Science.gov

Sample records for infrared reflection-absorption spectroscopy

  1. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  2. Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films.

    PubMed

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R

    2010-04-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins, and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  3. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  4. Understanding the collapse mechanism in Langmuir monolayers through polarization modulation-infrared reflection absorption spectroscopy.

    PubMed

    Goto, Thiago Eichi; Caseli, Luciano

    2013-07-23

    The collapse of films at the air-water interface is related to a type of 2D-to-3D transition that occurs when a Langmuir monolayer is compressed beyond its stability limit. Studies on this issue are extremely important because defects in ultrathin solid films can be better understood if the molecular mechanisms related to collapse processes are elucidated. This paper explores how the changes of vibration of specific groups of lipid molecules, as revealed by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS), are affected by the monolayer collapse. Different mechanisms of collapse were studied, for those lipids that undergo constant-area collapse (such as stearic acid) and for those that undergo constant-pressure collapse (such as DPPC, DPPG, and DODAB). Lipid charges also affect the mechanism of collapse, as demonstrated for two oppositely charged lipids.

  5. Infrared reflection-absorption spectroscopy of hyperfine layers on surfaces of semiconductors and dielectrics

    NASA Astrophysics Data System (ADS)

    Gruzinov, S. N.; Tolstoy, V. P.

    1988-02-01

    Infrared reflection-absorption spectroscopy of film son surfaces of transparent or weakly absorbing semiconductor and dielectric substrates is analyzed theoretically, the purpose being to establish the conditions for maximum sensitivity of this method. The absorption factor, namely the relative change of the reflection coefficient upon formation of a film on the substrate surface, is selected as the sensitivity criterion. The analysis is based on exact relations, one for a homogeneous isotopic absorbing film between substrate and ambient medium with plane-parallel boundaries and one for a reflecting layer with the possibility of multiple reflections taken into account. Calculations have been programmed on a computer for up to 60 nm thick SiO2 films on various substrates and infrared radiation within the 8 to 11 gmm waveband. The results indicate that the dependence of the absorption factor on the radiation wavelength and on the film thickness is different with the radiation s-polarized than with the radiation p-polarized. Calculations have also yielded the dispersion of optical constants characterizing a SiO2 film. According to these results, infrared spectroscopy is most sensitive to films on substrates with a small refractive index and when done with p-polarized radiation incident at exactly or approximately the Brewster angle for a determination of their presence and their composition respectively, also when no multiple reflections occur.

  6. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  7. Adsorption on carbon nanotubes studied using polarization-modulated infrared reflection-absorption spectroscopy.

    PubMed

    Bermudez, V M

    2005-05-26

    Single-wall carbon nanotubes (SWNTs), deposited onto an Al substrate from a liquid suspension, have been cleaned by annealing in ultrahigh vacuum. The effects of exposing the sample in situ to atomic H (or D) and/or to dimethyl methylphosphonate [DMMP, (CH(3)O)(2)(CH(3))P=O] were then studied using polarization-modulated infrared reflection-absorption spectroscopy. Atomic H reacts preferentially near strained or defective regions in the nanotube wall to produce a spectrum consistent with alkane-like species (>CH(2) and -CH(3)). Only a small fraction of the >C=C< sites in the nanotube wall react with H, and there is no clear evidence for monohydride >C(H)-C(H)< species. For DMMP, data were obtained under steady-state conditions in reagent pressures in excess of half the room-temperature vapor pressure. Adsorption occurs via the P=O group with a coverage that depends on the ambient pressure. Varying the DMMP coverage by changing the pressure causes changes in the spectrum that can be related to the strength of the DMMP/SWNT interaction. Preadsorbed H is seen to have little or no effect on the subsequent adsorption of DMMP. For DMMP, the molecular features are superimposed on a broad, smoothly varying background that can be related to adsorption-induced changes in the Drude parameters characterizing the SWNT free-carrier density and scattering lifetime.

  8. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-01

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy. PMID:26458177

  9. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-01

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  10. Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using in situ infrared reflection absorption spectroscopy

    SciTech Connect

    Chaukulkar, Rohan P.; Rai, Vikrant R.; Agarwal, Sumit; Thissen, Nick F. W.

    2014-01-15

    Atomic layer deposition (ALD) is an ideal technique to deposit ultrathin, conformal, and continuous metal thin films. However, compared to the ALD of binary materials such as metal oxides and metal nitrides, the surface reaction mechanisms during metal ALD are not well understood. In this study, the authors have designed and implemented an in situ reflection-absorption infrared spectroscopy (IRAS) setup to study the surface reactions during the ALD of Cu on Al{sub 2}O{sub 3} using Cu hexafluoroacetylacetonate [Cu(hfac){sub 2}] and a remote H{sub 2} plasma. Our infrared data show that complete ligand-exchange reactions occur at a substrate temperature of 80 °C in the absence of surface hydroxyl groups. Based on infrared data and previous studies, the authors propose that Cu(hfac){sub 2} dissociatively chemisorbs on the Al{sub 2}O{sub 3} surface, where the Al-O-Al bridge acts as the surface reactive site, leading to surface O-Cu-hfac and O-Al-hfac species. Surface saturation during the Cu(hfac){sub 2} half-cycle occurs through blocking of the available chemisorption sites. In the next half-reaction cycle, H radicals from an H{sub 2} plasma completely remove these surface hfac ligands. Through this study, the authors have demonstrated the capability of in situ IRAS as a tool to study surface reactions during ALD of metals. While transmission and internal reflection infrared spectroscopy are limited to the first few ALD cycles, IRAS can be used to probe all stages of metal ALD starting from initial nucleation to the formation of a continuous film.

  11. Simultaneous infrared reflection absorption spectroscopy and quartz crystal microbalance measurements for in situ studies of the metal/atmosphere interface

    SciTech Connect

    Aastrup, T.; Leygraf, C.

    1997-09-01

    A new experimental setup for in situ studies of the metal/atmosphere interface has been developed based on simultaneous infrared reflection absorption spectroscopy (IRAS) and quartz crystal microbalance (QCM) measurements of a metal surface. It consists of an in situ chamber in which the metal can be exposed to a well-controlled atmosphere. Four external devices are connected to the in situ chamber; a Fourier transform infrared spectrometer with external optical compartments, a QCM sensor probe with a frequency counter, a corrosive air generator, and a corrosive air analyzing system. In order to demonstrate the capability of the IRAS/QCM setup, copper was exposed to purified air at 80% relative humidity and 25 C. Under these exposure conditions, the interface between copper and air consists of cuprous oxide and water physisorbed on the oxide. The kinetics of the cuprous oxide formation could be followed in situ with both techniques. The combined IRAS/QCM results show excellent agreement with previous combined IRAS and cathodic reduction measurements and with optical calculations of the IRAS response. Under these conditions, the detection limit in terms of an equivalent Cu{sub 2}O film thickness is 10 {angstrom} for IRAS in situ analysis and 2 {angstrom} for QCM in situ analysis, respectively.

  12. In situ Studies of Soft- and Reactive Landing of Mass-Selected Ions Using Infrared Reflection Absorption Spectroscopy

    SciTech Connect

    Hu, Qichi; Wang, Peng; Gassman, Paul L.; Laskin, Julia

    2009-09-01

    Grazing incidence infrared reflection absorption spectroscopy (IRRAS) for in situ and in real time characterization of substrates modified by soft- and reactive landing (SL and RL) of complex ions was implemented on a mass-selected ion deposition instrument. Ions produced by electrospray ionization were mass-selected using a quadrupole mass filter and deposited onto inert and reactive self-assembled monolayer (SAM) surfaces. Surface composition during and after ion deposition was monitored using IRRAS. Physisorption of a cyclic peptide, Garmicidin S (GS), was studied for 8 hrs during deposition and additional 12 hrs after the end of deposition. The integrated signal of the characteristic amide bands followed a linear increase during the deposition and stayed unchanged after the deposition was finished. Similar linear increase in IRRAS signal was obtained following reactive deposition of the protonated dodecanediamine onto SAMs of dithiobis (succinimidyl undecanoate) (NHS-SAM) and 16-mercaptohexadecanoic acid fluoride (COF-SAM) on gold. IRRAS allowed us to monitor for the first time the formation of the amide bond between reactive SAM surfaces and the projectile molecule.

  13. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Brand, Izabella; Habecker, Florian; Ahlers, Michael; Klüner, Thorsten

    2015-03-01

    The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690 cm-1) the Cdbnd O stretching modes at unhydrated groups, (ii) (1655-1673 cm-1) the Cdbnd O stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640 cm-1) the Cdbnd O stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c < 50 μg ml-1) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c ⩾ 50 μg ml-1) collagen multilayers are formed. The amide I mode is blue-shifted by 18 cm-1, indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed.

  14. A new experimental setup for in situ infrared reflection absorption spectroscopy studies of atmospheric corrosion on metal surfaces considering the influence of ultraviolet light.

    PubMed

    Wiesinger, R; Kleber, Ch; Frank, J; Schreiner, M

    2009-04-01

    The knowledge available regarding the influence of ultraviolet (UV) light on the atmospheric corrosion of materials is very rudimentary. Therefore, a new experimental setup consisting of a cell for studying in situ reactions occurring at the metal/atmosphere interface by simultaneously applying infrared reflection absorption spectroscopy (IRRAS) and quartz crystal microbalance (QCM) measurements was designed and built. The cell presented consists of an acrylic glass body with a UV-light-transparent window mounted in such a way that the sample can be irradiated and weathered under controlled atmospheric conditions under a grazing angle of incidence of the IR beam. This new setup was tested by using a specimen of polycrystalline silver, where the growth of Ag(2)CO(3) and AgOH as basic silver carbonate on the surface could be observed. The weathering tests were carried out in synthetic air containing 90% relative humidity (RH) and 250 ppm CO(2), with and without UV light. The results obtained from the IRRAS spectra could be perfectly correlated with the in situ QCM data.

  15. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    SciTech Connect

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-15

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  16. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes.

    PubMed

    Wiesinger, R; Schade, U; Kleber, Ch; Schreiner, M

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  17. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    NASA Astrophysics Data System (ADS)

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  18. Determination of chain orientation in the monolayers of amino-acid-derived schiff base at the air-water interface using in situ infrared reflection absorption spectroscopy.

    PubMed

    Liu, Huijin; Miao, Wangen; Du, Xuezhong

    2007-10-23

    The chain orientation in the monolayers of amino-acid-derived Schiff base, 4-(4-dodecyloxy)-2-hydroxybenzylideneamino)benzoic acid (DSA), at the air-water interface has been determined using infrared reflection absorption spectroscopy (IRRAS). On pure water, a condensed monolayer is formed with the long axes of Schiff base segments almost perpendicular to the water surface. In the presence of metal ions (Ca2+, Co2+, Zn2+, Ni2+, and Cu2+) in the subphase, the monolayer is expanded and the long axes of the Schiff base segments are inclined with respect to the monolayer normal depending on metal ion. The monolayer thickness, which is an important parameter for quantitative determination of orientation of hydrocarbon chains, is composed of alkyl chains and salicylideneaniline portions for the DSA monolayers. The effective thickness of the Schiff base portions is roughly estimated in the combination of the IRRAS results and surface pressure-area isotherms for computer simulation, since the only two observable p- and s-polarized reflectance-absorbance (RA) values can be obtained. The alkyl chains with almost all-trans conformations are oriented at an angle of about 10 degrees for H2O, 15 degrees for Ca2+, 30 degrees for Co2+, 35 degrees -40 degrees for Zn2+, and 35 degrees -40 degrees for Ni2+ with respect to the monolayer normal. The chain segments linked with gauche conformers in the case of Cu2+ are estimated to be 40 degrees -50 degrees away from the normal. PMID:17902721

  19. Adsorption of formic acid on rutile TiO{sub 2} (110) revisited: An infrared reflection-absorption spectroscopy and density functional theory study

    SciTech Connect

    Mattsson, A.; Österlund, L.; Hu, Shuanglin Hermansson, K.

    2014-01-21

    Formic acid (HCOOH) adsorption on rutile TiO{sub 2} (110) has been studied by s- and p-polarized infrared reflection-absorption spectroscopy (IRRAS) and spin-polarized density functional theory together with Hubbard U contributions (DFT+U) calculations. To compare with IRRAS spectra, the results from the DFT+U calculations were used to simulate IR spectra by employing a three-layer model, where the adsorbate layer was modelled using Lorentz oscillators with calculated dielectric constants. To account for the experimental observations, four possible formate adsorption geometries were calculated, describing both the perfect (110) surface, and surfaces with defects; either O vacancies or hydroxyls. The majority species seen in IRRAS was confirmed to be the bridging bidentate formate species with associated symmetric and asymmetric frequencies of the ν(OCO) modes measured to be at 1359 cm{sup −1} and 1534 cm{sup −1}, respectively. The in-plane δ(C–H) wagging mode of this species couples to both the tangential and the normal component of the incident p-polarized light, which results in absorption and emission bands at 1374 cm{sup −1} and 1388 cm{sup −1}. IRRAS spectra measured on surfaces prepared to be either reduced, stoichiometric, or to contain surplus O adatoms, were found to be very similar. By comparisons with computed spectra, it is proposed that in our experiments, formate binds as a minority species to an in-plane Ti{sub 5c} atom and a hydroxyl, rather than to O vacancy sites, the latter to a large extent being healed even at our UHV conditions. Excellent agreement between calculated and experimental IRRAS spectra is obtained. The results emphasize the importance of protonation and reactive surface hydroxyls – even under UHV conditions – as reactive sites in e.g., catalytic applications.

  20. Adsorption of isophorone and trimethyl-cyclohexanone on Pd(111): A combination of infrared reflection absorption spectroscopy and density functional theory studies

    NASA Astrophysics Data System (ADS)

    Dostert, Karl-Heinz; O'Brien, Casey P.; Liu, Wei; Riedel, Wiebke; Savara, Aditya; Tkatchenko, Alexandre; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-08-01

    Understanding the interaction of α,β-unsaturated carbonyl compounds with late transition metals is a key prerequisite for rational design of new catalysts with desired selectivity towards C = C or C = O bond hydrogenation. The interaction of the α,β-unsaturated ketone isophorone and the saturated ketone TMCH (3,3,5-trimethylcyclohexanone) with Pd(111) was investigated in this study as a prototypical system. Infrared reflection-absorption spectroscopy (IRAS) and density functional theory calculations including van der Waals interactions (DFT + vdWsurf) were combined to form detailed assignments of IR vibrational modes in the range from 3000 cm- 1 to 1000 cm- 1 in order to obtain information on the binding of isophorone and TMCH to Pd(111) as well as to study the effect of co-adsorbed hydrogen. IRAS measurements were performed with deuterium-labeled (d5-) isophorone, in addition to unlabeled isophorone and unlabeled TMCH. Experimentally observed IR absorption features and calculated vibrational frequencies indicate that isophorone and TMCH molecules in multilayers have a mostly unperturbed structure with random orientation. At sub-monolayer coverages, strong perturbation and preferred orientations of the adsorbates were found. At low coverage, isophorone interacts strongly with Pd(111) and adsorbs in a flat-lying geometry with the C = C and C = O bonds parallel, and a CH3 group perpendicular, to the surface. At intermediate sub-monolayer coverage, the C = C bond is strongly tilted, while the C = O bond remains flat-lying, which indicates a prominent perturbation of the conjugated π system. Pre-adsorbed hydrogen leads to significant changes in the adsorption geometry of isophorone, which suggests a weakening of its binding to Pd(111). At low coverage, the structure of the CH3 groups seems to be mostly unperturbed on the hydrogen pre-covered surface. With increasing coverage, a conservation of the in-plane geometry of the conjugated π system was observed in the

  1. Comparison of molecular orientation and phase transition behaviors in the two kinds of ordered ultrathin films of reversed duckweed polymer ES-3 studied by infrared grazing reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Xu, Weiqing; Zhao, Bing

    2003-03-01

    A multilayer LB film and a casting film of reversed duckweed polymer ES-3 on Au-evaporated glass slides were investigated by Fourier Transform infrared grazing reflection-absorption spectroscopy. It is found that the two kinds of ordered ultrathin films have different orientation of alkyl chains, nearly perpendicular to the substrate surface for the LB film while rather tilted for the casting film. The studies on their thermal transition behaviors indicate that both of the films have three phase transition processes, respectively, occurring near 65, 105 and 140 °C for the former while near 80, 105 and 140 °C for the latter, but show different transition behavior in the each corresponding transition process. It is referred that at room temperature there are island-like domain structures formed in the LB film, but no ones in the casting film; however, the latter can form the domain structures between the first two transition points due to the desorption of solvents. The formation of domain structure seems to play two important roles, one of which is to make alkyl chains more perpendicular to the substrate surface, and the other to make alkyl chains more packed closely. Thermal cyclic experiments reveal that neither of the films could return to its original state after thermal cyclic treatment up to the temperature, which is above the third transition point, although its alkyl chain becomes highly ordered again.

  2. Thickness Dependence of Infrared Reflection Absorption in Vacuum-Deposited Thin Film of Polyvinylidene Fluoride

    NASA Astrophysics Data System (ADS)

    Maki, Kunisuke; Terashima, Hidenobu; Kikuma, Kazuhiro

    1990-06-01

    Reflection absorption intensities for p-polarized infrared rays are shown as a function of thickness (d) of vacuum-deposited films of polyvinylidene fluoride (PVDF), which were deposited on Ag-covered mica substrates held at 25°C. Each absorption due to α-type polycrystalline film at 1412, 1215, 1185, 1150, 1070, 875 and 615 cm-1 increases linearly with increasing d. Some structural relaxation during the growth of PVDF film is discussed for interpretation of the result that absorption at 1215, 1185 and 875 cm-1 is not observed and the peak height at 882 cm-1 is seen clearly for films at d<15 nm.

  3. UV-Vis Reflection-Absorption Spectroscopy at air-liquid interfaces.

    PubMed

    Rubia-Payá, Carlos; de Miguel, Gustavo; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-11-01

    UV-Visible Reflection-Absorption Spectroscopy (UVRAS) technique is reviewed with a general perspective on fundamental and applications. UVRAS is formally identical to IR Reflection-Absorption Spectroscopy (IRRAS), and therefore, the methodology developed for this IR technique can be applied in the UV-visible region. UVRAS can be applied to air-solid, air-liquid or liquid-liquid interfaces. This review focuses on the use of UVRAS for studying Langmuir monolayers. We introduce the theoretical framework for a successful understanding of the UVRAS data, and we illustrate the usage of this data treatment to a previous study from our group comprising an amphiphilic porphyrin. For ultrathin films with a thickness of few nm, UVRAS produces positive or negative bands when p-polarized radiation is used, depending on the incidence angle and the orientation of dipole absorption. UVRAS technique provides highly valuable information on tilt of chromophores at the air-liquid interface, and moreover allows the determination of optical parameters. We propose UVRAS as a powerful technique to investigate the in situ optical properties of Langmuir monolayers. PMID:26385430

  4. Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wehling, Randy L.

    Infrared (IR) spectroscopy refers to measurement of the absorption of different frequencies of IR radiation by foods or other solids, liquids, or gases. IR spectroscopy began in 1800 with an experiment by Herschel. When he used a prism to create a spectrum from white light and placed a thermometer at a point just beyond the red region of the spectrum, he noted an increase in temperature. This was the first observation of the effects of IR radiation. By the 1940s, IR spectroscopy had become an important tool used by chemists to identify functional groups in organic compounds. In the 1970s, commercial near-IR reflectance instruments were introduced that provided rapid quantitative determinations of moisture, protein, and fat in cereal grains and other foods. Today, IR spectroscopy is used widely in the food industry for both qualitative and quantitative analysis of ingredients and finished foods.

  5. Monolayers of long-chain alcohols, fatty acids, and fatty acid esters at the air/water interface: a comparison by external infrared reflection-absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Gericke, Arne; Huehnerfuss, Heinrich

    1994-01-01

    The properties of C15, C16, C18 and C20-alcohols, fatty acids and fatty acid esters are investigated by external infrared reflection-absorption spectrometry in the range 3000 - 1000 cm-1. Analysis of the methylene stretching vibration shows that an increasing space requirement of the hydrophilic headgroup (fatty acid ester > fatty acid >= alcohol) for the same chain length leads to higher chain disorder (i.e., more gauche conformers). However, for a given headgroup the prolongation of the alkyl-chain generally results in an increased hydrophobic interaction and thus in a higher chain-order, i.e., the molecules attain a more transconformation.

  6. Fourier transform infrared spectroscopy

    SciTech Connect

    Ferraro, J.R.; Basile, L.J.

    1985-01-01

    The final and largest volume to complete this four-volume treatise is published in response to the intense commercial and research interest in Fourier Transform Interferometry. Volume 4 introduces new information on, for example, applications of Diffuse Reflectance Spectroscopy in the Far-infrared Region. The editors place emphasis on surface studies and address advances in Capillary Gas Chromatography-Fourier Transform Interferometry.

  7. An Introductory Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H.

    1995-01-01

    Describes a project designed to introduce infrared spectroscopy as a structure-determination technique. Students are introduced to infrared spectroscopy fundamentals then try to determine the identity of an unknown liquid from its infrared spectrum and molecular weight. The project demonstrates that only rarely can the identity of even simple…

  8. Transient infrared transmission spectroscopy

    SciTech Connect

    Jones, R.W.; McClelland, J.F. )

    1990-10-15

    Transient infrared transmission spectroscopy is a new method that can acquire analytically useful transmission spectra from moving, optically thick solids. No sample preparation is required. The spectra are of sufficient quality for accurate quantitative compositional analysis. The method works by the creation of a thin, short-lived, chilled layer at the sample surface. Blackbody-like thermal emission from the bulk of the sample is selectively absorbed as it passes through the chilled layer, so the transmission spectrum of the layer is superimposed on the observed thermal emission. Spectra of polycarbonate, beeswax, and copolymers of methyl and butyl methacrylate are presented. Compositional analysis of the methacrylate copolymers with a standard error or prediction of only 0.87 mol % is demonstrated.

  9. Transient infrared transmission spectroscopy.

    PubMed

    Jones, R W; McClelland, J F

    1990-10-15

    Transient infrared transmission spectroscopy is a new method that can acquire analytically useful transmission spectra from moving, optically thick solids. No sample preparation is required. The spectra are of sufficient quality for accurate quantitative compositional analysis. The method works by the creation of a thin, short-lived, chilled layer at the sample surface. Blackbody-like thermal emission from the bulk of the sample is selectively absorbed as it passes through the chilled layer, so the transmission spectrum of the layer is superimposed on the observed thermal emission. Spectra of polycarbonate, beeswax, and copolymers of methyl and butyl methacrylate are presented. Compositional analysis of the methacrylate copolymers with a standard error of prediction of only 0.87 mol % is demonstrated.

  10. Infrared heterodyne spectroscopy in astronomy

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1980-01-01

    A heterodyne spectrometer was constructed and applied to problems in infrared astronomical spectroscopy. The instrument offers distinct observational advantages for the detection and analysis of individual spectral lines at Doppler-limited resolution. Observations of carbon dioxide in planetary atmospheres and ammonia in circumstellar environments demonstrate the substantial role that infrared heterodyne techniques will play in the astronomical spectroscopy of the future.

  11. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  12. Infrared Spectroscopy of Deuterated Compounds.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment (based on the potassium bromide pressed-pellet method) involving the infrared spectroscopy of deuterated compounds. Deuteration refers to deuterium-hydrogen exchange at active hydrogen sites in the molecule. (JN)

  13. A Quantitative Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Krahling, Mark D.; Eliason, Robert

    1985-01-01

    Although infrared spectroscopy is used primarily for qualitative identifications, it is possible to use it as a quantitative tool as well. The use of a standard curve to determine percent methanol in a 2,2,2-trifluoroethanol sample is described. Background information, experimental procedures, and results obtained are provided. (JN)

  14. INSTRUMENTATION FOR FAR INFRARED SPECTROSCOPY.

    SciTech Connect

    GRIFFITHS, P.R.; HOMES, C.

    2001-05-04

    Fourier transform spectrometers developed in three distinct spectral regions in the early 1960s. Pierre Connes and his coworkers in France developed remarkably sophisticated step-scan interferometers that permitted near-infrared spectra to be measured with a resolution of better than 0.0 1 cm{sup {minus}1}. These instruments may be considered the forerunners of the step-scan interferometers made by Bruker, Bio-Rad (Cambridge, MA, USA) and Nicolet although their principal application was in the field of astronomy. Low-resolution rapid-scanning interferometers were developed by Larry Mertz and his colleagues at Block Engineering (Cambridge, MA, USA) for remote sensing. Nonetheless, the FT-IR spectrometers that are so prevalent in chemical laboratories today are direct descendants of these instruments. The interferometers that were developed for far-infrared spectrometry in Gebbie's laboratory ,have had no commercial counterparts for at least 15 years. However, it could be argued that these instruments did as much to demonstrate the power of Fourier transform spectroscopy to the chemical community as any of the instruments developed for mid- and near-infrared spectrometry. Their performance was every bit as good as today's rapid-scanning interferometers. However, the market for these instruments is so small today that it has proved more lucrative to modify rapid-scanning interferometers that were originally designed for mid-infrared spectrometry than to compete with these instruments with slow continuous scan or step-scan interferometers.

  15. Isotope-edited infrared spectroscopy.

    PubMed

    Buchner, Ginka S; Kubelka, Jan

    2012-01-01

    Isotope-edited infrared (IR) spectroscopy is a powerful tool for studying structural and dynamical properties of peptides and proteins with site-specific resolution. Labeling of selected amide carbonyls with (13)C results in detectable sidebands of amide I' vibrations, which provide information about local conformation and/or solvent exposure without structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions is achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of (13)C isotopically edited protein samples, experimental IR spectroscopic measurements, and analysis of the site-specific structural changes from the thermal unfolding IR data.

  16. Infrared spectroscopy in biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Artioushenko, Vjacheslav G.; Golovkina, Viktoriya N.

    1998-01-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of amino acid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  17. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  18. Identification of residues by infrared spectroscopy

    SciTech Connect

    Barber, T.E.; Ayala, N.L.; Jin, Hong; Drumheller, C.T.

    1997-12-31

    Mid-infrared spectroscopy of surfaces can be a very powerful technique for the qualitative and quantitative analysis of surface residues. The goal of this work was to study the application of diffuse reflectance mid-infrared spectroscopy to the identification of pesticide, herbicide, and explosive residues on surfaces. A field portable diffuse reflectance spectrometer was used to collect the mid-infrared spectra of clean surfaces and contaminated surfaces. These spectra were used as calibration sets to develop automated data analysis to classify or to identify residues on samples. In this presentation, the instrumentation and data process algorithms will be discussed.

  19. Remote sensing by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Mumma, M. J.

    1983-01-01

    The use of infrared heterodyne spectrocopy for the study of planetary atmospheres is discussed. Infrared heterodyne spectroscopy provides a convenient and sensitive method for measuring the true intensity profiles of atmospheric spectral lines. Application of radiative transfer theory to measured lineshapes can then permit the study of molecular abundances, temperatures, total pressures, excitation conditions, and dynamics of the regions of line formation. The theory of formation of atmospheric spectral lines and the retrieval of the information contained in these molecular lines is illustrated. Notable successes of such retrievals from infrared heterodyne measurements on Venus, Mars, Jupiter and the Earth are given. A discussion of developments in infrared heterodyne technology is also presented.

  20. [Infrared spectroscopy based on quantum cascade lasers].

    PubMed

    Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing

    2013-04-01

    Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.

  1. Flap monitoring using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Keller, Alex; Wright, Leigh P.; Elmandjra, Mohamed; Mao, Jian-min

    2006-02-01

    We report results of clinical trials on flap monitoring in 65 plastic surgeries. Hemoglobin oxygen saturation of flap tissue (StO II) was monitored non-invasively by using ODISsey TM tissue oximeter, an infrared spectroscopic device. StO II measurements were conducted both intra-operatively and post-operatively. From the intra-operative measurements, we observed that StO II values dropped when the main blood vessels supplying the flap were clamped in surgery, and that StO II jumped after anastomosis to a value close to its pre-operative value. From post-operative monitoring measurements for the 65 flap cases, each lasted two days or so, we found that the StO II values approach to a level close to the baseline if the surgery was successful, and that the StO II value dropped to a value below 30% if there is a perfusion compromise, such as vascular thrombosis.

  2. Infrared spectroscopy of ionic clusters

    SciTech Connect

    Price, J.M. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  3. Blood glucose measurement by infrared spectroscopy.

    PubMed

    Zeller, H; Novak, P; Landgraf, R

    1989-02-01

    For the development of an implantable artificial endocrine pancreas, a sensor for blood glucose measurement is needed providing a long-term stability. This goal can be achieved by the application of infrared spectroscopy which, unlike electrochemical sensors, responds directly to the glucose molecule. An investigation under physiological conditions revealed five glucose absorption bands in the near and middle infrared range. These are 1040, 1085, 1109, 1160 and 1365 cm-1. Only the 1040 cm-1 frequency coincides with none of the other infrared-active blood substances like proteins, lipids and urea. Nevertheless, the other absorption bands too, especially the 1109 cm-1 frequency, can be used for blood glucose measurement, if the superimposed absorptions are compensated. Methods for the compensation have been found. Technically feasible embodiments of an infrared glucose sensor are described.

  4. Explosive detection using infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Hildenbrand, J.; Herbst, J.; Wöllenstein, J.; Lambrecht, A.

    2009-01-01

    Stand-off and extractive explosive detection methods for short distances are investigated using mid-infrared laser spectroscopy. A quantum cascade laser (QCL) system for TATP-detection by open path absorption spectroscopy in the gas phase was developed. In laboratory measurements a detection limit of 5 ppm*m was achieved. For explosives with lower vapor pressure an extractive hollow fiber based measurement system was investigated. By thermal desorption gaseous TATP or TNT is introduced into a heated fiber. The small sample volume and a fast gas exchange rate enable fast detection. TNT and TATP detection levels below 100 ng are feasible even in samples with a realistic contaminant background.

  5. Mid infrared emission spectroscopy of carbon plasma.

    PubMed

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  6. Mid infrared emission spectroscopy of carbon plasma.

    PubMed

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results. PMID:27428600

  7. Time resolved spectroscopy using synchrotron infrared pulses

    SciTech Connect

    Carr, G.L.; Lobo, R.P.S.M. |; Hirschmugl, C.J.; LaVeigne, J.; Reitze, D.H.; Tanner, D.B.

    1997-09-01

    Electron synchrotron storage rings, such as the VUV ring at the National Synchrotron Light Source (NSLS), produce short pulses of infrared (IR) radiation suitable for investigating the time-dependent phenomena in a variety of interesting experimental systems. In contrast to other pulses sources of IR, the synchrotron produces a continuum spectral output over the entire IR (and beyond), though at power levels typically below those obtained from laser systems. The infrared synchrotron radiation (IRSR) source is therefore well-suited as a probe using standard FTIR spectroscopic techniques. Here the authors describe the pump-probe spectroscopy facility being established at the NSLS and demonstrate the technique by measuring the photocarrier decay in a semiconductor.

  8. Drill hole logging with infrared spectroscopy

    USGS Publications Warehouse

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  9. Infrared Spectroscopy of Anhydrous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Flynn, G. J.

    2003-01-01

    Infrared (IR) spectroscopy is the primary means of mineralogical analysis of materials outside our solar system. The identity and properties of circumstellar grains are inferred from spectral comparisons between astronomical observations and laboratory data from natural and synthetic materials. These comparisons have been facilitated by the Infrared Space Observatory (ISO), which obtained IR spectra from numerous astrophysical objects over a wide spectral range (out to 50/cm) where crystalline silicates and other phases have distinct features. The anhydrous interplanetary dust particles (IDPs) are particularly important comparison materials because some IDPs contain carbonaceous material with non-solar D/H and N-15/N-14 ratios and amorphous and crystalline silicates with non-solar 0- isotopic ratios, demonstrating that these IDPs contain preserved interstellar material. Here, we report on micro- Fourier transform (FT) IR spectrometry of IDPs, focusing on the inorganic components of primitive IDPs (FTIR spectra from the organic/carbonacecous materials in IDPs are described elsewhere).

  10. Fourier transform infrared spectroscopy for Mars science

    NASA Astrophysics Data System (ADS)

    Anderson, Mark S.; Andringa, Jason M.; Carlson, Robert W.; Conrad, Pamela; Hartford, Wayne; Shafer, Michael; Soto, Alejandro; Tsapin, Alexandre I.; Dybwad, Jens Peter; Wadsworth, Winthrop; Hand, Kevin

    2005-03-01

    Presented here is a Fourier transform infrared spectrometer (FTIR) for field studies that serves as a prototype for future Mars science applications. Infrared spectroscopy provides chemical information that is relevant to a number of Mars science questions. This includes mineralogical analysis, nitrogen compound recognition, truth testing of remote sensing measurements, and the ability to detect organic compounds. The challenges and scientific opportunities are given for the in situ FTIR analysis of Mars soil and rock samples. Various FTIR sampling techniques are assessed and compared to other analytical instrumentation. The prototype instrument presented is capable of providing field analysis in a Mars analog Antarctic environment. FTIR analysis of endolithic microbial communities in Antarctic rocks and a Mars meteor are given as analytical examples.

  11. Detection of Endolithes Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumas, S.; Dutil, Y.; Joncas, G.

    2009-12-01

    On Earth, the Dry Valleys of Antarctica provide the closest martian-like environment for the study of extremophiles. Colonies of bacterias are protected from the freezing temperatures, the drought and UV light. They represent almost half of the biomass of those regions. Due to their resilience, endolithes are one possible model of martian biota. We propose to use infrared spectroscopy to remotely detect those colonies even if there is no obvious sign of their presence. This remote sensing approach reduces the risk of contamination or damage to the samples.

  12. Infrared spectroscopy study of irradiated PVDF

    SciTech Connect

    Chappa, Veronica; Grosso, Mariela del; Garcia Bermudez, Gerardo; Behar, Moni

    2007-10-26

    The effects induced by 1 MeV/amu ion irradiations were compared to those induced by 4-12 MeV/amu irradiations. Structural analysis with infrared spectroscopy (FTIR) was carried out on PVDF irradiated using C and He beams with different fluences. From these spectra it was observed, as a function of fluence, an overall destruction of the polymer, amorphization of the crystalline regions and the creation of in-chain unsaturations. The track dimensions were determined using a previously developed Monte Carlo simulation code and these results were compared to a semiempirical model.

  13. Near-infrared spectroscopy for plaque characterization.

    PubMed

    Waxman, Sergio

    2008-12-01

    A near-infrared (NIR) spectroscopy catheter-based system has been developed for intracoronary detection of lipid-rich plaques, capable of scanning an artery through blood and during cardiac motion. The lipid-rich plaque chemometric algorithm was validated in an ex vivo study using coronary artery specimens from autopsy hearts. A parallel clinical study was performed to demonstrate safety of the system in patients and the similarity of spectra acquired in vivo to data from the ex vivo study. Proof of spectral similarity between data obtained in patients and data from autopsy specimens is required to demonstrate the applicability of the algorithm to patients, in whom tissue for analysis is not available. A preliminary analysis in an unblinded cohort of patients from the clinical study reported promising results. The final results of the clinical study will be submitted for publication. The potential clinical value of this NIR spectroscopy device is discussed.

  14. Infrared microcalorimetric spectroscopy using quantum cascade lasers

    SciTech Connect

    Morales Rodriguez, Marissa E; Senesac, Larry R; Rajic, Slobodan; Lavrik, Nickolay V; Smith, Barton; Datskos, Panos G

    2013-01-01

    We have investigated an infrared (IR) microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules absorbed on the surface of uncooled thermal micromechanical detectors. IR microcalorimetric spectroscopy requires no chemical specific coatings and the chemical specificity of the presented method is a consequence of the wavelength-specific absorption of IR photons from tunable quantum cascade lasers due to vibrational spectral bands of the analyte. We have obtained IR photothermal spectra for trace concentrations of RDX and a monolayer of 2-mercaptoethanol, over the wavelength region from 6 to 10 m. We found that in this wavelength region both chemicals exhibit a number of photothermal absorption features that are in good agreement with their respective IR spectra.

  15. Disease recognition by infrared and Raman spectroscopy.

    PubMed

    Krafft, Christoph; Steiner, Gerald; Beleites, Claudia; Salzer, Reiner

    2009-02-01

    Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with microscopy, lateral information and fiber-optic probes. A crucial step is the classification of spectral data by a variety of algorithms. We discuss unsupervised algorithms such as cluster analysis or principal component analysis and supervised algorithms such as linear discriminant analysis, soft independent modeling of class analogies, artificial neural networks support vector machines, Bayesian classification, partial least-squares regression and ensemble methods. The selected topics include tumors of epithelial tissue, brain tumors, prion diseases, bone diseases, atherosclerosis, kidney stones and gallstones, skin tumors, diabetes and osteoarthritis.

  16. Infrared spectroscopy of mass-selected carbocations

    SciTech Connect

    Duncan, Michael A.

    2015-01-22

    Small carbocations are of longstanding interest in astrophysics, but there are few measurements of their infrared spectroscopy in the gas phase at low temperature. There are fewer-still measurements of spectra across the full range of IR frequencies useful to obtain an IR signature of these ions to detect them in space. We have developed a pulsed-discharge supersonic nozzle ion source producing high densities of small carbocations at low temperatures (50–70K). We employ mass-selected photodissociation spectroscopy and the method of rare gas “tagging”, together with new broadly tunable infrared OPO lasers, to obtain IR spectra for a variety of small carbocations including C{sub 2}H{sub 3}{sup +}, C{sub 3}H{sub 3}{sup +}, C{sub 3}H{sub 5}{sup +}, protonated benzene and protonated naphthalene. Spectra in the frequency range of 600–4500 cm{sup −1} provide new IR data for these ions and evidence for the presence of co-existing isomeric structures (e.g., C{sub 3}H{sub 3}{sup +} is present as both cyclopropenyl and propargyl). Protonated naphthalene has sharp bands at 6.2, 7.7 and 8.6 microns matching prominent features in the UIR spectra.

  17. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2003-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. Any sample material that will interact with infrared light produces a spectrum and, although normally associated with organic materials, inorganic compounds may also be infrared active. The technique is rapid, reproducible and usually non-invasive to the sample. That it is non-invasive allows for additional characterization of the original material using other analytical techniques including thermal analysis and RAMAN spectroscopic techniques. With the appropriate accessories, the technique can be used to examine samples in liquid, solid or gas phase. Both aqueous and non-aqueous free-flowing solutions can be analyzed, as can viscous liquids such as heavy oils and greases. Solid samples of varying sizes and shapes may also be examined and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be analyzed. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  18. [Application of infrared spectroscopy technique to discrimination of alcoholic beverages].

    PubMed

    Niu, Xiao-Ying; Ying, Yi-Bin; Yu, Hai-Yan; Xie, Li-Juan; Fu, Xia-Ping

    2008-04-01

    Infrared spectroscopy technique is a rapid for the discrimination of food samples, and is widely used to detect and discriminate various beverages. This paper presents the advantages and disadvantages of techniques that have been used to discriminate alcoholic beverages, and the discriminating procedure with infrared spectroscopy technique. Applications of infrared spectroscopy technique to wine, whiskey, Japanese sake and Chinese rice wine etc. is presented too. Finally, problems in applications are analyzed, and the application of infrared spectroscopy technique to the discrimination of our traditional alcoholic beverages is prospected. PMID:18619303

  19. Triggered infrared spectroscopy for investigating metalloprotein chemistry.

    PubMed

    Vincent, Kylie A

    2010-08-13

    Recent developments in infrared (IR) spectroscopic time resolution, sensitivity and sample manipulation make this technique a powerful addition to the suite of complementary approaches for the study of time-resolved chemistry at metal centres within proteins. Application of IR spectroscopy to proteins has often targeted the amide bands as probes for gross structural change. This article focuses on the possibilities arising from recent IR technical developments for studies that monitor localized vibrational oscillators in proteins--native or exogenous ligands such as NO, CO, SCN(-) or CN(-), or genetically or chemically introduced probes with IR-active vibrations. These report on the electronic and coordination state of metals, the kinetics, intermediates and reaction pathways of ligand release, hydrogen-bonding interactions between the protein and IR probe, and the electrostatic character of sites in a protein. Metalloprotein reactions can be triggered by light/dark transitions, an electrochemical step, a change in solute composition or equilibration with a new gas atmosphere, and spectra can be obtained over a range of time domains as far as the sub-picosecond level. We can expect to see IR spectroscopy exploited, alongside other spectroscopies, and crystallography, to elucidate reactions of a wide range of metalloprotein chemistry with relevance to cell metabolism, health and energy catalysis.

  20. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    NASA Technical Reports Server (NTRS)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  1. Surface Inspection using fourier transform infrared spectroscopy

    SciTech Connect

    Powell, G.L.; Smyrl, N.R.; Williams, D.M.; Meyers, H.M. III; Barber, T.E.; Marrero-Rivera, M.

    1994-08-08

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces. Detection limits under the best of conditions are in the subnanometer range (i.e., near absolute cleanliness), excellent performance is obtained in the submicrometer range, and useful performance may exist for films tens of microns thick. Identifying and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and gritblasted 7075 aluminum alloy and D6AC steel are described. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques for quantitatively applying oils to metals, subsequently verifying the application, and nonlinear relationships between reflectance and the quantity of oil are discussed.

  2. Buccal microbiology analyzed by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    de Abreu, Geraldo Magno Alves; da Silva, Gislene Rodrigues; Khouri, Sônia; Favero, Priscila Pereira; Raniero, Leandro; Martin, Airton Abrahão

    2012-01-01

    Rapid microbiological identification and characterization are very important in dentistry and medicine. In addition to dental diseases, pathogens are directly linked to cases of endocarditis, premature delivery, low birth weight, and loss of organ transplants. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze oral pathogens Aggregatibacter actinomycetemcomitans ATCC 29523, Aggregatibacter actinomycetemcomitans-JP2, and Aggregatibacter actinomycetemcomitans which was clinically isolated from the human blood-CI. Significant spectra differences were found among each organism allowing the identification and characterization of each bacterial species. Vibrational modes in the regions of 3500-2800 cm-1, the 1484-1420 cm-1, and 1000-750 cm-1 were used in this differentiation. The identification and classification of each strain were performed by cluster analysis achieving 100% separation of strains. This study demonstrated that FTIR can be used to decrease the identification time, compared to the traditional methods, of fastidious buccal microorganisms associated with the etiology of the manifestation of periodontitis.

  3. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    PubMed

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications.

  4. Infrared Spectroscopy of Carbonates and Martian Exobiology

    NASA Astrophysics Data System (ADS)

    Blanco, Armando; Delia, Marcella; Fonti, Sergio; Licchelli, Domenico; Marzo, Giuseppe A.; Orofino, Vincenzo

    Searching for traces of extinct and/or extant life on the surface of Mars is one of the major objectives for remote-sensing and in-situ exploration of the planet. In a recent paper we have studied the infrared (IR) spectral modifications induced by thermal processing on differently preserved carbonate fossils, in order to discriminate them from their abiotic counterparts. The main conclusion of the study has been that terrestrial fossils after a billion years are so altered that it becomes impossible to trace their biotic origin. Since it is reasonable to assume that the putative Martian fossils should be at least 3.5 billions years old, this would imply that our spectroscopic method could not be able to detect them, if their degradation rate were the same as that we have found in usual conditions for the terrestrial fossils. However, due to the different climate evolution of the two planets, there is the possibility of having two different degradation rates, much lower for Mars than for Earth. In this work we show that our method is quite effective for fossils collected in protective layers of clays and that IR spectroscopy, coupled with thermal processing, can be a useful tool for discriminating between abiotic and biotic (fossil) carbonate samples collected on the Martian surface especially in phyllosilicate-rich regions such as Mawrth Vallis. Further work is currently done in our laboratory on various samples collected from carbonate sediments of the Late Miocene (Messinian) Calcare di Base Formation in northern Calabria (Italy), in order to study their origin.

  5. Infrared spectroscopy of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1993-01-01

    Infrared spectroscopy provides unique insights into the chemistry and dynamics of the atmospheres of Jupiter, Saturn, and Titan. In 1991 we obtained data at J, H, K, and M and made repeated observations of Titan's albedo as the satellite orbited Saturn. The J albedo is 12% +/- 3% greater than the albedo measured in 1979; the H and K albedos are the same. There was no evidence for variations at any wavelength over the eastern half of Titan's orbit. We also obtained low resolution (R=50) spectra of Titan between 3.1 and 5.1 microns. The spectra contain evidence for CO and CH3D absorptions. Spectra of Callisto and Ganymede in the 4.5 micron spectral region are featureless and give albedos of 0.08 and 0.04 respectively. If Titan's atmosphere is transparent near 5 microns, its surface albedo there is similar to Callisto's. In 1992 and 1993 we obtained further spectroscopic data of Titan with the UKIRT CGS4 spectrometer. We discovered two unexpected and unexplained spectral features in the 3-4 micron spectrum of Titan. An apparent emission feature near the 3 micron (nu sub 3) band of methane indicated temperatures higher than known to be present in Titan's upper stratosphere and may be caused by unexpected non-LTE emission. An absorption feature near 3.47 microns may be caused by absorption in solid grains or aerosols in Titan's clouds. The feature is similar but not identical to organics in the interstellar matter and in comets.

  6. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S; Irudayaraj, Joseph; Ileleji, Klein

    2015-03-01

    The coffee strip-picking harvesting method, preferred in Brazil, results in high percentages of immature and overripe beans, as the fruits in a single tree branch do not reach ripeness at the same time. This practice, together with inappropriate processing and storage conditions, contribute to the production of high amounts of defective coffee beans in Brazil, which upon roasting will impart negative sensory aspects to the beverage. Therefore, the development of analytical methodologies that will enable the discrimination and quantification of defective and non-defective coffees after roasting is rather desirable. Given that infrared spectroscopy has been successfully applied to coffee analysis, the objective of this work was to evaluate and to compare the performances of Fourier transform infrared (FTIR) and near infrared (NIR) spectroscopies for the quantification of defective beans in roasted coffees. Defective and non-defective Arabica coffee beans were manually selected, roasted, ground and sieved. Mixtures of defective and non-defective roasted and ground coffees were produced and analyzed, with % defects ranging from 0% to 30%. FTIR and NIR spectra were recorded, respectively, within a range of 3100-800 cm(-1) and 1200-2400 nm and submitted to mathematical processing. Quantitative models were developed by partial least squares regression (PLSR). Excellent predictive results were obtained indicating that defective coffees could be satisfactorily quantified. The correlation coefficients and the root mean squared errors of validation for the FTIR and NIR models developed to quantify the amount of defective roasted coffees mixed with non-defective ones were, respectively, as high as 0.891 and as low as 0.032, and as high as 0.953 and as low as 0.026. A comparison between the two techniques indicated that NIR provided more robust models. PMID:25618683

  7. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    PubMed

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy. PMID:26698997

  8. Far infrared Spectroscopy with FTIR Beam Line of MIRRORCLE 20

    SciTech Connect

    Miura, Nobuhiro; Moon, Ahsa; Nishikawa, Kishi; Kitagawa, Toshimichi; Hiraiwa, Nobuhiko; Yamada, Hironari

    2007-01-19

    A beam line for far infrared spectroscopy using Fourier Transform Infrared Spectrometer (FTIR) has been developed as a facility of tabletop synchrotron MIRRORCLE 20 in Ritsumeikan University and has been utilized to study liquid structure through analysis of intermolecular vibration in aqueous solutions. We report recent developments in the system and the examples of measured spectra.

