Science.gov

Sample records for infrared space observatory

  1. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  2. Introduction to the Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Kessler, M. F.; Sibille, F.

    1989-01-01

    The Infrared Space Observatory (ISO) is an astronomical satellite, which will operate at infrared wavelengths (2.5 to 200 microns) for a period of at least 18 months. Imaging, spectroscopic, photometric and polarimetric observations will be obtained by four scientific instruments in the focal plane of its 60-cm diameter, cryogenically-cooled telescope. Two-thirds of ISO's observing time will be available to the astronomical community. ISO is a fully approved and funded project of the European Space Agency (ESA) with a foreseen launch date of May 1993.

  3. Edison - The next generation infrared space observatory

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr.; Davies, J. K.; Hackwell, J.; Hawarden, T. G.; Knacke, R. F.; Lester, D.; Mountain, C. M.

    1992-01-01

    Edison, a large-aperture, radiatively-cooled telescope, is proposed as the major international mission to follow the current generation of cryogenically-cooled infrared space telescopes. It is being studied at present as a 2.5-3.5 m mixed radiatively- and mechanically-cooled facility optimized to investigate the wavelength range 3-100+ microns. This paper outlines the status of the project, discusses some aspects of a smaller-aperture 'precursor' mission, and describes a portion of the baseline science mission.

  4. EDISON project and radiatively cooled infrared space observatories

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Hawarden, Timothy G.; Bradshaw, Tom W.; Orlowska, Anna H.; Penny, Alan J.; Turner, R. F.; Rapp, Donald

    1993-11-01

    We describe the current design for Edison, the first large radiatively-cooled infrared space observatory, now under consideration by the European Space Agency. Without the large cryogen tanks, more of the spacecraft can be filled with light-collecting optics and, of course, the observatory has no built-in lifetime. Our proposal is for a telescope with a 1.7 m primary to be launched by an Atlas, Ariane 5, or Proton. The baseline orbit for the observatory is a 'halo' around L2, a location which allows additional radiating area to be placed anti-sunward. Models of the temperature behavior of the observatory indicate an equilibrium temperature via radiation alone of about 20 K. Use of near-future cryo-coolers may allow optical system temperatures as low as approximately 15 K. Consequently, Edison will be limited in sensitivity by the celestial thermal background at wavelengths shortward of about 60 micrometers and by celestial source confusion at longer wavelengths.

  5. Participation in the Infrared Space Observatory (ISO) Mission

    NASA Technical Reports Server (NTRS)

    Joseph, Robert D.

    2002-01-01

    All the Infrared Space Observatory (ISO) data have been transmitted from the ISO Data Centre, reduced, and calibrated. This has been rather labor-intensive as new calibrations for both the ISOPHOT and ISOCAM data have been released and the algorithms for data reduction have improved. We actually discovered errors in the calibration in earlier versions of the software. However the data reduction improvements have now converged and we have a self-consistent, well-calibrated database. It has also been a major effort to obtain the ground-based JHK imaging, 450 micrometer and 850 micrometer imaging and the 1-2.5 micrometer near-infrared spectroscopy for most of the sample galaxies.

  6. Infrared Space Observatory Measurements of a [C II] 158 micron Line Deficit in Ultraluminous Infrared Galaxies

    DTIC Science & Technology

    1998-07-23

    INFRARED SPACE OBSERVATORY1 MEASUREMENTS OF A [C ii] 158 MICRON LINE DEFICIT IN ULTRALUMINOUS INFRARED GALAXIES M. L. Luhman ,2,3 S. Satyapal,4,5 J. Fischer...PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 L12 LUHMAN ET AL. Vol. 504 TABLE 1 Observing Log Source a2000 d2000 AOT...e.g., Wolfire et al. 1990; Carral et al. 1994; Fischer et al. 1996), L14 LUHMAN ET AL. Vol. 504 which suggests that if [C ii] line saturation alone

  7. Infrared space observatory photometry of circumstellar dust in Vega-type systems

    NASA Technical Reports Server (NTRS)

    Fajardo-Acosta, S. B.; Stencel, R. E.; Backman, D. E.; Thakur, N.

    1998-01-01

    The ISOPHOT (Infrared Space Observatory Photometry) instrument onboard the Infrared Space Observatory (ISO) was used to obtain 3.6-90 micron photometry of Vega-type systems. Photometric data were calibrated with the ISOPHOT fine calibration source 1 (FCS1). Linear regression was used to derive transformations to make comparisons to ground-based and IRAS photometry systems possible. These transformations were applied to the photometry of 14 main-sequence stars. Details of these results are reported on.

  8. Near infrared imaging and {o I} spectroscopy of IC 443 using two micron all sky survey and infrared space observatory

    NASA Technical Reports Server (NTRS)

    Rho, J.; Jarrett, T. H.; Cutri, C. M.; Reach, W. T.

    2001-01-01

    We present near-infrared J (1.25 mum), H (1.65 mum), and K-s (2.17 mum) imaging of the entire supernova remnant IC 443 from the Two Micron All Sky Survey (2MASS), and Infrared Space Observatory (ISO) LWS observations of [O I] for 11 positions in the northeast.

  9. Infrared Space Observatory (ISO) Key Project: the Birth and Death of Planets

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Creech-Eakman, Michelle; Fajardo-Acosta, Sergio; Backman, Dana

    1999-01-01

    This program was designed to continue to analyze observations of stars thought to be forming protoplanets, using the European Space Agency's Infrared Space Observatory, ISO, as one of NASA Key Projects with ISO. A particular class of Infrared Astronomy Satellite (IRAS) discovered stars, known after the prototype, Vega, are principal targets for these observations aimed at examining the evidence for processes involved in forming, or failing to form, planetary systems around other stars. In addition, this program continued to provide partial support for related science in the WIRE, SOFIA and Space Infrared Telescope Facility (SIRTF) projects, plus approved ISO supplementary time observations under programs MCREE1 29 and VEGADMAP. Their goals include time dependent changes in SWS spectra of Long Period Variable stars and PHOT P32 mapping experiments of recognized protoplanetary disk candidate stars.

  10. The Edison infrared space observatory and the study of extra-solar planetary material

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr.; Hawarden, T. G.; Bally, J.; Rapp, D.; Stern, S. A.

    1994-01-01

    Edison is a proposed large-aperture, radiatively-cooled space observatory planned to operate at wavelengths between 2 and 130 micrometers or longer. Current estimates for the telescope allow an aperture of 1.7 m which will achieve a final equilibrium temperature of about 30 K, although use of cryocoolers may permit temperatures below 20 K. Edison will be a powerful tool to investigate our Solar System, as well as planetary material around distant stars. At near- and mid-infrared wavelengths, where planetary material emits most of its radiation, Edison will be the most sensitive photometric and spectroscopic observatory under current consideration by the space agencies. With its large aperture, Edison will be able both to resolve the structure in nearby circumstellar 'Vega disks' and to discriminate faint IR emission in the crowded environment of the galactic plane. With its long lifetime, Edison will allow extensive follow-up observations and increase the likelihood of catching transient events. We propose Edison as a precursor to elements of a future space-based IR interferometer.

  11. Improving the Air Force Infrared Stellar Calibration Network with High Spectral Resolution Data from the Infrared Space Observatory

    NASA Astrophysics Data System (ADS)

    Kraemer, K. E.; Engelke, C. W.; Price, S. D.

    2004-12-01

    We present preliminary results of a project to improve the spectral resolution of the Air Force Infrared Stellar Calibration Network by incorporating data from the Infrared Space Observatory (ISO). This network and its deriviatives were created by Cohen and colleagues to support infrared calibration for government and civilian ground- and space-based observatories, such as the Infrared Telescope Facility, Gemini, and the Maui Optical Site. The reduced 2.4 to 45 μ m spectra from the ISO Short Wavelength Spectrometer (SWS) are up to 100 times higher spectral resolution than the current network data. Appropriately substituting these spectra for the standard stars will improve the accuracy of the calibration network, particularly in spectral regions where the atmosphere limits ground-based data, and permit more accurate calibration of very narrow spectral bandpasses. The initial effort has photometrically calibrated the SWS spectra for the 9 stellar or secondary standards with composites. The model atmosphere spectrum for α Cen has been replaced by SWS data; the model spectra for α CMa and α Lyr have been retained in order to preserve the common calibration pedigree with the original Cohen et al. network (although see Price et al. 2004, AJ, 128, 889). Where available, high quality photometry from the Midcourse Space Experiment (MSX) are used, supplemented by photometry from the Diffuse Infrared Background Experment (DIRBE) and the photometry used by Cohen et al. used to create the original composite. The next steps are to 1) replace the 10-15 tertiary standard stars with template spectra with measured spectra for the cases in which the SWS observations have sufficiently high signal-to-noise ratios (this will double the number of secondary standards); 2) develop a set of high spectral resolution infrared templates based on the SWS observations for each MK spectral class of the secondary standards with which to upgrade the entire network; 3) create new templates for

  12. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  13. High-Resolution Infrared Space Observatory Spectroscopy of the Unidentified 21 Micron Feature

    NASA Technical Reports Server (NTRS)

    Volk, Kevin; Kwok, Sun; Hrivnak, Bruce

    1999-01-01

    We present Infrared Space Observatory SWS06 mode observations of the 21 micron feature in eight sources, including a first "detection of the feature in IRAS Z02229+6208. The observed feature peak-to-continuum ratios range from 0.13 in IRAS Z02229+6208 to 1.30 in IRAS 07134+1005. The normalized spectra, obtained by the removal of the underlying continua and by scaling the features to the same peak flux value. show that all features have the same intrinsic profile and peak wavelength. There is no evidence for any discrete substructure due to molecular bands in the observed spectra, suggesting that the 21 micron feature is due to either a solid substance or a mixture of many similarly structured large molecules.

  14. Mid- and Far-Infrared Infrared Space Observatory Limits on Dust Disks Around Millisecond Pulsars

    DTIC Science & Technology

    2004-05-12

    pulsars: general 1. INTRODUCTION The first extrasolar planets discovered were found around the millisecond pulsar PSR B1257+12 (Wolszczan & Frail...Observatory. The pulsar PSR B1257+12 is orbited by three planets , and other millisecond pulsars may be orbited by dust disks that represent planets ...disk would be coupled only weakly to the pulsar’s emission. If the planets around PSR B1257+12 are composed largely of metals, our limits are probably

  15. THz Instrumentation for the Herschel Space Observatory's Heterodyne Instrument for Far Infrared

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Mehdi, I.; Ward, J. S.; Maiwald, F.; Ferber, R. R.; Leduc, H. G.; Schlecht, E. T.; Gill, J. J.; Hatch, W. A.; Kawamura, J. H.; Stern, J. A.; Gaier, T. C.; Samoska, L. A.; Weinreb, S.; Bumble, B.; Pukala, D. M.; Javadi, H. H.; Finamore, B. P.; Lin, R. H.; Dengler, R. J.; Velebir, J. R.; Luong, E. M.; Tsang, R.; Peralta, A .; Wells, M.

    2004-01-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-bapd Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.

  16. The Edison Infrared Space Observatory and the Study of Extra-Solar Planetary Meterial

    NASA Technical Reports Server (NTRS)

    Thronson, H. A.; Hawarden, T. G.; Rapp, D.; Stern, S. A.

    1993-01-01

    Edison is a proposed large-aperture, radiatively-cooled space observatory planned to operate at wavelengths between 2 and 130mue or longer. Current estimates for the telescope allow an aperture of 1.7m which will achive a final equilibrium temperature of about 30 K, although use of cryo-coolers may permit temperatures below 20K.

  17. Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becklin, Eric E.

    2001-01-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. Present and future instrumentation will allow unique astrobiology experiments to be carried out. Several experiments related to organic molecules in space will be discussed.

