suitable technique due to its non-destructive nature and its versatility. It combines imaging and spectroscopy to analyse materials and land covers and enables the use of a variety of different geomatic sensors for this purpose. These sensors collect both spatial and spectral information for a given scenario and a specific spectral range, so that, their smaller storage units save the spectral properties of the radiation reflected by the surface of interest. The main goal of this research work is to characterise different construction materials as well as the main pathologies of Cultural Heritage elements by combining active and passive sensors recording data in different ranges. Conclusions about the suitability of each type of sensor and spectral range are drawn in relation to each particular case study and damage. It should be emphasised that results are not limited to images, since 3D intensity data from laser scanners can be integrated with 2D data from passive sensors obtaining high quality products due to the added value that metric brings to multispectral images.

  18. Spectral band optimization for multispectral fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Waterhouse, Dale J.; Luthman, A. Siri; Bohndiek, Sarah E.

    2017-02-01

    Multispectral imaging has the potential to improve sensitivity and specificity in biomedical imaging through simultaneous acquisition of both morphological (spatial) and chemical (spectral) information. Performing multispectral imaging in real time with spectrally resolved detector arrays (SRDAs), for example in endoscopy or intraoperative imaging, requires a direct trade off between spatial and spectral resolution. We sought to quantitatively assess the impact of spectral band selection on contrast agent detection in fluorescence endoscopic imaging. As a proof of concept, we measured the `ground truth' spectra from a dilution series of a single near-infrared fluorescent contrast agent using a spectrometer incorporated into the detection path of our endoscope. We then modeled the influence of an SRDA on these spectra and calculated the theoretical endmembers associated with reflectance and fluorescence signals from the pure contrast agent. To test the accuracy of our model, we incorporated into the same endoscope an off-the-shelf SRDA with a 3x3 filter deposition pattern of 9 spectral bands. After spectral unmixing using the modeled endmembers, the amplitude of the fluorescence recorded with the SRDA compared favorably with the amplitude of fluorescence derived from the `ground truth' spectra recorded with the spectrometer. In the future, this approach could be used to minimize the number of spectral bands required in a given imaging system and hence maximize the spatial resolution of the multispectral camera.

  19. Wavelet-based multispectral face recognition

    NASA Astrophysics Data System (ADS)

    Liu, Dian-Ting; Zhou, Xiao-Dan; Wang, Cheng-Wen

    2008-09-01

    This paper proposes a novel wavelet-based face recognition method using thermal infrared (IR) and visible-light face images. The method applies the combination of Gabor and the Fisherfaces method to the reconstructed IR and visible images derived from wavelet frequency subbands. Our objective is to search for the subbands that are insensitive to the variation in expression and in illumination. The classification performance is improved by combining the multispectal information coming from the subbands that attain individually low equal error rate. Experimental results on Notre Dame face database show that the proposed wavelet-based algorithm outperforms previous multispectral images fusion method as well as monospectral method.

  20. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  1. Dust deposition and removal at the MER landing sites from observations of the Panoramic Camera (Pancam) calibration targets

    NASA Astrophysics Data System (ADS)

    Kinch, K. M.; Bell, J. F.; Madsen, M. B.

    2012-12-01

    The Panoramic Cameras (Pancams) [1] on NASA's Mars Exploration Rovers have each returned in excess of 17000 images of their external calibration targets (caltargets), a set of optically well-characterized patches of materials with differing reflectance properties. During the mission dust deposition on the caltargets changed their optical reflectance properties [2]. The thickness of dust on the caltargets can be derived with high confidence from the contrast between brighter and darker colored patches. The dustier the caltarget the less contrast. We present a new history of dust deposition and removal at the two MER landing sites. Our data reveals two quite distinct dust environments. At the Spirit landing site half the Martian year is dominated by dust deposition, the other half by dust removal that usually happens during brief sharp wind events. At the Opportunity landing site the Martian year has a four-season cycle of deposition-removal-deposition-removal with dust removal happening gradually throughout the two removal seasons. Comparison to atmospheric optical depth measurements [3] shows that dust removals happen during dusty high-wind periods and that dust deposition rates are roughly proportional to the atmospheric dust load. We compare with dust deposition studies from other Mars landers and also present some early results from observation of dust on a similar camera calibration target on the Mars Science Laboratory mission. References: 1. Bell, J.F., III, et al., Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res., 2003. 108(E12): p. 8063. 2. Kinch, K.M., et al., Dust Deposition on the Mars Exploration Rover Panoramic Camera (Pancam) Calibration Targets. J. Geophys. Res., 2007. 112(E06S03): p. doi:10.1029/2006JE002807. 3. Lemmon, M., et al., Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 2004. 306: p. 1753-1756. Deposited dust optical depth on the Pancam caltargets as a

  2. Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model

    USDA-ARS?s Scientific Manuscript database

    We investigated the use of multispectral thermal imagery to retrieve land surface emissivity and temperature. Conversely to concurrent methods, the temperature emissivity separation (TES) method simply requires single overpass without any ancillary information. This is possible since TES makes use o...

  3. Multispectral Imaging from Mars PATHFINDER

    NASA Technical Reports Server (NTRS)

    Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.

    2007-01-01

    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.

  4. Changes of multispectral soil patterns with increasing crop canopy

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.

    1972-01-01

    Multispectral data and automatic data processing were used to map surface soil patterns and to follow the changes in multispectral radiation from a field of maize (Zea mays L.) during a period from seeding to maturity. Panchromatic aerial photography was obtained in early May 1970 and multispectral scanner missions were flown on May 6, June 30, August 11 and September 5, 1970 to obtain energy measurements in 13 wavelength bands. The orange portion of the visible spectrum was used in analyzing the May and June data to cluster relative radiance of the soils into eight different radiance levels. The reflective infrared spectral band was used in analyzing the August and September data to cluster maize into different spectral categories. The computer-produced soil patterns had a striking similarity to the soil pattern of the aerial photograph. These patterns became less distinct as the maize canopy increased.

  5. Detection of microspheres in vivo using multispectral optoacoustic tomography.

    PubMed

    Bhutiani, N; Kimbrough, C W; Burton, N C; Morscher, S; Egger, M; McMasters, K; Woloszynska-Read, A; El-Baz, A; McNally, L R

    2017-02-06

    We introduce a new approach to detect individual microparticles that contain NIR fluorescent dye by multispectral optoacoustic tomography in the context of the hemoglobin-rich environment within murine liver. We encapsulated a near infrared (NIR) fluorescent dye within polystyrene microspheres, then injected them into the ileocolic vein, which drains to the liver. NIR absorption was determined using multispectral optoacoustic tomography. To quantitate the minimum diameter of microspheres, we used both colorimetric and spatial information to segment the regions in which the microspheres appear. Regional diameter was estimated by doubling the maximum regional distance. We found that the minimum microsphere size threshold for detection by multispectral optoacoustic tomography images is 78.9 µm.

  6. Multispectral photoacoustic microscopy based on an optical-acoustic objective.

    PubMed

    Cao, Rui; Kilroy, Joseph P; Ning, Bo; Wang, Tianxiong; Hossack, John A; Hu, Song

    2015-06-01

    We have developed reflection-mode multispectral photoacoustic microscopy (PAM) based on a novel optical-acoustic objective that integrates a customized ultrasonic transducer and a commercial reflective microscope objective into one solid piece. This technical innovation provides zero chromatic aberration and convenient confocal alignment of the optical excitation and acoustic detection. With a wavelength-tunable optical-parametric-oscillator laser, we have demonstrated multispectral PAM over an ultrabroad spectral range of 270-1300 nm. A near-constant lateral resolution of ∼2.8 μm is achieved experimentally. Capitalizing on the consistent performance over the ultraviolet, visible, and near-infrared range, multispectral PAM enables label-free concurrent imaging of cell nucleus (DNA/RNA contrast at 270 nm), blood vessel (hemoglobin contrast at 532 nm), and sebaceous gland (lipid contrast at 1260 nm) at the same spatial scale in a living mouse ear.

  7. Multispectral Imaging Science Working Group for Hydrologic Science: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The following working objectives were adopted: (1) define the current state of knowledge concerning the role of multispectral imaging science in hydrology; (2) identify critical areas where gaps in our knowledge limit opportunities for significant improvements in our understanding of the hydrologic processes; (3) evaluate the potential of multispectral imaging sciences as tools to close these gaps in knowledge; and (4) develop guidelines for a series of remote-sensing-based experiments that would help close these gaps in knowledge and, thereby, provide man with the improved scientific base necessary for better utilization of the world's water resource. The resulting documentation is intended to provide guidance for multispectral imaging programs in the hydrologic sciences with special emphasis on the visible and infrared (IR) wavelengths.

  8. Multispectral photoacoustic microscopy based on an optical–acoustic objective

    PubMed Central

    Cao, Rui; Kilroy, Joseph P.; Ning, Bo; Wang, Tianxiong; Hossack, John A.; Hu, Song

    2015-01-01

    We have developed reflection-mode multispectral photoacoustic microscopy (PAM) based on a novel optical–acoustic objective that integrates a customized ultrasonic transducer and a commercial reflective microscope objective into one solid piece. This technical innovation provides zero chromatic aberration and convenient confocal alignment of the optical excitation and acoustic detection. With a wavelength-tunable optical-parametric-oscillator laser, we have demonstrated multispectral PAM over an ultrabroad spectral range of 270–1300 nm. A near-constant lateral resolution of ∼2.8 μm is achieved experimentally. Capitalizing on the consistent performance over the ultraviolet, visible, and near-infrared range, multispectral PAM enables label-free concurrent imaging of cell nucleus (DNA/RNA contrast at 270 nm), blood vessel (hemoglobin contrast at 532 nm), and sebaceous gland (lipid contrast at 1260 nm) at the same spatial scale in a living mouse ear. PMID:26236641

  9. Multispectral thermal imaging

    SciTech Connect

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W.; Garrett, A.; Pendergast, M.M.; Kay, R.R.

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  10. MULTISPECTRAL THERMAL IMAGER - OVERVIEW

    SciTech Connect

    P. WEBER

    2001-03-01

    The Multispectral Thermal Imager satellite fills a new and important role in advancing the state of the art in remote sensing sciences. Initial results with the full calibration system operating indicate that the system was already close to achieving the very ambitious goals which we laid out in 1993, and we are confident of reaching all of these goals as we continue our research and improve our analyses. In addition to the DOE interests, the satellite is tasked about one-third of the time with requests from other users supporting research ranging from volcanology to atmospheric sciences.

  11. Analysis of multispectral signatures of the shot

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Piątkowski, Tadeusz; Madura, Henryk; Bareła, Jarosław; Polakowski, Henryk

    2011-06-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper shot in typical scenarios has been presented. We take into consideration sniper activities in the open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement-class devices with high accuracy and frame rates. The registrations were simultaneously made in UV, NWIR, SWIR and LWIR spectral bands. The infrared cameras have possibilities to install optical filters for multispectral measurement. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented. LWIR imaging spectroradiometer HyperCam was also used during the laboratory measurements and field experiments. The signatures collected by HyperCam were useful for the determination of spectral characteristics of shot.

  12. [Nitrogen stress measurement of canola based on multi-spectral charged coupled device imaging sensor].

    PubMed

    Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong

    2006-09-01

    Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations.

  13. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  14. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  15. Multispectral imaging and image processing

    NASA Astrophysics Data System (ADS)

    Klein, Julie

    2014-02-01

    The color accuracy of conventional RGB cameras is not sufficient for many color-critical applications. One of these applications, namely the measurement of color defects in yarns, is why Prof. Til Aach and the Institute of Image Processing and Computer Vision (RWTH Aachen University, Germany) started off with multispectral imaging. The first acquisition device was a camera using a monochrome sensor and seven bandpass color filters positioned sequentially in front of it. The camera allowed sampling the visible wavelength range more accurately and reconstructing the spectra for each acquired image position. An overview will be given over several optical and imaging aspects of the multispectral camera that have been investigated. For instance, optical aberrations caused by filters and camera lens deteriorate the quality of captured multispectral images. The different aberrations were analyzed thoroughly and compensated based on models for the optical elements and the imaging chain by utilizing image processing. With this compensation, geometrical distortions disappear and sharpness is enhanced, without reducing the color accuracy of multispectral images. Strong foundations in multispectral imaging were laid and a fruitful cooperation was initiated with Prof. Bernhard Hill. Current research topics like stereo multispectral imaging and goniometric multispectral measure- ments that are further explored with his expertise will also be presented in this work.

  16. Land use classification utilizing remote multispectral scanner data and computer analysis techniques

    NASA Technical Reports Server (NTRS)

    Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.

    1973-01-01

    An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.

  17. High-contrast subcutaneous vein detection and localization using multispectral imaging

    PubMed Central

    Behrooz, Ali; Morris, Michael; Adibi, Ali

    2013-01-01

    Abstract. Multispectral imaging has shown promise in subcutaneous vein detection and localization in human subjects. While many limitations of single-wavelength methods are addressed in multispectral vein detection methods, their performance is still limited by artifacts arising from background skin reflectance and optimality of postprocessing algorithms. We propose a background removal technique that enhances the contrast and performance of multispectral vein detection. We use images acquired at visible wavelengths as reference for removing skin reflectance background from subcutaneous structures in near-infrared images. Results are validated by experiments on human subjects. PMID:23649005

  18. High-contrast subcutaneous vein detection and localization using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fengtao; Behrooz, Ali; Morris, Michael; Adibi, Ali

    2013-05-01

    Multispectral imaging has shown promise in subcutaneous vein detection and localization in human subjects. While many limitations of single-wavelength methods are addressed in multispectral vein detection methods, their performance is still limited by artifacts arising from background skin reflectance and optimality of postprocessing algorithms. We propose a background removal technique that enhances the contrast and performance of multispectral vein detection. We use images acquired at visible wavelengths as reference for removing skin reflectance background from subcutaneous structures in near-infrared images. Results are validated by experiments on human subjects.

  19. An aerial multispectral thermographic survey of the Oak Ridge Reservation for selected areas K-25, X-10, and Y-12, Oak Ridge, Tennessee

    SciTech Connect

    Ginsberg, I.W.

    1996-10-01

    During June 5-7, 1996, the Department of Energy`s Remote Sensing Laboratory performed day and night multispectral surveys of three areas at the Oak Ridge Reservation: K-25, X-10, and Y-12. Aerial imagery was collected with both a Daedalus DS1268 multispectral scanner and National Aeronautics and Space Administration`s Thermal Infrared Multispectral System, which has six bands in the thermal infrared region of the spectrum. Imagery from the Thermal Infrared Multispectral System was processed to yield images of absolute terrain temperature and of the terrain`s emissivities in the six spectral bands. The thermal infrared channels of the Daedalus DS1268 were radiometrically calibrated and converted to apparent temperature. A recently developed system for geometrically correcting and geographically registering scanner imagery was used with the Daedalus DS1268 multispectral scanner. The corrected and registered 12-channel imagery was orthorectified using a digital elevation model. 1 ref., 5 figs., 5 tabs.

  20. Multispectral Resource Sampler Workshop

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The utility of the multispectral resource sampler (MRS) was examined by users in the following disciplines: agriculture, atmospheric studies, engineering, forestry, geology, hydrology/oceanography, land use, and rangelands/soils. Modifications to the sensor design were recommended and the desired types of products and number of scenes required per month were indicated. The history, design, capabilities, and limitations of the MRS are discussed as well as the multilinear spectral array technology which it uses. Designed for small area inventory, the MRS can provide increased temporal, spectral, and spatial resolution, facilitate polarization measurement and atmospheric correction, and test onboard data compression techniques. The advantages of using it along with the thematic mapper are considered.

  1. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  2. Multispectral remote sensing contribution to land surface evaporation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1990-01-01

    The global water cycle is perhaps the most important of all the biogeochemical cycles and evaporation, which is a significant component of the water cycle, is also linked with the energy and carbon cycles. Long-term evaporation over large areas has generally been computed as the difference of precipitation and river runoff. Analysis of short-term evaporation rate and its spatial pattern, however, is extremely complex, and multispectral remotely sensed data could aid in such analysis. Multispectral data considered here are visible and near-infrared reflectances, infrared surface temperature and the 37 GHz brightness temperatures. These observations are found to be not totally independent of each other. A few of their relationships are established and discussed considering physically-based models.

  3. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  4. Versatile multispectral microscope based on light emitting diodes

    NASA Astrophysics Data System (ADS)

    Brydegaard, Mikkel; Merdasa, Aboma; Jayaweera, Hiran; Ålebring, Jens; Svanberg, Sune

    2011-12-01

    We describe the development of a novel multispectral microscope, based on light-emitting diodes, capable of acquiring megapixel images in thirteen spectral bands from the ultraviolet to the near infrared. The system captures images and spectra in transmittance, reflectance, and scattering modes. We present as examples of applications ground truth measurements for remote sensing and parasitology diagnostics. The system is a general purpose scientific instrument that could be used to develop dedicated simplified instruments with optimal bands and mode selection.

  5. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  6. Multispectral face recognition using non linear dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Akhloufi, Moulay A.; Bendada, Abdelhakim; Batsale, Jean-Christophe

    2009-05-01

    Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). In this work, we introduce non linear dimensionality reduction approaches for multispectral face recognition. For this purpose, the following techniques were developed: global non linear techniques (Kernel-PCA, Kernel-LDA) and local non linear techniques (Local Linear Embedding, Locality Preserving Projection). The performances of these techniques were compared to classical linear techniques for face recognition like PCA and LDA. Two multispectral face recognition databases were used in our experiments: Equinox Face Recognition Database and Laval University Database. Equinox database contains images in the Visible, Short, Mid and Long waves infrared spectrums. Laval database contains images in the Visible, Near, Mid and Long waves infrared spectrums with variations in time and metabolic activity of the subjects. The obtained results are interesting and show the increase in recognition performance using local non linear dimensionality reduction techniques for infrared face recognition, particularly in near and short wave infrared spectrums.

  7. Optical design of athermal, multispectral, radial GRIN lenses

    NASA Astrophysics Data System (ADS)

    Boyd, Andrew M.

    2017-05-01

    Military infrared systems generally must exhibit stable optical performance over a wide operating temperature range. We present a model for the first-order optical design of radial gradient-index systems, based on a form of the thermo-optic glass coefficient adapted to inhomogeneous material combinations. We find that GRIN components can significantly reduce the optical power balance of athermal, achromatic systems, which introduces the scope for a new class of broadband infrared imaging solutions. This novel first-order modelling technique is used to generate a starting point for optimisation of a SWIR/LWIR multispectral optical design.

  8. Adaptive multispectral image processing for the detection of targets in terrain clutter

    NASA Astrophysics Data System (ADS)

    Hoff, Lawrence E.; Zeidler, James R.; Yerkes, Christopher R.

    1992-08-01

    In passive detection of small infrared targets in image data, we are faced with the difficult task of enhancing some characteristic of the target or signal while suppressing the clutter or background image noise. We reported that an effective means by which targets may be identified is to exploit characteristics which exist between scenes measured in different bands in the long wave infrared region of the electromagnetic spectrum. These methods are broadly termed multispectral techniques. In this paper we present a method by which a two- dimensional least-mean square adaptive filter is used to distinguish between target and clutter using multispectral techniques.

  9. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Vargo, Timothy D.; Lockhart, Randal R.; Descour, Michael R.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging method and apparatus adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging

  10. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Vargo, T.D.; Lockhart, R.R.; Descour, M.R.; Richards-Kortum, R.

    1999-07-06

    A multispectral imaging method and apparatus are described which are adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging. 5 figs.

  11. Multispectral Focal Plane Assembly for Satellite Remote Sensing

    SciTech Connect

    Rienstra, J.; Ballard, M.

    1997-12-31

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing from space. A proof of concept multispectral sensor system is under development. The objective of building this sensor is to demonstrate and evaluate multispectral imaging technologies for various applications. The three major subsystems making up the sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding. Linear detector arrays provide spatial resolution in the cross-track direction for a pushbroom imager configuration. The optical filters define 15 spectral bands in a range from 0.45 microns to 10.7 microns. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. No beam splitters are used. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 15.4 megapixels per second. At the time this paper is being written, the multispectral focal plane assembly is in the fabrication phase. A thermal/mechanical mockup has been built and tested for the vibration environment and to determine the thermal load. Some of the sensor chip assemblies and filters have been built and tested. Several notable features of the design are covered in the paper as well as preliminary test data.

  12. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    PubMed

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  13. Multispectral enhancement towards digital staining.

    PubMed

    Bautista, Pinky A; Yagi, Yukako

    2012-01-01

    Digital staining can be considered as a special form of image enhancement wherein the concern is not only to increase the contrast between the background objects and objects of interest, but to also impart the colors that mark the objects' unique reactions to a specific stain. In this paper, we extended the previously proposed multispectral enhancement methods such that the colors of the background pixels can also be changed. In the previous multispectral enhancement methods a shifting factor is provided to the original spectrum. To implement digital staining, a spectral transformation process is introduced prior to spectral shifting. The enhancement method is applied to multispectral images of H&E stained liver tissue. The resulting digitally stained images show good correlation with the serial-section images of the tissue which are physically stained with Masson's trichrome. We have presented a multispectral enhancement method that can be adjusted to produce digitally stained-images. The current experimental results show the viability of the method. However, to achieve robust enhancement performance issues that arise from variations in staining conditions has to be addressed as well. This would be part of our future work.

  14. RGB-NIR multispectral camera.

    PubMed

    Chen, Zhenyue; Wang, Xia; Liang, Rongguang

    2014-03-10

    A multispectral imaging technique with a new CMOS camera is proposed. With a four channel Bayer patterns, the camera can acquire four spectral images simultaneously. We have developed a color correction process to obtain accurate color information, and we have also demonstrated its applications on portrait enhancement, shadow removal, and vein enhancement.

  15. Surface Emissivity Derived From Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Smith, W. L., Jr.; Young, D. F.

    1998-01-01

    Surface emissivity is critical for remote sensing of surface skin temperature and infrared cloud properties when the observed radiance is influenced by the surface radiation. It is also necessary to correctly compute the longwave flux from a surface at a given skin temperature. Surface emissivity is difficult to determine because skin temperature is an ill-defined parameter. The surface-emitted radiation may arise from a range of surface depths depending on many factors including soil moisture, vegetation, surface porosity, and heat capacity. Emissivity can be measured in the laboratory for pure surfaces. Transfer of laboratory measurements to actual Earth surfaces, however, is fraught with uncertainties because of their complex nature. This paper describes a new empirical approach for estimating surface skin temperature from a combination of brightness temperatures measured at different infrared wavelengths with satellite imagers. The method uses data from the new Geostationary Operational Environmental Satellite (GOES) imager to determine multispectral emissivities from the skin temperatures derived over the ARM Southern Great Plains domain.

  16. Information content of data from the LANDSAT-4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    The progress of an investigation to quantify the increased information content of thematic mapper (TM) data as compared to that from the LANDSAT 4 multispectral scanner (MSS) is reported. Two night infrared images were examined and compared with Heat Capacity Mapping Mission data.

  17. Apollo 9 Mission image - S0-65 Multispectral Photography - Mexico

    NASA Image and Video Library

    2009-02-19

    AS09-26A-3768A (10 March 1969) --- Color infrared photograph of Mexico: Cerro Malinche, east end of neo-volcanic plateau, as seen from the Apollo 9 spacecraft during its 109th revolution of Earth. This picture was taken as a part of the SO65 Multispectral Terrain Photography Experiment.