  9. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  10. Near infrared spectroscopy of stearic acid adsorbed on montmorillonite.

    PubMed

    Lu, Longfei; Cai, Jingong; Frost, Ray L

    2010-03-01

    The adsorption of stearic acid on both sodium montmorillonites and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of stearic acid on Ca-Mt additional near infrared bands are observed at 8236 cm(-1) and is assigned to an interaction of stearic acid with the water of hydration. Upon adsorption of the stearic acid on Na-Mt, the NIR bands are now observed at 5671, 5778, 5848 and 5912 cm(-1) and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4177, 4250, 4324, 4337, 4689 and 4809 cm(-1) are attributed to CH combination bands resulting from the adsorption of the stearic acid. Stearic acid is used as a model molecule for adsorption studies. The application of near infrared spectroscopy to the study of this adsorption proved most useful. PMID:20071218

  11. Infrared Scattering Scanning Near-Field Optical Microscopy Using An External Cavity Quantum Cascade Laser For Nanoscale Chemical Imaging And Spectroscopy of Explosive Residues

    SciTech Connect

    Craig, Ian M.; Phillips, Mark C.; Taubman, Matthew S.; Josberger, Erik E.; Raschke, Markus Bernd

    2013-02-04

    Infrared scattering scanning near-field optical microscopy (s-SNOM) is an apertureless superfocusing technique that uses the antenna properties of a conducting atomic force microscope (AFM) tip to achieve infrared spatial resolution below the diffraction limit. The instrument can be used either in imaging mode, where a fixed wavelength light source is tuned to a molecular resonance and the AFM raster scans an image, or in spectroscopy mode where the AFM is held stationary over a feature of interest and the light frequency is varied to obtain a spectrum. In either case, a strong, stable, coherent infrared source is required. Here we demonstrate the integration of a broadly tunable external cavity quantum cascade laser (ECQCL) into an s-SNOM and use it to obtain infrared spectra of microcrystals of chemicals adsorbed onto gold substrates. Residues of the explosive compound tetryl was deposited onto gold substrates. s-SNOM experiments were performed in the 1260-1400 cm-1 tuning range of the ECQCL, corresponding to the NO2 symmetric stretch vibrational fingerprint region. Vibrational infrared spectra were collected on individual chemical domains with a collection area of *500nm2 and compared to ensemble averaged far-field reflection-absorption infrared spectroscopy (RAIRS) results.

  12. Infrared and Near-Infrared Spectroscopy of Acetylacetone and Hexafluoroacetylacetone.

    PubMed

    Howard, Daryl L; Kjaergaard, Henrik G; Huang, Jing; Meuwly, Markus

    2015-07-23

    The infrared and near-infrared spectra of acetylacetone, acetylacetone-d8, and hexafluoroacetylacetone are characterized from experiment and computations at different levels. In the fundamental region, the intramolecular hydrogen bonded OH-stretching transition is clearly observed as a very broad band with substantial structure and located at significantly lower frequency compared to common OH-stretching frequencies. There is no clear evidence for OH-stretching overtone transitions in the near-infrared region, which is dominated by the CH-stretching overtones of the methine and methyl CH bonds. From molecular dynamics (MD) simulations, with a potential energy surface previously validated for tunneling splittings, the infrared spectra are determined and used in assigning the experimentally measured ones. It is found that the simulated spectrum in the region associated with the proton transfer mode is exquisitely sensitive to the height of the barrier for proton transfer. Comparison of the experimental and the MD simulated spectra establishes that the barrier height is around 2.5 kcal/mol, which favorably compares with 3.2 kcal/mol obtained from high-level electronic structure calculations.

  13. Infrared Spectroscopy and Optical Constants of Porous Amorphous Solid Water

    SciTech Connect

    Cholette, Francois; Zubkov, Tykhon; Smith, R. Scott; Dohnalek, Zdenek; Kay, Bruce D.; Ayotte, Patrick

    2009-04-02

    Reflection-absorption infrared spectra (RAIRS) of amorphous solid water (ASW) films grown at 20K on a Pt(111) substrate at various incidence angle (θBeam = 0-85o) using a molecular beam are reported. They display complex features arising from the interplay between refraction, absorption within the sample, and interference effects between the multiple reflections at the film-substrate and film-vacuum interfaces. Using a simple classical optics model based on Fresnel equations, we obtain optical constants [i.e., n(ω) and k(ω)] for porous ASW in the 1000-4000cm-1 (10-2.5 μm) range. The behaviour of the optical properties of ASW in the intramolecular OH stretching region with increasing θBeam is shown to be strongly correlated with its decreasing density and increasing surface area. A direct comparison between the RAIRS and calculated vibrational spectra shows a large difference (~200cm-1) in the position of the coupled H-bonded intramolecular OH stretching vibrations spectral feature. Moreover, this band shifts in opposite directions with increasing θBeam in RAIRS and vibrational spectra demonstrating RAIRS spectra cannot be interpreted straightforwardly as vibrational spectra due to severe optical distortions from refraction and interference effects.

  14. Infrared spectroscopy and optical constants of porous amorphous solid water.

    PubMed

    Cholette, François; Zubkov, Tykhon; Smith, R Scott; Dohnálek, Zdenek; Kay, Bruce D; Ayotte, Patrick

    2009-04-01

    Reflection-absorption infrared spectra (RAIRS) of amorphous solid water (ASW) films grown at 20 K on a Pt(111) substrate at various angles (theta(Beam) = 0-85 degrees ) using a molecular beam are reported. They display complex features arising from the interplay between refraction, absorption within the sample, and interference effects between the multiple reflections at the film-substrate and film-vacuum interfaces. Using a simple classical optics model based on Fresnel equations, we obtain optical constants [i.e., n(omega) and k(omega)] for porous ASW in the 1000-4000 cm(-1) (10-2.5 microm) range. The behavior of the optical properties of ASW in the intramolecular OH stretching region with increasing theta(Beam) is shown to be strongly correlated with its decreasing density and increasing surface area. A direct comparison between the RAIRS and calculated vibrational spectra shows a large difference ( approximately 200 cm(-1)) in the position of the coupled H-bonded intramolecular OH stretching vibrations spectral feature. Moreover, this band shifts in opposite directions with increasing theta(Beam) in RAIRS and vibrational spectra demonstrating RAIRS spectra cannot be interpreted straightforwardly as vibrational spectra due to severe optical distortions from refraction and interference effects.

  15. Cancer diagnosis by infrared spectroscopy: methodological aspects

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Kim, Keith; Tetteh, John; Mansfield, James R.; Dolenko, Brion; Somorjai, Raymond L.; Orr, F. W.; Watson, Peter H.; Mantsch, Henry H.

    1998-04-01

    IR spectroscopy is proving to be a powerful tool for the study and diagnosis of cancer. The application of IR spectroscopy to the analysis of cultured tumor cells and grading of breast cancer sections is outlined. Potential sources of error in spectral interpretation due to variations in sample histology and artifacts associated with sample storage and preparation are discussed. The application of statistical techniques to assess differences between spectra and to non-subjectively classify spectra is demonstrated.

  16. Improved source of infrared radiation for spectroscopy

    NASA Technical Reports Server (NTRS)

    Burkhard, D. G.; Rao, K. N.

    1971-01-01

    Radiation from a crimped V-groove in the electrically heated metallic element of a high-resolution infrared spectrometer is more intense than that from plane areas adjacent to the element. Radiation from the vee and the flat was compared by alternately focusing on the entrance slit of a spectrograph.

  17. Terahertz and infrared spectroscopy of gated large-area graphene.

    PubMed

    Ren, Lei; Zhang, Qi; Yao, Jun; Sun, Zhengzong; Kaneko, Ryosuke; Yan, Zheng; Nanot, Sébastien; Jin, Zhong; Kawayama, Iwao; Tonouchi, Masayoshi; Tour, James M; Kono, Junichiro

    2012-07-11

    We have fabricated a centimeter-size single-layer graphene device with a gate electrode, which can modulate the transmission of terahertz and infrared waves. Using time-domain terahertz spectroscopy and Fourier-transform infrared spectroscopy in a wide frequency range (10-10 000 cm(-1)), we measured the dynamic conductivity change induced by electrical gating and thermal annealing. Both methods were able to effectively tune the Fermi energy, E(F), which in turn modified the Drude-like intraband absorption in the terahertz as well as the "2E(F) onset" for interband absorption in the mid-infrared. These results not only provide fundamental insight into the electromagnetic response of Dirac fermions in graphene but also demonstrate the key functionalities of large-area graphene devices that are desired for components in terahertz and infrared optoelectronics. PMID:22663563

  18. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  19. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3–20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  20. Advances in Mid-Infrared Spectroscopy for Chemical Analysis.

    PubMed

    Haas, Julian; Mizaikoff, Boris

    2016-06-12

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  1. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  2. Infrared microcalorimetric spectroscopy using quantum cascade lasers.

    PubMed

    Morales-Rodríguez, M E; Senesac, L R; Rajic, S; Lavrik, N V; Smith, D B; Datskos, P G

    2013-02-15

    We have investigated an IR microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules adsorbed on the surface of uncooled thermal micromechanical detectors. Although we use a chemical layer to absorb target molecules, IR microcalorimetric spectroscopy requires no chemical specific coatings. The chemical specificity of the presented method is a consequence of the wavelength-specific absorption of IR photons from tunable quantum cascade lasers due to vibrational spectral bands of the analyte. We have obtained IR photothermal spectra for trace concentrations of 1,3,5-Trinitroperhydro-1,3,5-triazine and a monolayer of 2-Sulfanylethan-1-ol (2-mercaptoethanol) over the wavelength region from 6 to 10 μm. We found that both chemicals exhibit a number of photothermal absorption features that are in good agreement with their respective IR spectra.

  3. Near-infrared spectroscopy of dark asteroids.

    PubMed

    Barucci, M A; Lazzarin, M; Owen, T; Barbieri, C; Fulchignoni, M

    1994-08-01

    Near-infrared (J, H and K bands) spectra of nine dark asteroids (chosen among a sample of supposed primitive objects between C and D classes) have been obtained at the Mauna Kea Observatory (Hawaii) with the 2.2-m telescope using KSPEC as spectrograph. The aim of this work was to search for evidence of the presence of organic materials in these objects as found in other planetary bodies as 5145 Pholus, and in some cometary nuclei. A careful analysis of the data has revealed flat or slightly redder spectra than the solar one for all observed asteroids. No evidence of distinct absorption features was found. PMID:11539179

  4. Near-infrared spectroscopy of dark asteroids.

    PubMed

    Barucci, M A; Lazzarin, M; Owen, T; Barbieri, C; Fulchignoni, M

    1994-08-01

    Near-infrared (J, H and K bands) spectra of nine dark asteroids (chosen among a sample of supposed primitive objects between C and D classes) have been obtained at the Mauna Kea Observatory (Hawaii) with the 2.2-m telescope using KSPEC as spectrograph. The aim of this work was to search for evidence of the presence of organic materials in these objects as found in other planetary bodies as 5145 Pholus, and in some cometary nuclei. A careful analysis of the data has revealed flat or slightly redder spectra than the solar one for all observed asteroids. No evidence of distinct absorption features was found.

  5. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  6. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  7. Forensic applications of microscopical infrared internal reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Tungol, Mary W.; Bartick, Edward G.; Reffner, John A.

    1994-01-01

    Applications of microscopical infrared internal reflection spectroscopy in forensic science are discussed. Internal reflection spectra of single fibers, hairs, paint chips, vehicle rubber bumpers, photocopy toners, carbon copies, writing ink on paper, lipstick on tissue, black electrical tape, and other types of forensic evidence have been obtained. The technique is convenient, non-destructive, and may permit smeared materials to be analyzed in situ.

  8. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    PubMed Central

    2015-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  9. Predicting cotton stelometer fiber strength by fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strength of cotton fibers is one of several important end-use characteristics. In routine programs, it has been mostly assessed by automation-oriented high volume instrument (HVI) system. An alternative method for cotton strength is near infrared (NIR) spectroscopy. Although previous NIR models ...

  10. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  11. Progress in far-infrared spectroscopy: Approximately 1890 to 1970

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Akiyoshi

    2014-03-01

    The history of far-infrared spectroscopy from its beginning to around 1970 is reviewed. Before World War II, the size of the community investigating this topic was limited. During this period, in particular before 1925, about 90% of the papers were published by H. Rubens and his co-workers in Germany. One or two researchers from the US joined the Rubens group per year from 1890 to the beginning of 1910. During the next year or two, some researchers joined M. Czerny, who is seen as the successor of Rubens. After World War II, far-infrared techniques progressed further in the US, which did not suffer damage during the war. The advanced techniques of far-infrared grating spectroscopy were transferred from the US (R. A. Oetjen) to Japan (H. Yoshinaga). Yoshinaga and his co-workers expanded the techniques by themselves. This paper describes the historical development of far-infrared spectroscopy before Fourier transform spectroscopy became popular around 1970.

  12. WW domain folding complexity revealed by infrared spectroscopy.

    PubMed

    Davis, Caitlin M; Dyer, R Brian

    2014-09-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  13. Study Of A Formulated Pesticide By Photoacoustic Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lowry, S. R.; Mead, D. G.; Vidrine, D. W.

    1981-10-01

    Photoacoustic infrared spectroscopy has been used to study the interactions of a carbamate insecticide with a clay carrier. The ability of photoacoustic infrared spectroscopy to measure infrared spectra from opaque samples non-destructively, is particularly valuable in this study where weak bonds might be destroyed by sample grinding. The results of this study show that the strong N-H stretching modes, which appear at approximately 3300 cm-1 in in the pure insecticide, are missing in the subtraction of the N-H group spectrum. This suggests that the hydrogen attached to the nitrogen of the carbamate is forming a reasonably strong bond with the hydrated silicate structure of the clay carrier. This interaction may effect the release rate of the pesticide upon application.

  14. Infrared spectroscopy of exoplanets: observational constraints

    PubMed Central

    Encrenaz, Thérèse

    2014-01-01

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  15. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  16. Infrared spectroscopy of exoplanets: observational constraints.

    PubMed

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations.

  17. Computing protein infrared spectroscopy with quantum chemistry.

    PubMed

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  18. Infrared spectroscopy of exoplanets: observational constraints.

    PubMed

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  19. Infrared Spectroscopy of Hydrated Nitromethane Anions

    NASA Astrophysics Data System (ADS)

    Marcum, Jesse C.; Weber, J. Mathias

    2009-06-01

    The hydration of molecular anions is still not as thoroughly explored as for atomic anions. We present IR spectra and quantum chemical calculations of hydrated nitromethane anions. In the monohydrate, the nitro group of the ion interacts with the water molecule via two hydrogen bonds, one from each O atom. This motif is partially conserved in the dihydrate. Adding the third water molecule results in a ring-like structure of the water ligands, each of which forms one H bond to one of the O atoms of the nitro group and another to a neighboring water ligand, reminiscent of the hydration motif of the heavier halides. Interestingly, while the methyl group is not directly involved in the interaction with the water ligands, its infrared signature is strongly affected by the changes in the intramolecular charge distribution through hydration.

  20. Infrared spectroscopy of simulated Martian surface materials

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Sagan, C.

    1978-01-01

    Mineralogy inferred from the Viking X-ray fluorescence spectrometry (XRFS) is compared with mineralogy indicated by spectral data. The comparison is done by taking laboratory spectra of Viking analog minerals. Both XRFS and infrared data are consistent with clays as the dominant SiO2 containing minerals on Mars. The X-ray fluorescence data might also be consistent with the dominance of certain mafic SiO2 igneous minerals, but the spectral data are probably inconsistent with such materials. Sulfates, inferred by XRFS, are consistent with the spectral data. Inferences following Mariner 9 that high-SiO2 minerals were important on Mars may have been biased by the presence of sulfates. Calcium carbonate, in the quantities indirectly suggested by XRFS are inconsistent with the spectral data, but smaller quantities of CaCO3 are consistent, as are large quantities of other carbonates.

  1. Stratospheric sounding by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kunde, V. G.; Mumma, M. J.; Kostiuk, T.; Buhl, D.; Frerking, M. A.

    1978-01-01

    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution. The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of O3, CO2, CH4 and N2O are given.

  2. Near-infrared spectroscopy in NGC 7538

    NASA Astrophysics Data System (ADS)

    Puga, E.; Marín-Franch, A.; Najarro, F.; Lenorzer, A.; Herrero, A.; Acosta Pulido, J. A.; Chavarría, L. A.; Bik, A.; Figer, D.; Ramírez Alegría, S.

    2010-07-01

    Aims: The characterisation of the stellar population in young high-mass star-forming regions allows fundamental cluster properties like distance and age to be constrained. These are essential when using high-mass clusters as probes for conducting Galactic studies. Methods: NGC 7538 is a star-forming region with an embedded stellar population unearthed only in the near-infrared (NIR). We present the first near-infrared spectro-photometric study of the candidate high-mass stellar content in NGC 7538. We obtained H and K spectra of 21 sources with both the multi-object and long-slit modes of LIRIS at the WHT, and complement these data with subarcsecond JHKs photometry of the region using the imaging mode of the same instrument. Results: We find a wide variety of objects within the studied stellar population of NGC 7538. Our results discriminate between a stellar population associated to the H ii region, but not contained within its extent, and several pockets of more recent star formation. We report the detection of CO bandhead emission toward several sources, as well as other features indicative of a young stellar nature. We infer a spectro-photometric distance of 2.7 ± 0.5 kpc, an age spread in the range 0.5-2.2 Myr and a total mass 1.7 × 103 Msun for the older population. Based on observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  3. Bird sexing by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Steiner, Gerald; Bartels, Thomas; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund

    2010-02-01

    Birds are traditionally classified as male or female based on their anatomy and plumage color as judged by the human eye. Knowledge of a bird's gender is important for the veterinary practitioner, the owner and the breeder. The accurate gender determination is essential for proper pairing of birds, and knowing the gender of a bird will allow the veterinarian to rule in or out gender-specific diseases. Several biochemical methods of gender determination have been developed for avian species where otherwise the gender of the birds cannot be determined by their physical appearances or characteristics. In this contribution, we demonstrate that FT-IR spectroscopy is a suitable tool for a quick and objective determination of the bird's gender. The method is based on differences in chromosome size. Male birds have two Z chromosomes and female birds have a W-chromosome and a Z-chromosome. Each Z-chromosome has approx. 75.000.000 bps whereas the W-chromosome has approx. 260.00 bps. This difference can be detected by FT-IR spectroscopy. Spectra were recorded from germ cells obtained from the feather pulp of chicks as well as from the germinal disk of fertilized but non-bred eggs. Significant changes between cells of male and female birds occur in the region of phosphate vibrations around 1080 and 1120 cm-1.

  4. Metal nanofilms studied with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fahsold, Gerhard; Priebe, Andreas; Pucci, Annemarie; Otto, Andreas

    2006-03-01

    Metal films with thickness in the nanometer range are optically transparent. In the IR range their transmittance may show both the Drude-type behaviour of coalesced islands and the tail of the plasmon absorption of single islands. Therefore, IR transmittance spectroscopy is a sensitive tool for in-situ studies of metal-film growth on insulating substrates and of the film conductivity. With IR transmittance spectroscopy the in-plane film conductivity and its correlation to the film-growth process can be determined without electrical contacts. Adsorbate induced changes can be observed well. Their analysis may give insight into the adsorbate-metal bonding. Depending on the film's roughness the IR lines of adsorbate-vibration modes may be strongly modified because of their interaction with electronic excitations of the film. The atomic roughness of cold-condensed metal films produces additional IR activity: strong IR activity of Raman lines of centrosymmetric adsorbate molecules is observed in those cases where the adsorbate has states close to the Fermi level.

  5. Fiberoptic evanescent wave infrared spectroscopy of gases in liquids

    NASA Astrophysics Data System (ADS)

    Bunimovich, D.; Belotserkovsky, E.; Katzir, A.

    1995-04-01

    Silver halide optical fibers were used as attenuated total reflection elements for infrared evanescent wave spectroscopy of gases in liquids. The evanescent wave absorption spectra of chlorodifluoromethane (Freon-22) and carbon dioxide gases (CO2) in water were studied and the dependence on vapor pressure of the gas and temperature was investigated. Absorption peaks were easily traced and correlated well with those in the literature. The use of the infrared (IR) fibers in the fiberoptic evanescent wave spectroscopy system bypasses the difficulty of ordinary IR spectroscopy related to the strong IR absorption of most liquid solvents, and provides a flexible, easy, and inexpensive way of determining the presence and concentration of gases in liquids to within about 5% accuracy.

  6. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  7. Near-infrared spectroscopy for personal screening

    NASA Astrophysics Data System (ADS)

    Canal, Céline M.; Saleem, Aamer; Green, Roger J.; Hutchins, David A.

    2010-10-01

    This paper will demonstrate that near infrared (NIR) signals at wavelengths in the range 0.9 to 2.5 microns can be used for personal screening applications. At these wavelengths, there is sufficient spectral information to provide chemical identification, while still providing transmission through many types of common clothing materials. Thus, chemical identification in diffuse reflection is possible. Initial measurements on selected clothing materials have indicated that there is sufficient transmission to allow NIR spectra from concealed chemicals to be collected. The effect of the clothing material on the observed spectra has also been quantified. The clothing materials ranged from cotton to man-made fibres. Spectra have been collected at stand-off distances of several metres or more, using a suitable lens system and an NIR spectrometer. The optics required to achieve this will be described, and some spectra from chemicals hidden behind clothing will be presented. The further steps necessary to provide correct identification of chemicals such as ammonium nitrate in granular form will also be given, involving signal analysis methods. A set of spectra will be shown that have been collected and analysed, for a wide range of clothing fabric materials, indicating that the technique could have wide application to personal screening situations.

  8. Infrared Spectroscopy of Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    Colgan, S. W. J.; Cotera, A. S.; Maloney, P. R.; Hollenbach, D. J.

    2000-05-01

    ISO LWS and SWS observations of the solar mass black hole candidates 1E1740.7-2942 and GRS1758-258 are presented. For 1E1740.7-2942, it has been suggested that the luminosity is provided in whole or part by Bondi-Hoyle accretion from a surrounding black hole (Bally & Leventhal 1991, Nat, 353, 234). Maloney etal. (1997, ApJ 482, L41) have predicted that detectable far-infrared line emission from [OI] (63 microns), [CII] (158 microns), [SiII] (35 microns) and other lines will arise from black holes which are embedded in molecular clouds. No strong line emission associated with either 1E1740.7-2942 or GRS1758-258 was detected, implying either that 1) these sources are not embedded in dense molecular clouds, or 2) that their average X-ray luminosity over the past 100 years is significantly lower than its current value. The measured upper limits to the line fluxes are compared with the models of Maloney etal. to constrain the properties of the ISM in the vicinity of these X-ray sources. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  9. Time-resolved surface infrared spectroscopy during atomic layer deposition of TiO{sub 2} using tetrakis(dimethylamido)titanium and water

    SciTech Connect

    Sperling, Brent A. Hoang, John; Kimes, William A.; Maslar, James E.; Steffens, Kristen L.; Nguyen, Nhan V.

    2014-05-15

    Atomic layer deposition of titanium dioxide using tetrakis(dimethylamido)titanium (TDMAT) and water vapor is studied by reflection-absorption infrared spectroscopy (RAIRS) with a time resolution of 120 ms. At 190 °C and 240 °C, a decrease in the absorption from adsorbed TDMAT is observed without any evidence of an adsorbed product. Ex situ measurements indicate that this behavior is not associated with an increase in the impurity concentration or a dramatic change in the growth rate. A desorbing decomposition product is consistent with these observations. RAIRS also indicates that dehydroxylation of the growth surface occurs only among one type of surface hydroxyl groups. Molecular water is observed to remain on the surface and participates in reactions even at a relatively high temperature (110 °C) and with long purge times (30 s)

  10. Near-Infrared Spectroscopy of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Boulanger, F.; Onaka, T.; Pilleri, P.; Joblin, C.

    2011-03-01

    Near infrared observations of reflection nebulae have set the historical ground for the discovery of interstellar PAHs, but since, space observations have focused on their mid-IR features, and data shortward of 5 μm have remained scarce. The Spitzer/IRAC images in the 3.6 and 4.5 μm channels do show that the near-IR emission from small dust particles is ubiquitous across the Galaxy, but provide no spectroscopic information. To investigate the nature of this near-IR dust emission, we have obtained AKARI spectroscopic observations, over the 2.5-5 μm spectral range, for a set of archetype PDRs mapped with the Spitzer spectrometer at mid-IR wavelengths. These AKARI data supplement earlier observations with the SWS ISO spectrometer, in providing the gain in sensitivity needed to observe low excitation sources, and the spatial information required to spatially correlate near-IR spectroscopic signatures with physical conditions and observed changes in mid-IR spectra. This paper presents the first results of the data analysis, in relation to two open questions on interstellar PAHs. (1) Is there an evolutionary link from aliphatic carbon dust to PAHs? (2) What is the origin of the near-IR dust continuum? The AKARI spectra display features longward of the main 3.29 μm PAH feature, and continuum emission. The intensity ratio between the features ascribed to aliphatic CH bonds and the 3.29 μm aromatic band, varies spatially in a way that may be interpreted as evidence for aromatization of the smallest dust particles by photo-processing. The continuum displays a striking step-increase across the 3.29 μm feature. We also present a spectrum of a photodissociation region with a feature at 4.65 μm, which has been speculated to be related to the CD stretch in aliphatic hydrocarbon side-groups on PAHs.

  11. Infrared Spectroscopy of Alanine in Solid Parahydrogen

    NASA Astrophysics Data System (ADS)

    Toh, Shin Yi; Wong, Ying-Tung Angel; Djuricanin, Pavle; Momose, Takamasa

    2014-06-01

    Amino acids are the building blocks of biological molecules, and thus the investigation of their physical and chemical properties would allow for further understanding of their functions in biological systems. In addition, the existence of amino acids in interstellar space has been discussed for many years, but it is still under intense debate. The effect of UV radiation on amino acids is one of the keys for their search in interstellar space, where strong UV radiation exists. In this experiment, conformational compositions of alpha and beta alanine and their UV photolysis were investigated via matrix-isolation FTIR spectroscopy and quantum chemical calculations. Solid parahydrogen was used as the matrix, which provides higher resolution spectra than other noble gas matrices. We have identified several stable conformers for both alpha and beta alanine in solid parahydrogen. A clear correlation between conformational ratio and sublimation temperature was found for beta alanine. Furthermore, it was found that UV photolysis of alanine yields not only its conformational changes, but also photodissociation into a CO2 molecule and fragments. Observed spectra and their analysis will be discussed in relation to interstellar chemistry.

  12. [Identification of pearl powder using microscopic infrared reflectance spectroscopy].

    PubMed

    Zhang, Xuan; Hu, Chao; Yan, Yan; Yang, Hai-Feng; Li, Jun-Fang; Bai, Hua; Xi, Guang-Cheng; Liao, Jie

    2014-09-01

    Pearl is a precious ornament and traditional Chinese medicine, which application history in China is more than 2000 years. It is well known that the chemical ingredients of shell and pearl are very similar, which all of them including calcium carbonate and various amino acids. Generally, shell powders also can be used as medicine; however, its medicinal value is much lower than that of pearl powders. Due to the feature similarity between pearl powders and shell powders, the distinguishment of them by detecting chemical composition and morphology is very difficult. It should be noted that shell powders have been often posing as pearl powders in markets, which seriously infringes the interests of consumers. Identification of pearl powder was investigated by microscopic infrared reflectance spectroscopy, and pearl powder as well as shell powder was calcined at different temperatures for different time before infrared reflectance spectroscopy analysis. The experimental results indicated that when calcined at 400 °C for 30 minutes under atmospheric pressure, aragonite in pearl powder partly transformed into calcite, while aragonite in shell powder completely transformed into calcite. At the same time, the difference in phase transition between the pearl powders 'and shell powders can be easily detected by using the microscopic infrared reflectance spectroscopy. Therefore, based on the difference in their phase transition process, infrared reflectance spectroscopy can be used to identify phase transformation differences between pearl powder and shell powder. It's more meaningfully that the proposed infrared reflectance spec- troscopy method was also investigated for the applicability to other common counterfeits, such as oyster shell powders and abalone shell powders, and the results show that the method can be a simple, efficiently and accurately method for identification of pearl powder. PMID:25532338

  13. Emerging techniques for soil analysis via mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Linker, R.; Shaviv, A.

    2009-04-01

    Transmittance and diffuse reflectance (DRIFT) spectroscopy in the mid-IR range are well-established methods for soil analysis. Over the last five years, additional mid-IR techniques have been investigated, and in particular: 1. Attenuated total reflectance (ATR) Attenuated total reflectance is commonly used for analysis of liquids and powders for which simple transmittance measurements are not possible. The method relies on a crystal with a high refractive index, which is in contact with the sample and serves as a waveguide for the IR radiation. The radiation beam is directed in such a way that it hits the crystal/sample interface several times, each time penetrating a few microns into the sample. Since the penetration depth is limited to a few microns, very good contact between the sample and the crystal must be ensured, which can be achieved by working with samples close to water saturation. However, the strong absorbance of water in the mid-infrared range as well as the absorbance of some soil constituents (e.g., calcium carbonate) interfere with some of the absorbance bands of interest. This has led to the development of several post-processing methods for analysis of the spectra. The FTIR-ATR technique has been successfully applied to soil classification as well as to determination of nitrate concentration [1, 6-8, 10]. Furthermore, Shaviv et al. [12] demonstrated the possibility of using fiber optics as an ATR devise for direct determination of nitrate concentration in soil extracts. Recently, Du et al. [5] showed that it is possible to differentiate between 14N and 15N in such spectra, which opens very promising opportunities for developing FTIR-ATR based methods for investigating nitrogen transformation in soils by tracing changes in N-isotopic species. 2. Photo-acoustic spectroscopy Photoacoustic spectroscopy (PAS) is based on absorption-induced heating of the sample, which produces pressure fluctuations in a surrounding gas. These fluctuations are

  14. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Miranda, D. A.; Cristiano, K. L.; Gutiérrez, J. C.

    2013-11-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated.

  15. Synchrotron-based far-infrared spectroscopy of nickel tungstate

    NASA Astrophysics Data System (ADS)

    Kalinko, A.; Kuzmin, A.; Roy, P.; Evarestov, R. A.

    2016-07-01

    Monoclinic antiferromagnetic NiWO4 was studied by far-infrared (30-600 cm-1) absorption spectroscopy in the temperature range of 5-300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO4 and ZnWO4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO4 and CoWO4 below their Neel temperatures down to 5 K.

  16. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  17. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  18. [Near infrared spectroscopy study on water content in turbine oil].

    PubMed

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  19. Nanoscale Spectroscopy with a Scanning Near-Field Infrared Microscope

    NASA Astrophysics Data System (ADS)

    Michaels, Chris; Richter, Lee; Cavanagh, Richard; Stranick, Stephan

    2001-03-01

    The development of a scanning near-field microscope that allows the measurement of infrared spectra with nanoscale spatial resolution will be described. This instrument couples the spatial resolution of a scanning probe microscope with the chemical specificity of vibrational spectroscopy. This combination allows the in situ mapping of chemical functional groups with subwavelength spatial resolution. Infrared transmission images of a micropatterned thin gold film will be presented that demonstrate spatial resolution of λ/10 at 3.4 micrometers in the absence of artifacts due to topography-induced contrast. Near-field infrared absorption spectra of thin polymer films that demonstrate sensitivity sufficient for sub-diffraction absorption imaging in the aliphatic and aromatic C-H stretching regions will also be presented. Images of thin film polymer blends and nanocomposites acquired in the C-H stretching region will be used to benchmark the nanoscale chemical imaging capabilities of this microscope.

  20. Infrared Spectroscopy of Astrophysical Gas, Grains, and Ices with the Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2009-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) will be a premier facility for studying the physics and chemistry of the stellar evolution process for many decades. SOFIA spectroscopic science applications will be discussed, with special emphasis on investigations related to infrared spectroscopy of astrophysical gas, grains, and ices. Examples will be given of spectroscopic studies of the interstellar medium, protostars, obscured sources in molecular cloud cores, circumstellar disks around young stellar objects, remnants of nova and supernova explosions, and winds of evolved stellar systems.

  1. Infrared Spectroscopy of Noh Suspended in Solid Parahydrogen: Part Two

    NASA Astrophysics Data System (ADS)

    Balabanoff, Morgan E.; Mutunga, Fredrick M.; Anderson, David T.

    2015-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, they performed detailed isotopic studies to make definitive vibrational assignments. NOH is predicted by high-level calculations to be in a triplet ground electronic state, but the Ar matrix isolation spectra cannot be used to verify this triplet assignment. In our 2013 preliminary report, we showed that 193 nm in situ photolysis of NO trapped in solid parahydrogen can also be used to prepare the NOH molecule. Over the ensuing two years we have been studying the infrared spectroscopy of this species in more detail. The spectra reveal that NOH can undergo hindered rotation in solid parahydrogen such that we can observe both a-type and b-type rovibrational transitions for the O-H stretch vibrational mode, but only a-type for the mode assigned to the bend. In addition, both observed a-type infrared absorption features (bend and OH stretch) display fine structure; an intense central peak with weaker peaks spaced symmetrically to both lower and higher wavenumbers. The spacing between the peaks is nearly identical for both vibrational modes. We now believe this fine structure is due to spin-rotation interactions and we will present a detailed analysis of this fine structure. Currently, we are performing additional experiments aimed at making 15NOH to test these preliminary assignments. The most recent data and up-to-date analysis will be presented in this talk. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012). David T. Anderson and Mahmut Ruzi, 68th Ohio State University International Symposium on Molecular Spectroscopy, talk TE01 (2013).

  2. PREFACE: 3rd International Workshop on Infrared Plasma Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davies, P. B.; Röpcke, Jürgen; Hempel, Frank

    2009-07-01

    This volume containsd a selection of papers from the third Infrared Plasma Spectroscopy (IPS) Workshop held in Greifswald, Germany in July 2008. Although not all the contributions have been written up in time for the deadline for this volume, nevertheless the 12 contributions presented here give a fair representation of the conference topics. The conference comprised four different types of contribution. Firstly, four invited lectures focussed on the prime areas of interest. Secondly, eight shorter contributed talks, grouped as closely as possible with the appropriate invited lecture. These contributed talks covered topics in both pure and applied infrared plasma spectroscopy. A feature of the two previous IPS conferences has been a contribution from commercial organisations namely those involved in manufacturing devices, detectors and spectrometers. This group of participants formed the third part of the conference programme and gave five oral presentations covering topics like QCL and detector/detection developments and novel spectrometer designs. The fourth contributing group comprised 27 poster presentations. It should be mentioned that some of the latter were poster versions of contributed talks. The conference was remarkable for the wide spread of topics covered in a relatively small meeting, consisting of 44 participants. The participants were made up of 34 scientists from within Europe and 4 from the rest of the world. It is interesting to reflect on changes that have occurred since the previous meeting just a year earlier. Two clear developments which have occurred are the emergence of Quantum Cascade Lasers (QCL) and their use in Cavity Ring Down (CRD) spectroscopy. A major shift from cw lead salt diode lasers to cw and pulsed QCL in both pure and applied projects now seems to be well under way. The topics covered in the earlier conferences focussed more on applying infrared spectroscopy to plasma monitoring and control. When choosing the topics to cover

  3. An infrared spectroscopy method to detect ammonia in gastric juice.

    PubMed

    Giovannozzi, Andrea M; Pennecchi, Francesca; Muller, Paul; Balma Tivola, Paolo; Roncari, Silvia; Rossi, Andrea M

    2015-11-01

    Ammonia in gastric juice is considered a potential biomarker for Helicobacter pylori infection and as a factor contributing to gastric mucosal injury. High ammonia concentrations are also found in patients with chronic renal failure, peptic ulcer disease, and chronic gastritis. Rapid and specific methods for ammonia detection are urgently required by the medical community. Here we present a method to detect ammonia directly in gastric juice based on Fourier transform infrared spectroscopy. The ammonia dissolved in biological liquid samples as ammonium ion was released in air as a gas by the shifting of the pH equilibrium of the ammonium/ammonia reaction and was detected in line by a Fourier transform infrared spectroscopy system equipped with a gas cell for the quantification. The method developed provided high sensitivity and selectivity in ammonia detection both in pure standard solutions and in a simulated gastric juice matrix over the range of diagnostic concentrations tested. Preliminary analyses were also performed on real gastric juice samples from patients with gastric mucosal injury and with symptoms of H. pylori infection, and the results were in agreement with the clinicopathology information. The whole analysis, performed in less than 10 min, can be directly applied on the sample without extraction procedures and it ensures high specificity of detection because of the ammonia fingerprint absorption bands in the infrared spectrum. This method could be easily used with endoscopy instrumentation to provide information in real time and would enable the endoscopist to improve and integrate gastroscopic examinations. PMID:26377936

  4. An infrared spectroscopy method to detect ammonia in gastric juice.

    PubMed

    Giovannozzi, Andrea M; Pennecchi, Francesca; Muller, Paul; Balma Tivola, Paolo; Roncari, Silvia; Rossi, Andrea M

    2015-11-01

    Ammonia in gastric juice is considered a potential biomarker for Helicobacter pylori infection and as a factor contributing to gastric mucosal injury. High ammonia concentrations are also found in patients with chronic renal failure, peptic ulcer disease, and chronic gastritis. Rapid and specific methods for ammonia detection are urgently required by the medical community. Here we present a method to detect ammonia directly in gastric juice based on Fourier transform infrared spectroscopy. The ammonia dissolved in biological liquid samples as ammonium ion was released in air as a gas by the shifting of the pH equilibrium of the ammonium/ammonia reaction and was detected in line by a Fourier transform infrared spectroscopy system equipped with a gas cell for the quantification. The method developed provided high sensitivity and selectivity in ammonia detection both in pure standard solutions and in a simulated gastric juice matrix over the range of diagnostic concentrations tested. Preliminary analyses were also performed on real gastric juice samples from patients with gastric mucosal injury and with symptoms of H. pylori infection, and the results were in agreement with the clinicopathology information. The whole analysis, performed in less than 10 min, can be directly applied on the sample without extraction procedures and it ensures high specificity of detection because of the ammonia fingerprint absorption bands in the infrared spectrum. This method could be easily used with endoscopy instrumentation to provide information in real time and would enable the endoscopist to improve and integrate gastroscopic examinations.

  5. Infrared polarization spectroscopy of CO 2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Alwahabi, Z. T.; Li, Z. S.; Zetterberg, J.; Aldén, M.

    2004-04-01

    Polarisation spectroscopy (PS) was used to probe CO 2 gas concentration in a CO 2/N 2 binary mixture at atmospheric pressure and ambient temperature. The CO 2 molecules were probed by a direct laser excitation to an overtone and combination vibrational state. The tuneable narrow linewidth infrared laser radiation at 2 μm was obtained by Raman shifting of the output from a single-longitudinal-mode pulsed alexandrite laser-system to the second Stokes component in a H 2 gas cell. Infrared polarisation spectroscopy (IRPS) and time-resolved infrared laser-induced fluorescence (IRLIF) spectra were collected. A linear dependence of the IRPS signal on the CO 2 mole fraction has been found. This indicates that the IRPS signal is only weakly affected by the molecular collisions and that the inter- and intra- molecular energy transfer processes do not strongly influence the molecular alignment at the time scale of the measurements. Thus IRPS holds great potential for quantitative instantaneous gas concentration diagnostics in general. This is especially important for molecules which do not posses an accessible optical transition such as CO, CO 2 and N 2O. In addition, an accurate experimental method to measure the extinction ratio of the IR polarisers employed in this study has been developed and applied. With its obvious merits as simplicity, easy alignment and high accuracy, the method can be generalized to all spectral regions, different polarisers and high extinction ratios.

  6. Composition of Polar Stratospheric Clouds from Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tolbert, M. A.; Anthony, S. E.; Disselkamp, R.; Toon, O. B.; Condon, Estelle P. (Technical Monitor)

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO3/H2O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H2SO4/HNO3/H2O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO3/H2O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric clouds formation.

  7. Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Martens, Wayde N.; Wain, Daria L.; Hales, Matt C.

    2008-10-01

    Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440 cm -1 is assigned to the ν CO 32- antisymmetric stretching vibration. An additional band is resolved at 1335 cm -1. An intense sharp Raman band at 1092 cm -1 is assigned to the CO 32- symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442 cm -1 shifting to lower wavenumbers with thermal treatment. A band observed at 870 cm -1 with a band of lesser intensity at 842 cm -1 shifts to higher wavenumbers upon thermal treatment and is observed at 865 cm -1 at 400 °C and is assigned to the CO 32-ν mode. No ν bending modes are observed in the Raman spectra for smithsonite. The band at 746 cm -1 shifts to 743 cm -1 at 400 °C and is attributed to the CO 32-ν in phase bending modes. Two infrared bands at 744 and around 729 cm -1 are assigned to the ν in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO 6 octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991 cm -1 in both the IE and infrared spectra are attributed to combination bands.

  8. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  9. Photoacoustic-based detector for infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Scholz, L.; Palzer, S.

    2016-07-01

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number density and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v3 band at 6046.95 cm-1 using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.

  10. Infrared Heterodyne Spectroscopy and its Unique Application to Planetary Studies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodore

    2009-01-01

    Since the early 1970's the infrared heterodyne technique has evolved into a powerful tool for the study of molecular constituents, temperatures, and dynamics in planetary atmospheres. Its extremely high spectral resolution (Lambda/(Delta)Lambda/>10(exp 6)) and highly accurate frequency measurement (to 1 part in 10(exp 8)) enabled the detection of nonthermal/natural lasing phenomena on Mars and Venus; direct measurements of winds on Venus, Mars, and Titan; study of mid-infrared aurorae on Jupiter; direct measurement of species abundances on Mars (ozone, isotopic CO2), hydrocarbons on Jupiter, Saturn., Neptune, and Titan, and stratospheric composition in the Earth's stratosphere (O3, CIO, N2O, CO2 ....). Fully resolved emission and absorption line shapes measured by this method enabled the unambiguous retrieval of molecular abundances and local temperatures and thermal structure in regions not probed by other techniques. The mesosphere of Mars and thermosphere of Venus are uniquely probed by infrared heterodyne spectroscopy. Results of these studies tested and constrained photochemical and dynamical theoretical models describing the phenomena measured. The infrared heterodyne technique will be described. Highlights in its evolution to today's instrumentation and resultant discoveries will be presented, including work at Goddard Space Flight Center and the University of Koln. Resultant work will include studies supporting NASA and ESA space missions and collaborations between instrumental and theoretical groups.

  11. Infrared Spectroscopy on Smoke Produced by Cauterization of Animal Tissue

    PubMed Central

    Gianella, Michele; Sigrist, Markus W.

    2010-01-01

    In view of in vivo surgical smoke studies a difference-frequency-generation (DFG) laser spectrometer (spectral range 2900–3144 cm−1) and a Fourier-transform infrared (FTIR) spectrometer were employed for infrared absorption spectroscopy. The chemical composition of smoke produced in vitro with an electroknife by cauterization of different animal tissues in different atmospheres was investigated. Average concentrations derived are: water vapor (0.87%), methane (20 ppm), ethane (4.8 ppm), ethene (17 ppm), carbon monoxide (190 ppm), nitric oxide (25 ppm), nitrous oxide (40 ppm), ethyne (50 ppm) and hydrogen cyanide (25 ppm). No correlation between smoke composition and the atmosphere or the kind of cauterized tissue was found. PMID:22319267

  12. Infrared Spectroscopy of Halogenated Species for Atmospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2014-06-01

    Fluorine- and chlorine-containing molecules in the atmosphere are very strong greenhouse gases, meaning that even small amounts of these gases contribute significantly to the radiative forcing of climate. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are regulated by the 1987 Montreal Protocol because they deplete the ozone layer. Hydrofluorocarbons (HFCs), which do not deplete the ozone layer and are not regulated by the Montreal Protocol, have been introduced as replacements for CFCs and HCFCs. HFCs have global-warming potentials many times greater than carbon dioxide, and are increasing in the atmosphere at a very fast rate. Various satellite instruments monitor many of these molecules by detecting infrared radiation that has passed through the Earth's atmosphere. However, the quantification of their atmospheric abundances crucially requires accurate quantitative infrared spectroscopy. This talk will focus on new and improved laboratory spectroscopic measurements for a number of important halogenated species.

  13. Nanostructured diamond layers enhance the infrared spectroscopy of biomolecules.

    PubMed

    Kozak, Halyna; Babchenko, Oleg; Artemenko, Anna; Ukraintsev, Egor; Remes, Zdenek; Rezek, Bohuslav; Kromka, Alexander

    2014-03-01

    We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.

  14. Cloud identification in atmospheric trace molecule spectroscopy infrared occultation measurements.

    PubMed

    Kahn, Brian H; Eldering, Annmarie; Irion, Fredrick W; Mills, Franklin P; Sen, Bhaswar; Gunson, Michael R

    2002-05-20

    High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed.

  15. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-01

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA's "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. The coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  16. Infrared and infrared emission spectroscopy of gallium oxide alpha-GaO(OH) nanostructures.

    PubMed

    Yang, Jing Jeanne; Zhao, Yanyan; Frost, Ray L

    2009-10-01

    Infrared spectroscopy has been used to study nano- to micro-sized gallium oxyhydroxide alpha-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like alpha-GaO(OH) crystals with average length of approximately 2.5 microm and width of 1.5 microm were prepared when the initial molar ratio of Ga to OH was 1:3. beta-Ga(2)O(3) nano and micro-rods were prepared through the calcination of alpha-GaO(OH). The initial morphology of alpha-GaO(OH) is retained in the beta-Ga(2)O(3) nanorods. The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the alpha-GaO(OH) nanotubes and the formation of beta-Ga(2)O(3) nanorods. Bands at around 2903 and 2836 cm(-1) are assigned to the -OH stretching vibration of alpha-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm(-1) are assigned to the Ga-OH deformation modes of alpha-GaO(OH). A significant number of bands are observed in the 620-725 cm(-1) region and are assigned to GaO stretching vibrations.