  18. GISMO, an ELT in space: a giant (30-m) far-infrared and submillimeter space observatory

    NASA Astrophysics Data System (ADS)

    Hawarden, Timothy G.; Johnstone, Callum; Johnstone, Graeme

    2004-07-01

    We describe GISMO, a concept for a 30-m class achromatic diffractive Fesnel space telescope operating in the far-IR and submillimeter from ~20 μm to ~700 μm. The concept is based on the precepts of Hyde (1999). It involves two units, the Lens and Instrument spacecraft, 3 km apart in a halo orbit around the Earth-Sun L2 point. The primary lens, L1, is a 30.1-m, 32-zone f/100 Fresnel lens, fabricated from ultra-high molecular-weight polyethylene (UHMW-PE). It is 1.0 to 3.4 mm thick (the features are 2.4 mm high for a "design wavelength" of 1.2 mm) and made in 5 strips linked by fabric hinges. It is stowed for launch by folding and rolling. It is deployed warm, unrolled by pneumatic or mechanical means, unfolded by carbon-fiber struts with Shape Memory Alloy hinges and stiffened until cold by a peripheral inflatable ring. Re-oriented edgeways-on to the Sun behind a 5-layer sunshade, L1 will then cool by radiation to space, approaching ~10K after 200 - 300 days. The low equilibrium temperature occurs because the lens is very thin and has a huge view factor to space but a small one to the sunshade. The Instrument spacecraft resembles a smaller, colder (~4K) version of the James Webb Space Telescope and shares features of a concept for the SAFIR mission. A near-field Ritchey-Chretien telescope with a 3-segment off-axis 6m x 3m primary acts as field lens, re-imaging L1 on a 30-cm f/1 Fresnel Corrector lens of equal and opposite dispersion, producing an achromatic beam which is directed to a focal plane equipped with imaging and spectroscopic instruments. The "design wavelength" of the telescope is 1.2 mm and it is employed at its second and higher harmonics. The shortest wavelength, ~20μm, is set by the transmission properties of the lens material (illustrated here) and determines the design tolerances of the optical system. The overall mass is estimated at ~5 tonnes and the stowed length around 14 m. Technical challenges and areas of uncertainty for the design concept

  19. The far-infrared view of M87 as seen by the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Baes, M.; Clemens, M.; Xilouris, E. M.; Fritz, J.; Cotton, W. D.; Davies, J. I.; Bendo, G. J.; Bianchi, S.; Cortese, L.; De Looze, I.; Pohlen, M.; Verstappen, J.; Böhringer, H.; Bomans, D. J.; Boselli, A.; Corbelli, E.; Dariush, A.; di Serego Alighieri, S.; Fadda, D.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Jones, A. P.; Madden, S.; Pierini, D.; Sabatini, S.; Smith, M. W. L.; Vlahakis, C.; Zibetti, S.

    2011-02-01

    The origin of the far-infrared emission from the nearby radio galaxy M87 remains a matter of debate. Some studies find evidence of a far-infrared excess due to thermal dust emission, whereas others propose that the far-infrared emission can be explained by synchrotron emission without the need for an additional dust emission component. We observed M87 with PACS and SPIRE as part of the Herschel Virgo Cluster Survey (HeViCS). We compare the new Herschel data with a synchrotron model based on infrared, submm and radio data to investigate the origin of the far-infrared emission. We find that both the integrated SED and the Herschel surface brightness maps are adequately explained by synchrotron emission. At odds with previous claims, we find no evidence of a diffuse dust component in M87.

  20. The Nature of Ultraluminous Galaxies: Infrared Space Observatory Analysis and Instrument Team

    NASA Technical Reports Server (NTRS)

    Satyapal, Shobita

    2001-01-01

    The scientific goal of the proposed research was to investigate the physical conditions in the nuclear regions of infrared luminous galaxies by carrying out detailed infrared spectroscopic observations of a large sample of infrared luminous galaxies. During the past year, these observations have been successfully analyzed and extensive modeling using photoionization and photodissociation codes has been carried out. Two first-author publications and a second-author publication have been submitted to the Astrophysical Journal and results were presented at two invited talks. Four additional journal papers are in preparation and will be submitted during year 2 of the grant. The secondary project included in this program was the development of a near-infrared cryogenic Fabry-Perot interferometer for use on future large aperture telescopes. System integration and room temperature testing was successfully carried out for this project during year 1.

  1. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  2. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becker, Eric; Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  3. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor Toward the Supergiant Star VY Canis Majoris

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-01-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 micron grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power lambda/delat.lambda of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of approximately 25 solar luminosity . In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the (sup 2)product(sub 1/2) (J = 5/2) left arrow (sup 2)product(sub 3/2) (J = 3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(sub 25)-6(sub 16) line at 29.8367 micron, the 4(sub 41)-3(sub 12) line at 31.7721 micron, and the 4(sub 32)-3(sub 03) line at 40.6909 micron. The higher spectral resolving power lambda/delta.lambda of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.

  4. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric

    2015-08-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared airborne telescope in a Boeing 747SP, is now fully operational with cameras and spectrometers in the 1 to 240 micron region. It will be one of the major observatories for the next 20 years to observe the local ISM in this spectral region. We will give a brief overview of the SOFIA observatory, telescope, instrumentation and recent science. Future observing opportunities and participation in future instrument developments, over the lifetime of the SOFIA observatory will be discussed.

  5. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Davidson, J. A.

    1993-01-01

    SOFIA, (Stratospheric Observatory for Infrared Astronomy) is a planned 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 46,000 feet. It will permit routine measurement of infrared radiation inaccessible from the ground-based sites, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 18 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace.

  6. Mauna Kea Observatory infrared observations

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1974-01-01

    Galactic and solar system infrared observations are reported using a broad variety of radiometric and spectroscopic instrumentation. Infrared programs and papers published during this period are listed.

  7. SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes Artwork. Concepts: Based on 18 Years of Experience of Kuiper Airborne Observatory (KAO) Operation, Characteristics, Operations and Science

  8. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Young, E. T.; Savage, M. L.

    2016-09-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), project has been operating airborne astronomy flights from Palmdale, California since 2011. The observatory consists of a modified 747-SP aircraft with a 2.5-meter telescope in its aft section. SOFIA has a suite of eight science instruments spanning visible to far-infrared wavelengths. For the majority of the year SOFIA operates out of the Armstrong Flight Research Center in Palmdale, California, giving access to Northern Hemisphere targets. SOFIA's mobility also allows observations in the Southern Hemisphere (Christchurch, New Zealand), of objects such as the Large and Small Magellanic Clouds, the Galactic Center, and Eta Carinae In 2016, SOFIA added polarimetry capability on SOFIA, with HAWC+ commissioning flights. Selected science results, current instrument suite status, new capabilities, and some expectations of future instrument developments over the lifetime of the observatory will be discussed.

  9. SOFIA - Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.

    1992-01-01

    The features and scientific aims of SOFIA (Stratospheric Observatory For Infrared Astronomy), a planned 2.5 m telescope to be installed in an aircraft and operated at altitudes from 41,000 to 46,000 ft, are discussed. A brief overview of the SOFIA program is given.

  10. The Arecibo Observatory Space Academy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ford, Linda A.; Zambrano-Marin, Luisa; Petty, Bryan M.; Sternke, Elizabeth; Ortiz, Andrew M.; Rivera-Valentin, Edgard G.

    2015-11-01

    The Arecibo Observatory Space Academy (AOSA) is a ten (10) week pre-college research program for students in grades 9-12. Our mission is to prepare students for academic and professional careers by allowing them to receive an independent and collaborative research experience on topics related to space and aide in their individual academic and social development. Our objectives are to (1) Supplement the student’s STEM education via inquiry-based learning and indirect teaching methods, (2) Immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) To foster in every student an interest in science by exploiting their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. AOSA provides students with the opportunity to share lectures with Arecibo Observatory staff, who have expertise in various STEM fields. Each Fall and Spring semester, selected high school students, or Cadets, from all over Puerto Rico participate in this Saturday academy where they receive experience designing, proposing, and carrying out research projects related to space exploration, focusing on four fields: Physics/Astronomy, Biology, Engineering, and Sociology. Cadets get the opportunity to explore their topic of choice while practicing many of the foundations of scientific research with the goal of designing a space settlement, which they present at the NSS-NASA Ames Space Settlement Design Contest. At the end of each semester students present their research to their peers, program mentors, and Arecibo Observatory staff. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration with partial support from the Angel Ramos Visitor Center through UMET and management by USRA.

  11. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.; Roellig, T. L.

    2012-10-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), a program to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747SP, has obtained first science with the FORCAST camera in the 5 to 40 micron spectral region and the GREAT heterodyne spectrometer in the 130 to 240 micron spectral region. We briefly review the characteristics and status of the observatory. Spectacular science results on regions of star formation will be discussed. The FORCAST images show several discoveries and the potential for determining how massive stars form in our Galaxy. The GREAT heterodyne spectrometer has made mapping observations of the [C II] line at 158 microns, high J CO lines, and other molecular lines including SH. The HIPO high speed photometer and the high speed camera FDC were used to observe the 2011 June 23 UT stellar occultation by Pluto.

  12. Swift Observatory Space Simulation Testing

    NASA Technical Reports Server (NTRS)

    Espiritu, Mellina; Choi, Michael K.; Scocik, Christopher S.

    2004-01-01

    The Swift Observatory is a Middle-Class Explorer (MIDEX) mission that is a rapidly re-pointing spacecraft with immediate data distribution capability to the astronomical community. Its primary objectives are to characterize and determine the origin of Gamma Ray Bursts (GRBs) and to use the collected data on GRB phenomena in order to probe the universe and gain insight into the physics of black hole formation and early universe. The main components of the spacecraft are the Burst Alert Telescope (BAT), Ultraviolet and Optical Telescope (UVOT), X-Ray Telescope (XRT), and Optical Bench (OB) instruments coupled with the Swift spacecraft (S/C) bus. The Swift Observatory will be tested at the Space Environment Simulation (SES) chamber at the Goddard Space Flight Center from May to June 2004 in order to characterize its thermal behavior in a vacuum environment. In order to simulate the independent thermal zones required by the BAT, XRT, UVOT, and OB instruments, the spacecraft is mounted on a chariot structure capable of maintaining adiabatic interfaces and enclosed in a modified, four section MSX fixture in order to accommodate the strategic placement of seven cryopanels (on four circuits), four heater panels, and a radiation source burst simulator mechanism. There are additionally 55 heater circuits on the spacecraft. To mitigate possible migration of silicone contaminants from BAT to the XRT and UVOT instruments, a contamination enclosure is to be fabricated around the BAT at the uppermost section of the MSX fixture. This paper discuses the test requirements and implemented thermal vacuum test configuration for the Swift Observatory.

  13. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.

    1989-01-01

    SOFIA will be a three meter class telescope operating in a Boeing 747, offering astronomers routine access to infrared wavelengths unavailable from the ground, and with the means to observe transient astronomical events from anywhere in the world. The concept is based on 15 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA will replace in the mid 1990's. SOFIA's wavelength range covers nearly four decades of the electromagnetic spectrum: from the visible, throughout the infrared and submillimeter, to the microwave region. Relative to the KAO, SOFIA will be roughly ten times more sensitive for compact sources, enabling observations of fainter objects and measurements at higher spectral resolution. Also, it will have three times the angular resolving power for wavelengths greater than 30 microns, permitting more detailed imaging at far infrared wavelengths.

  14. Infrared Space Observatory Observations of Molecular Hydrogen in HH 54: Measurement of a Nonequilibrium Ratio of Ortho- to Para-H2

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Melnick, Gary J.; Harwit, Martin

    1998-01-01

    We have detected the S(1), S(2), S(3), S(4), and S(5) pure rotational lines of molecular hydrogen toward the outflow source HH 54 using the Short Wavelength Spectrometer on board the Infrared Space Observatory. The observed H2 line ratios indicate the presence of warm molecular gas with an H2 density of at least 10(sup 5) /cc and a temperature approximately 650 K in which the ratio of ortho- to para-H2 is only 1.2 -+ 0.4, significantly smaller than the equilibrium ratio of 3 expected in gas at that temperature. These observations imply that the measured ratio of ortho- to para-H2 is the legacy of an earlier stage in the thermal history of the gas when the gas had reached equilibrium at a temperature approximately 90 K. Based upon the expected timescale for equilibration, we argue that the nonequilibrium ratio of ortho- to para-H2 observed in HH 54 serves as a chronometer that places a conservative upper limit of approximately 5000 yr on the period for which the emitting gas has been warm. The S(2)/,S(l) and S(3)/S(1) H2 line ratios measured toward HH 54 are consistent with recent theoretical models of Timmermann for the conversion of para- to ortho-H2 behind slow, C-type shocks, but only if the preshock ratio of ortho- to para-H2 was approximately < 0.2.