  18. A multispectral cloud type identification method using Nimbus 3 MRIR measurements.

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Holub, R. J.

    1972-01-01

    Using Nimbus 3 medium resolution infrared radiometer measurements, a multispectral cloud type identification method is developed. This method includes a fourth spectral region (20-23 microns), the use of radiative transfer theory, and a semiquantitative evaluation of satellite cloud type estimates with concurrent high resolution photography from aircraft flights.

  19. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data

    PubMed Central

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088

  20. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data.

    PubMed

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively.

  1. Multispectral determination of vegetative cover in corn crop canopy

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1972-01-01

    The relationship between different amounts of vegetative ground cover and the energy reflected by corn canopies was investigated. Low altitude photography and an airborne multispectral scanner were used to measure this reflected energy. Field plots were laid out, representing four growth stages of corn. Two plot locations were chosen-on a very dark and a very light surface soil. Color and color infrared photographs were taken from a vertical distance of 10 m. Estimates of ground cover were made from these photographs and were related to field measurements of leaf area index. Ground cover could be predicted from leaf area index measurements by a second order equation. Microdensitometry and digitzation of the three separated dye layers of color infrared film showed that the near infrared dye layer is most valuable in ground cover determinations. Computer analysis of the digitized photography provided an accurate method of determining precent ground cover.

  2. Experimental applications of multispectral data to natural resource inventory and survey

    NASA Technical Reports Server (NTRS)

    Mallon, H. J.

    1970-01-01

    The feasibility of using multispectral, color, color infrared, thermal infrared imagery and related ground data to recognize, identify, determine and monitor the status of mineral ore and metals stockpiles is studied. An attempt was made to identify valid, unique spectral signatures of such materials for possible use under a wide variety of environmental circumstances. Research emphasis was upon the analysis of the multiband imagery from the various film-filter combinations, using density analysis techniques.

  3. Experimental applications of multispectral data to natural resource inventory and survey

    NASA Technical Reports Server (NTRS)

    Mallon, H. J.

    1970-01-01

    The feasibility of using multispectral, color, color infrared, thermal infrared imagery and related ground data to recognize, identify, determine and monitor the status of mineral ore and metals stockpiles is studied. An attempt was made to identify valid, unique spectral signatures of such materials for possible use under a wide variety of environmental circumstances. Research emphasis was upon the analysis of the multiband imagery from the various film-filter combinations, using density analysis techniques.

  4. Quality assessment of butter cookies applying multispectral imaging

    PubMed Central

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-01-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4–16 min and 160–200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400–700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center. PMID:24804036

  5. Prototype focal plane assembly for multispectral remote sensing

    SciTech Connect

    Rienstra, J.L.; Vampola, J.A.

    1995-09-01

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing. A prototype multispectral sensor system is under development. The three major subsystems making up the prototype sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding The optical filters define 15 spectral bands in a range from 0.45 {mu}m to 10.7 {mu}m. All the linear arrays are mounted on a single motherboard and are designed to operate at 75 K. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 16.4 megapixels per second. The diverse requirements for the focal plane assembly make this a challenging, sensor to design and build.

  6. Quality assessment of butter cookies applying multispectral imaging.

    PubMed

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-07-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4-16 min and 160-200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400-700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center.

  7. Multispectral and hyperspectral measurements of smoke candles and soldier's camouflage equipment

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Gagnon, Marc-André; Kastek, Mariusz; PiÄ tkowski, Tadeusz; Dulski, Rafał; Trzaskawka, Piotr

    2012-09-01

    The emergence of new infrared camouflage and countermeasure technologies in the context of military operations has paved the way to enhanced detection capabilities. Camouflage devices such as candles (or smoke bombs) and flares are developed to generate either large area or localized screens with very high absorption in the infrared. Similarly, soldier's camouflage devices such as clothing have evolved in design to dissolve their infrared characteristics with that of the background. In all cases, the analysis of the targets infrared images needs to be conducted in both multispectral and hyperspectral domains to assess their capability to efficiently provide visible and infrared camouflage. The Military University of Technology has conducted several intensive field campaigns where various types of smoke candles and camouflage uniforms were deployed in different conditions and were measured both in the multispectral and hyperspectral domains. Cooled broadband infrared cameras were used for the multispectral analysis whereas the high spectral, spatial and temporal resolution acquisition of these thermodynamic events was recorded with the Telops Hyper-Cam sensor. This paper presents the test campaign concept and the analysis of the recorded measurements.

  8. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  9. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  10. A channel-based color fusion technique using multispectral images for night vision enhancement

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    2011-09-01

    A fused image using multispectral images can increase the reliability of interpretation because it combines the complimentary information apparent in multispectral images. While a color image can be easily interpreted by human users (for visual analysis), and thus improves observer performance and reaction times. We propose a fast color fusion method, termed as channel-based color fusion, which is efficient for real time applications. Notice that the term of "color fusion" means combing multispectral images into a color-version image with the purpose of resembling natural scenes. On the other hand, false coloring technique usually has no intention of resembling natural scenery. The framework of channel-based color fusion is as follows, (1) prepare for color fusion by preprocessing, image registration and fusion; (2) form a color fusion image by properly assigning multispectral images to red, green, and blue channels; (3) fuse multispectral images (gray fusion) using a wavelet-based fusion algorithm; and (4) replace the value component of color fusion in HSV color space with the gray-fusion image, and finally transform back to RGB space. In night vision imaging, there may be two or several bands of images available, for example, visible (RGB), image intensified (II), near infrared (NIR), medium wave infrared (MWIR), long wave infrared (LWIR). The proposed channel-wise color fusions were tested with two-band (e.g., NIR + LWIR, II + LWIR, RGB + LWIR) or three-band (e.g., RGB + NIR + LWIR) multispectral images. Experimental results show that the colors in the fused images by the proposed method are vivid and comparable with that of the segmentation-based colorization. The processing speed of new method is much faster than any segmentation-based method.

  11. Multispectral Detector Array Technology

    NASA Astrophysics Data System (ADS)

    Jokerst, Nan M.

    1999-12-01

    A sensor is a device used to sense or measure physical phenomena. Thus, sensors may detect electrical, mechanical, optical, chemical, tactile, or acoustic signatures of an object or scene. Objects that may be difficult to discriminate using a single sensor are often differentiated with a multiple sensor system that exploits several signature phenomena. The application of multiple sensors (and the fusion of their data) offers numerous potential performance benefits over traditional single sensor approaches. In our application, which is infrared target discrimination, employing multiple sensors, which respond to different signatures, increases the probability that a target signature will be found against a given set of weather, clutter or background noise sources. A multiple sensor system, in other words, diminishes ambiguity and uncertainty in the measured information by reducing the set of hypotheses about the target or event. Multiple sensors may also be used to reduce the vulnerability to false conclusions drawn from data of a single sensor. For instance, missiles may carry multiple sensors to better guarantee a hit or a radar can use multiple sensors to counter-jam incoming missiles.

  12. Oil slick studies using photographic and multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Macintyre, W. G.; Penney, M. E.; Oberholtzer, J. D.

    1971-01-01

    Field studies of spills of Nos. 6 (Bunker C), 4, and 2 fuel oils and menhaden fish oil in the southern Chesapeake Bay have been supplemented with aerial photographic and multispectral scanner data. Thin films showed best in ultraviolet and blue bands and thick films in the green. Color film was effective for all thicknesses. Thermal infrared imagery provided clear detection, but required field temperature and thickness data to distinguish thickness/emissivity variations from temperature variations. Slick spreading rates agree with the theory of Fay (1969); further study of spreading is in progress.

  13. Oil slick studies using photographic and multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Macintyre, W. G.; Penney, M. E.; Oberholtzer, J. D.

    1971-01-01

    Field studies of spills of Nos. 6 (Bunker C), 4, and 2 fuel oils and menhaden fish oil in the southern Chesapeake Bay have been supplemented with aerial photographic and multispectral scanner data. Thin films showed best in ultraviolet and blue bands and thick films in the green. Color film was effective for all thicknesses. Thermal infrared imagery provided clear detection, but required field temperature and thickness data to distinguish thickness/emissivity variations from temperature variations. Slick spreading rates agree with the theory of Fay (1969); further study of spreading is in progress.

  14. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  15. Multispectral Imaging Simulation

    NASA Astrophysics Data System (ADS)

    Loefer, Gene R.; Lao, Ken Q.

    1987-09-01

    Current aircraft have a requirement to operate at night and in adverse weather where optical imaging systems are inoperable. Imaging sensors operating at other wavelengths have the potential to provide vision through severe weather, but these systems need to be simulated before assuming the technological and financial risks involved in hardware development. Sensor and atmospheric models have been developed which simulate images at a variety of wavelengths. These models have been incorporated into a modified version of the IVEX Corporation Behold software which is used for the creation of three dimensional views of terrain data bases and includes fractal texturing and anti-aliasing. This new version, called Behold-ms, adds phenomenological models of material properties, such as surface roughness, emissivity, and temperature, and structured atmospheric weather models that consider path emission, backscatter, and specular/diffuse reflections of the sky. To date, images have been simulated in the visible (color), infrared (8-14pm), passive millimeter wave (35 GHz and 95 GHz), and active MMW (35 GHz and 95 GHz). These algorithms can be used for other windows over this spectral range. In order to accommodate the widely varying types of sensed energy while maintaining a practical amount of internal storage, a scheme for scaling each spectral band has been developed. Spatial resolution degradation due to diffraction, which is especially important at millimeter wavelengths, spatial sampling effects, and system noise models are also included. These sensor models and simulations have been used to examine adverse weather landing systems. Simulated images have also been used in image understanding research and spatial superresolution studies.

  16. Laser-Induced Fluorescence Emission (L.I.F.E.): searching for Mars organics with a UV-enhanced PanCam.

    PubMed

    Storrie-Lombardi, Michael C; Muller, Jan-Peter; Fisk, Martin R; Cousins, Claire; Sattler, Birgit; Griffiths, Andrew D; Coates, Andrew J

    2009-12-01

    The European Space Agency will launch the ExoMars mission in 2016 with a primary goal of surveying the martian subsurface for evidence of organic material. We have recently investigated the utility of including either a 365 nm light-emitting diode or a 375 nm laser light source in the ExoMars rover panoramic camera (PanCam). Such a modification would make it feasible to monitor rover drill cuttings optically for the fluorescence signatures of aromatic organic molecules and map the distribution of polycyclic aromatic hydrocarbons (PAHs) as a function of depth to the 2 m limit of the ExoMars drill. The technique described requires no sample preparation, does not consume irreplaceable resources, and would allow mission control to prioritize deployment of organic detection experiments that require sample destruction, expenditure of non-replaceable consumables, or both. We report here for the first time laser-induced fluorescence emission (L.I.F.E.) imaging detection limits for anthracene, pyrene, and perylene targets doped onto a Mars analog granular peridotite with a 375 nm Nichia laser diode in optically uncorrected wide-angle mode. Data were collected via the Beagle 2 PanCam backup filter wheel fitted with original blue (440 nm), green (530 nm), and red (670 nm) filters. All three PAH species can be detected with the PanCam green (530 nm) filter. Detection limits in the green band for signal-to-noise ratios (S/N) > 10 are 49 parts per million (ppm) for anthracene, 145 ppm for pyrene, and 20 ppm for perylene. The anthracene detection limit improves to 7 ppm with use of the PanCam blue filter. We discuss soil-dependent detection limit constraints; use of UV excitation with other rover cameras, which provides higher spatial resolution; and the advantages of focused and wide-angle laser modes. Finally, we discuss application of L.I.F.E. techniques at multiple wavelengths for exploration of Mars analog extreme environments on Earth, including Icelandic hydrothermally

  17. Laser-Induced Fluorescence Emission (L.I.F.E.): Searching for Mars Organics with a UV-Enhanced PanCam

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, Michael C.; Muller, Jan-Peter; Fisk, Martin R.; Cousins, Claire; Sattler, Birgit; Griffiths, Andrew D.; Coates, Andrew J.

    2009-12-01

    The European Space Agency will launch the ExoMars mission in 2016 with a primary goal of surveying the martian subsurface for evidence of organic material. We have recently investigated the utility of including either a 365 nm light-emitting diode or a 375 nm laser light source in the ExoMars rover panoramic camera (PanCam). Such a modification would make it feasible to monitor rover drill cuttings optically for the fluorescence signatures of aromatic organic molecules and map the distribution of polycyclic aromatic hydrocarbons (PAHs) as a function of depth to the 2 m limit of the ExoMars drill. The technique described requires no sample preparation, does not consume irreplaceable resources, and would allow mission control to prioritize deployment of organic detection experiments that require sample destruction, expenditure of non-replaceable consumables, or both. We report here for the first time laser-induced fluorescence emission (L.I.F.E.) imaging detection limits for anthracene, pyrene, and perylene targets doped onto a Mars analog granular peridotite with a 375 nm Nichia laser diode in optically uncorrected wide-angle mode. Data were collected via the Beagle 2 PanCam backup filter wheel fitted with original blue (440 nm), green (530 nm), and red (670 nm) filters. All three PAH species can be detected with the PanCam green (530 nm) filter. Detection limits in the green band for signal-to-noise ratios (S/N) > 10 are 49 parts per million (ppm) for anthracene, 145 ppm for pyrene, and 20 ppm for perylene. The anthracene detection limit improves to 7 ppm with use of the PanCam blue filter. We discuss soil-dependent detection limit constraints; use of UV excitation with other rover cameras, which provides higher spatial resolution; and the advantages of focused and wide-angle laser modes. Finally, we discuss application of L.I.F.E. techniques at multiple wavelengths for exploration of Mars analog extreme environments on Earth, including Icelandic hydrothermally

  18. New Multispectral Cloud Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. Thomas

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun- synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  19. Iris biometric system design using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Widhianto, Benedictus Yohanes Bagus Y. B.; Nasution, Aulia M. T.

    2016-11-01

    An identity recognition system is a vital component that cannot be separated from life, iris biometric is one of the biometric that has the best accuracy reaching 99%. Usually, iris biometric systems use infrared spectrum lighting to reduce discomfort caused by radiation when the eye is given direct light, while the eumelamin that is forming the iris has the most flourescent radiation when given a spectrum of visible light. This research will be conducted by detecting iris wavelengths of 850 nm, 560 nm, and 590 nm, where the detection algorithm will be using Daugman algorithm by using a Gabor wavelet extraction feature, and matching feature using a Hamming distance. Results generated will be analyzed to identify how much differences there are, and to improve the accuracy of the multispectral biometric system and as a detector of the authenticity of the iris. The results obtained from the analysis of wavelengths 850 nm, 560 nm, and 590 nm respectively has an accuracy of 99,35 , 97,5 , 64,5 with a matching score of 0,26 , 0,23 , 0,37.

  20. New Multispectral Cloud Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. Thomas

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun- synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  1. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  2. An application of LANDSAT multispectral imagery for the classification of hydrobiological systems, Shark River Slough, Everglades National Park, Florida

    NASA Technical Reports Server (NTRS)

    Rose, P. W.; Rosendahl, P. C. (Principal Investigator)

    1979-01-01

    Multivariant hydrologic parameters over the Shark River Slough were investigated. Ground truth was established utilizing U-2 infrared photography and comprehensive field data to define a control network which represented all hydrobiological systems in the slough. These data were then applied to LANDSAT imagery utilizing an interactive multispectral processor which generated hydrographic maps through classification of the slough and defined the multispectral surface radiance characteristics of the wetlands areas in the park. The spectral response of each hydrobiological zone was determined and plotted to formulate multispectral relationships between the emittent energy from the slough in order to determine the best possible multispectral wavelength combinations to enhance classification results. The extent of each hydrobiological zone in slough was determined and flow vectors for water movement throughout the slough established.

  3. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters.

    PubMed

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-07-20

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels.

  4. Spatial Calibration Of A Multispectral Data Base

    NASA Astrophysics Data System (ADS)

    Bair, M.; Carmer, D.; Beard, J.

    1982-03-01

    A new airborne multispectral scanner system was assembled and installed in a De Havilland DHC4A (Caribou) aircraft. This system was used to collect two sets of imagery; one set for strategic target areas near Sunnyvale, California, and another set for target areas near Rome, New York, during the time period July-November 1978. The imagery was processed and distributed to various researchers for use in studies of advanced scene-matching techniques as part of a program to provide precise autonomous guidance for strategic delivery vehicles. The sensor system produces seven data channels, all in spatial registration-visible, near infrared, thermal infrared, 1.06 μm laser reflectance, 10.6 μm laser reflectance, 95 GHZ radar reflectance and 1.06 μm laser range. All optical channels had a 1.25 mrad field of view and the radar has a 7 mrad two-way antenna beamwidth. The data were digitized and re-corded on a high-density digital magnetic tape recorder along with aircraft altitude from a radar altimeter and aircraft attitude and acceleration data derived from an inertial navigation sensor. A nine-inch format metric camera was boresighted with the sensors and provides additional information on aircraft position through use of inscene surveyed benchmarks. A key feature of the system was the dual-frequency modulated 1.06 μm laser ranging unit that provides absolute range from the aircraft to each pixel in the scene. The range data, the camera photos, and the inertial navigation data all provide inputs for geometrical reformatting of the imagery to remove distortions caused by aircraft motion and reconstruction of imagery either in the original line scan format or a single point-of-view format. The topic of the paper is the calibration aspects of this data base with the major emphasis being placed upon the geometrical reconstruction of the data.*

  5. Multispectral Image Capturing with Foveon Sensors

    NASA Astrophysics Data System (ADS)

    Gehrke, R.; Greiwe, A.

    2013-08-01

    This article describes a specific image quality problem using an UAV and the commercially available multispectral camera Tetracam ADC Lite. The tests were carried out with commercially available UAV Multirotor MR-X 8 performed under normal use and conditions. The ADC Lite shows a remarkable rolling shutter effect caused by the movement and vibrations of the UAV and a slow readout speed of the sensor. Based on these studies the current state of a sensor development is presented, which is composed of two compact cameras with Foveon sensors. These cameras allow to record high quality image data without motion blur or rolling shutter effect. One camera captures the normal colour range; the second camera is modified for the near infrared. The moving parts of both cameras are glued to ensure that a geometric camera calibration is valid over a longer period of time. The success of the gluing procedure has been proven by multiple calibrations. For the matching of the colour- and infrared image the usability of calibrated relative orientation parameters between both cameras were tested. Despite absolutely synchronous triggering of the cameras by an electrical signal, a time delay can be found up to 3/100 s between the images. This time delay in combination with the movement and rotation of the UAV while taking the photos results in a significant error in the previously calibrated relative orientation. These parameters should not be used in further processing. This article concludes with a first result of a 4-channel image and an outlook on the following investigations.

  6. Polarization-selective dynamically tunable multispectral Fano resonances: decomposing of subgroup plasmonic resonances.

    PubMed

    Liu, Jietao; Zhao, Xiaoliang; Gong, Rui; Wu, Tengfei; Gong, Changmei; Shao, Xiaopeng

    2015-10-19

    We analyze the design of near infrared all-optical controllable and dynamically tunable multispectral Fano resonances based on subgroup decomposition of plasmonic resonances in hybrid nanoslits antenna plasmonic system. The theoretical investigation complemented with numerical simulations show that the Fano resonance lines shape can be tailored efficiently and continuously with the nanoslits geometry and the variation of the polarization states of the incident light. The subgroup decomposition of the spectral profile and the modification of plasmonic resonances lineshape that leads to the Fano-type profile of transmission is investigated and revealed. The separate contribution from individual spectral of single-slit array subgroup is attributed to the resulting overall multispectral Fano lineshape of the proposed T-shaped slits array at their corresponding spectral peaks zone. The polarization-selective tunability of the multispectral Fano resonances in the planar hybrid plasmonic system creates new avenues for designing multi-channel multi-wavelength tunable Fano effect.

  7. Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters.

    PubMed

    McCrindle, Iain J H; Grant, James; Drysdale, Timothy D; Cumming, David R S

    2013-08-12

    Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structures are well-suited to the visible band owing to the resonant dielectric properties of metals, whereas metamaterials are preferable at terahertz frequencies where metal conductivity is high. We present the simulated and experimental characteristics of our new hybrid synthetic multi-spectral material filters and demonstrate the independence of the metamaterial and plasmonic responses with respect to each other.

  8. PORTABLE MULTISPECTRAL IMAGING INSTRUMENT FOR FOOD INDUSTRY

    USDA-ARS?s Scientific Manuscript database

    The objective of this paper is to design and fabricate a hand-held multispectral instrument for real-time contaminant detection. Specifically, the protocol to develop a portable multispectral instrument including optical sensor design, fabrication, calibration, data collection, analysis and algorith...

  9. Sandia multispectral analyst remote sensing toolkit (SMART).

    SciTech Connect

    Post, Brian Nelson; Smith, Jody Lynn; Geib, Peter L.; Nandy, Prabal; Wang, Nancy Nairong

    2003-03-01

    This remote sensing science and exploitation work focused on exploitation algorithms and methods targeted at the analyst. SMART is a 'plug-in' to commercial remote sensing software that provides algorithms to enhance the utility of the Multispectral Thermal Imager (MTI) and other multispectral satellite data. This toolkit has been licensed to 22 government organizations.

  10. Multispectral Microscopic Imager (MMI): Multispectral Imaging of Geological Materials at a Handlens Scale

    NASA Astrophysics Data System (ADS)

    Farmer, J. D.; Nunez, J. I.; Sellar, R. G.; Gardner, P. B.; Manatt, K. S.; Dingizian, A.; Dudik, M. J.; McDonnell, G.; Le, T.; Thomas, J. A.; Chu, K.

    2011-12-01

    The Multispectral Microscopic Imager (MMI) is a prototype instrument presently under development for future astrobiological missions to Mars. The MMI is designed to be a arm-mounted rover instrument for use in characterizing the microtexture and mineralogy of materials along geological traverses [1,2,3]. Such geological information is regarded as essential for interpreting petrogenesis and geological history, and when acquired in near real-time, can support hypothesis-driven exploration and optimize science return. Correlated microtexure and mineralogy also provides essential data for selecting samples for analysis with onboard lab instruments, and for prioritizing samples for potential Earth return. The MMI design employs multispectral light-emitting diodes (LEDs) and an uncooled focal plane array to achieve the low-mass (<1kg), low-cost, and high reliability (no moving parts) required for an arm-mounted instrument on a planetary rover [2,3]. The MMI acquires multispectral, reflectance images at 62 μm/pixel, in which each image pixel is comprised of a 21-band VNIR spectrum (0.46 to 1.73 μm). This capability enables the MMI to discriminate and resolve the spatial distribution of minerals and textures at the microscale [2, 3]. By extending the spectral range into the infrared, and increasing the number of spectral bands, the MMI exceeds the capabilities of current microimagers, including the MER Microscopic Imager (MI); 4, the Phoenix mission Robotic Arm Camera (RAC; 5) and the Mars Science Laboratory's Mars Hand Lens Imager (MAHLI; 6). In this report we will review the capabilities of the MMI by highlighting recent lab and field applications, including: 1) glove box deployments in the Astromaterials lab at Johnson Space Center to analyze Apollo lunar samples; 2) GeoLab glove box deployments during the 2011 Desert RATS field trials in northern AZ to characterize analog materials collected by astronauts during simulated EVAs; 3) field deployments on Mauna Kea

  11. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  12. Wavelength-independent texture for multispectral scene simulation

    NASA Astrophysics Data System (ADS)

    Wang, Changbo; Wang, Zhangye; Peng, Qunsheng

    2003-09-01

    In recent years, there has been a growing need for accurate, high fidelity scene simulations in the visible, infrared, microwave and other wavelengths. Based on a rigorous material classification and incorporating material attribute information, we generate wavelength independent texture maps for multi-spectral scene simulation. We calculate the sensor radiance value of every pixel, and change them into color or gray. If a single pixel in the texture contains more than one material, we mixture them based on their radiation attribution. According to area consistency and coherence across scan lines, an extended Seed Filling Algorithm is used in those areas with same or similar materials. These optical steps are performed repeatedly until a satisfactory classfication and mixture is found and the texture maps in a certain wave band are obtained. In this way we generate infrared textures from visible maps and different simulation scence textures at different time of day and under different environment conditions can also be obtained. Finally we give some examples of multi-spectral scene simulation, which are quite satisfied compared with the measured images.