  17. Infrared and infrared emission spectroscopy of gallium oxide alpha-GaO(OH) nanostructures.

    PubMed

    Yang, Jing Jeanne; Zhao, Yanyan; Frost, Ray L

    2009-10-01

    Infrared spectroscopy has been used to study nano- to micro-sized gallium oxyhydroxide alpha-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like alpha-GaO(OH) crystals with average length of approximately 2.5 microm and width of 1.5 microm were prepared when the initial molar ratio of Ga to OH was 1:3. beta-Ga(2)O(3) nano and micro-rods were prepared through the calcination of alpha-GaO(OH). The initial morphology of alpha-GaO(OH) is retained in the beta-Ga(2)O(3) nanorods. The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the alpha-GaO(OH) nanotubes and the formation of beta-Ga(2)O(3) nanorods. Bands at around 2903 and 2836 cm(-1) are assigned to the -OH stretching vibration of alpha-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm(-1) are assigned to the Ga-OH deformation modes of alpha-GaO(OH). A significant number of bands are observed in the 620-725 cm(-1) region and are assigned to GaO stretching vibrations. PMID:19577510

  18. Transient Two-Dimensional Infrared Spectroscopy in a Vibrational Ladder.

    PubMed

    Kemlin, Vincent; Bonvalet, Adeline; Daniault, Louis; Joffre, Manuel

    2016-09-01

    We report on transient 2D Fourier transform infrared spectroscopy (2DIR) after vibrational ladder climbing induced in the CO-moiety longitudinal stretch of carboxyhemoglobin. The population distribution, spreading up to seven vibrational levels, results in a nonequilibrium 2DIR spectrum evidencing a large number of peaks that can be easily attributed to individual transitions thanks to the anharmonicity of the vibrational potential. We discuss the physical origin of the observed peaks as well as the qualitative behavior of the subsequent dynamics governed by population relaxation in the vibrational ladder. PMID:27508408

  19. Innovative uses of near-infrared spectroscopy in food processing.

    PubMed

    Bock, J E; Connelly, R K

    2008-09-01

    Near-infrared spectroscopy (NIRS) has experienced widespread use as an analytical tool in the last 3 decades. Researchers today are exploring ways of applying NIRS that expand beyond compositional analyses into process control. Processes such as meat tenderness evaluation, curd cutting, and dough mixing have traditionally been controlled by highly skilled master craftsmen; new NIRS research applications are demonstrating that these complex processes can be monitored and controlled in situ to produce consistent, high quality end products with online NIRS technology. Additionally, researchers also now have the potential ability to develop new nondestructive spectroscopic techniques to probe the underlying molecular evolution of these products during processing.

  20. Note: wearable near-infrared spectroscopy imager for haired region.

    PubMed

    Kiguchi, M; Atsumori, H; Fukasaku, I; Kumagai, Y; Funane, T; Maki, A; Kasai, Y; Ninomiya, A

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  1. THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft

    NASA Astrophysics Data System (ADS)

    Swain, Mark R.; Vasisht, Gautam; Henning, Thomas; Tinetti, Giovanna; Beaulieu, Jean-Phillippe

    2010-07-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities.

  2. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    SciTech Connect

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-12-10

    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  3. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses

    SciTech Connect

    Epstein, S.; Stolper, E.

    1992-01-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  4. Trace water determination in gases by infrared spectroscopy

    SciTech Connect

    Stallard, B.R.; Espinoza, L.H.; Niemczyk, T.M.

    1995-05-01

    Water determination in semiconductor process gases is desirable in order to extend the life of gas delivery systems and improve wafer yields. The authors review their work in applying Fourier transform infrared spectroscopy to this problem, where a 10 ppb detection limit has been demonstrated for water in N{sub 2}, HCl, and HBr. The potential for optical determination of other contaminants in these gases is discussed. Also, alternative optical spectroscopic approaches are briefly described. Finally, they discuss methods for dealing with interference arising from water in the instrument beam path, yet outside the sample cell.

  5. Note: Wearable near-infrared spectroscopy imager for haired region

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Atsumori, H.; Fukasaku, I.; Kumagai, Y.; Funane, T.; Maki, A.; Kasai, Y.; Ninomiya, A.

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  6. Multivariate analysis of coconut residues by near infrared spectroscopy.

    PubMed

    Rambo, M K D; Alves, A R; Garcia, W T; Ferreira, M M C

    2015-06-01

    Near infrared (NIR) spectroscopy was used to determine the content of Klason lignin, acid-soluble lignin, total lignin, extractives, ash, acid-insoluble residue, glucose, xylose, rhamnose, galactose, arabinose, mannose and total sugars in coconut residues. The samples were analyzed at several processing stages: wet unground (WU), dried unground (DU) and dried and sieved (DS). Partial least squares models were built, and the models for the analytes exhibited R(2)>0.80, with the exceptions of rhamnose, arabinose, galactose, mannose and ash from all fractions, and the lignin content from the WU fraction, which were predicted poorly (R(2)<0.70). There were some significant differences between the models for the main lignocellulosic components at the various stages of biomass. These results proved that NIR spectroscopy is useful for analysis at biorefineries, and it can be used as a faster and more economical alternative to the standard methods.

  7. Near infrared spectroscopy in the development of solid dosage forms.

    PubMed

    Räsänen, Eetu; Sandler, Niklas

    2007-02-01

    The use of near infrared (NIR) spectroscopy has rapidly grown partly due to demands of process analytical applications in the pharmaceutical industry. Furthermore, newest regulatory guidelines have advanced the increase of the use of NIR technologies. The non-destructive and non-invasive nature of measurements makes NIR a powerful tool in characterization of pharmaceutical solids. These benefits among others often make NIR advantageous over traditional analytical methods. However, in addition to NIR, a wide variety of other tools are naturally also available for analysis in pharmaceutical development and manufacturing, and those can often be more suitable for a given application. The versatility and rapidness of NIR will ensure its contribution to increased process understanding, better process control and improved quality of drug products. This review concentrates on the use of NIR spectroscopy from a process research perspective and highlights recent applications in the field.

  8. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    SciTech Connect

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens E-mail: bredenbeck@biophysik.uni-frankfurt.de

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  9. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  10. Infrared spectroscopy of AGB/post-AGB stars

    NASA Astrophysics Data System (ADS)

    Venkataraman, V.; Anandarao, B. G.

    During their asymptotic giant branch (AGB) stage, intermediate mass stars undergo substantial mass loss believed to be triggered by pulsational shocks and radiation pressure. Near-infrared spectroscopy is one of the recognised tools to study the mass loss esses. We have carried out H and K band spectroscopy at Mt Abu observatory using the NICMOS camera/spectrograph at a spectral resolution of ~ 1000 on a sample of more than 70 AGB/Post-AGB stars of different types: M types, S types, SR types and some post-AGB stars or transition objects. We present here results on the equivalent widths of various spectral lines and discuss these in the light of the intrinsic properties of these stars like the pulsation period and near and far infrared colours. On a few selected post-AGB stars, we present SPITZER archival spectra in the region 6-30 micron. The spectral features detected in this region will be highlighted. We also present modelling of circumstellar matter in a number of these stars in order to determine the mass loss rate and dust optical depths. A clear difference is seen in these parameters in different types of AGB stars. Implications of these results will be discussed in terms of evolution of these stars.

  11. Differentiation and quality estimation of Cordyceps with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Song, Ping; Sun, Su-Qin; Zhou, Qun; Feng, Shu; Tao, Jia-Xun

    2009-11-01

    Heretofore, a scientific and systemic method for differentiation and quality estimation of a well-known Chinese traditional medicine, 'Cordyceps', has not been established in modern market. In this paper, Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR) are employed to propose a method for analysis of Cordyceps. It has presented that IR spectra of real Cordyceps of different origins and counterfeits have their own macroscopic fingerprints, with discriminated shapes, positions and intensities. Their secondary derivative spectra can amplify the differences and confirm the potentially characteristic IR absorption bands 1400-1700 cm -1 to be investigated in 2D-IR. Many characteristic fingerprints are discovered in 2D-IR spectra in the range of 1400-1700 cm -1 and hetero 2D spectra of 670-780 cm -1 × 1400-1700 cm -1. The different fingerprints display different chemical constitutes. Through the three steps, different Cordyceps and their counterfeits can be discriminated effectively and their qualities distinctly display. Successful analysis of eight Cordyceps capsule products has proved the practicability of the method, which can also be applied to the quality estimation of other Chinese traditional medicines.

  12. Ante mortem identification of BSE from serum using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmitt, Jürgen; Lasch, Peter; Beekes, Michael; Udelhoven, Thomas; Eiden, Michael; Fabian, Heinz; Petrich, Wolfgang H.; Naumann, Dieter

    2004-07-01

    In our former studies a diagnostic approach for the detection of transmissible spongiform encephalopaties (TSE) based on FT-IR spectroscopy in combination with artificial neural networks was described, based on a controlled animal study with terminally ill Syrian hamsters and control animals. As a consequence of the bovine spongiform encephalopathy (BSE) crisis in Europe, the development of a disgnostic ante mortem test for cattle has become a matter of great scientific importance and public interest. Since 1986 more than 180,000 clinical cases of BSE have been observed in the UK alone. Most of these cases were confirmed by post mortem examination of brain tissue. However, BSE-related risk assessment and risk-management would greatly benefit from ante mortem testing on living animals. For example, a serum-based test could allow for screening of the cattle population, thus, even a BSE eradication program would be conceivable. Here we report on a novel method for ante mortem BSE testing, which combines infrared spectroscopy of serum samples with multivariate pattern recognition analysis. A classification algorithm was trained using infrared spectra of sera from more than 800 animals from a field study (including BSE positive, healthy controls and animals suffering from viral or bacterial infections). In two validation studies sensitivities of 85% and 87% and specificities of 84% and 91% were achieved, respectively. The combination of classification algorithms increased sensitivity and specificity to 96% and 92%, respectively.

  13. Infrared Laser-Induced Breakdown Spectroscopy of Alkali Metal Halides

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2008-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. LIBS is a relatively simple technique and has been successfully employed in applications such as environmental monitoring, materials analysis, medical diagnostics, industrial process control, and homeland security. Most LIBS applications are limited to emission features in the ultraviolet-visible-near infrared (UV-VIS-NIR) region arising from atoms and simple molecular fragments. In the present work, we report on the observation of mid- infrared emission lines from alkali metal halides due to laser-induced breakdown processes. The studied alkali metal halides included LiCl, NaCl, NaBr, KCl, KBr, KF, RbCl, and RbBr. The laser-induced plasma was produced by focusing a 16 mJ pulsed Nd:YAG laser (1064 nm) on the target. The LIBS infrared emission from alkali halides showed intense and narrow bands located in the region from 2-8 μm. The observed emission features were assigned to atomic transitions between higher-lying Rydberg states of neutral alkali atoms. More detailed results of the performed IR LIBS studies on alkali metal halides will be discussed at the conference.

  14. Synchrotron infrared and Raman spectroscopy of microdiamonds from Erzgebirge, Germany

    SciTech Connect

    Dobrzhinetskaya,L.; Liu, Z.; Cartigny, P.; Zhang, J.; Tchkhetia, D.; Hemley, R.; Green, H.

    2006-01-01

    Metamorphic diamonds from the Erzgebirge, Germany have been investigated using synchrotron infrared absorption, Raman scattering, and fluorescence spectroscopy. Infrared absorption features associated with C-C, C-H bonds, molecular H{sub 2}O, OH- and CO{sub 3}{sup 2-} radicals, and N-impurities were observed. The results suggest that a carbon-oxygen-hydrogen (COH) supercritical fluid is the most probable concept to explain the origin of diamonds from ultrahigh-pressure metamorphic terranes (UHPM). Investigation of the nitrogen impurities suggests that the Erzgebirge diamonds belong to the Type 1b-1aA, which is similar to metamorphic diamonds from the Kokchetav massif of Kazakhstan and the Western Gneiss Region of Norway, and differentiates them from other nitrogen-bearing diamonds from kimberlitic sources (Type 1aAB). The occurrence of nitrogen impurities as single atoms in the crystal lattice implies that the Erzgebirge diamonds had a short residence at high-pressure and high-temperature, which therefore suggests a possibility for very fast exhumation. Both infrared and previous studies of nanoinclusions using a transmission electron microscope support a concept of diamond crystallization from a COH rich supercritical fluid.

  15. Broadband infrared imaging spectroscopy for standoff detection of trace explosives

    NASA Astrophysics Data System (ADS)

    Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; McGill, R. Andrew

    2016-05-01

    This manuscript describes advancements toward a mobile platform for standoff detection of trace explosives on relevant substrates using broadband infrared spectroscopic imaging. In conjunction with this, we are developing a technology for detection based on photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). PT-IRIS leverages one or more IR quantum cascade lasers (QCL), tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. Here we describe methods to increase both sensitivity to trace explosives and selectivity between different analyte types by exploiting a broader spectral range than in previous configurations. Previously we demonstrated PT-IRIS at several meters of standoff distance indoors and in field tests, while operating the lasers below the infrared eye-safe intensity limit (100 mW/cm2). Sensitivity to explosive traces as small as a single 10 μm diameter particle (~1 ng) has been demonstrated.

  16. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  17. [Study on the soil mid-infrared photoacoustic spectroscopy].

    PubMed

    Du, Chang-wen; Zhou, Jian-min; Wang, Huo-yan; Zhang, Jia-bao; Zhu, An-ning

    2008-06-01

    Infrared photoacoustic spectroscopy (PAS) is a new style to obtain data based on photoacoustic theory. Photoacoustic thoeory is based on the absorption of electromagnetic radiation by analyte molecules, and the absorbed energy is measured by detecting pressure fluctuations in the form of sound waves or shock pulses. In contrast to conventional absorption spectroscopy, PAS allows the determination of absorption coefficients over several orders of magnitude, even in very black and strongly scattering soil samples. Red soil, fulvic soil and paddy soil were collected from Fengqiu National Ecological Experimental Station, Yingtan Red Soil Experimental Station, and Changshu Ecological Experimental Station, respectively. These soil samples were used as experimental materials to characterize the Fourier transform mid-infrared photoacoustic spectra (FTIR-PAS). Compared with infrared transmittance spectra and reflectance spectra, the testing of FTIR-PAS spectra was very fast and convenient without any pr-treatment, and there were more abundant absorptions as well as appropriate absorption values in the spectra; The main soil components (kaolin, bentonite, sand and CaCO3) also showed several strong absorptions with specific characteristics in the spectra; Further more, the interference of water with the PAS spectra was significantly smaller than that with reflectance spectra. Therefore, the soil properties could be better characterized by FTIR-PAS. The principal components analysis based on the FTIR-PAS spectra indicated that there were two main principal components (PCA1, PCA2) which contained 98.17% variance of the spectra, and the two-dimensionol distribution was made by plotting these two principal components to classify the soil type, and the results indicated that this distribution could be applied to distinguish soil type, which provided new technique for soil identification as well as further quantitative analysis in soil science.

  18. Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen

    PubMed Central

    Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim

    2015-01-01

    Background Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. Methodology The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. Results The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps. PMID:25867755

  19. Infrared molecular binding spectroscopy realized in sorbent coated microfabricated devices

    NASA Astrophysics Data System (ADS)

    McGill, R. Andrew; Stievater, Todd H.; Pruessner, Marcel W.; Holmstrom, Scott A.; Nierenberg, Kerry; McGill, Rachel; Nguyen, Viet; Park, Doewon; Kendziora, Christopher; Furstenberg, Robert

    2014-05-01

    Sorbent materials are utilized in a range of analytical applications including coatings for preconcentrator devices, chromatography stationary phases, and as thin film transducer coatings used to concentrate analyte molecules of interest for detection. In this work we emphasize the use of sorbent materials to target absorption of analyte vapors and examine their molecular interaction with the sorbent by optically probing it with infrared (IR) light. The complex spectral changes which may occur during molecular binding of specific vapors to target sites in a sorbent can significantly aid in analyte detection. In this work a custom hydrogen-bond (HB) acidic polymer, HCSFA2, was used as the sorbent. HCSFA2 exhibits a high affinity for hazardous vapors with hydrogen-bond (HB) basic properties such as the G-nerve agents. Using bench top ATR-FTIR spectroscopy the HFIP hydroxyl stretching frequency has been observed in the mid wave infrared (MWIR) to shift by up to 700 wavenumbers when exposed to a strong HB base. The amount of shift is related to the HB basicity of the vapor. In addition, the large analyte polymer-gas partition coefficients sufficiently concentrate the analyte in the sorbent coating to allow spectral features of the analyte to be observed in the MWIR and long wave infrared (LWIR) while it is sorbed to HCSFA2. These spectral changes, induced by analyte-sorbent molecular binding, provide a rich signal feature space to consider selective detection of a wide range of chemical species as single components or complex mixtures. In addition, we demonstrate an HCSFA2 coated microbridge structure and micromechanical photothermal spectroscopy to monitor spectral changes when a vapor sorbs to HCSFA2. Example ATR-FTIR and microbridge spectra with exposures to dimethylmethylphosphonate (DMMP - G nerve agent simulant) and other vapors are compared. In a generic form we illustrate the concept of this work in Figure 1. The results of this work provide the potential to

  20. [Rapid determination of beet sugar content using near infrared spectroscopy].

    PubMed

    Yang, Yong; Ren, Jian; Zheng, Xi-Qun; Zhao, Li-Ying; Li, Mao-Mao

    2014-10-01

    In order to classify and set different prices on basis of difference of beet sugar content in the acquisition process and promote the development of beet sugar industry healthily, a fast, nondestructive, accurate method to detect sugar content of beet was determined by applying near infrared spectroscopy technology. Eight hundred twenty samples from 28 representative varieties of beet were collected as calibration set and 70 samples were chosen as prediction set. Then near infrared spectra of calibration set samples were collected by scanning, effective information was extracted from NIR spectroscopy, and the original spectroscopy data was optimized by data preprocessing methods appropriately. Then partial least square(PLS)regression was used to establish beet sugar quantitative prediction mathematical model. The performances of the models were evaluated by the root mean square of cross-validation (RMSECV), the coefficient of determination (R2) of the calibration model and the standard error of prediction (SEP), and the predicted results of these models were compared. Results show that the established mathematical model by using first derivative (FD) and standard normal variate transformation (SNV) coupled with partial least squares has good predictive ability. The R2 of calibration models of sugar content of beet is 0.908 3, and the RMSECV is 0.376 7. Using this model to forecast the prediction set including 70 samples, the correlation coefficient is 0.921 4 between predicted values and measured values, and the standard error of prediction (SEP) is 0.439, without significant difference (p > 0.05) between predicted values and measured values. These results demonstrated that NIRS can take advantage of simple, rapid, nondestructive and environmental detection method and could be applied to predict beet sugar content. This model owned high accuracy and can meet the precision need of determination of beet sugar content. This detection method could be used to classify

  1. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  2. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  3. Potential of Raman and Infrared Spectroscopy for Plant Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, H.

    2008-11-01

    Various mid-infrared (MIR) and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in selected horticultural and agricultural crops are presented. Generally, both spectroscopy techniques allow to identify simultaneously characteristic key bands of individual plant components (e.g. carotenoids, alkaloids, polyacetylenes, fatty acids, amino acids, terpenoids). In contrast to MIR methods Raman spectroscopy mostly does not need any sample pre-treatment; even fresh plant material can be analysed without difficulty because water shows only weak Raman scattering properties. In some cases a significant sensivity enhancement of Raman signals can be achieved if the exciting laser wavelength is adjusted to the absorption range of particular plant chromophores such as carotenoids (Resonance Raman effect). Applying FT-IR or FT Raman micro-spectroscopy the distribution of certain plant constituents in the cell wall can be identified without the need for any physical separation. Furthermore it is also possible to analyse secondary metabolites occurring in the cell vacuoles if significant key bands do not coincide with the spectral background of the plant matrix.

  4. Classification of burn injuries using near-infrared spectroscopy.

    PubMed

    Sowa, Michael G; Leonardi, Lorenzo; Payette, Jeri R; Cross, Karen M; Gomez, Manuel; Fish, Joel S

    2006-01-01

    Early surgical management of those burn injuries that will not heal spontaneously is critical. The decision to excise and graft is based on a visual assessment that is often inaccurate but yet continues to be the primary means of grading the injury. Superficial and intermediate partial-thickness injuries generally heal with appropriate wound care while deep partial- and full-thickness injuries generally require surgery. This study explores the possibility of using near-infrared spectroscopy to provide an objective and accurate means of distinguishing shallow injuries from deeper burns that require surgery. Twenty burn injuries are studied in five animals, with burns covering <1% of the total body surface area. Carefully controlled superficial, intermediate, and deep partial-thickness injuries as well as full-thickness injuries could be studied with this model. Near-infrared reflectance spectroscopy was used to evaluate these injuries 1 to 3 hours after the insult. A probabilistic model employing partial least-squares logistic regression was used to determine the degree of injury, shallow (superficial or intermediate partial) from deep (deep partial and full thickness), based on the reflectance spectrum of the wound. A leave-animal-out cross-validation strategy was used to test the predictive ability of a 2-latent variable, partial least-squares logistic regression model to distinguish deep burn injuries from shallow injuries. The model displayed reasonable ranking quality as summarized by the area under the receiver operator characteristics curve, AUC = 0.879. Fixing the threshold for the class boundaries at 0.5 probability, the model sensitivity (true positive fraction) to separate deep from shallow burns was 0.90, while model specificity (true negative fraction) was 0.83. Using an acute porcine model of thermal burn injuries, the potential of near-infrared spectroscopy to distinguish between shallow healing burns and deeper burn injuries was demonstrated. While

  5. Rapid Bacterial Identification Using Fourier Transform Infrared Spectroscopy

    SciTech Connect

    Valentine, Nancy B.; Johnson, Timothy J.; Su, Yin-Fong; Forrester, Joel B.

    2007-02-01

    Recent studies at Pacific Northwest National Laboratory (PNNL) using infrared spectroscopy combined with statistical analysis have shown the ability to identify and discriminate vegetative bacteria, bacterial spores and background interferents from one another. Since the anthrax releases in 2001, rapid identification of unknown powders has become a necessity. Bacterial endospores are formed by some Bacillus species as a result of the vegetative bacteria undergoing environmental stress, e.g. a lack of nutrients. Endospores are formed as a survival mechanism and are extremely resistant to heat, cold, sunlight and some chemicals. They become airborne easily and are thus readily dispersed which was demonstrated in the Hart building. Fourier Transform Infrared (FTIR) spectroscopy is one of several rapid analytical methods used for bacterial endospore identification. The most common means of bacterial identification is culturing, but this is a time-consuming process, taking hours to days. It is difficult to rapidly identify potentially harmful bacterial agents in a highly reproducible way. Various analytical methods, including FTIR, Raman, photoacoustic FTIR and Matrix Assisted Laser Desorption/Ionization (MALDI) have been used to identify vegetative bacteria and bacterial endospores. Each has shown certain areas of promise, but each has shortcomings in terms of sensitivity, measurement time or portability. IR spectroscopy has been successfully used to distinguish between the sporulated and vegetative state. [1,2] It has also shown its utility at distinguishing between the spores of different species. [2-4] There are several Bacillus species that occur commonly in nature, so it is important to be able to distinguish between the many different species versus those that present an imminent health threat. The spectra of the different sporulated species are all quite similar, though there are some subtle yet reproducible spectroscopic differences. Thus, a more robust and

  6. Cation Far Infrared Vibrational Spectroscopy of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kong, W.; Zhang, J.; Han, F.

    2009-06-01

    The far infrared (FIR) region is crucial for spectroscopic investigations because of the existence of skeletal modes of moderately sized molecules. However, our knowledge of FIR modes is significantly lacking, largely due to the limited availability of light sources and detectors in this spectral region. The technique "pulsed field ionization zero kinetic energy electron spectroscopy" (PFI-ZEKE) is ideal for studies of FIR spectroscopy. This is because the low internal energy of the cation associated with the skeletal modes is particularly beneficial for the stability of the corresponding Rydberg states. In this work, we report our effort in studies of FIR spectroscopy of cationic polycyclic aromatic hydrocarbons (PAH). Using laser desorption, we can vaporize the non-volatile PAH for gas phase spectroscopy. To ensure the particle density and therefore the critical ion density in prolonging the lifetime of Rydberg electrons, we have used a "chamber-in-a-chamber" design and significantly shortened the distance between the desorption region and the detection region. From our studies of catacondensed PAHs, we have observed the emergence of the flexible waving modes with the increasing length of the molecular ribbon. Pericondensed PAHs, on the other hand, have shown significant out of plane IR active transitions. The planarity of the molecular frame is therefore a question of debate. The FIR modes are also interesting for another reason: they are also telltales of the precision of modern computational packages. The combination of experimental and theoretical studies will help with the identification of the chemical composition of the interstellar medium. This effort therefore directly serves the missions of the Spitzer Space Observatory and more importantly, the missions of the Herschel Space Observatory.

  7. Detecting counterfeit antimalarial tablets by near-infrared spectroscopy.

    PubMed

    Dowell, Floyd E; Maghirang, Elizabeth B; Fernandez, Facundo M; Newton, Paul N; Green, Michael D

    2008-11-01

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discriminating between counterfeit and genuine artesunate antimalarial tablets. Using NIRS, we found that artesunate tablets could be identified as genuine or counterfeit with high accuracy. Multivariate classification models indicated that this discriminatory ability was based, at least partly, on the presence or absence of spectral signatures related to artesunate. This technique can be field-portable and requires little training after calibrations are developed, thus showing great promise for rapid and accurate fake detection. PMID:18703302

  8. Discrimination of different Chrysanthemums with Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Zhou, Qun; Sun, Su-qin; Bao, Hong-juan

    2008-07-01

    Use Fourier transform infrared spectroscopy (FT-IR) to analyze simultaneously the main chemical constituents in different solvent extracts of seven kinds of Chrysanthemum samples of different regions. The findings indicate that different Chrysanthemum samples have dissimilar fingerprint characters in FT-IR spectra. Such spectral technique can provide substance structural information of the complicated test samples. According to these spectral fingerprint features, we cannot only identify the main components of different extracts, but also distinguish the origins of the Chrysanthemum samples from different regions easily, which is a troublesome work by existing analytical methods. FT-IR, with the characters of speediness, good repeatability and easy operation, can be used as an effective analytical means to study the complicated system, in our research, the tradition Chinese medicines.

  9. Functional near-infrared spectroscopy studies in children

    PubMed Central

    2012-01-01

    Psychosomatic and developmental behavioral medicine in pediatrics has been the subject of significant recent attention, with infants, school-age children, and adolescents frequently presenting with psychosomatic, behavioral, and psychiatric symptoms. These may be a consequence of insecurity of attachment, reduced self-confidence, and peer -relationship conflicts during their developmental stages. Developmental cognitive neuroscience has revealed significant associations between specific brain lesions and particular cognitive dysfunctions. Thus, identifying the biological deficits underlying such cognitive dysfunction may provide new insights into therapeutic prospects for the management of those symptoms in children. Recent advances in noninvasive neuroimaging techniques, and especially functional near-infrared spectroscopy (NIRS), have contributed significant findings to the field of developmental cognitive neuroscience in pediatrics. We present here a comprehensive review of functional NIRS studies of children who have developed normally and of children with psychosomatic and behavioral disorders. PMID:22433235

  10. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    SciTech Connect

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  11. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  12. Cardiac tissue characterization using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh Moon, Rajinder; Hendon, Christine P.

    2014-03-01

    Cardiac tissue from swine and canine hearts were assessed using diffuse reflectance near-infrared spectroscopy (NIRS) ex vivo. Slope measured between 800-880 nm reflectance was found to reveal differences between epicardial fat and normal myocardium tissue. This parameter was observed to increase monotonically from measurements obtained from the onset of radiofrequency ablation (RFA). A sheathe-style fiber optic catheter was then developed to allow real-time sampling of the zone of resistive heating during RFA treatment. A model was developed and used to extract changes in tissue absorption and reduced scattering based on the steady-state diffusion approximation. It was found that key changes in tissue optical properties occur during application of RF energy and can be monitored using NIRS. These results encourage the development of NIRS integrated catheters for real-time guidance of the cardiac ablation treatment.

  13. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  14. Review of functional near-infrared spectroscopy in neurorehabilitation.

    PubMed

    Mihara, Masahito; Miyai, Ichiro

    2016-07-01

    We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain-computer interface and neurofeedback. PMID:27429995

  15. Infrared spectroscopy of self-assembled monolayer films on silicon

    NASA Astrophysics Data System (ADS)

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  16. Femtosecond infrared spectroscopy of channelrhodopsin-1 chromophore isomerization

    PubMed Central

    Stensitzki, T.; Yang, Y.; Muders, V.; Schlesinger, R.; Heberle, J.; Heyne, K.

    2016-01-01

    Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm−1 was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6) %. We found additional time constants of (0.55 ± 0.05) ps and (6 ± 1) ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal. PMID:27191011

  17. Characteristic wavelength of textile fiber in near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Hongnian; Jin, Shangzhong; Gan, Bin

    2006-01-01

    Near Infrared (NIR) spectroscopy in the region from 1300 to 1700nm, coupled with multivariate analytic statistical techniques, have been used to predict the chemical properties of textile fiber. Molecule absorbs electromagnetic wave with especial wavelength, which leads to bring characteristic absorption spectrum. Characteristic wavelength is the most important parameter in NIR detection. How to select characteristic wavelength is the key to NIR measure. Different mathematical methods are used to find relationship between the NIR absorption spectrum and the chemical properties of the textile fiber. We adopt stepwise multiple linear regression (SMLR) to select characteristic wavelength. As objective condition is limited, this article only refers to cotton and terylene. By computing correlation coefficient, we establish calibration equation with the smoothed absorbance data. Finally, the bias was controlled under 6%. Then, we find that NIR can be used to carry on qualitative analysis and quantitative analysis of the textile.

  18. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.

  19. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in realtime. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors

  20. Mid-Infrared Spectroscopy of Persistent Leonid Trains

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Rossano, George S.; Chatelain, Mark A.; Lynch, David K.; Tessensohn, Ted K.; Abendroth, Eric; Kim, Daryl; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The first infrared spectroscopy in the 3-13 micron region has been obtained of several persistent Leonid meteor trains with two different instrument types, one at a desert ground-based site and the other on-board a high-flying aircraft. The spectra exhibit common structures assigned to enhanced emissions of warm CH4, CO2, CO and H2O which may originate from heated trace air compounds or materials created in the wake of the meteor. This is the first time that any of these molecules has been observed in the spectra of persistent trains. Hence, the mid-IR observations offer a new perspective on the physical processes that occur in the path of the meteor at some time after the meteor itself has passed by. Continuum emission is observed also, but its origin has not yet been established. No 10 micron dust emission feature has been observed.

  1. Chemical analysis of surgical smoke by infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Gianella, Michele; Sigrist, Markus W.

    2012-11-01

    The chemical composition of surgical smoke, a gaseous by-product of some surgical devices—lasers, drills, vessel sealing devices—is of great interest due to the many toxic components that have been found to date. For the first time, surgical smoke samples collected during routine keyhole surgery were analyzed with infrared laser spectroscopy. Traces (ppm range) of methane, ethane, ethylene, carbon monoxide and sevoflurane were detected in the samples which consisted mostly of carbon dioxide and water vapor. Except for the anaesthetic sevoflurane, none of the compounds were present at dangerous concentrations. Negative effects on the health of operation room personnel can be excluded for many toxic compounds found in earlier studies, since their concentrations are below recommended exposure limits.

  2. Infrared spectroscopy of molecules with nanorod arrays: a numerical study.

    PubMed

    Tardieu, Clément; Vincent, Grégory; Haïdar, Riad; Collin, Stéphane

    2016-04-15

    Nanorod arrays with diameters much smaller than the wavelength exhibit sharp resonances with strong electric-field enhancement and angular dependence. They are investigated for enhanced infrared spectroscopy of molecular bonds. The molecule 3-cyanopropyldimethylchlorosilane (CS) is taken as a reference, and its complex permittivity is determined experimentally in the 3-5 μm wavelength range. When grafted on silicon nitride nanorods, we show numerically that its weak absorption bands due to chemical bond vibrations can be enhanced by several orders of magnitude compared with unstructured thin film. We propose a figure of merit (FoM) to assess the performance of this spectroscopic scheme, and we study the impact of the nanorod cross section on the FoM.

  3. Recent advances in fetal near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Antona, Donato; Aldrich, Clive J.; O'Brien, Patrick; Lawrence, Sally; Delpy, David T.; Wyatt, John S.

    1997-01-01

    Fetal brain injury resulting from hypoxia and ischemia during labor remains an important cause of death and long- term disability. However, little is known about fetal brain oxygenation and hemodynamics. There are currently no satisfactory clinical techniques for fetal monitoring and there remains a need for a new method to assess brain oxygenation. Fetal near infrared spectroscopy (NIRS) is a new technique that allows noninvasive observation of changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin to be made during labor. A specially designed optical probe is inserted through the dilated cervix and placed against the fetal head. It is then possible to compare changes in NIRS data with other observations of fetal conditions, such as fetal heart rate and acid-base status.

  4. Imaging infrared spectroscopy for fixation-free liver tumor detection

    NASA Astrophysics Data System (ADS)

    Coe, James V.; Chen, Zhaomin; Li, Ran; Butke, Ryan; Miller, Barrie; Hitchcock, Charles L.; Allen, Heather C.; Povoski, Stephen P.; Martin, Edward W.

    2014-03-01

    Infrared (IR) imaging spectroscopy of human liver tissue slices has been used to identify and characterize a liver metastasis of breast origin (mucinous carcinoma) which was surgically removed from a consenting patient and frozen without formalin fixation or dehydration procedures, so that lipids and water remain in the tissues. Previously, a set of IR metrics was determined for tumors in fixation-free liver tissues facilitating a k-means cluster analysis differentiating tumor from nontumor. Different and more in depth aspects of these results are examined in this work including three metric color imaging, differencing for lipid identification, and a new technique to simultaneously fit band lineshapes and their 2nd derivatives in order to better characterize protein changes.

  5. Biochemical and physiological basis of medical near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Joebsis-vander Vliet, Frans F.; Joebsis, Paul

    1999-10-01

    Near infrared spectroscopy (NIRS) can monitor both the redox status of Cytochrome c oxidase located in the mitochondria within the cell and the oxygenation of the blood in the tissue being monitored. Since the enzyme catalyzes more than 90% of oxygen utilization, it is the sink for the oxygen while the hemoglobin in the capillaries is the oxygen source. In order to evaluate the oxidative metabolic status of a tissue the optical data obtained from both molecules are commonly interpreted in the basis of test tube experiments with purified preparations. We are concerned that the validity of this practice may not have been tested sufficiently and raise four basic questions that have not yet been answered. Citing some examples of in vitro versus in vivo differences we conclude that more effort should be expended on the in vivo testing of the range of the signals, their natural variability, and the physiological and pathological meaning of their deviations from norm.

  6. Femtosecond infrared spectroscopy of channelrhodopsin-1 chromophore isomerization.

    PubMed

    Stensitzki, T; Yang, Y; Muders, V; Schlesinger, R; Heberle, J; Heyne, K

    2016-07-01

    Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm(-1) was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6) %. We found additional time constants of (0.55 ± 0.05) ps and (6 ± 1) ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal. PMID:27191011

  7. Development of Noninvasive Blood Glucose Sensor Using the Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujita, Keiichi; Tamura, Kazuto; Kaneko, Wataru; Ishizawa, Hiroaki; Toba, Eiji

    Recently, diabetics have been steadily increasing, because change of diet, lack of exercise, increase an alcoholic intake, and increase a stress. It is a very serious problem for us. About 23.6 millions of people in Japan approach the danger of diabetes. Therefore, it is necessary to get insulin injection. And they have to measure blood glucose again and again a day. So, they are burden too heavy. This paper describes a new noninvasive measurement of blood glucose based on optical sensing. This uses Fourier transform infrared spectroscopy of attenuated total reflection. Non-invasive measurement was carried out by using 3 methods. And standard error of prediction is about ±20mg/dl by 3 method. This paper also describes practical application of this method.

  8. Infrared Spectroscopy of HNO and Noh Suspended in Solid Parahydrogen

    NASA Astrophysics Data System (ADS)

    Anderson, David T.; Ruzi, Mahmut

    2013-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, the NOH is synthesized by co-deposition of NO/Ar and a H_2/Ar mixture that is passed through a microwave discharge to create H-atoms. The H-atoms recombine with NO in the Ar matrix to produce mostly HNO, but some NOH is produced as well. In this work we irradiate NO doped parahydrogen solids at 2 K using 193 nm radiation which is known to generate H-atoms as by-products. After the photolysis laser is stopped, we detect growth of HNO and NOH presumably due to reactions of H-atoms with NO analogous to the previous Ar matrix study. The higher energy NOH isomer is predicted by high-level calculations to be in a triplet ground electronic state. Interestingly, the infrared absorptions of NOH for the two observed vibrational modes (bend and OH stretch) display fine structure; an intense central peak with smaller peaks spaced symmetrically to both lower and higher wavenumbers. Further, the spacing between the peaks is the same for both vibrational modes. We believe this fine structure reflects the zero-field splitting of the triplet ground state of NOH (magnetic dipole-dipole interaction) and our most current results and analysis will be presented. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). M. Fushitani and T. Momose, Low Temp. Phys. 29, 740-743 (2003). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012).

  9. Trace water vapor determination in corrosive gases by infrared spectroscopy

    SciTech Connect

    Stallard, B.R.; Rowe, R.K.; Garcia, M.J.; Haaland, D.M.; Espinoza, L.H.; Niemczyk, T.M.

    1993-12-01

    To extend the life of gas delivery systems and improve wafer yields, there is a need for an in-line monitor of H{sub 2}O contamination. Goal of this project is to develop such an instrument, based on infrared spectroscopy, that has a detection limit of 30 ppB or better and costs $50K or less. This year`s work considered the application of Fourier transform infrared (FTIR) spectroscopy to H{sub 2}O detection in N{sub 2} and HCl. Using a modified commercial FTIR spectrometer and a long-path gas cell, a detection limit of about 10 ppB was demonstrated for H{sub 2}O in N{sub 2} and HCl. This includes about a factor of three improvement achieved by applying quantitative multivariate calibration methods to the problem. Absolute calibration of the instrument was established from absorptivities of prominent H{sub 2}O bands between 3600 and 3910 cm{sup {minus}1}. Methods are described to minimize background moisture in the beam path. Spectral region, detector type, resolution, cell type, and path length were optimized. Resolving the narrow H{sub 2}O bands (FWHM {approx} 0.20 cm{sup {minus}1}) is not necessary to achieve optimal sensitivity. In fact, optimal sensitivity is achieved at 2 to 4 cm{sup {minus}1} resolution, allowing the use of an inexpensive interferometer. A much smaller, second generation instrument is described that will have a conservatively estimated detection limit of 1 ppB. Since the present laboratory instrument can be duplicated in its essential parts for about $90K, it is realistic to project a cost of $50K for the new instrument. An accessory for existing FTIR spectrometers was designed that may be marketed for as little as $10K.

  10. Infrared spectroscopy and microscopy in cancer research and diagnosis

    PubMed Central

    Bellisola, Giuseppe; Sorio, Claudio

    2012-01-01

    Since the middle of 20th century infrared (IR) spectroscopy coupled to microscopy (IR microspectroscopy) has been recognized as a non destructive, label free, highly sensitive and specific analytical method with many potential useful applications in different fields of biomedical research and in particular cancer research and diagnosis. Although many technological improvements have been made to facilitate biomedical applications of this powerful analytical technique, it has not yet properly come into the scientific background of many potential end users. Therefore, to achieve those fundamental objectives an interdisciplinary approach is needed with basic scientists, spectroscopists, biologists and clinicians who must effectively communicate and understand each other's requirements and challenges. In this review we aim at illustrating some principles of Fourier transform (FT) Infrared (IR) vibrational spectroscopy and microscopy (microFT-IR) as a useful method to interrogate molecules in specimen by mid-IR radiation. Penetrating into basics of molecular vibrations might help us to understand whether, when and how complementary information obtained by microFT-IR could become useful in our research and/or diagnostic activities. MicroFT-IR techniques allowing to acquire information about the molecular composition and structure of a sample within a micrometric scale in a matter of seconds will be illustrated as well as some limitations will be discussed. How biochemical, structural, and dynamical information about the systems can be obtained by bench top microFT-IR instrumentation will be also presented together with some methods to treat and interpret IR spectral data and applicative examples. The mid-IR absorbance spectrum is one of the most information-rich and concise way to represent the whole “… omics” of a cell and, as such, fits all the characteristics for the development of a clinically useful biomarker. PMID:22206042

  11. Localized photothermal infrared spectroscopy using a proximal probe

    NASA Astrophysics Data System (ADS)

    Bozec, L.; Hammiche, A.; Pollock, H. M.; Conroy, M.; Chalmers, J. M.; Everall, N. J.; Turin, L.

    2001-11-01

    A near-field thermal probe, as used in scanning thermal microscopy, is used to obtain photothermal Fourier transform infrared (FT-IR) spectra of polymers, as a first step toward developing FT-IR microscopy at a spatial resolution better than the diffraction limit. The signal from the probe after amplification provides an interferogram, and the resultant spectra are consistent with those obtained by means of the established technique of attenuated total reflection FT-IR spectroscopy. We have extended this technique to the analysis of "real-world" industrial samples, both solid (a fungicide in a fine powder form) and liquid (a concentrated surfactant solution). The overall shapes of the main peaks or bands reflect the fact that the spectrum is a convolution of different contributions from both optical and thermal properties. To confirm the feasibility of subsurface detection of polymers, we demonstrate the ability of the technique to perform spectroscopic detection of a model polymeric bilayer system, polyisobutylene on top of polystyrene. A quantitative analysis of the variation of peak height with coating thickness allows values of thermal diffusion length to be derived. This investigation provides a preliminary result for the understanding of the depth sensitivity of the current setup. Relative intensity distortions are seen, and are attributed to photothermal saturation. A complementary technique has been developed that uses tunable monochromatic radiation, using an optical parametric generator as the infrared source. Spectra have successfully been obtained using the same localized photothermal detection principle.

  12. Understanding coal using thermal decomposition and fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Solomon, P. R.; Hamblen, D. G.

    1981-02-01

    Fourier Transform Infrared Spectroscopy (FTIR) is being used to provide understanding of the organic structure of coals and coal thermal decomposition products. The research has developed a relationship between the coal organic structure and the products of thermal decomposition. The work has also led to the discovery that many of the coal structural elements are preserved in the heavy molecular weight products (tar) released in thermal decomposition and that careful analysis of these products in relation to the parent coal can supply clues to the original structure. Quantitative FTIR spectra for coals, tars and chars are used to determine concentrations of the hydroxyl, aliphatic and aromatic hydrogen. Concentrations of aliphatic carbon are computed using an assumed aliphatic stoichiometry; aromatic carbon concentrations are determined by difference. The values are in good agreement with date determined by 13C and proton NMR. Analysis of the solid produ ts produced by successive stages in the thermal decomposition provides information on the changes in the chemical bonds occurring during the process. Time resolved infrared scans (129 msec/scan) taken during the thermal decomposition provide data on the amount, composition and rate of evolution of light gas species. The relationship between the evolved light species and their sources in the coal is developed by comparing the rate of evolution with the rate of change in the chemical bonds. With the application of these techniques, a general kinetic model has been developed which relates the products of thermal decomposition to the organic structure of the parent coal.

  13. A near-infrared spectroscopy computational model for cerebral hemodynamics.

    PubMed

    Kannan, R; Przekwas, A

    2012-11-01

    Near infrared spectroscopy (NIRS) is a technique used to detect and measure changes in the concentrations of oxygenated hemoglobin, deoxygenated hemoglobin, and water in tissues based on the differential absorption, scattering, and refraction of the near infrared light. In this imaging technique, the optical properties of tissues are reconstructed from the measurements obtained from the sensors located on the boundary. A computational method for the rapid noninvasive detection ∕ quantification of cerebral hemorrhage is described using the above procedure. CFD Research Corporation's finite volume computational biology code was used to numerically mimic the NIRS procedure by (i) noninvasively 'numerically penetrating' the brain tissues and (ii) reconstructing the optical properties the presence of water, oxygenated, and deoxygenated blood. These numerical noninvasive measurements are then used to predict the extent and severity of the brain hemorrhage. The paper also discusses ideas to obtain the location and the severity of a localized injury. Two-dimensional and three-dimensional simulations are performed as a proof of concept for the numerical formulation being feasible for the above mentioned detection/quantification. The results demonstrate that this numerical NIRS formulation can be used as a noninvasive technique for both qualitative and quantitative evaluation of cerebral hemodynamics.

  14. Pulsed near-infrared photoacoustic spectroscopy of blood

    NASA Astrophysics Data System (ADS)

    Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.

    2004-07-01

    The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.

  15. Aerosol collection and analysis using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Wong, Diane M.; Meyer, Gerald J.; Roelant, Geoffrey J.; Williams, Barry R.; Miles, Ronald W., Jr.; Manning, Christopher J.

    2004-08-01

    Infrared spectroscopy is routinely employed for the identification of organic molecules and, more recently, for the classification of biological materials. We have developed a sample collection method that facilitates infrared analysis of airborne particulates using a diffuse reflectance (DR) technique. Efforts are underway to extend the method to include simultaneous analysis of vapor phase organics by using adsorbent substrates compatible with the DR technique. This series of laboratory results provides proof-of-principle for both the sample collection and data collection processes. Signal processing of the DR spectra is shown to provide rapid qualitative identification of representative aerosol materials, including particulate matter commonly found in the environment. We compare the results for such materials as bacterial spores, pollens and molds, clays and dusts, smoke and soot. Background correction analysis is shown to be useful for differentiation and identification of these constituents. Issues relating to complex mixtures of environmental samples under highly variable conditions are considered. Instrumentation development and materials research are now underway with the aim of constructing a compact sampling system for near real-time monitoring of aerosol and organic pollutants. A miniature, tilt-compensated Fourier transform spectrometer will provide spectroscopic interrogation. A series of advanced digital signal processing methods are also under development to enhance the sensor package. The approach will be useful for industrial applications, chemical and biological agent detection, and environmental monitoring for chemical vapors, hazardous air pollutants, and allergens.

  16. Infrared Predissociation Spectroscopy of H_2-TAGGED Dicarboxylic Acid Anions

    NASA Astrophysics Data System (ADS)

    Wolk, Arron B.; Kamrath, Michael Z.; Leavitt, Christopher M.; Johnson, Mark A.

    2011-06-01

    Singly charged dicarboxylic acid anions, studied in depth by Wang et al. offer insight into the role of ring strain and conformation on the formation of intramolecular hydrogen bonds. These shared proton bonds, common in proteins and polymer systems, can be crucial in secondary and tertiary structure formation. By tracking the infrared spectra of dicarboxylic acid anions as charge and aliphatic chain length are varied, the tendency of these anions to form ring-like structures with an internally shared proton can be asssesed. To adapt the time-of-flight mass spectrometry/infrared presdissociation experiment to larger systems with significant latent vibrational energy and negligible vapor pressure, an electrospray ionization (ESI)/cryogenic quadrupole trap ion source has been interfaced to the Yale time of flight mass spectrometer. Infrared predissociation spectroscopy is carried out on a series of carboxylate anions cooled to 10K and H_2-tagged in a cryogenic ion trap, underscoring the power of this technique to vibrationally quench and structurally characterize large (> 20 atoms) gaseous ions. This technique recovers sharp transitions (~6 cm^-^1 FWHM) in the linear single photon absorption regime which greatly facilitates comparison with ab initio calculations. The methodology used to condense H_2 on these ions is described, revealing the benefits of a pulsed trapping gas paired with a time delay before ion extraction. The sensitivity of the perturbed H_2 transition to charge center exposure is probed by varying the charge and aliphatic chain length of carboxylate anions. Finally, the structure of four carboxylate anions are characterized using their predissociation spectra. H. K. Woo, X. B. Wang, K. C. Lau and L. S. Wang J. Chem. Phys. A 110, 7801-7805 2006.