  15. Joint US-Japan Observations with the Infrared Space Observatory (ISO): Deep Surveys and Observations of High-Z Objects

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    1997-01-01

    Several important milestones were passed during the past year of our ISO observing program: (1) Our first ISO data were successfully obtained. ISOCAM data were taken for our primary deep field target in the 'Lockman Hole'. Thirteen hours of integration (taken over 4 contiguous orbits) were obtained in the LW2 filter of a 3 ft x 3 ft region centered on the position of minimum HI column density in the Lockman Hole. The data were obtained in microscanning mode. This is the deepest integration attempted to date (by almost a factor of 4 in time) with ISOCAM. (2) The deep survey data obtained for the Lockman Hole were received by the Japanese P.I. (Yoshi Taniguchi) in early December, 1996 (following release of the improved pipeline formatted data from Vilspa), and a copy was forwarded to Hawaii shortly thereafter. These data were processed independently by the Japan and Hawaii groups during the latter part of December 1996, and early January, 1997. The Hawaii group made use of the U.S. ISO data center at IPAC/Caltech in Pasadena to carry out their data reduction, while the Japanese group used a copy of the ISOCAM data analysis package made available to them through an agreement with the head of the ISOCAM team, Catherine Cesarsky. (3) Results of our LW2 Deep Survey in the Lockman Hole were first reported at the ISO Workshop "Taking ISO to the Limits: Exploring the Faintest Sources in the Infrared" held at the ISO Science Operations Center in Villafranca, Spain (VILSPA) on 3-4 February, 1997. Yoshi Taniguchi gave an invited presentation summarizing the results of the U.S.-Japan team, and Dave Sanders gave an invited talk summarizing the results of the Workshop at the conclusion of the two day meeting. The text of the talks by Taniguchi and Sanders are included in the printed Workshop Proceedings, and are published in full on the Web. By several independent accounts, the U.S.-Japan Deep Survey results were one of the highlights of the Workshop; these data showed

  16. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  17. SOFIA, an airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Mehlert, Dörte; Röser, Hans-Peter; Scorza, Cecilia

    2013-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project operating a 2.7 m infrared airborne telescope onboard a modified Boeing 747-SP in the stratosphere at altitudes up to 13.7 km. SOFIA covers a spectral range from 0.3 µm to 1.6 mm, with an average atmospheric transmission greater than 80%. After successfully completing its commissioning, SOFIA commenced regular astronomical observation in spring 2013, and will ramp up to more than one hundred 8 to 10 h flights per year by 2015. The observatory is expected to operate until the mid 2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs and high-resolution spectrometers. SOFIA also includes an elaborate program for Education and Public Outreach. We describe the SOFIA facility together with its first light instrumentation and include some of its first scientific results. In addition, the education and public outreach program is presented.

  18. The Arecibo Observatory Space Academy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ford, Linda A.; Fernanda Zambrano Marin, Luisa; Aponte Hernandez, Betzaida; Soto, Sujeily; Rivera-Valentin, Edgard G.

    2016-10-01

    The Arecibo Observatory Space Academy (AOSA) is an intense fifteen-week pre-college research program for qualified high school students residing in Puerto Rico, which includes ten days for hands-on, on site research activities. Our mission is to prepare students for their professional careers by allowing them to receive an independent and collaborative research experience on topics related to the multidisciplinary field of space science. Our objectives are to (1) supplement the student's STEM education via inquiry-based learning and indirect teaching methods, (2) immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) foster in every student an interest in the STEM fields by harnessing their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. Students interested in participating in the program go through an application, interview and trial period before being offered admission. They are welcomed as candidates the first weeks, and later become cadets while experiencing designing, proposing, and conducting research projects focusing in fields like Physics, Astronomy, Geology, Chemistry, and Engineering. Each individual is evaluated with program compatibility based on peer interaction, preparation, participation, and contribution to class, group dynamics, attitude, challenges, and inquiry. This helps to ensure that specialized attention can be given to students who demonstrate a dedication and desire to learn. Deciding how to proceed in the face of setbacks and unexpected problems is central to the learning experience. At the end of the semester, students present their research to the program mentors, peers, and scientific staff. This year, AOSA students also focused on science communication and were trained by NASA's FameLab. Students additionally presented their research at this year's International Space Development Conference (ISDC), which was held in

  19. Infrared Space Observatory Observations of Molecular Hydrogen in HH 54: Measurement of a Nonequilibrium Ratio of Ortho- to Para-H2

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Melnick, Gary J.; Harwit, Martin

    1998-01-01

    We have detected the S(1), S(2), S(3), S(4), and S(5) pure rotational lines of molecular hydrogen toward the outflow source HH 54 using the Short Wavelength Spectrometer on board the Infrared Space Observatory. The observed H2 line ratios indicate the presence of warm molecular gas with an H2 density of at least 10(exp 5) cm(exp -3) and a temperature approximately 650 K in which the ratio of ortho- to para-H2 is only 1.2 +/- 0.4, significantly smaller than the equilibrium ratio of 3 expected in gas at that temperature. These observations imply that the measured ratio of ortho- to para-H2 is the legacy of an earlier stage in the thermal history of the gas when the gas had reached equilibrium at a temperature approximately less than 90 K. Based upon the expected timescale for equilibration, we argue that the nonequilibrium ratio of ortho- to para-H2 observed in HH 54 serves as a chronometer that places a conservative upper limit of approximately 5000 yr on the period for which the emitting gas has been warm. The S(2)/S(1) and S(3)/S(1) H2 line ratios measured toward HH 54 are consistent with recent theoretical models of Timmermann for the conversion of para- to ortho-H2 behind slow, C-type shocks, but only if the preshock ratio of ortho- to para-H2 was approximately less than 0.2.

  20. Space-Based Near-Infrared CO2 Measurements: Testing the Orbiting Carbon Observatory Retrieval Algorithm and Validation Concept Using SCIAMACHY Observations over Park Falls, Wisconsin

    NASA Technical Reports Server (NTRS)

    Bosch, H.; Toon, G. C.; Sen, B.; Washenfelder, R. A.; Wennberg, P. O.; Buchwitz, M.; deBeek, R.; Burrows, J. P.; Crisp, D.; Christi, M.; Connor, B. J.; Natraj, V.; Yung, Y. L.

    2006-01-01

    Space-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO2 (XCO2) with the precision and accuracy needed to quantify CO2 sources and sinks on regional scales (approx.1000 x 1000 sq km and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve XCO2 and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O2 A band at 0.76 mm and the 1.58 mm CO2 band for Park Falls,Wisconsin. Even after accounting for a systematic error in our representation of the O2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS XCO2 retrievals of approx.3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O2 A band region for the SCIAMACHY XCO2 retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS XCO2 retrievals. We compared the seasonal cycle of XCO2 at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important

  1. The Extreme Universe Space Observatory

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Six, N. Frank (Technical Monitor)

    2002-01-01

    This talk will describe the Extreme Universe Space Observatory (EUSO) mission. EUSO is an ESA mission to explore the most powerful energy sources in the universe. The mission objectives of EUSO are to investigate EECRs, those with energies above 3x10(exp 19) eV, and very high-energy cosmic neutrinos. These objectives are directly related to extreme conditions in the physical world and possibly involve the early history of the big bang and the framework of GUTs. EUSO tackles the basic problem posed by the existence of these extreme-energy events. The solution could have a unique impact on fundamental physics, cosmology, and/or astrophysics. At these energies, magnetic deflection is thought to be so small that the EECR component would serve as the particle channel for astronomy. EUSO will make the first measurements of EAS from space by observing atmospheric fluorescence in the Earth's night sky. With measurements of the airshower track, EUSO will determine the energy and arrival direction of these extreme-energy events. EUSO will make high statistics observations of CRs beyond the predicted GZK cutoff energy and widen the channel for high-energy neutrino astronomy. The energy spectra, arrival directions, and shower profiles will be analyzed to distinguish the nature of these events and search for their sources. With EUSO data, we will have the possibility to discover a local EECR source, test Z-burst scenarios and other theories, and look for evidence of the breakdown of the relativity principle at extreme Lorentz factors.

  2. World Space Observatory Ultraviolet mission: status 2016

    NASA Astrophysics Data System (ADS)

    Sachkov, Mikhail; Shustov, Boris; Gómez de Castro, Ana Inés.

    2016-07-01

    The WSO-UV (World Space Observatory - Ultraviolet) project is intended to built and operate an international space observatory designed for observations in the UV (115 - 310 nm) range, where some of the most important astrophysical processes can be efficiently studied. It is the solution to the problem of future access to UV spectroscopy. Dedicated to spectroscopic and imaging observations of the ultraviolet sky, the World Space Observatory - Ultraviolet mission is a Russian-Spanish collaboration with potential Mexican minor contribution. This paper provides a summary on the project, its status and the major outcomes since the last SPIE meeting.

  3. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  4. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    SciTech Connect

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  5. Long-lived space observatories for astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Becklin, Eric E.; Beckwith, Steven V. W.; Cowie, Lennox L.; Dupree, Andrea K.; Elliot, James L.; Gallagher, John S.; Helfand, David J.; Jenkins, Edward F.; Johnston, Kenneth J.

    1987-01-01

    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about $1.3 billion (1984 dollars) to build and is estimated to require $160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given.

  6. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  7. Science with the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2003-01-01

    The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.

  8. The great observatories for space astrophysics

    NASA Technical Reports Server (NTRS)

    Harwit, M.; Neal, V.

    1986-01-01

    Motivated by the ancient urge to observe, measure, compute, and understand the nature of the Universe, the available advanced technology is used to place entire observatories into space for investigations across the spectrum. Stellar evolution, development and nature of the Universe, planetary exploration, technology, NASA's role, and careers in asronomy are displayed.

  9. Overview of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a cryogenic, 6.5 meter diameter space telescope. JWST has a unique architecture, compared to previous space telescopes, that is driven by its science requirements, ia passively cooled cryogenic design, and the need to stow the observatory for launch. JWST's large, segmented mirror meets the requirement for high angular resolution in the infrared coupled with a significant increase in collecting area compared to the Spitzer and Hubble Space telescopes in order to detect the first galaxies. JWST's unique five-layer sunshield allows the telescope and instrument module to passively cool to cryogenic temperatures. JWST will be launched on an Ariane 5, and so both its telescope optics, and the sunshield have to be stowed in order to fit the Ariane 5 fairing. Following launch the sunshield and telescope optics must be deployed, and the primary mirror phased for science operations. In this presentation we will review the design of the observatory and highlight recent progress in the construction of the JWST observatory. In particular, we address recent progress with the telescope optics, sunshield and spacecraft. We will discuss predicted observatory performance in terms of the scientific goals of JWST and address key operational considerations that might bear upon frontier science observations.

  10. SOFIA: The Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.; Davidson, Jacqueline A.

    1990-01-01

    SOFIA, an airborne observatory intended to be carried aboard a Boeing 747 high performance aircraft, is described. The observatory is predicted to provide a threefold greater aperture than that of the Kuiper telescope. The Boeing aircraft will carry the 2.5 diameter telescope and its observers to altitudes of 14,000 and above where the atmosphere is very nearly transparent at all wavelengths. Various aspects and specific missions of the SOFIA project, a cooperative venture of the U.S. and Germany, are described.

  11. The future of VLBI observatories in space

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Jordan, J. F.; Burke, B. F.; Doxsey, R.; Morgan, S. H.; Roberts, D. H.; Shapiro, I. I.