  13. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Anderson, Ryan B.; Bell, James F.

    2013-03-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between these data sets were not statistically significant. Restricting the targets to those that were abraded by the rock abrasion tool (RAT) led to improved Pearson’s correlations, most notably between the red-blue ratio (673 nm/434 nm) and Fe3+-bearing phases, but partial correlations were not statistically significant. Partial Least Squares (PLS) calculations relating Pancam 11-color visible to near-IR (VNIR; ∼400-1000 nm) “spectra” to APXS and Mössbauer element or mineral abundances showed generally poor performance, although the presence of compositional outliers led to improved PLS results for data from Meridiani. When the Meridiani PLS model for pyroxene was tested by predicting the pyroxene content of Gusev targets, the results were poor, indicating that the PLS models for Meridiani are not applicable to data from other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification of Gusev crater data showed mixed results. Of the 24 Gusev test regions of interest (ROIs) with known classes, 11 had >30% of the pixels in the ROI classified correctly, while others were mis-classified or unclassified. k-Means clustering of APXS and Mössbauer data was used to assign Meridiani targets to compositional classes. The clustering-derived classes corresponded to meaningful geologic and/or color unit differences, and SIMCA classification using these classes was somewhat successful, with >30% of pixels correctly classified in 9 of the 11 ROIs with known classes. This work shows that

  14. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    USGS Publications Warehouse

    Anderson, Ryan B.; Bell, James F.

    2013-01-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between these data sets were not statistically significant. Restricting the targets to those that were abraded by the rock abrasion tool (RAT) led to improved Pearson’s correlations, most notably between the red–blue ratio (673 nm/434 nm) and Fe3+-bearing phases, but partial correlations were not statistically significant. Partial Least Squares (PLS) calculations relating Pancam 11-color visible to near-IR (VNIR; ∼400–1000 nm) “spectra” to APXS and Mössbauer element or mineral abundances showed generally poor performance, although the presence of compositional outliers led to improved PLS results for data from Meridiani. When the Meridiani PLS model for pyroxene was tested by predicting the pyroxene content of Gusev targets, the results were poor, indicating that the PLS models for Meridiani are not applicable to data from other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification of Gusev crater data showed mixed results. Of the 24 Gusev test regions of interest (ROIs) with known classes, 11 had >30% of the pixels in the ROI classified correctly, while others were mis-classified or unclassified. k-Means clustering of APXS and Mössbauer data was used to assign Meridiani targets to compositional classes. The clustering-derived classes corresponded to meaningful geologic and/or color unit differences, and SIMCA classification using these classes was somewhat successful, with >30% of pixels correctly classified in 9 of the 11 ROIs with known classes. This work shows

  15. An ERTS multispectral scanner experiment for mapping iron compounds.

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1973-01-01

    An experiment is described which is designed to produce visible-reflective infrared ratio images from ERTS satellite data. The ERTS-A multispectral scanner has two channels in the visible-reflective infrared wavelength region which should be capable of duplicating aircraft scanner results. The average reflectances in the four ERTS-A MSS spectral bands for a few minerals and some vegetation are tabulated. The mineral laboratory samples were granular, with a particle diameter range of 250 to 1200 micrometer. If there were no spectral atmospheric or illumination variation effects, the ratio of energies in band 1 to band 4 would permit discrimination of pyroxenes (found in basic and ultrabasic rocks), quartz (found in acidic rocks), limonite and hematite (iron oxides), and green vegetation, on the basis of their respective ratio magnitudes.

  16. An ERTS multispectral scanner experiment for mapping iron compounds

    NASA Technical Reports Server (NTRS)

    Vincent, R. K. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. An experimental plan for enhancing spectral features related to the chemical composition of geological targets in ERTS multispectral scanner data is described. The experiment is designed to produce visible-reflective infrared ratio images from ERTS-1 data. Iron compounds are promising remote sensing targets because they display prominent spectral features in the visible-reflective infrared wavelength region and are geologically significant. The region selected for this ERTS experiment is the southern end of the Wind River Range in Wyoming. If this method proves successful it should prove useful for regional geologic mapping, mineralogical exploration, and soil mapping. It may also be helpful to ERTS users in scientific disciplines other than geology, especially to those concerned with targets composed of mixtures of live vegetation and soil or rock.

  17. Classification Metrics for Improved Atmospheric Correction of Multispectral VNIR Imagery

    PubMed Central

    Richter, Rudolf

    2008-01-01

    Multispectral visible/near-infrared (VNIR) earth observation satellites, e.g., Ikonos, Quickbird, ALOS AVNIR-2, and DMC, usually acquire imagery in a few (3 – 5) spectral bands. Atmospheric correction is a challenging task for these images because the standard methods require at least one shortwave infrared band (around 1.6 or 2.2 μm) or hyperspectral instruments to derive the aerosol optical thickness. New classification metrics for defining cloud, cloud over water, haze, water, and saturation are presented to achieve improvements for an automatic processing system. The background is an ESA contract for the development of a prototype atmospheric processor for the optical payload AVNIR-2 on the ALOS platform. PMID:27873911

  18. Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging.

    PubMed

    Langhout, Gerrit Cornelis; Grootendorst, Diederik Johannes; Nieweg, Omgo Edo; Wouters, Michel Wilhelmus Jacobus Maria; van der Hage, Jos Alexander; Jose, Jithin; van Boven, Hester; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theodoor Jacques Marie

    2014-01-01

    Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR(©) multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  19. High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations

    NASA Astrophysics Data System (ADS)

    Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas

    2007-10-01

    A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.

  20. A multispectral scanner survey of the United States Department of Energy's Paducah Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1991-06-01

    Airborne multispectral scanner data of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area were acquired during late spring 1990. This survey was conducted by the Remote Sensing Laboratory (RSL) which is operated by EG G Energy Measurements (EG G/EM) for the US Department of Energy (DOE) Nevada Operations Office. It was requested by the US Department of Energy (DOE) Environmental Audit Team which was reviewing environmental conditions at the facility. The objectives of this survey were to: (1) Acquire 12-channel, multispectral scanner data of the PGDP from an altitude of 3000 feet above ground level (AGL); (2) Acquire predawn, digital thermal infrared (TIR) data of the site from the same altitude; (3) Collect color and color-infrared (CIR) aerial photographs over the facilities; and (4) Illustrate how the analyses of these data could benefit environmental monitoring at the PGDP. This report summarizes the two multispectral scanner and aerial photographic missions at the Paducah Gaseous Diffusion Plant. Selected examples of the multispectral data are presented to illustrate its potential for aiding environmental management at the site. 4 refs., 1 fig., 2 tabs.

  1. A multispectral scanner survey of the Tonopah Test Range, Nevada. Date of survey: August 1993

    SciTech Connect

    Brewster, S.B. Jr.; Howard, M.E.; Shines, J.E.

    1994-08-01

    The Multispectral Remote Sensing Department of the Remote Sensing Laboratory conducted an airborne multispectral scanner survey of a portion of the Tonopah Test Range, Nevada. The survey was conducted on August 21 and 22, 1993, using a Daedalus AADS1268 scanner and coincident aerial color photography. Flight altitudes were 5,000 feet (1,524 meters) above ground level for systematic coverage and 1,000 feet (304 meters) for selected areas of special interest. The multispectral scanner survey was initiated as part of an interim and limited investigation conducted to gather preliminary information regarding historical hazardous material release sites which could have environmental impacts. The overall investigation also includes an inventory of environmental restoration sites, a ground-based geophysical survey, and an aerial radiological survey. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of man-made soil disturbances. Several standard image enhancement techniques were applied to the data to assist image interpretation. A geologic ratio enhancement and a color composite consisting of AADS1268 channels 10, 7, and 9 (mid-infrared, red, and near-infrared spectral bands) proved most useful for detecting soil disturbances. A total of 358 disturbance sites were identified on the imagery and mapped using a geographic information system. Of these sites, 326 were located within the Tonopah Test Range while the remaining sites were present on the imagery but outside the site boundary. The mapped site locations are being used to support ongoing field investigations.

  2. Cucumber disease diagnosis using multispectral images

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Li, Hongning; Shi, Junsheng; Yang, Weiping; Liao, Ningfang

    2009-07-01

    In this paper, multispectral imaging technique for plant diseases diagnosis is presented. Firstly, multispectral imaging system is designed. This system utilizes 15 narrow-band filters, a panchromatic band, a monochrome CCD camera, and standard illumination observing environment. The spectral reflectance and color of 8 Macbeth color patches are reproduced between 400nm and 700nm in the process. In addition, spectral reflectance angle and color difference is obtained through measurements and analysis of color patches using spectrometer and multispectral imaging system. The result shows that 16 narrow-bands multispectral imaging system realizes good accuracy in spectral reflectance and color reproduction. Secondly, a horticultural plant, cucumber' familiar disease are the researching objects. 210 multispectral samples are obtained by multispectral and are classified by BP artificial neural network. The classification accuracies of Sphaerotheca fuliginea, Corynespora cassiicola, Pseudoperonospora cubensis are 100%. Trichothecium roseum and Cladosporium cucumerinum are 96.67% and 90.00%. It is confirmed that the multispectral imaging system realizes good accuracy in the cucumber diseases diagnosis.

  3. Spectral Filter Array for Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Ni, Chuan

    Conventional multispectral imaging (MSI) is achieved by utilizing a spectral filter array -- a set of predetermined narrowband spectral filters spatially multiplexed over an array of pixel sensors, which necessitates different filters to be designed for each application. In this dissertation, we propose a fundamentally different approach to multispectral imaging known as the Fourier Multispectral Imaging (Fourier MSI). The proposed method utilizes broadband multichroic filters with sinusoidally varying transmittance as a function of wavenumber. Unlike narrowband measurements, these sinusoidal filter measurements largely avoid aliasing that contaminates the spectra while undersampling with narrowband filters. Because of this, Fourier MSI provides a better recovery from discrete filter measurements and preserves the spectra features over the entire detecting wavelength range. We designed and fabricated these sinusoidal filters in both bulk and pixel formats, built up multispectral imaging system with the manufactured filters and made spectral imaging measurements with numerous targets like multispectral LED array, color checker, etc. The measurements show that spectral features such as reflection and absorption peaks are well preserved with this technique. Compared to multispectral systems based on narrowband filters, the Fourier MSI system generalizes well to applications where we lack a priori knowledge of the expected spectral content, which makes it a versatile technique for a wide range of multispectral imaging applications.

  4. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  5. Generating Multispectral VIIRS Imagery in Near Real-Time for Use by the National Weather Service in Alaska

    NASA Astrophysics Data System (ADS)

    Broderson, D.; Dierking, C.; Stevens, E.; Heinrichs, T. A.; Cherry, J. E.

    2016-12-01

    The Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) uses two direct broadcast antennas to receive data from a number of polar-orbiting weather satellites, including the Suomi National Polar Partnership (S-NPP) satellite. GINA uses data from S-NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to generate a variety of multispectral imagery products developed with the needs of the National Weather Service operational meteorologist in mind. Multispectral products have two primary advantages over single-channel products. First, they can more clearly highlight some terrain and meteorological features which are less evident in the component single channels. Second, multispectral present the information from several bands through just one image, thereby sparing the meteorologist unnecessary time interrogating the component single bands individually. With 22 channels available from the VIIRS instrument, the number of possible multispectral products is theoretically huge. A small number of products will be emphasized in this presentation, with the products chosen based on their proven utility in the forecasting environment. Multispectral products can be generated upstream of the end user or by the end user at their own workstation. The advantage and disadvantages of both approaches will be outlined. Lastly, the technique of improving the appearance of multispectral imagery by correcting for atmospheric reflectance at the shorter wavelengths will be described.

  6. Multispectral sensing of moisture stress

    NASA Technical Reports Server (NTRS)

    Olson, C. E., Jr.

    1970-01-01

    Laboratory reflectance data, and field tests with multispectral remote sensors provide support for this hypotheses that differences in moisture content and water deficits are closely related to foliar reflectance from woody plants. When these relationships are taken into account, automatic recognition techniques become more powerful than when they are ignored. Evidence is increasing that moisture relationships inside plant foliage are much more closely related to foliar reflectance characteristics than are external variables such as soil moisture, wind, and air temperature. Short term changes in water deficits seem to have little influence on foliar reflectance, however. This is in distinct contrast to significant short-term changes in foliar emittance from the same plants with changing wind, air temperature, incident radiation, or water deficit conditions.

  7. Multispectral fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Lo, Pei-An; Cho, Jaedu; Nouizi, Farouk; Chiang, Huihua Kenny; Gulsen, Gultekin

    2017-03-01

    Fluorescence diffuse optical tomography (FDOT) has been widely used for in vivo small animal studies and the illposed problem in reconstruction can be eased by utilizing structural a priori obtained from an anatomic imaging modality. In this study, a multispectral fluorescence tomography (FT) is used, which has shown the ability to detect subtle shifts in the ICG absorption spectrum in our previous study. The imaging system is in trans-illumination mode with a swept-wavelength laser and a CCD on a rotation gantry and the structural image from the X-ray computed tomography is used to guide and constrain the FT reconstruction algorithm. In this work, a phantom with two inclusions filled with different fluorophores is utilized to evaluate whether the spectral information obtained using sweptwavelength laser can distinguish these two inclusions. The images are captured from 8 different views with three different wavelengths.

  8. Apollo 9 Mission image - S0-65 Multispectral Photography - Texas

    NASA Image and Video Library

    2009-01-21

    Earth Observation taken by the Apollo 9 crew. View is of Galveston and Freeport in Texas. Latitude was 28.42 N by Longitude 94.54 W, Overlap was 80%, Altitude miles were 105 and cloud cover was 5%. This imagery taken as part of the NASA S0-65 Experiment "Multispectral Terrain Photography". The experiment provides simultaneous satellite photography of the Earth's surface in three distinct spectral bands. The photography consists of four almost spatially identical photographs. The images of ground objects appear in the same coordinate positions on all four photos in the multispectral set within the opto-mechanical tolerances of the Hasselblad cameras in the Apollo 9 spacecraft. Band designation for this frame is A. Film and filter is Ektachrome SO-368,Infrared Color Wratten 15. Mean Wavelength of Sensitivity is green,red and infrared. The Nominal Bandpass is total sensitivity of all dye layers 510-900nm.

  9. Apollo 9 Mission image - S0-65 Multispectral Photography - New Mexico

    NASA Image and Video Library

    2009-01-21

    Earth Observation taken by the Apollo 9 crew. View is of Carrizozo in New Mexico and includes lava flow and snow. Latitude was 33.42 N by Longitude 106.10 W, Overlap was 7.5%, Altitude miles were 121 and cloud cover was 0%. This imagery taken as part of the NASA S0-65 Experiment "Multispectral Terrain Photography". The experiment provides simultaneous satellite photography of the Earth's surface in three distinct spectral bands. The photography consists of four almost spatially identical photographs. The images of ground objects appear in the same coordinate positions on all four photos in the multispectral set within the opto-mechanical tolerances of the Hasselblad cameras in the Apollo 9 spacecraft. Band designation for this frame is A. Film and filter is Ektachrome SO-368,Infrared Color Wratten 15. Mean Wavelength of Sensitivity is green,red and infrared. The Nominal Bandpass is total sensitivity of all dye layers 510-900nm.

  10. Apollo 9 Mission image - S0-65 Multispectral Photography - California

    NASA Image and Video Library

    2009-01-21

    Earth Observation taken by the Apollo 9 crew. View is of Salton Sea and Imperial Valley in California. Latitude was 33.09 N by Longitude 116.14 W, Overlap was 50%, Altitude miles were 103 and cloud cover was 35%. This imagery taken as part of the NASA S0-65 Experiment "Multispectral Terrain Photography". The experiment provides simultaneous satellite photography of the Earth's surface in three distinct spectral bands. The photography consists of four almost spatially identical photographs. The images of ground objects appear in the same coordinate positions on all four photos in the multispectral set within the opto-mechanical tolerances of the Hasselblad cameras in the Apollo 9 spacecraft. Band designation for this frame is A. Film and filter is Ektachrome SO-368,Infrared Color Wratten 15. Mean Wavelength of Sensitivity is green,red and infrared. The Nominal Bandpass is total sensitivity of all dye layers 510-900nm.

  11. Monitoring of maize chlorophyll content based on multispectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Li, Minzan; Zheng, Lihua; Zhang, Yane; Zhang, Yajing

    2012-11-01

    In order to estimate the nutrient status of maize, the multi-spectral image was used to monitor the chlorophyll content in the field. The experiments were conducted under three different fertilizer treatments (High, Normal and Low). A multispectral CCD camera was used to collect ground-based images of maize canopy in green (G, 520~600nm), red (R, 630~690nm) and near-infrared (NIR, 760~900nm) band. Leaves of maize were randomly sampled to detect the chlorophyll content by UV-Vis spectrophotometer. The images were processed following image preprocessing, canopy segmentation and parameter calculation: Firstly, the median filtering was used to improve the visual contrast of image. Secondly, the leaves of maize canopy were segmented in NIR image. Thirdly, the average gray value (GIA, RIA and NIRIA) and the vegetation indices (DVI, RVI, NDVI, et al.) widely used in remote sensing were calculated. A new vegetation index, combination of normalized difference vegetation index (CNDVI), was developed. After the correlation analysis between image parameter and chlorophyll content, six parameters (GIA, RIA, NIRIA, GRVI, GNDVI and CNDVI) were selected to estimate chlorophyll content at shooting and trumpet stages respectively. The results of MLR predicting models showed that the R2 was 0.88 and the adjust R2 was 0.64 at shooting stage; the R2 was 0.77 and the adjust R2 was 0.31 at trumpet stage. It was indicated that vegetation indices derived from multispectral image could be used to monitor the chlorophyll content. It provided a feasible method for the chlorophyll content detection.

  12. Multispectral computational ghost imaging with multiplexed illumination

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Shi, Dongfeng

    2017-07-01

    Computational ghost imaging has attracted wide attention from researchers in many fields over the last two decades. Multispectral imaging as one application of computational ghost imaging possesses spatial and spectral resolving abilities, and is very useful for surveying scenes and extracting detailed information. Existing multispectral imagers mostly utilize narrow band filters or dispersive optical devices to separate light of different wavelengths, and then use multiple bucket detectors or an array detector to record them separately. Here, we propose a novel multispectral ghost imaging method that uses one single bucket detector with multiplexed illumination to produce a colored image. The multiplexed illumination patterns are produced by three binary encoded matrices (corresponding to the red, green and blue colored information, respectively) and random patterns. The results of the simulation and experiment have verified that our method can be effective in recovering the colored object. Multispectral images are produced simultaneously by one single-pixel detector, which significantly reduces the amount of data acquisition.

  13. Single sensor that outputs narrowband multispectral images

    NASA Astrophysics Data System (ADS)

    Kong, Linghua; Yi, Dingrong; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao

    2010-01-01

    We report the work of developing a hand-held (or miniaturized), low-cost, stand-alone, real-time-operation, narrow bandwidth multispectral imaging device for the detection of early stage pressure ulcers.

  14. Multispectral Image Analysis of Hurricane Gilbert

    DTIC Science & Technology

    1989-05-19

    Classification) Multispectral Image Analysis of Hurrican Gilbert (unclassified) 12. PERSONAL AUTHOR(S) Kleespies, Thomas J. (GL/LYS) 13a. TYPE OF REPORT...cloud top height. component, of tle image in the red channel, and similarly for the green and blue channels. Multispectral Muti.pectral image analysis can...However, there seems to be few references to the human range of vision, the selection as to which mllti.pp.tral image analysis of scenes or

  15. Toward Multispectral Imaging with Colloidal Metasurface Pixels.

    PubMed

    Stewart, Jon W; Akselrod, Gleb M; Smith, David R; Mikkelsen, Maiken H

    2017-02-01

    Multispectral colloidal metasurfaces are fabricated that exhibit greater than 85% absorption and ≈100 nm linewidths by patterning film-coupled nanocubes in pixels using a fusion of bottom-up and top-down fabrication techniques over wafer-scale areas. With this technique, the authors realize a multispectral pixel array consisting of six resonances between 580 and 1125 nm and reconstruct an RGB image with 9261 color combinations.

  16. Simultaneous denoising and compression of multispectral images

    NASA Astrophysics Data System (ADS)

    Hagag, Ahmed; Amin, Mohamed; Abd El-Samie, Fathi E.

    2013-01-01

    A new technique for denoising and compression of multispectral satellite images to remove the effect of noise on the compression process is presented. One type of multispectral images has been considered: Landsat Enhanced Thematic Mapper Plus. The discrete wavelet transform (DWT), the dual-tree DWT, and a simple Huffman coder are used in the compression process. Simulation results show that the proposed technique is more effective than other traditional compression-only techniques.

  17. Apollo 9 Mission image - S0-65 Multispectral Photography - California

    NASA Image and Video Library

    2009-02-19

    AS09-26A-3798A (12 March 1969) --- Color infrared photograph of the San Diego County and San Diego area of southern California as photographed from the Apollo 9 spacecraft during its 136th revolution of Earth. This picture was taken as a part of the SO65 Multispectral Terrain Photography Experiment. Tijuana and a portion of Baja California, Mexico, are also visible in picture.

  18. Evaluation of new spectral bands for multi-spectral imaging: SMIRR aircraft test results

    USGS Publications Warehouse

    Goetz, Alexander F.H.; Rowan, Lawrence C.; Barringer, Anthony R.

    1980-01-01

    A 10-channel radiometer called the Shuttle Multispectral Infrared Radiometer (SMIRR) is scheduled to take data from orbit on the second shuttle orbital light test. As part of the instrument test sequence, a series of aircraft flights was carried out over 10 test areas in Utah and Nevada. Apart from vegetation, the materials exposed at the surface were volcanic sequences ranging from tuffs to basalts, areas of hydrothermally altered volcanic rocks, sedimentary sequences of sandstone and carbonate rocks, and alluvial cover.

  19. Viability prediction of Ricinus cummunis L. seeds using multispectral imaging.

    PubMed

    Olesen, Merete Halkjær; Nikneshan, Pejman; Shrestha, Santosh; Tadayyon, Ali; Deleuran, Lise Christina; Boelt, Birte; Gislum, René

    2015-02-17

    The purpose of this study was to highlight the use of multispectral imaging in seed quality testing of castor seeds. Visually, 120 seeds were divided into three classes: yellow, grey and black seeds. Thereafter, images at 19 different wavelengths ranging from 375-970 nm were captured of all the seeds. Mean intensity for each single seed was extracted from the images, and a significant difference between the three colour classes was observed, with the best separation in the near-infrared wavelengths. A specified feature (RegionMSI mean) based on normalized canonical discriminant analysis, were employed and viable seeds were distinguished from dead seeds with 92% accuracy. The same model was tested on a validation set of seeds. These seeds were divided into two groups depending on germination ability, 241 were predicted as viable and expected to germinate and 59 were predicted as dead or non-germinated seeds. This validation of the model resulted in 96% correct classification of the seeds. The results illustrate how multispectral imaging technology can be employed for prediction of viable castor seeds, based on seed coat colour.