  17. Infrared spectroscopy of ionized corannulene in the gas phase

    NASA Astrophysics Data System (ADS)

    Galué, Héctor Alvaro; Rice, Corey A.; Steill, Jeffrey D.; Oomens, Jos

    2011-02-01

    The gas-phase infrared spectra of radical cationic and protonated corannulene were recorded by infrared multiple-photon dissociation (IRMPD) spectroscopy using the IR free electron laser for infrared experiments. Electrospray ionization was used to generate protonated corannulene and an IRMPD spectrum was recorded in a Fourier-transform ion cyclotron resonance mass spectrometer monitoring H-loss as a function of IR frequency. The radical cation was produced by 193-nm UV photoionization of the vapor of corannulene in a 3D quadrupole trap and IR irradiation produces H, H2, and C2Hx losses. Summing the spectral response of the three fragmentation channels yields the IRMPD spectrum of the radical cation. The spectra were analyzed with the aid of quantum-chemical calculations carried out at various levels of theory. The good agreement of theoretical and experimental spectra for protonated corannulene indicates that protonation occurs on one of the peripheral C-atoms, forming an sp3 hybridized carbon. The spectrum of the radical cation was examined taking into account distortions of the C5v geometry induced by the Jahn-Teller effect as a consequence of the degenerate 2E1 ground electronic state. As indicated by the calculations, the five equivalent Cs minima are separated by marginal barriers, giving rise to a dynamically distorted system. Although in general the character of the various computed vibrational bands appears to be in order, only a qualitative match to the experimental spectrum is found. Along with a general redshift of the calculated frequencies, the IR intensities of modes in the 1000-1250 cm-1 region show the largest discrepancy with the harmonic predictions. In addition to CH "in-plane" bending vibrations, these modes also exhibit substantial deformation of the pentagonal inner ring, which may relate directly to the vibronic interaction in the radical cation.

  18. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2003-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our emphasis has been on star formation in external, bright IR galaxies, but other areas of research have included young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry, because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spectroscopic data sets. The program has the following goals: 1) Refine the data analysis of IS0 observations to obtain deeper and better SNR results on selected sources. The IS0 data itself underwent pipeline 10 reductions in early 2001, and the more 'hands-on data reduction packages' have been released. The IS0 Fabry-Perot database is particularly sensitive to noise and can have slight calibration errors, and improvements are anticipated. We plan to build on these deep analysis tools and contribute to their development. Model the atomic and molecular line shapes, in particular the OH lines, using revised montecarlo techniques developed by the Submillimeter Wave Astronomy Satellite (SWAS) team at the Center for Astrophysics. 2) 3) Use newly acquired space-based SIRTF or SOFIA spectroscopic data as they become available, and contribute to these observing programs as appropriate. 4) Attend scientific meetings and workshops. 5) E&PO activities, especially as related to infrared astrophysics and

  19. Near-Infrared Integral Field Spectroscopy and Mid-Infrared Spectroscopy of the Starburst Galaxy M82

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Genzel, R.; Lutz, D.; Kunze, D.; Sternberg, A.

    2001-05-01

    We present new infrared observations of the central regions of the starburst galaxy M82. The observations consist of near-infrared integral field spectroscopy in the H and K bands obtained with the MPE 3D instrument and of λ=2.4-45 μm spectroscopy from the Short Wavelength Spectrometer (SWS) onboard the Infrared Space Observatory. These measurements are used, together with data from the literature, to (1) reexamine the controversial issue of extinction, (2) determine the physical conditions of the interstellar medium (ISM) within the star-forming regions, and (3) characterize the composition of the stellar populations. Our results provide a set of constraints for detailed starburst modeling, which we present in a companion paper. We find that purely foreground extinction cannot reproduce the global relative intensities of H recombination lines from optical to radio wavelengths. A good fit is provided by a homogeneous mixture of dust and sources, and with a visual extinction of AV=52 mag. The SWS data provide evidence for deviations from commonly assumed extinction laws between 3 and 10 μm. The fine-structure lines of Ne, Ar, and S detected with SWS imply an electron density of ~300 cm-3, and abundance ratios Ne/H and Ar/H nearly solar and S/H about one-fourth solar. The excitation of the ionized gas indicates an average effective temperature for the OB stars of 37,400 K, with little spatial variation across the starburst regions. We find that a random distribution of closely packed gas clouds and ionizing clusters and an ionization parameter of ~10-2.3 represent well the star-forming regions on spatial scales ranging from a few tens to a few hundreds of parsecs. From detailed population synthesis and the mass-to-K-light ratio, we conclude that the near-infrared continuum emission across the starburst regions is dominated by red supergiants with average effective temperatures ranging from 3600 to 4500 K and roughly solar metallicity. Our data rule out significant

  20. Structure analysis of aromatic medicines containing nitrogen using near-infrared spectroscopy and generalized two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Gao, Hongbin; Qu, Lingbo; Huang, Yanping; Xiang, Bingren

    2008-12-01

    Four aromatic medicines (acetaminophen; niacinamide; p-aminophenol; nicotinic acid) containing nitrogen were investigated by FT-NIR (Fourier transform near-infrared) spectroscopy and generalized two-dimensional (2D) correlation spectroscopy. The FT-NIR spectra were measured over a temperature range of 30-130 °C. By combining near-infrared spectroscopy, generalized 2D correlation spectroscopy and references, the molecular structures (especially the hydrogen bond related with nitrogen) were analyzed and the NIR band assignments were performed. The results will be helpful to the understanding of aromatic medicines containing nitrogen and the utility of these substances.

  1. Noncontact tissue oxygenation measurement using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Murata, Hideaki; Shinohara, Shigenobu

    2006-07-01

    Here, we present a noncontact tissue oxygenation monitor that uses near-infrared spectroscopy (NIRS). We examined changes in sensitivity of tissue oxygenation measurement due to changes in the distance between the optical probe and the skin surface using a Monte Carlo simulation and in vivo tests. We also examined the effects of skin and fat layer thickness. Photon migration was analyzed in a model consisting of the skin, fat, and muscle layers. The relationship between measurement sensitivity and the probe-tissue distance was obtained from the results of the simulation and was used for correction of measurements. A noncontact tissue oximeter was used to perform the in vivo tests and measure oxygen consumption of the forearm muscle. The value of corrected oxygen consumption was 0.12±0.03ml/(100gmin), which is consistent with previously reported values obtained using contact NIRS measurement and magnetic resonance spectroscopy. Quantitative measurement of oxygenation using noncontact NIRS is potentially useful for novel applications such as quantification of inflammation.

  2. Near-infrared spectroscopy for burning plasma diagnostic applicationsa)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and γ-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  3. Near-infrared spectroscopy: a methodology-focused review.

    PubMed

    Pellicer, Adelina; Bravo, María del Carmen

    2011-02-01

    Near infrared spectroscopy (NIRS) is a light-based technology used to monitor tissue oxygen status. Refinements to the method since it was first described have extended its applicability to different research and clinical settings due to its non-invasiveness, instrument portability and ease of use. Classic NIRS recordings, based in the Beer-Lambert law, can be used for the trend monitoring of changes in tissue perfusion-oxygenation parting from an arbitrary zero point. However, in order to derive intermittently quantitative values in absolute terms, certain manoeuvres must be performed. More recently, the evolution of the technique has led to the development of instruments that provide an absolute value of regional hemoglobin saturation in a continuous manner. This review will focus on the physical principles of tissue spectroscopy including a brief description of the different operating principles that are currently in use or under development. The theoretical details, experimental procedures and data analysis involved in the measurements of physiological variables using NIRS will be described. The future beyond the scope of NIRS and potential lines of research will also be discussed.

  4. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  5. Reliability of Near-Infrared Spectroscopy for Determining Muscle Oxygen Saturation during Exercise

    ERIC Educational Resources Information Center

    Austin, Krista G.; Daigle, Karen A.; Patterson, Patricia; Cowman, Jason; Chelland, Sara; Haymes, Emily M.

    2005-01-01

    Near-infrared spectroscopy is currently used to assess changes in the oxygen saturation of the muscle during exercise. The primary purpose of this study was to assess the reliability of near-infrared spectroscopy in determining muscle oxygen saturation (StO[subscript 2]) in the vastus lateralis during cycling and the gastrocnemius during running…

  6. Simulating Future Near-Infrared Grism Spectroscopy Using The WFC3 Infrared Spectroscopic Parallels (WISP)

    NASA Astrophysics Data System (ADS)

    Colbert, James W.; Teplitz, H. I.; Atek, H.; Bunker, A. J.; Rafelski, M.; Scarlata, C.; Ross, N.; Malkan, M. A.; Bedregal, A.; Dominguez, A.; Dressler, A.; Henry, A. L.; Martin, C. L.; Masters, D.; McCarthy, P. J.; Siana, B. D.

    2014-01-01

    We present near-infrared emission line counts and luminosity functions from the HST WFC3 Infrared Spectroscopic Parallels (WISP) program for 29 fields observed using both the G102 and G141 grism. Using these derived emission line counts we make predictions for future space missions, like WFIRST, that will make extensive use of slitless grism spectroscopy in the near-IR over large areas of sky. The WISP survey is sensitive to fainter flux levels (3-5x10^-17 ergs/s/cm2) than the near-infrared grism missions aimed at baryonic acoustic oscillation cosmology (1-4x10^-16 ergs/s/cm2), allowing us to both investigate the fainter emission lines the large area surveys will be missing and make count predictions for the deeper grism pointings that are likely to be done over smaller areas. Cumulative number counts of 0.7infrared grism surveys will probe; our survey finds no galaxies with H-alpha/[OIII < 0.95 that have H-alpha flux greater than 3x10^-16 ergs/s/cm2. We find good agreement between our derived luminosity functions and those from narrow band H-alpha surveys, like those of HiZELS (Sobral et al. 2013) and New Halpha (Ly et. 2011). The evolution in both the H-alpha luminosity function from z=0.3-1.5 and the [OIII] luminosity function from z=0.7-2.3 is almost entirely in the L* parameter, which steadily increases with redshift over those ranges. We will also present simulations of future large area near-infrared grism spectroscopy, based on the observed distributions of emission line fluxes, galaxy sizes, redshifts, H-alpha/[OIII] ratios, and equivalent widths seen in the WISP survey.

  7. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  8. Reaction products in mass spectrometry elucidated with infrared spectroscopy.

    PubMed

    Polfer, Nick C; Oomens, Jos

    2007-08-01

    Determining the structure and dynamics of large biologically relevant molecules is one of the key challenges facing biology. Although X-ray crystallography (XRD) and nuclear magnetic resonance (NMR) yield accurate structural information, they are of limited use when sample quantities are low. Mass spectrometry (MS) on the other hand has been very successful in analyzing biological molecules down to atto-mole quantities and has hence begun to challenge XRD and NMR as the key technology in the life sciences. This trend has been further assisted by the development of MS techniques that yield structural information on biomolecules. Of these techniques, collision-induced dissociation (CID) and hydrogen/deuterium exchange (HDX) are among the most popular. Despite advances in applying these techniques, little direct experimental evidence had been available until recently to verify their proposed underlying reaction mechanisms. The possibility to record infrared spectra of mass-selected molecular ions has opened up a novel avenue in the structural characterization of ions and their reaction products. On account of its high pulse energies and wide wavelength tunability, the free electron laser for infrared experiments (FELIX) at FOM Rijnhuizen has been shown to be ideally suited to study trapped molecular ions with infrared photo-dissociation spectroscopy. In this paper, we review recent experiments in our laboratory on the infrared spectroscopic characterization of reaction products from CID and HDX, thereby corroborating some of the reaction mechanisms that have been proposed. In particular, it is shown that CID gives rise to linear fragment ion structures which have been proposed for some time, but also yields fully cyclical ring structures. These latter structures present a possible challenge for using tandem MS in the sequencing of peptides/proteins, as they can lead to a scrambling of the amino acid sequence information. In gas-phase HDX of an amino acid it is shown

  9. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  10. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  11. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match.

  12. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    PubMed

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-01

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  13. Chemical Sensing Using Infrared Cavity Enhanced Spectroscopy: Short Wave Infrared Cavity Ring Down Spectroscopy (SWIR CRDS) Sensor

    SciTech Connect

    Williams, Richard M.; Harper, Warren W.; Aker, Pam M.; Thompson, Jason S.; Stewart, Timothy L.

    2003-10-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project is to explore and develop the science and technology behind point and stand off infrared (IR) spectroscopic chemical sensors that are needed for detecting weapons proliferation activity and countering terrorism. Missions addressed include detecting chemical, biological, and nuclear weapons and their production; counter terrorism measures that involve screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons and/or their residues; and mapping of contaminated areas. The science and technology developed in this program is dual use in that it additionally supports progress in a diverse set of agendas that include chemical weapons defense programs, air operations activities, emissions monitoring, law enforcement, and medical diagnostics. Sensors for these missions require extremely low limits of detection because many of the targeted signature species are either present in low concentrations or have extremely low vapor pressures. The sensors also need to be highly selective as the environments that they will be operated in will contain a variety of interferent species and false positive detection is not an option. PNNL has been working on developing a class of sensors that draw vapor into optical cavities and use laser-based spectroscopy to identify and quantify the vapor chemical content. The cavity enhanced spectroscopies (CES) afford extreme sensitivity, excellent selectivity, noise immunity, and rapid, real-time, in-situ chemical characterization. PNNL's CES program is currently focused on developing two types of sensors. The first one, which is based on cavity ring down spectroscopy (CRDS), uses short wave infrared (SWIR) lasers to interrogate species. The second sensor, which is based on noise immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE OHMS), uses long wave infrared (LWIR) quantum cascade

  14. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    PubMed

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  15. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    PubMed

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  16. [Investigation of fibrous cultural materials by infrared spectroscopy].

    PubMed

    Luo, Xi-yun; Du, Yi-ping; Shen, Mei-hua; Zhang, Wen-qing; Zhou, Xin-guang; Fang, Shu-ying; Zhang, Xuan

    2015-01-01

    Cultural fibrous material includes both important categories, i. e. textile and paper, consisting of precious cultural materials in museum, such as costume, painting, and manuscript. In recent years more and more connoisseur and conservator's concerns are, through nondestructive method, the authenticity and the ageing identification of these cultural relics especially made from fragile materials. In this research, we used attenuated total reflection infrared spectroscopy to identify five traditional textile fibers, alongside cotton, linen, wool, mulberry silk and tussah silk, and another five paper fibers alongside straw, wheat straw, long qisong, Chinese alpine rush and mulberry bar, which are commonly used for making Chinese traditional xuan paper. The research result showed that the animal fiber (wool, mulberry silk and tussah silk) and plant fiber (cotton and linen) were easier to be distinguished by comparing the peaks at 3 280 cm-1 belonging to NH stretching vibration and a serious peaks related to amide I to amide III. In the spectrum of wool, the peak at 1 076 cm-1 was assigned to the S-O stretching vibration absorption of cystine in wool structure and can be used to tell wool from silk. The spectrum of mulberry silk and tussah silk seems somewhat difficult to be identified, as well as the spectrum of cotton and linen. Five rural paper fibers all have obvious characteristic peaks at 3 330, 2 900 cm-1 which are related to OH and CH stretching vibration. In the fingerprint wavenumber range of 1 600 - 800 cm, the similar peaks also appeared at 1 370, 1 320 cm-1 and 1 162, 1 050 cm-1, both group peaks respectively are related to CH and CO vibration in the structure of cellulose and hemicellulose in paper fibers. Although there is more similarity of the infrared spectroscopy of these 5 paper fibers, some tiny difference in absorbance also can be found at 3 300 cm-1 and in the fingerprint range at 1 332, 1 203, and 1 050 cm-1 which are related to C-O-C vibration

  17. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  18. On-line fermentation monitoring by mid-infrared spectroscopy.

    PubMed

    Mazarevica, Gunta; Diewok, Josef; Baena, Josefa R; Rosenberg, Erwin; Lendl, Bernhard

    2004-07-01

    A new method for on-line monitoring of fermentations using mid-infrared (MIR) spectroscopy has been developed. The method has been used to predict the concentrations of glucose and ethanol during a baker's yeast fermentations. A completely automated flow system was employed as an interface between the bioprocess under study and the Fourier transform infrared (FT-IR) spectrometer, which was equipped with a flow cell housing a diamond attenuated total reflection (ATR) element. By using the automated flow system, experimental problems related to adherence of CO(2) bubbles to the ATR surface, as well as formation of biofilms on the ATR surface, could be efficiently eliminated. Gas bubbles were removed during sampling, and by using rinsing steps any biofilm could be removed from the ATR surface. In this way, constant measuring conditions could be guaranteed throughout prolonged fermentation times (approximately 8 h). As a reference method, high-performance liquid chromatography (HPLC) with refractive index detection was used. The recorded data from different fermentations were modeled by partial least-squares (PLS) regression comparing two different strategies for the calibration. On the one hand, calibration sets were constructed from spectra recorded from either synthetic standards or from samples drawn during fermentation. On the other hand, spectra from fermentation samples and synthetic standards were combined to form a calibration set. Differences in the kinetics of the studied fermentation processes used for calibration and prediction, as well as the precision of the HPLC reference method, were identified as the main chemometric sources of error. The optimal PLS regression method was obtained using the mixed calibration set of samples from fermentations and synthetic standards. The root mean square errors of prediction in this case were 0.267 and 0.336 g/L for glucose and ethanol concentration, respectively.

  19. Quantification of the extracerebral contamination of near infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Mudra, R.; Niederer, P.; Keller, E.

    2005-04-01

    Recently, conventional near infrared spectroscopy (NIRS) for oxymetry has been extended with an indocyanine green (ICG) dye dilution method which allows the estimation of cerebral blood flow (CBF) and cerebral blood volume (CBV). The signal obtained through the skull is substantially influenced by extracerebral tissue. In order to quantify and eliminate extracerebral contamination of the optical density signal we have applied two approaches. Firstly, we used spatially resolved spectroscopy (SRS) with a two receiver arrangement, with separations between emitter and two receivers in distances of d1=4.0cm and d2=6.5cm. The magnitude of the determined extracerebral contamination was verified with NIRS measurements in patients after brain herniation. Intracerebral circulatory arrest was confirmed by transcerebral Doppler examination. Secondly, Monte Carlo simulation was used to simulate the light propagation through the head to quantify the extracerebral contamination of the optical density signal of NIRS. The anatomical structure is determined from 3D-magnetic resonance imaging (MRI) using a voxel resolution of 0.8 x 0.8 x 0 .8 mm3 for three different pairs of T1/T2 values. We segment the MRI data to obtain a material matrix describing the composition of skin, skull, cerebral spinal fluid (CSF), grey and white matter. Each voxel in this material matrix characterizes the light absorption and dispersion coefficient of the identified material. This material matrix is applied in the Monte Carlo simulation. With SRS an extracerebral contamination of 65% of the optical density signal is extracted, while the Monte Carlo simulation results show that the extracerebral contamination decreases from 70% to 30% with increasing emitter-receiver distance. Differences between the NIRS ICG dye dilution technique and conventional NIRS oxymetry concerning the extracerebral contamination are discussed.

  20. Visible/Infrared Imaging Spectroscopy and Energy-Resolving Detectors

    NASA Astrophysics Data System (ADS)

    Eisenhauer, Frank; Raab, Walfried

    2015-08-01

    Imaging spectroscopy has seen rapid progress over the past 25 years, leading to breakthroughs in many fields of astronomy that would not have been otherwise possible. This review overviews the visible/infrared imaging spectroscopy techniques as well as energy-resolving detectors. We introduce the working principle of scanning Fabry-Perot and Fourier transform spectrometers and explain the most common integral field concepts based on mirror slicers, lenslet arrays, and fibers. The main advantage of integral field spectrographs is the simultaneous measurement of spatial and spectral information. Although Fabry-Perot and Fourier transform spectrometers can provide a larger field of view, it is ultimately the higher sensitivity of integral field units that make them the technique of choice. This is arguably the case for image slicers, which make the most efficient use of the available detector pixels and have equal or higher transmission than lenslet arrays and fiber integral field units, respectively. We also address the more specific issues of large étendue operation, focal ratio degradation, anamorphic magnification, and diffraction-limited operation. This review also covers the emerging technology of energy-resolving detectors, which promise very simple and efficient instrument designs. These energy-resolving detectors are based on superconducting thin film technology and exploit either the very small superconducting energy to count the number of quasi-particles excited in the absorption of the photon or the extremely steep phase transition between the normal- and superconducting phase to measure a temperature increase. We have put special emphasis on an overview of the underlying physical phenomena as well as on the recent technological progress and astronomical path finder experiments.

  1. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    PubMed

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  2. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    PubMed

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption. PMID:25893226

  3. Infrared and near infrared transient absorption spectroscopy of molecular free radicals

    SciTech Connect

    Sears, T.J.; Wu, M.; Hall, G.E.; Chang, B.C.; Hansford, G.; Bloch, J.C.; Field, R.W.

    1993-12-31

    The advantages of absorption spectroscopy at low absorbances include a linear relationship between signal size and number of absorbing molecules, line of sight measurement, and easily interpretable lineshape functions. The main disadvantage is due to the necessity of measuring a small change in light intensity, usually in the presence of a strong background, which limits the sensitivity. In this work, recent results obtained using absorption techniques with continuous wave lasers to measure vibrational and electronic spectra in the mid- and near-infrared of small free radicals are reported. The radical of interest was generated by excimer laser photolysis of a chemically stable precursor molecule and detected by measuring the transient decrease in power of a continuous wave probe laser that traversed the photolyzed volume before being imaged onto a detector.

  4. Fresh Soil Sensing using Visible and Near Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maleki, M. R.

    2009-04-01

    Fast, precise and affordable soil analytical techniques are needed for the determination of soil fertility of each zone of a field in site specific land management. The objective of this poster is to demonstrate how nutrients can be estimated from fresh soil using visible (VIS) and near infrared (NIR) spectroscopy method. This could be carried out by summarizing the methodology to develop a calibration model for soil phosphorus with the VIS-NIR spectroscopy method. Obviously, it can be simply extended for other nutrients with the same methodology. A large samples set should be collected from different fields with a wide range of soil type and texture. The samples in this set should be represented a wide range of moisture content and soil nutrient which is desired to be calibrated by the spectroscopy technique. Immediately after sampling, the samples should be kept in a cold room (± 1 °C) until the time of the spectral measurement and the chemical analysis. The samples should be taken from the cold room one hour before the spectral measurement to ensure that the samples were at room temperature and no condensation occurs on the optical instruments. Each soil sample was thoroughly mixed and debris such as plant material and stones were removed. The soil sample was divided into three parts, one part for spectral measurement, another part for chemical analysis and the rest was archived. The part for chemical analysis should be examined for their soil nutrients. A small amount of soil (about 30 g) should be placed in a small plastic petridish (e.g. 7.5 mm depth and 30 mm diameter). The soil in the petridish should be first pressed and then carefully levelled in order to obtain a smooth surface for a maximum light reflectance. Soil samples should be put under the spectrophotometer. Three reflectance spectra should be measured on each soil specimen by rotating the plastic cups over 120°. Having finished measuring, the reflectance data should be put against the chemical

  5. Rapid Characterization of Tanshinone Extract Powder by Near Infrared Spectroscopy

    PubMed Central

    Luo, Gan; Xu, Bing; Shi, Xinyuan; Li, Jianyu; Dai, Shengyun; Qiao, Yanjiang

    2015-01-01

    Chemical and physical quality attributes of herbal extract powders play an important role in the research and development of Chinese medicine preparations. The active pharmaceutical ingredients have a direct impact on the herbal extract's efficacy, while the physical properties of raw material affect the pharmaceutical manufacturing process and the final products' quality. In this study, tanshinone extract powders from Salvia miltiorrhiza which are widely used for the treatment of cardiovascular diseases in the clinic are taken as the research object. Both the chemical information and physical information of tanshinone extract powders are analyzed by near infrared (NIR) spectroscopy. The partial least squares (PLS) and least square support vector machine (LS-SVM) models are investigated to build the relationship between NIR spectra and reference values. PLS models performed well for the content of crytotanshinone, tanshinone IIA, the moisture, and average median particle size, while, for specific surface area and tapped density, the LS-SVM models performed better than the PLS models. Results demonstrated NIR to be a valid and fast process analytical technology tool to simultaneously determine multiple quality attributes of herbal extract powders and indicated that there existed some nonlinear relationship between NIR spectra and physical quality attributes. PMID:25866511

  6. The application of near infrared spectroscopy in nutritional intervention studies

    PubMed Central

    Jackson, Philippa A.; Kennedy, David O.

    2013-01-01

    Functional near infrared spectroscopy (NIRS) is a non-invasive optical imaging technique used to monitor cerebral blood flow (CBF) and by proxy neuronal activation. The use of NIRS in nutritional intervention studies is a relatively novel application of this technique, with only a small, but growing, number of trials published to date. These trials—in which the effects on CBF following administration of dietary components such as caffeine, polyphenols and omega-3 polyunsaturated fatty acids are assessed—have successfully demonstrated NIRS as a sensitive measure of change in hemodynamic response during cognitive tasks in both acute and chronic treatment intervention paradigms. The existent research in this area has been limited by the constraints of the technique itself however advancements in the measurement technology, paired with studies endeavoring increased sophistication in number and locations of channels over the head should render the use of NIRS in nutritional interventions particularly valuable in advancing our understanding of the effects of nutrients and dietary components on the brain. PMID:23964231

  7. Two-Dimensional Coherent Infrared Spectroscopy of Polypeptides

    NASA Astrophysics Data System (ADS)

    Piryatinski, Andrei

    2000-03-01

    We simulate the third order (2D) coherent infrared response of polypeptides in the amide I spectral region. Applied multidimensional techniques are conceptually similar to multiple-pulse NMR spectroscopies and provide new and complimentary information [1,2]. Taking into account the transition dipole moment coupling between peptide groups we use the nonlinear exciton equations [2] (NEE) to compute the relevant response function. This approach accounts for single exciton dynamics and exciton-exciton scattering due to the vibrational anharmonicity of the peptide groups. The signature of one- and two-vibrational-exciton dynamics associated with different models of spectral broadening (homogeneous as well as diagonal and off-diagonal static disorder) can be extracted by analyzing the real and imaginary parts of the signal or/and its absolute value and phase [3]. To account for the fast events in protein folding such as helix-coil transitions, we have performed molecular dynamics simulations at different temperatures of an α-helical polypeptide in water solvent. 2D photon echo (PE) signal has been calculated and analyzed for different ratios of conformational population. [1] S. Mukamel, A. Piryatinski, V. Chernyak, Acc. Chem. Res., 32, (1999), 145. [2] W. M. Zhang, V. Chernyak, and S. Mukamel, J. Chem. Phys., 110, (1999), 5011. [3] A. Piryatinski, S. Tretiak, V. Chernyak, and S. Mukamel, J. Raman Sectrosc., (in press).

  8. Characterization of recombinant antibodies for cancer therapy by infrared spectroscopy.

    PubMed

    Valdivia, Alejandro Arbesú; Barth, Andreas; Batista, Yamilet Romero; Kumar, Saroj

    2013-03-01

    Fourier transform infrared (FTIR) spectroscopy was used to study the structure of the recombinant antibodies 1E10, anti-CD20 and hR3, which are used as anti-cancer therapeutic drugs. We tested their sensitivity against different conditions and treatments such as pH, temperature, freeze-thaw cycles and drying, which are relevant for the practical usefulness of the drugs. All antibodies were stable against moderate temperature increases (up to 50 °C) and pH changes (range 5-9). 1E10 was sensitive to extreme pH values (pH 3 and 12), whereas hR3 was most sensitive to temperature (at and above 60 °C). We did not observe any significant changes upon freeze-thaw and drying treatments. The secondary structure content of all three antibodies was estimated to be similar to that of IgG with ∼64% β-sheet, 0% α-helix and ∼36% other structure. PMID:23290364

  9. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy.

    PubMed

    Pociask, Elżbieta; Jaworek-Korjakowska, Joanna; Malinowski, Krzysztof Piotr; Roleder, Tomasz; Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  10. A novel storage method for near infrared spectroscopy chemometric models.

    PubMed

    Zhang, Zhi-Min; Chen, Shan; Liang, Yi-Zeng

    2010-06-01

    Chemometric Modeling Markup Language (CMML) is developed by us for containing chemometrics models within one document through converting binary data into strings by base64 encode/decode algorithms to solve the interoperability issue in sharing chemometrics models. It provides a base functionality for storage of sampling, variable selection, pretreating, outlier and modeling parameters and data. With the help of base64 algorithm, the usability of CMML is in equilibrium with size by transforming the binary data into base64 encoded string. Due to the advantages of Extensible Markup Language (XML), models stored in CMML can be easily reused in various other software and programming languages as long as the programming language has XML parsing library. One can also use the XML Path Language (XPath) query language to select desired data from the CMML file effectively. The application of this language in near infrared spectroscopy model storage is implemented as a class in C++ language and available as open source software (http://code.google.com/p/cmml), and the implementations in other languages, such as MATLAB and R are in progress. PMID:20493291

  11. Characterization and Infrared Emission Spectroscopy of Ball Plasmoid Discharges

    NASA Astrophysics Data System (ADS)

    Dubowsky, Scott E.; McCall, Benjamin J.

    2015-06-01

    Plasmas at atmospheric pressure serve many purposes, from ionization sources for ambient mass spectrometry (AMS) to plasma-assisted wound healing. Of the many naturally occurring ambient plasmas, ball lightning is one of the least understood; there is currently no solid explanation in the literature for the formation and lifetime of natural ball lightning. With the first measurements of naturally occurring ball lightning being reported last year, we have worked to replicate the natural phenomenon in order to elucidate the physical and chemical processes by which the plasma is sustained at ambient conditions. We are able to generate ball-shaped plasmoids (self-sustaining plasmas) that are analogous to natural ball lightning using a high-voltage, high-current, pulsed DC system. Improvements to the discharge electronics used in our laboratory and characterization of the plasmoids that are generated from this system will be described. Infrared emission spectroscopy of these plasmoids reveals emission from water and hydroxyl radical -- fitting methods for these molecular species in the complex experimental spectra will be presented. Rotational temperatures for the stretching and bending modes of H2O along with that of OH will be presented, and the non-equilibrium nature of the plasmoid will be discussed in this context. Cen, J.; Yuan, P,; Xue, S. Phys. Rev. Lett. 2014, 112, 035001. Dubowsky, S.E.; Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R.H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45.

  12. Textile integrated sensors and actuators for near-infrared spectroscopy.

    PubMed

    Zysset, Christoph; Nasseri, Nassim; Büthe, Lars; Münzenrieder, Niko; Kinkeldei, Thomas; Petti, Luisa; Kleiser, Stefan; Salvatore, Giovanni A; Wolf, Martin; Tröster, Gerhard

    2013-02-11

    Being the closest layer to our body, textiles provide an ideal platform for integrating sensors and actuators to monitor physiological signals. We used a woven textile to integrate photodiodes and light emitting diodes. LEDs and photodiodes enable near-infrared spectroscopy (NIRS) systems to monitor arterial oxygen saturation and oxygenated and deoxygenated hemoglobin in human tissue. Photodiodes and LEDs are mounted on flexible plastic strips with widths of 4 mm and 2 mm, respectively. The strips are woven during the textile fabrication process in weft direction and interconnected with copper wires with a diameter of 71 μm in warp direction. The sensor textile is applied to measure the pulse waves in the fingertip and the changes in oxygenated and deoxygenated hemoglobin during a venous occlusion at the calf. The system has a signal-to-noise ratio of more than 70 dB and a system drift of 0.37% ± 0.48%. The presented work demonstrates the feasibility of integrating photodiodes and LEDs into woven textiles, a step towards wearable health monitoring devices.

  13. Dynamic causal modelling for functional near-infrared spectroscopy

    PubMed Central

    Tak, S.; Kempny, A.M.; Friston, K.J.; Leff, A.P.; Penny, W.D.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model of how observed fNIRS data are caused by interactions among hidden neuronal states. Inversion of this generative model, using an established Bayesian framework (variational Laplace), then enables inference about changes in directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the primary motor cortex is negatively modulated by motor imagery, and this suppressive influence causes reduced activity in the primary motor cortex during motor imagery. These results are consistent with findings of previous functional magnetic resonance imaging (fMRI) studies, suggesting that the proposed method enables one to infer directed interactions in the brain mediated by neuronal dynamics from measurements of optical density changes. PMID:25724757

  14. Infrared spectroscopy and structure of (NO)n clusters

    DOE PAGES

    Hoshina, Hiromichi; Slipchenko, Mikhail; Prozument, Kirill; Verma, Deepak; Schmidt, Michael W.; Ivanic, Joseph; Vilesov, Andrey F.

    2016-01-12

    Nitrogen oxide clusters (NO)n have been studied in He droplets via infrared depletion spectroscopy and by quantum chemical calculations. The ν1 and ν5 bands of cis-ON-NO dimer have been observed at 1868.2 and 1786.5 cm–1, respectively. Furthermore, spectral bands of the trimer and tetramer have been located in the vicinity of the corresponding dimer bands in accord with computed frequencies that place NO-stretch bands of dimer, trimer, and tetramer within a few wavenumbers of each other. In addition, a new line at 1878.1 cm–1 close to the band origin of single molecules was assigned to van der Waals bound dimersmore » of (NO)2, which are stabilized due to the rapid cooling in He droplets. Spectra of larger clusters (n > 5), have broad unresolved features in the vicinity of the dimer bands. As a result, experiments and calculations indicate that trimers consist of a dimer and a loosely bound third molecule, whereas the tetramer consists of two weakly bound dimers.« less

  15. Fourier transform infrared spectroscopy (FTIR) of laser-irradiated cementum

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; White, Joel M.; Cecchini, Silvia C. M.; Hennig, Thomas

    2003-06-01

    Utilizing Fourier Transform Infrared Spectroscopy (FTIR) in specular reflectance mode chemical changes of root cement surfaces due to laser radiation were investigated. A total of 18 samples of root cement were analyzed, six served as controls. In this study laser energies were set to those known for removal of calculus or for disinfection of periodontal pockets. Major changes in organic as well as inorganic components of the cementum were observed following Nd:YAG laser irradiation (wavelength 1064 nm, pulse duration 250 μs, free running, pulse repetition rate 20 Hz, fiber diameter 320 μm, contact mode; Iskra Twinlight, Fontona, Slovenia). Er:YAG laser irradiation (wavelength 2.94 μm, pulse duration 250 μs, free running, pulse repetition rate 6 Hz, focus diameter 620 μm, air water cooling 30 ml/min; Iskra Twinlight, Fontona, Slovenia) significantly reduced the Amid bands due to changes in the organic components. After irradiation with a frequency doubled Alexandrite laser (wavelength 377 nm, pulse duration 200 ns, q-switched, pulse repetition rate 20 Hz, beam diameter 800 μm, contact mode, water cooling 30 ml/min; laboratory prototype) only minimal reductions in the peak intensity of the Amide-II band were detected.

  16. Quantitative analysis of polyethylene blends by Fourier transform infrared spectroscopy.

    PubMed

    Cran, Marlene J; Bigger, Stephen W

    2003-08-01

    The quantitative analysis of binary polyethylene (PE) blends by Fourier transform infrared (FT-IR) spectroscopy has been achieved based on the ratio of two absorbance peaks in an FT-IR spectrum. The frequencies for the absorbance ratio are selected based on structural entities of the PE components in the blend. A linear relationship between the absorbance ratio and the blend composition was found to exist if one of the absorbance peaks is distinct to one of the components and the other peak is common to both components. It was also found that any peak resulting from short-chain branching in copolymers (such as linear low-density polyethylene (LLDPE) or metallocene-catalyzed LLDPE (mLLDPE)), is suitable for use as the peak that is designated as being distinct to that component. In order to optimize the linearity of the equation, however, the selection of the second common peak is the most important and depends on the blend system studied. Indeed, under certain circumstances peaks that are not spectrally distinct can be used successfully to apply the method. The method exhibits potential for the routine analysis of PE blends that have been calibrated prior to its application.

  17. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  18. Bundled-Optode Method in Functional Near-Infrared Spectroscopy

    PubMed Central

    Nguyen, Hoang-Dung; Hong, Keum-Shik; Shin, Yong-Il

    2016-01-01

    In this paper, a theory for detection of the absolute concentrations of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) from hemodynamic responses using a bundled-optode configuration in functional near-infrared spectroscopy (fNIRS) is proposed. The proposed method is then applied to the identification of two fingers (i.e., little and thumb) during their flexion and extension. This experiment involves a continuous-wave-type dual-wavelength (760 and 830 nm) fNIRS and five healthy male subjects. The active brain locations of two finger movements are identified based on the analysis of the t- and p-values of the averaged HbOs, which are quite distinctive. Our experimental results, furthermore, revealed that the hemodynamic responses of two-finger movements are different: The mean, peak, and time-to-peak of little finger movements are higher than those of thumb movements. It is noteworthy that the developed method can be extended to 3-dimensional fNIRS imaging. PMID:27788178

  19. Examining the Phonological Neighborhood Density Effect Using Near Infrared Spectroscopy

    PubMed Central

    Chen, Hsin-Chin; Vaid, Jyotsna; Boas, David A.; Bortfeld, Heather

    2010-01-01

    Phonological density refers to the number of words that can be generated by replacing a phoneme in a target word with another phoneme in the same position. Although the precise nature of the phonological neighborhood density effect is not firmly established, many behavioral psycholinguistic studies have shown that visual recognition of individual words is influenced by the number and type of neighbors the words have. This study explored neurobehavioral correlates of phonological neighborhood density in skilled readers of English using near infrared spectroscopy. On the basis of a lexical decision task, our findings showed that words with many phonological neighbors (e.g., FRUIT) were recognized more slowly than words with few phonological neighbors (e.g., PROOF), and that words with many neighbors elicited significantly greater changes in blood oxygenation in the left than in the right hemisphere of the brain, specifically in the areas BA 22/39/40. In previous studies these brain areas have been implicated in fine-grained phonological processing in readers of English. The present findings provide the first demonstration that areas BA 22/39/40 are also sensitive to phonological density effects. PMID:20690126

  20. [A simple design of functional near-infrared spectroscopy system].

    PubMed

    Xu, Gang; Li, Xiao-li; Liu, Xiao-min

    2015-02-01

    With the development in last twenty years, functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technique which widely used in cognitive neuroscience studies. Based on mechanism of neurovascular coupling, increased functional neural activities in brain induce higher regional cerebral blood flow, which will cause relative concentration change of oxygenated and deoxygenated hemoglobin. In this paper, a single channel continuous wave fNIRS system based on multi-function data acquisition board was proposed. With the benefits of narrow spectral peaks and low divergence, laser diodes provided a better accuracy for measurement with optimal dual-wavelength of 690 and 830 nm. Frequency multiplexing technique was used to distinguish light sources from different emitters, and remove environmental stable interference sources such as ambient light and line power noise as well. LabVIEW was used to design graphical user interface with functionalities including source sequence schedule, auto gain setting, digital inhase and quadrature demodulation, data visualization and storage. The experimental results during holding breath and mental arithmetic task indicated that our system was capable of monitoring regional concentration change of hemoglobin in real time, and detecting activation associated with advanced brain functions. PMID:25970931

  1. Detecting concealed information using functional near-infrared spectroscopy.

    PubMed

    Sai, Liyang; Zhou, Xiaomei; Ding, Xiao Pan; Fu, Genyue; Sang, Biao

    2014-09-01

    The present study focused on the potential application of fNIRS in the detection of concealed information. Participants either committed a mock crime or not and then were presented with a randomized series of probes (crime-related information) and irrelevants (crime-irrelevant information) in a standard concealed information test (CIT). Participants in the guilty group were instructed to conceal crime-related information they obtained from the mock crime, thus making deceptive response to the probes. Meanwhile, their brain activity to probes and irrelevants was recorded by functional near-infrared spectroscopy (fNIRS). At the group level, we found that probe items were associated with longer reaction times and greater activity in bilateral dorsolateral prefrontal cortex and supplementary motor cortex than irrelevant items in the guilty group, but not in the innocent group. These findings provided evidence on neural correlates of recognition during a CIT. Finally, on the basis of the activity in bilateral dorsolateral prefrontal cortex and supplementary motor cortex, the correct classification of guilty versus innocent participants was approximately 75 % and the combination of fNIRS and reaction time measures yielded a better classification rate of 83.3 %. These findings illustrate the feasibility and promise of using fNIRS to detect concealed information. PMID:24514911

  2. Near-infrared imaging spectroscopy for counterfeit drug detection

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  3. Near-infrared spectroscopy for rapid classification of fruit spirits.

    PubMed

    Jakubíková, M; Sádecká, J; Kleinová, A; Májek, P

    2016-06-01

    Multivariate analysis combined with near-infrared (NIR) spectral analysis was evaluated to classify fruit spirits. A total of 67 fruit spirits (12 apple, 18 apricot, 19 pear and 18 plum spirits) were analyzed. NIR spectra were collected in the wavenumber range of 4000-10,000 cm(-1). Linear discriminant analysis based on principal component analysis (PCA-LDA) and general discriminant analysis (GDA) based directly on NIR spectral data were used to classify the samples. The prediction performance of models in different wavenumber ranges was also investigated. The best PCA-LDA and GDA models gave a 100 % classification of spirits of the four fruit kinds in the wavenumber range from 5500 to 6050 cm(-1) corresponding to either the C-H stretch of the first overtones of CH3 and CH2 groups, or to compounds containing O-H aromatic groups. The results demonstrated that NIR spectroscopy could be used as a rapid method for classification of fruit spirits. PMID:27478236

  4. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects.

  5. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  6. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    PubMed

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-01

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  7. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    PubMed

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-01

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  8. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  9. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    PubMed

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  10. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    PubMed

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  11. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  12. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2004-01-01

    Last year we submitted and had accepted a paper entitled "The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068," by Spinoglio, L., Malkan, M., Smith. HA, Gonzalez-Alfonso, E., and Fischer, J. This analysis was based on the SWAS Monte Carlo code modeling of the OH lines in galaxies observed by ISO. Since that meeting last spring considerable effort has been put into improving the Monte Carlo code. A group of European astronomers, including Prof. Eduardo Gonzalez-Alfonso, had been performing Monte Carlo modeling of other molecules seen in ISO galaxies. We used portions of this grant to bring Prof. Gonzalez-Alfonso to Cambridge for an intensive working visit. A second major paper on the ISO IR spectroscopy of galaxies, "The Far Infrared Spectrum of Arp 220," Gonzalez-Alfonso, E., Smith. H., Fischer, J., and Cernicharo, J., is in press. Spitzer science development was the major component of this past year;s research. This program supported the development of five Early Release Objects for Spitzer observations on which Dr. Smith was Principal Investigator or Co-Investigator, and another five proposals for GO time. The early release program is designed to rapidly present to the public and the scientific community some exciting results from Spitzer in the first months of its operation. The Spitzer instrument and science teams submitted proposals for ERO objects, and a competitive selection process narrowed these down to a small group with exciting science and realistic observational parameters. This grant supported Dr. Smith's participation in the ERO process, including developing science goals, identifying key objects for observation, and developing the detailed AOR (observing formulae) to be use by the instruments for mapping, integrating, etc.). During this year Dr. Smith worked on writing up and publishing these early results. The attached bibliography includes six of Dr. Smith's articles. During this past year Dr. Smith also led or

  13. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bezard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K.; Simon-Miller, A. A.; Irwin, P.; Brasunas, J. C.; Pearl, J. C.; Smith, M. D.; Orton, G. S.; Gierasch, P. J.; Spilker, L. J.; Carlson, R. C.; Mamoutkine, A. A.; Calcutt, S. B.; Read, P. L.; Taylor, F. W.; Fouchet, T.; Parrish, P.

    2004-01-01

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  14. Multi-mode heterodyned 5th-order infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Leger, Joel D.; Varner, Clyde; Rubtsov, Igor V.

    2016-10-01

    Fifth-order multidimensional infrared spectroscopy with heterodyned detection was carried out in the three-beam dual-frequency configuration. Numerous 5th-order cross peaks were detected for the 4-azidobutyrate-N-hydroxysuccinimide ester compound in solution involving several vibrational modes ranging in frequency from 1045 to 2100 cm-1. Cross peaks involving overtones (2X/Z) and combination bands (XY/Z) among the tags, modes X and Y excited by the first two mid-IR laser pulses, and the reporter, modes Z excited by the third laser pulse, were acquired and the factors affecting the amplitude of 5th-order cross peaks are discussed. The 5th-order cross peaks were detected among modes that are spatially close (a few bonds apart) as well as for modes spatially separated by ca. 12 Å (eight bonds apart). In both cases, the waiting time dependences for the 3rd and 5th order cross peaks were found to be different. In particular, the waiting time at which the cross-peak maximum is reached, the decay time, and the value of a plateau at large waiting times were all differing strongly. The differences are explained by reduced sensitivity of the 5th-order signals to modes coupled weakly to the reporter mode and different relaxation dynamics involving overtone state of the tag. The ability of the 5th-order peaks to single out the modes coupled strongly to the reporter can help identifying specific energy relaxation and transport pathways, which will be useful for understanding energy transport dynamics in molecules. The absorptive 5th-order cross peaks were constructed which report on three-point correlation functions. It is shown that in addition to the triple-frequency correlation functions, a correlation of the frequencies with the mode coupling (anharmonicity) can be naturally measured by the 5th-order spectroscopy. The current limit for detecting 5th-order signals was estimated at the level of 1 × 10-3 in reduced anharmonicity, which is determined by the corresponding two

  15. Infrared Spectroscopy of Phenol-Triethylsilane Dihydrogen-Bonded Cluster

    NASA Astrophysics Data System (ADS)

    Ishikawa, Haruki; Kawasaki, Takayuki

    2013-06-01

    Dihydrogen bond is a hydrogen bond between oppositely charged two hydrogen atoms, X-H\\cdotsH-Y, where X = O, N and Y = B, metal atoms, for example. In 2005, Ishikawa and coworkers reported the observation of the dihydrogen-bond system involving Si-H group as the proton acceptor. They carried out infrared (IR) spectroscopy of phenol(PhOH)-Diethylmethylsilane(DEMS) clusters. All of the three isomers of PhOH-DEMS 1:1 clusters observed exhibit a small red-shift of ˜{ν}_{ OH} of the PhOH moiety in the cluster compared with that of bare PhOH. The largest shift is -29 cm^{-1}. The small red-shift is considered to be the result of the competition between the O-H\\cdotsH-Si dihydrogen-bond and the dispersion interaction of alkyl group of DEMS with phenyl ring. It means that the strength of the O-H\\cdotsH-Si dihydrogen-bond is comparable to the dispersion force. In the present study, we have performed fluorescence excitation (FE) and IR spectroscopies of phenol-triethylsilane(TES) to widen the knowledge of the dihydrogen bond. Similar to the case of PhOH-DEMS system, the electronic origin bands of three PhOH-TES isomers appear in the vicinity of that of PhOH monomer in the FE spectrum. In the present study, we have found an origin band of another PhOH-TES isomer showing a red-shift of -120 cm^{-1}. The shift of ˜{ν}_{ OH} of this cluster is found to be -78 cm^{-1}. This value is much larger than those of the other PhOH-TES 1:1 clusters. It is expected that the spatial overlap of between the TES and the phenyl ring in this cluster is small so that the contribution of the O-H\\cdotsH-Si dihydrogen-bond becomes larger than the other isomers. We have performed density-functional-theory (DFT) calculation of the PhOH-TES clusters using M05-2X functional. The result of the DFT calculation supported the cluster structure and the large red-shift of ˜{ν}_{ OH} of the newly found isomer of PhOH-TES. H. Ishikawa, A. Saito, M. Sugiyama, N. Mikami, J. Chem. Phys. 123, 224309 (2005).