    1983-01-01

    The angular resolution of radio maps made by earth-based VLBI observations can be exceeded by placing at least one element of a VLBI array into earth orbit. A VLBI observatory in space can offer the additional advantages of increased sky coverage, higher density sampling of Fourier components, and rapid mapping of objects whose structure changes in less than a day. This paper explores the future of this technique.

  12. Solar Terrestrial Observatory Space Station Workshop Report

    NASA Technical Reports Server (NTRS)

    Roberts, W. T. (Editor)

    1986-01-01

    In response to a need to develop and document requirements of the Solar Terrestrial Observatory at an early time, a mini-workshop was organized and held on June 6, 1985. The participants at this workshop set as their goal the preliminary definition of the following areas: (1) instrument descriptions; (2) placement of instrumentation on the IOC Space Station; (3) servicing and repair assessment; and (4) operational scenarios. This report provides a synopsis of the results of that workshop.

  13. Toward a Space based Gravitational Wave Observatory

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2015-01-01

    A space-based GW observatory will produce spectacular science. The LISA mission concept: (a) Long history, (b) Very well-studied, including de-scopes, (c) NASAs Astrophysics Strategic Plan calls for a minority role in ESAs L3 mission opportunity. To that end, NASA is Participating in LPF and ST7 Developing appropriate technology for a LISA-like mission Preparing to seek an endorsement for L3 participation from the 2020 decadal review.

  14. Space-borne gravitational wave observatories

    NASA Astrophysics Data System (ADS)

    Vitale, Stefano

    2014-05-01

    The paper describes the progress toward a space-borne gravitational wave observatory and its foreseeable science potential. In particular the paper describes the status of the LISA-like mission called eLISA, the reference mission for the Gravitational Universe theme adopted by ESA for its Large mission L3, and the status of its precursor LISA Pathfinder, due to launch in 2015.

  15. Stratospheric Observatory for Infrared Astronomy (SOFIA) system concept

    NASA Technical Reports Server (NTRS)

    Wiltsee, Christopher B.; Brooks, Walter F.

    1989-01-01

    The system concept for the Stratospheric Observatory for Infrared Astronomy (SOFIA), as developed by NASA Ames Research Center is described. The SOFIA facility is a 3-meter class optical/infrared/submillimeter telescope mounted in an open cavity in the forebody of a Boeing 747 aircraft, to be operational in 1992. It represents the next generation of Ames' existing airborne IR facilities, and is about ten times more sensitive than the Kuiper Airborne Observatory (KAO) with 3 times better angular resolution, and able to detect all the far-infrared point sources discovered by IRAS (Infrared Astronomical Satellite) survey in 1983. Major requirements and design attributes of the SOFIA telescope are presented, along with a brief description of the Ground Support/Operations System.

  16. Development of a near-infrared detector and a fiber-optic integral field unit for a space solar observatory SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Kamata, Yukiko; Anan, Tetsu; Hara, Hirohisa; Suematsu, Yoshinori; Bando, Takamasa; Ichimoto, Kiyoshi; Shimizu, Toshifumi

    2016-07-01

    We are developing a high sensitivity and fast readout near-infrared (NIR) detector and an integral field unit (IFU) for making spectro-polarimetric observations of rapidly varying chromospheric spectrum lines, such as He I 1083 nm and Ca II 854 nm, in the next space-based solar mission SOLAR-C. We made tests of a 1.7 μm cutoff H2RG detector with the SIDECAR ASIC for the application in SOLAR-C. It's important to verify its perfor- mance in the temperature condition around -100 °C, which is hotter than the typical temperature environment used for a NIR detector. We built a system for testing the detector between -70 °C and -140 °C. We verified linearity, read-out noise, and dark current in both the slow and fast readout modes. We found the detector has to be cooled down lower than -100 °C because of significant increase of the number of hot pixels in the hotter environment. The compact and polarization maintenance IFU was designed using fiber-optic ribbons consisting of rectangular cores which exhibit good polarization maintenance. A Silicone adhesive DC-SE9187L was used to hold the fragile fiber-optic ribbons in a metal housing. Polarization maintenance property was confirmed though polarization calibration as well as temperature control are required to suppress polarization crosstalk and to achieve the polarization accuracy in SOLAR-C.

  17. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    SciTech Connect

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B.-G.; Casey, S. C.; Helton, L. A.; Marcum, P. M.; Roellig, T. L.; Temi, P.; Herter, T. L.; Guesten, R.; Dunham, E. W.; Backman, D.; Burgdorf, M.; Caroff, L. J.; Erickson, E. F.; Davidson, J. A.; Gehrz, R. D.; Harper, D. A.; Harvey, P. M.; and others

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.

  18. Development of the first infrared satellite observatory

    NASA Technical Reports Server (NTRS)

    Smith, G. M.; Squibb, G. F.

    1984-01-01

    A development history is given for the Infrared Astronomical Satelite (IRAS), whose primary mission objective is an unbiased, all-sky survey in the 8-120 micron wavelength range. A point source catalog of more than 200,000 IR sources, to be published later this year, represents the accomplishment of this objective. IRAS has also conducted 10,000 pointed observations of specific objects. Attention is given to the cost increases and schedule slips which resulted from the substantial technical challenges of IRAS hardware and software development, and to the management techniques which had to be employed in this major international project.

  19. SOFIA: A Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Davidson, J. A.; Thorley, G.; Caroff, L. J.

    1991-01-01

    SOFIA is described as it was originally (May 1988) for the Space and Earth Sciences Advisory Committee (SESAC). The format and questions were provided by SESAC as a standard for judging the merit of potential U.S. space science projects. This version deletes Section IIF, which addressed development costs of the SOFIA facility. SOFIA's unique astronomical potential is described and it is shown how it complements and supports existing and planned facilities.

  20. AMS-02 as a Space Weather Observatory

    NASA Astrophysics Data System (ADS)

    Whitman, K.; Bindi, V.; Chati, M.; Consolandi, C.; Corti, C.

    2013-12-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art space detector that measures particles in the energy range of hundreds of MeV to a few TeV. AMS-02 has been installed onboard of the International Space Station (ISS) since May 2011 where it will operate for the duration of the station. To date, there is an abundance of space-based solar data collected in the low energy regimes, whereas there are very few direct measurements of higher energy particles available. AMS-02 is capable of measuring arrival time and composition of the highest energy SEPs in space. It is crucial to build a better knowledge base regarding the most energetic and potentially harmful events. We are currently developing a program to employ AMS-02 as a real-time space weather observatory. SEPs with higher energies are usually accelerated during a short period of time and they are the first particles to reach the Earth. AMS-02, measuring these highest energy SEPs, can alert the onset of an SEP event. During the past two years of operation, we have identified two main quantities in AMS-02 that are particularly sensitive to the arrival of SEPs: the detector livetime and the transition radiation detector (TRD) event size. By monitoring the detector livetime and the TRD event size, AMS-02 can pinpoint in real-time the arrival of SEPs inside the Earth's magnetosphere operating as a space weather detector.

  1. Space Based Gravitational Wave Observatories (SGOs)

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2014-01-01

    Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

  2. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  3. Space Subaru: great science observatories in the space station ERA

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshiyuki; Ebisuzaki, Toshikazu

    1998-08-01

    A concept of 'Space Factory' on the International Space Station Alpha (ISSA) is described. Following the four great observatories deployed by the Space Transportation System (STS), the next generation of great observatories would require a very large, 10-meter class optical telescope. A telescope of this size will require careful assembly and tuning by astronauts on orbit before deployment. Once built, it could visualize the universe to the earliest galaxies, and could explore the earth-like planet in other star- system. The 'Space Factory' is conceived by including four or five frontier astrophysics programs. Less demanding experiments could precede the construction of the most demanding optical telescope. Space SUBARU is a 10 meter- diameter optical telescope with a diffraction limited optics. Space-Submillimeter-and-IR-Telescope is a 20 meter- diameter sub-millimeter telescope. A 10-meter-cube telescope is for observing gamma-rays from 1 GeV to 10 TeV. The Multiple-OWL is an earth's night-sky-watcher for the highest energy cosmic rays. Space SUBARU envisages a plan of orbital construction, fine-tuning and deployment of large scale astrophysical instruments into the desired free-flying orbit. It incorporates physical aids of the robotics and extra-vehicle activities of astronauts.

  4. Stratospheric Observatory for Infrared Astronomy (SOFIA) for Planetary Science and the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Reach, W. T.

    2011-10-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA [1]) is a 2.5 meter telescope on a modified 747SP aircraft. The program is managed by the National Aeronautics and Space Administration (NASA) and the Deutsches Zentrum für Luft- und Raumfahrt (DLR). Operations are supported by NASA and DLR in a partnership, with an 80/20 split per international Memorandum of Understanding.

  5. Stratospheric Observatory for Infrared Astornomy and Planetary Science

    NASA Astrophysics Data System (ADS)

    Reach, William T.; SOFIA Sciece Mission Operations

    2016-10-01

    The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.

  6. Stratospheric Observatory For Infrared Astronomy (SOFIA) System Concept

    NASA Astrophysics Data System (ADS)

    Wiltsee, Christopher B.; Brooks, Walter F.

    1988-04-01

    This paper describes the system concept for the Stratospheric Observatory for Infrared Astronomy (SOFIA), as developed by in-house (Ames Research Center) Phase A level studies of the Telescope System and Ground Support/Operations System, and by contracted studies of the Aircraft System performed by the Boeing Military Airplane Company. The SOFIA facility will be a 3-meter class optical/infrared/submillimeter telescope mounted in an open cavity in the forebody of a Boeing 747 aircraft, to be operational in 1992. It represents the next generation of Ames' existing airborne IR facilities, including the Kuiper Airborne Observatory (KAO), which is a 0.91 meter telescope flown on a Lockheed C-141 aircraft. The SOFIA telescope will be about 10 times more sensitive than the KAO, will have 3 times better angular resolution, and will be able to detect all of the far-infrared point sources discovered by the IRAS (Infrared Astronomical Satellite) survey in 1983. We first present an overview of the SOFIA Phase A Telescope System concept, including its major requirements and design attributes. The Telescope System consists of the Telescope Assembly (optical train and support structures) and the Consoles and Electronics Subsystem, which provides the system's command, control, displays and communications. The major requirements and concept for the Aircraft System are next described, including the cavity modification and its supporting subsystems such as the cavity doors and shear layer control devices. Finally, a brief description of the Ground Support/Operations System is provided, including the ground-based facilities and equipment needed to support the airborne observatory, in addition to an overview of the operational scenarios and organization.

  7. Hinode ``a new solar observatory in space''

    NASA Astrophysics Data System (ADS)

    Tsuneta, S.; Harra, L. K.; Masuda, S.