  20. Viability Prediction of Ricinus cummunis L. Seeds Using Multispectral Imaging

    PubMed Central

    Olesen, Merete Halkjær; Nikneshan, Pejman; Shrestha, Santosh; Tadayyon, Ali; Deleuran, Lise Christina; Boelt, Birte; Gislum, René

    2015-01-01

    The purpose of this study was to highlight the use of multispectral imaging in seed quality testing of castor seeds. Visually, 120 seeds were divided into three classes: yellow, grey and black seeds. Thereafter, images at 19 different wavelengths ranging from 375–970 nm were captured of all the seeds. Mean intensity for each single seed was extracted from the images, and a significant difference between the three colour classes was observed, with the best separation in the near-infrared wavelengths. A specified feature (RegionMSI mean) based on normalized canonical discriminant analysis, were employed and viable seeds were distinguished from dead seeds with 92% accuracy. The same model was tested on a validation set of seeds. These seeds were divided into two groups depending on germination ability, 241 were predicted as viable and expected to germinate and 59 were predicted as dead or non-germinated seeds. This validation of the model resulted in 96% correct classification of the seeds. The results illustrate how multispectral imaging technology can be employed for prediction of viable castor seeds, based on seed coat colour. PMID:25690554

  1. Estimating atmospheric parameters and reducing noise for multispectral imaging

    DOEpatents

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  2. Sub-pixel resolution with the Multispectral Thermal Imager (MTI).

    SciTech Connect

    Decker, Max Louis; Smith, Jody Lynn; Nandy, Prabal

    2003-06-01

    The Multispectral Thermal Imager Satellite (MTI) has been used to test a sub-pixel sampling technique in an effort to obtain higher spatial frequency imagery than that of its original design. The MTI instrument is of particular interest because of its infrared detectors. In this spectral region, the detector size is traditionally the limiting factor in determining the satellite's ground sampling distance (GSD). Additionally, many over-sampling techniques require flexible command and control of the sensor and spacecraft. The MTI sensor is well suited for this task, as it is the only imaging system on the MTI satellite bus. In this super-sampling technique, MTI is maneuvered such that the data are collected at sub-pixel intervals on the ground. The data are then processed using a deconvolution algorithm using in-scene measured point spread functions (PSF) to produce an image with synthetically-boosted GSD.

  3. Preliminary analysis of shuttle multispectral radiometer data for Southern Egypt

    USGS Publications Warehouse

    Rowan, L.C.; Goetz, A.F.H.; Kingston, M.J.

    1983-01-01

    The Shuttle Multispectral Infrared Radiometer (SMIRR) is a spectroradiometer covering the region from 0.5 to 2.5 ??m in 10 channels that acquired data from spots 100 m in diameter along the subspacecraft ground track. It was flown aboard the second flight of the space shuttle Columbia, November 12-14, 1981. Data collected during orbit 16 over southern Egypt show that carbonate rocks, kaolinite, and possibly montmorillonite can be identified by their SMIRR spectral signatures and limited knowledge of the lithologic units present. Detailed analysis of SMIRR data for this area indicates that calcite, kaolinite, and montmorillonite rocks give rise to absorption features that result in characteristic 10 channel spectra. ?? 1983.

  4. Application of multispectral reflectance for early detection of tomato disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu

    2006-10-01

    Automatic diagnosis of plant disease is important for plant management and environmental preservation in the future. The objective of this study is to use multispectral reflectance measurements to make an early discrimination between the healthy and infected plants by the strain of tobacco mosaic virus (TMV-U1) infection. There were reflectance changes in the visible (VIS) and near infrared spectroscopy (NIR) between the healthy and infected plants. Discriminant models were developed using discriminant partial least squares (DPLS) and Mahalanobis distance (MD). The DPLS models had a root mean square error of calibration (RMSEC) of 0.397 and correlation coefficient (r) of 0.59 and the MD model correctly classified 86.7% healthy plants and up to 91.7% infected plants.

  5. Multi-spectral Line Scanner image of Northern California

    NASA Image and Video Library

    1973-06-22

    S73-34295B (June 1973) --- A vertical view of a portion of northern California reproduced from data taken from the Skylab Multispectral Scanner, experiment S192, in the Skylab space station in Earth orbit. This view is the most westerly one-third of Frame No. 001, Roll No. 518, S192, Skylab 2. Frame No. 001 extends from the Pacific coast at the Eureka area southeasterly 175 nautical miles to the Feather River drainage basin. Included in this view are Lake Shasta, Sacramento River Valley, Redding and Red Bluff. This non-photographic image is a color composite of channels 2 (visible), 7, and 12 (infrared) from the Earth Resources Experiments Package (EREP) S192 scanner. The scanner techniques assist with spectral signature identification and mapping of ground truth targets in agriculture, forestry, geology, hydrology and oceanography. Photo credit: NASA

  6. Development of multi-spectral QWIPs for extrasolar planets imaging

    NASA Astrophysics Data System (ADS)

    Nedelcu, Alexandru; Pantin, Eric

    2010-10-01

    One of the most promising approaches for direct imaging of extrasolar planets is based on the next generation of extremely large ground-based telescopes and original differential observing techniques to overcome atmospheric fluctuations problems. One possibility is the use of phase-mask coronagraphy coupled with spectral differential imaging. Multispectral Quantum Well Infrared Photodetectors (QWIPs) are a promising technological solution that could answer the stringent requirements of this challenging topic. We present here the scientific background, the technical requirements as well as the possible technical approaches that are explored in the frame of a project funded by the ANR (Agence Nationale de la Recherche). In particular, we will describe the strategy retained for the design of the QWIP active layer.

  7. Orientation-based face recognition using multispectral imagery and score fusion

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    2011-11-01

    A new orientation-based face recognition method is proposed in this paper. The orientation analysis is performed with Gabor wavelet transform (GWT). The multispectral imagery includes the visible (RGB) and thermal (long-wave infrared) face images from the same group of subjects. The recognition performance of the new method is compared with that of three classical algorithms, principle component analysis, linear discriminant analysis, and elastic bunch graph matching. A score-level fusion of several algorithms versus multispectral images is explored and presented. Specifically, at each frequency band of GWT, an index number representing the strongest orientational response is selected, and then encoded in a binary number to favor the Hamming distance calculation. Multiple-band orientation codes are then organized into a face pattern byte (FPB) by using order statistics. With the FPB, Hamming distances are calculated and compared to achieve face identification. The FPB has the dimensionality of 8 bits per pixel and its performance will be compared to that of face pattern word (32 bits per pixel). The dimensionality of FPB can be further reduced down to 4 bits per pixel, called face pattern nibble. Experimental results with the multispectral faces of 96 subjects show that the proposed orientation-based face recognition method is very promising in contrast with three classical methods. Furthermore, the recognition performance with score-level fusion achieves 100% when tested on the entire multispectral database.

  8. Analysis of Shuttle Multispecral Infrared Radiometer measurements of the western Saudi Arabian shield.

    USGS Publications Warehouse

    Rowan, L.C.; Goetz, A.F.H.; Abbott, E.

    1987-01-01

    During the November 12-14, 1981 mission of the space shuttle Columbia, the Shuttle Multispectral Infrared Radiometer (SMIRR) recorded radiances in 10 channels along a 100m wide groundtrack across the western Saudi Arabian shield.-from Authors

  9. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will

  10. Use of VAS multispectral data for sea surface temperature determination

    NASA Technical Reports Server (NTRS)

    Bates, J.

    1983-01-01

    The Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) is a radiometer possessing eight visible channel detectors and six thermal detectors that sense infrared radiation in 12 spectral bands. Housed in the GOES satellite, VAS spins in a west to east direction at 100 rpm and achieves spatial coverage at resolutions of 1 km in the visible and 7 or 14 km in the infrared by stepping a scan mirror in a north to south direction. Designed for multipurpose applications, the VAS can be operated in two different modes: (1) a multi-spectral imaging (MSI) mode, and (2) a dwell sounding (DS) mode. The MSI mode of operation is used for sea surface temperature (SST) determination. Currently, a full-disk MSI image for SST determination is received every hour, 18 hours a day during weekdays. This MSI mode of operation for SST consists of data obtained from wavelengths centered at 3.9 microns (channel 12), 11.6 microns (channel 8), and 12.6 microns (channel 7) as well as visible data.

  11. Active Infrared Multispectral Imaging of Chemicals on Surfaces

    DTIC Science & Technology

    2011-04-06

    derived from the absorption spectrum using the Kramers- Kronig relation assuming a high-frequency refractive index of 1.50 (30]. The DEP was applied to a...imaginary parts of the index are related by the Kramers- Kronig relationship, each strong absorption feature corresponds to a region of anomalous...2008). [30] Ohta, K., and Ishida, H., "Comparison among several numerical integration methods for Kramers- Kronig Transformation," Appl. Spectroscopy

  12. Multispectral analysis of multimodal images.

    PubMed

    Kvinnsland, Yngve; Brekke, Njål; Taxt, Torfinn M; Grüner, Renate

    2009-01-01

    An increasing number of multimodal images represent a valuable increase in available image information, but at the same time it complicates the extraction of diagnostic information across the images. Multispectral analysis (MSA) has the potential to simplify this problem substantially as unlimited number of images can be combined, and tissue properties across the images can be extracted automatically. We have developed a software solution for MSA containing two algorithms for unsupervised classification, an EM-algorithm finding multinormal class descriptions and the k-means clustering algorithm, and two for supervised classification, a Bayesian classifier using multinormal class descriptions and a kNN-algorithm. The software has an efficient user interface for the creation and manipulation of class descriptions, and it has proper tools for displaying the results. The software has been tested on different sets of images. One application is to segment cross-sectional images of brain tissue (T1- and T2-weighted MR images) into its main normal tissues and brain tumors. Another interesting set of images are the perfusion maps and diffusion maps, derived images from raw MR images. The software returns segmentations that seem to be sensible. The MSA software appears to be a valuable tool for image analysis with multimodal images at hand. It readily gives a segmentation of image volumes that visually seems to be sensible. However, to really learn how to use MSA, it will be necessary to gain more insight into what tissues the different segments contain, and the upcoming work will therefore be focused on examining the tissues through for example histological sections.

  13. Multispectral image segmentation of breast pathology

    NASA Astrophysics Data System (ADS)

    Hornak, Joseph P.; Blaakman, Andre; Rubens, Deborah; Totterman, Saara

    1991-06-01

    The signal intensity in a magnetic resonance image is not only a function of imaging parameters but also of several intrinsic tissue properties. Therefore, unlike other medical imaging modalities, magnetic resonance imaging (MRI) allows the imaging scientist to locate pathology using multispectral image segmentation. Multispectral image segmentation works best when orthogonal spectral regions are employed. In MRI, possible spectral regions are spin density (rho) , spin-lattice relaxation time T1, spin-spin relaxation time T2, and texture for each nucleus type and chemical shift. This study examines the ability of multispectral image segmentation to locate breast pathology using the total hydrogen T1, T2, and (rho) . The preliminary results indicate that our technique can locate cysts and fibroadenoma breast lesions with a minimum number of false-positives and false-negatives. Results, T1, T2, and (rho) algorithms, and segmentation techniques are presented.

  14. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  15. Multi-spectral pyrometry—a review

    NASA Astrophysics Data System (ADS)

    Araújo, António

    2017-08-01

    In pyrometry measurements, the unknown target emissivity is a critical source of uncertainty, especially when the emissivity is low. Aiming to overcome this problem, various multi-spectral pyrometry systems and processing techniques have been proposed in the literature. Basically, all multi-spectral systems are based on the same principle: the radiation emitted by the target is measured at different channels having different spectral characteristics, and the emissivity is modelled as a function of wavelength with adjustable parameters to be obtained empirically, resulting in a system of equations whose solution is the target temperature and the parameters of the emissivity function. The present work reviews the most important multi-spectral developments. Concerning the spectral width of the measurement channels, multi-spectral systems are divided into multi-wavelength (monochromatic channels) and multi-band (wide-band channels) systems. Regarding the number of unknowns and equations (one equation per channel), pyrometry systems can either be determined (same number of unknowns and equations, having a unique solution) or overdetermined (more equations than unknowns, to be solved by least-squares). Generally, higher-order multi-spectral systems are overdetermined, since the uncertainty of the solutions obtained from determined systems increases as the number of channels increases, so that determined systems normally have less than four channels. In terms of the spectral characteristics of the measurement channels, narrow bands, far apart from each other and shifted towards lower wavelengths, seem to provide more accurate solutions. Many processing techniques have been proposed, but they strongly rely on the relationship between emissivity and wavelength, which is, in turn, strongly dependent on the characteristics of a particular target. Several accurate temperature and/or emissivity results have been reported, but no universally accepted multi-spectral technique has

  16. Comparative study of water ice exposures on cometary nuclei using multispectral imaging data

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Sunshine, J. M.; Pajola, M.; Pommerol, A.; Vincent, J.-B.; Mottola, S.; Sierks, H.; Fornasier, S.; Barucci, M. A.; Preusker, F.; Scholten, F.; Lara, L. M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; De Cecco, M.; Deller, J.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hall, I.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lin, Z.-Y.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Shi, X.; Thomas, N.; Tubiana, C.

    2016-11-01

    Deep Impact, EPOXI and Rosetta missions visited comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko, respectively. Each of these three missions was equipped with both multispectral imagers and infrared spectrometers. Bright blue features containing water ice were detected in each of these comet nuclei. We analysed multispectral properties of enriched water ice features observed via Optical, Spectroscopic, and Infrared Remote Imaging System narrow angle camera on comet 67P in the wavelength range of 260-1000 nm and then compared with multispectral data of water ice deposits observed on comets 9P and 103P. We characterize the UV/VIS properties of water-ice-rich features observed on the nuclei of these three comets. When compared to the average surface of each comet, our analysis shows that the water ice deposits seen on comet 9P are similar to the clustered water-ice-rich features seen on comet 67P, while the water ice deposit seen on comet 103P is more akin to two large isolated water-ice-rich features seen on comet 67P. Our results indicate that the water ice deposit observed on comet 103P contains more water ice than the water-ice-rich features observed on comets 9P and 67P, proportionally to the average surface of each nucleus.

  17. Bathymetric mapping with passive multispectral imagery.

    PubMed

    Philpot, W D

    1989-04-15

    Bathymetric mapping will be most straightforward where water quality and atmospheric conditions are invariant over the scene. Under these conditions, both depth and an effective attenuation coefficient of the water over several different bottom types may be retrieved from passive, multispectral imagery. As scenes become more complex-with changing water type and variable atmospheric conditions-it is probable that a strictly spectral analysis will no longer be sufficient to extract depth from multispectral imagery. In these cases an independent source of information will be required. The most likely sources for such information are spatial and temporal variations in image data.

  18. Multispectral imaging fluorescence microscopy for living cells.

    PubMed

    Hiraoka, Yasushi; Shimi, Takeshi; Haraguchi, Tokuko

    2002-10-01

    Multispectral imaging technologies have been widely used in fields of astronomy and remote sensing. Interdisciplinary approaches developed in, for example, the National Aeronautics and Space Administration (NASA, USA), the Jet Propulsion Laboratory (JPL, USA), or the Communications Research Laboratory (CRL, Japan) have extended the application areas of these technologies from planetary systems to cellular systems. Here we overview multispectral imaging systems that have been devised for microscope applications. We introduce these systems with particular interest in live cell imaging. Finally we demonstrate examples of spectral imaging of living cells using commercially available systems with no need for user engineering.

  19. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  20. A novel method for non-destructive determination of hair photo-induced damage based on multispectral imaging technology

    PubMed Central

    Cao, Yue; Qu, Hao; Xiong, Can; Liu, Changhong; Zheng, Lei

    2017-01-01

    Extended exposure to sunlight may give rise to chemical and physical damages of human hairs. In this work, we report a novel method for non-destructive quantification of hair photodamage via multispectral imaging (MSI) technology. We show that the multispectral reflectance value in near-infrared region has a strong correlation with hair photodamage. More specifically, the hair segments with longer growing time and the same hair root segment after continuous ultraviolet (UV) irradiation displaying more severe photodamage observed via scanning electron microscopy (SEM) micrographs showed significantly higher multispectral reflectance value. Besides, the multispectral reflectance value of hair segments with different growing time was precisely reproduced by exposing the same hair root segment to specific durations of UV irradiation, suggesting that MSI can be adequately applied to determine the sunlight exposure time of the hair. The loss of cystine content of photodamaged hairs was identified to be the main factor that physiologically contributed to the morphological changes of hair surface fibers and hence the variation of their multispectral reflectance spectra. Considering the environmental information recording nature of hairs, we believe that MSI for non-destructive evaluation of hair photodamage would prove valuable for assessing sunlight exposure time of a subject in the biomedical fields. PMID:28361876

  1. A novel method for non-destructive determination of hair photo-induced damage based on multispectral imaging technology.

    PubMed

    Cao, Yue; Qu, Hao; Xiong, Can; Liu, Changhong; Zheng, Lei

    2017-03-31

    Extended exposure to sunlight may give rise to chemical and physical damages of human hairs. In this work, we report a novel method for non-destructive quantification of hair photodamage via multispectral imaging (MSI) technology. We show that the multispectral reflectance value in near-infrared region has a strong correlation with hair photodamage. More specifically, the hair segments with longer growing time and the same hair root segment after continuous ultraviolet (UV) irradiation displaying more severe photodamage observed via scanning electron microscopy (SEM) micrographs showed significantly higher multispectral reflectance value. Besides, the multispectral reflectance value of hair segments with different growing time was precisely reproduced by exposing the same hair root segment to specific durations of UV irradiation, suggesting that MSI can be adequately applied to determine the sunlight exposure time of the hair. The loss of cystine content of photodamaged hairs was identified to be the main factor that physiologically contributed to the morphological changes of hair surface fibers and hence the variation of their multispectral reflectance spectra. Considering the environmental information recording nature of hairs, we believe that MSI for non-destructive evaluation of hair photodamage would prove valuable for assessing sunlight exposure time of a subject in the biomedical fields.

  2. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    NASA Technical Reports Server (NTRS)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  3. Application of LC and LCoS in Multispectral Polarized Scene Projector (MPSP)

    NASA Astrophysics Data System (ADS)

    Yu, Haiping; Guo, Lei; Wang, Shenggang; Lippert, Jack; Li, Le

    2017-02-01

    A Multispectral Polarized Scene Projector (MPSP) had been developed in the short-wave infrared (SWIR) regime for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. This MPSP generates multispectral and hyperspectral video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength and bandwidth, as well as polarization states (six different states) controllable on a pixel level. The spectral contents are implemented by a tunable filter with variable bandpass built based on liquid crystal (LC) material, together with one passive visible and one passive SWIR cholesteric liquid crystal (CLC) notch filters, and one switchable CLC notch filter. The core of the MPSP hardware is the liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation.

  4. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    NASA Technical Reports Server (NTRS)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  5. Development of a multispectral active stereo vision system for video surveillance applications

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Balasubramanian, R.

    2014-03-01

    In this paper, a multispectral active stereo vision system is developed for tracking the motion of moving objects in different environment. The development of such a multispectral surveillance system composed by combining visible(color) and infrared sensors. The aim is to behind proposing such a network of visible and thermal sensors is to give an optimal performance in various weather conditions (foggy, snowing, dark and rainy) and increase the detection performance. The detection of moving objects is performed by mean of the optical flow between the images of two different spectrum. The optical flow has been computed by formulating an energy minimization problem and subsequently solving it by a numerical optimization algorithm. The convergence of the numerical scheme is given in case of different images. Finally, a number of experimental results (optical flow from stereo images) are given to prove the applicability of such a system in various applications and situations where a robust surveillance and tracking system is needed.

  6. Second-harmonic illumination to enhance multispectral digital lensless holographic microscopy.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Lancis, Jesús; Garcia-Sucerquia, Jorge

    2016-03-01

    Multispectral digital lensless holographic microscopy (MDLHM) operating with second-harmonic illumination is shown. Added to the improvement of the spatial resolution of the previously reported MDLHM operating with near-infrared illumination, this second-harmonic MDLHM shows promise as a tool to study the behavior of biological samples under a broad spectral illumination. This illumination is generated by focusing a highly spatially coherent ultrashort pulsed radiation into an uncoated Type 1 β-BaB2O4 (BBO) nonlinear crystal. The second-harmonic MDLHM allows achieving multispectral images of biological samples with enhanced micrometer spatial resolution. The illumination wavelength of the second-harmonic MDLHM can be tuned by displacing a focusing optics with respect to a pinhole; spatially resolved information at different wavelengths of the sample can then be retrieved.

  7. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    PubMed

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  8. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    PubMed Central

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging

  9. Observations of near-surface carbon monoxide from space using MOPITT multispectral retrievals

    NASA Astrophysics Data System (ADS)

    Worden, H. M.; Deeter, M. N.; Edwards, D. P.; Gille, J. C.; Drummond, J. R.; NéDéLec, P.

    2010-09-01

    Using both thermal infrared (TIR) and near infrared (NIR) channels of MOPITT (Measurements of Pollution in the Troposphere) on EOS-Terra, we demonstrate the first coincident multispectral retrievals of carbon monoxide (CO) from space. Exploiting both TIR and NIR channels has been possible due to recent progress in characterizing NIR channel radiance errors. This has allowed us to trade off sensitivity to near surface CO for larger random errors in the combined retrieval. By examining retrieval diagnostics such as DFS (degrees of freedom for signal) and averaging kernels for the multispectral retrieval (TIR + NIR) as compared to the TIR-only retrieval, we find that adding the NIR channel to the retrieval significantly increases sensitivity to CO, especially near the surface, but with high spatial variability due to surface albedo variations. The cases with the largest increases in DFS are over regions with low thermal contrast between the surface and lower atmosphere. In the tropics (23.4°S-23.4°N), the fraction of daytime land cases with at least 0.4 DFS in the surface layer (surface to 800 hPa) is 20% for TIR-only retrievals compared to 59% for multispectral retrievals. Vertical resolution for the surface layer is also improved, in some cases from around 6 km for TIR-only to roughly 1 km for TIR + NIR. Since we apply a single a priori CO profile (unlike MOPITT V4) and error covariance in all the retrievals reported here, these increases are due solely to the addition of the NIR channel. Enhanced sensitivity to near surface CO is especially evident in a case study for central/east Asia where source regions for urban areas with high population density are clearly identifiable. Although these retrievals are still a research product and require further validation and scientific evaluation, they demonstrate the increased sensitivity to CO in the lowermost troposphere that can be obtained from multispectral MOPITT data.

  10. Multispectral Photography: the obscure becomes the obvious

    ERIC Educational Resources Information Center

    Polgrean, John

    1974-01-01

    Commonly used in map making, real estate zoning, and highway route location, aerial photography planes equipped with multispectral cameras may, among many environmental applications, now be used to locate mineral deposits, define marshland boundaries, study water pollution, and detect diseases in crops and forests. (KM)

  11. Data processing large quantities of multispectral information

    NASA Technical Reports Server (NTRS)

    Haskell, R. E.