  16. Effect of mechanical optical clearing on near-infrared spectroscopy.

    PubMed

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. PMID:26041069

  17. Toward Precision Mid-Infrared Spectroscopy on the OH Radical

    NASA Astrophysics Data System (ADS)

    Fast, Arthur; Furneaux, John; Meek, Samuel

    2016-06-01

    Measurements of vibrational transitions in small molecules can be used to test for a possible time variation of the electron-proton mass ratio. In our experiments, our goal is to measure two-photon v = 2 ← v = 0 vibrational transitions in the hydroxyl (OH) radical near 2 × 3500 wn with a relative accuracy of 10-14. Reaching this level of accuracy requires a mid-infrared laser with a linewidth of much less than 1 kHz, as well as the ability to compare the frequency of this laser with an absolute frequency standard. To achieve the high short-term stability necessary for such a narrow linewidth, we are implementing a 532-nm CW reference laser by locking a frequency-doubled Nd:YAG laser to a molecular iodine transition using saturated absorption spectroscopy. Similar setups have demonstrated relative stabilities of around 10-14 at the one-second timescale. The stability of this reference laser will then be transfered onto the idler of a 1064-nm-pumped optical parametric oscillator (OPO) using an optical frequency comb as a transfer oscillator. The frequency comb will also be used to measure the absolute optical frequencies of the various lasers and compare them to a GPS-linked radio frequency reference, providing long-term stability and absolute accuracy for the spectroscopic measurements. J.-P. Uzan. Rev. Mod. Phys. 75, 403-455 (2003). Döringshoff, K., Mohle, K., Nagel, M., Kovalchuk, E. V., Peters, A: High performance iodine frequency reference for tests of the LISA laser system. EFTF-2010 24th European Frequency and Time Forum (2010)

  18. Implanted near-infrared spectroscopy for cardiac monitoring

    NASA Astrophysics Data System (ADS)

    Bhunia, Sourav K.; Cinbis, Can

    2011-02-01

    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (p<0.0001) between NSR and VF rhythms for both the fresh and scar tissue pockets. Therefore implanted NIRS may be useful for preventing inappropriate detection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  19. MOS spectroscopy with the JWST Near-Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Karakla, Diane M.; Beck, Tracy; Gilbert, Karoline; Pontoppidan, Klaus Martin; Curtis, Gary; Shyrokov, Alexander

    2015-08-01

    The James Webb Space Telescope's Near-Infrared Spectrograph (NIRSpec) will feature astronomy’s first space-based, multi-object spectroscopic (MOS) capability enabled by the instrument’s micro-shutter array (MSA). The MSA is a four-quadrant fixed grid of nearly 250,000 tiny shutters that can be configured into slits on multiple astronomical targets in a field. In MOS mode, NIRSpec can obtain spectra of more than 100 targets simultaneously in one of three spectral bands (1.0 - 1.8 μm, 1.7 - 3.0 μm, and 2.9 - 5.0 μm) at medium (R~1000) or high resolution (R~2700) with the gratings, or at lower resolution (R~100, 0.6 - 5.0 μm) with the PRISM. The NIRSpec team and software developers at the Space Telescope Science Institute (STScI) have developed an MSA Planning Tool (MPT) to facilitate the complex observation planning process for a variety of observing strategies. The purpose of the tool is to find optimal pointings on the sky where many sources (or many high-valued sources) can be observed at a given pointing, or through a set of telescope dithers, and to design the associated MSA configurations at each position. The MPT is available to the astronomical community as part of the Astronomer’s Proposal Tool (APT), an integrated software package developed by STScI for the preparation of observing proposals. We will summarize the operational concept for MOS spectroscopy with the instrument, describe the MSA Planning Tool and its algorithms, and highlight recent developments that extend the tool’s applicability to diverse science cases.

  20. Fetal oxygenation measurement using wireless near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Shadgan, Babak; Janssen, Patricia; Rurak, Dan

    2012-03-01

    Background: Fetal well-being is determined in large part by how well the placenta is able to supply oxygen and nutrients, but current technology is unable to directly measure how well a placenta functions. Near-infrared spectroscopy (NIRS) utilizes optical methods to measure tissue oxygenation. This pilot project evaluated the feasibility of NIRS for fetal monitoring through the maternal abdominal wall using a sheep model. Methods: A miniature wireless 2-wavelength NIRS device was placed on the abdominal skin over the placenta of a pregnant ewe whose fetus had been chronically catheterized to allow arterial sampling for measurement of arterial oxygen saturation. The NIRS device has 3-paired light emitting diodes and a single photodiode detector; allowing measurement of an index of tissue oxygen saturation (TSI%). Fetal limb TSI% values were compared before and during fetal breathing movements. Correlation was made during these events between arterial values and placental TSI% monitored continuously in real time. Results: Serial measurements were obtained in a single experiment. The correlation between transcutaneous NIRS derived TSI% and direct arterial oxygen saturation was very high (R2=0.86). Measures of fetal limb TSI% were declined after episodes of fetal breathing (P<0.005). Conclusions: This correlation suggests that NIRS is sensitive enough to detect changes in fetal tissue oxygenation noninvasively through the maternal abdominal wall in real-time in a sheep model. NIRS data confirmed that fetal breathing movements decrease arterial oxygen saturation in fetal lambs. If validated by further study this optical methodology could be applied as means of monitoring fetal wellbeing in humans.

  1. Effect of mechanical optical clearing on near-infrared spectroscopy.

    PubMed

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations.

  2. Air quality monitoring based on Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Yan; Wang, Rui

    2006-09-01

    The use of optical techniques to identify and quantify atmospheric pollutants has been focused within the past two decades. Fourier Transform Infrared (FTIR) spectroscopy has proven to be a powerful tool for multi-component analysis of air quality monitoring. The technique has been used for gaseous samples by extractive sampling as well as in the open-path configuration. The present contribution has described the application of FTIR to analyze gaseous pollutants in ambient air in detail. The study for the detection limits of the interested gas, the design of the multipass White mirror system, and the experimental results are described. The White cell is employed to increase the absorbance relative to noise in the absorbance spectrum by increasing the path length without proportional loss of signal. A classical least squares (CLS) fit is used to match the scaled standards or previously measured absorption profiles to those of the observed spectrum in the specified spectral analysis regions for simultaneous quantification of the compounds of interest, plus several other ambient air constituents. The regions were chosen carefully to provide optimum detection of the compounds of interest with minimum interference by other compounds. Specially, spectrum subtraction and differential absorption concepts are introduced into FTIR data analysis. The optimal window for CO, S0 II, NO II, NO and CO II would be the region at 2250-2020 cm -1, 1230-1070 cm -1, 2940-2840 cm -1, 1965-1775 cm -1, and around 668.24 cm -1 respectively. Deviations from traditional measured results for all approaches are in 10%.

  3. Infrared Spectroscopy of Ammonia - Hydrocarbon Ices Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Engel, P. A.; Kalogerakis, K. S.

    2005-12-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas.1,2 This discrepancy highlights an important gap in our understanding of ammonia and its spectral signatures in Jupiter's atmosphere. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning").2,3 We are performing laboratory experiments that investigate the above hypotheses. Thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light. These spectroscopic measurements aim to identify the photophysical and chemical processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. Our current results indicate a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hexane, cyclohexane, and benzene. Furthermore, strongest suppression is observed in the case of benzene, followed in magnitude by hexane and cyclohexane. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 is gratefully acknowledged. The participation of Patricia A. Engel was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  4. TATP and TNT detection by mid-infrared transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Herbst, Johannes; Hildenbrand, Jürgen; Wöllenstein, Jürgen; Lambrecht, Armin

    2009-05-01

    Sensitive and fast detection of explosives remains a challenge in many threat scenarios. Fraunhofer IPM works on two different detection methods using mid-infrared absorption spectroscopy in combination with quantum cascade lasers (QCL). 1. stand-off detection for a spatial distance of several meters and 2. contactless extractive sampling for short distance applications. The extractive method is based on a hollow fiber that works as gas cell and optical waveguide for the QCL light. The samples are membranes contaminated with the explosives and real background. The low vapor pressure of TNT requires a thermal desorbtion to introduce gaseous TNT and TATP into the heated fiber. The advantage of the hollow fiber setup is the resulting small sample volume. This enables a fast gas exchange rate and fast detection in the second range. The presented measurement setup achieves a detection limit of around 58 ng TNT and 26 ng TATP for 1 m hollow fiber. TATP - an explosive with a very high vapor pressure in comparison to TNT or other explosives - shows potential for an adequate concentration in gas phase under normal ambient conditions and thus the possibility of an explosive detection using open path absorption of TATP at 8 μm wavelength. In order to lower the cross sensitivities or interferents with substances with an absorption in the wavelength range of the TATP absorption the probe volume is checked synchronously by a second QCL emitting beside the target absorption wavelength. In laboratory measurements a detection limit of 5 ppm*m TATP are achieved.

  5. Effect of Mechanical Optical Clearing on Near-infrared Spectroscopy

    PubMed Central

    Idelson, Christopher R.; Vogt, William C.; King-Casas, Brooks; LaConte, Stephen M.; Rylander, Christopher G.

    2015-01-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5 fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. PMID:26041069

  6. [Proximate analysis of straw by near infrared spectroscopy (NIRS)].

    PubMed

    Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling

    2009-04-01

    Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.

  7. Evaluation of Phalaenopsis flowering quality using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Suming; Chuang, Yung-Kun; Tsai, Chao-Yin; Chang, Yao-Chien A.; Yang, I.-Chang; Chang, Yung-Huei; Tai, Chu-Chun; Hou, Jiunn-Yan

    2013-05-01

    Carbohydrate contents have been demonstrated as indicators for flowering quality of Phalaenopsis plants. In this study, near infrared reflectance (NIR) spectroscopy was employed for quantitative analysis of carbohydrate contents like fructose, glucose, sucrose, and starch in Phalaenopsis. The modified partial least squares regression (MPLSR) method was adopted for spectra analyses of 176 grown plant samples (88 shoots and 88 roots), over the full wavelength range (FWR, 400 to 2498 nm). For fructose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.210% DW, SEV = 0.324% DW) in the wavelength ranges of 1400-1600, 1800-2000, and 2200-2300 nm. For glucose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.975, SEC = 0.196% DW, SEV = 0.264% DW) in the wavelength range of 1400-1600, 1800-2000, and 2100-2400 nm. For sucrose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.237% DW, SEV = 0.322% DW) in the wavelength range of 1300-1400, 1500-1800, 2000-2100, and 2200-2300 nm. For starch concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.873, SEC = 0.697% DW, SEV = 0.774% DW) in the wavelength ranges of 500-700, 1200-1300, 1700-1800, and 2200-2300 nm. This study successfully developed the calibration models for inspecting concentrations of carbohydrates to predict the flowering quality in different cultivation environments of Phalaenopsis. The specific wavelengths can be used to predict the quality of Phalaenopsis flowers and thus to adjust cultivation managements.

  8. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    PubMed

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  9. The use of infrared spectroscopy in the dairy industry

    NASA Astrophysics Data System (ADS)

    Wüst, E.; Rudzik, L.

    2003-12-01

    An overview of infrared spectroscopic applications—incoming product control, process control and final product control—shows the importance of this technique in the dairy industry. To ensure proper operation of the infrared techniques a monitoring system has to be introduced. These tasks can efficiently be performed within a network. Different kinds of networks will be discussed. The trend to move the infrared techniques into the production line is exemplary shown.

  10. Determination of urea, glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy.

    PubMed

    Jensen, Peter Snoer; Bak, Jimmy; Ladefoged, Søren; Andersson-Engels, Stefan

    2004-03-01

    Individual control and quantification of phosphate removal is desirable in dialysis treatment. Currently, no on-line method exists to quantify phosphate removal. We demonstrate that a multivariate calibration model based on infrared transmission spectra is capable of predicting phosphate, urea, and glucose concentrations at clinically relevant levels. The on-line monitoring of these components by infrared spectroscopy is therefore feasible.

  11. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  12. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  13. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    PubMed

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. PMID:26439523

  14. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-01

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  15. Discrimination of different genuine Danshen and their extracts by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xin-hu; Xu, Chang-hua; Sun, Su-qin; Huang, Jian; Zhang, Ke; Li, Guo-yu; Zhu, Yun; Zhou, Qun; Zhang, Zhi-cheng; Wang, Jin-hui

    2012-11-01

    In this study, six varieties of Danshen from different populations and genuine ("Daodi" in Chinese transliteration) regions were discriminated and identified by a three-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2D-IR)). Though only small differences were found among the FT-IR spectra of the six Danshen samples, the positions and intensities of peaks at 3393, 3371, 1613, 1050, and 1036 cm-1 could be considered as the key factors to discriminate them. More significant differences were exhibited in their SD-IR, particularly for the peaks around 1080, 1144, 695, 665, 800, 1610, 1510, 1450, 1117 and 1077 cm-1. The visual 2D-IR spectra provided dynamic chemical structure information of the six Danshen samples with presenting different particular auto-peak clusters, respectively. Moreover, the contents of salvianolic acid B in all samples were measured quantitatively by a validated ultra performance liquid chromatography (UPLC), which was consistent with the FT-IR findings. This study provides a promising method for characteristics and quality control of the complicated and extremely similar herbal medicine like Danshen, which is more cost effective and time saving.

  16. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    PubMed

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  17. Infrared Spectroscopy and Physical Chemistry of Cryogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Clapp, Mannie Lee

    1995-01-01

    Infrared spectroscopy has been used as a tool for elucidating the spectroscopic and physical properties of cryogenic aerosols. Ammonia and hydrazine aerosols have been studied using this technique under conditions designed to mimic those found in the atmosphere of Jupiter. Aerosols of water ice, nitric acid and water, and sulfuric acid and water were also studied under temperature conditions similar to those found in the Earth's stratosphere. Aerosols are generated in low temperature flow cells via homogeneous and heterogeneous nucleation of the gas phase. The technique affords information on the size, composition, number density, and in some cases shape, of the particles created. Both ammonia and hydrazine aerosols were studied over the temperature range from 180 K to 110 K. Mie theory can adequately describe the observed particle spectra in most cases. Under conditions designed to enhance particle aggregation, shape effects in the 9.4 mu m absorption band of the ammonia aerosols become apparent which can be modeled well using the Discrete Dipole Approximation. Both substances can exist as supercooled liquid droplets. Ammonia particles freeze distinctly at 155 K, while hydrazine particles freeze over the temperature range from 180 K to 170 K. Spectra of aerosols which are of mixtures of ammonia and hydrazine reveal that the inclusion of hydrazine into ammonia particles affects the spectrum of the ammonia very little, while the hydrazine absorptions are strongly perturbed. Hydrazine is not very soluble in the ammonia particles, even at very low concentrations. A new technique for determining complex refractive indices from aerosol spectra has been developed and applied to water ice and crystalline hydrazine. Comparisons with previous data indicate that the method is sound and accurate. The temperature dependence of the water ice complex refractive index has been quantified and compares well with previous results as a function of temperature. No temperature

  18. Terahertz and Infrared Laboratory Spectroscopy in Support of NASA Missions

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan

    2015-06-01

    The JPL molecular spectroscopy group supports NASA programs encompassing Astrophysics, Atmospheric Science, and Planetary Science. Ongoing activities include measurement and analysis of molecular spectra in the terahertz and infrared regions under conditions akin to the remote environments under study in NASA missions. This presentation will show the implementation of state-of-the-art spectroscopic techniques to fulfill spectroscopic demands of the Herschel Space Observatory and the Orbiting Carbon Observatory re-flight (OCO-2). A demonstrative example of the significantly improved frequency predictions for the H_3O^+ ground state high-J transitions will be given. This work was critical to Herschel's successful identification of highly excited metastable H_3O^+ Terahertz lines with J=K up to 11, one of the Herschel mission's many surprising observational results. The observation and subsequent laboratory work revealed that (1) these highly excited H_3O^+ lines had already been observed by European Southern Observatory's Atacama Pathfinder Experiment telescope a few years before but had been classified as U-lines; (2) the H_3O^+ number density was previously underestimated by an order of magnitude, due to ignorance of the population in the metastable states. A second example focuses on O_2, an important absorber from the microwave through the deep UV. This work is motivated by the challenge of developing an accurate and complete spectroscopic characterization of molecular oxygen across a wide frequency range for current and planned Earth atmospheric observations. Especially, OCO-2 utilizes the O_2 A-band for air mass calibration; extremely accurate O_2 molecular data, i.e., line positions with uncertainty on the order of MHz for the A-band around 13000 wn, are required to fulfill the demand of the proposed 0.25% precision for the carbon dioxide concentration retrievals. G. Pilbratt, J. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur et al. A&A, 518, L1 (2010

  19. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  20. Using Visible/Near-Infrared Spectroscopy to Identify Cryptotephra Layers

    NASA Astrophysics Data System (ADS)

    McCanta, M. C.; Thomson, B. J.; Fisher, E.

    2014-12-01

    Continually accumulating marine sediments incorporate tephra layers within their depositional record that can be linked to individual explosive volcanic events. These layers can range from several meters in thickness, to discrete layers invisible to the naked eye (cryptotephra). Identification of cryptotephra layers is paramount for complete characterization of the eruptive record of a volcanic center, not just the largest eruptive events. However, cryptotephra recognition is hampered by their small volume in most drill cores. A non-destructive method to distinguish tephra layers, particularly those of a high silica nature which may not be readily detectable with magnetic methods, is visible/near-infrared (Vis/NIR) spectroscopy. The Vis/NIR region of the light spectrum contains strong absorption features due to charge-transfer absorptions in transition metals (dominated by iron) and vibration and overtone bands due to hydroxyl and water (including near 1.4 μm, 1.9 μm, and 2.2-2.5 μm). The exact position and nature of these bands provide a means to identify various carbonate-, hydroxyl-, iron-, phyllosilicate-, sulfate-, and water-bearing minerals (e.g., Pieters and Englert, 1993). We produced a series of mixtures of hemipelagic sediment and tephra which were used to identify band positions and features which strongly correlate with the presence of tephra (see figure). The addition of ~15-20 wt.% tephra to a sediment results in recognizable spectral changes. The mixture data was used to create a MATLAB program to run unknown sample analyses through. We then used an ASD FieldSpec to collect Vis/NIR data (0.39-2.5 μm) on the upper 10 m of core collected during IODP 340 (U1396C) off the coast of Montserrat at 0.5 cm resolution and applied our tephra recognition program to this data. We identified 29 potential cryptotephra layers in the 10 m analyzed. Dissolution techniques are being completed to corroborate the spectral data.

  1. Determination of plant silicon content with near infrared reflectance spectroscopy

    PubMed Central

    Smis, Adriaan; Ancin Murguzur, Francisco Javier; Struyf, Eric; Soininen, Eeva M.; Herranz Jusdado, Juan G.; Meire, Patrick; Bråthen, Kari Anne

    2014-01-01

    Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R2 = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R2 = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R2 = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  2. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  3. An Inorganic Laboratory Experiment Involving Photochemistry, Liquid Chromatography, and Infrared Spectroscopy.

    ERIC Educational Resources Information Center

    Post, Elroy W.

    1980-01-01

    Presents an experiment involving photochemical legand displacement on a metal carbonyl, separation of the product mixture by chromotography, and identification of the components by use of infrared spectroscopy and group theory. The chromatography and spectroscopy are combined as complementary tools in this experiment. (Author/JN)

  4. TIME-RESOLVED INFRARED SPECTROSCOPY IN THE U121R BEAMLINE AT THE NSLS

    SciTech Connect

    CARR,G.L.; LAVEIGNE,J.D.; LOBO,R.P.S.M.; REITZE,D.H.; TANNER,D.B.

    1999-07-19

    A facility for performing time-resolved infrared spectroscopy has been developed at the NSLS, primarily at beamline U12IR. The pulsed IR light from the synchrotron is used to perform pump-probe spectroscopy. The authors present here a description of the facility and results for the relaxation of photoexcitations in both a semiconductor and superconductor.

  5. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy.

    PubMed

    Vainio, M; Halonen, L

    2016-02-14

    Nonlinear optical frequency conversion is one of the most versatile methods to generate wavelength-tunable laser light in the mid-infrared region. This spectral region is particularly important for trace gas detection and other applications of molecular spectroscopy, because it accommodates the fundamental vibrational bands of several interesting molecules. In this article, we review the progress of the most significant nonlinear optics instruments for widely tunable, high-resolution mid-infrared spectroscopy: continuous-wave optical parametric oscillators and difference frequency generators. We extend our discussion to mid-infrared optical frequency combs, which are becoming increasingly important spectroscopic tools, owing to their capability of highly sensitive and selective parallel detection of several molecular species. To illustrate the potential and limitations of mid-infrared sources based on nonlinear optics, we also review typical uses of these instruments in both applied and fundamental spectroscopy. PMID:26804321

  6. Water Structure Studied by Far Infrared Spectroscopy in FTIR Beam Line of MIRRORCLE 20

    SciTech Connect

    Miura, Nobuhiro; Moon, Ahsa; Kitagawa, Toshimichi; Yamada, Hironari

    2007-03-30

    Far infrared vibrational Spectroscopy for distilled water was performed by Fourier Transform Infrared Spectroscopy (FT-IR) in the FTIR beam line of MIRRORCLE 20. Synchrotron radiation was utilized as a light source for the absorption Spectroscopy in the frequency range from 100cm-1 to 20cm-1. Off-line measurements by black body radiation of ceramic heater were also examined in the range from 400cm-1 to 50cm-1. Wide range spectrum was obtained after the SR data merged the off-line data. We report the recent development in the beam line and the examples of spectra related to the water structure.

  7. Analysis and identification of different animal horns by a three-stage infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Xu, Chang-Hua; Wang, Ping; Sun, Su-Qin; Chen, Jian-Bo; Li, Jin; Chen, Tao; Wang, Jin-Bo

    2011-12-01

    In this study, a new method, a three-stage infrared spectroscopy (Fourier transform infrared spectroscopy (FT-IR) integrated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR)) was developed to analyze the organic and inorganic compositions of three different horns ( Cornu Antelopis, Cornu Bubali and Pulvis Cornus Bubali Concentratus). In IR spectra, all the three horns had their own macroscopic fingerprints especially for those compositions containing amide groups, CH groups and Ca 3(PO 4) 2. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands 1350-400 cm -1 to be investigated in 2D-IR. Subsequently, many covered characteristic fingerprints were disclosed in 2D-IR spectra in the range of 1350-400 cm -1 and the three horns were therefore effectively discriminated. Meanwhile, the analysis results of inorganic constituents were verified by atomic spectroscopy. Furthermore, thirty different horn samples including ten of each horn were also successfully classified by soft independent modeling of class analogy (SIMCA). It was demonstrated that the above three-stage infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems ( e.g. traditional Chinese medicines).

  8. Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy

    PubMed Central

    Erbe, Andreas; Bushby, Richard J.; Evans, Stephen D.; Jeuken, Lars J. C.

    2013-01-01

    The formation of tethered lipid bilayer membranes (tBLMs) from unilamelar vesicles of egg yolk phosphatidylcholine (EggPC) on mixed self–assembled monolayers (SAMs) from varying ratios of 6-mercaptohexanol and EO3Cholesteryl on gold has been monitored by simultaneous attenuated total reflectance fourier transform infrared (ATR–FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The influence of the lipid orientation (and hence the anisotropy) of lipids on a gold film on the dichroic ratio was studied by simulations of spectra with a matrix method for anisotropic layers. It is shown that for certain tilt angles of the dielectric tensor of the adsorbed anisotropic layer dispersive and negative absorption bands are possible. The experimental data indicates that the structure of the assemblies obtained varies with varying SAM composition. On SAMs with a high content of EO3Cholesteryl, tBLMs with reduced fluidity are formed. For SAMs with high content of 6-mercaptohexanol, the results are consistent with the adsorption of flattened vesicles, while spherical vesicles have been found in a small range of surface compositions. The kinetics of the adsorption process is consistent with the assumption of spherical vesicles as long–living intermediates for surfaces of high 6-mercaptohexanol content. No long–living spherical vesicles have been detected for surfaces with large fraction of EO3Cholesteryl tethers. The observed differences between the surfaces suggest that for the formation of tBLMs (unlike supported BLMs) no critical surface coverage of vesicles is needed prior to lipid bilayer formation. PMID:17388505

  9. [The principle and technical analysis of methane detection using infrared absorption spectroscopy].

    PubMed

    Zhang, Yu; Wang, Yi-Ding; Li, Li; Zheng, Chuan-Tao; An, Yu-Peng; Song, Zhen-Yu

    2008-11-01

    There has been considerable interest recently in methane sensor based on infrared absorption spectroscopy for industrial detection and environment monitoring. The present paper presents the intensites of methane mid-infrared fundamental absorption bands, near-infrared combination band of v2 + 2v3 and overtone band of 2v3, and it was found that the absorption strengths of fundamental bands are two orders of magnitude higher than those of overtone bands and three orders of magnitude higher than those of the combinations. Theoretically, mid-infrared detection system is much better. However, because the near-infrared source and detector are more maturely developed and cheaper, near-infrared technology is widely used. Furthermore, the near-infrared radiation can be transmitted through ordinary low-loss silica fiber, suitable for long-distance methane sensing system, meeting the needs of industrial mining and other aspects. But with the development of mid-infrared detector and high-power high-sensitivity devices, low priced micro sensor modules will be more and more developed. The development of optical methane sensors is reported in this paper. Several detection technologies were investigated such as differential absorption, harmonic detection, cavity spectroscopy enhancement and photoacoustic spectroscopy. The theoretical formula, sensitivity and system structure of these technologies are presented. PMID:19271479

  10. Solid-state spectroscopy with far-infrared continuous-wave lasers

    NASA Astrophysics Data System (ADS)

    Tacke, M.

    The results of experimental and theoretical work on far infrared (FIR) spectroscopy are summarized, along with attendant problems. Reviews are presented of experimentation with solid-state spectroscopy using CW FIR lasers in transmission spectroscopy, spectroscopy with a variable parameter, resonator and interferometer investigations, and studies involving surface electromagnetic waves. Attention is also given to refractometry and planar dielectric lightguides, and comparisons are made with the performance obtained with Fourier spectroscopy. The theoretical framework underlying FIR laser spectroscopy is discussed in terms of the physical optics of FIR wavelengths, plane waves, Gaussian modes, and Gaussian beams in spectroscopic experiments. Parameters governing the local optics at FIR wavelengths are considered, noting the limitations of geometric optics in the FIR regime. Applications of the Wigner function for intensity calculations is described and illustrated with several examples. Finally, it is shown that laser spectroscopy is more effective for quantifying the amplitude of radiation than is Fourier spectroscopy.

  11. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Frogel, Jay (Technical Monitor); Smith, Howard A.

    2004-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our empha- sis has been on star formation in external, bright IR galaxies, but other areas of research have in- cluded young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spec- troscopic data sets. Three papers are included:The Infrared Lines of OH: Diagnostics of Molecular Cloud Conditions in Infrared Bright Galaxies; The Far-Infrared Spectrum of Arp 220; andThe Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068.

  12. Infrared spectroscopy of organics of planetological interest at low temperatures

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.

    1994-01-01

    In the context of prebiotic chemistry in space, some of the outer planetary objects display H, C, N and O rich chemistry similar to the one in the biosphere of Earth. Of particular interest are Saturn's moon, Titan; Neptune's moon, Triton; and Pluto where extreme cold conditions prevail. Identifications of chemical species on these objects (surfaces and atmospheres) is essential to a better understanding of the radiation induced chemical reactions occuring thereon. There have been several ground based observations of these planetary objects in the infrared windows from 1 to 2.5 micrometers. Voyager also provided spectra in the thermal infrared (6 to 50 micrometers) region. Interpretation of these data require laboratory infrared spectra of relevant species under the temperature conditions appropriate to these objects. The results of some of these studies carried out in our laboratory and elsewhere and their impact on the analyses of the observed data will be summarized.

  13. Infrared spectroscopy of interplanetary dust in the laboratory

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Freeman, J. J.

    1981-01-01

    A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.

  14. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals

    PubMed Central

    Harrison, A. J.; Bilgili, E. A.; Beaudoin, S. P.

    2013-01-01

    The goal of this work was to evaluate the ability of photothermal induced resonance (PTIR) to measure the local infrared absorption spectra of crystalline organic drug nanoparticles embedded within solid matrices. Herein, the first reports of the chemical characterization of sub-100 nm organic crystals are described; infrared spectra of 90 nm griseofulvin particles were obtained, confirming the chemical resolution of PTIR beyond the diffraction limit. Additionally, particle size distributions via dynamic light scattering and PTIR image analysis were found to be similar, suggesting that the PTIR measurements are not significantly affected by inhomogeneous infrared absorptivity of this system. Thus as medical applications increasingly emphasize localized drug delivery via micro/nano-engineered structures, PTIR can be used to unambiguously chemically characterize drug formulations at these length scales. PMID:24171582

  15. Fast infrared spectroscopy of protein dynamics: advancing sensitivity and selectivity.

    PubMed

    Koziol, Klemens L; Johnson, Philip J M; Stucki-Buchli, Brigitte; Waldauer, Steven A; Hamm, Peter

    2015-10-01

    2D-IR spectroscopy has matured to a powerful technique to study the structure and dynamics of peptides, but its extension to larger proteins is still in its infancy, the major limitations being sensitivity and selectivity. Site-selective information requires measuring single vibrational probes at sub-millimolar concentrations where most proteins are still stable, which is a severe challenge for conventional (FT)IR spectroscopy. Besides its ultrafast time-resolution, a so far largely underappreciated potential of 2D-IR spectroscopy lies in its sensitivity gain. The present paper sets the goals and outlines strategies how to use that sensitivity gain together with properly designed vibrational labels to make IR spectroscopy a versatile tool to study a wide class of proteins.

  16. High pressure far infrared spectroscopy of ionic solids

    NASA Technical Reports Server (NTRS)

    Lowndes, R. P.

    1974-01-01

    A high-pressure far-infrared cell operating at up to truly hydrostatic pressures of 8 kbar is described and used to determine the anharmonic self-energies associated with the transverse optic modes of ionic solids in which q approximately equals zero. The cell allows far-infrared studies in the spectral range below 120 reciprocal cm. The transverse optic modes were investigated to determine their mode Gruneisen constants and the pressure dependence of their inverse lifetimes in RbI, CsI, and TlCl.

  17. Thermal Infrared Spectroscopy of Saturn and Titan from Cassini

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Brasunas, J. C.; Carlson, R. C.; Flasar, F. M.; Kunde, V. G.; Mamoutkine, A. A.; Nixon, A.; Pearl, J. C.; Romani, P. N.; Simon-Miller, A. A.; Bjoraker, G. L.

    2009-01-01

    The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.

  18. Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Hoerz, F.; Christensen, P.; Lucey, P. G.

    2001-01-01

    We performed shock recovery experiments at JSC (17-63 GPa) on samples of Stillwater pyroxenite and anorthosite and acquired their thermal infrared spectra (3-50 micron) to investigate the degradation of spectral features at high pressures. Additional information is contained in the original extended abstract.

  19. Mars: Near-infrared comparative spectroscopy during the 1986 opposition

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Mccord, Thomas B.

    1987-01-01

    Near-infrared spectral observations of Mars during the 1986 opposition were performed at the Mauna Kea Observatory utilizing the University of Hawaii's 88 inch telescope. Spectra were obtained of several Martian locations using a continuously variable filter (CVF) spectrometer with a resolution of 1.25 percent. Spot-to-spot ratios were produced between spectra taken in different geological regions.

  20. Laboratory Infrared Spectroscopy of Gaseous Negatively Charged Polyaromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Juehan; Berden, Giel; Oomens, Jos

    2014-06-01

    Based largely on infrared spectroscopic evidence, polycyclic aromatic hydrocarbon (PAH) molecules are now widely accepted to occur abundantly in the interstellar medium. Laboratory infrared spectra have been obtained for a large variety of neutral and cationic PAHs, but data for anionic PAHs are scarce. Nonetheless, in regions with relatively high electron densities and low UV photon fluxes, PAHs have been suggested to occur predominantly as negatively charged ions (anions), having substantial influence on cloud chemistry. While some matrix spectra have been reported for radical anion PAHs, no data is available for even-electron anions, which are more stable against electron detachment. Here we present the first laboratory infrared spectra of deprotonated PAHs ([PAH-H]-) in the wavelength ranges between 6 and 16 μm and around 3 μm. Wavelength-dependent infrared multiple-photon electron detachment is employed to obtain spectra for deprotonated naphthalene, anthracene, and pyrene in the gas phase. Spectra are compared with theoretical spectra computed at the density functional theory level. We show that the relative band intensities in different ranges of the IR spectrum deviate significantly from those of neutral and positively charged PAHs, and moreover from those of radical anion PAHs. These relative band intensities are, however, well reproduced by theory. An analysis of the frontier molecular orbitals of the even- and odd-electron anions reveals a high degree of charge localization in the deprotonated systems, qualitatively explaining the observed differences and suggesting unusually high electric dipole moments for this class of PAH molecules.

  1. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  2. High-pressure-low-temperature cryostat designed for use with fourier transform infrared spectrometers and time-resolved infrared spectroscopy.

    PubMed

    Calladine, James A; Love, Ashley; Fields, Peter A; Wilson, Richard G M; George, Michael W

    2014-01-01

    The design for a new high-pressure-low-temperature infrared (IR) cell for performing experiments using conventional Fourier transform infrared or fast laser-based time-resolved infrared spectroscopy, in a range of solvents, is described. The design builds upon a commercially available compressor and cold end (Polycold PCC(®) and CryoTiger(®)), which enables almost vibration-free operation, ideal for use with sensitive instrumentation. The design of our cell and cryostat allows for the study of systems at temperatures from 77 to 310 K and at pressures up to 250 bar. The CaF2 windows pass light from the mid-IR to the ultraviolet (UV), enabling a number of experiments to be performed, such as Raman, UV-visible absorption spectroscopy, and time-resolved techniques where sample excitation/probing using continuous wave or pulsed lasers is required. We demonstrate the capabilities of this cell by detailing two different applications: (i) the reactivity of a range of Group V-VII organometallic alkane complexes using time-resolved spectroscopy on the millisecond timescale and (ii) the gas-to-liquid phase transition of CO2 at low temperature, which is applicable to measurements associated with transportation issues related to carbon capture and storage.

  3. Detection of albumin unfolding preceding proteolysis using Fourier transform infrared spectroscopy and chemometric data analysis.

    PubMed

    Domínguez-Vidal, Ana; Saenz-Navajas, María P; Ayora-Cañada, María José; Lendl, Bernhard

    2006-05-15

    The hydrolysis of bovine serum albumin with protease K at 60 degrees C has been studied by means of infrared spectroscopy. Two-dimensional correlation spectroscopy (2DCoS) has been used to study spectral changes in the reaction. The use of the multivariate curve resolution-alternating least-squares method applied to infrared measurements allowed the recovery of pure infrared spectra and concentration profiles of the different species involved in the reaction. Special attention was paid to the careful inspection of residuals again using 2DCoS. In this way, a heat-induced unfolding step previous to protein hydrolysis was identified. The infrared spectra of the intermediate species showed a more disordered structure than native albumin, the decrease in alpha-helix conformation being especially noticeable. The formation of beta-sheet aggregates due to heating was detected too.

  4. Thermal decomposition of CH3CHO studied by matrix infrared spectroscopy and photoionization mass spectroscopy.

    PubMed

    Vasiliou, AnGayle K; Piech, Krzysztof M; Reed, Beth; Zhang, Xu; Nimlos, Mark R; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L; David, Donald E; Urness, Kimberly N; Daily, John W; Stanton, John F; Ellison, G Barney

    2012-10-28

    A heated SiC microtubular reactor has been used to decompose acetaldehyde and its isotopomers (CH(3)CDO, CD(3)CHO, and CD(3)CDO). The pyrolysis experiments are carried out by passing a dilute mixture of acetaldehyde (roughly 0.1%-1%) entrained in a stream of a buffer gas (either He or Ar) through a heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 50-200 Torr with the SiC tube wall temperature in the range 1200-1900 K. Characteristic residence times in the reactor are 50-200 μs after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. The reactor has been modified so that both pulsed and continuous modes can be studied, and results from both flow regimes are presented. Using various detection methods (Fourier transform infrared spectroscopy and both fixed wavelength and tunable synchrotron radiation photoionization mass spectrometry), a number of products formed at early pyrolysis times (roughly 100-200 μs) are identified: H, H(2), CH(3), CO, CH(2)=CHOH, HC≡CH, H(2)O, and CH(2)=C=O; trace quantities of other species are also observed in some of the experiments. Pyrolysis of rare isotopomers of acetaldehyde produces characteristic isotopic signatures in the reaction products, which offers insight into reaction mechanisms that occur in the reactor. In particular, while the principal unimolecular processes appear to be radical decomposition CH(3)CHO (+M) → CH(3) + H + CO and isomerization of acetaldehyde to vinyl alcohol, it appears that the CH(2)CO and HCCH are formed (perhaps exclusively) by bimolecular reactions, especially those involving hydrogen atom attacks. PMID:23126711

  5. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  6. Development of Kinetic Inductance Detectors for Far-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, Alyssa; Aguirre, James E.; Stevenson, Thomas

    2016-01-01

    An instrument with high sensitivity and spectral resolution at far-infrared wavelengths could contribute significantly to several currently unanswered questions in astrophysics. Here, we describe a detector system suitable for a spectroscopic experiment at far-infrared wavelengths using kinetic inductance detectors (KIDs). KIDs have the potential to achieve high sensitivity and low noise levels. Specifically, the approach we take uses lumped-element KIDs, which consist of separate capacitive and inductive elements combined to form a microresonator. The inductive element serves as a direct radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels, along with results from a prototype detector array.

  7. Study of oral cavity lesions by infrared spectroscopy.

    PubMed

    Giorgini, E; Conti, C; Rocchetti, R; Rubini, C; Sabbatini, S; Librando, V; Tosi, G

    2016-01-01

    Fourier transform infrared (FTIR) microspectroscopy is considered a useful tool in the biomedical field, for analysing in situ and at cellular level, very small areas of tissues and cells, with minimal sample preparation and without the use of stains or probes. This spectroscopic technique has been successfully applied to analyse biological samples from patients affected by tumoral pathologies, with particular attention to oral cavity lesions. In this study, we describe the application of FTIR microspectroscopy to characterize and discriminate the most recurrent benign and malignant diseases of oral cavity compartment. Infrared maps were acquired on tissues affected by the following pathologies: squamous cell carcinoma, adenoid cystic carcinoma, polymorphous low-grade adenocarcinoma, squamous dysplasia, keratocystic odontogenic tumor, radicular cyst, residual cyst, unicystic ameloblastoma, and ameloblastic fibroma, together with healthy tissue samples (used as control group). The epithelial and connective components of all samples were distinguished and submitted to multivariate analysis. The results were in agreement with histological suggestions. PMID:27049108

  8. Kinetic inductance detectors for far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, A.; Aguirre, J.; Stevenson, T.

    2016-07-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels.

  9. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    SciTech Connect

    Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  10. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Mould, Jeremy; Reynolds, Tristan; Readhead, Tony; Matthews, Keith; Floyd, David; Brown, Michael; Jannuzi, Buell; Atlee, David; Cotter, Garret; Ferrarese, Laura

    2012-11-15

    In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett {gamma}, and [Fe II]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource.

  11. Mid-Infrared Spectroscopy of the Most Massive Stars

    NASA Astrophysics Data System (ADS)

    Figer, Donald; Najarro, Paco; Stolovy, Susan

    2004-09-01

    The most massive star that can form is presently defined by observations of a class of very rare stars having inferred initial masses of ~200 solar masses. There are only a few such stars in the Galaxy, including the Pistol Star, FMM362, and LBV 1806-20, the first two being located near the Galactic center, and third located in the disk near W31. Each has only recently been identified as so massive within the past 10 years through the analysis of infrared observations, but they are otherwise too faint, due to extinction, to observe at shorter wavelengths. These stars appear to be very luminous (L>10^6.3 solar luminosities), "blue" (T>10000 K), and variable (delta K~1 mag.), and the Pistol Star has ejected 10 solar masses of material in the past 10000 years. In addition, these stars have near-infrared spectra similar to those of prototypical Luminous Blue Variables, i.e. Eta Car and AG Car. Given their apparent violation of the Humphries-Davidson limit, they are presumably in a short-lived phase of stellar evolution that is often associated with rapid mass-loss through episodic eruptions of their outer atmospheres. We propose to determine the physical properties of these stars and the velocity and ionization structure in their winds by using spectra obtained with the high resolution modes of the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. The 10 to 40 micron wavelength region is ideally suited for accessing a variety of lines from transitions of hydrogen, helium, iron, silicon, sulfur, among others; indeed, through our models, we predict that sufficiently sensitive spectra will yield over 300 spectral lines. In addition, we predict that the mid-infrared continuum will be dominated by free-free emission generated in the thick winds associated with these stars, an effect that should be clearly detectable in the spectra.

  12. Laboratory infrared spectroscopy of gaseous negatively charged polyaromatic hydrocarbons

    SciTech Connect

    Gao, Juehan; Berden, Giel; Oomens, Jos

    2014-06-01

    Based largely on infrared spectroscopic evidence, polycyclic aromatic hydrocarbon (PAH) molecules are now widely accepted to occur abundantly in the interstellar medium. Laboratory infrared spectra have been obtained for a large variety of neutral and cationic PAHs, but data for anionic PAHs are scarce. Nonetheless, in regions with relatively high electron densities and low UV photon fluxes, PAHs have been suggested to occur predominantly as negatively charged ions (anions), having substantial influence on cloud chemistry. While some matrix spectra have been reported for radical anion PAHs, no data is available for even-electron anions, which are more stable against electron detachment. Here we present the first laboratory infrared spectra of deprotonated PAHs ([PAH-H]{sup –}) in the wavelength ranges between 6 and 16 μm and around 3 μm. Wavelength-dependent infrared multiple-photon electron detachment is employed to obtain spectra for deprotonated naphthalene, anthracene, and pyrene in the gas phase. Spectra are compared with theoretical spectra computed at the density functional theory level. We show that the relative band intensities in different ranges of the IR spectrum deviate significantly from those of neutral and positively charged PAHs, and moreover from those of radical anion PAHs. These relative band intensities are, however, well reproduced by theory. An analysis of the frontier molecular orbitals of the even- and odd-electron anions reveals a high degree of charge localization in the deprotonated systems, qualitatively explaining the observed differences and suggesting unusually high electric dipole moments for this class of PAH molecules.

  13. Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbon Cations. 3; The Members

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.; Wittebon, Fred C. (Technical Monitor)

    1994-01-01

    In spite of the fact that the infrared spectroscopic properties of only a few isolated ionized polycyclic aromatic hydrocarbons (PAHs) are known, gaseous, ionized PAHs are thought to be responsible for a very common family of infrared interstellar emission bands. In order to provide a data base to test this hypothesis and, if borne out, to use this emission band family as a probe of many different interstellar environments, we are carrying out a thorough study of the infrared spectroscopic properties of neutral and ionized PAHs in argon matrices. Here we present the near and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo[e]pyrene, benzo[ghilperylene, and coronene. The properties of naphthalene, the first member of the series, are given elsewhere. The spectra of perdeuterated phenanthrene and pyrene are also reported. For those molecules which have been previously studied (pyrene, d(10)-pyrene, and coronene), band positions and relative intensities are in agreement. In all cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeutero-phenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene,the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 5-20 times weaker than in the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  14. Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser

    PubMed Central

    Mërtiri, Alket; Jeys, Thomas; Liberman, Vladimir; Hong, M. K.; Mertz, Jerome; Altug, Hatice; Erramilli, Shyamsunder

    2012-01-01

    We report a technique to measure the mid-infrared photothermal response induced by a tunable quantum cascade laser in the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB), without any intercalated dye. Heterodyne detection using a Ti:sapphire laser of the response in the solid, smectic, nematic and isotropic liquid crystal phases allows direct detection of a weak mid-infrared normal mode absorption using an inexpensive photodetector. At high pump power in the nematic phase, we observe an interesting peak splitting in the photothermal response. Tunable lasers that can access still stronger modes will facilitate photothermal heterodyne mid-infrared vibrational spectroscopy. PMID:22912508

  15. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  16. Evaluation of different grades of ginseng using Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Ginseng is one of the most widely used herbal medicines which have many kinds of pharmaceutical values. The discrimination of grades of ginseng includes the cultivation types and the growth years herein. To evaluate the different grades of ginseng, the fibrous roots and rhizome roots of ginseng were analyzed by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy in this paper. The fibrous root and rhizome root of ginseng have different content of starch, calcium oxalate and other components. For the fibrous roots of ginseng, mountain cultivation ginseng (MCG), garden cultivation ginseng (GCG) and transplanted cultivation ginseng (TCG) have clear difference in the infrared spectra and second derivative spectra in the range of 1800-400 cm -1, and clearer difference was observed in the range of 1045-1160 and 1410-1730 cm -1 in 2D synchronous correlation spectra. Three kinds of ginseng can be clustered very well by using SIMCA analysis on the basis of PCA as well. For the rhizome roots, the content of calcium oxalate and starch change with growth years in the IR spectra, and some useful procedure can be obtained by the analysis of 2D IR synchronous spectra in the range of 1050-1415 cm -1. Also, ginsengs cultivated in different growth years were clustered perfectly by using SIMCA analysis. The results suggested that different grades of ginseng can be well recognized using the mid-infrared spectroscopy assisted by 2D IR correlation spectroscopy, which provide the macro-fingerprint characteristics of ginseng in different parts and supplied a rapid, effective approach for the evaluation of the quality of ginseng.

  17. Vibrational spectroscopy of a transient species through time-resolved Fourier transform infrared emission spectroscopy: The vinyl radical

    SciTech Connect

    Letendre, Laura; Liu, Dean-Kuo; Pibel, Charles D.; Halpern, Joshua B.; Dai, Hai-Lung

    2000-06-01

    An approach for detecting the vibrational spectrum of transient species is demonstrated on the vinyl radical. Photodissociation of carefully chosen precursors at selected photolysis wavelengths produce highly vibrationally excited radicals. Infrared (IR) emission from these radicals is then measured by time-resolved Fourier transform spectroscopy with nanosecond time resolution. All nine vibrational bands of the vinyl radical, generated from four different precursors, are obtained and reported here for the first time. (c) 2000 American Institute of Physics.