    2009-05-01

    Since its launch in September 2006, the Japan-US-UK solar physics satellite, Hinode, has continued its observation of the sun, sending back solar images of unprecedented clarity every day. Hinode is equipped with three telescopes, a visible light telescope, an X-ray telescope, and an extreme ultraviolet imaging spectrometer. The Hinode optical telescope has a large primary mirror measuring 50 centimeters in diameter and is the world's largest space telescope for observing the sun and its vector magnetic fields. The impact of Hinode as an optical telescope on solar physics is comparable to that of the Hubble Space Telescope on optical astronomy. While the optical telescope observes the sun's surface, the Hinode X-ray telescope captures images of the corona and the high-temperature flares that range between several million and several tens of millions of degrees. The telescope has captured coronal structures that are clearer than ever. The Hinode EUV imaging spectrometer possesses approximately ten times the sensitivity and four times the resolution of a similar instrument on the SOHO satellite. The source of energy for the sun is in the nuclear fusion reaction that takes place at its core. Here temperature drops closer to the surface, where the temperature measures about 6,000 degrees. Mysteriously, the temperature starts rising again above the surface, and the temperature of the corona is exceptionally high, several millions of degrees. It is as if water were boiling fiercely in a kettle placed on a stove with no fire, inconceivable as it may sound. The phenomenon is referred to as the coronal heating problem, and it is one of the major astronomical mysteries. The Hinode observatory was designed to solve this mystery. It is expected that Hinode would also provide clues to unraveling why strong magnetic fields are formed and how solar flares are triggered. An overview on the initial results from Hinode is presented. Dynamic video pictures captured by Hinode can be

  8. Stratospheric Observatory For Infrared Astronomy (SOFIA). Phase A: System concept description

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Infrared astronomers have made significant discoveries using the NASA/Ames Research Center C-141 Kuiper airborne Observatory (KAO) with its 0.91-meter telescope. The need for a 3-meter class airborne observatory has been established to improve astronomy data gathering capability. The new system envisioned by NASA and the international community of astronomers will be known as the Stratospheric Observatory for Infrared Astronomy (SOFIA). The platform of choice for SOFIA is a modified Boeing 747SP. SOFIA is viewed as a logical progression from the KAO. Potentially, a 3-meter telescope operating at the altitude achievable by the 747SP aircraft can be 11 times more sensitive than the KAO, can have 3.3 times better angular resolution, and will allow observations of compact sources in a volume of space up to 36 times that of the KAO. The KAO has enabled detection of about 15 percent of the far infrared IRAS survey point-sources; SOFIA should be able to detect them all. This document presents the results of in-house ARC and contracted concept definition studies for SOFIA. Using the ARC-based Kuiper Airborne Observatory as a basis for both SOFIA design and operations concepts, the SOFIA system concept has been developed with a view toward demonstrating mission and technical feasibility, and preparing preliminary cost estimates. The reference concept developed is not intended to represent final design, and should be treated accordingly. The most important products of this study, other than demonstration of system feasibility, are the understanding of system trade-offs and the development of confidence in the technology base that exists to move forward with a program leading to implementation of the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  9. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    SciTech Connect

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubble Space Telescope in 1997.

  10. Science ground operations for the Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Ali, Z. A.; Alvarez, P.; Black, D.; Ediss, G.; Granen, S.; Hanna, K.; Kandlagunta, M.; Koerber, C.; Lott, J.; Perryman, G.; Sandberg, E.; Tanaka, L.; Waddell, P.; Kaminski, C.; Latter, W.

    2016-09-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA), is a 2.5 meter telescope in a modified Boeing 747SP aircraft that is flown at high altitude to do unique astronomy in the infrared. SOFIA is a singular integration of aircraft operations, telescope design, and science instrumentation that delivers observational opportunities outside the capability of any other facility. The science ground operations are the transition and integration point of the science, aircraft, and telescope. We present the ground operations themselves and the tools used to prepare for mission success. Specifically, we will discuss the concept of operations from science instrument delivery to aircraft operation and mission readiness. Included in that will be a description of the facilities and their development, an overview of the SOFIA telescope assembly simulator, as well as an outlook to the future of novel science instrument support for SOFIA

  11. Complementarity of NGST, ALMA, and far IR Space Observatories

    NASA Technical Reports Server (NTRS)

    Mather, John C.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory in space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.

  12. Status of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2013-01-01

    The James Webb Space Telescope (JWST) is the largest cryogenic, space telescope ever built, and will address a broad range of scientific goals from first light in the universe and re-ionization, to characterization of the atmospheres of extrasolar planets. Recently, significant progress has been made in the construction of the observatory with the completion of all 21 flight mirrors that comprise the telescope's optical chain, and the start of flight instrument deliveries to the Goddard Space Flight Center. In this paper we discuss the design of the observatory, and focus on the recent milestone achievements in each of the major observatory sub-systems.

  13. Infrared Space Observatory (ISO) Data Analysis

    NASA Technical Reports Server (NTRS)

    Joseph, Robert D.; Sanders, David B.; Stockton, Alan; Hu, Esther

    1999-01-01

    Joseph is an ISO Co-Investigator. His Guaranteed Time Observations include both a major programme for which he is the Principal Investigator, and a number of other prgrammes in collaboration with other ISPHOT Co-Investigators, David Sanders, Alan Stockton, and Esther Hu.

  14. Space telescope observatory management system preliminary test and verification plan

    NASA Technical Reports Server (NTRS)

    Fritz, J. S.; Kaldenbach, C. F.; Williams, W. B.

    1982-01-01

    The preliminary plan for the Space Telescope Observatory Management System Test and Verification (TAV) is provided. Methodology, test scenarios, test plans and procedure formats, schedules, and the TAV organization are included. Supporting information is provided.

  15. Integration of space geodesy: a US National Geodetic Observatory

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Neilan, Ruth

    2003-01-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the U.S., in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO).

  16. Wind Tunnel Testing for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Schenberger, Deborah; Alvarez, Teresa (Technical Monitor)

    1994-01-01

    NASA Ames Research Center is pursuing the development of SOFIA, the Stratospheric Observatory For Infrared Astronomy. SOFIA will consist of a 2.5 meter telescope mounted aft of the wing of a Boeing 747 aircraft. Since a large portion of the infrared spectrum is not visible at ground level due to absorption by water vapor in the atmosphere below 40,000 feet, it is highly desirable to make observations above this altitude. SOFIA will provide the opportunity for astronomers to conduct high-altitude research for extended periods of time. Current study is focused on wind tunnel testing for the open cavity. If not controlled, air would create resonance and damage the telescope. For this reason, SOFIA will design a boundary layer control device to achieve laminar flow over the cavity. This also provides a clearer flow for seeing, thus improving resolution on infrared sources. Other effects being tested in the wind tunnel are aerodynamic torque loads on the telescope, and flutter loads on the tail.

  17. Space-based infrared surveys of small bodies

    NASA Astrophysics Data System (ADS)

    Mommert, M.

    2014-07-01

    Most small bodies in the Solar System are too small and too distant to be spatially resolved, precluding a direct diameter derivation. Furthermore, measurements of the optical brightness alone only allow a rough estimate of the diameter, since the surface albedo is usually unknown and can have values between about 3 % and 60 % or more. The degeneracy can be resolved by considering the thermal emission of these objects, which is less prone to albedo effects and mainly a function of the diameter. Hence, the combination of optical and thermal-infrared observational data provides a means to independently derive an object's diameter and albedo. This technique is used in asteroid thermal models or more sophisticated thermophysical models (see, e.g., [1]). Infrared observations require cryogenic detectors and/or telescopes, depending on the actual wavelength range observed. Observations from the ground are additionally compromised by the variable transparency of Earth's atmosphere in major portions of the infrared wavelength ranges. Hence, space-based infrared telescopes, providing stable conditions and significantly better sensitivities than ground-based telescopes, are now used routinely to exploit this wavelength range. Two observation strategies are used with space-based infrared observatories: Space-based Infrared All-Sky Surveys. Asteroid surveys in the thermal infrared are less prone to albedo-related discovery bias compared to surveys with optical telescopes, providing a more complete picture of small body populations. The first space-based infrared survey of Solar System small bodies was performed with the Infrared Astronomical Satellite (IRAS) for 10 months in 1983. In the course of the 'IRAS Minor Planet Survey' [2], 2228 asteroids (3 new discoveries) and more than 25 comets (6 new discoveries) were observed. More recent space-based infrared all-sky asteroid surveys were performed by Akari (launched 2006) and the Wide-field Infrared Survey Explorer (WISE

  18. The Maryland Space Grant Observatory: Public Outreach, Collaboration With HST

    NASA Astrophysics Data System (ADS)

    Dolch, Timothy; Teays, T.; Henry, R. C.

    2010-01-01

    The Maryland Space Grant Observatory's Morris Offit Telescope is a 20 inch Cassegrain telescope on the campus of Johns Hopkins University in Baltimore, Maryland. The Morris Offit telescopes have been used both on campus and at the Apache Point Observatory in New Mexico for the Sloan Digital Sky Survey. The observatory is now open to the public for weekly open houses. It has also been used in conjunction with the Hubble Space Telescope for observations of transient objects. These observations, as well as the general capabilities of the instrument, are discussed.

  19. Fatigue Management Strategies for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg

    2012-01-01

    Operation of the Stratospheric Observatory for Infrared Astronomy entails a great deal of night-time work, with the potential for both acute and chronic sleep loss, as well as circadian rhythm dysynchrony. Such fatigue can result in performance decrements, with an increased risk of operator error. The NASA Dryden Flight Research Center manages this fatigue risk by means of a layered approach, to include: 1) Education and Training 2) Work Schedule Scoring 3) Obtained Sleep Metrics 4) Workplace and Operational Mitigations and 5) Incident or Accident Investigation. Specifically, quantitative estimation of the work schedule score, as well as the obtained sleep metric, allows Supervisors and Managers to better manage the risk of fatigue within the context of mission requirements.

  20. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  1. Herschel Space Observatory Telescope characterization with Hartmann wavefront sensor

    NASA Astrophysics Data System (ADS)

    Dovillaire, Guillaume; Wang, Yong; Toth, Rémy; Porcar-Guézénec, Raphael

    2012-09-01

    The Herschel Space Observatory Telescope is the first of its kind to cover the 60-670 μm far infrared spectral band. Its optical characterization, performed in the visible range, was a true technological challenge requiring very large dynamic range coupled to very high accuracy. A specific Hartmann Wavefront Sensor (HWFS) was designed to meet the demanding specifications of the measurement. The metrological system used by the EADS Astrium team to characterize the silicon car-bide based telescope will be presented as well as the main features of the specifically developed HWFS. The large expected wavefront error was measured in a double path set-up using the HWFS positioned in an extra-focal plane and a point source in the focal plane. The auto-collimation was carried out thanks to several liquid mirrors covering the M1 pupil plane and located in the conjugation plane of the HWFS sub-apertures. The results on the wavefront error obtained at the Centre Spatial de Liege (CSL) in Belgium will be shown as well as the simulated Point Spread Function to be compared to the real PSF obtained during on flight measurements. The thermally induced focal length variations are also presented as the telescope is meant to operate at 70°K in space.

  2. Meteorological Necessities for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska

    2011-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is joint program with NASA and DLR (German Aerospace Center) of a highly modified Boeing 747-SP. The purpose of this modification is to include a 2.5 m infrared telescope in a rear bulkhead of the airplane, with a retractable door open to the atmosphere. The NASA Dryden Flight Research Center (DFRC) is responsible for verifying that the aerodynamics, acoustics, and flying qualities of the modified aircraft stay within safe limits. Flight testing includes determining meteorological limitations of the aircraft, which is done by setting strict temporary operating limits and verifying through data analysis, what conditions are acceptable. Line operations are calibration tests of various telescope instruments that are done on the ground prior to flights. The method in determining limitations for this type of operation is similar to that of flight testing, but the meteorological limitations are different. Of great concern are the particulates near the surface that could cause damage to the telescope, as well as condensation forming on the mirror. Another meteorological involvement for this program is the process of obtaining Reduced Vertical Separation Minimums (RVSM) Certification from the FAA. This heavily involves obtaining atmospheric data pertinent to the flight, analyzing data to actual conditions for validity, and computing necessary results for comparison to aircraft instrumentation.

  3. Complementarity of NGST, ALMA, and Far IR Space Observatories

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2004-01-01

    The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory to follow SIRTF into space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.

  4. Space Infrared Telescope Facility science instruments overview

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will contain three cryogenically cooled infrared instruments: the Infrared Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multiband Infrared Photometer for SIRTF (MIPS). These instruments are sensitive to infrared radiation in the 1.8-1,200 micrometer range. This paper will discuss the three instruments' functional requirements and their accommodation in the SIRTF telescope system.

  5. Infrared divergences in de Sitter space

    SciTech Connect

    Polarski, D. Service d'Astrophysique, CEN Saclay, 91191 Gif-sur-Yvette CEDEX, France)

    1991-03-15

    Infrared divergences in de Sitter space are considered. It is shown that symmetry breaking is unavoidable only when the infrared divergence is strong enough. The static vacuum has no symmetry breaking despite the presence of an infrared divergence.

  6. World Space Observatory - Ultraviolet mission: state of art 2016

    NASA Astrophysics Data System (ADS)

    Sachkov, Mikhail; Gomez De Castro, Ana; Shustov, Boris M.