    1975-01-01

    Method is combination of digital and optical techniques. Multispectral data is coded into binary matrix format and then encoded onto photographic film. Film is holographically correlated with spectral signature to generate single-class classification map. Number of maps are optically superimposed to produce full-color, multiclass classification map.

  12. Multispectral Photography: the obscure becomes the obvious

    ERIC Educational Resources Information Center

    Polgrean, John

    1974-01-01

    Commonly used in map making, real estate zoning, and highway route location, aerial photography planes equipped with multispectral cameras may, among many environmental applications, now be used to locate mineral deposits, define marshland boundaries, study water pollution, and detect diseases in crops and forests. (KM)

  13. Multispectral laser imaging for advanced food analysis

    NASA Astrophysics Data System (ADS)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  14. Summary of Michigan multispectral investigations program

    NASA Technical Reports Server (NTRS)

    Legault, R. R.

    1970-01-01

    The development of techniques to extend spectral signatures in space and time is reported. Signatures that were valid for 30 miles have been extended for 129 miles using transformation and sun sensor data so that a complicated multispectral recognition problem that required 219 learning sets can now be done with 13 learning sets.

  15. Multispectral imaging using a single bucket detector.

    PubMed

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-22

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector's fast response, a scene's 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  16. Multispectral imaging using a single bucket detector

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  17. Multispectral imaging using a single bucket detector

    PubMed Central

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-01-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers. PMID:27103168

  18. Blast investigation by fast multispectral radiometric analysis

    NASA Astrophysics Data System (ADS)

    Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

    2011-06-01

    Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

  19. Ice Cloud Optical Depth Retrievals from CRISM Multispectral Images

    NASA Astrophysics Data System (ADS)

    Klassen, David R.

    2014-11-01

    One set of data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) is the multispectral survey that measured the visible-through-near-infrared reflectance of the entire planet of Mars at specific wavelengths. The spectral data from several sols were be combined to create multi-spectral maps of Mars. In addition, these maps can be zonally averaged to create a latitude vs season image cube of Mars. All of these image cubes can be fit using a full radiative transfer modeling in order to retrieve ice cloud optical depth—as a map for one of the particular dates, or as a latitude vs season record.To compare the data radiative transfer models, a measure of the actual surface reflectance is needed. There are several possible ways to model this, such as using a nearby region that is "close enough" or by looking at the same region at different times and assuming one of those is the actual surface reflectance. Neither of these is ideal for trying to process an entire map of data because aerosol clouds can be fairly extensive both spatially and temporally.Another technique is to assume that the surface can be modeled as a linear combination of a limited set of intrinsic spectral endmembers. A combination of Principal Component Analysis (PCA) and Target Transformation (TT) has been used to recover just such a set of spectral endmember shapes. The coefficients in the linear combination then become additional fitting parameters in the radiative transfer modeling of each map point—all parameters are adjusted until the RMS error between the model and the data is minimized. Based on previous work, the PCA of martian spectral image cubes is relatively consistent regardless of season, implying the underlying, large-scale, intrinsic traits that dominate the data variance are relatively constant. These overall PCA results can then be used to create a single set of spectral endmembers that can be used for any of the data

  20. MEDUSA: an airborne multispectral oil spill detection and characterization system

    NASA Astrophysics Data System (ADS)

    Wagner, Peter; Hengstermann, Theo; Zielinski, Oliver

    2000-12-01

    MEDUSA is a sensor network, consisting of and effectively combining a variety of different remote sensing instruments. Installed in 1998 it is operationally used in a maritime surveillance aircraft maintained by the German Ministry of Transport, Building and Housing. On one hand routine oil pollution monitoring with remote sensing equipment like Side Looking Airborne Radar (SLAR), Infrared/Ultraviolet Line Scanner (IR/UV line scanner), Microwave Radiometer (MWR), Imaging Airborne Laserfluorosensor (IALFS) and Forward Looking Infrared (FLIR) requires a complex network and communication structure to be operated by a single operator. On the other hand the operation of such a variety of sensors on board of one aircraft provides an excellent opportunity to establish new concepts of integrated sensor fusion and data evaluation. In this work a general survey of the German surveillance aircraft instrumentation is given and major features of the sensor package as well as advantages of the design and architecture are presented. Results from routine operation over North and Baltic Sea are shown to illustrate the successful application of MEDUSA in maritime patrol of oil slicks and polluters. Recently the combination of the different sensor results towards one multispectral information has met with increasing interest. Thus new application fields and parameter sets could be derived, like oceanography or river flood management. The basic concepts and first results in the fusion of sensoric information will conclude the paper.

  1. Multispectral analysis of limestone, dolomite, and granite, Mill Creek, Oklahoma

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Watson, K.

    1970-01-01

    Spectral reflectance and thermal emission data were collected at the Mill Creek, Oklahoma test site during NASA missions 132 and 133 in June 1970. The data were collected by three aircraft flown several times during the diurnal cycle at altitudes of 150 to 17,000 m above mean terrain. Reflectance of the main rock types (limestone, dolomite, and granite) was determined from the data collected using a 12-channel multispectral scanner during mission 133 and from thermal infrared images recorded during mission 132 on an RS-7 scanner from 17,000 m above terrain. A preliminary rock recognition map was generated automatically using data collected from 900 m above terrain. The discrimination provided by the map is reasonably accurate. Misidentification occurred in areas of unusually high dolomite reflectivity. High altitude thermal infrared (10 to 12 micrometers) images show regional folds and faults distinguished by the presence of thermally contrasting materials. Linear and curvilinear structural features two to three times smaller than the nominal 17 m resolution could be detected.

  2. Light, shadows and surface characteristics: the multispectral Portable Light Dome

    NASA Astrophysics Data System (ADS)

    Watteeuw, Lieve; Hameeuw, Hendrik; Vandermeulen, Bruno; Van der Perre, Athena; Boschloos, Vanessa; Delvaux, Luc; Proesmans, Marc; Van Bos, Marina; Van Gool, Luc

    2016-11-01

    A multispectral, multidirectional, portable and dome-shaped acquisition system is developed within the framework of the research projects RICH (KU Leuven) and EES (RMAH, Brussels) in collaboration with the ESAT-VISICS research group (KU Leuven). The multispectral Portable Light Dome (MS PLD) consists of a hemispherical structure, an overhead camera and LEDs emitting in five parts of the electromagnetic spectrum regularly covering the dome's inside surface. With the associated software solution, virtual relighting and enhancements can be applied in a real-time, interactive manner. The system extracts genuine 3D and shading information based on a photometric stereo algorithm. This innovative approach allows for instantaneous alternations between the computations in the infrared, red, green, blue and ultraviolet spectra. The MS PLD system has been tested for research ranging from medieval manuscript illuminations to ancient Egyptian artefacts. Preliminary results have shown that it documents and measures the 3D surface structure of objects, re-visualises underdrawings, faded pigments and inscriptions, and examines the MS results in combination with the actual relief characteristics of the physical object. Newly developed features are reflection maps and histograms, analytic visualisations of the reflection properties of all separate LEDs or selected areas. In its capacity as imaging technology, the system acts as a tool for the analysis of surface materials (e.g. identification of blue pigments, gold and metallic surfaces). Besides offering support in answering questions of attribution and monitoring changes and decay of materials, the PLD also contributes to the identification of materials, all essential factors when making decisions in the conservation protocol.

  3. Multispectral iris fusion for enhancement, interoperability, and cross wavelength matching

    NASA Astrophysics Data System (ADS)

    Burge, Mark J.; Monaco, Matthew K.

    2009-05-01

    Traditionally, only a narrow band of the Near-Infrared (NIR) spectrum (700-900nm) is utilized for iris recognition since this alleviates any physical discomfort from illumination, reduces specular reflections and increases the amount of texture captured for some iris colors. However, previous research has shown that matching performance is not invariant to iris color and can be improved by imaging outside of the NIR spectrum. Building on this research, we demonstrate that iris texture increases with the frequency of the illumination for lighter colored sections of the iris and decreases for darker sections. Using registered visible light and NIR iris images captured using a single-lens multispectral camera, we illustrate how physiological properties of the iris (e.g., the amount and distribution of melanin) impact the transmission, absorbance, and reflectance of different portions of the electromagnetic spectrum and consequently affect the quality of the imaged iris texture. We introduce a novel iris code, Multispectral Enhanced irisCode (MEC), which uses pixel-level fusion algorithms to exploit texture variations elicited by illuminating the iris at different frequencies, to improve iris matcher performance and reduce Failure-To-Enroll (FTE) rates. Finally, we present a model for approximating an NIR iris image using features derived from the color and structure of a visible light iris image. The simulated NIR images generated by this model are designed to improve the interoperability between legacy NIR iris images and those acquired under visible light by enabling cross wavelength matching of NIR and visible light iris images.

  4. A multispectral testbed for cardiovascular sensing using imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.

    2017-02-01

    Imaging photoplethysmography uses image sensors to measure changes in light absorption resulting from skin microvascular blood volume pulsations throughout the cardiac cycle. Imaging photoplethysmography has been demonstrated as an effective, non-contact means of assessing pulse rate, pulse rate variability, and respiration rate. Other potential uses include measuring spatial blood perfusion, oxygenation, and flow dynamics. Herein we demonstrate the development of a multispectral testbed for imaging photoplethysmography consisting of 12 monochromatic, 120fps imagers with 50nm, bandpass filters distributed from 400-750nm and contained in a 3D-printed, 4x3 grid housing mounted on a tripod positioned orthogonal to the subject. A co-located dual-CCD RGB/near-infrared imager records conventional RGB and NIR images expanding the spectral window recorded. After image registration, a multispectral image cube of the 13, partially overlapping bands is created. A spectrometer records high (spectral) resolution data from the participant's right cheek using a collimating lens attached to the measurement fiber. In addition, a spatial array of 5 RGB imagers placed at 0°, +/-20° and +/-40° positions with respect to the subject is employed for motion and spatial robustness. All imagers are synchronized by a hardware trigger source synchronized with a reference, physiological measurement device recording the subject's electrocardiography, bilateral fingertip and/or ear lobe photoplethysmography, bilateral galvanic skin response, and respiration signals. The development of the testbed and pilot data is presented. A full-scale evaluation of the spectral components of the imaging photoplethysmographic signal, optimization of iPPG SNR, and spatial perfusion and blood flow dynamics is currently underway.

  5. Multispectral detection and tracking of multiple moving targets in cluttered urban environments

    NASA Astrophysics Data System (ADS)

    Demars, Casey D.; Roggemann, Michael C.; Havens, Timothy C.

    2015-12-01

    This paper presents an algorithm for target detection and tracking by fusion of multispectral imagery. In all spectral bands, we build a background model of the pixel intensities using a Gaussian mixture model, and pixels not belonging to the model are classified as foreground pixels. Foreground pixels from the spectral bands are weighted and summed into a single foreground map and filtered to give the fused foreground map. Foreground pixels are grouped into target candidates and associated with targets from a tracking database by matching features from the scale-invariant feature transform. The performance of our algorithm was evaluated with a synthetically generated data set of visible, near-infrared, midwave infrared, and long-wave infrared video sequences. With a fused combination of the spectral bands, the proposed algorithm lowers the false alarm rate while maintaining high detection rates. All 12 vehicles were tracked throughout the sequence, with one instance of a lost track that was later recovered.

  6. Improved Multispectral Skin Detection and its Application to Search Space Reduction for Dismount Detection Based on Histograms of Oriented Gradients

    DTIC Science & Technology

    2010-03-01

    Conference Series, volume 6699 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. August 2007. 12. Brand, Jason and John S. Mason...spectral.lib06. 16. Conaire, C. , N. E. Oconnor, E. Cooke, and A. F. Smeaton . “Multispectral Object Segmentation and Retrieval in Surveillance Video...lear.inrialpes.fr/pubs/2004/MSZ04. 44. Miller, John L. Principles of infrared technology: a practical guide to the state of the art. first edition, 1994. ISBN

  7. Investigation related to multispectral imaging systems

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Erickson, J. D.

    1974-01-01

    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.

  8. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  9. Nondestructive multispectral reflectoscopy between 800 and 1900 nm: An instrument for the investigation of the stratigraphy in paintings.

    PubMed

    Karagiannis, G; Salpistis, Chr; Sergiadis, G; Chryssoulakis, Y

    2007-06-01

    In the present work, a powerful tool for the investigation of paintings is presented. This permits the tuneable multispectral real time imaging between 200 and 5000 nm and the simultaneous multispectral acquisition of spectroscopic data from the same region. We propose the term infrared reflectoscopy for tuneable infrared imaging in paintings (Chryssonlakis and Chassery, The Application of Physicochemical Methods of Analysis and Image Processing Techniques to Painted Works of Art, Erasmus Project ICP-88-006-6, Athens, June, 1989) for a technique that is effective especially when the spectroscopic data acquisition is performed between 800 and 1900 nm. Elements such as underdrawings, old damage that is not visible to the naked eye, later interventions or overpaintings, hidden signatures, nonvisible inscriptions, and authenticity features can thus be detected with the overlying paint layers becoming successively "transparent" due to the deep infrared penetration. The spectroscopic data are collected from each point of the studied area with a 5 nm step through grey level measurement, after adequate infrared reflectance (%R) and curve calibration. The detection limits of the infrared detector as well as the power distribution of the radiation coming out through the micrometer slit assembly of the monochromator in use are also taken into account. Inorganic pigments can thus be identified and their physicochemical properties directly compared to the corresponding infrared images at each wavelength within the optimum region. In order to check its effectiveness, this method was applied on an experimental portable icon of a known stratigraphy.

  10. Improved Ozone Profile Retrievals Using Multispectral Measurements from S-NPP and NASA "A Train" Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Bowman, K. W.; Worden, J.; Livesey, N. J.; Kulawik, S. S.; Flynn, L. E.; Han, Y.; Liu, X.; Pawson, S.; Wargan, K.; Huang, M.; Luo, M.; Neu, J. L.; Irion, F. W.; Herman, R. L.; Schwartz, M. J.

    2014-12-01

    Our prototype studies showed that a new ozone column and profile products can be obtained by combining multi-spectral radiances from the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping Profiler Suite (OMPS) and the Cross-track Infrared Sounder (CrIS). The product offers a unique combination of vertical resolution (enabled by the multi-spectral approach), and wide-swath horizontal coverage
and resolution. This product continues the EOS ozone records from the Aura platform that is based on the combination of the ozone profile product from Aura Ozone Monitoring Instrument (OMI) and the Aura Tropospheric Emission Spectrometer (TES). The unprecedented horizontal and vertical resolution and coverage of this product will enable new much-needed studies such as stratospheric chemistry and ozone loss, tropospheric and stratospheric ozone exchange, ozone climate forcing as well as long range transport of air pollution. The proposed joint CrIS/OMPS-TC/OMPS-NP global ozone record will have spatial sampling equivalent to OMPS Nadir Profiler measurements and similar to that of TES global survey record. The retrievals of using OMPS/CrIS radiances, TES/OMI and MLS/AIRS/OMI retrievals are presented. The comparisons among the multi-spectral retrievals, Aura operation ozone products, and in-situ measurements are shown.

  11. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    PubMed

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef.

  12. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  13. Adaptive illumination source for multispectral vision system applied to material discrimination

    NASA Astrophysics Data System (ADS)

    Conde, Olga M.; Cobo, Adolfo; Cantero, Paulino; Conde, David; Mirapeix, Jesús; Cubillas, Ana M.; López-Higuera, José M.

    2008-04-01

    A multispectral system based on a monochrome camera and an adaptive illumination source is presented in this paper. Its preliminary application is focused on material discrimination for food and beverage industries, where monochrome, color and infrared imaging have been successfully applied for this task. This work proposes a different approach, in which the relevant wavelengths for the required discrimination task are selected in advance using a Sequential Forward Floating Selection (SFFS) Algorithm. A light source, based on Light Emitting Diodes (LEDs) at these wavelengths is then used to sequentially illuminate the material under analysis, and the resulting images are captured by a CCD camera with spectral response in the entire range of the selected wavelengths. Finally, the several multispectral planes obtained are processed using a Spectral Angle Mapping (SAM) algorithm, whose output is the desired material classification. Among other advantages, this approach of controlled and specific illumination produces multispectral imaging with a simple monochrome camera, and cold illumination restricted to specific relevant wavelengths, which is desirable for the food and beverage industry. The proposed system has been tested with success for the automatic detection of foreign object in the tobacco processing industry.

  14. Evaluation of eelgrass beds mapping using a high-resolution airborne multispectral scanner

    USGS Publications Warehouse

    Su, H.; Karna, D.; Fraim, E.; Fitzgerald, M.; Dominguez, R.; Myers, J.S.; Coffland, B.; Handley, L.R.; Mace, T.

    2006-01-01

    Eelgrass (Zostera marina) can provide vital ecological functions in stabilizing sediments, influencing current dynamics, and contributing significant amounts of biomass to numerous food webs in coastal ecosystems. Mapping eelgrass beds is important for coastal water and nearshore estuarine monitoring, management, and planning. This study demonstrated the possible use of high spatial (approximately 5 m) and temporal (maximum low tide) resolution airborne multispectral scanner on mapping eelgrass beds in Northern Puget Sound, Washington. A combination of supervised and unsupervised classification approaches were performed on the multispectral scanner imagery. A normalized difference vegetation index (NDVI) derived from the red and near-infrared bands and ancillary spatial information, were used to extract and mask eelgrass beds and other submerged aquatic vegetation (SAV) in the study area. We evaluated the resulting thematic map (geocoded, classified image) against a conventional aerial photograph interpretation using 260 point locations randomly stratified over five defined classes from the thematic map. We achieved an overall accuracy of 92 percent with 0.92 Kappa Coefficient in the study area. This study demonstrates that the airborne multispectral scanner can be useful for mapping eelgrass beds in a local or regional scale, especially in regions for which optical remote sensing from space is constrained by climatic and tidal conditions. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  15. Multispectral transillumination imaging of skin lesions for oxygenated and deoxygenated hemoglobin measurement.

    PubMed

    D'Alessandro, Brian; Dhawan, Atam P

    2010-01-01

    The early detection of melanoma is critical for patient survival. One of the indentifying features of new malignancy is increased blood flow to the lesion. Multispectral transillumination using the Nevoscope has been demonstrated to be an effective tool for imaging the sub-surface vascular architecture of skin lesions. Using multispectral images obtained from this tool in the visible and near-infrared range, as well as the relative difference in spectral absorption due to oxyhemoglobin and deoxyhemoglobin, we propose an empirical method to estimate the blood flow volume within a skin lesion. From the images, estimates of the distribution of both Hb and HbO(2) are calculated along with a ratiometric feature describing the relative oxygen saturation level in the blood. We validate our proposed method through the imaging of a skin phantom with embedded capillaries which can be filled with either an artificial Hb or HbO(2) liquid. Our near-IR, multispectral computations nicely differentiate the Hb filled phantom versus the HbO(2) filled phantom, demonstrating that these chromophores can be successfully separated and individually characterized for use in estimating the relative oxygen saturation of skin tissue.

  16. The design and the development of a hyperspectral and multispectral airborne mapping system

    NASA Astrophysics Data System (ADS)

    Gorsevski, Pece V.; Gessler, Paul E.

    Flexible and cost-effective tools for rapid image acquisition and natural resource mapping are needed by land managers. This paper describes the hardware and software architecture of a low-cost system that can be deployed on a light aircraft for rapid data acquisition. The Hyperspectral and Multispectral Cameras for Airborne Mapping (HAMCAM) was designed and developed in the Geospatial Laboratory for Environmental Dynamics at the University of Idaho as a student-learning tool, and to enhance the existing curriculum currently offered. The system integrates a hyperspectral sensor with four multispectral cameras, an Inertial Navigation System (INS), a Wide Area Augmentation System (WAAS)-capable Global Positioning System (GPS), a data acquisition computer, and custom software for running the sensors in a variety of different modes. The outputs include very high resolution imagery obtained in four adjustable visible and near-infrared bands from the multispectral imager. The hyperspectral sensor acquires 240 spectral bands along 2.7 nm intervals within the 445-900 nm range. The INS provides aircraft pitch, roll and yaw information for rapid geo-registration of the imagery. This paper will discuss the challenges associated with the development of the system and the integration of components and software for implementation of this system for natural resource management applications. In addition, sample imagery acquired by the sensor will be presented.

  17. Multi-spectral photoacoustic elasticity tomography

    PubMed Central

    Liu, Yubin; Yuan, Zhen

    2016-01-01

    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101

  18. Multispectral imaging of aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  19. A multispectral analysis of algal bloom in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Johnson, W. R.; Norris, D. R.

    1977-01-01

    Skylab multispectral scanner data acquired on January 21, 1974, were used to study the spectral characteristics of an algal bloom in the Gulf of Mexico west of Fort Myers, Florida. Radiance profiles of the water and algae were prepared with data from ten bands of the S192 scanner covering the spectral range from .42 to 2.35 micrometers. The high spectral response in the near-infrared spectral bands implies a possible classification and discrimination parameter for detection of blooms of phytoplankton concentrations such as the so-called red tides of Florida.

  20. Apollo 9 Mission image - S0-65 Multispectral Photography - California and Mexico

    NASA Image and Video Library

    1969-03-12

    AS09-26A-3799A (12 March 1969) --- Color infrared photograph of the Salton Sea and Imperial Valley area of Southern California as seen from the Apollo 9 spacecraft. This picture was taken as a part of the SO-65 Multispectral Terrain Photography Experiment. On the eastern edge of the picture are the Colorado River and a small portion of Arizona. Yuma, Arizona, is at the bottom right corner. The cities of El Centro, California, and Mexicali, Mexico, are at the bottom center.

  1. Apollo 9 Mission image - S0-65 Multispectral Photography - Mexico

    NASA Image and Video Library

    2009-02-19

    AS09-26A-3780A (11 March 1969) --- Colored infrared photograph of northern Baja California, Mexico, as seen from the Apollo 9 spacecraft during its 121st revolution of Earth. This picture was taken as a part of the SO65 Multispectral Terrain Photography Experiment. Prominent point jutting out into the Pacific Ocean is Punta Colnett. The Sierra de Juarez Mountains are in center of picture. "Arrow" formed by Pacific generally points northward. Punta San Felipe on the Gulf of California is in southeast corner of picture.

  2. A multispectral analysis of algal bloom in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Johnson, W. R.; Norris, D. R.

    1977-01-01

    Skylab multispectral scanner data acquired on January 21, 1974, were used to study the spectral characteristics of an algal bloom in the Gulf of Mexico west of Fort Myers, Florida. Radiance profiles of the water and algae were prepared with data from ten bands of the S192 scanner covering the spectral range from .42 to 2.35 micrometers. The high spectral response in the near-infrared spectral bands implies a possible classification and discrimination parameter for detection of blooms of phytoplankton concentrations such as the so-called red tides of Florida.

  3. Apollo 9 Mission image - S0-65 Multispectral Photography - Texas

    NASA Image and Video Library

    2009-02-19

    AS09-26A-3727A (8 March 1969) --- Color infrared photograph of the Texas Gulf Coast, Galveston Bay to Matagorda Bay, as seen from the Apollo 9 spacecraft during it 78th revolution of Earth. Houston is located at right center edge of photograph. Also visible are Galveston, Texas City, Manned Spacecraft Center, and Freeport. The mouth of the Colorado River is located near left center edge of picture. This picture was taken as a part of the SO65 Multispectral Terrain Photography Experiment.