  18. Characterization of soils using photoacoustic mid-infrared spectroscopy.

    PubMed

    Changwen, Du; Linker, Raphael; Shaviv, Avi

    2007-10-01

    This study investigates the use of photoacoustic spectroscopy (PAS) for rapid soil analysis. Photoacoustic spectroscopy requires very minimal sample preparation (air-drying), which is a major advantage compared to the more traditional transmittance technique, which requires time-consuming preparation of pellets. The amount of information contained in the PAS spectra appears to be similar to that contained in transmittance spectra, and the PAS spectra exhibit a large number of bands that can be associated with various soil constituents such as quartz, calcium carbonate, and various types of clay. Comparison with attenuated total reflection (ATR) spectra of saturated soil pastes shows that the PAS spectra provide much more information than the ATR spectra due to the strong water bands present in the latter. PAS quantitative analysis of clay, calcium carbonate, and organic matter is presented, with respective determination errors of approximately 12% clay, approximately 5% CaCO(3), and approximately 0.2% organic matter.

  19. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  20. Mid-infrared spectroscopy of the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Hemachandra, D.; Barmby, P.; Peeters, E.; Willner, S. P.; Ashby, M. L. N.; Smith, H. A.; Gordon, K. D.; Smith, D. A.; Fazio, G. G.

    2015-11-01

    We present Spitzer/Infrared Spectrograph (IRS) 5-21 μm spectroscopic maps towards 12 regions in the Andromeda galaxy (M31). These regions include the nucleus, bulge, an active region in the star-forming ring and nine other regions chosen to cover a range of mid-to-far-infrared colours. In line with previous results, polycyclic aromatic hydrocarbon (PAH) feature ratios (6.2 and 7.7 μm features compared to the 11.2 μm feature) measured from our extracted M31 spectra, except the nucleus, strongly correlate. The equivalent widths of the main PAH features, as a function of metallicity and radiation hardness, are consistent with those observed for other nearby spiral and starburst galaxies. Reprocessed data from the ISOCAM instrument on the Infrared Space Observatory agree with the IRS data; early reports of suppressed 6-8 μm features and enhanced 11.3 μm feature intensity and full width at half-maximum apparently resulted from background-subtraction problems. The nucleus does not show any PAH emission but does show strong silicate emission at 9.7 μm. Furthermore, different spectral features (11.3 μm PAH emission, silicate emission and [Ne III] 15.5 μm line emission) have distinct spatial distributions in the nuclear region: the silicate emission is strongest towards the stellar nucleus, while the PAH emission peaks 15 arcsec north of the nucleus. The PAH feature ratios at this position are atypical with strong emission at 11.2 and 15-20 μm but weak emission at 6-8 μm. The nucleus itself is dominated by stellar light giving rise to a strong blue continuum and silicate emission.

  1. Measurement of stratospheric HBr using high resolution far infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carlotti, M.; Ade, P. A. R.; Carli, B.; Ciarpallini, P.; Cortesi, U.; Griffin, M. J.; Lepri, G.; Mencaraglia, F.; Murray, A. G.; Nolt, I. G.; Park, J. H.; Radostitz, J. V.

    Far infrared spectral features of HBr have been observed in the stratospheric emission spectrum using a balloon borne high resolution Fourier transform spectrometer equipped with a high sensitivity detector specially designed for this purpose. The value of 1.6±0.6 parts per trillion in volume for the HBr mixing ratio has been retrieved, from the global-fit analysis of 121 spectra, in the 25-36.5 km altitude range. The result is briefly compared with models and previous assessments.

  2. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  3. Infrared and NIR Raman spectroscopy in medical microbiology

    NASA Astrophysics Data System (ADS)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  4. Gap-modulation infrared spectroscopy of high transition temperature superconductors

    PubMed Central

    Little, William A.; Collman, James P.

    1988-01-01

    Conventional methods of determining the coupling factor α2(ω)F(ω) for the newly discovered high transition temperature (Tc) cuprate superconductors by using tunneling and infrared measurements have thus far failed to show the cause of the very high Tc of these compounds. This is due in part to difficulties in sample preparation for tunneling studies and to difficulties in obtaining good data at relatively high tunneling voltages. Also, in IR (infrared) measurements, small differences in absorptivity between the normal and superconducting state can be masked by changes in the phonon occupation at high and low temperatures. Here we propose a technique for determing the coupling constant, which should be less dependent on the surface quality of the sample than with tunneling and should allow measurements at higher energies with greater precision than do tunneling or simple IR observations. This should make possible a definitive determination of any possible exciton contribution to this coupling term, which would appear at energies well above the range where conventional IR or tunneling measurements are effective. PMID:16593950

  5. Identification and classification of silks using infrared spectroscopy.

    PubMed

    Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris

    2015-10-01

    Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks.

  6. Time-domain spectroscopy in the mid-infrared.

    PubMed

    Lanin, A A; Voronin, A A; Fedotov, A B; Zheltikov, A M

    2014-10-20

    When coupled to characteristic, fingerprint vibrational and rotational motions of molecules, an electromagnetic field with an appropriate frequency and waveform offers a highly sensitive, highly informative probe, enabling chemically specific studies on a broad class of systems in physics, chemistry, biology, geosciences, and medicine. The frequencies of these signature molecular modes, however, lie in a region where accurate spectroscopic measurements are extremely difficult because of the lack of efficient detectors and spectrometers. Here, we show that, with a combination of advanced ultrafast technologies and nonlinear-optical waveform characterization, time-domain techniques can be advantageously extended to the metrology of fundamental molecular motions in the mid-infrared. In our scheme, the spectral modulation of ultrashort mid-infrared pulses, induced by rovibrational motions of molecules, gives rise to interfering coherent dark waveforms in the time domain. These high-visibility interference patterns can be read out by cross-correlation frequency-resolved gating of the field in the visible generated through ultrabroadband four-wave mixing in a gas phase.

  7. Far-Infrared Spectroscopy of Anti-Vinyl Alcohol

    NASA Astrophysics Data System (ADS)

    Raston, Paul; Bunn, Hayley

    2016-06-01

    Vinyl alcohol can exist in two rotameric forms, known as syn- and anti- vinyl alcohol, where syn is the most stable. Both rotamers have been observed in the interstellar medium towards Sagittarius B2(N) making them of particular astrophysical importance. Vinyl alcohol has been subject to various spectroscopic investigations, however, the anti rotamer has only been obsvered in the microwave region. We report the high resolution (0.001 wn) FTIR spectrum of anti-vinyl alcohol collected at the infrared beamline facility of the Australian Synchrotron. Vinyl alcohol was produced via the pyrolysis of 2-chloroethanol at 900°C, and its far infrared spectrum reveals the presence of the strong νb{15} fundamental and hot band of anti-vinyl alcohol. Rotational and centrifugal distortion constants of this higher energy rotamer have since been determined for the νb{15} and 2νb{15} states, and the ground state constants have been refined. B. E. Turner, A. J. Apponi, ApJ 561, 207 (2001) M. Rodler, J. Mol. Spec. 114, 23 (1985) D-L Joo, et al., J. Mol. Spec. 197, 68 (1999)

  8. Ischemic stroke assessment with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming; Hu, Bo

    1999-09-01

    Many authors have elucidated the theory about oxygenated hemoglobin, deoxygenated hemoglobin absorption in near-infrared spectrum. And the theory has opened a window to measure the hemodynamic changes caused by stroke. However, no proper animal model still has established to confirm the theory. The aim of this study was to validate near-infrared cerebral topography (NCT) as a practical tool and to try to trace the focal hemodynamic changes of ischemic stroke. In the present study, middle cerebral artery occlusion model and the photosensitizer induced intracranial infarct model had been established. NCT and functional magnetic resonance image (fMRI) were obtained during pre- and post-operation. The geometric shape and infarct area of NCT image was compared with the fMRI images and anatomical samples of each rat. The results of two occlusion models in different intervene factors showed the NCT for infarct focus matched well with fMRI and anatomic sample of each rats. The instrument might become a practical tool for short-term prediction of stroke and predicting the rehabilitation after stroke in real time.

  9. Discrimination of cheese products for authenticity control by infrared spectroscopy.

    PubMed

    Hruzikova, Jana; Milde, David; Krajancova, Pavla; Ranc, Vaclav

    2012-02-22

    Quality and authenticity control serve as the customers' and manufacturers' insurance, and thus the development of analytical tools providing these tasks represents an important step of each product development. The control of authenticity in food manufacturing is even more important due to the direct influence of its products on the health of the population. This study sought to develop an easy to use and robust method for the authenticity control of cheese products. The method is based on the measurement of infrared spectra of the gas phase obtained by heating of selected cheese under controlled conditions. Two different procedures, that is, treatment of samples in a desiccator and their freeze-drying, were compared, and also various temperatures and heating times were studied. It was found that suitable fingerprint infrared spectra can be obtained by both techniques; however, freeze-drying offered faster analysis times. The sample heating temperature and time were evaluated using advanced statistical approaches, and it was found that suitable results could be obtained using 120 °C heating for 90 min. This method was tested for the authenticity control of two cheese families, Tvaruzky and Romadur, for which four cheese products were evaluated and successfully discriminated for each family. This method can be potentially used as a cheap and easy to use alternative to other commercially available options.

  10. Infrared spectroscopy of HOOO and DOOO in 4He nanodroplets

    NASA Astrophysics Data System (ADS)

    Raston, Paul L.; Liang, Tao; Douberly, Gary E.

    2012-11-01

    The HOOO hydridotrioxygen radical and its deuterated analog (DOOO) have been isolated in helium nanodroplets following the in situ association reaction between OH and O2. The infrared spectrum in the 3500-3700 cm-1 region reveals bands that are assigned to the ν1 (OH stretch) fundamental and ν1 + ν6 (OH stretch plus torsion) combination band of the trans-HOOO isomer. The helium droplet spectrum is assigned on the basis of a detailed comparison to the infrared spectrum of HOOO produced in the gas phase [E. L. Derro, T. D. Sechler, C. Murray, and M. I. Lester, J. Chem. Phys. 128, 244313 (2008), 10.1063/1.2945872]. Despite the characteristic low temperature and rapid cooling of helium nanodroplets, there is no evidence for the formation of a weakly bound OH-O2 van der Waals complex, which implies the absence of a kinetically significant barrier in the entrance channel of the reaction. There is also no spectroscopic evidence for the formation of cis-HOOO, which is predicted by theory to be nearly isoenergetic to the trans isomer. Under conditions that favor the introduction of multiple O2 molecules to the droplets, bands associated with larger H/DOOO-(O2)n clusters are observed shifted ˜1-10 cm-1 to the red of the trans-H/DOOO ν1 bands.

  11. Identification and classification of silks using infrared spectroscopy

    PubMed Central

    Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris

    2015-01-01

    ABSTRACT Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks. PMID:26347557

  12. Far and mid infrared spectroscopy of Titan's tholins

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Carrasco, Nathalie; Mahjoub, Ahmed; Vinatier, Sandrine; Correia, Jean-Jacques; Dumas, Paul; Giuliani, Alexandre; Szopa, Cyril; Cernogora, Guy

    2013-04-01

    In this work [1] we present mid- and far-Infrared absorption spectra of Titan's aerosol analogues produced in the PAMPRE experimental setup. We provide a complete dataset regarding the influence that the concentration of methane vapor in the gas mixture has on the tholins spectra. Among other effects, the intensity of the 2900 cm-1 pattern (also detected in Titan's atmosphere) increases with the methane concentration. On the opposite, tholins produced with low methane concentrations seem to be more amine based polymers. Moreover, we compare tholins spectrum with observation of Titan's atmosphere. It is shown that the position of the bands around 2900 cm-1 depends on the chemical environment of the methyl functional group. We conclude that the presence of these absorption bands in Titan's atmosphere, as measured with the VIMS instrument onboard Cassini [2] is in agreement with an aerosol contribution. In the far-infrared, tholins spectrum presents many similarities with the spectra of Titan's aerosols derived from recent Cassini-CIRS observations [3] and allows identification of bands in the spectrum of Titan's atmosphere REFERENCES 1. T. Gautier N. Carrasco, A. Mahjoub, S. Vinatier, C. Szopa, J.-J. Correia, P. Dumas, A. Giuliani and G. Cernogora. Icarus 221: 320-327(2012). 2. P. Rannou, T. Cours, S. Le Mouelic, S. Rodriguez, C. Sotin, P. Drossart, R. Brown, Icarus 208: 850-867 (2010). 3. C. M. Anderson and R. E. Samuelson, Icarus 212: 762-778 (2011)

  13. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo(e)pyrene, benzo-(ghi)perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d(sub 10), and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo(ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  14. Calculating singlet excited states: Comparison with fast time-resolved infrared spectroscopy of coumarins

    NASA Astrophysics Data System (ADS)

    Hanson-Heine, Magnus W. D.; Wriglesworth, Alisdair; Uroos, Maliha; Calladine, James A.; Murphy, Thomas S.; Hamilton, Michelle; Clark, Ian P.; Towrie, Michael; Dowden, James; Besley, Nicholas A.; George, Michael W.

    2015-04-01

    In contrast to the ground state, the calculation of the infrared (IR) spectroscopy of molecular singlet excited states represents a substantial challenge. Here, we use the structural IR fingerprint of the singlet excited states of a range of coumarin dyes to assess the accuracy of density functional theory based methods for the calculation of excited state IR spectroscopy. It is shown that excited state Kohn-Sham density functional theory provides a high level of accuracy and represents an alternative approach to time-dependent density functional theory for simulating the IR spectroscopy of singlet excited states.

  15. Calculating singlet excited states: Comparison with fast time-resolved infrared spectroscopy of coumarins.

    PubMed

    Hanson-Heine, Magnus W D; Wriglesworth, Alisdair; Uroos, Maliha; Calladine, James A; Murphy, Thomas S; Hamilton, Michelle; Clark, Ian P; Towrie, Michael; Dowden, James; Besley, Nicholas A; George, Michael W

    2015-04-21

    In contrast to the ground state, the calculation of the infrared (IR) spectroscopy of molecular singlet excited states represents a substantial challenge. Here, we use the structural IR fingerprint of the singlet excited states of a range of coumarin dyes to assess the accuracy of density functional theory based methods for the calculation of excited state IR spectroscopy. It is shown that excited state Kohn-Sham density functional theory provides a high level of accuracy and represents an alternative approach to time-dependent density functional theory for simulating the IR spectroscopy of singlet excited states.

  16. Functional Near-Infrared Spectroscopy for the Assessment of Speech Related Tasks

    ERIC Educational Resources Information Center

    Dieler, A. C.; Tupak, S. V.; Fallgatter, A. J.

    2012-01-01

    Over the past years functional near-infrared spectroscopy (fNIRS) has substantially contributed to the understanding of language and its neural correlates. In contrast to other imaging techniques, fNIRS is well suited to study language function in healthy and psychiatric populations due to its cheap and easy application in a quiet and natural…

  17. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  18. Prediction of chemical contaminants and food compositions by near infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prediction of Food Adulteration by Infrared Spectroscopy H. Zhuang Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 Food adulteration, including both chemical contamination and composition alternation, has been one of major quality and/or safety c...

  19. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared spectroscopy is a noninvasive method of measuring local tissue oxygenation (StO[2]). Abdominal StO[2] measurements in preterm piglets are directly correlated with changes in intestinal blood flow and markedly reduced by necrotizing enterocolitis. The objectives of this study were to us...

  20. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining seed quality parameters is an integral part of cultivar improvement and germplasm screening. However, quality tests are often time cnsuming, seed destructive, and can require large seed samples. This study describes the development of near-infrared spectroscopy (NIRS) calibrations to mea...

  1. Prefrontal Dysfunction in Attention-Deficit/Hyperactivity Disorder as Measured by Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Negoro, Hideki; Sawada, Masayuki; Iida, Junzo; Ota, Toyosaku; Tanaka, Shohei; Kishimoto, Toshifumi

    2010-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders with measurement of hemoglobin concentrations as cerebral blood volume. Twenty medication-naive children with attention-deficit/hyperactivity disorder (ADHD) and 20 age- and sex-matched healthy control…

  2. Use of visible and near-infrared spectroscopy to predict pork longissimus lean color stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated using visible and near-infrared (VIS/NIR) spectroscopy to predict lean color stability in pork loin chops. Spectra were collected immediately following and approximately 1 h after rib removal from 1,208 loins. Loins were aged for 14 d before a 2.54-cm chop was placed in simula...

  3. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of species – of importance for most biological disciplines – is not always straightforward as cryptic species present a hurdle for traditional species discrimination. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and cheap method for a wide range of different applicatio...

  4. Integrating Near Infrared Spectroscopy (NIR) into the USDA-ARS sugarcane breeding program in Houma, LA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near Infrared Spectroscopy (NIRs) is a relatively new technique that has the potential to benefit Louisiana’s sugarcane industry, and is being successfully used in other parts of the world (e.g., South Africa) and even Florida. Recently, the USDA-ARS in Houma, LA purchased a NIR Cane Presentation Sy...

  5. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  6. Visible and near-infrared spectroscopy detects queen honey bee insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abdomens of honey bee queens, the heads of worker bees, and the ventriculi of worker bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their spectra with 100% accuracy. Also, the heads of worker bees taken from the...

  7. Visible and Near-Infrared Spectroscopy Detects Honey Bee Queen Insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abdomens of honey bee queens, the heads of worker bees, and the ventriculi of worker bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their spectra with 100% accuracy. Also, the heads of worker bees taken from the ...

  8. Examination of Bond Properties through Infrared Spectroscopy and Molecular Modeling in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2012-01-01

    A concerted effort has been made to increase the opportunities for undergraduate students to address scientific problems employing the processes used by practicing chemists. As part of this effort, an infrared (IR) spectroscopy and molecular modeling experiment was developed for the first-year general chemistry laboratory course. In the…

  9. Visible/near-infrared spectroscopy for discrimination of HLB-infected citrus leaves from healthy leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers have used various hyperspectral systems, covering several areas of the electromagnetic spectrum to investigate all types of disease/plant interactions. The purpose of this research was to investigate using visible and near-infrared (400-1100nm) spectroscopy to differentiate HLB infected...

  10. Quantification of rosmarinic acid levels by near infrared spectroscopy in laboratory culture grown spearmint plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid quantization of rosmarinic acid (RA) in tissues of spearmint using near-infrared (NIR) spectroscopy was developed by correlating with the results of methanol extracts analyzed on a HPLC photo-diode array (PDA) system. NIR and HPLC analyses performed on over 500 samples were u...

  11. Detection of sucrose content of sugar beet by visible/near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose content is the most important quality parameter in the production and processing of sugar beet. This paper reports on the application of visible/near-infrared (Vis-NIR) spectroscopy for measurement of the sucrose content of sugar beet. Two portable spectrometers, covering the spectral region...

  12. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of visible and near-infrared spectroscopy for measurement of the sucrose content of sugar beet was investigated with two portable spectrometers that cover the spectral regions of 400-1,100 nm and 900-1,600 nm, respectively. Spectra in interactance mode were collected first from 398 i...

  13. Topics in Chemical Instrumentation: Fourier Transform-Infrared Spectroscopy: Part I. Instrumentation.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1986-01-01

    Discusses: (1) the design of the Fourier Transform-Infrared Spectroscopy (FT-IR) spectrometer; (2) the computation of the spectrum from the interferogram; and (3) the use of apodization. (Part II will discuss advantages of FT-IR over dispersive techniques and show applications of FT-IR to difficult spectroscopic measurements.) (JN)

  14. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-01-01

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples. PMID:25487365

  15. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  16. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  17. Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco

    2016-10-01

    The catalytic hydrogenation of ethylene promoted by a Pt(111) single crystal was studied by using a ultrahigh-vacuum surface-science instrument equipped with a so-called high-pressure cell. Kinetic data were acquired continuously during the catalytic conversion of atmospheric-pressure mixtures of ethylene and hydrogen by using mass spectrometry while simultaneously characterizing the surface species in operando mode by reflection-absorption infrared spectroscopy (RAIRS). Many observations reported in previous studies of this system were corroborated, including the presence of adsorbed alkylidyne intermediates during the reaction and the zero-order dependence of the rate of hydrogenation on the pressure of ethylene. In addition, the high quality of the kinetic data, which could be recorded continuously versus time and processed to calculate time-dependent turnover frequencies (TOFs), afforded a more detailed analysis of the mechanism. Specifically, deuterium labeling could be used to estimate the extent of isotope scrambling reached with mixed-isotope-substituted reactants (C2H4 + D2 and C2D4 + H2). Perhaps the most important new observation from this work is that, although extensive H-D exchange takes place on ethylene before being fully converted to ethane, the average stoichiometry of the final product retains the expected stoichiometry of the gas mixture, that is, four regular hydrogen atoms and two deuteriums per ethane molecule in the case of the experiments with C2H4 + D2. This means that no hydrogen atoms are removed from the surface via their inter-recombination to produce X2 (X = H or D). It is concluded that, under catalytic conditions, hydrogen surface recombination is much slower than ethylene hydrogenation and H-D exchange.

  18. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    PubMed

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  19. Research on content measurement of textile mixture by near infrared spectroscopy based on principal component regression

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Li

    2010-07-01

    A new method for accurate measurement of content of textile mixture by use of Fourier transform near infrared spectroscopy is put forward. The near infrared spectra of 56 samples with different cotton and polyester contents were obtained, in which 41 samples, 10 samples and 5 samples were used for the calibration set, validation set and prediction set respectively. Principal component analysis (PCA) was utilized for the spectra data compression. Principal component regression (PCR) model was developed. It indicates that the MAE is within 2.9% and the RMSE is less than 3.6% for the validation samples, which is suitable for the prediction of unknown samples. The PCR model was applied to predict unknown samples. Experimental results show that this approach by use of Fourier transform Near Infrared Spectroscopy can be used to quantitative analysis for textile fiber.

  20. Quantitative analysis of peanut oil content in ternary blended edible oil using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Huacai; Liu, Fuli; Wang, Zhilan; Jin, Shangzhong

    2008-03-01

    Calibration models of quantitative analysis of peanut oil content in ternary blended edible oil by near infrared spectroscopy were built using partial least square (PLS) regression. A total of 92 samples blended with three kinds of pure oil in different proportion (V/V) were prepared. Near infrared diffuse reflectance spectra of the samples were collected over 4 000 cm -1-10 000 cm -1 spectral region with a FT-NIR spectrometer. A calibration model of prediction to the peanut oil content was established with PLS using the original spectra and validated with leave-one-out cross validation method. The correlation coefficient and the RMSEC of the model were 0.9926 and 2.91%, respectively. The result showed that near infrared spectroscopy could be an ideal tool for fast determination to the peanut oil content in blended edible oil.

  1. Terahertz time-domain and Fourier-transform infrared spectroscopy of traditional Korean pigments

    NASA Astrophysics Data System (ADS)

    Hong, Taeyoon; Choi, Kyujin; Ha, Taewoo; Park, Byung Cheol; Sim, Kyung Ik; Kim, Jong Hyeon; Kim, Jae Hoon; Kwon, Jy Eun; Lee, Sanghyun; Kang, Dai Ill; Lee, Han Hyoung

    2014-03-01

    Representative traditional Korean pigments (oyster shell white [hobun], massicot [miltaseung], indigo [jjok], azurite [seokcheong], malachite [seokrok], and red lead [yeondan]) have been studied with terahertz time-domain spectroscopy (THz-TDS) and Fourier-transform infrared spectroscopy (FTIRS) over the spectral region of 0.1-7.5 THz. Both the refractive index n and the extinction coefficient k were simultaneously and independently determined in the terahertz region without a Kramers-Kronig analysis while the absoprtion coefficient spectra were acquired in the infrared region. All pigments studied in the present work exhibited a set of characteristic absorption peaks unique to the pigment species in addition to a background that increased with increasing frequency. Our study demonstrates that terahertz and infrared techniques can be useful identification and diagnostic tools for the traditional Korean pigments used in heritage buildings and artworks.

  2. [Study of infrared spectroscopy quantitative analysis method for methane gas based on data mining].

    PubMed

    Zhang, Ai-Ju

    2013-10-01

    Monitoring of methane gas is one of the important factors affecting the coal mine safety. The online real-time monitoring of the methane gas is used for the mine safety protection. To improve the accuracy of model analysis, in the present paper, the author uses the technology of infrared spectroscopy to study the gas infrared quantitative analysis algorithm. By data mining technology application in multi-component infrared spectroscopy quantitative analysis algorithm, it was found that cluster analysis partial least squares algorithm is obviously superior to simply using partial least squares algorithm in terms of accuracy. In addition, to reduce the influence of the error on the accuracy of model individual calibration samples, the clustering analysis was used for the data preprocessing, and such denoising method was found to improve the analysis accuracy.

  3. Fluorescence polarization standard for near infrared spectroscopy and microscopy.

    PubMed

    Luchowski, Rafal; Sarkar, Pabak; Bharill, Shashank; Laczko, Gabor; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2008-11-20

    We present studies of polarized absorption [linear dichroism (LD)] and fluorescence polarization of the styryl derivative (LDS 798) embedded in oriented poly(vinyl alcohol) (PVA) films. These films were oriented by progressive stretching up to eight folds. Both vertical and horizontal components of absorptions and fluorescence were measured and dichroic ratios were determined for different film stretching ratios. The dichroic ratio and fluorescence anisotropy values were analyzed as a function of PVA film stretching ratio by fitting according to the previously developed theory. For maximum stretching ratios, exceptionally high anisotropy (approximately 0.8) and polarization (approximately 0.9) values have been measured. The stretched films have high polarization values also for isotropic excitation in a wide spectral range (500-700 nm). Such films can be conveniently used as high polarization standards and we envision they will also have applications in near infrared (NIR) imaging microscopy, where they can be used for correcting an instrumental factor in polarization measurements.

  4. Infrared Spectroscopy of Charge Transfer Complexes of Purines and Pyrimidines

    SciTech Connect

    Rathod, Pravinsinh I.; Oza, A. T.

    2011-10-20

    The FTIR spectra of charge transfer complexes of purines and pyrimidines with organic acceptors such as TCNQ, TCNE, DDQ, chloranil and iodine are obtained and studied in the present work. Adenine, guanine, thymine, cytosine and uracil are the purines and pyrimidines which are found as constituent of DNA and RNA. Charge transfer induced hydrogen bonding is concluded on the basis of indirect transitions observed in the infrared range in these CTCs. Some CTCs show gaussian bands revealing delocalization of charge carriers. The CTCs show interband transition in three-dimensions rather than two-dimensions unlike CTCs of amino acids. There is no extended hydrogen bonded network spanning the whole crystal. This leads to indirect transition due to locally deformed lattice furnishing a phonon-assisted transition.

  5. Determination of total phenolic compounds in compost by infrared spectroscopy.

    PubMed

    Cascant, M M; Sisouane, M; Tahiri, S; Krati, M El; Cervera, M L; Garrigues, S; de la Guardia, M

    2016-06-01

    Middle and near infrared (MIR and NIR) were applied to determine the total phenolic compounds (TPC) content in compost samples based on models built by using partial least squares (PLS) regression. The multiplicative scatter correction, standard normal variate and first derivative were employed as spectra pretreatment, and the number of latent variable were optimized by leave-one-out cross-validation. The performance of PLS-ATR-MIR and PLS-DR-NIR models was evaluated according to root mean square error of cross validation and prediction (RMSECV and RMSEP), the coefficient of determination for prediction (Rpred(2)) and residual predictive deviation (RPD) being obtained for this latter values of 5.83 and 8.26 for MIR and NIR, respectively. PMID:27130128

  6. Mid-infrared spectroscopy and chemometrics in corn starch classification

    NASA Astrophysics Data System (ADS)

    Dupuy, N.; Wojciechowski, C.; Ta, C. D.; Huvenne, J. P.; Legrand, P.

    1997-06-01

    The authentication of food is a very important issue for both the consumer and the food industry at all levels of the food chain from raw materials to finished products. Corn starch can be used in a wide variety of food preparations such as bakery cream fillings, sauces, salad dressings, frozen foods etc. Many modifications are made to corn starch in connection with its use in agrofood. The value of the product increases with the degree of modification. Some chemical and physical tests have been devised to solve the problem of identifying these modifications but all the methods are time consuming and require skilled operators. We separate corn starches into groups related to their modification on the basis of the infrared spectra.

  7. Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses

    USGS Publications Warehouse

    Byrnes, J.M.; Ramsey, M.S.; King, P.L.; Lee, R.J.

    2007-01-01

    This investigation seeks to better understand the thermal infrared (TIR) spectral characteristics of naturally-occurring amorphous materials through laboratory synthesis and analysis of glasses. Because spectra of glass phases differ markedly from their mineral counterparts, examination of glasses is important to accurately determine the composition of amorphous surface materials using remote sensing datasets. Quantitatively characterizing TIR (5-25 ??m) spectral changes that accompany structural changes between glasses and mineral crystals provides the means to understand natural glasses on Earth and Mars. A suite of glasses with compositions analogous to common terrestrial volcanic glasses was created and analyzed using TIR reflectance and emission techniques. Documented spectral characteristics provide a basis for comparison with TIR spectra of other amorphous materials (glasses, clays, etc.). Our results provide the means to better detect and characterize glasses associated with terrestrial volcanoes, as well as contribute toward understanding the nature of amorphous silicates detected on Mars. Copyright 2007 by the American Geophysical Union.

  8. Far-Infrared Imaging Spectroscopy with SAFIRE on SOFIA

    NASA Technical Reports Server (NTRS)

    Shafer, Richard A.; Benford, D. J.; Irwin, K. D.; Moseley, S. H.; Pajot, F.; Stacey, G. J.; Staguhn, J. G.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The SOFIA airborne observatory will provide a high spatial resolution, low background telescope for far-infrared astrophysical investigations. Selected as a PI instrument for SOFIA, SAFIRE is an imaging Fabry-Perot spectrograph covering 100 micrometers - 655 micrometers, with spectral resolving power of approx. 1500 (200 kilometers per second). This resolution is well matched to extragalactic emission lines and yields the greatest sensitivity for line detection. SAFIRE will make important scientific contributions to the study of the powering of ULIRGs and AGN, the role of CII cooling in extragalactic star formation, the evolution of matter in the early Universe, and the energetics of the Galactic center. SAFIRE will employ a two-dimensional pop-up barometer array in a 16 x 32 format to provide background-limited imaging spectrometry. Superconducting transition edge barometers and SQUID amplifiers have been developed for these detectors.

  9. Infrared photodissociation spectroscopy of protonated neurotransmitters in the gas phase

    NASA Astrophysics Data System (ADS)

    MacLeod, N. A.; Simons, J. P.

    2007-03-01

    Protonated neurotransmitters have been produced in the gas phase via a novel photochemical scheme: complexes of the species of interest, 1-phenylethylamine, 2-amino-1-phenylethanol and the diastereo-isomers, ephedrine and pseudoephedrine, with a suitable proton donor, phenol (or indole), are produced in a supersonic expansion and ionized by resonant two photon ionization of the donor. Efficient proton transfer generates the protonated neurotransmitters, complexed to a phenoxy radical. Absorption of infrared radiation, and subsequent evaporation of the phenoxy tag, coupled with time of flight mass spectrometry, provides vibrational spectra of the protonated (and also hydrated) complexes for comparison with the results of quantum chemical computation. Comparison with the conformational structures of the neutral neurotransmitters (established previously) reveals the effect of protonation on their structure. The photochemical proton transfer strategy allows spectra to be recorded from individual laser shots and their quality compares favourably with that obtained using electro-spray or matrix assisted laser desorption ion sources.

  10. Multi-spectral infrared spectroscopy for robust plastic identification.

    PubMed

    Vázquez-Guardado, Abraham; Money, Mason; McKinney, Nathaniel; Chanda, Debashis

    2015-08-20

    The identification and classification of plastics plays an important role in waste management and recycling processes. Present electrical and optical sorting techniques lack the required resolution for accurate identification in a high throughput manner for a diverse set of plastics commonly found in municipal waste. In this work a multi-spectral infrared spectroscopic technique is employed to construct a unique fingerprint library of 12 plastic resin groups that are commonly encountered in municipal waste. We test the proposed method in a blind plastic identification experiment, which shows excellent unbiased identification accuracy. This simple optical technique in combination with the multi-spectral library will enable high throughput and accurate detection of various plastics from recovered solid waste. PMID:26368777

  11. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    NASA Astrophysics Data System (ADS)

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  12. SAFIRE: Far-Infrared Imaging Spectroscopy with SOFIA

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Moseley, Harvey; Chervenak, Jay; Irwin, Kent; Pajot, Francois; Shafer, Rick; Staguhn, Johannes; Stacey, Gorden; Oegerle, William (Technical Monitor)

    2002-01-01

    The SOFIA airborne observatory will provide a high spatial resolution, low background telescope for far-infrared astrophysical investigations. Selected as a PI instrument for SOFIA, SAFIRE is an imaging Fabry-Perot spectrograph covering 145 microns-655microns, with spectral resolving power of approx. 1500 (200 kilometers per second). This resolution is well matched to extragalactic emission lines and yields the greatest sensitivity for line detection. SAFIRE will make important scientific contributions to the study of the powering of ULIRGs and AGN, the role of CII cooling in extragalactic star formation, the evolution of matter in the early Universe, and the energetics of the Galactic center. SAFIRE will employ a two-dimensional pop-up bolometer array to provide background limited imaging spectrometry. Superconducting transition edge bolometers and SQUID amplifiers have been developed for these detectors.

  13. High-resolution near-infrared spectroscopy of water dimer

    NASA Technical Reports Server (NTRS)

    Huang, Z. S.; Miller, R. E.

    1989-01-01

    High-resolution near-infrared spectra are reported for all of the O-H stretch vibrational bands of the water dimer. The four O-H vibrations are characterized as essentially independent proton-donor or proton-acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that, for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

  14. High Resolution Infrared Spectroscopy of [1.1.1] Propellane

    SciTech Connect

    Kirkpatrick, Robynne W.; Masiello, Tony; Jariyasopit, Narumol; Weber, Alfons; Nibler, Joseph W.; Maki, Arthur; Blake, Thomas A.; Hubler, Timothy L.

    2008-01-08

    The infrared spectrum of [1.1.1]propellane has been recorded at high resolution (0.002 cm-1) with individual rovibrational lines resolved for the first time. This initial report presents the ground state constants for this molecule determined from the analysis of five of the eight infrared-allowed fundamentals v9(e'), v10(e'), v12(e'), v14(a2''), v15(a2''), as well as of several combination bands. In nearly all cases it was found that the upper states of the transitions exhibit some degree of perturbation but, by use of the combination difference method, the assigned frequencies provided over 4000 consistent ground state difference values. Analysis of these gave for the parameters of the ground state the following values, in cm-1: B0 = 0.28755833(14), DJ = 1.1313(5)x10-7, DJK = -1.2633(7)x10-7, HJ = 0.72(4)x10-13, HJK = -2.24(13)x10-13, and HKJ = 2.25(15)x10-13, where the numbers in parentheses indicate twice the uncertainties in the last quoted digit(s) of the parameters. Gaussian ab initio calculations, especially with the computed anharmonic corrections to some of the spectroscopic parameters, assisted in the assignments of the bands and also provided information on the electron distribution in the bridge-head carbon-carbon bond.

  15. Multidimensional infrared spectroscopy reveals the vibrational and solvation dynamics of isoniazid

    NASA Astrophysics Data System (ADS)

    Shaw, Daniel J.; Adamczyk, Katrin; Frederix, Pim W. J. M.; Simpson, Niall; Robb, Kirsty; Greetham, Gregory M.; Towrie, Michael; Parker, Anthony W.; Hoskisson, Paul A.; Hunt, Neil T.

    2015-06-01

    The results of infrared spectroscopic investigations into the band assignments, vibrational relaxation, and solvation dynamics of the common anti-tuberculosis treatment Isoniazid (INH) are reported. INH is known to inhibit InhA, a 2-trans-enoyl-acyl carrier protein reductase enzyme responsible for the maintenance of cell walls in Mycobacterium tuberculosis but as new drug-resistant strains of the bacterium appear, next-generation therapeutics will be essential to combat the rise of the disease. Small molecules such as INH offer the potential for use as a biomolecular marker through which ultrafast multidimensional spectroscopies can probe drug binding and so inform design strategies but a complete characterization of the spectroscopy and dynamics of INH in solution is required to inform such activity. Infrared absorption spectroscopy, in combination with density functional theory calculations, is used to assign the vibrational modes of INH in the 1400-1700 cm-1 region of the infrared spectrum while ultrafast multidimensional spectroscopy measurements determine the vibrational relaxation dynamics and the effects of solvation via spectral diffusion of the carbonyl stretching vibrational mode. These results are discussed in the context of previous linear spectroscopy studies on solid-phase INH and its usefulness as a biomolecular probe.

  16. Analysis and identification of two reconstituted tobacco sheets by three-level infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xian-xue; Xu, Chang-hua; Li, Ming; Sun, Su-qin; Li, Jin-ming; Dong, Wei

    2014-07-01

    Two kinds of reconstituted tobacco (RT) from France (RTF) and China (RTC) were analyzed and identified by a three-level infrared spectroscopy method (Fourier-transform infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two-dimensional infrared correlation spectroscopy (2D-IR). The conventional IR spectra of RTF parallel samples were more consistent than those of RTC according to their overlapped parallel spectra and IR spectra correlation coefficients. FT-IR spectra of both two RTs were similar in holistic spectral profile except for small differences around 1430 cm-1, indicating that they have similar chemical constituents. By analysis of SD-IR spectra of RTFs and RTCs, more distinct fingerprint features, especially peaks at 1106 (1110), 1054 (1059) and 877 (874) cm-1, were disclosed. Even better reproducibility of five SD-IR spectra of RTF in 1750-1400 cm-1 could be seen intuitively from their stacked spectra and could be confirmed by further similarity evaluation of SD-IR spectra. Existence of calcium carbonate and calcium oxalate could be easily observed in two RTs by comparing their spectra with references. Furthermore, the 2D-IR spectra provided obvious, vivid and intuitive differences of RTF and RTC. Both two RTs had a pair of strong positive auto-peaks in 1600-1400 cm-1. Specifically, the autopeak at 1586 cm-1 in RTF was stronger than the one around 1421 cm-1, whereas the one at 1587 cm-1 in RTC was weaker than that at 1458 cm-1. Consequently, the RTs of two different brands were analyzed and identified thoroughly and RTF had better homogeneity than RTC. As a result, three-level infrared spectroscopy method has proved to be a simple, convenient and efficient method for rapid discrimination and homogeneousness estimation of RT.

  17. Compositional analysis of protein content in milk with near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Yang, Xiaoli; Li, Chao; Liu, Haiying

    2006-02-01

    A fast analytical method was introduced based on near-infrared (NIR) technology in this paper. The protein content was measured in short order using the near-infrared transmission spectroscopy (1000-1700nm) of milk. There were several waves of milk's NIR spectroscopy selected. By correlating the spectrum data of the waves selected and the protein content in milk, a calibration model was established. The protein content could be measured by importing the spectrum data to the calibration model. In this model there were several parameters, which were the spectrum data of the waves selected. Then, the method how to select the waves best was introduced and the characteristic waves of milk were selected by utilizing genetic algorithm. A partial least squares (PLS) regression model between the spectroscopy and the protein content was presented for milk samples, and the predictive repeatability was also researched.

  18. Ultravioret and Infrared Photodissociation Spectroscopy of Hydrated Anilinium Ion

    NASA Astrophysics Data System (ADS)

    Kurusu, Itaru; Yagi, Reona; Kasahara, Yasutoshi; Ishikawa, Haruki

    2015-06-01

    To understand the temperature effect on the microscopic hydration, we have been carrying out the laser spectroscopy of temperature-controlled hydrated phenol cation clusters using our temperature-variable ion trap apparatus. In the present study, we have chosen an anilinium ion (AnH^+) as a solute. Since the phenol cation has (π)-1 configuration, the phenyl ring does not play as a proton-acceptor. On the contrary, the π-orbitals in the AnH^+ are fulfilled and both the NH_3^+ and phenyl groups can behave as hydrogen-bonding sites. Thus, hydration structures around the AnH^+ are expected to be different from those of the phenol cation. Since there is no spectroscopic report on the hydrated AnH^+ clusters, we have carried out the UV and IR photodissociation spectroscopy of AnH^+(H_2O) clusters. In the present study, the AnH^+(H_2O) is produced by an electrospray ionization method. As the first step, spectroscopic measurements are carried out without temperature control. In the UV photodissociation spectrum, the 0-0 band appears at 36351 cm-1 which is red-shifted by 1863 cm-1 from that of the AnH^+ monomer. The band pattern is similar to that of the AnH^+ monomer. This indicates that the structure of the AnH^+ is not so affected by the single hydration. In the IR photodissociation spectrum, OH stretching band of the H_2O moiety and free NH stretching band of AnH^+ moiety are observed. Comparison with the results of the DFT calculation at M05-2X/6-31++G(d,p) level, we determined the structure of the AnH^+(H_2O) cluster. R.~Yagi, Y.~Kasahara, H.~Ishikawa, the 70th International Symposium on Molecular Spectroscopy (2015). H.~Ishikawa, T.~Nakano, T.~Eguchi, T.~Shibukawa, K.~Fuke Chem. Phys. Lett. 514, 234 (2011). G.~Féraud, et al. Phys. Chem. Chem. Phys. 16, 5250 (2014).

  19. Stratospheric Trace Gas Distributions from Far Infrared Thermal Emission Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Guo, Jing

    1987-09-01

    An inversion algorithm has been developed to retrieve stratospheric trace gas distributions from high resolution far infrared limb thermal emission spectral data. The algorithm follows an onion peel approach and employs a non-linear least-square-fit spectral analysis technique. The infrared radiative transfer model used to compute the spectrum is based on full line-by-line and layer-by-layer calculations and includes curvature and refraction effects. Finite instrument field of view effects have been studied. An inversion algorithm has also been developed to correct observation angles. The spectral measurements were made in the Balloon Intercomparison Campaign (BIC), October, 1982, using a Fourier transform spectrometer. The observed spectra have an unapodized spectral resolution of 0.0033 cm ^{-1}, and cover the spectral region between 20-100 cm^{-1}. Spectral data for selected limb sequences have been calibrated. The instrument line shape function has been empirically determined. The observation angles of the spectra have been corrected from spectral lines of O_2 in the 23 -84 cm^{-1} region to have an accuracy within 4 arc minutes. The vertical profiles of O_3, H_2O, HDO, HCN, ^ {16}O^{16}O ^{18}O, and ^ {16}O^{18}O ^{16}O in the stratosphere have been retrieved with an altitude resolution of about 4-5 km in the 20-37 km range. The results are compared with available measurements in literature. The vertical profiles of O_3, H_2 O, and HDO are retrieved from spectral lines in the 20-100 cm^{-1} region. The variation of the D/H ratio of water vapor is derived. The vertical profile of HCN is retrieved from spectral lines in the 32-56 cm^{-1} region. The volume mixing ratio of HCN is found to be 139 pptv at 20 km, 127 pptv at 25 km, and increasing to 172 pptv at 37 km. The vertical profiles of stratospheric ^ {16}O^{16}O ^{18}O and ^ {16}O^{18}O ^{16}O are retrieved from spectral lines in the 39-76 cm^{-1 } region. The ratio of total heavy isotopic ozone ^{50}O_3 to

  20. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  1. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation

    SciTech Connect

    Peragut, Florian; De Wilde, Yannick; Brubach, Jean-Blaise; Roy, Pascale

    2014-06-23

    We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

  2. Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics.

    PubMed

    Dong, D; Zheng, W; Jiao, L; Lang, Y; Zhao, X

    2016-03-01

    Different brands of Chinese vinegar are similar in appearance, color and aroma, making their discrimination difficult. The compositions and concentrations of the volatiles released from different vinegars vary by raw material and brewing process and thus offer a means to discriminate vinegars. In this study, we enhanced the detection sensitivity of the infrared spectrometer by extending its optical path. We measured the infrared spectra of the volatiles from 5 brands of Chinese vinegar and observed the spectral characteristics corresponding to alcohols, esters, acids, furfural, etc. Different brands of Chinese vinegar had obviously different infrared spectra and could be classified through chemometrics analysis. Furthermore, we established classification models and demonstrated their effectiveness for classifying different brands of vinegar. This study demonstrates that long-optical-path infrared spectroscopy has the ability to discriminate Chinese vinegars with the advantages that it is fast and non-destructive and eliminates the need for sampling.

  3. Integral field spectroscopy with the Gemini Near-Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Allington-Smith, Jeremy R.; Dubbeldam, Cornelis M.; Content, Robert; Dunlop, Colin J.; Robertson, David J.; Elias, Jay; Rodgers, Bernadette; Turner, James E.

    2004-09-01

    The Astronomical Instrumentation Group (AIG) of the University of Durham has recently completed an integral field unit (IFU) for use on the Gemini-South telescope with the Gemini Near-Infrared Spectrograph (GNIRS) built by the National Optical Astronomy Observatories (NOAO, USA). When the IFU is deployed remotely inside the instrument cryostat, GNIRS is converted into an integral field spectrograph with a field of 5 × 3 arcsec2 and spatial sampling of 0.15 × 0.15 arcsec2, optimised for 1-2.5μm but operable up to 5μm. We present summaries of the design and construction and results from laboratory testing. We also show results obtained at the telescope where a throughput of 90% was measured at 2.5μm, and show that this is consistent with predictions of a simple model where surface scattering is the dominant loss mechanism. The throughput data are well fit by the roughness measured in the laboratory. Finally, we show a few examples of astrophysical data from the commissioning run in April 2004.

  4. Constraining Type Ia Supernova Physics with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sand, David; Valenti, Stefano; Howell, Andy; Graham, Melissa; Parrent, Jerod

    2014-08-01

    Despite their success as standardizable candles, relatively little is known about the exact progenitor(s) and explosion physics of type Ia supernovae -- a potential source of systematic uncertainty for future dark energy surveys, and a hole in our knowledge about stellar end-states. One promising route forward is the combination of dense optical time series and near-infrared (NIR) spectroscopic data sets. Recent work has suggested that the NIR can discern unburned carbon from the progenitor white dwarf more cleanly than in the optical, and its unique access to relatively unblended magnesium lines also probes the inner edge of carbon burning. Both measures provide a direct constraint for SN Ia explosion models, but only a handful of appropriate NIR spectroscopic time series exist. We propose to continue our campaign to roughly double the sample of SN Ia with such data (leveraging our access to a worldwide network of 1m imaging telescopes and twin robotic optical spectrographs) in order to begin to tackle our understanding of NIR spectral diagnostics and how they vary from supernova to supernova. During our 2014A time thus far, we have been intensely following the nearest SN Ia in a generation -- SN 2014J -- and have already submitted our initial results.

  5. Gas-Phase Database for Quantitative Infrared Spectroscopy

    SciTech Connect

    Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.; Chu, Pamela M.; Rhoderick, G C.; Johnson, P A.