    2016-07-01

    The WSO-UV (World Space Observatory - Ultraviolet) project is intended to built and operate an international space observatory designed for observations in the UV (115 - 300 nm) range, where some of the most important astrophysical processes can be efficiently studied. The observatory includes a 170 cm aperture telescope capable of high-resolution spectroscopy and long slit low-resolution spectroscopy with the WUVS instrument; moreover UV imaging will be available with cameras. WSO-UV is a Russian led mission that will be operating in high Earth orbit (geosynchronous with inclination 51.^o6) for five+five years grating access to the UV range to the world-wide astronomical community in the post-Hubble era. Spain is a major partner to the project. Updated information of the WSO-UV project is provided periodically in the COSPAR meetings. Henceforth, this review provides a summary on the project, its status and the major outcomes since the last COSPAR Assembly.

  7. Vibration isolation system for the Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Technical Reports Server (NTRS)

    Kaiser, T.; Kunz, N.

    1988-01-01

    The Vibration Isolation System for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is studied. Included are discussions of the various concepts, design goals, concerns, and the proposed configuration for the Vibration Isolation System.

  8. Innovative telescope architectures for future large space observatories

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin R.; Dailey, Dean R.

    2016-10-01

    Over the past few years, we have developed a concept for an evolvable space telescope (EST) that is assembled on orbit in three stages, growing from a 4×12-m telescope in Stage 1, to a 12-m filled aperture in Stage 2, and then to a 20-m filled aperture in Stage 3. Stage 1 is launched as a fully functional telescope and begins gathering science data immediately after checkout on orbit. This observatory is then periodically augmented in space with additional mirror segments, structures, and newer instruments to evolve the telescope over the years to a 20-m space telescope. We discuss the EST architecture, the motivation for this approach, and the benefits it provides over current approaches to building and maintaining large space observatories.

  9. The Extreme Universe Space Observatory Super Pressure Balloon Mission

    NASA Astrophysics Data System (ADS)

    Wiencke, Lawrence; Olinto, Angela; Adams, Jim; JEM-EUSO Collaboration

    2017-01-01

    The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. A long duration flight of at least 50 nights launched from Wanaka NZ is planned for 2017. We describe completed instrument, and the planned mission. We acknowledge the support of NASA through grants NNX13AH53G and NNX13AH55G.

  10. SOFIA Project: SOFIA-Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Tseng, Ting

    2007-01-01

    A viewgraph presentation on the SOFIA project is shown. The topics include: 1) Aircraft Information; 2) Major Components of SOFIA; 3) Aircraft External View; 4) Airborne Observatory Layout; 5) Telescope Assembly; 6) Uncoated Primary Mirror; 7) Airborne Astronomy; 8) Requirements & Specifications; 9) Technical Challenges; 10) Observatory Operation; and 11) SOFIA Flight Test.

  11. Space Observatories RadioAstron and Millimetron: Results and Prospects

    NASA Astrophysics Data System (ADS)

    Kardashev, Nikolay

    The Russian Academy of Sciences and Federal Space Agency, together with many international organizations, prepared the launch of the RadioAstron orbiting space observatory from the Baikonur cosmodrome on July 18, 2011. The spacecraft was launched by the Ukrainian Zenit-3F rocket with onboard 10-m reflector radio telescope, four feed and low noise receivers for operating at 1.2-1.6, 6.2, 18 and 92 cm wavelengths and both circular polarizations, a data formatter, a data transmission module and a hydrogen maser frequency standard. The orbital period in 2012-2015 will vary from 8.3 to 9.0 days, the perigee - from 7,065 km to 81,500 km, the apogee - from 280,000 to 353,000 km. Together with ground-based radio telescopes and a set of stations for tracking, collecting, and reducing the data obtained, this space radio telescope forms a multi-antenna ground-space radio interferometer with extremely long baselines, making it possible for the first time to study various objects in the Universe with angular resolutions a million times better than it is possible with the human eye. The project is targeted at systematic studies of compact radio-emitting sources and their dynamics. Objects to be studied include quasars (super massive black holes and relativistic jets in active galactic nuclei, pulsars (neutron stars and hypothetical quark stars), cosmic masers (regions of stars and planetary systems formation in our and other galaxies), interplanetary and interstellar plasma, and the gravitational field of the Earth. The fringes with the ground-space interferometer were founded at the baseline projections up to 25 diameters of the Earth, and corresponding models of the sources will be reported. Millimetron is the next space mission with a 10-m cooled space telescope optimized for observations in the millimeter and far infrared wavelengths. This mission will be able to contribute to the explorations of several key problems in astrophysics, such as study of formation and evolution

  12. Space Infrared Telescope Facility (SIRTF) design and thermal analysis

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey H.

    1987-01-01

    The design and performance characteristics of an observatory are compared with those of a storage dewar. The critical design technologies required to increase cryogen dewar lifetime are discussed. In particular, outer shell temperature, vapor cooled shields, multilayer insulation performance, and tank support systems are analyzed to assess their impact on cryogen lifetime for both the observatory and the storage dewar. The cryogen lifetime and cryogen mass loss rate of the Space Infrared Telescope Facility (SIRTF) are compared with that of the Infrared Astronomy Satellite and the Cosmic Background Explorer Satellite. A 0.1 percent mass loss per day of superfluid helium dewar can be designed using current state-of-the-art dewar technology. Space-based liquid hydrogen and liquid oxygen tanks can be designed for a 5-year lifetime.

  13. 'HEXE' - X-ray observatory in space

    NASA Astrophysics Data System (ADS)

    1987-06-01

    An overview is given of the design concept and scientific goals of the High-Energy X-ray Experiment (HEXE), developed in the FRG (by the Max Planck Institute for Extraterrestrial Physics and the Astronomical Institute of Tuebingen University) for operation on the Soviet space station Mir. HEXE was launched to LEO using a Kvant vehicle on March 31, 1987; after initial docking problems, it was joined to Mir by two cosmonauts in a 3-hour EVA on April 12. HEXE has dimensions 45 x 45 x 75 cm and weight 180 kg; it employs an 800-sq-cm Tl-doped NaI/CsI phoswich detector for 15-250-keV X-rays, complementing the other Mir instruments: the ESTEC high-pressure gas-scintillation proportional counter (3-100 keV), the Soviet high-energy detector (20-800 keV), and the Dutch-British X-ray camera (2-30 keV). The Mir observations are intended to explore the energy spectra and time evolution of compact galactic and extragalactic objects.

  14. Handling Qualities Flight Testing of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Technical Reports Server (NTRS)

    Glaser, Scott T.; Strovers, Brian K.

    2011-01-01

    Airborne infrared astronomy has a long successful history, albeit relatively unknown outside of the astronomy community. A major problem with ground based infrared astronomy is the absorption and scatter of infrared energy by water in the atmosphere. Observing the universe from above 40,000 ft puts the observation platform above 99% of the water vapor in the atmosphere, thereby addressing this problem at a fraction of the cost of space based systems. The Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft is the most ambitious foray into the field of airborne infrared astronomy in history. Using a 747SP (The Boeing Company, Chicago, Illinois) aircraft modified with a 2.5m telescope located in the aft section of the fuselage, the SOFIA endeavors to provide views of the universe never before possible and at a fraction of the cost of space based systems. The modification to the airplane includes moveable doors and aperture that expose the telescope assembly. The telescope assembly is aimed and stabilized using a multitude of on board systems. This modification has the potential to cause aerodynamic anomalies that could induce undesired forces either at the cavity itself or indirectly due to interference with the empennage, both of which could cause handling qualities issues. As a result, an extensive analysis and flight test program was conducted from December 2009 through March 2011. Several methods, including a Lower Order Equivalent Systems analysis and pilot assessment, were used to ascertain the effects of the modification. The SOFIA modification was found to cause no adverse handling qualities effects and the aircraft was cleared for operational use. This paper discusses the history and modification to the aircraft, development of test procedures and analysis, results of testing and analysis, lessons learned for future projects and justification for operational certification.

  15. The SOFIA Airborne Infrared Observatory - first science highlights and future science potential

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    2014-10-01

    SOFIA, short for Stratospheric Observatory for Infrared Astronomy, is a Boeing 747SP aircraft with a 2.7m telescope flying as high as 45000 ft in the stratosphere above 99 percent of the precipitable water vapor. SOFIA normally operates from its base in Palmdale, California, and a typical observing flight lasts for 10 hours before returning to base. SOFIA has started astronomical observations in Dec 2010 and has completed some 30 early science flights in 2011, delivering a number of exciting results and discoveries, both in mid-infrared imaging (5-40mu) and in far-infrared (THz) heterodyne high-resolution spectroscopy which were published in mid-2012 in special issues of ApJ Letters and A & A, respectively. Meanwhile, in July 2013, as part of Cycle 1, SOFIA has deployed to New Zealand for a total of 9 flights (all of them successful) and has observed key targets in the southern hemisphere at THz frequencies, including star forming regions in the Large and Small Magellanic Clouds. In this talk, I will present a few highlights of SOFIA early science and its future potential, when the full suite of 7 instruments will be implemented by the time of full operations in 2015. As Herschel ran out of cryogens in April 2013, SOFIA will be the premier FIR-astronomical facility for many years to come. Synergies with ALMA and CCAT must be explored. SOFIA is a major bilateral project between NASA and the German Space Agency (DLR), however as an international observatory it offers observing time to the whole astronomical community world-wide, not only to the US and German primary partners.

  16. Infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  17. Edison and radiatively-cooled IR space observatories

    NASA Technical Reports Server (NTRS)

    Thronson, H. A.; Hawarden, T. G.; Bally, J.; Burnell, S. J. Bell; Penny, A. J.; Rapp, D.

    1993-01-01

    Radiative cooling of IR space telescopes is an alternative to embedding within massive cryostats and should offer advantages for future missions, including longer life, larger aperture for a fixed spacecraft size, lower cost due to less complex engineering, and easier ground handling. Relatively simple analyses of conventional designs show that it is possible to achieve telescope temperatures in the range of 25 to 40 K at distances from the sun of about 1 AU. Lower temperatures may be possible with 'open' designs or distant orbits. At approximately 25 K, an observatory will be limited by the celestial thermal background in the near- and mid-IR and by the confusion limit in the far-IR. We outline here our concept for a moderate aperture (approximately 1.75 m; Ariane 4 or Atlas launch) international space observatory for the next decade.

  18. The Science of Gravitational Waves with Space Observatories

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2013-01-01

    After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.

  19. A Wide-field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    NASA Astrophysics Data System (ADS)

    Findlay, Joseph R.; Kobulnicky, Henry A.; Weger, James S.; Bucher, Gerald A.; Perry, Marvin C.; Myers, Adam D.; Pierce, Michael J.; Vogel, Conrad

    2016-11-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit s-1 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several realtime video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. The construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40‧ field of view with a new 40962 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20″ rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical priorities such as planet detection, quasar variability, and long-term time-domain campaigns.

  20. Far-Infrared Astronomy with The Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger, H.

    1997-01-01

    This report summarizes work made possible by NASA's Kuiper Airborne Observatory. The results of the work have appeared in over 80 papers. The publications fall in three main areas: instrumentation, observations, and analysis. Although there is considerable overlap between these categories it will be convenient to group them separately.

  1. Infrared space astrometry project JASMINE

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Yano

    2008-07-01

    A Japanese plan of an infrared (z-band:0.9 μas or k-band:2.2 μas) space astrometry (JASMINE-project) is introduced. JASMINE (Japan Astrometry Satellite Mission for INfrared Exploration) will measure distances and tangential motions of stars in the bulge of the Milky Way. It will measure parallaxes, positions with an accuracy of 10 μas and proper motions with an accuracy of 10 μas/year for stars brighter than z=14 mag or k=11 mag. JASMINE will observe about ten million stars belonging to the bulge component of our Galaxy. With a completely new “map” of the Galactic bulge, it is expected that many new exciting scientific results will be obtained in various fields of astronomy. Presently, JASMINE is in a development phase, with a targeted launch date around 2016. Science targets, preliminary design of instruments, observing strategy, critical technical issues in JASMINE and also Nano-JASMINE project are described in this paper.