  4. A multispectral imaging approach for diagnostics of skin pathologies

    NASA Astrophysics Data System (ADS)

    Lihacova, Ilze; Derjabo, Aleksandrs; Spigulis, Janis

    2013-06-01

    Noninvasive multispectral imaging method was applied for different skin pathology such as nevus, basal cell carcinoma, and melanoma diagnostics. Developed melanoma diagnostic parameter, using three spectral bands (540 nm, 650 nm and 950 nm), was calculated for nevus, melanoma and basal cell carcinoma. Simple multispectral diagnostic device was established and applied for skin assessment. Development and application of multispectral diagnostics method described further in this article.

  5. Image processing of underwater multispectral imagery

    USGS Publications Warehouse

    Zawada, D. G.

    2003-01-01

    Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.

  6. Image denoising and deblurring using multispectral data

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.

    2017-05-01

    Currently decision-making systems get widespread. These systems are based on the analysis video sequences and also additional data. They are volume, change size, the behavior of one or a group of objects, temperature gradient, the presence of local areas with strong differences, and others. Security and control system are main areas of application. A noise on the images strongly influences the subsequent processing and decision making. This paper considers the problem of primary signal processing for solving the tasks of image denoising and deblurring of multispectral data. The additional information from multispectral channels can improve the efficiency of object classification. In this paper we use method of combining information about the objects obtained by the cameras in different frequency bands. We apply method based on simultaneous minimization L2 and the first order square difference sequence of estimates to denoising and restoring the blur on the edges. In case of loss of the information will be applied an approach based on the interpolation of data taken from the analysis of objects located in other areas and information obtained from multispectral camera. The effectiveness of the proposed approach is shown in a set of test images.

  7. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  8. Quantitative analysis of digital outcrop data obtained from stereo-imagery using an emulator for the PanCam camera system for the ExoMars 2020 rover

    NASA Astrophysics Data System (ADS)

    Barnes, Robert; Gupta, Sanjeev; Gunn, Matt; Paar, Gerhard; Balme, Matt; Huber, Ben; Bauer, Arnold; Furya, Komyo; Caballo-Perucha, Maria del Pilar; Traxler, Chris; Hesina, Gerd; Ortner, Thomas; Banham, Steven; Harris, Jennifer; Muller, Jan-Peter; Tao, Yu

    2017-04-01

    A key focus of planetary rover missions is to use panoramic camera systems to image outcrops along rover traverses, in order to characterise their geology in search of ancient life. This data can be processed to create 3D point clouds of rock outcrops to be quantitatively analysed. The Mars Utah Rover Field Investigation (MURFI 2016) is a Mars Rover field analogue mission run by the UK Space Agency (UKSA) in collaboration with the Canadian Space Agency (CSA). It took place between 22nd October and 13th November 2016 and consisted of a science team based in Harwell, UK, and a field team including an instrumented Rover platform at the field site near Hanksville (Utah, USA). The Aberystwyth University PanCam Emulator 3 (AUPE3) camera system was used to collect stereo panoramas of the terrain the rover encountered during the field trials. Stereo-imagery processed in PRoViP is rendered as Ordered Point Clouds (OPCs) in PRo3D, enabling the user to zoom, rotate and translate the 3D outcrop model. Interpretations can be digitised directly onto the 3D surface, and simple measurements can be taken of the dimensions of the outcrop and sedimentary features, including grain size. Dip and strike of bedding planes, stratigraphic and sedimentological boundaries and fractures is calculated within PRo3D from mapped bedding contacts and fracture traces. Merging of rover-derived imagery with UAV and orbital datasets, to build semi-regional multi-resolution 3D models of the area of operations for immersive analysis and contextual understanding. In-simulation, AUPE3 was mounted onto the rover mast, collecting 16 stereo panoramas over 9 'sols'. 5 out-of-simulation datasets were collected in the Hanksville-Burpee Quarry. Stereo panoramas were processed using an automated pipeline and data transfer through an ftp server. PRo3D has been used for visualisation and analysis of this stereo data. Features of interest in the area could be annotated, and their distances between to the rover

  9. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].

    PubMed

    Wu, Qian; Sun, Hong; Li, Min-zan; Song, Yuan-yuan; Zhang, Yan-e

    2015-01-01

    In order to rapidly acquire maize growing information in the field, a non-destructive method of maize chlorophyll content index measurement was conducted based on multi-spectral imaging technique and imaging processing technology. The experiment was conducted at Yangling in Shaanxi province of China and the crop was Zheng-dan 958 planted in about 1 000 m X 600 m experiment field. Firstly, a 2-CCD multi-spectral image monitoring system was available to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (Blue (B), Green (G), Red (R): 400-700 nm) and near-infrared (NIR, 760-1 000 nm) band. The multispectral images were output as RGB and NIR images via the system vertically fixed to the ground with vertical distance of 2 m and angular field of 50°. SPAD index of each sample was'measured synchronously to show the chlorophyll content index. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the NIR maize image was selected to segment the maize leaves from background, because there was a big difference showed in gray histogram between plant and soil background. The NIR image segmentation algorithm was conducted following steps of preliminary and accuracy segmentation: (1) The results of OTSU image segmentation method and the variable threshold algorithm were discussed. It was revealed that the latter was better one in corn plant and weed segmentation. As a result, the variable threshold algorithm based on local statistics was selected for the preliminary image segmentation. The expansion and corrosion were used to optimize the segmented image. (2) The region labeling algorithm was used to segment corn plants from soil and weed background with an accuracy of 95. 59 %. And then, the multi-spectral image of maize canopy was accurately segmented in R, G and B band separately. Thirdly, the image parameters were abstracted based on the segmented visible and NIR images. The average gray

  10. The Multispectral Imaging Science Working Group. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    The status and technology requirements for using multispectral sensor imagery in geographic, hydrologic, and geologic applications are examined. Critical issues in image and information science are identified.

  11. Multispectral photometric stereo for acquiring high-fidelity surface normals.

    PubMed

    Nam, Giljoo; Kim, Min H

    2014-01-01

    Multispectral imaging and photometric stereo are common in 3D imaging but rarely have been combined. Reconstructing a 3D object's shape using photometric stereo is challenging owing to indirect illumination, specular reflection, and self-shadows, and removing interreflection in photometric stereo is problematic. A new multispectral photometric-stereo method removes interreflection on diffuse materials using multispectral-reflectance information and reconstructs 3D shapes with high accuracy. You can integrate this method into photometric-stereo systems by simply substituting the original camera with a multispectral camera.

  12. Vein visualization using a smart phone with multispectral Wiener estimation for point-of-care applications.

    PubMed

    Song, Jae Hee; Kim, Choye; Yoo, Yangmo

    2015-03-01

    Effective vein visualization is clinically important for various point-of-care applications, such as needle insertion. It can be achieved by utilizing ultrasound imaging or by applying infrared laser excitation and monitoring its absorption. However, while these approaches can be used for vein visualization, they are not suitable for point-of-care applications because of their cost, time, and accessibility. In this paper, a new vein visualization method based on multispectral Wiener estimation is proposed and its real-time implementation on a smart phone is presented. In the proposed method, a conventional RGB camera on a commercial smart phone (i.e., Galaxy Note 2, Samsung Electronics Inc., Suwon, Korea) is used to acquire reflectance information from veins. Wiener estimation is then applied to extract the multispectral information from the veins. To evaluate the performance of the proposed method, an experiment was conducted using a color calibration chart (ColorChecker Classic, X-rite, Grand Rapids, MI, USA) and an average root-mean-square error of 12.0% was obtained. In addition, an in vivo subcutaneous vein imaging experiment was performed to explore the clinical performance of the smart phone-based Wiener estimation. From the in vivo experiment, the veins at various sites were successfully localized using the reconstructed multispectral images and these results were confirmed by ultrasound B-mode and color Doppler images. These results indicate that the presented multispectral Wiener estimation method can be used for visualizing veins using a commercial smart phone for point-of-care applications (e.g., vein puncture guidance).

  13. Multispectral optical enhanced transmission of a continuous metal film coated with a plasmonic core-shell nanoparticle array

    NASA Astrophysics Data System (ADS)

    Liu, Gui-qiang; Hu, Ying; Liu, Zheng-qi; Cai, Zheng-jie; Zhang, Xiang-nan; Chen, Yuan-hao; Huang, Kuan

    2014-04-01

    We propose and show multispectral optical enhanced transmission in the visible and near-infrared region in a continuous metal film coated with a two-dimensional (2D) hexagonal non-close-packed plasmonic array. The plasmonic array consists of metal/dielectric multilayer core-shell nanoparticles. The excitation of near-field plasmon resonance coupling between adjacent core-shell nanoparticles, plasmon resonance coupling between adjacent metal layers in the nanoparticle, and surface plasmon (SP) waves on the metal film are mainly responsible for the multispectral optical enhanced transmission behavior. The multispectral optical enhanced transmission response could be highly modified in the wavelength range, transparent bandwidth and transmission intensity by varying the geometry parameters including the gap distance between adjacent plasmonic nanoparticles, the size of metal core and the thickness of dielectric layer between the metal layers. In addition, the number of optical enhanced transmission bands increases with the number of metal layers in the plasmonic nanoparticle. The proposed structure shows many merits such as the deep sub-wavelength size, multispectral optical enhanced transmission bands as well as fully retained electric and mechanical properties of the natural metal. These merits may provide promising applications for highly integrated optoelectronic devices including plasmonic filters, nanoscale multiplexers, and nonlinear optics.

  14. Applying neural networks to hyperspectral and multispectral field data for discrimination of cruciferous weeds in winter crops.

    PubMed

    de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca

    2012-01-01

    In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.

  15. Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops

    PubMed Central

    de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca

    2012-01-01

    In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops. PMID:22629171

  16. Airborne multispectral and thermal remote sensing for detecting the onset of crop stress caused by multiple factors

    NASA Astrophysics Data System (ADS)

    Huang, Yanbo; Thomson, Steven J.

    2010-10-01

    Remote sensing technology has been developed and applied to provide spatiotemporal information on crop stress for precision management. A series of multispectral images over a field planted cotton, corn and soybean were obtained by a Geospatial Systems MS4100 camera mounted on an Air Tractor 402B airplane equipped with Camera Link in a Magma converter box triggered by Terraverde Dragonfly® flight navigation and imaging control software. The field crops were intentionally stressed by applying glyphosate herbicide via aircraft and allowing it to drift near-field. Aerial multispectral images in the visible and near-infrared bands were manipulated to produce vegetation indices, which were used to quantify the onset of herbicide induced crop stress. The vegetation indices normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI) showed the ability to monitor crop response to herbicide-induced injury by revealing stress at different phenological stages. Two other fields were managed with irrigated versus nonirrigated treatments, and those fields were imaged with both the multispectral system and an Electrophysics PV-320T thermal imaging camera on board an Air Tractor 402B aircraft. Thermal imagery indicated water stress due to deficits in soil moisture, and a proposed method of determining crop cover percentage using thermal imagery was compared with a multispectral imaging method. Development of an image fusion scheme may be necessary to provide synergy and improve overall water stress detection ability.

  17. Multispectral optical telescope alignment testing for a cryogenic space environment

    NASA Astrophysics Data System (ADS)

    Newswander, Trent; Hooser, Preston; Champagne, James

    2016-09-01

    Multispectral space telescopes with visible to long wave infrared spectral bands provide difficult alignment challenges. The visible channels require precision in alignment and stability to provide good image quality in short wavelengths. This is most often accomplished by choosing materials with near zero thermal expansion glass or ceramic mirrors metered with carbon fiber reinforced polymer (CFRP) that are designed to have a matching thermal expansion. The IR channels are less sensitive to alignment but they often require cryogenic cooling for improved sensitivity with the reduced radiometric background. Finding efficient solutions to this difficult problem of maintaining good visible image quality at cryogenic temperatures has been explored with the building and testing of a telescope simulator. The telescope simulator is an onaxis ZERODUR® mirror, CFRP metered set of optics. Testing has been completed to accurately measure telescope optical element alignment and mirror figure changes in a cryogenic space simulated environment. Measured alignment error and mirror figure error test results are reported with a discussion of their impact on system optical performance.

  18. Multispectral digital holographic microscopy with applications in water quality assessment

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Jin, Chao; Yu, Mei; Amelard, Robert; Haider, Shahid; Saini, Simarjeet; Emelko, Monica; Clausi, David A.; Wong, Alexander

    2015-09-01

    Safe drinking water is essential for human health, yet over a billion people worldwide do not have access to safe drinking water. Due to the presence and accumulation of biological contaminants in natural waters (e.g., pathogens and neuro-, hepato-, and cytotoxins associated with algal blooms) remain a critical challenge in the provision of safe drinking water globally. It is not financially feasible and practical to monitor and quantify water quality frequently enough to identify the potential health risk due to contamination, especially in developing countries. We propose a low-cost, small-profile multispectral (MS) system based on Digital Holographic Microscopy (DHM) and investigate methods for rapidly capturing holographic data of natural water samples. We have developed a test-bed for an MSDHM instrument to produce and capture holographic data of the sample at different wavelengths in the visible and the near Infra-red spectral region, allowing for resolution improvement in the reconstructed images. Additionally, we have developed high-speed statistical signal processing and analysis techniques to facilitate rapid reconstruction and assessment of the MS holographic data being captured by the MSDHM instrument. The proposed system is used to examine cyanobacteria as well as Cryptosporidium parvum oocysts which remain important and difficult to treat microbiological contaminants that must be addressed for the provision of safe drinking water globally.

  19. A wavelet-based method for multispectral face recognition

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Zhang, Chaoyang; Zhou, Zhaoxian

    2012-06-01

    A wavelet-based method is proposed for multispectral face recognition in this paper. Gabor wavelet transform is a common tool for orientation analysis of a 2D image; whereas Hamming distance is an efficient distance measurement for face identification. Specifically, at each frequency band, an index number representing the strongest orientational response is selected, and then encoded in binary format to favor the Hamming distance calculation. Multiband orientation bit codes are then organized into a face pattern byte (FPB) by using order statistics. With the FPB, Hamming distances are calculated and compared to achieve face identification. The FPB algorithm was initially created using thermal images, while the EBGM method was originated with visible images. When two or more spectral images from the same subject are available, the identification accuracy and reliability can be enhanced using score fusion. We compare the identification performance of applying five recognition algorithms to the three-band (visible, near infrared, thermal) face images, and explore the fusion performance of combing the multiple scores from three recognition algorithms and from three-band face images, respectively. The experimental results show that the FPB is the best recognition algorithm, the HMM yields the best fusion result, and the thermal dataset results in the best fusion performance compared to other two datasets.

  20. Active multispectral imaging system for photodiagnosis and personalized phototherapies

    NASA Astrophysics Data System (ADS)

    Ugarte, M. F.; Chávarri, L.; Briz, S.; Padrón, V. M.; García-Cuesta, E.

    2014-10-01

    The proposed system has been designed to identify dermatopathologies or to apply personalized phototherapy treatments. The system emits electromagnetic waves in different spectral bands in the range of visible and near infrared to irradiate the target (skin or any other object) to be spectrally characterized. Then, an imaging sensor measures the target response to the stimulus at each spectral band and, after processing, the system displays in real time two images. In one of them the value of each pixel corresponds to the more reflected wavenumber whereas in the other image the pixel value represents the energy absorbed at each band. The diagnosis capability of this system lies in its multispectral design, and the phototherapy treatments are adapted to the patient and his lesion by measuring his absorption capability. This "in situ" absorption measurement allows us to determine the more appropriate duration of the treatment according to the wavelength and recommended dose. The main advantages of this system are its low cost, it does not have moving parts or complex mechanisms, it works in real time, and it is easy to handle. For these reasons its widespread use in dermatologist consultation would facilitate the work of the dermatologist and would improve the efficiency of diagnosis and treatment. In fact the prototype has already been successfully applied to pathologies such as carcinomas, melanomas, keratosis, and nevi.

  1. Whole-body and multispectral photoacoustic imaging of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Huang, Na; Xi, Lei

    2016-10-01

    Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.

  2. Automated Road Extraction from High Resolution Multispectral Imagery

    SciTech Connect

    Doucette, Peter J.; Agouris, Peggy; Stefanidis, Anthony

    2004-12-01

    Road networks represent a vital component of geospatial data sets in high demand, and thus contribute significantly to extraction labor costs. Multispectral imagery has only recently become widely available at high spatial resolutions, and modeling spectral content has received limited consideration for road extraction algorithms. This paper presents a methodology that exploits spectral content for fully automated road centerline extraction. Preliminary detection of road centerline pixel candidates is performed with Anti-parallel-edge Centerline Extraction (ACE). This is followed by constructing a road vector topology with a fuzzy grouping model that links nodes from a self-organized mapping of the ACE pixels. Following topology construction, a self-supervised road classification (SSRC) feedback loop is implemented to automate the process of training sample selection and refinement for a road class, as well deriving practical spectral definitions for non-road classes. SSRC demonstrates a potential to provide dramatic improvement in road extraction results by exploiting spectral content. Road centerline extraction results are presented for three 1m color-infrared suburban scenes, which show significant improvement following SSRC.

  3. Multispectral Cloud Retrievals from MODIS on Terra and Aqua

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  4. Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths

    NASA Technical Reports Server (NTRS)

    Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.

    2016-01-01

    This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.

  5. Evolving forest fire burn severity classification algorithms for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Harvey, Neal R.; Bloch, Jeffrey J.; Theiler, James P.; Perkins, Simon J.; Young, Aaron C.; Szymanski, John J.

    2001-08-01

    Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.

  6. Active multispectral imaging system for photodiagnosis and personalized phototherapies

    SciTech Connect

    Ugarte, M. F. E-mail: sbriz@fis.uc3m.es; Chávarri, L.; Padrón, V. M.; García-Cuesta, E.

    2014-10-15

    The proposed system has been designed to identify dermatopathologies or to apply personalized phototherapy treatments. The system emits electromagnetic waves in different spectral bands in the range of visible and near infrared to irradiate the target (skin or any other object) to be spectrally characterized. Then, an imaging sensor measures the target response to the stimulus at each spectral band and, after processing, the system displays in real time two images. In one of them the value of each pixel corresponds to the more reflected wavenumber whereas in the other image the pixel value represents the energy absorbed at each band. The diagnosis capability of this system lies in its multispectral design, and the phototherapy treatments are adapted to the patient and his lesion by measuring his absorption capability. This “in situ” absorption measurement allows us to determine the more appropriate duration of the treatment according to the wavelength and recommended dose. The main advantages of this system are its low cost, it does not have moving parts or complex mechanisms, it works in real time, and it is easy to handle. For these reasons its widespread use in dermatologist consultation would facilitate the work of the dermatologist and would improve the efficiency of diagnosis and treatment. In fact the prototype has already been successfully applied to pathologies such as carcinomas, melanomas, keratosis, and nevi.

  7. Multispectral Cloud Retrievals from MODIS on Terra and Aqua

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  8. Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.

    2016-12-01

    Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an

  9. Multispectral Observations and Analysis of the Rosette Nebula

    NASA Astrophysics Data System (ADS)

    Huber, Jeremy

    The Rosette nebula is a large, ring-shaped emission nebula with a distinctive central cavity excavated by its central cluster of OB stars. Toward understanding the three dimensional structure and fundamental physical processes of this object, we have acquired ux-calibrated, 4-degree field, deep exposures of the Rosette region through 3 nm bandwidth Halpha (656.3 nm) as well as Hbeta (486.1nm), [OIII] (500.7 nm) and [SII] (671.6 nm) filters with 4.5 nm bandwidth. The 4 arcsec/pixel images are supplemented with 4 degree field slit spectra and combined with archival data from the Galactic Evolution Explorer satellite (GALEX), Akari, the Infrared Astronomical Satellite (IRAS), the Midcourse Space Experiment (MSX), the Wide-field Infrared Survey Explorer (WISE), the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck mission, along with published single dish radio data of the hydrogen continuum at 1410, 2700, and 4750 MHz. These disparate sources have been converted to the same flux and spatial scale as our own wide field data to create a multispectral data cube which allows comparative analysis across the electromagnetic spectrum. Using ratios of data cube slices, spatial maps of extinction and ionization have been constructed to explore the spatial variation of these parameters across the nebula. Comparison of emission in different wavelengths across the data cube allows generation of a spectral energy distribution (SED) to probe dust temperature and geometry. A radial profile analysis of emission from the Rosette in each band supports a spherical shell model of three dimensional structure, and visual representations of this model have been generated in both Python and Javascript/GLSL. An investigation of anomalous dust emission in the center of the nebula via supplemental spectroscopy, conducted on the Anglo-Australian Telescope, is also presented.

  10. Bandpass filter arrays patterned by photolithography for multispectral remote sensing

    NASA Astrophysics Data System (ADS)

    Bauer, T.; Thome, Heidi; Eisenhammer, Thomas

    2014-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels from visible (VIS), near infrared (NIR) up to the short wave infrared (SWIR) spectral region. Thin-film optical filters are applied to select these channels. Filter wheels and arrays of discrete stripe filters are standard configurations. To achieve compact and light weight camera designs multi-channel filter plates or assemblies can be mounted close to the electronic detectors. Optics Balzers has implemented a micro-structuring process based on a sequence of multiple coatings and photolithography on the same substrate. High-performance band pass filters are applied by plasma assisted evaporation (plasma IAD) with advance plasma source (APS) technology and optical broad-band monitoring (BBM). This technology has already proven for various multi spectral imager (MSI) configurations on fused silica, sapphire and other substrates for remote sensing application. The optical filter design and performance is limited by the maximum coating thickness micro-structurable by photolithographic lift-off processes and by thermal and radiation load on the photoresist mask during the process Recent progress in image resolution and sensor selectivity requires improvements of optical filter performance. Blocking in the UV and NIR and in between the spectral cannels, in-band transmission and filter edge steepness are subject of current development. Technological limits of the IAD coating accuracy can be overcome by more precise coating technologies like plasma assisted reactive magnetron sputtering (PARMS) and combination with optical broadband monitoring (BBM). We present an overview about concepts and technologies for band-pass filter arrays for multi-spectral imaging at Optics Balzers. Recent performance improvements of filter arrays made by micro-structuring will be presented.

  11. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars

    USGS Publications Warehouse

    Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.

  12. Testing of Land Cover Classification from Multispectral Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Kupidura, P.; Jełowicki, Ł.

    2016-06-01

    Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return

  13. Comparison of Hyperspectral and Multispectral Satellites for Discriminating Land Cover in Northern California

    NASA Astrophysics Data System (ADS)

    Clark, M. L.; Kilham, N. E.

    2015-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (VSWIR) of the spectrum have shown impressive capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a VSWIR hyperspectral and thermal satellite being considered for development by NASA. The goal of this study was to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping relative to multispectral satellites. We mapped FAO Land Cover Classification System (LCCS) classes over 22,500 km2 in the San Francisco Bay Area, California using 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery simulated from data acquired by NASA's AVIRIS airborne sensor. Random Forests (RF) and Multiple-Endmember Spectral Mixture Analysis (MESMA) classifiers were applied to the simulated images and accuracies were compared to those from real Landsat 8 images. The RF classifier was superior to MESMA, and multi-temporal data yielded higher accuracy than summer-only data. With RF, hyperspectral data had overall accuracy of 72.2% and 85.1% with full 20-class and reduced 12-class schemes, respectively. Multispectral imagery had lower accuracy. For example, simulated and real Landsat data had 7.5% and 4.6% lower accuracy than HyspIRI data with 12 classes, respectively. In summary, our results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different natural vegetation types, such as

  14. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  15. Multispectral Airborne Laser Scanning for Automated Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Hyyppä, Juha; Litkey, Paula

    2016-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.