    2004-12-10

    The National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) are each creating quantitative databases containing the vapor-phase infrared spectra of pure chemicals. The digital databases have been created with both laboratory and remote-sensing applications in mind. A spectral resolution of {approx} 0.1 cm{sup -1} was selected to avoid degrading sharp spectral features, while also realizing that atmospheric broadening typically limits line widths to 0.1 cm{sup -1}. Calculated positional (wave number, cm{sup -1}) uncertainty is {le} 0.005 cm{sup -1}, while the 1{sigma} statistical uncertainty in absorbance values is <2% for most compounds. The latter was achieved by measuring multiple (typically {ge} 9) path length-concentration burdens and fitting a weighted Beer's law plot to each wave number channel. The two databases include different classes of compounds and were compared using 12 samples. Though these 12 samples span a range of polarities, absorption strengths, and vapor pressures, the data agree to within experimental uncertainties with only one exception.

  6. High-Resolution Infrared Spectroscopy of Ge_2C_3

    NASA Astrophysics Data System (ADS)

    Thorwirth, S.; Lutter, V.; Schlemmer, S.; Giesen, T. F.; Gauss, J.

    2013-06-01

    Carbon-rich systems are of great importance in diverse areas of research like material science as well as astro- and structural chemistry. Despite this relevance, our knowledge of smaller cluster units is still fragmentary, particularly with respect to investigations at high-spectral resolution in the gas phase. Unequivocal assignment of spectral features to their molecular carriers is critically dependent on predictions from high-level quantum-chemical calculations. In turn, high-resolution studies provide useful information to assess the predictive power of quantum-chemical methods. This is particularly interesting for cluster systems harboring heavy elements for which so far relatively little is known from experiment. With this contribution, we would like to present a recent gas-phase study of a polyatomic germanium-carbon cluster, linear Ge_2C_3 (Ge=C=C=C=Ge), which was previously studied in an Ar matrix. The cluster was produced through laser ablation of germanium-graphite sample rods and observed in a free jet at wavelengths around 5μm. Additionally, quantum-chemical calculations of Ge_2C_3 were performed at the CCSD(T) level of theory. The production and observation of Ge_2C_3 suggests that many more binary clusters should be amenable to high-resolution spectroscopic techniques not only in the infrared but also in the microwave region. D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 114, 3570 (2001).

  7. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  8. Infrared emission spectroscopy of atmospheric-pressure ball plasmoids

    NASA Astrophysics Data System (ADS)

    Dubowsky, Scott E.; Deutsch, Bradley; Bhargava, Rohit; McCall, Benjamin J.

    2016-04-01

    We report the first (to our knowledge) infrared emission spectra collected from water-based laboratory ball plasmoid discharges. A "ball plasmoid" results from a unique type of pulsed DC plasma discharge in which a sphere of plasma is seen to grow and eventually separate from a central electrode and last for a few hundred milliseconds without an external power source before dissipating. Typical recombination rates for plasmas at ambient conditions are on the order of a millisecond or less, however ball plasmoids have been observed to last a few hundred milliseconds, and there is no explanation in the literature that fully accounts for this large discrepancy in lifetime. The spectra are dominated by emission from water and from hydroxyl radical; PGOPHER was used to fit the experimental spectra to extract rotational temperatures for these molecules. The temperatures of the bending and stretching modes of H2O were determined to be 1900 ± 300 K and 2400 ± 400 K, respectively and the rotational temperature of OH was found to be 9200 ± 1500 K.

  9. Diagnosis of mitochondrial diseases by near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Bank, William J.; Chance, Britton

    1995-05-01

    Disorders of mitochondrial metabolism are manifest by inordinate fatigue, weakness, as well as severe neuromuscular disorders. Diagnosis has required pathologic findings on muscle biopsy and identification of biochemical defects in mitochondrial respiration. NIRS, a noninvasive optical technique, permits the quantitative measurement of changes in blood volume and tissue oxygenation in vivo, at rest, during exercise, and post-exercise recovery. The dual wavelength spectrophotometer consists of an optic probe with 2 lights appropriate for red light emission. Interference filters select the wavelengths, 760 to 850 nm, appropriate to the broad bands of hemoglobin, in conjunction with silicon detectors sensitive to this infrared spectrum. In all normal test subjects, the blood volume tracing demonstrated a decreased blood volume normally seen in exercising muscle. The increase of absorbance at 760 nm, with respect to absorbance at 850 nm, reflects deoxygenation of hemoglobin and occurred promptly at the start of exercise. At the end of exercise, oxygenation returned to baseline accompanied by hyperemia. Four patients with known disorders of mitochondrial metabolism demonstrated a paradoxical oxygenation during exercise that returned to baseline at the end of exercise. Increased oxygen supplied by a normal cardiopulmonary response to exercise is not utilized and results in a pardoxical oxygenation during exercise. This simple, noninvasive technique permits an accurate measurement of oxygen utilization in the exercising limb and is a useful clinical tool in screening patients for disorders of mitochondrial metabolism.

  10. Predicting beef tenderness using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jeyamkondan, Subbiah; Kranzler, Glenn A.; Morgan, Brad J.; Rust, Sarah

    2004-03-01

    A near-infrared spectral reflectance system was developed and tested online to predict 14-day aged, cooked beef tenderness. A contact probe with a built-in tungsten-halogen light source supplied broadband light to the ribeye surface. Fiberoptics in the probe transmitted reflected light to a spectrometer with a spectral range of 400-2500 nm. In the first phase, steak samples (n=292) were brought from packing plants to the lab and scanned with the spectrometer. After scanning, samples were vacuum-packaged and aged for 14 days. They were then cooked in an impingement oven to an internal temperature of 70°C. Slice-shear force values were recorded for tenderness reference. In phase two, the spectrometer was modified for packing plant conditions. Spectral scans were obtained on-line on ribbed carcasses (n=276). A partial least square regression model was developed to predict tenderness scores from spectral reflectance. In phase three, the developed model was validated by scanning carcasses (n=200) on-line. The predicted shear-force values and samples were sent to the U.S. Meat Animal Research Center for third-party validation. At up to 70% certification levels, the system was able to successfully sort tough from tender carcasses.

  11. Constraining Type Ia Supernova Physics with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sand, David; Valenti, Stefano; Howell, Andy; Graham, Melissa; Parrent, Jerod

    2014-02-01

    Despite their success as standardizable candles, relatively little is known about the exact progenitor(s) and explosion physics of type Ia supernovae -- a potential source of systematic uncertainty for future dark energy surveys, and a hole in our knowledge about stellar end-states. One promising route forward is the combination of dense optical time series and near-infrared (NIR) spectroscopic data sets. Recent work has suggested that the NIR can discern unburned carbon from the progenitor white dwarf more cleanly than in the optical, and its unique access to relatively unblended magnesium lines also probes the inner edge of carbon burning. Both measures provide a direct constraint for SN Ia explosion models, but only a handful of appropriate NIR spectroscopic time series exist. We propose to continue our campaign to roughly double the sample of SN Ia with such data (leveraging our access to a worldwide network of 1m imaging telescopes and twin robotic optical spectrographs) in order to begin to tackle our understanding of NIR spectral diagnostics and how they vary from supernova to supernova. Note that we were allocated time with Gemini South Flamingos-2 in 2013B, but have not triggered any ToO time yet, partially due to the persistent alignment issues with the On-Instrument Wave Front Sensor.

  12. Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants.

    PubMed

    Iverson, Nicole M; Bisker, Gili; Farias, Edgardo; Ivanov, Vsevolod; Ahn, Jiyoung; Wogan, Gerald N; Strano, Michael S

    2016-05-01

    Implantable, near infrared (nIR) fluorescent nanosensors are advantageous for in vivo monitoring of biological analytes since they can be rendered selective for a particular target molecule while utilizing their unique optical properties and the nIR tissue transparency window for information transfer without an internal power source or telemetry. However, basic questions remain regarding the optimal encapsulation platform, geometrical properties, and concentration ranges required for high signal to noise ratio and effective detection through biological tissue. In this work, we systematically explore these variables quantitatively to optimize the performance of such optical nanosensors for biomedical applications. We investigate both alginate and polyethylene glycol (PEG) as model hydrogel systems, encapsulating d(GT)15 ssDNA-wrapped single-walled carbon nanotubes (SWNT) as model fluorescent nanoparticle sensors, responsive to riboflavin. Hydrogel sensors implanted 0.5 mm into thick tissue samples exhibit 50% reduction of initial fluorescence intensity, allowing an optical detection limit of 5.4 mm and 5.1 mm depth in tissue for alginate and PEG gels, respectively, at a SWNT concentration of 10 mg L(-1), and 785 nm laser excitation of 80 mW and 30 s exposure. These findings are supported with in vivo nIR fluorescent imaging of SWNT hydrogels implanted subcutaneously in mice. For the case of SWNT, we find that the alginate system is preferable in terms of emission intensity, sensor response, rheological properties, and shelf life. PMID:27305824

  13. Non-linear calibration models for near infrared spectroscopy.

    PubMed

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-02-27

    Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.

  14. Argon hydrochloride, Ar.HCl, bond energy by infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Miziolek, A. W.; Pimentel, G. C.

    1976-01-01

    The infrared absorption of argon (200 to 760 torr) and hydrogen chloride (2 to 6 torr) mixtures is reexamined in the missing Q branch region (spectral region between 2860 and 3010 wavelength/cm) at temperatures ranging from 195 to 298 K. The temperature dependence of two absorption features of the argon hydrogen chloride complex, at 2887 and 2879 wavelength/cm, leads to a bond energy estimate that depends on the assumptions made about the internal degrees of freedom of the complex. It is shown that agreement with experiment can be reached for well depths near 1.2 kcal/mole. This result is relatively insensitive to the choice of the vibrational frequencies and anharmonicities, but does depend on the extent to which the energy level manifolds are truncated to avoid molecular excitation in excess of the bond energy. The bond energy is found to deviate from the commonly accepted value of 0.4 kcal/mole. Possible causes for the discrepancy are considered.

  15. Ribosomal DNA nanoprobes studied by Fourier transform infrared spectroscopy.

    PubMed

    Fagundes, Jaciara; Castilho, Maiara L; Téllez Soto, Claudio A; Vieira, Laís de Souza; Canevari, Renata A; Fávero, Priscila P; Martin, Airton A; Raniero, Leandro

    2014-01-24

    Paracoccidioides brasiliensis (P. brasiliensis) is a thermo-dimorphic fungus that causes paracoccidioidomycosis. Brazil epidemiological data shows that endemic areas are the subtropical regions, especially where agricultural activities predominate such as the Southeast, South, and Midwest. There are several tests to diagnose paracoccidioidomycosis, but they have many limitations such as low sensitivity, high cost, and a cross-reacting problem. In this work, gold nanoprobes were used to identify P. brasiliensis as an alternative diagnostic technique, which is easier to apply, costs less, and has great potential for application. The specific Ribosomal sequence of P. brasiliensis DNA was amplified and used to design the nanoprobes using a thiol-modified oligonucleotide. The results of positive and negative tests were done by UV-visible and Fourier Transform Infrared (FT-IR) measurements. The deconvolution of FT-IR sample spectra showed differences in the vibrational modes from the hydrogen bridge NHN and NHO bands that form the double helix DNA for samples matching the DNA sequence of nanoprobes that could be used to classify the samples.

  16. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    PubMed

    Hanifi, Arash; McCarthy, Helen; Roberts, Sally; Pleshko, Nancy

    2013-01-01

    Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR) spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types) to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in connective tissues

  17. Identification of different forms of cocaine and substances used in adulteration using near-infrared Raman spectroscopy and infrared absorption spectroscopy.

    PubMed

    Penido, Ciro A F O; Pacheco, Marcos Tadeu T; Zângaro, Renato A; Silveira, Landulfo

    2015-01-01

    Identification of cocaine and subsequent quantification immediately after seizure are problems for the police in developing countries such as Brazil. This work proposes a comparison between the Raman and FT-IR techniques as methods to identify cocaine, the adulterants used to increase volume, and possible degradation products in samples seized by the police. Near-infrared Raman spectra (785 nm excitation, 10 sec exposure time) and FT-IR-ATR spectra were obtained from different samples of street cocaine and some substances commonly used as adulterants. Freebase powder, hydrochloride powder, and crack rock can be distinguished by both Raman and FT-IR spectroscopies, revealing differences in their chemical structure. Most of the samples showed characteristic peaks of degradation products such as benzoylecgonine and benzoic acid, and some presented evidence of adulteration with aluminum sulfate and sodium carbonate. Raman spectroscopy is better than FT-IR for identifying benzoic acid and inorganic adulterants in cocaine. PMID:25428273

  18. Analysis of crystallized lactose in milk powder by Fourier-transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Zhou, Qun; Zhang, Yan-ling; Chen, Jian-bo; Sun, Su-qin; Noda, Isao

    2010-06-01

    Infrared (IR) spectroscopy is used in combination with two-dimensional (2D) correlation IR spectroscopy to conduct rapid non-destructive quantitative research in milk powder without additional separation steps. The experiments conducted in both FT-IR and 2D FT-IR spectra suggest that characteristic spectroscopic features of milk powder containing different carbohydrate can be detected, and then determine the type of carbohydrate. To predict the approximate content of lactose while the carbohydrate is lactose, different amount of crystallized lactose has been added to the reference milk powder. The correlation coefficient could be used to determine the content of crystallized lactose in milk powder. The method provides a rapid and convenient means for assessing the quality of milk powder.

  19. Infrared Spectroscopy of the H2/HD/D2-O2 Van Der Waals Complexes

    NASA Astrophysics Data System (ADS)

    Raston, Paul; Bunn, Hayley

    2016-06-01

    Hydrogen is the most abundant element in the universe and oxygen is the third, so understanding the interaction between the two in their different forms is important to understanding astrochemical processes. The interaction between H2 and O2 has been explored in low energy scattering experiments and by far infrared synchrotron spectroscopy of the van der Waals complex. The far infrared spectra suggest a parallel stacked average structure with seven bound rotationally excited states. Here, we present the far infrared spectrum of HD/D2-O2 and the mid infrared spectrum of H2-O2 at 80 K, recorded at the infrared beamline facility of the Australian Synchrotron. We observed 'sharp' peaks in the mid infrared region, corresponding to the end over end rotation of H2-O2, that are comparatively noisier than analogous peaks in the far infrared where the synchrotron light is brightest. The larger reduced mass of HD and D2 compared to H2 is expected to result in more rotational bound states and narrower bands. The latest results in our ongoing efforts to explore this system will be presented. Y. Kalugina, et al., Phys. Chem. Chem. Phys. 14, 16458 (2012) S. Chefdeville et al. Science 341, 1094 (2013) H. Bunn et al. ApJ 799, 65 (2015)

  20. Broadband Mid-Infrared Comb-Resolved Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mills, Andrew; Mohr, Christian; Jiang, Jie; Fermann, Martin; Maslowski, Piotr

    2014-06-01

    We report on a comb-resolved, broadband, direct-comb spectroscopy system in the mid-IR and its application to the detection of trace gases and molecular line shape analysis. By coupling an optical parametric oscillator (OPO), a 100 m multipass cell, and a high-resolution Fourier transform spectrometer (FTS), sensitive, comb-resolved broadband spectroscopy of dilute gases is possible. The OPO has radiation output at 3.1-3.7 and 4.5-5.5 μm. The laser repetition rate is scanned to arbitrary values with 1 Hz accuracy around 417 MHz. The comb-resolved spectrum is produced with an absolute frequency axis depending only on the RF reference (in this case a GPS disciplined oscillator), stable to 1 part in 10^9. The minimum detectable absorption is 1.6x10-6 wn Hz-1/2. The operating range of the experimental setup enables access to strong fundamental transitions of numerous molecular species for applications based on trace gas detection such as environmental monitoring, industrial gas calibration or medical application of human breath analysis. In addition to these capabilities, we show the application for careful line shape analysis of argon-broadened CO band spectra around 4.7 μm. Fits of the obtained spectra clearly illustrate the discrepancy between the measured spectra and the Voigt profile (VP), indicating the need to include effects such as Dicke narrowing and the speed-dependence of the collisional width and shift in the line shape model, as was shown in previous cw-laser studies. In contrast to cw-laser based experiments, in this case the entire spectrum (˜ 250 wn) covering the whole P and R branches can be measured in 16 s with 417 MHz resolution, decreasing the acquisition time by orders of magnitude. The parallel acquisition allows collection of multiple lines simultaneously, removing the correlation of possible temperature and pressure drifts. While cw-systems are capable of measuring spectra with higher precision, this demonstration opens the door for fast

  1. Pentachlorodibenzo-p-dioxin isomer differentiation by capillary gas chromatography fourier transform infrared spectroscopy

    SciTech Connect

    Grainger, J.; Reddy, V.V.; Patterson, D.G. Jr. )

    1988-09-01

    Analysis of polychlorinated dibenzo-p-dioxin (PCDD) isomers has been the focus of a number of recent investigations due to the extreme toxicities of specific laterally tetrachlorinated isomers. These investigations have primarily been directed toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), the most toxic PCDD isomer and toward isomer differentiation of TCDD isomers as a group. With the exception of pentachlorodibenzo-p-dioxin (PnCDD) isomer specific determinations based on calculated retention indices, isomer differentiation of the 14 PnCDD isomers has not been reported although 1,2,3,7,8-PnCDD is nearly as toxic as 2,3,7,8-TCDD. Chromatographically independent methods for PCDD isomer assignment have been reported by x-ray powder diffraction, proton nuclear magnetic resonance ({sup 1}H NMR), gas chromatography/matrix isolation Fourier transform infrared (MI/FTIR) spectroscopy, diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy and gas chromatography/Fourier transform infrared (GC/FTIR) spectroscopy. Although TCDD isomer assignments by the various methods are substantially in agreement, some differences are yet to be resolved. Vapor-phase reference infrared spectra are presented for the 14 PnCDD isomers. These spectra were recorded from low (< 10) microgram quantities for each isomer. The spectrum of each isomer is unique, allowing for positive isomer identification and individual group frequency absorption characteristics as a function of isomer structure.

  2. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  3. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Maity, Jyoti Prakash; Kar, Sandeep; Lin, Chao-Ming; Chen, Chen-Yen; Chang, Young-Fo; Jean, Jiin-Shuh; Kulp, Thomas R.

    2013-12-01

    Bacterial spectra were obtained in the wavenumber range of 4000-600 cm-1 using FTIR spectroscopy. FTIR spectral patterns were analyzed and matched with 16S-rRNA signatures of bacterial strains OS1 and OS2, isolated from oil sludge. Specific spectral bands obtained from OS1 (FJ226761), reference strain Bacillus flexus (ATCC 49095), OS2 (FJ215874) and reference strain Stenotrophomonas maltophilia (ATCC 19861) respectively, suggested that OS1 and ATCC 49095 were closely related whereas OS2 was different. The bands probably represent groups of proteins and lipids of specific bacteria. Separate peaks found in B. flexus were similar to those of OS1. The S. maltophilia (ATCC 19861) and OS2 exhibited a similar peak at 3272 cm-1. Amide bands (I, II and III) exhibited that OS1 and B. flexus were closely related, but were different from OS2. In the fingerprint region, peak at 1096 cm-1 and 1360 cm-1 exhibited the specific fingerprints of OS2 and reference strain S. maltophilia (ATCC 19861), respectively. The specific fingerprint signature was found at 1339 cm-1 for OS1 and at 1382 cm-1 for B. flexus ATCC 49095, allowing these two strains of B. flexus to be differentiated. This spectral signature originated from phospholipid and RNA components of the cell. Principle components analysis (PCA) of spectral regions exhibited with distinct sample clusters between Bacillus flexus (ATCC 49095), S. maltophilia (ATCC 19861), OS1 and OS2 in amide and fingerprint region.

  4. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy.

    PubMed

    Maity, Jyoti Prakash; Kar, Sandeep; Lin, Chao-Ming; Chen, Chen-Yen; Chang, Young-Fo; Jean, Jiin-Shuh; Kulp, Thomas R

    2013-12-01

    Bacterial spectra were obtained in the wavenumber range of 4000-600 cm(-1) using FTIR spectroscopy. FTIR spectral patterns were analyzed and matched with 16S-rRNA signatures of bacterial strains OS1 and OS2, isolated from oil sludge. Specific spectral bands obtained from OS1 (FJ226761), reference strain Bacillus flexus (ATCC 49095), OS2 (FJ215874) and reference strain Stenotrophomonas maltophilia (ATCC 19861) respectively, suggested that OS1 and ATCC 49095 were closely related whereas OS2 was different. The bands probably represent groups of proteins and lipids of specific bacteria. Separate peaks found in B. flexus were similar to those of OS1. The S. maltophilia (ATCC 19861) and OS2 exhibited a similar peak at 3272 cm(-1). Amide bands (I, II and III) exhibited that OS1 and B. flexus were closely related, but were different from OS2. In the fingerprint region, peak at 1096 cm(-1) and 1360 cm(-1) exhibited the specific fingerprints of OS2 and reference strain S. maltophilia (ATCC 19861), respectively. The specific fingerprint signature was found at 1339 cm(-1) for OS1 and at 1382 cm(-1) for B. flexus ATCC 49095, allowing these two strains of B. flexus to be differentiated. This spectral signature originated from phospholipid and RNA components of the cell. Principle components analysis (PCA) of spectral regions exhibited with distinct sample clusters between Bacillus flexus (ATCC 49095), S. maltophilia (ATCC 19861), OS1 and OS2 in amide and fingerprint region.

  5. Infrared Spectroscopy in Cancer Diagnosis and Chemotherapy Monitoring

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Bel'kov, M. V.; Skornyakov, I. V.; Butra, V. A.; Pekhnyo, V. I.; Kozachkova, A. N.; Tsarik, N. I.; Kutsenko, I. P.; Sharykina, N. I.

    2014-07-01

    We demonstrate that IR spectroscopic analysis can be used in diagnosis and chemotherapy monitoring for cancers of various organs at the molecular level. We used Fourier transform IR spectroscopy to study human breast and thyroid tumor tissues which were removed during surgery. The characteristic frequencies of C = O stretching vibrations in the IR spectra of tissues of pathological foci were compared with data from histological examination. In the IR spectra of healthy tissues or for benign tumors, the most intense absorption bands ν(C = O) are located in the interval 1675-1650 cm-1. When malignant neoplasms are present in the organs, the intensity of the bands in this range of the spectrum is reduced, while the intensities of the absorption bands in the 1710-1680 cm-1 interval increase. We also studied lung tissue for mice of the C57B1/6 line for healthy tissue and after implantation of B-16 melanoma tumor. The IR spectra of healthy mouse lung tissue and mouse lung tissue with B-16 melanoma metastases in the region of the C = O stretching vibrations display the same differences. We found that when lung malignancy was treated with the optimal dose of a synthesized drug based on palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lungs disappear, and the IR spectrum of the lung tissue after treatment practically coincides with the spectrum of healthy lung tissue.

  6. [Influence of silver/silicon dioxide on infrared absorption spectroscopy of sodium nitrate].

    PubMed

    Yang, Shi-Ling; Yue, Li; Jia, Zhi-Jun

    2014-09-01

    Quickly detecting of ocean nutrient was one important task in marine pollution monitoring. We discovered the application of surface-enhanced infrared absorption spectroscopy in the detection of ocean nutrient through researching the evaporation of sodium nitrate solution. The silicon dioxide (SiO2) with highly dispersion was prepared by Stober method, The silver/silica (Ag/SiO2) composite materials were prepared by mixing ammonia solution and silicon dioxide aqueous solution. Three kinds of composite materials with different surface morphology were fabricated through optimizing the experimental parameter and changing the experimental process. The surface morphology, crystal orientation and surface plasmon resonance were investigated by means of the scanning electronic microscope (SEM), X-ray diffraction (XRD), UV-Visible absorption spectrum and infrared ab- sorption spectroscopy. The SEM images showed that the sample A was purified SiO2, sample B and sample C were mixture of silver nanoparticle and silicon dioxide, while sample D was completed nanoshell structure. The absorption spectroscopy showed that there was surface plasmon resonance in the UV-visible region, while there was possibility of surface plasmon resonance in the Infrared absorption region. The effect of Ag/SiO2 composite material on the infrared absorption spectra of sodium nitrite solution was investigated through systematically analyzing the infrared absorption spectroscopy of sodium nitrate solution during its evaporation, i. e. the peak integration area of nitrate and the peak integration area of water molecule. The experimental results show that the integration area of nitrate was enhanced greatly during the evaporation process while the integration area of water molecule decreased continuously. The integration area of nitrate comes from the anti-symmetric stretch vibration and the enhancement of the vibration is attributed to the interface effect of Ag/SiO2 which is consistent with Jensen T

  7. Evaluation of thermal stability of indinavir sulphate using diffuse reflectance infrared spectroscopy.

    PubMed

    Singh, Parul; Premkumar, L; Mehrotra, Ranjana; Kandpal, H C; Bakhshi, A K

    2008-06-01

    Indinavir sulphate is a potent and specific protease inhibitor of human immunodeficiency virus (HIV). It is used for the treatment of acquired immune deficiency syndrome (AIDS). At elevated temperature the drug which otherwise remains crystalline undergoes a phase transition to an amorphous phase to form degradation products. In the present study, thermal stability of indinavir sulphate is evaluated using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Infrared spectra of the drug before and after the exposure to thermal radiation at different temperatures were acquired in the diffuse reflectance mode using a Fourier transform infrared (FTIR) spectrophotometer. The differential scanning calorimetry (DSC) and the X-ray diffraction (XRD) studies were used as complimentary techniques to adequately implement and assist the interpretation of the infrared spectroscopy results. The DRIFT spectra reveal that the drug remains stable up to 100 degrees C, degrades slightly at 125 degrees C and undergoes complete degradation at about 150 degrees C to produce degradation products. The degradation products can easily be characterized using the infrared spectra.

  8. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing. PMID:27021524

  9. Age dependency of cerebral oxygenation assessed with near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Colier, Willy N.; van Haaren, Nicole J.; van de Ven, Marjo J.; Folgering, Hans T.; Oeseburg, Berend

    1997-04-01

    Near-IR spectroscopy (NIRS) is an optical technique that provides information on cerebral tissue oxygenation and hemodynamics on a continuous, direct, and noninvasive basis. It is used to determine cerebral blood volume (CBV) and cerebrovascular CO2 reactivity during normoxic hyper- and hypocapnia in a group of 28 healthy volunteers aged 20 to 83 years. The main focus is on to the age dependency of the measured variables. The influence of changes in minute ventilation during normocapnia on the cerebral oxygenation was also studied. The mean CBV in age was, for 20 to 30 years, 2.14 +/- 0.51 ml/100 g of brain tissue; for 45 to 50 years, 1.92 +/- 0.40 ml/100 g; and for 70 to 83 years, 1.47 +/- 0.55 ml/100 g. The CBV showed a significant decease with advancing age. No influence was found for a change in minute ventilation on cerebral oxygenation. During hypercapnia cerebral blood flow (CBF) significantly increased in al age groups, with a factor of 1.31 +/- 0.17 kPa-1, 1.64 +/- 1.39 kPa-1, and 2.4 +/- 1.7 kPa-1, respectively, for the three age groups. The difference in change among the age groups was not statistically significant. The trend seen was an increased change in CBF with advancing age. During hypocapnia, the CBF significantly decreased in all age groups, with a factor of 0.89 +/- 0.08 kPa-1, 0.89 +/- 0.04 kPa-1, and 0.85 +/- 0.11 kPa-1, respectively. There was no significant difference among the age groups.

  10. Near-Infrared Spectroscopy of Ethynyl Radical, C2H

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2016-06-01

    The ethynyl radical, C_2H, is a reactive intermediate important in various combustion processes and also widely observed in the interstellar medium. In spite of extensive previous spectroscopic studies, the characterization of the near infrared transitions from the tilde{X}2Σ+ state to the mixed vibrational overtone and tilde{A}2Π states is incomplete. A strong band of C_2H at 7064 cm-1 was first observed in a neon matrix and assigned as the tilde{A}2Π(002)1 - tilde{X}2Σ+ transition by Forney et al. Subsequent theoretical work of Tarroni and Carter attributed the strong absorptions in this region to transitions terminating in two upper states, each a mixture of vibrationally excited tilde{X} states and different zero-order tilde{A}-state bending levels: a 2Σ+ symmetry combination of tilde{X}(0,20,3) and tilde{A}(0,3,0)0κ and a 2Π symmetry combination of tilde{X}(0,31,3) and tilde{A}(0,0,2)1. Transitions to them from the zero point level of the tilde{X} state are calculated to differ in energy by less than 10 cm-1 and to be within a factor of two in intensity. Diode laser transient absorption was used to record Doppler-limited spectra between 7020 and 7130 cm-1, using 193 nm photolysis of CF_3C_2H as a source of C_2H. Two interleaved, rotationally resolved bands were observed, consistent with a 2Σ - 2Σ transition at 7088 cm-1 and a 2Π - 2Σ transition at 7108 cm-1, in good accord with the Tarroni and Carter calculation. Progress on the assignment and fitting of the spectra will be reported. Acknowledgements: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. D. Forney, M.E. Jacox, and W.E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). R. Tarroni and S. Carter, Mol. Phys. 102, 2167 (2004)

  11. Infrared Spectroscopy of Transition Metal-Molecular interactions in the Gas Phase

    SciTech Connect

    Duncan, Michael A.

    2008-11-14

    Transition metal-molecular complexes produced in a molecular beam are mass-selected and studied with infrared laser photodissociation spectroscopy. Metal complexes with carbon monoxide, carbon dioxide, nitrogen, water, acetylene or benzene are studied for a variety of metals. The number and intensity of infrared active bands are compared to the predictions of density functional theory calculations to derive structures, spin states and coordination numbers in these systems. These studied provide new insights into subtle details of metal-molecular interactions important in heterogeneous catalysis, metal-ligand bonding and metal ion solvation.

  12. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate. PMID:26647147

  13. Infrared upconversion for astronomical applications. [laser applications to astronomical spectroscopy of infrared spectra

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Ogilvie, K. W.

    1975-01-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given.

  14. Identification of Trueperella pyogenes Isolated from Bovine Mastitis by Fourier Transform Infrared Spectroscopy

    PubMed Central

    Nagib, Samy; Rau, Jörg; Sammra, Osama; Lämmler, Christoph; Schlez, Karen; Zschöck, Michael; Prenger-Berninghoff, Ellen; Klein, Guenter; Abdulmawjood, Amir

    2014-01-01

    The present study was designed to investigate the potential of Fourier transform infrared (FT-IR) spectroscopy to identify Trueperella (T.) pyogenes isolated from bovine clinical mastitis. FT-IR spectroscopy was applied to 57 isolates obtained from 55 cows in a period from 2009 to 2012. Prior to FT-IR spectroscopy these isolates were identified by phenotypic and genotypic properties, also including the determination of seven potential virulence factor encoding genes. The FT-IR analysis revealed a reliable identification of all 57 isolates as T. pyogenes and a clear separation of this species from the other species of genus Trueperella and from species of genus Arcanobacterium and Actinomyces. The results showed that all 57 isolates were assigned to the correct species indicating that FT-IR spectroscopy could also be efficiently used for identification of this bacterial pathogen. PMID:25133407

  15. Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review.

    PubMed

    Fu, Xiaping; Ying, Yibin

    2016-08-17

    In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food hazards, food authentication, and traceability. Near infrared (NIR) spectroscopy and imaging techniques have gained wide acceptance in many fields because of their advantages over other analytical techniques. Following a brief introduction of NIR spectroscopy and imaging basics, this review mainly focuses on recent NIR spectroscopy and imaging applications for food safety evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; (3) physical hazards detection; (4) new technology-induced food safety concerns; and (5) food traceability. The review shows NIR spectroscopy and imaging to be effective tools that will play indispensable roles for food safety evaluation. In addition, on-line/real-time applications of these techniques promise to be a huge growth field in the near future.

  16. Identification of geographical origin of Lignosus samples using Fourier transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Choong, Yew-Keong; Xu, Chang-Hua; Lan, Jin; Chen, Xiang-Dong; Jamal, Jamia Azdina

    2014-07-01

    Lignosus spp. is a medicinal mushroom that has been used as a folk remedy for ‘clearing heat’, eliminating phlegm, ‘moistening the lungs’ and as an anti-breast cancer agent. The objective of this study was to identify the active chemical constituents of the mushroom limited number of sample by using Fourier transform infrared (FTIR) and two-dimensional correlation Fourier transform infrared spectroscopy (2DIR). The sample M26/08 was purchased from a Chinese medicine shop in Kuala Lumpur, while M49/07 and M23/08 were collected from Semenyih and Kuala Lipis respectively. The three samples have strong absorption peaks corresponding to the stretching vibration of conjugated carbonyl Cdbnd O group. Both fresh sample M49/07 and M23/08 showed an identical peak of 1655 cm-1, whereby M26/08 contained stretching vibration of 1648 cm-1. The peaks from 1260 cm-1 onwards were assignation of carbohydrate content including saccharides. Spectrum of M26/08 showed region from 1260 cm-1 to 950 cm-1 which was 99.4% similar to M23/08. The chemical constitutes of M26/08 and M23/08 were closely correlated (r = 0.97), whereas the correlation coefficient of M26/08 and M49/07 was 0.94. The use of second derivative and 2DIR spectroscopy enhanced the distinct differences to a more significant level. Although the geographical origin of M26/08 was unknown, its origin was determined by comparing with M49/07 and M23/08. The visual and colorful 2DIR spectra provided dynamic structural information of the chemical components analyzed and demonstrated a powerful and useful approach using the spectroscopy of different samples.

  17. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  18. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    NASA Astrophysics Data System (ADS)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  19. Graphene-based platform for nano-scale infrared near-field spectroscopy of biological materials

    NASA Astrophysics Data System (ADS)

    Khatib, Omar; Wood, Joshua D.; Doidge, Gregory P.; Damhorst, Gregory L.; Rangarajan, Aniruddh; Bashir, Rashid; Pop, Eric; Lyding, Joseph W.; Basov, Dimitri N.

    2014-03-01

    In biological and life sciences, Fourier Transform Infrared (FTIR) spectroscopy serves as a noninvasive probe of vibrational fingerprints used to identify chemical and molecular species. Near-field spectroscopy, based on the illumination of an atomic force microscope (AFM) tip with an infrared laser, allows for determination of IR properties of a material at nanometer length scales. However, application of near-field IR spectroscopy to most biological systems has thus far been elusive. Physiological conditions required for experimentation are incompatible with typical implementations of nano-FTIR. Recently it became possible to trap water and small biomolecules underneath large-area graphene sheets grown by chemical vapor deposition (CVD). The graphene layer serves as an IR-transparent cover that allows for a near-field interrogation of the underlying layers. We present near-field nano-imaging and spectroscopy data of unencapsulated Tobacco Mosaic Viruses (TMV), compared to those sandwiched between two large-area graphene sheets, and discuss the applicability of near-field IR spectroscopy to trapped biomolecules in aqueous environments.

  20. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  1. [Sugar characterization of mini-watermelon and rapid sugar determination by near infrared diffuse reflectance spectroscopy].

    PubMed

    Wang, Shuo; Yuan, Hong-fu; Song, Chun-feng; Xie, Jin-chun; Li, Xiao-yu; Feng, Le-ping

    2012-08-01

    In the present paper, the distribution of sugar level within the mini-watermelon was studied, a new sugar characterization method of mini-watermelon using average sugar level, the highest sugar level and the lowest sugar level index is proposed. Feasibility of nondestructive determination of mini-watermenlon sugar level using diffuse reflectance spectroscopy information was investigated by an experiment. PLS models for measuring the 3 sugar levels were established. The results obtained by near infrared spectroscopy agreed with that of the new method established above.

  2. Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy

    SciTech Connect

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, J. A.

    2011-06-01

    The development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Long-Wave Infrared (LWIR) spectroscopy systems is described. LWIR fiber optics are a key enabling technology needed to improve the utility and effectiveness of trace chemical detection systems based in the 8 to 12 micron region. This paper focuses on recent developments in hollow waveguide technology geared specifically for LWIR spectroscopy, including a reduction in both the length dependent loss and the bending loss while maintaining relatively high beam quality. Results will be presented from tests conducted with a Quantum Cascade Laser.

  3. Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    NASA Astrophysics Data System (ADS)

    Jaén, Juan A.; Navarro, César

    2009-07-01

    Fourier transform infrared spectroscopy and Mössbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Mössbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  4. Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Qazilbash, M. M.; Brehm, M.; Andreev, G. O.; Frenzel, A.; Ho, P.-C.; Chae, Byung-Gyu; Kim, Bong-Jun; Yun, Sun Jin; Kim, Hyun-Tak; Balatsky, A. V.; Shpyrko, O. G.; Maple, M. B.; Keilmann, F.; Basov, D. N.

    2009-02-01

    We present a detailed infrared study of the insulator-to-metal transition (IMT) in vanadium dioxide (VO2) thin films. Conventional infrared spectroscopy was employed to investigate the IMT in the far field. Scanning near-field infrared microscopy directly revealed the percolative IMT with increasing temperature. We confirmed that the phase transition is also percolative with cooling across the IMT. We present extensive near-field infrared images of phase coexistence in the IMT regime in VO2 . We find that the coexisting insulating and metallic regions at a fixed temperature are static on the time scale of our measurements. A distinctive approach for analyzing the far-field and near-field infrared data within the Bruggeman effective medium theory was employed to extract the optical constants of the incipient metallic puddles at the onset of the IMT. We found divergent effective carrier mass in the metallic puddles that demonstrates the importance of electronic correlations to the IMT in VO2 . We employ the extended dipole model for a quantitative analysis of the observed near-field infrared amplitude contrast and compare the results with those obtained with the basic dipole model.

  5. Noninvasive detection of change in skeletal muscle oxygenation during incremental exercise with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Luo, Qingming; Xu, Guodong; Li, Pengcheng

    2003-12-01

    Near infrared spectroscopy (NIRS) has been developed as a non-invasive method to assess O2 delivery, O2 consumption and blood flow, in diverse local muscle groups at rest and during exercise. The aim of this study was to investigate local O2 consumption in exercising muscle by use of near-infrared spectroscopy (NIRS). Ten elite athletes of different sport items were tested in rest and during step incremental load exercise. Local variations of quadriceps muscles were investigated with our wireless NIRS blood oxygen monitor system. The results show that the changes of blood oxygen relate on the sport items, type of muscle, kinetic capacity et al. These results indicate that NIRS is a potential useful tool to detect local muscle oxygenation and blood flow profiles; therefore it might be easily applied for evaluating the effect of athletes training.

  6. Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene

    NASA Astrophysics Data System (ADS)

    Broderick, Bernadette M.; McCaslin, Laura; Moradi, Christopher P.; Stanton, John F.; Douberly, Gary E.

    2015-04-01

    Singlet dihydroxycarbene ( HO C ̈ OH ) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans,trans- or trans,cis-rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans, trans- and trans, cis-rotamers are (μa, μb) = (0.00, 0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis-rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HO C ̈ OH torsional interconversion and tautomerization barriers.

  7. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  8. Identification of the epoxy curing mechanism under isothermal conditions by thermal analysis and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hideki; Morita, Shigeaki

    2014-07-01

    A curing reaction of bisphenol A diglycidyl ether epoxy resin with 4,4‧-diaminodicyclohexyl methane hardener was investigated by means of modulated differential scanning calorimetry (MDSC), thermal scanning rheometer (TSR), near-infrared (NIR) and mid-infrared (MIR) spectroscopy. The relation between change in the physical properties and molecular structures during the isothermal curing reaction were studied. MDSC and NIR results corroborated vitrification with the secondary to tertiary amine conversion; the process afforded a three-dimensional cross-linking structure. TSR estimation of the gelation point was corroborated with the NIR-determined maximum concentration of the generated secondary amine. Two-dimensional correlation spectroscopy confirmed that reaction between the primary amine and epoxy occurred more rapidly than any other functional group reaction. The ether groups were generated at the early stage of the curing reaction, and their formation occurred immediately with the generation of hydroxyl groups.

  9. Reactive intermediates in {sup 4}He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene

    SciTech Connect

    Broderick, Bernadette M.; Moradi, Christopher P.; Douberly, Gary E.; McCaslin, Laura; Stanton, John F.

    2015-04-14

    Singlet dihydroxycarbene (HOC{sup ¨}OH) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans,trans- or trans,cis-rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans, trans- and trans, cis-rotamers are (μ{sub a}, μ{sub b}) = (0.00, 0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis-rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HOC{sup ¨}OH torsional interconversion and tautomerization barriers.

  10. An investigation of model forensic bone in soil environments studied using infrared spectroscopy.

    PubMed

    Howes, Johanna M; Stuart, Barbara H; Thomas, Paul S; Raja, Sophil; O'Brien, Christopher

    2012-09-01

    Infrared spectroscopy has been used to examine changes to bone chemistry as a result of soil burial. Pig carcasses were buried as part of a controlled field study, and pig bone was used in soil environments established in the laboratory. The variables of species type, bone pretreatment, soil type and pH, moisture content, temperature, and burial time were investigated. The crystallinity index (CI) and the organic and carbonate contents of the bones were monitored. The data revealed decreasing trends in the organic and carbonate contents and an increase in the CI of the bone with burial time. An acidic soil environment and soil type are the factors that have the most influence on bone chemistry as a result of burial. The study demonstrates the potential of infrared spectroscopy as a straightforward method of monitoring the changes associated with aging of bones in a variety of soil environments.

  11. Rheo-attenuated total reflectance infrared spectroscopy: a new tool to study biopolymers.

    PubMed

    Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris

    2011-03-01

    Whilst rheology is the reference technique to study the mechanical properties of unspun silk, we know little of the structure and the dynamics that generate them. By coupling infrared spectroscopy and shearing forces to study silk fibroin conversion, we are introducing a novel tool to address this gap in our knowledge. Here the silk conversion process has been studied dynamically using polarized attenuated total reflectance Fourier transform infrared spectroscopy whilst applying shear, thus revealing silk protein conformation and molecular orientation in situ. Our results show that the silk conversion process starts with a pre-alignment of the proteins followed by a rapid growth of the β-sheet formation and then a subsequent deceleration of the growth. We propose that this tool will provide further insight into not only silk but any biopolymer solution, opening a new window into biological materials.

  12. Infrared imaging spectroscopy with micron resolution of Sutter's Mill meteorite grains

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet; Kebukawa, Yoko; Peale, Robert E.; Mattson, Eric; Hirschmugl, Carol J.; Jenniskens, Peter

    2014-11-01

    Synchrotron-based Fourier transform infrared spectroscopy and Raman spectroscopy are applied with submicrometer spatial resolution to multiple grains of Sutter's Mill meteorite, a regolith breccia with CM1 and CM2 lithologies. The Raman and infrared active functional groups reveal the nature and distribution of organic and mineral components and confirm that SM12 reached higher metamorphism temperatures than SM2. The spatial distributions of carbonates and organic matter are negatively correlated. The spatial distributions of aliphatic organic matter and OH relative to the distributions of silicates in SM2 differ from those in SM12, supporting a hypothesis that the parent body of Sutter's Mill is a combination of multiple bodies with different origins. The high aliphatic CH2/CH3 ratios determined from band intensities for SM2 and SM12 grains are similar to those of IDPs and less altered carbonaceous chondrites, and they are significantly higher than those in other CM chondrites and diffuse ISM objects.

  13. [Application of near infrared spectroscopy technique to nondestructive measurement of vegetable quality].

    PubMed

    Xie, Li-Juan; Ying, Yi-Bin; Yu, Hai-Yan; Fu, Xia-Ping

    2007-06-01

    Nondestructive detection techniques of vegetable include electrical properties, optical reflectance and transmission, sonic vibration, nuclear magnetic resonance (NMR), machine vision, aromatic volatile emission, vibration characteristics and others. The most widely employed and successful technique is to use its optical property. Near infrared spectroscopy technique is extremely fast, highly efficient, cheap to implement, of good recurrence and no sample preparation, and is a rapid and non-destructive modern measuring technique that has been widely used in many fields. In the present paper, the application of near infrared spectroscopy technique to nondestructive measurement of vegetable quality was briefly introduced. Some considerable aspects existing in the application were also discussed, and it is pointed out that because of vegetable's diversity and rot-proneness, automation analysis machine should be developed to improve the speed of quality detection, and cooperating with several other nondestructive techniques, such as NMR and machine vision, is the research trend.

  14. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    PubMed

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  15. Time-Resolved Mid-Infrared Frequency Comb Spectroscopy of Transient Radical Species

    NASA Astrophysics Data System (ADS)

    Bui, Thinh; Fleisher, Adam; Bjork, Bryce; Cossel, Kevin; Ye, Jun; Okumura, Michio; JILA Collaboration; California Institute Of Technology Collaboration

    2014-05-01

    Understanding chemical reactions require unambiguous determinations of reactant, intermediate, and product concentrations on time scales faster than the reaction rate. For high detection sensitivities, direct absorption spectroscopy in the mid-infrared can often be desirable due to strongly absorbing fundamental molecular vibrations. Here, we demonstrate time-resolved frequency comb spectroscopy (TRFCS), a mid-infrared broadband technique for the study of chemical reactions on the μs timescale, to measure an important transient free radicals species, hydroxyformyl radical trans-DOCO. Directly after photolysis of the chemical precursor acrylic acid-d1, we measure absolute trans-DOCO product concentrations as well as its subsequent loss with a time resolution of 25 μs. In addition to trans-DOCO product formation, we observed unexpected C-H bond fission channels in photoexcited acrylic acid.

  16. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis.

    PubMed

    Labbé, Nicole; Harper, David; Rials, Timothy; Elder, Thomas

    2006-05-17

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The multivariate models of charcoal were able to distinguish between species and wood thermal treatments, revealing that the characteristics of the wood charcoal depend not only on the wood species, but also on the carbonization temperature. This work demonstrates the potential of mid infrared spectroscopy in the whiskey industry, from the identification and classification of the wood species for the mellowing process to the chemical characterization of the barrels after the toasting and charring process. PMID:19127715

  17. Infrared spectroscopy of biofluids: from the research lab to the clinical lab

    NASA Astrophysics Data System (ADS)

    Low Ying, Sarah; Man, Angela; Harris, Jaclyn; Shaw, R. A.

    2005-09-01

    Infrared spectroscopy is well established as an analytical technique in various applications. We have undertaken a series of studies to establish the suitability of mid infrared spectroscopy in various clinical analytical applications, focusing on various urine, serum and whole blood assays. The initial work demonstrated that six common serum analyses are possible, namely glucose, urea, total cholesterol, triglycerides, total protein, and albumin, with accuracy comparable to standard clinical methods (Hitachi 717), and more recently HDL and LDL cholesterol have been quantified separately. Herein, we summarize our progress in transferring this technology to the clinical laboratory, focusing on the new methods and hardware that have enabled this transition, assessing the accuracy of the mid IR based analytical methods using these innovations, and reporting an exploratory study assessing the transferability of methods between spectrometers.

  18. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    PubMed Central

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  19. Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew L.; Ricca, Alessandra; Tucker, Jonathan; Boersma, Christiaan; Bauschlicher, Charles, Jr.; Allamandola, Louis J.