  2. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  3. A future large-aperture UVOIR space observatory: reference designs

    NASA Astrophysics Data System (ADS)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  4. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb ground-based observatories. This poster will discuss a possible mission concept, Space-based Gravitational-wave Observatory (SGO-Mid) developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  5. Vacuum Strength of Two Candidate Glasses for a Space Observatory

    NASA Technical Reports Server (NTRS)

    Manning, Timothy Andrew; Tucker, Dennis S.; Herren, Kenneth A.; Gregory, Don A.

    2007-01-01

    The strengths of two candidate glass types for use in a space observatory were measured. Samples of ultra-low expansion glass (ULE) and borosilicate (Pyrex) were tested in air and in vacuum at room temperature (20 degrees C) and in vacuum after being heated to 200 degrees C. Both glasses tested in vacuum showed a significant increase in strength over those tested in air. However, there was no statistical difference between the strength of samples tested in vacuum at room temperature and those tested in vacuum after heating to 200 degrees C.

  6. Vacuum Strength of Two Candidate Glasses for a Space Observatory

    NASA Technical Reports Server (NTRS)

    Manning, T. a.; Tucker, D. S.; Herren, K. A.; Gregory, D. A.

    2007-01-01

    The strengths of two candidate glass types for use in a space observatory were measured. Samples of ultra-low expansion glass (ULE) and borosilicate (Pyrex) were tested in air and in vacuum at room temperature (20 C) and in vacuum after being heated to 200 C. Both glasses tested in vacuum showed an increase in strength over those tested in air. However, there was no statistical difference between the strength of samples tested in vacuum at room temperature and those tested in vacuum after heating to 200 C.

  7. METEOSPACE, solar monitoring and space weather at Calern observatory

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Malherbe, J.-M.; Crussaire, D.; Morand, F.; Ruty, F.; Biree, L.; Aboudarham, J.; Fuller, N.; Renaud, C.; Meftah, M.

    2016-12-01

    METEOSPACE is a new partnership project between the Paris Observatory (OP), the Observatoire de la Côte d'Azur (OCA), the French Air Force and a service company (LUNA technology) for the development and operation of a set of small telescopes Hα / Ca II K / Ca II H / G band to be installed at on the Calern plateau (OCA). The objective is to monitor solar activity for both research and its applications in space weather through continuous optical observations of the dynamic phenomena that are visible in the chromosphere: eruptions, destabilization of the filaments triggering coronal mass ejections and associated Moreton waves.

  8. Contributions of the Onsala Space Observatory to the GGOS

    NASA Astrophysics Data System (ADS)

    Haas, Rüdiger; Elgered, Gunnar; Hobiger, Thomas; Scherneck, Hans-Georg

    2015-04-01

    The Onsala Space Observatory on the Swedish west coast is the fundamental geodetic station of Sweden and operates several geodetic and geophysical infrastructures that contribute to the GGOS. Onsala is the European observatory with the longest history in Very Long Baseline Interferometry (VLBI). Already 1968 Onsala was involved in geodetic/astrometric VLBI observations, at that time with the 25 m telescope. Since 1979 the 20 m telescope is used for geodetic/astrometric VLBI, and currently about 40-50 sessions per year are observed in the programs of the International VLBI Service for Geodesy and Astrometry (IVS). Onsala also participated in all continuous (CONT) campaigns of the IVS. In 2011 we received funding for twin telescopes at Onsala, to be part of the VLBI2010 Global Observing System (VGOS) network. The project has been delayed due to difficulties to get the necessary building permits, but finally a contract to purchase the new telescopes has been signed in late 2014. We expect that the Onsala Twin Telescopes will become operational in 2016/2017. In parallel to the VLBI activities, the observatory operates other instrumentation for geosciences, in particular receivers for Global Navigation Satellite Systems (GNSS), and ground-based microwave radiometers. There are several monuments used for GNSS measurements, and Onsala is actively contributing to the International GNSS Service (IGS). Recently a GNSS array consisting of six new GNSS monuments, in the area around the Onsala Twin Telescopes, has been installed. Also several microwave radiometers are operated for tropospheric measurements. A superconducting gravimeter is operated at the observatory since 2009 in a dedicated gravity laboratory which is also hosting visiting absolute gravimeters, and in 2011 a seismometer station has been installed that is part of the Swedish National Seismic Network (SNSN). Since 2010 we operate a so-called GNSS-R tide gauge, based on the principle of reflectometry. Additional

  9. The James Webb Space Telescope: Observatory Status Update

    NASA Astrophysics Data System (ADS)

    McElwain, Michael W.; Bowers, Charles W.; Clampin, Mark; Niedner, Malcolm B.; Kimble, Randy A.

    2017-01-01

    The James Webb Space Telescope (JWST) is a large (6.5 m) segmented aperture telescope equipped with near- and mid-infrared instruments (0.6-28 microns), all of which are passively cooled to ~40 K by a 5-layer sunshield while the mid-infrared instrument is actively cooled to 7 K. JWST is currently in the integration and test phase, with parallel activities on-going across the project. The current estimated JWST performance metrics will be presented, such as the image quality, pointing stability, sensitivity, and stray light backgrounds. The JWST development status and future schedule will be described for the full integration, launch, and commissioning.

  10. New generation high-energy space observatory GAMMA-400

    NASA Astrophysics Data System (ADS)

    Topchiev, Nikolay

    Space gamma radiation gives unique information on high-energy processes in our Universe. Gammas are not deflected by magnetic field and mainly come to the vicinity of the Earth with the same direction and energy as they were generated in astrophysical objects. GAMMA-400 is the gamma-ray space observatory planned to be launched in 2019 to the high-elliptical orbit with an apogee of 300000 km. The observatory carries two instruments onboard: the gamma-ray burst monitor KONUS and the high-energy gamma-ray telescope GAMMA-400 for the energy range from 100 MeV to 3000 GeV. The main goal of the project is to study high-energy gamma radiation and also electrons+positrons. Having both angular and energy resolution 5-10 times better than achieved present instruments, GAMMA-400 will make a new step in gamma-ray astronomy. Expected advances are: searching for signatures of dark matter, studying the center of Galaxy, identifying numerous unassociated gamma-ray sources.

  11. The Invisible Monster Has Two Faces: Observations of epsilon Aurigae with the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Hoard, D. W.; Ladjal, D.; Stencel, R. E.; Howell, S. B.

    2012-04-01

    We present Herschel Space Observatory photometric observations of the unique, long-period eclipsing binary star epsilon Aurigae. Its extended spectral energy distribution is consistent with our previously published cool (550 K) dust disk model. We also present an archival infrared spectral energy distribution of the side of the disk facing the bright F-type star in the binary, which is consistent with a warmer (1150 K) disk model. The lack of strong molecular emission features in the Herschel bands suggests that the disk has a low gas-to-dust ratio. The spectral energy distribution and Herschel images imply that the 250 GHz radio detection reported by Altenhoff et al. is likely contaminated by infrared-bright, extended background emission associated with a nearby nebular region and should be considered an upper limit to the true flux density of epsilon Aur.

  12. THE INVISIBLE MONSTER HAS TWO FACES: OBSERVATIONS OF {epsilon} AURIGAE WITH THE HERSCHEL SPACE OBSERVATORY

    SciTech Connect

    Hoard, D. W.; Ladjal, D.; Stencel, R. E.; Howell, S. B.

    2012-04-01

    We present Herschel Space Observatory photometric observations of the unique, long-period eclipsing binary star {epsilon} Aurigae. Its extended spectral energy distribution is consistent with our previously published cool (550 K) dust disk model. We also present an archival infrared spectral energy distribution of the side of the disk facing the bright F-type star in the binary, which is consistent with a warmer (1150 K) disk model. The lack of strong molecular emission features in the Herschel bands suggests that the disk has a low gas-to-dust ratio. The spectral energy distribution and Herschel images imply that the 250 GHz radio detection reported by Altenhoff et al. is likely contaminated by infrared-bright, extended background emission associated with a nearby nebular region and should be considered an upper limit to the true flux density of {epsilon} Aur.

  13. Launch and Commissioning of the Deep Space Climate Observatory

    NASA Technical Reports Server (NTRS)

    Frey, Nicholas P.; Davis, Edward P.

    2016-01-01

    The Deep Space Climate Observatory (DSCOVR), formerly known as Triana, successfully launched on February 11th, 2015. To date, each of the five space-craft attitude control system (ACS) modes have been operating as expected and meeting all guidance, navigation, and control (GN&C) requirements, although since launch, several anomalies were encountered. While unplanned, these anomalies have proven to be invaluable in developing a deeper understanding of the ACS, and drove the design of three alterations to the ACS task of the flight software (FSW). An overview of the GN&C subsystem hardware, including re-furbishment, and ACS architecture are introduced, followed by a chronological discussion of key events, flight performance, as well as anomalies encountered by the GN&C team.

  14. Space-Based Gravitational-Wave Observatory Mission Concept

    NASA Astrophysics Data System (ADS)

    Livas, Jeffrey C.

    2014-08-01

    Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected “The Gravitational Universe” as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

  15. Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.; Spitzer Science Center

    2016-01-01

    The Spitzer Space Telescope, launched on 2003 August 25, continues to produce new and exciting views of the Universe as seen in infrared light. Spitzer is the fourth and final space telescope in NASA's Great Observatory series. Originally it consisted of a liquid-helium-cooled 85-cm telescope and three imaging and spectroscopic instruments capable of observing infrared light (3-160 micron wavelength) from regions of space invisible to optical telescopes. In mid-2009 Spitzer's cryogen was exhausted, leaving the observatory with two operating imaging arrays at 3.6 and 4.5 micron wavelength. "Warm" Spitzer, as it is now called, continues to match the sensitivity achieved at these wavelengths during the cryogenic mission and remains very much in demand. The Spitzer Space Telescope has changed our view of the Universe. Spitzer's scientific results include the study of the formation and evolution of galaxies in the early Universe, star formation and evolution, exoplanets, the structure and evolution of planetary disks around nearby stars, the cosmic distance scale, clusters of galaxies, near-Earth asteroids, and comets. After a brief description of the Spitzer mission, achievements of Spitzer's extragalactic and galactic observational programs will be presented, including many of Spitzer's very spectacular images.

  16. Stratospheric Observatory for Infrared Astronomy (SOFIA) science rationale

    NASA Technical Reports Server (NTRS)

    Davidson, Jacqueline A.; Erickson, Edwin F.

    1989-01-01

    SOFIA, a proposed 3-meter class telescope in a Boeing 747 aircraft, would have the ability to make astronomical observations over a wavelength range from 0.3 microns to 1.6mm. Relative to the KAO (Kuiper Airborne Observatory) the larger telescope on SOFIA would provide a factor of 10 improvement in sensitivity for compact sources and a factor of 3 improvement in (diffraction-limited) angular resolution at wavelengths beyond 30 microns. In addition, SOFIA will retain the major features of the KAO which have made the airborne astronomy program so successful. Among these are continuous in-flight access to focal plane instruments while flying at or above 41,000 ft altitude; pointing stability of 0.2 arcseconds; and mobility and scheduling flexibility to accommodate targets of opportunity such as comets, eclipses, occultations, and novae.

  17. Development of Short Wavelength Infrared Array Detectors for Space Astronomy Application

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1997-01-01

    The Smithsonian Astrophysical Observatory (SAO) and its team - the University of Arizona (UA), the University of Rochester (UR), Santa Barbara Research Center (SBRC), Ames Research Center (ARC), and Goddard Space Flight Center (GSFC) - are carrying out a research program with the goal of developing and optimizing infrared arrays in the 2-27 micron range for space infrared astronomy. This report summarizes research results for the entire grant period 1 January 1992 through 30 June 1996.