  16. A multispectral method of determining sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.

    1972-01-01

    A multispectral method for determining sea surface temperatures is discussed. The specifications of the equipment and the atmospheric conditions required for successful multispectral data acquisition are described. Examples of data obtained in the North Atlantic Ocean are presented. The differences between the actual sea surface temperatures and the equivalent blackbody temperatures as determined by a radiometer are plotted.

  17. Multispectral data compression through transform coding and block quantization

    NASA Technical Reports Server (NTRS)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  18. Astronaut Jack Lousma works at Multispectral camera experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, works at the S190A multispectral camera experiment in the Multiple Docking Adapter (MDA), seen from a color television transmission made by a TV camera aboard the Skylab space station cluster in Earth orbit. Lousma later used a small brush to clean the six lenses of the multispectral camera.

  19. Measurement of water depth by multispectral ratio techniques

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1970-01-01

    The technique for measuring the depth of water using a multispectral scanner is discussed. The procedure takes advantage of the absorption properties of different wavelengths of light. Making use of the property of the selected transmission of light at different wavelengths, an equation was developed relating the outputs of at least two channels of multispectral scanner to measure water depth.

  20. Two mirror objective design for multispectral remote sensing

    NASA Technical Reports Server (NTRS)

    Clark, P. P.

    1982-01-01

    A two mirror flat field anastigmatic telescope was designed for multispectral sensing. The design was adapted to prism-type beamsplitting arrangements without loss of multispectral image quality by the addition of one refractive element. In addition to being relatively simple and mechanically insensitive, the design is immune to focus shift caused by index of refraction variation with temperature.

  1. Multispectral rock-type separation and classification.

    SciTech Connect

    Moya, Mary M.; Fogler, Robert Joseph; Paskaleva, Biliana; Hayat, Majeed M.

    2004-06-01

    This paper explores the possibility of separating and classifying remotely-sensed multispectral data from rocks and minerals onto seven geological rock-type groups. These groups are extracted from the general categories of metamorphic, igneous and sedimentary rocks. The study is performed under ideal conditions for which the data is generated according to laboratory hyperspectral data for the members, which are, in turn, passed through the Multi-spectral Thermal Imager (MTI) filters yielding 15 bands. The main challenge in separability is the small size of the training data sets, which initially did not permit direct application of Bayesian decision theory. To enable Bayseian classification, the original training data is linearly perturbed with the addition minerals, vegetation, soil, water and other valid impurities. As a result, the size of the training data is significantly increased and accurate estimates of the covariance matrices are achieved. In addition, a set of reduced (five) linearly-extracted canonical features that are optimal in providing the most important information about the data is determined. An alternative nonlinear feature-selection method is also employed based on spectral indices comprising a small subset of all possible ratios between bands. By applying three optimization strategies, combinations of two and three ratios are found that provide reliable separability and classification between all seven groups according to the Bhattacharyya distance. To set a benchmark to which the MTI capability in rock classification can be compared, an optimization strategy is performed for the selection of optimal multispectral filters, other than the MTI filters, and an improvement in classification is predicted.

  2. Tracking Using Peer-to-Peer Smart Infrared Cameras

    DTIC Science & Technology

    2008-11-05

    calibration and gesture recognition from multi-spectral camera setups, including infrared and visible cameras. Result: We developed new object models for...work on single-camera gesture recognition . We partnered with Yokogawa Electric to develop new architectures for embedded computer vision. We developed

  3. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  4. Multispectral image fusion using neural networks

    NASA Technical Reports Server (NTRS)

    Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.

    1990-01-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.

  5. Multispectral-image fusion using neural networks

    NASA Astrophysics Data System (ADS)

    Kagel, Joseph H.; Platt, C. A.; Donaven, T. W.; Samstad, Eric A.

    1990-08-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard a circuit card assembly and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations results and a description of the prototype system are presented. 1.

  6. Multispectral image processing for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.; Lazaroff, Mark B.; Brennan, Mark W.

    1993-03-01

    New techniques are described for detecting environmental anomalies and changes using multispectral imagery. Environmental anomalies are areas that do not exhibit normal signatures due to man-made activities and include phenomena such as effluent discharges, smoke plumes, stressed vegetation, and deforestation. A new region-based processing technique is described for detecting these phenomena using Landsat TM imagery. Another algorithm that can detect the appearance or disappearance of environmental phenomena is also described and an example illustrating its use in detecting urban changes using SPOT imagery is presented.

  7. Multispectral imaging system for contaminant detection

    NASA Technical Reports Server (NTRS)

    Poole, Gavin H. (Inventor)

    2003-01-01

    An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.

  8. Multispectral analysis of ocean dumped materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Remotely sensed data were collected in conjunction with sea-truth measurements in three experiments in the New York Bight. Pollution features of primary interest were ocean dumped materials, such as sewage sludge and acid waste. Sewage-sludge and acid-waste plumes, including plumes from sewage sludge dumped by the 'line-dump' and 'spot-dump' methods, were located, identified, and mapped. Previously developed quantitative analysis techniques for determining quantitative distributions of materials in sewage sludge dumps were evaluated, along with multispectral analysis techniques developed to identify ocean dumped materials. Results of these experiments and the associated data analysis investigations are presented and discussed.

  9. Multispectral analysis of ocean dumped materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Experiments conducted in the Atlantic coastal zone indicated that plumes resulting from ocean dumping of acid wastes and sewage sludge have unique spectral characteristics. Remotely sensed wide area synoptic coverage provided information on these pollution features that was not readily available from other sources. Aircraft remotely sensed photographic and multispectral scanner data were interpreted by two methods. First, qualitative analyses in which pollution features were located, mapped, and identified without concurrent sea truth and, second, quantitative analyses in which concurrently collected sea truth was used to calibrate the remotely sensed data and to determine quantitative distributions of one or more parameters in a plume.

  10. Lossless compression algorithm for multispectral imagers

    NASA Astrophysics Data System (ADS)

    Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth

    2008-08-01

    Multispectral imaging is becoming an increasingly important tool for monitoring the earth and its environment from space borne and airborne platforms. Multispectral imaging data consists of visible and IR measurements from a scene across space and spectrum. Growing data rates resulting from faster scanning and finer spatial and spectral resolution makes compression an increasingly critical tool to reduce data volume for transmission and archiving. Research for NOAA NESDIS has been directed to finding for the characteristics of satellite atmospheric Earth science Imager sensor data what level of Lossless compression ratio can be obtained as well as appropriate types of mathematics and approaches that can lead to approaching this data's entropy level. Conventional lossless do not achieve the theoretical limits for lossless compression on imager data as estimated from the Shannon entropy. In a previous paper, the authors introduce a lossless compression algorithm developed for MODIS as a proxy for future NOAA-NESDIS satellite based Earth science multispectral imagers such as GOES-R. The algorithm is based on capturing spectral correlations using spectral prediction, and spatial correlations with a linear transform encoder. In decompression, the algorithm uses a statistically computed look up table to iteratively predict each channel from a channel decompressed in the previous iteration. In this paper we present a new approach which fundamentally differs from our prior work. In this new approach, instead of having a single predictor for each pair of bands we introduce a piecewise spatially varying predictor which significantly improves the compression results. Our new algorithm also now optimizes the sequence of channels we use for prediction. Our results are evaluated by comparison with a state of the art wavelet based image compression scheme, Jpeg2000. We present results on the 14 channel subset of the MODIS imager, which serves as a proxy for the GOES-R imager. We

  11. SWNT Imaging Using Multispectral Image Processing

    NASA Astrophysics Data System (ADS)

    Blades, Michael; Pirbhai, Massooma; Rotkin, Slava V.

    2012-02-01

    A flexible optical system was developed to image carbon single-wall nanotube (SWNT) photoluminescence using the multispectral capabilities of a typical CCD camcorder. The built in Bayer filter of the CCD camera was utilized, using OpenCV C++ libraries for image processing, to decompose the image generated in a high magnification epifluorescence microscope setup into three pseudo-color channels. By carefully calibrating the filter beforehand, it was possible to extract spectral data from these channels, and effectively isolate the SWNT signals from the background.

  12. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  13. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  14. Mapping soil types from multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Zachary, A. L.

    1971-01-01

    Multispectral remote sensing and computer-implemented pattern recognition techniques were used for automatic ?mapping' of soil types. This approach involves subjective selection of a set of reference samples from a gray-level display of spectral variations which was generated by a computer. Each resolution element is then classified using a maximum likelihood ratio. Output is a computer printout on which the researcher assigns a different symbol to each class. Four soil test areas in Indiana were experimentally examined using this approach, and partially successful results were obtained.

  15. Optimization of multispectral sensors for bathymetry applications

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Byrnes, H. J.

    1986-01-01

    The Naval Oceanographic office has proposed to augment current capabilities with an airborne MSS system capable of conducting hydrographic surveys of shallow and clear oceanic waters for purposes of determining ocean depth and identifying marine hazards. Recent efforts have concentrated on development of an active/passive system, where the active system will be used to calibrate a passive multispectral sensor. In this paper, parameters which influence collection-system design and depth-extraction techniques have been used to describe the practical bounds to which MSS technology can support coastal bathymetric surveying. Performance is estimated in terms of expected S/N and depth-extraction errors.

  16. Multispectral imaging system on tethered balloons for optical remote sensing education and outreach

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.; Nugent, Paul W.; Kaufman, Nathan; Pust, Nathan J.; Mikes, Devin; Knierim, Cassie; Faulconer, Nathan; Larimer, Randal; DesJardins, Angela; Knighton, Berk

    2012-10-01

    A set of low-cost, compact multispectral imaging systems have been developed for deployment on tethered balloons for education and outreach based on basic principles of optical remote sensing. The imagers use tiny CMOS cameras with low-cost optical filters to obtain images in red and near-infrared bands, and a more recent version include a blue band. The red and near-infrared bands are used primarily for identifying and monitoring vegetation through the Normalized Difference Vegetation Index (NDVI), while the blue band is used for studying water turbidity, identifying water and ice, and so forth. The imagers are designed to be carried by tethered balloons at altitudes up to approximately 50 m. Engineering and physics students at Montana State University-Bozeman gained hands-on experience during the early stages of designing and building the imagers, and a wide variety of university and college students are using the imagers for a broad range of applications to learn about multispectral imaging, remote sensing, and applications typically involving some aspect of environmental science.

  17. Multispectral imaging systems on tethered balloons for optical remote sensing education and research

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.; Nugent, Paul W.; Kaufman, Nathan A.; Pust, Nathan J.; Mikes, Devin; Knierim, Cassie; Faulconer, Nathan; Larimer, Randal M.; DesJardins, Angela C.; Knighton, W. Berk

    2012-01-01

    A set of low-cost, compact multispectral imaging systems have been developed for deployment on tethered balloons for education and outreach based on basic principles of optical remote sensing. They have proven to be sufficiently capable, and they are now being used in research as well. The imagers use tiny complementary metal-oxide semiconductor cameras with low-cost optical filters to obtain images in red and near-infrared bands, and a more recent version includes a blue band. The red and near-infrared bands are used primarily for identifying and monitoring vegetation through the normalized difference vegetation index (NDVI), while the blue band can be used for studying water turbidity and so forth. The imagers are designed to be carried by tethered balloons to altitudes currently up to approximately 50 m. These undergraduate-student-built imaging systems are being used by university and college students for a broad range of applications in multispectral imaging, remote sensing, and environmental science.

  18. Integration of visible-through microwave-range multispectral image data sets for geologic mapping

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dietz, John B.

    1991-01-01

    Multispectral remote sensing data sets collected during the Geologic Remote Sensing Field Experiment (GRSFE) conducted during 1989 in the southwestern U.S. were used to produce thematic image maps showing details of the surface geology. LANDSAT TM (Thematic Mapper) images were used to map the distribution of clays, carbonates, and iron oxides. AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data were used to identify and map calcite, dolomite, sericite, hematite, and geothite, including mixtures. TIMS (Thermal Infrared Multispectral Scanner) data were used to map the distribution of igneous rock phases and carbonates based on their silica contents. AIRSAR (Airborne Synthetic Aperture Radar) data were used to map surface textures related to the scale of surface roughness. The AIRSAR also allowed identification of previously unmapped fault segments and structural control of lithology and minerology. Because all of the above data sets were geographically referenced, combination of different data types and direct comparison of the results with conventional field and laboratory data sets allowed improved geologic mapping of the test site.

  19. Interpretation of Landsat-4 Thematic Mapper and Multispectral Scanner data for forest surveys

    NASA Technical Reports Server (NTRS)

    Benson, A. S.; Degloria, S. D.

    1985-01-01

    Landsat-4 Thematic Mapper (TM) and Multispectral Scanner (MSS) data were evaluated by interpreting film and digital products and statistical data for selected forest cover types in California. Significant results were: (1) TM color image products should contain a spectral band in the visible (bands 1, 2, or 3), near infrared (band 4), and middle infrared (band 5) regions for maximizing the interpretability of vegetation types; (2) TM color composites should contain band 4 in all cases even at the expense of excluding band 5; and (3) MSS color composites were more interpretable than all TM color composites for certain cover types and for all cover types when band 4 was excluded from the TM composite.

  20. Nimbus limb radiometer, apollo fine sun sensor, and skylab multispectral scanner.

    PubMed

    Kollodge, J C; Thomas, J R; Weagant, R A

    1972-10-01

    Examples of three different types of electrooptical systems developed by the Honeywell Radiation Center for NASA are described. One is a multichannel infrared ( 15 micro) radiometer that will permit temperature and constituent inferences over the globe; it carries a one-year supply of cryogenics for the trimetal infrared detectors. The second is the Apollo telescope mount fine sun sensor, a tracking device making use of solar radiation and the transmission near critical angle of refraction, that will track within +/-2 sec of arc to a designated point on the sun. The final example is the Skylab S-192 multispectral (thirteen channels from 0.4 micro to 12 micro) mapper for a variety of earth resources applications.

  1. Open-air multispectral fluorescence-guided surgery platform for intraoperative detection of malignant tissue under ambient lighting conditions

    NASA Astrophysics Data System (ADS)

    Behrooz, Ali; Vasquez, Kristine O.; Waterman, Peter; Meganck, Jeff; Peterson, Jeffrey D.; Miller, Peter; Kempner, Joshua

    2017-02-01

    Intraoperative resection of tumors currently relies upon the surgeon's ability to visually locate and palpate tumor nodules. Undetected residual malignant tissue often results in the need for additional treatment or surgical intervention. The Solaris platform is a multispectral open-air fluorescence imaging system designed for translational fluorescence-guided surgery. Solaris supports video-rate imaging in four fixed fluorescence channels ranging from visible to near infrared, and a multispectral channel equipped with a liquid crystal tunable filter (LCTF) for multispectral image acquisition (520-620 nm). Identification of tumor margins using reagents emitting in the visible spectrum (400-650 nm), such as fluorescein isothiocyanate (FITC), present challenges considering the presence of auto-fluorescence from tissue and food in the gastrointestinal (GI) tract. To overcome this, Solaris acquires LCTF-based multispectral images, and by applying an automated spectral unmixing algorithm to the data, separates reagent fluorescence from tissue and food auto-fluorescence. The unmixing algorithm uses vertex component analysis to automatically extract the primary pure spectra, and resolves the reagent fluorescent signal using non-negative least squares. For validation, intraoperative in vivo studies were carried out in tumor-bearing rodents injected with FITC-dextran reagent that is primarily residing in malignant tissue 24 hours post injection. In the absence of unmixing, fluorescence from tumors is not distinguishable from that of surrounding tissue. Upon spectral unmixing, the FITC-labeled malignant regions become well defined and detectable. The results of these studies substantiate the multispectral power of Solaris in resolving FITC-based agent signal in deep tumor masses, under ambient and surgical light, and enhancing the ability to surgically resect them.

  2. Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology

    NASA Astrophysics Data System (ADS)

    de Vera, Jean-Pierre; Boettger, Ute; Noetzel, Rosa de la Torre; Sánchez, Francisco J.; Grunow, Dana; Schmitz, Nicole; Lange, Caroline; Hübers, Heinz-Wilhelm; Billi, Daniela; Baqué, Mickael; Rettberg, Petra; Rabbow, Elke; Reitz, Günther; Berger, Thomas; Möller, Ralf; Bohmeier, Maria; Horneck, Gerda; Westall, Frances; Jänchen, Jochen; Fritz, Jörg; Meyer, Cornelia; Onofri, Silvano; Selbmann, Laura; Zucconi, Laura; Kozyrovska, Natalia; Leya, Thomas; Foing, Bernard; Demets, René; Cockell, Charles S.; Bryce, Casey; Wagner, Dirk; Serrano, Paloma; Edwards, Howell G. M.; Joshi, Jasmin; Huwe, Björn; Ehrenfreund, Pascale; Elsaesser, Andreas; Ott, Sieglinde; Meessen, Joachim; Feyh, Nina; Szewzyk, Ulrich; Jaumann, Ralf; Spohn, Tilman

    2012-12-01

    The Low Earth Orbit (LEO) experiment Biology and Mars Experiment (BIOMEX) is an interdisciplinary and international space research project selected by ESA. The experiment will be accommodated on the space exposure facility EXPOSE-R2 on the International Space Station (ISS) and is foreseen to be launched in 2013. The prime objective of BIOMEX is to measure to what extent biomolecules, such as pigments and cellular components, are resistant to and able to maintain their stability under space and Mars-like conditions. The results of BIOMEX will be relevant for space proven biosignature definition and for building a biosignature data base (e.g. the proposed creation of an international Raman library). The library will be highly relevant for future space missions such as the search for life on Mars. The secondary scientific objective is to analyze to what extent terrestrial extremophiles are able to survive in space and to determine which interactions between biological samples and selected minerals (including terrestrial, Moon- and Mars analogs) can be observed under space and Mars-like conditions. In this context, the Moon will be an additional platform for performing similar experiments with negligible magnetic shielding and higher solar and galactic irradiation compared to LEO. Using the Moon as an additional astrobiological exposure platform to complement ongoing astrobiological LEO investigations could thus enhance the chances of detecting organic traces of life on Mars. We present a lunar lander mission with two related objectives: a lunar lander equipped with Raman and PanCam instruments which can analyze the lunar surface and survey an astrobiological exposure platform. This dual use of testing mission technology together with geo- and astrobiological analyses will significantly increase the science return, and support the human preparation objectives. It will provide knowledge about the Moon's surface itself and, in addition, monitor the stability of life

  3. Multispectral data processing from unmanned aerial vehicles: application in precision agriculture using different sensors and platforms

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Bozzi, Carlo Alberto; Mancini, Adriano; Tassetti, Anna Nora; Karel, Wilfried; Pfeifer, Norbert

    2017-04-01

    Unmanned aerial vehicles (UAVs) in combination with consumer grade cameras have become standard tools for photogrammetric applications and surveying. The recent generation of multispectral, cost-efficient and lightweight cameras has fostered a breakthrough in the practical application of UAVs for precision agriculture. For this application, multispectral cameras typically use Green, Red, Red-Edge (RE) and Near Infrared (NIR) wavebands to capture both visible and invisible images of crops and vegetation. These bands are very effective for deriving characteristics like soil productivity, plant health and overall growth. However, the quality of results is affected by the sensor architecture, the spatial and spectral resolutions, the pattern of image collection, and the processing of the multispectral images. In particular, collecting data with multiple sensors requires an accurate spatial co-registration of the various UAV image datasets. Multispectral processed data in precision agriculture are mainly presented as orthorectified mosaics used to export information maps and vegetation indices. This work aims to investigate the acquisition parameters and processing approaches of this new type of image data in order to generate orthoimages using different sensors and UAV platforms. Within our experimental area we placed a grid of artificial targets, whose position was determined with differential global positioning system (dGPS) measurements. Targets were used as ground control points to georeference the images and as checkpoints to verify the accuracy of the georeferenced mosaics. The primary aim is to present a method for the spatial co-registration of visible, Red-Edge, and NIR image sets. To demonstrate the applicability and accuracy of our methodology, multi-sensor datasets were collected over the same area and approximately at the same time using the fixed-wing UAV senseFly "eBee". The images were acquired with the camera Canon S110 RGB, the multispectral cameras

  4. Automated oil spill detection with multispectral imagery

    NASA Astrophysics Data System (ADS)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  5. Efficient lossless compression scheme for multispectral images

    NASA Astrophysics Data System (ADS)

    Benazza-Benyahia, Amel; Hamdi, Mohamed; Pesquet, Jean-Christophe

    2001-12-01

    Huge amounts of data are generated thanks to the continuous improvement of remote sensing systems. Archiving this tremendous volume of data is a real challenge which requires lossless compression techniques. Furthermore, progressive coding constitutes a desirable feature for telebrowsing. To this purpose, a compact and pyramidal representation of the input image has to be generated. Separable multiresolution decompositions have already been proposed for multicomponent images allowing each band to be decomposed separately. It seems however more appropriate to exploit also the spectral correlations. For hyperspectral images, the solution is to apply a 3D decomposition according to the spatial and to the spectral dimensions. This approach is not appropriate for multispectral images because of the reduced number of spectral bands. In recent works, we have proposed a nonlinear subband decomposition scheme with perfect reconstruction which exploits efficiently both the spatial and the spectral redundancies contained in multispectral images. In this paper, the problem of coding the coefficients of the resulting subband decomposition is addressed. More precisely, we propose an extension to the vector case of Shapiro's embedded zerotrees of wavelet coefficients (V-EZW) with achieves further saving in the bit stream. Simulations carried out on SPOT images indicate the outperformance of the global compression package we performed.

  6. Multispectral observations of the surf zone

    NASA Astrophysics Data System (ADS)

    Schoonmaker, Jon S.; Dirbas, Joseph; Gilbert, Gary

    2003-09-01

    Airborne multispectral imagery was collected over various targets on the beach and in the water in an attempt to characterize the surf zone environment with respect to electro-optical system capabilities and to assess the utility of very low cost, small multispectral systems in mine counter measures (MCM) and intelligence, surveillance and reconnaissance applications. The data was collected by PAR Government Systems Corporation (PGSC) at the Army Corps of Engineers Field Research Facility at Duck North Carolina and on the beaches of Camp Pendleton Marine Corps Base in Southern California. PGSC flew the first two of its MANTIS (Mission Adaptable Narrowband Tunable Imaging Sensor) systems. Both MANTIS systems were flown in an IR - red - green - blue (700, 600, 550, 480 nm) configuration from altitudes ranging from 200 to 700 meters. Data collected has been lightly analyzed and a surf zone index (SZI) defined and calculated. This index allows mine hunting system performance measurements in the surf zone to be normalized by environmental conditions. The SZI takes into account water clarity, wave energy, and foam persistence.