    2010-01-01

    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations.

  20. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    SciTech Connect

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  1. Lime kiln source characterization: Lime manufacturing industry Fourier transform infrared spectroscopy. Final report

    SciTech Connect

    Toney, M.L.

    1999-07-01

    The purpose of this testing program is to obtain uncontrolled and controlled hydrogen chloride (HCl) and speciated hydrocarbon Hazardous Air Pollutants (HAPs) emissions data from lime production plants to support a national emission standard for hazardous air pollutants (NESHAP). This report presents data from the Fourier Transform Infrared Spectroscopy (FTIR) measurements. FTIR source testing was conducted for the following purposes: Quantify HCl emission levels; and Gather screening (i.e., qualitative) data on other HAP emissions.

  2. Near-infrared Spectroscopy of Brown Dwarf and Planetary-Mass Members in Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Lodieu, Nicolas

    2016-01-01

    In these proceedings, I present new VLT/X-shooter near-infrared spectroscopy of brown dwarf and planetary-mass candidates with masses below 30 Jupiter masses identified in a deep VISTA ZYJ survey of 13.5 square degrees in the Upper Scorpius (USco) association. These spectra represent new benchmarks at 5-10 Myr to compare with known and future discoveries of members in nearby moving groups and other young regions.

  3. Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    King, Ashley J.; Solomon, Jake R.; Schofield, Paul F.; Russell, Sara S.

    2015-12-01

    The CI and CI-like chondrites provide a record of aqueous alteration in the early solar system. However, the CI-like chondrites differ in having also experienced a late stage period of thermal metamorphism. In order to constrain the nature and extent of the aqueous and thermal alteration, we have investigated the bulk mineralogy and abundance of H2O in the CI and CI-like chondrites using thermogravimetric analysis and infrared spectroscopy.

  4. Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers.

    PubMed

    Pagano, Roberto; Libertino, Sebania; Sanfilippo, Delfo; Fallica, Giorgio; Lombardo, Salvatore

    2016-04-01

    We experimentally analyze the signal-to-noise ratio of continuous wave (CW) near infrared spectroscopy (NIRS) reflectance systems based on light emitting diodes and silicon photomultipliers for high performance low cost NIRS biomedical systems. We show that under suitable experimental conditions such systems exhibit a high SNR, which allows an SDS of 7 cm, to our knowledge the largest ever demonstrated in a CW-NIRs system. PMID:27486551

  5. Metabolic fingerprinting of lichen Usnea baileyi by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakar, Siti Zaharah Abu; Latip, Jalifah; bin Din, Laily; Samsuddin, Mohd Wahid

    2014-09-01

    The lichen Usnea baileyi collected from different environments was characterised using Fourier transform infrared spectroscopy. This preliminary study was done to determine the effects of different environment populations on U. baileyi chemical composition. Results showed that the absorbance peaks of Golf Course 2 (GCU2) are more intense compared to Taman Awana (TA), Jalan Awana (JA) and Jalan Gohtong (JG). U. baileyi contains of dibenzofurans, depsides, depsidones, xanthones and terpenoids.

  6. Monitoring of monochlorophenols adsorbed on metal (Cu and Zn) supported pumice by infrared spectroscopy.

    PubMed

    Bardakçi, Belgin

    2009-01-01

    The adsorption of monochlorophenols (o-, m-, p-chlorophenol) on pumice, Zn/pumice and Cu/pumice has been studied through Fourier Transform Infrared (FTIR) Spectroscopy in transmission mode. The data show that after Zn and Cu were supported on pumice, the adsorption of 4-chlorophenol is characterized by the bands at 1591, 1494, 1092 and 824 cm(-1). Adsorption process occurred via metal cations on the surface of pumice. Metal oxides on pumice can mediate binding of p-chlorophenol.

  7. Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers

    PubMed Central

    Pagano, Roberto; Libertino, Sebania; Sanfilippo, Delfo; Fallica, Giorgio; Lombardo, Salvatore

    2016-01-01

    We experimentally analyze the signal-to-noise ratio of continuous wave (CW) near infrared spectroscopy (NIRS) reflectance systems based on light emitting diodes and silicon photomultipliers for high performance low cost NIRS biomedical systems. We show that under suitable experimental conditions such systems exhibit a high SNR, which allows an SDS of 7 cm, to our knowledge the largest ever demonstrated in a CW-NIRs system. PMID:27486551

  8. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  9. Use of in situ Fourier transform infrared spectroscopy to study freezing and drying of cells.

    PubMed

    Wolkers, Willem F; Oldenhof, Harriëtte

    2015-01-01

    An infrared spectrum gives information about characteristic molecular vibrations of specific groups in molecules. Fourier transform infrared spectroscopy can be applied to study lipids and proteins in cells or tissues. Spectra can be collected during cooling, heating, or dehydration of a sample using a temperature-controlled sample holder or a sample holder for controlled dehydration. In the current chapter, acquisition and analysis of infrared spectra during cooling, warming, or dehydration is described. Spectra analysis involving assessment of specific band positions, areas, or ratios is described. Special emphasis is given on studying membrane phase behavior and protein denaturation in cells or tissues. In addition, methods are presented to determine the water-to-ice phase change during freezing, dehydration kinetics, and the glass transition temperature of amorphous systems.

  10. Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    2004-01-01

    The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.

  11. Far-infrared synchrotron radiation spectroscopy of solids in normal and extreme conditions

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Cestelli Guidi, M.; Marcelli, A.; Calvani, P.; Burattini, E.; Nucara, A.; Postorino, P.; Sacchetti, A.; Arcangeletti, E.; Sheregii, E.; Polit, J.; Kisiel, A.

    2005-01-01

    New opportunities in solid-state physics are offered by SINBAD (Synchrotron INfrared Beamline At DAFNE), the infrared beamline operational at DANE, the storage ring of the Laboratori Nazionali di Frascati of the INFN. During 2003 several experiments, including those supported by the European TARI program, have been successfully performed at SINBAD. In this work we present the preliminary results of high resolution far infrared reflectivity data collected in different ZnxCdyHg(1-x-y)Te quaternary alloys as a function of temperature. The first far-IR investigation of Colossal Magnetoresistance manganites at high pressures, using a diamond anvil cell is also presented. Indeed, FT-IR spectroscopy is a powerful tool for the investigation of insulating-to-metal transitions and charge ordering phenomena that may occur in transition metal oxides.

  12. A novel objective sour taste evaluation method based on near-infrared spectroscopy.

    PubMed

    Hoshi, Ayaka; Aoki, Soichiro; Kouno, Emi; Ogasawara, Masashi; Onaka, Takashi; Miura, Yutaka; Mamiya, Kanji

    2014-05-01

    One of the most important themes in the development of foods and drinks is the accurate evaluation of taste properties. In general, a sensory evaluation system is frequently used for evaluating food and drink. This method, which is dependent on human senses, is highly sensitive but is influenced by the eating experience and food palatability of individuals, leading to subjective results. Therefore, a more effective method for objectively estimating taste properties is required. Here we show that salivary hemodynamic signals, as measured by near-infrared spectroscopy, are a useful objective indicator for evaluating sour taste stimulus. In addition, the hemodynamic responses of the parotid gland are closely correlated to the salivary secretion volume of the parotid gland in response to basic taste stimuli and respond to stimuli independently of the hedonic aspect. Moreover, we examined the hemodynamic responses to complex taste stimuli in food-based solutions and demonstrated for the first time that the complicated phenomenon of the "masking effect," which decreases taste intensity despite the additional taste components, can be successfully detected by near-infrared spectroscopy. In summary, this study is the first to demonstrate near-infrared spectroscopy as a novel tool for objectively evaluating complex sour taste properties in foods and drinks.

  13. Determination of melamine of milk based on two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ren-jie; Liu, Rong; Xu, Kexin

    2012-03-01

    The adulteration of milk with harmful substances is a threat to public health and beyond question a serious crime. In order to develop a rapid, cost-effective, high-throughput analysis method for detecting of adulterants in milk, the discriminative analysis of melamine is established in milk based on the two-dimensional (2D) correlation infrared spectroscopy in present paper. Pure milk samples and adulterated milk samples with different content of melamine were prepared. Then the Fourier Transform Infrared spectra of all samples were measured at room temperature. The characteristics of pure milk and adulterated milk were studied by one-dimensional spectra. The 2D NIR and 2D IR correlation spectroscopy were calculated under the perturbation of adulteration concentration. In the range from 1400 to 1800 cm-1, two strong autopeaks were aroused by melamine in milk at 1464 cm-1 and 1560 cm-1 in synchronous spectrum. At the same time, the 1560 cm-1 band does not share cross peak with the 1464 cm-1 band, which further confirm that the two bands have the same origin. Also in the range from 4200 to 4800 cm-1, the autopeak was shown at 4648 cm-1 in synchronous spectrum of melamine in milk. 2D NIR-IR hetero-spectral correlation analysis confirmed that the bands at 1464, 1560 and 4648 cm-1 had the same origin. The results demonstrated that the adulterant can be discriminated correctly by 2D correlation infrared spectroscopy.

  14. Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    PubMed Central

    Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction. PMID:24883388

  15. Determination of flow properties of pharmaceutical powders by near infrared spectroscopy.

    PubMed

    Sarraguça, Mafalda C; Cruz, Ana V; Soares, Sandra O; Amaral, Helena R; Costa, Paulo C; Lopes, João A

    2010-08-01

    The physical properties of pharmaceutical powders are of upmost importance in the pharmaceutical industry. The knowledge of their flow properties is of critical significance in operations such as blending, tablet compression, capsule filling, transportation, and in scale-up operations. Powders flow properties are measured using a number of parameters such as, angle of repose, compressibility index (Carr's index) and Hausner ratio. To estimate these properties, specific and expensive equipment with time-consuming analysis is required. Near infrared spectroscopy is a fast and low-cost analytical technique thoroughly used in the pharmaceutical industry in the quantification and qualification of products. To establish the potential of this technique to determine the parameters associated with the flow properties of pharmaceutical powders, blended powders based on paracetamol as the active pharmaceutical ingredient were constructed in pilot scale. Spectra were recorded on a Fourier-transform near infrared spectrometer in reflectance mode. The parameters studied were the angle of repose, aerated and tapped bulk density. The correlation between the reference method values and the near infrared spectrum was performed by partial least squares and optimized in terms of latent variables using cross-validation. The near infrared based properties predictions were compared with the reference methods results. Prediction errors, which varied between 2.35% for the angle of repose, 2.51% for the tapped density and 3.18% for the aerated density, show the potential of NIR spectroscopy in the determination of physical properties affecting the flowability of pharmaceutical powders.

  16. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.

    PubMed

    Juric, Simon; Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  17. [Analysis of soil humus and components after 26 years' fertilization by infrared spectroscopy method].

    PubMed

    Zhang, Yu-Lan; Sun, Cai-Xia; Chen, Zhen-Hua; Li, Dong-Po; Liu, Xing-Bin; Chen, Li-Jun; Wu, Zhi-Jie; Du, Jian-Xiong

    2010-05-01

    The infrared spectrum was used to discuss structure change of soil humus and components of chemical groups in soil humic acids (HA) and fulvic acids (FA) isolated from soils in different fertilization treatment after 26 year's fertilization. The result indicated that using the infrared spectroscopy method for the determination of humus, humus fractions (HA and FA) and their structure is feasible. Fertilization affected the structure and content of soil humus and aromatization degree. After 26 years' fertilization, the infrared spectrum shapes with different treatments are similar, but the characteristic peak intensity is obviously different, which reflects the effects of different fertilization treatments on the structure and amounts of soil humus or functional groups. Compared with no fertilization, little molecule saccharides decreased and aryl-groups increased under application of inorganic fertilizer or combined application of organic and chemical fertilizer. The effect was greater in Treatment NPK and M+NPK than in Treatment M1 N and M2 N. Organic and NPK fertilizer increased the development of soil and increased soil quality to a certain extent. Results showed that organic fertilization increased aromatization degree of soil humus and humus fractions distinctly. The authors could estimate soil humus evolvement of different fertilization with infrared spectroscopy.

  18. Study on mechanism of selective chemical vapor deposition of tungsten using in situ infrared spectroscopy and Auger electron spectroscopy

    SciTech Connect

    Kobayashi, N.; Goto, H. ); Suzuki, M. )

    1991-01-15

    Selective chemical vapor deposition (CVD) of tungsten (W) using tungsten hexafluoride (WF{sub 6}) and monosilane (SiH{sub 4}) is investigated by {ital in} {ital situ} infrared spectroscopy and Auger electron spectroscopy. The infrared spectra show that trifluorosilane (SiHF{sub 3}) is the main by-product species, and that silicon-tetrafluoride (SiF{sub 4}) is less than 20%--25% of SiHF{sub 3} in partial pressure. The main chemical reaction involved in selective W CVD can be expressed as WF{sub 6}+2SiH{sub 4}{r arrow}W+2SiHF{sub 3}+3H{sub 2}. Based on our experimental results, a new mechanism of selective W CVD, which notes hydrogen dissociation having a central role in this process, is proposed. It disproves the widely accepted model, which is based on the assumption that SiF{sub 4} is the major reaction product.

  19. Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques.

    PubMed

    Balabin, Roman M; Safieva, Ravilya Z; Lomakina, Ekaterina I

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm(-1) NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  20. High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Roucou, A.; Brown, G. G.; Thorwirth, S.; Pirali, O.; Mouret, G.; Hindle, F.; McCarthy, M. C.; Cuisset, A.

    2016-02-01

    Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (reSE) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

  1. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  2. Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm.

    PubMed

    Svensson, Tomas; Alerstam, Erik; Khoptyar, Dmitry; Johansson, Jonas; Folestad, Staffan; Andersson-Engels, Stefan

    2009-06-01

    Photon time-of-flight spectroscopy (PTOFS) is a powerful tool for analysis of turbid materials. We have constructed a time-of-flight spectrometer based on a supercontinuum fiber laser, acousto-optical tunable filtering, and an InP/InGaAsP microchannel plate photomultiplier tube. The system is capable of performing PTOFS up to 1400 nm, and thus covers an important region for vibrational spectroscopy of solid samples. The development significantly increases the applicability of PTOFS for analysis of chemical content and physical properties of turbid media. The great value of the proposed approach is illustrated by revealing the distinct absorption features of turbid epoxy resin. Promising future applications of the approach are discussed, including quantitative assessment of pharmaceuticals, powder analysis, and calibration-free near-infrared spectroscopy.

  3. Geographical traceability of Marsdenia tenacissima by Fourier transform infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui

    2016-01-01

    A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way.

  4. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

    PubMed Central

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368

  5. Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.

    PubMed

    Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Ikemoto, Yuka; Okamura, Hidekazu

    2012-05-01

    Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm(-1) with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm(-1)) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.

  6. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.

    PubMed

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy.

  7. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  8. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy.

  9. Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy.

    PubMed

    Fabian, Heinz; Lasch, Peter; Naumann, Dieter

    2005-01-01

    In this study we describe a semiautomatic Fourier transform infrared spectroscopic methodology for the analysis of liquid serum samples, which combines simple sample introduction with high sample throughput. The applicability of this new infrared technology to the analysis of liquid serum samples from a cohort of cattle naturally infected with bovine spongiform encephalopathy and from controls was explored in comparison to the conventional approach based on transmission infrared spectroscopy of dried serum films. Artifical neural network analysis of the infrared data was performed to differentiate between bovine spongiform encephalopathy-negative controls and animals in the late stage of the disease. After training of artifical neural network classifiers, infrared spectra of sera from an independent external validation data set were analyzed. In this way, sensitivities between 90 and 96% and specificities between 84 and 92% were achieved, respectively, depending upon the strategy of data collection and data analysis. Based on these results, the advantages and limitations of the liquid sample technique and the dried film approach for routine analysis of biofluids are discussed.

  10. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  11. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  12. Mesenteric near-infrared spectroscopy and risk of gastrointestinal complications in infants undergoing surgery for congenital heart disease.

    PubMed

    Iliopoulos, Ilias; Branco, Ricardo G; Brinkhuis, Nadine; Furck, Anke; LaRovere, Joan; Cooper, David S; Pathan, Nazima

    2016-04-01

    We hypothesised that lower mesenteric near-infrared spectroscopy values would be associated with a greater incidence of gastrointestinal complications in children weighing <10 kg who were recovering from cardiac surgery. We evaluated mesenteric near-infrared spectroscopy, central venous oxygen saturation, and arterial blood gases for 48 hours post-operatively. Enteral feeding intake, gastrointestinal complications, and markers of organ dysfunction were monitored for 7 days. A total of 50 children, with median age of 16.7 (3.2-31.6) weeks, were studied. On admission, the average mesenteric near-infrared spectroscopy value was 71±18%, and the systemic oxygen saturation was 93±7.5%. Lower admission mesenteric near-infrared spectroscopy correlated with longer time to establish enteral feeds (r=-0.58, p<0.01) and shorter duration of feeds at 7 days (r=0.48, p<0.01). Children with gastrointestinal complications had significantly lower admission mesenteric near-infrared spectroscopy (58±18% versus 73±17%, p=0.01) and higher mesenteric arteriovenous difference of oxygen at admission [39 (23-47) % versus 19 (4-27) %, p=0.02]. Based on multiple logistic regression, admission mesenteric near-infrared spectroscopy was independently associated with gastrointestinal complications (Odds ratio, 0.95; 95% confidence interval, 0.93-0.97; p=0.03). Admission mesenteric near-infrared spectroscopy showed an area under the receiver operating characteristic curve of 0.76 to identify children who developed gastrointestinal complications, with a suggested cut-off value of 72% (78% sensitivity, 68% specificity). In this pilot study, we conclude that admission mesenteric near-infrared spectroscopy is associated with gastrointestinal complications and enteral feeding tolerance in children after cardiac surgery.

  13. Two-dimensional hetero-spectral mid-infrared and near-infrared correlation spectroscopy for discrimination adulterated milk.

    PubMed

    Yang, Renjie; Liu, Rong; Dong, Guimei; Xu, Kexin; Yang, Yanrong; Zhang, Weiyu

    2016-03-15

    A new approach for discriminant analysis of adulterated milk is proposed based on two-dimensional (2D) hetero-spectral near-infrared (NIR) and mid-infrared (IR) correlation spectroscopy along with multi-way partial least squares discriminant analysis (NPLS-DA). NIR transmittance spectra and IR attenuated total reflection spectra of pure milk and adulterated milk with level of melamine varying from 0.03 to 3 g·L(-1) were collected at room temperature. The synchronous 2D hetero-spectral IR/NIR correlation spectra of all samples were calculated to build a discriminant model to classify adulterated milk and pure milk. Also, the NPLS-DA models were built based on synchronous 2D homo-spectral NIR/NIR and IR/IR correlation spectra, respectively. Comparison results showed that the NPLS-DA model could provide better results using 2D hetero-spectral IR/NIR correlation spectra than using 2D homo-spectral NIR/NIR and 2D IR/IR correlation spectra.

  14. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  15. The Volatile Chemistry Of Jupiter-family Comets Determined From High-resolution Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Vervack, R.; Weaver, H.; Kobayashi, H.; Kawakita, H.; Biver, N.; Bockelée-Morvan, D.; Crovisier, J.

    2009-09-01

    The chemistry of Jupiter-family comets (JFCs) has been extensively studied at optical wavelengths using spectroscopic and photometric techniques. However, the coma species detected at optical wavelengths are daughter and granddaughter photodissociation products that are often not easily related to species present in the nucleus. Because JFCs are generally of moderate productivity, studies of their parent volatile chemistries have lagged owing to sensitivity issues. Recently, studies at radio and infrared wavelengths have revealed the parent volatile chemistry in a small group of JFCs. Here, we report and compare recent results on the chemistry of JFCs using high-resolution infrared spectroscopy. The main goals of this research are to: (1) chemically characterize JFCs using high-resolution infrared spectroscopy in order to build a taxonomy based on parent volatile composition, (2) determine if the parent volatile chemistry of JFCs is consistent with formation conditions or evolutionary processing history, and (3) compare abundances of daughter fragments (e.g., C2, CN, NH, NH2) and their suspected parents (e.g., C2H2, C2H6, HCN, NH3) in JFCs whose chemistries were measured at both infrared and optical wavelengths. Understanding the parent sources of daughter fragments in comets not only provides information on the common infrared/optical database but may also give clues to the parent volatile chemistry in the large number of comets observed only at optical wavelengths. Because JFCs are the most practical mission targets, chemical composition can be one discriminator in determining desirable future targets. Furthermore, determining the range of chemical diversity within the JFC population can help put results of previous missions (e.g. Deep Impact, Stardust) in better context. This work was supported by the NASA Planetary Astronomy and Planetary Atmospheres Programs.

  16. Synchrotron-based rotationally resolved high-resolution FTIR spectroscopy of azulene and the unidentified infrared bands of astronomy.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Quack, Martin

    2013-10-01

    Chasing the unidentified IR bands: The first rotationally resolved high-resolution infrared spectrum of azulene is reported using synchrotron Fourier transform infrared spectroscopy including a rovibrational analysis of the out-of-plane fundamental ν44. Comparison of azulene, naphthalene, indole, and biphenyl infrared bands leads to coincidences with UIR bands at 12.8 μm with naphthalene and at 13.55 and 14.6 μm with biphenyl bands, but excluding azulene as a strong absorber.

  17. Structural study of photodegraded acrylic-coated lime wood using Fourier transform infrared and two-dimensional infrared correlation spectroscopy.

    PubMed

    Popescu, Carmen-Mihaela; Simionescu, Bogdan C

    2013-06-01

    The weathering of acrylic films and acrylic-coated lime wood (Tillia cordata Mill.) were examined using Fourier transform infrared (FT-IR) and two-dimensional infrared correlation spectroscopy. The obtained results showed chemical changes induced by exposure to weathering conditions, in both films and coated wood. The observed spectral changes of the acrylic films refer to the absorption band assigned to the C-O stretching, which progressively decreases with increasing exposure time. In the spectra of treated wood samples the main signal indicating the advance of oxidation during the photodegradation exposure is the gradual increase and broadening of the band in the carbonyl region. This is due to the formation of the non-hydrogen bonded aliphatic carboxylic acids and γ-lactone structures in the acrylic resin and of the nonconjugated ketones, carboxyl groups, and lactones in wood. As a consequence, the increase of the 1734 cm(-1) band is due to the degradation of lignin from wood surface. These observations are also supported by the decreased intensities of the bands at 1598 and 1505 cm(-1), assigned to C=C of aromatic skeletal (lignin). The relative intensity of the characteristic aromatic lignin band at 1505 cm(-1) decreases up to 25% of its original value after weathering, being less than half of the value obtained for uncoated wood. Two-dimensional infrared (2D IR) correlation spectroscopy was used to identify the sequence of the modifications of the different stretching vibrations bands under the weathering conditions, the method allowing the prediction of the order of degradation reactions. The acrylic resin degradation starts with the formation of radicals by abstraction of the tertiary hydrogen atoms of the methyl acrylate units and the α-CH3 groups from the ethyl methacrylate units. The subsequent decomposition and oxidation led to the formation of alcohol groups, hydroperoxides, ketones, and/or carboxylic acid groups. The 2D IR correlation spectra of

  18. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  19. Infrared spectroscopy to estimate the gross biochemistry associated with different colorectal pathologies

    NASA Astrophysics Data System (ADS)

    Wood, J. J.; Kendall, C.; LLoyd, G. R.; Shepherd, N. A.; Cook, T. A.; Stone, N.

    2011-07-01

    Histopathology provides the gold standard assessment of colonoscopic biopsies. Infrared spectroscopy can potentially map biochemical changes across a tissue section identifying disease. The purpose of this study was to determine if infrared spectroscopy could classify different colorectal pathologies and to investigate biochemical composition. Colonoscopic tissue biopsies were snap frozen at colonoscopy. 10 micron thick sections were mounted on CaF2 slides. 3- D spectral datasets (2 spatial dimensions and one spectral) were measured from thawed specimens using a Perkin Elmer infrared imaging system in transmission mode. Contiguous tissue sections stained with H&E were reviewed by a specialist gastrointestinal pathologist for comparison. Tissue spectra from epithelial tissues were classified using principal components fed linear discriminant analysis with leave one out cross validation. Reference spectra from purchased biochemicals (Sigma-Aldrich) were measured. Ordinary least squares analysis estimated the relative biochemical signal contribution from epithelial regions. Spectra from tissue epithelia measured from normal tissue, hyperplastic polyps, adenomatous polyps, cancer and ulcerative colitis samples were classified with accuracies in excess of 90%. Ordinary least squares analysis demonstrated a higher DNA to cytoplasm ratio in cancer compared to normal tissue. FTIR spectra from epithelia can be used to classify colorectal pathologies with high accuracy. Ordinary least squares analysis shows promise for extraction of useful biochemical information. These techniques could aid the histopathologist and ultimately lead to automated histopathological processing.

  20. Characterization of Material Degradation in Ceramic Matrix Composites Using Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cooney, Adam T.; Flattum-Riemers, Richard Y.; Scott, Benjamin J.

    2011-06-01

    Ceramic matrix composite materials for thermal protection systems are required to maintain operational performance in extreme thermal and mechanical environments. In-service inspection of materials capable of assessing the degree and extent of damage and degradation will be required to ensure the safety and readiness of future air vehicles. Infrared reflectance spectroscopy is an established material characterization technique capable of extracting information regarding the chemical composition of substances. The viability of this technique as a potentially powerful nondestructive evaluation method capable of monitoring degradation in thermal protection system materials subjected to extreme mechanical and thermal environments is analyzed. Several oxide-based and non-oxide-based ceramic matrix composite materials were stressed to failure in a high temperature environment and subsequently measured using infrared reflectance spectroscopy. Spectral signatures at locations along the length of the samples were compared resulting in distinct and monotonic reflectance peak changes while approaching the fracture point. The chemical significance of the observed signatures and the feasibility of infrared reflectance nondestructive evaluation techniques are discussed.

  1. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management

    SciTech Connect

    Smidt, Ena . E-mail: ena.smidt@boku.ac.at; Meissl, Katharina

    2007-07-01

    State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments.

  2. [Detection of reducing sugar content of potato granules based on wavelet compression by near infrared spectroscopy].

    PubMed

    Dong, Xiao-Ling; Sun, Xu-Dong

    2013-12-01

    The feasibility was explored in determination of reducing sugar content of potato granules based on wavelet compression algorithm combined with near-infrared spectroscopy. The spectra of 250 potato granules samples were recorded by Fourier transform near-infrared spectrometer in the range of 4000- 10000 cm-1. The three parameters of vanishing moments, wavelet coefficients and principal component factor were optimized. The optimization results of three parameters were 10, 100 and 20, respectively. The original spectra of 1501 spectral variables were transfered to 100 wavelet coefficients using db wavelet function. The partial least squares (PLS) calibration models were developed by 1501 spectral variables and 100 wavelet coefficients. Sixty two unknown samples of prediction set were applied to evaluate the performance of PLS models. By comparison, the optimal result was obtained by wavelet compression combined with PLS calibration model. The correlation coefficient of prediction and root mean square error of prediction were 0.98 and 0.181%, respectively. Experimental results show that the dimensions of spectral data were reduced, scarcely losing effective information by wavelet compression algorithm combined with near-infrared spectroscopy technology in determination of reducing sugar in potato granules. The PLS model is simplified, and the predictive ability is improved. PMID:24611373

  3. Near infrared spectroscopy for prediction of antioxidant compounds in the honey.

    PubMed

    Escuredo, Olga; Seijo, M Carmen; Salvador, Javier; González-Martín, M Inmaculada

    2013-12-15

    The selection of antioxidant variables in honey is first time considered applying the near infrared (NIR) spectroscopic technique. A total of 60 honey samples were used to develop the calibration models using the modified partial least squares (MPLS) regression method and 15 samples were used for external validation. Calibration models on honey matrix for the estimation of phenols, flavonoids, vitamin C, antioxidant capacity (DPPH), oxidation index and copper using near infrared (NIR) spectroscopy has been satisfactorily obtained. These models were optimised by cross-validation, and the best model was evaluated according to multiple correlation coefficient (RSQ), standard error of cross-validation (SECV), ratio performance deviation (RPD) and root mean standard error (RMSE) in the prediction set. The result of these statistics suggested that the equations developed could be used for rapid determination of antioxidant compounds in honey. This work shows that near infrared spectroscopy can be considered as rapid tool for the nondestructive measurement of antioxidant constitutes as phenols, flavonoids, vitamin C and copper and also the antioxidant capacity in the honey.

  4. [Near infrared spectroscopy analysis method of maize hybrid seed purity discrimination].

    PubMed

    Huang, Hua-Jun; Yan, Yan-Lu; Shen, Bing-Hui; Liu, Zhe; Gu, Jian-Cheng; Li, Shao-Ming; Zhu, De-Hai; Zhang, Xiao-Dong; Ma, Qin; Li, Lin; An, Dong

    2014-05-01

    Near infrared spectroscopy analysis method of discrimination of maize hybrid seed purity was studied with the sample of Nong Hua 101 (NH101) from different origins and years. Spectral acquisition time lasted for 10 months. Using Fourier transform (FT) near infrared spectroscopy instruments, including 23 days in different seasons (divided into five time periods), a total of 920 near infrared diffuse reflectance spectra of single corn grain of those samples were collected. Moving window average, first derivative and vector normalization were used to pretreat all original spectra, principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to reduce data dimensionality, and the discrimination model was established based on biomimetic pattern recognition (BPR) method. Spectral distortion was calibrated by spectra pretreatment, which makes characteristics spatial distribution range of sample spectra set contract. The relative distance between hybrid and female parent increased by nearly 70-fold, and the discrimination model achieved the identification of hybrid and female parent seeds. Through the choice of representative samples, the model's response capacity to the changes in spectral acquisition time, place and environment, etc. was improved. Besides, the model's response capacity to the changes in time and site of seed production was also improved, and the robustness of the model was enhanced. The average correct acceptance rate (CAR) of the test set reached more than 95% while the average correct rejection rate (CRR) of the test set also reached 85%. PMID:25095417

  5. Salt or cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Cameron Capeletti; Guimarães, Freddy Fernandes; Ribeiro, Leandro; Martins, Felipe Terra

    2016-10-01

    The recognition of the nature of a multicomponent crystal form (solvate, salt, cocrystal or cocrystal of salt) is of great importance for pharmaceutical industry because it is directly related to the performance of a pharmaceutical ingredient, since there is interdependence between the structure, its energy and its physical properties. In this context, here we have identified the nature of multicomponent crystal forms of the anti-HIV drug lamivudine with mandelic acid through infrared spectroscopy. These investigated crystal forms were the known S-mandelic acid cocrystal of lamivudine R-mandelate trihydrate (1), a cocrystal of salt, and lamivudine R-mandelate (2), a salt. This approach also supports the identification and distinction of both ionized and unionized forms of mandelic acid in the infrared spectrum of 1. In this way, infrared spectroscopy can be useful to distinguish a cocrystal of salt from either salt or cocrystal forms. In the course of this study, for the first time we have also characterized and determined the crystal structure of R-mandelic acid cocrystal of sodium R-mandelate (3).

  6. Exploration of in vivo Effect Assessment Factor Monitoring by Near-infrared Spectroscopy during LITT

    NASA Astrophysics Data System (ADS)

    Qian, Ai-ping; Hua, Guo-ran; Zhang, Hua; Qian, Zhi-yu

    2011-02-01

    By studying the variation trends of the absorption coefficient (μa) and the reduced scattering coefficient (μ's), which were monitored in vivo by functional near infrared spectroscopy (fNIRS) system in real time during laser induced interstitial thermotherapy (LITT), the optimized near infrared effect assessment factor would be explored. In vivo measurements of the absorption coefficient (ua) and the reduced scattering coefficient (u's) were performed with a functional near infrared spectroscopy system during LITT. Fresh porcine liver tissue samples in vitro and the subcutaneous implanted rat liver cancers were examined in different laser doses and define heating times. The absorption coefficient obtained by the fNIRS increased in the pork liver experiments, but decreased in the rat liver cancer experiments. The reduced scattering coefficient increased in the pork liver experiments and the rat liver cancer experiments, it increased quickly at beginning, and gradually reached the stable state. Therefore, the reduced scattering coefficient is more suitable for reflecting the progress of damage during different biological tissues' LITT than the absorption coefficient. This conclusion will effectively guide the study of suitable therapy effect assessment system during LITT in real time.

  7. Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Xu, Kexin

    2014-04-01

    Wavelength-tunable laser spectroscopy in combination with a small-sized fiber-optic attenuated total reflection (ATR) sensor (fiber-based evanescent field analysis, FEFA) is reported for the continuous measurement of the glucose level. We propose a method of controlling and stabilizing the wavelength and power of laser emission and present a newly developed mid-infrared wavelength-tunable laser with a broad emission spectrum band of 9.19-9.77 μm (1024-1088 cm-1). The novel small-sized flow-through fiber-optic ATR sensor with long optical sensing length was used for glucose level determination. The experimental results indicate that the noise-equivalent concentration of this laser measurement system is as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. The sensitivity, which is three times that of conventional Fourier transform infrared spectrometer, was acquired because of the higher laser power and higher spectral resolution. The best prediction of the glucose concentration in phosphate buffered saline solution was achieved using the five-variable partial least-squares model, yielding a root-mean-square error of prediction as small as 3.5 mg/dL. The high sensitivity, multiple tunable wavelengths and small fiber-based sensor with long optical sensing length make glucose determination possible in blood or interstitial fluid in vivo.

  8. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons

    NASA Astrophysics Data System (ADS)

    Hu, Hai; Yang, Xiaoxia; Zhai, Feng; Hu, Debo; Liu, Ruina; Liu, Kaihui; Sun, Zhipei; Dai, Qing

    2016-07-01

    Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm-1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon-phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire molecular fingerprint region, which was previously unattainable. In addition, undisturbed and highly confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopies. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications.

  9. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons

    PubMed Central

    Hu, Hai; Yang, Xiaoxia; Zhai, Feng; Hu, Debo; Liu, Ruina; Liu, Kaihui; Sun, Zhipei; Dai, Qing

    2016-01-01

    Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm−1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light–matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon–phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire molecular fingerprint region, which was previously unattainable. In addition, undisturbed and highly confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopies. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications. PMID:27460765

  10. Infrared reflectance spectroscopy as a characterization probe for polymer surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Riou, Sophie Annick

    1998-12-01

    Only recently has external reflectance infrared spectroscopy been used to acquire structural information at the molecular level at air-liquid interfaces, and particularly to characterize in situ molecular chains adsorbed at the air-water interface. This technique has been applied for the determination of chain orientation, chain conformation and packing density of small molecules such as phospholipids, fatty acids and fatty alcohols on the surface of water, and more recently of macromolecular systems. Vibrational spectroscopy, a nondestructive technique, is especially successful in the determination of the conformational order or disorder of alkyl chains (e.g. trans/gauche ratio) as well as in the evaluation of coil, helical or extended conformations in poly(amino acids). In this thesis work, the construction of a microcomputer controlled Langmuir trough optically coupled to a FT-IR instrument has allowed the direct investigation of molecular films spread at air-liquid interfaces. Order-disorder transitions and relaxation behaviors in vinyl comb-like polymeric Langmuir films have been examined using simultaneously external reflection infrared spectroscopy and surface tensiometry. The structures of several poly(amino acid) films have also been studied as a function of surface packing density at the air-water interface.

  11. Early detection of emerging street drugs by near infrared spectroscopy and chemometrics.

    PubMed

    Risoluti, R; Materazzi, S; Gregori, A; Ripani, L

    2016-06-01

    Near-infrared spectroscopy (NIRs) is spreading as the tool of choice for fast and non-destructive analysis and detection of different compounds in complex matrices. This paper investigated the feasibility of using near infrared (NIR) spectroscopy coupled to chemometrics calibration to detect new psychoactive substances in street samples. The capabilities of this approach in forensic chemistry were assessed in the determination of new molecules appeared in the illicit market and often claimed to contain "non-illegal" compounds, although exhibiting important psychoactive effects. The study focused on synthetic molecules belonging to the classes of synthetic cannabinoids and phenethylamines. The approach was validated comparing results with officials methods and has been successfully applied for "in site" determination of illicit drugs in confiscated real samples, in cooperation with the Scientific Investigation Department (Carabinieri-RIS) of Rome. The achieved results allow to consider NIR spectroscopy analysis followed by chemometrics as a fast, cost-effective and useful tool for the preliminary determination of new psychoactive substances in forensic science.

  12. Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data

    NASA Astrophysics Data System (ADS)

    Giubileo, G.; Colao, F.; Puiu, A.

    2012-06-01

    Infrared spectroscopy based methods are promising in the design of an integrated optical system for the real time detection and identification of explosive species to support homeland security. Infrared laser photoacoustic spectroscopy (LPAS) analysis of explosive compounds (DNT; TNT; RDX; HMX; TATP; PETN; TETRYL) and TOLUENE was reported. Standard commercial samples of the explosive species were analyzed in solid phase by a home made PAS apparatus equipped with a stabilized 10 W continuous wave CO2 laser source. A very small amount (less than 100 μg) of the sample was sufficient to produce a clear signal in a 3 cc volume PA cell. The spectral data were treated by a principal component analysis (PCA) based algorithm. In a three principal components representation of the results, every explosive species resulted to be very well distinguishable from each other, as well as from toluene and other solvents. The reported experimental activity was performed in the Molecular Spectroscopy Laboratory of ENEA Research Centre in Frascati in the frame of ISOTREX European Project.

  13. High Resolution Rovibrational Spectroscopy of Large Molecules Using Infrared Frequency Combs and Buffer Gas Cooling

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Spaun, Ben; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-06-01

    We have recently demonstrated the integration of cavity-enhanced direct frequency comb spectroscopy with buffer gas cooling to acquire high resolution infrared spectra of translationally and rotationally cold (˜10 K) gas-phase molecules. Here, we extend this method to significantly larger systems, including naphthalene (C10H_8), a prototypical polyaromatic hydrocarbon, and adamantane (C10H_{16}), the fundamental building block of diamonoids. To the authors' knowledge, the latter molecule represents the largest system for which rotationally resolved spectra in the CH stretch region (3 μm) have been obtained. In addition to the measured spectra, we present several details of our experimental methods. These include introducing non-volatile species into the cold buffer gas cell and obtaining broadband spectra with single comb mode resolution. We also discuss recent modifications to the apparatus to improve its absorption sensitivity and time resolution, which facilitate the study of both larger molecular systems and cold chemical dynamics. B. Spaun, et al. Probing buffer-gas cooled molecules with direct frequency comb spectroscopy in the mid-infrared, WF02, 70th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL, 2015.

  14. Infrared Spectroscopy as a Versatile Analytical Tool for the Quantitative Determination of Antioxidants in Agricultural Products, Foods and Plants

    PubMed Central

    Cozzolino, Daniel

    2015-01-01

    Spectroscopic methods provide with very useful qualitative and quantitative information about the biochemistry and chemistry of antioxidants. Near infrared (NIR) and mid infrared (MIR) spectroscopy are considered as powerful, fast, accurate and non-destructive analytical tools that can be considered as a replacement of traditional chemical analysis. In recent years, several reports can be found in the literature demonstrating the usefulness of these methods in the analysis of antioxidants in different organic matrices. This article reviews recent applications of infrared (NIR and MIR) spectroscopy in the analysis of antioxidant compounds in a wide range of samples such as agricultural products, foods and plants. PMID:26783838

  15. CRYSTALLOGRAPHICALLY ANISOTROPIC SHAPE OF FORSTERITE: NEW PROBE FOR EVALUATING DUST FORMATION HISTORY FROM INFRARED SPECTROSCOPY

    SciTech Connect

    Takigawa, Aki; Tachibana, Shogo

    2012-05-10

    Crystalline dust has been observed by infrared spectroscopy around dust-enshrouded asymptotic giant branch stars, in protoplanetary disks, and from some comets. Crystalline materials often have a specific shape related to a specific crystallographic orientation (crystallographically anisotropic shape), which reflects the anisotropic nature of crystals, and their infrared spectral features depend on crystallographically anisotropic shapes. The crystallographically anisotropic shape is thus a potentially powerful probe to evaluate circumstellar dust-forming conditions quantitatively. In order to assess the possibility to determine the crystallographically anisotropic shape from infrared spectra, we calculated mass absorption coefficients for ellipsoidal forsterite particles, the most abundant circumstellar crystalline silicate, elongated and flattened along the crystallographic a-, b-, and c-axes with various aspect ratios in the wavelength range of 9-70 {mu}m. It was found that differences in infrared features caused by various crystallographicaly anisotropic shapes are distinguishable from each other irrespective of the effects of temperature, size, chemical composition, and grain edges of forsterite in the range of 9-12 {mu}m and 15-20 {mu}m. We thus concluded that the crystallographically anisotropic shape of forsterite can be deduced from peak features in infrared spectra. We also showed that the crystallographically anisotropic shapes formed by evaporation and condensation of forsterite can be distinguished from each other and the temperature condition for evaporation can be evaluated from the peak features. We applied the present results to the infrared spectrum of a protoplanetary disk HD100546 and found that a certain fraction ({approx}25%) of forsterite dust may have experienced high-temperature evaporation (>1600 K).

  16. First Light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) Instrument

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Johnson, David G.; Latvakoski, Harri; Jucks, Kenneth; Watson, Mike; Bingham, Gail; Kratz, David P.; Traub, Wesley A.; Wellard, Stanley J.; Hyde, Charles R.; Liu, Xu

    2005-01-01

    We present first light spectra from the new Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument. FIRST is a Fourier Transform Spectrometer developed to measure accurately the far-infrared (15 to 100 micrometers; 650 to 100 wavenumbers) emission spectrum of the Earth and its atmosphere. The observations presented here were obtained during a high altitude balloon flight from Ft. Sumner, New Mexico on 7 June 2005. The flight data demonstrate the instrument's ability to observe the entire energetically significant infrared emission spectrum (50 to 2000 wavenumbers) at high spectral and spatial resolution on a single focal plane in an instrument with one broad spectral bandpass beamsplitter. Comparisons with radiative transfer calculations demonstrate that FIRST accurately observes the very fine spectral structure in the far-infrared. Comparisons of the atmospheric window radiances measured by FIRST and by instruments on the NASA Aqua satellite that overflew FIRST are in excellent agreement. FIRST opens a new window on the spectrum that can be used for studying atmospheric radiation and climate, cirrus clouds, and water vapor in the upper troposphere.

  17. Jet-Cooled Spectroscopy on the Ailes Infrared Beamline of the Synchrotron Radiation Facility Soleil

    NASA Astrophysics Data System (ADS)

    Georges, Robert

    2015-06-01

    The Advanced Infrared Line Exploited for Spectroscopy (AILES) extracts the bright far infrared (FIR) synchrotron continuum of the third generation radiation facility SOLEIL. This beamline is equipped with a high resolution (10-3 cm-1) Bruker IFS125 Fourier transform spectrometer which can be operated in the FIR but also in the mid and near infrared by using its internal conventional sources. The jet-AILES consortium (IPR, PhLAM, MONARIS, SOLEIL) has implemented a supersonic-jet apparatus on the beamline to record absorption spectra at very low temperature (5-50 K) and in highly supersaturated gaseous conditions. Heatable slit-nozzles of various lengths and widths are used to set properly the stagnation conditions. A mechanical pumping (roots pumps) was preferred for its ability to evacuate important mass flow rates and therefore to boost the experimental sensitivity of the set-up, the counterpart being a non-negligible consumption of both carrier (argon, helium or nitrogen) and spectroscopic gases. Various molecular systems were investigated up to now using the Jet-AILES apparatus. The very low temperature achieved in the gas expansion was either used to simplify the rotation-vibration structure of monomers, such as SF6, CF4 or naphthalene, or to stabilize the formation of weakly bonded molecular complexes such as the trimer of HF or the dimer of acetic acid. The nucleation of water vapor and the nuclear spin conversion of water were also investigated under free-jet conditions in the mid infrared. High-resolution spectroscopy and analysis of the νb{2} + νb{3} combination band of SF6 in a supersonic jet expansion. V. Boudon, P. Asselin, P. Soulard, M. Goubet, T. R. Huet, R. Georges, O. Pirali, P. Roy, Mol. Phys. 111, 2154-2162 (2013) The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. O. Pirali, M. Goubet, T.R. Huet, R. Georges, P. Soulard, P. Asselin, J. Courbe, P. Roy and M

  18. Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel

    NASA Astrophysics Data System (ADS)

    Martínez, J. R.; Ruiz, F.; Vorobiev, Y. V.; Pérez-Robles, F.; González-Hernández, J.

    1998-11-01

    Infrared spectroscopy has been used to analyze the structural changes in samples prepared by the sol-gel method. Silica gels were prepared from alcoholic solutions of tetraethylorthosilicate (TEOS) with different H2O/TEOS molar ratios. The IR spectra of these gels, in the Si-O bond stretching region, shows that their structure strongly depends on the H2O/TEOS ratio. The relative change in intensity of the Si-O stretching modes, in samples prepared using different H2O/TEOS ratios, are interpreted in terms of different degrees of structural disorder. According to our infrared absorption data, a decrease in the H2O/TEOS ratio from about 7, the SiO2 structure evolves from a three-dimensional network toward a chainlike structure.

  19. Differentiation of neotropical fish species with statistical analysis of fourier transform infrared photoacoustic spectroscopy data.

    PubMed

    Almeida, Francylaine S; Lima, Sandro M; Andrade, Luis H C; Súarez, Yzel R

    2012-07-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was applied to nineteen fish species in Brazil's Upper Paraná River basin to identify differences in the structural composition of their scales. To differentiate the species, a canonical discriminant analysis was used to indicate the most important absorption peaks in the mid-infrared region. Significant differences were found in the chemical composition of scales among the studied fish species, with Wilk's lambda = 5.2 × 10(-6), F((13,18,394)) = 37.57, and P < 0.001, indicating that O-CH(2) wag at 1396 cm(-1) can be used as a biomarker of this species group. The species could be categorized into four groups according to phylogenetic similarity, suggesting that the O-CH(2) 1396 cm(-1) absorbance is related to the biological traits of each species. This procedure can also be used to complement evolutionary studies.

  20. [Detection of erucic acid and glucosinolate in intact rapeseed by near-infrared diffuse reflectance spectroscopy].

    PubMed

    Riu, Yu-kui; Huang, Kun-lun; Wang, Wei-min; Guo, Jing; Jin, Yin-hua; Luo, Yun-bo

    2006-12-01

    With the rapid development of transgenic food, more and more transgenic food has been pouring into the market, raising great concern about transgenic food' s edible safety. To analyze the content of erucic acid and glucosinolate in transgenic rapeseed and its parents, all the seeds were scanned intact by continuous wave of near infrared diffuse reflectance spectrometry ranging from 12 000 to 4 000 cm(-1) with a resolution of 4 cm(-1) and 64 times of scanning. Bruker OPUS software package was applied for quantification, while the results were compared with the standard methods. The results showed that the method of NIRS was very precise, which proved that infrared diffuse reflectance spectroscopy can be applied to detect the toxins in transgenic food. On the other hand, the results also showed that the content of erucic acid in transgenic rapeseeds is 0. 5-1. 0 times