  7. Multi-spectral imaging of oxygen saturation

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  8. Radiometric Characterization of IKONOS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Kelly, Michelle; Holekamp, Kara; Zanoni, Vicki; Thome, Kurtis; Schiller, Stephen

    2002-01-01

    A radiometric characterization of Space Imaging's IKONOS 4-m multispectral imagery has been performed by a NASA funded team from the John C. Stennis Space Center (SSC), the University of Arizona Remote Sensing Group (UARSG), and South Dakota State University (SDSU). Both intrinsic radiometry and the effects of Space Imaging processing on radiometry were investigated. Relative radiometry was examined with uniform Antarctic and Saharan sites. Absolute radiometric calibration was performed using reflectance-based vicarious calibration methods on several uniform sites imaged by IKONOS, coincident with ground-based surface and atmospheric measurements. Ground-based data and the IKONOS spectral response function served as input to radiative transfer codes to generate a Top-of-Atmosphere radiance estimate. Calibration coefficients derived from each vicarious calibration were combined to generate an IKONOS radiometric gain coefficient for each multispectral band assuming a linear response over the full dynamic range of the instrument. These calibration coefficients were made available to Space Imaging, which subsequently adopted them by updating its initial set of calibration coefficients. IKONOS imagery procured through the NASA Scientific Data Purchase program is processed with or without a Modulation Transfer Function Compensation kernel. The radiometric effects of this kernel on various scene types was also investigated. All imagery characterized was procured through the NASA Scientific Data Purchase program.

  9. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  10. Software defined multi-spectral imaging for Arctic sensor networks

    NASA Astrophysics Data System (ADS)

    Siewert, Sam; Angoth, Vivek; Krishnamurthy, Ramnarayan; Mani, Karthikeyan; Mock, Kenrick; Singh, Surjith B.; Srivistava, Saurav; Wagner, Chris; Claus, Ryan; Vis, Matthew Demi

    2016-05-01

    Availability of off-the-shelf infrared sensors combined with high definition visible cameras has made possible the construction of a Software Defined Multi-Spectral Imager (SDMSI) combining long-wave, near-infrared and visible imaging. The SDMSI requires a real-time embedded processor to fuse images and to create real-time depth maps for opportunistic uplink in sensor networks. Researchers at Embry Riddle Aeronautical University working with University of Alaska Anchorage at the Arctic Domain Awareness Center and the University of Colorado Boulder have built several versions of a low-cost drop-in-place SDMSI to test alternatives for power efficient image fusion. The SDMSI is intended for use in field applications including marine security, search and rescue operations and environmental surveys in the Arctic region. Based on Arctic marine sensor network mission goals, the team has designed the SDMSI to include features to rank images based on saliency and to provide on camera fusion and depth mapping. A major challenge has been the design of the camera computing system to operate within a 10 to 20 Watt power budget. This paper presents a power analysis of three options: 1) multi-core, 2) field programmable gate array with multi-core, and 3) graphics processing units with multi-core. For each test, power consumed for common fusion workloads has been measured at a range of frame rates and resolutions. Detailed analyses from our power efficiency comparison for workloads specific to stereo depth mapping and sensor fusion are summarized. Preliminary mission feasibility results from testing with off-the-shelf long-wave infrared and visible cameras in Alaska and Arizona are also summarized to demonstrate the value of the SDMSI for applications such as ice tracking, ocean color, soil moisture, animal and marine vessel detection and tracking. The goal is to select the most power efficient solution for the SDMSI for use on UAVs (Unoccupied Aerial Vehicles) and other drop

  11. Combining multi-spectral proximal sensors and digital cameras for monitoring grazed tropical pastures

    NASA Astrophysics Data System (ADS)

    Handcock, R. N.; Gobbett, D. L.; González, L. A.; Bishop-Hurley, G. J.; McGavin, S. L.

    2015-11-01

    Timely and accurate monitoring of pasture biomass and ground-cover is necessary in livestock production systems to ensure productive and sustainable management of forage for livestock. Interest in the use of proximal sensors for monitoring pasture status in grazing systems has increased, since such sensors can return data in near real-time, and have the potential to be deployed on large properties where remote sensing may not be suitable due to issues such as spatial scale or cloud cover. However, there are unresolved challenges in developing calibrations to convert raw sensor data to quantitative biophysical values, such as pasture biomass or vegetation ground-cover, to allow meaningful interpretation of sensor data by livestock producers. We assessed the use of multiple proximal sensors for monitoring tropical pastures with a pilot deployment of sensors at two sites on Lansdown Research Station near Townsville, Australia. Each site was monitored by a Skye SKR-four-band multi-spectral sensor (every 1 min), a digital camera (every 30 min), and a soil moisture sensor (every 1 min), each operated over 18 months. Raw data from each sensor were processed to calculate a number of multispectral vegetation indices. Visual observations of pasture characteristics, including above-ground standing biomass and ground cover, were made every 2 weeks. A methodology was developed to manage the sensor deployment and the quality control of the data collected. The data capture from the digital cameras was more reliable than the multi-spectral sensors, which had up to 63 % of data discarded after data cleaning and quality control. We found a strong relationship between sensor and pasture measurements during the wet season period of maximum pasture growth (January to April), especially when data from the multi-spectral sensors were combined with weather data. RatioNS34 (a simple band ratio between the near infrared (NIR) and lower shortwave infrared (SWIR) bands) and rainfall since 1

  12. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  13. Quantum well infrared photodetectors: present and future

    NASA Astrophysics Data System (ADS)

    Guériaux, Vincent; de L'Isle, Nadia Brière; Berurier, Arnaud; Huet, Odile; Manissadjian, Alain; Facoetti, Huges; Marcadet, Xavier; Carras, Mathieu; Trinité, Virginie; Nedelcu, Alexandru

    2011-06-01

    A review of the III-V Lab activities in the field of quantum well infrared photodetectors (QWIPs) is presented. We discuss the specific advantages of this type of detector and present the production facilities and status. A large section is dedicated to broadband QWIPs for space applications and to QWIPs on InP for mid-wavelength infrared detection. We review the progress of QWIP technology for the next generation (dual band, polarimetric, and multispectral) of thermal imagers. Finally, the state-of-the-art of very long wavelength QWIPs is discussed.

  14. Lattice algebra approach to multispectral analysis of ancient documents.

    PubMed

    Valdiviezo-N, Juan C; Urcid, Gonzalo

    2013-02-01

    This paper introduces a lattice algebra procedure that can be used for the multispectral analysis of historical documents and artworks. Assuming the presence of linearly mixed spectral pixels captured in a multispectral scene, the proposed method computes the scaled min- and max-lattice associative memories to determine the purest pixels that best represent the spectra of single pigments. The estimation of fractional proportions of pure spectra at each image pixel is used to build pigment abundance maps that can be used for subsequent restoration of damaged parts. Application examples include multispectral images acquired from the Archimedes Palimpsest and a Mexican pre-Hispanic codex.

  15. Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2014-02-01

    Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.

  16. Multispectral tissue characterization for intestinal anastomosis optimization

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  17. Contextual classification of multispectral image data

    NASA Technical Reports Server (NTRS)

    Tilton, J. C.; Swain, P. H.

    1981-01-01

    A general method is presented for exploiting both spatial and spectral information when classifying multispectral image data. This statistical classification algorithm utilizes the tendency of certain ground cover classes to be more likely to occur in some contexts than others. The theoretical model assumes the two-dimensional array of random observations and a 0-1 loss function, a distribution of the p-context array that is spatially invariant, and class-conditional independence for the observations. The problems that prevent the immediate use of this context classifier are the need for a generally applicable method for making adequate estimates of the context distribution and a reduction in the computational intensivity of the classifier. The former problem is being approached by a method that raises the relative frequency value for each class configuration to a power and uses the result as the context distribution estimate. The second is being approached by searching for a less computationally intensive algorithm.

  18. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  19. A program system for efficient multispectral classification

    NASA Astrophysics Data System (ADS)

    Åkersten, S. I.

    Pixelwise multispectral classification is an important tool for analyzing remotely sensed imagery data. The computing time for performing this analysis becomes significantly large when large, multilayer images are analyzed. In the classical implementation of the supervised multispectral classification assuming gaussian-shaped multidimensional class-clusters, the computing time is furthermore approximately proportional to the square of the number of image layers. This leads to very appreciable CPU-times when large numbers of multispectral channels are used and/or temporal classification is performed. In order to decrease computer time, a classification program system has been implemented which has the following characteristics: (1) a simple one-dimensional box classifier, (2) a multidimensional box classifier, (3) a class-pivotal "canonical" classifier utilizing full maximum likelihood and making full use of within-class and between-class statistical characteristics, (4) a hybrid classifier (2 and 3 combined), and (5) a local neighbourhood filtering algorithm producing generalized classification results. The heart of the classifier is the class-pivotal canonical classifier. This algorithm is based upon an idea of Dye suggesting the use of linear transformations making possible a simultaneous evaluation of a measure of the pixel being likely not to belong to the candidate class as well as computing its full maximum likelihood ratio. In case it is more likely to be misclassified the full maximum likelihood evaluation can be truncated almost immediately, i.e. the candidate class can often be rejected using only one or two of the available transformed spectral features. The result of this is a classifier with CPU-time which is empirically shown to be linearly dependent upon the number of image layers. The use of the hybrid classifier lowers the CPU-time with another factor of 3-4. Furthermore, for certain problems like classifying water-non water a single spectral band

  20. Multispectral Mapping of the Moon by Clementine

    NASA Technical Reports Server (NTRS)

    Eliason, Eric M.; McEwen, Alfred S.; Robinson, M.; Lucey, Paul G.; Duxbury, T.; Malaret, E.; Pieters, Carle; Becker, T.; Isbell, C.; Lee, E.

    1998-01-01

    One of the chief scientific objectives of the Clementine mission at the Moon was to acquire global multispectral mapping. A global digital map of the Moon in 11 spectral bandpasses and at a scale of 100 m/pixel is being produced at the U.S. Geological Survey in Flagstaff Arizona Near-global coverage was acquired with the UVVIS camera (central wavelengths of 415, 750, 900, 950, and 1000 nm) and the NIR camera (1102, 1248, 1499, 1996, 2620, and 2792 nary). We expect to complete processing of the UVVIS mosaics before the fall of 1998, and to complete the NIR mosaics a year later. The purpose of this poster is to provide an update on the processing and to show examples of the products or perhaps even a wall-sized display of color products from the UVVIS mosaics.

  1. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  2. Contextual classification of multispectral image data

    NASA Technical Reports Server (NTRS)

    Tilton, J. C.; Swain, P. H.

    1981-01-01

    A general method is presented for exploiting both spatial and spectral information when classifying multispectral image data. This statistical classification algorithm utilizes the tendency of certain ground cover classes to be more likely to occur in some contexts than others. The theoretical model assumes the two-dimensional array of random observations and a 0-1 loss function, a distribution of the p-context array that is spatially invariant, and class-conditional independence for the observations. The problems that prevent the immediate use of this context classifier are the need for a generally applicable method for making adequate estimates of the context distribution and a reduction in the computational intensivity of the classifier. The former problem is being approached by a method that raises the relative frequency value for each class configuration to a power and uses the result as the context distribution estimate. The second is being approached by searching for a less computationally intensive algorithm.

  3. Spatial frequency analysis of multispectral data.

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    1972-01-01

    This paper presents the definitions of texture dependent features which can be obtained in terms of the spatial frequencies of small sections of remotely sensed multispectral data. The features are made independent of the direction of view by defining them as symmetric functions of the spatial frequencies sensed with various viewing directions. Several textural features are defined and experimental results indicating existence of signatures in these features are presented. Preliminary experiments have been performed on the classification of 60 samples, 10 from each of the following 6 categories - grass, trees, water, staked tomatoes, treated ground tomatoes, and untreated ground tomatoes. Classifications of the training samples using only one feature at a time indicate that several of the features yield classification efficiencies higher than 65%. The efficiency increases considerably when combinations of these features are used.

  4. Analyzing High-Dimensional Multispectral Data

    NASA Technical Reports Server (NTRS)

    Lee, Chulhee; Landgrebe, David A.

    1993-01-01

    In this paper, through a series of specific examples, we illustrate some characteristics encountered in analyzing high- dimensional multispectral data. The increased importance of the second-order statistics in analyzing high-dimensional data is illustrated, as is the shortcoming of classifiers such as the minimum distance classifier which rely on first-order variations alone. We also illustrate how inaccurate estimation or first- and second-order statistics, e.g., from use of training sets which are too small, affects the performance of a classifier. Recognizing the importance of second-order statistics on the one hand, but the increased difficulty in perceiving and comprehending information present in statistics derived from high-dimensional data on the other, we propose a method to aid visualization of high-dimensional statistics using a color coding scheme.

  5. Spatial frequency analysis of multispectral data.

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    1972-01-01

    This paper presents the definitions of texture dependent features which can be obtained in terms of the spatial frequencies of small sections of remotely sensed multispectral data. The features are made independent of the direction of view by defining them as symmetric functions of the spatial frequencies sensed with various viewing directions. Several textural features are defined and experimental results indicating existence of signatures in these features are presented. Preliminary experiments have been performed on the classification of 60 samples, 10 from each of the following 6 categories - grass, trees, water, staked tomatoes, treated ground tomatoes, and untreated ground tomatoes. Classifications of the training samples using only one feature at a time indicate that several of the features yield classification efficiencies higher than 65%. The efficiency increases considerably when combinations of these features are used.

  6. Multispectral image analysis of bruise age

    NASA Astrophysics Data System (ADS)

    Sprigle, Stephen; Yi, Dingrong; Caspall, Jayme; Linden, Maureen; Kong, Linghua; Duckworth, Mark

    2007-03-01

    The detection and aging of bruises is important within clinical and forensic environments. Traditionally, visual and photographic assessment of bruise color is used to determine age, but this substantially subjective technique has been shown to be inaccurate and unreliable. The purpose of this study was to develop a technique to spectrally-age bruises using a reflective multi-spectral imaging system that minimizes the filtering and hardware requirements while achieving acceptable accuracy. This approach will then be incorporated into a handheld, point-of-care technology that is clinically-viable and affordable. Sixteen bruises from elder residents of a long term care facility were imaged over time. A multi-spectral system collected images through eleven narrow band (~10 nm FWHM) filters having center wavelengths ranging between 370-970 nm corresponding to specific skin and blood chromophores. Normalized bruise reflectance (NBR)- defined as the ratio of optical reflectance coefficient of bruised skin over that of normal skin- was calculated for all bruises at all wavelengths. The smallest mean NBR, regardless of bruise age, was found at wavelength between 555 & 577nm suggesting that contrast in bruises are from the hemoglobin, and that they linger for a long duration. A contrast metric, based on the NBR at 460nm and 650nm, was found to be sensitive to age and requires further investigation. Overall, the study identified four key wavelengths that have promise to characterize bruise age. However, the high variability across the bruises imaged in this study complicates the development of a handheld detection system until additional data is available.

  7. Multispectral filter array design without training images

    NASA Astrophysics Data System (ADS)

    Shinoda, Kazuma; Yanagi, Yudai; Hayasaki, Yoshio; Hasegawa, Madoka

    2017-08-01

    Multispectral images (MSIs) have been studied for many applications; however, limitations persist in techniques to capture them due to the complexity of assembling one or more prisms and multiple sensor arrays in order to detect signals. Inspired by the application of color filter arrays to commercial digital RGB cameras, a number of researchers have studied multispectral filter arrays (MSFAs) to solve this problem. Determining the measurement wavelength and pattern of an MSFA is important for improving the quality of the demosaicked image. Some conventional studies for designing MSFAs have used training data and have optimized the measurement wavelengths and the pattern by iteratively minimizing the error between the training data and the demosaicked images. We propose a metric to evaluate an MSFA without MSIs, and optimize the measurement wavelengths and the pattern of the MSFA by minimizing the metric. The proposed metric measures the sampling distance between filters in a spatial-spectral domain and quantifies the dispersion of the sampling points by average nearest-neighbor distance (ANND) under a given arbitrary MSFA. Since the quality of the demosaicked image is assumed to be proportional to the degree of dispersion of the sampling points in the spatial-spectral domain, we optimize the MSFA by minimizing the ANND in a nested simulated annealing process. Experimental results show that the optimized MSFA obtained using our method attained a higher peak signal-to-noise ratio (PSNR) than conventional untrained MSFAs in many cases. In addition, the performance difference between some trained MSFAs and the proposed MSFA was small. We also confirmed the validity of the proposed ANND by a comparison with the mean square error obtained from MSI datasets.

  8. Multispectral filter array design without training images

    NASA Astrophysics Data System (ADS)

    Shinoda, Kazuma; Yanagi, Yudai; Hayasaki, Yoshio; Hasegawa, Madoka

    2017-06-01

    Multispectral images (MSIs) have been studied for many applications; however, limitations persist in techniques to capture them due to the complexity of assembling one or more prisms and multiple sensor arrays in order to detect signals. Inspired by the application of color filter arrays to commercial digital RGB cameras, a number of researchers have studied multispectral filter arrays (MSFAs) to solve this problem. Determining the measurement wavelength and pattern of an MSFA is important for improving the quality of the demosaicked image. Some conventional studies for designing MSFAs have used training data and have optimized the measurement wavelengths and the pattern by iteratively minimizing the error between the training data and the demosaicked images. We propose a metric to evaluate an MSFA without MSIs, and optimize the measurement wavelengths and the pattern of the MSFA by minimizing the metric. The proposed metric measures the sampling distance between filters in a spatial-spectral domain and quantifies the dispersion of the sampling points by average nearest-neighbor distance (ANND) under a given arbitrary MSFA. Since the quality of the demosaicked image is assumed to be proportional to the degree of dispersion of the sampling points in the spatial-spectral domain, we optimize the MSFA by minimizing the ANND in a nested simulated annealing process. Experimental results show that the optimized MSFA obtained using our method attained a higher peak signal-to-noise ratio (PSNR) than conventional untrained MSFAs in many cases. In addition, the performance difference between some trained MSFAs and the proposed MSFA was small. We also confirmed the validity of the proposed ANND by a comparison with the mean square error obtained from MSI datasets.

  9. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  10. JACIE Radiometric Assessment of QuickBird Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Carver, David; Holekamp, Kara; Knowlton, Kelly; Ryan, Robert; Zanoni, Vicki; Thome, Kurtis; Aaron, David

    2004-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can place confidence in the imagery they use and can fully understand its properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Stennis Space Center (SSC) Earth Science Applications (ESA) directorate,through the Joint Agency for Commercial Imagery Evaluation (JACIE) framework, established a commercial imaging satellite radiometric calibration team consisting of two groups: 1) NASA SSC ESA, supported by South Dakota State University, and 2) the University of Arizona Remote Sensing Group. The two groups determined the absolute radiometric calibration coefficients of the Digital Globe 4-band, 2.4-m QuickBird multispectral product covering the visible through near-infrared spectral region. For a 2-year period beginning in 2002, both groups employed some variant of a reflectance-based vicarious calibration approach, which required ground-based measurements coincident with QuickBird image acquisitions and radiative transfer calculations. The groups chose several study sites throughout the United States that covered nearly the entire dynamic range of the QuickBird sensor. QuickBird at-sensor radiance values were compared with those estimated by the two independent groups to determine the QuickBird sensor's radiometric accuracy. Approximately 20 at-sensor radiance estimates were vicariously determined each year. The estimates were combined to provide a high-precision radiometric gain calibration coefficient. The results of this evaluation provide the user community with an independent assessment of the QuickBird sensor's absolute calibration and stability over the 2-year period. While the techniques and method described reflect those developed at the NASA SSC, the results of both JACIE team groups are

  11. Using remotely-sensed multispectral imagery to build age models for alluvial fan surfaces

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Mason, Philippa J.; Roda Boluda, Duna C.; Whittaker, Alexander C.; Lewis, James

    2016-04-01

    Accurate exposure age models are essential for much geomorphological field research, and generally depend on laboratory analyses such as radiocarbon, cosmogenic nuclide, or luminescence techniques. These approaches continue to revolutionise geomorphology, however they cannot be deployed remotely or in situ in the field. Therefore other methods are still needed for producing preliminary age models, performing relative dating of surfaces, or selecting sampling sites for the laboratory analyses above. With the widespread availability of detailed multispectral imagery, a promising approach is to use remotely-sensed data to discriminate surfaces with different ages. Here, we use new Landsat 8 Operational Land Imager (OLI) multispectral imagery to characterise the reflectance of 35 alluvial fan surfaces in the semi-arid Owens Valley, California. Alluvial fans are useful landforms to date, as they are widely used to study the effects of tectonics, climate and sediment transport processes on source-to-sink sedimentation. Our target fan surfaces have all been mapped in detail in the field, and have well-constrained exposure ages ranging from modern to ~ 125 ka measured using a high density of 10Be cosmogenic nuclide samples. Despite all having similar granitic compositions, the spectral properties of these surfaces vary systematically with their exposure ages. Older surfaces demonstrate a predictable shift in reflectance across the visible and short-wave infrared spectrum. Simple calculations, such as the brightness ratios of different wavelengths, generate sensitive power law relationships with exposure age that depend on post-depositional alteration processes affecting these surfaces. We investigate what these processes might be in this dryland location, and evaluate the potential for using remotely-sensed multispectral imagery for developing surface age models. The ability to remotely sense relative exposure ages has useful implications for preliminary mapping, selecting

  12. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  13. Pre-Processor for Compression of Multispectral Image Data

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron

    2006-01-01

    A computer program that preprocesses multispectral image data has been developed to provide the Mars Exploration Rover (MER) mission with a means of exploiting the additional correlation present in such data without appreciably increasing the complexity of compressing the data.

  14. Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids

    PubMed Central

    Dissing, Bjørn S.; Nielsen, Michael E.; Ersbøll, Bjarne K.; Frosch, Stina

    2011-01-01

    Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging device for quantitative analysis. The multispectral imaging device captures reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 g per g fish. A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results with a RMSEP of 0.27. For comparison a similar model were built for normal color images, which yielded a RMSEP of 0.45. The acquisition speed of the multispectral imaging system and the accuracy of the PLSR model obtained suggest this method as a promising technique for rapid in-line estimation of astaxanthin concentration in rainbow trout fillets. PMID:21573000

  15. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  16. Optimal wavelength band clustering for multispectral iris recognition.

    PubMed

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  17. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  18. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  19. Hyperspectral and multispectral imaging for evaluating food safety and quality

    USDA-ARS?s Scientific Manuscript database

    Spectral imaging technologies have been developed rapidly during the past decade. This paper presents hyperspectral and multispectral imaging technologies in the area of food safety and quality evaluation, with an introduction, demonstration, and summarization of the spectral imaging techniques avai...

  20. Retrieval of Temperature and Species Distributions from Multispectral Image Data of Surface Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Annen, K. D.; Conant, John A.; Weiland, Karen J.

    2001-01-01

    Weight, size, and power constraints severely limit the ability of researchers to fully characterize temperature and species distributions in microgravity combustion experiments. A powerful diagnostic technique, infrared imaging spectrometry, has the potential to address the need for temperature and species distribution measurements in microgravity experiments. An infrared spectrum imaged along a line-of-sight contains information on the temperature and species distribution in the imaged path. With multiple lines-of-sight and approximate knowledge of the geometry of the combustion flowfield, a three-dimensional distribution of temperature and species can be obtained from one hyperspectral image of a flame. While infrared imaging spectrometers exist for collecting hyperspectral imagery, the remaining challenge is retrieving the temperature and species information from this data. An initial version of an infrared analysis software package, called CAMEO (Combustion Analysis Model et Optimizer), has been developed for retrieving temperature and species distributions from hyperspectral imaging data of combustion flowfields. CAMEO has been applied to the analysis of multispectral imaging data of flame spread over a PMMA surface in microgravity that was acquired in the DARTFire program. In the next section of this paper, a description of CAMEO and its operation is presented, followed by the results of the analysis of microgravity flame spread data.