  18. Briefings Set for Launch of Next "Great Observatory" in Space

    NASA Astrophysics Data System (ADS)

    1999-06-01

    NASA's next Space Shuttle flight will provide astronomers with a new look at the universe and make history with NASA's first female mission commander. Reporters can get an overview of the mission at a series of briefings July 7. The briefings will begin at 9 a.m. EDT at NASA's Johnson Space Center in Houston. The five-day flight is scheduled for launch no earlier than July 20. STS-93 will be led by U.S. Air Force Colonel Eileen Collins, the first woman to command an American space mission. The flight's primary objective will be to deploy the Chandra X-Ray Observatory, the third of NASA's Great Observatories. Collins and her crew of four will carry Chandra, the heaviest payload ever deployed from the shuttle, into orbit and deploy it approximately seven hours after launch. An upper stage will carry the observatory to its final orbit, more than one-third of the way to the Moon. Chandra will allow scientists to obtain unprecedented X-ray images of exploding stars, black holes and other exotic environments to help them understand the structure and evolution of the universe. The first two briefings will provide an overview of mission operations and science to be conducted by Chandra. The NASA Television Video File will follow at noon. The crew press conference will begin at 2 p.m. EDT. The briefings will be carried live on NASA Television, with question-and-answer capability for reporters covering the event from participating NASA centers. NASA Television is available on transponder 9C of the GE-2 satellite at 85 degrees West longitude, vertical polarization, frequency 3880 MHz, audio of 6.8 MHz. Media planning to attend the briefings must notify the Johnson Space Center newsroom by June 28 to ensure proper badging. Each reporter's name, affiliation and country of citizenship should be faxed to the newsroom at 281/483-2000. IMPORTANT NOTE: Reporters can schedule in-person or telephone interviews STS-93 crew. These interviews will begin at about 3:15 p.m. EDT. Media

  19. 20-micron transparency and atmospheric water vapor at the Wyoming Infrared Observatory

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Gehrz, R. D.; Hackwell, J. A.; Freedman, R.

    1985-01-01

    The atmospheric transparency at 19.5 and 23 microns from the Wyoming Infrared Observatory over the past six years has been examined. It is found that the transparency is largely controlled by the season. Four months: June, July, August, and September have very poor 20-micron transparency. During the rest of the year the transparency is usually quite good at 19.5 microns and moderately good at 23 microns. Using rawinsonde data and theoretical calculations for the expected infrared transparency, the measures of 20-micron transparency were calibrated in terms of atmospheric water-vapor content. The water vapor over the Wyoming Infrared Observatory is found to compare favorably with that above other proposed or developed sites: Mauna Kea, Mount Graham, and Wheeler Peak.

  20. Monitoring CO2 sources and sinks from space : the Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2006-01-01

    NASA's Orbiting Carbon Observatory (OCO) will make the first space-based measurements of atmospheric carbon dioxide (CO2) with the precision, resolution, and coverage needed to characterize the geographic distribution of CO2 sources and sinks and quantify their variability over the seasonal cycle. OCO is currently scheduled for launch in 2008. The observatory will carry a single instrument that incorporates three high-resolution grating spectrometers designed to measure the near-infrared absorption by CO2 and molecular oxygen (O2) in reflected sunlight. OCO will fly 12 minutes ahead of the EOS Aqua platform in the Earth Observing System (EOS) Afternoon Constellation (A-Train). The in-strument will collect 12 to 24 soundings per second as the Observatory moves along its orbit track on the day side of the Earth. A small sampling footprint (<3 km2 at nadir) was adopted to reduce biases in each sounding associated with clouds and aerosols and spatial variations in surface topography. A comprehensive ground-based validation program will be used to assess random errors and biases in the XCO2 product on regional to continental scales. Measurements collected by OCO will be assimilated with other environmental measurements to retrieve surface sources and sinks of CO2. This information could play an important role in monitoring the integrity of large scale CO2 sequestration projects.

  1. Solar System Studies with the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    SIRTF (Space Infrared Telescope Facility) is the final element in NASA's 'Great Observatories' program. It consists of an 85-cm cryogenically-cooled observatory for infrared astronomy from space. SIRTF is scheduled for launch in late 2001 or early 2002 on a Delta rocket into a heliocentric orbit trailing the Earth. Data from SIRTF will be processed and disseminated to the community through the SIRTF Science Center (SSC) located at the Infrared Processing and Analysis Center (IPAC) at Caltech. Some 80/% of the total observing time (estimated at a minimum of 7500 hours of integration time per year for the mission lifetime of about 4 years) will be available to the scientific community at large through a system of refereed proposals. Three basic instruments are located in the SIRTF focal plane. The Multiband Imaging Photometer (MIPS), the Infrared Array Camera (IRAC), and the Infrared Spectrometer (IRS), taken together, provide imaging and spectroscopy from 3.5 to 160 microns. Among the solar system studies suited to SIRTF are the following: 1) spectroscopy and radiometry of small bodies from the asteroid main belt, through the Trojan clouds, to the Kuiper Disk; 2) dust distribution in the zodiacal cloud and the Earth's heliocentric dust ring; 3) spectroscopy and radiometry of comets; and 4) spectroscopy and radiometry of planets and their satellites. Searches for, and studies of dust disks around other stars, brown dwarfs, and superplanets will also be conducted with SIRTF. The SORTIE web site (http://ssc.ipac.caltech.edu/sirtf) contains important details and documentation on the project, the spacecraft, the telescope, instruments, and observing procedures. A community-wide workshop for solar system studies with SIRTF is in the planning stages by the author and Martha S. Hanner for the summer of 1999.

  2. Calibration and first light of the Diabolo photometer at the Millimetre and Infrared Testa Grigia Observatory

    NASA Astrophysics Data System (ADS)

    Benoit, A.; Zagury, F.; Coron, N.; De Petris, M.; Désert, F.-X.; Giard, M.; Bernard, J.-P.; Crussaire, J.-P.; Dambier, G.; de Bernardis, P.; Delabrouille, J.; De Luca, A.; de Marcillac, P.; Jegoudez, G.; Lamarre, J.-M.; Leblanc, J.; Lepeltier, J.-P.; Leriche, B.; Mainella, G.; Narbonne, J.; Pajot, F.; Pons, R.; Puget, J.-L.; Pujol, S.; Recouvreur, G.; Serra, G.; Soglasnova, V.; Torre, J.-P.; Vozzi, B.

    2000-02-01

    We have designed and built a large-throughput dual channel photometer, Diabolo. This photometer is dedicated to the observation of millimetre continuum diffuse sources, and in particular, of the Sunyaev-Zel'dovich effect and of anisotropies of the 3 K background. We describe the optical layout and filtering system of the instrument, which uses two bolometric detectors for simultaneous observations in two frequency channels at 1.2 and 2.1 mm. The bolometers are cooled to a working temperature of 0.1 K provided by a compact dilution cryostat. The photometric and angular responses of the instrument are measured in the laboratory. First astronomical light was detected in March 1995 at the focus of the new Millimetre and Infrared Testa Grigia Observatory (MITO) Telescope. The established sensitivity of the system is of 7 mKRJ\\ s1/2. For a typical map of at least 10 beams, with one hour of integration per beam, one can achieve the rms values of y_SZ =~ 7\\ 10-5 and the 3 K background anisotropy {Delta T/ T} =~ 7\\ 10-5, in winter conditions. We also report on a novel bolometer AC readout circuit which allows for the first time total power measurements on the sky. This technique alleviates (but does not forbid) the use of chopping with a secondary mirror. This technique and the dilution fridge concept will be used in future scan-modulated space instrument like the ESA Planck mission project.

  3. Progress Toward a Space-Based Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    Livas, Jeffrey C.; Stebbins, Robin T.

    The discovery of binary pulsar PSR 1913+16 by Hulse & Taylor in 1974 established the existence of gravitational waves, for which the 1983 Nobel Prize was awarded. However, the measurement of astrophysical parameters from gravitational waves will open an entirely new spectrum for discovery and understanding of the Universe, not simply a new window in the electromagnetic spectrum like gamma ray telescopes in the 1970s. Two types of ground-based detectors, Advanced LIGO/Virgo and Pulsar Timing Arrays, are expected to directly detect gravitational waves in their respective frequency bands before the end of the decade. However, many of the most exciting sources are in the band from 0.1-100 mHz, accessible only from space due to seismic and gravity gradient noise on Earth. The European Space Agency (ESA) has chosen the 'Gravitational Universe' as the science theme for its L3 Cosmic Visions opportunity, planned for launch in 2034. NASA is planning to participate as a junior partner. Here we summarize progress toward realizing a gravitational wave observatory in space.

  4. Architectures for a Space-based Gravitational-Wave Observatory

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin

    2015-04-01

    The European Space Agency (ESA) selected the science theme, the ``Gravitational Universe,'' for the third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has begun negotiating a NASA role. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, thereby augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described.

  5. The preliminary design of an orbiting observatory - The Space Telescope

    NASA Technical Reports Server (NTRS)

    Timmons, K. P.

    1976-01-01

    The systems and subsystems of the Space Telescope proposed for an orbiting observatory to be launched by the Space Shuttle in the 1980s are described. The structural design is simple and based on existing technologies for high reliability. Provisions are made for on-orbit servicing and maintenance. All deployable appendages are designed for manual override to insure retrieval and return of the Space Telescope to earth for major refurbishing, which should occur at intervals of not less than six years. Low performance risk, passive techniques are used in the thermal control subsystem to provide a cold-biased design with thermostatically controlled heaters to adjust temperature. The electrical power system utilizes NASA Standard Hardware - 50 ampere hour nickel-cadmium battery cells, a standard power regulator unit, and a flight-proven flexible rollup solar array with high-efficiency (12.5 per cent) silicon solar cells. The communication subsystem is designed for compatibility with the Tracking and Data Relay Satellite System. The pointing control system will have a maximum line of sight variation of 0.007 arc seconds. The telescope optics are a Ritchey-Chretien version of the Cassegrain configuration.

  6. Asteroid observations with the Hubble Space Telescope and the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Zellner, B.; Wells, Eddie N.; Chapman, Clark R.; Cruikshank, D. P.

    1989-01-01

    The ways that the asteroids can be studied with the Hubble Space Telescope (HST) and the Space Infrared Telescope Facility (SIRTF) are examined. Spectrophotometry of asteroids and the study of asteroid surfaces, shape, spins, configuration, normal reflectance, and limb darkening of asteroids using the HST are addressed along with the detection of asteroid satellites and the discovery of small asteroids using the HST. The relation of the HST to its ground system is described, as are the spectrophotometric instruments of the HST. Imaging with the HST using the Faint Object Camera and the Wide Field and Planetary Camera is examined. Finally, the SIRTF observatory, instrumentation, and capabilities for solar system science are discussed.

  7. Space Weathering Investigations Enabled by NASA's Virtual Heliophysical Observatories

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; King, Joseph H.; Papitashvili, Natalia E.; Lal, Nand; Sittler, Edward C.; Sturner, Steven J.; Hills, Howard K.; Lipatov, Alexander S.; Kovalick, Tamara J.; Johnson, Rita C.; McGuire, Robert E.; Narock, Thomas W.; Szabo, Adam; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; McKibben, Robert B.

    2012-01-01

    Structural and chemical impact of the heliospheric space environment on exposed planetary surfaces and interplanetary dust grains may be generally defined as space weathering . In the inner solar system, from the asteroid belt inwards towards the Sun, the surface regolith structures of airless bodies are primarily determined by cumulative meteoritic impacts over billions of years, but the molecular composition to meters in depth can be substantially modified by irradiation effects. Plasma ions at eV to keV energies may both erode uppermost surfaces by sputtering, and implant or locally produce exogenic material, e.g. He-3 and H2O, while more energetic ions drive molecular change through electronic ionization. Galactic cosmic ray ions and more energetic solar ions can impact chemistry to meters in depth. High energy cosmic ray interactions produce showers of secondary particles and energetic photons that present hazards for robotic and human exploration missions but also enable detection of potentially useable resources such as water ice, oxygen, and many other elements. Surface sputtering also makes ejected elemental and molecular species accessible for in-situ compositional analysis by spacecraft with ion and neutral mass spectrometers. Modeling of relative impacts for these various space weathering processes requires knowledge of the incident species-resolved ion flux spectra at plasma to cosmic ray energies and as integrated over varying time scales. Although the main drivers for investigations of these processes come from NASA's planetary science and human exploration programs, the NASA heliophysics program provides the requisite data measurement and modeling resources to enable specification of the field & plasma and energetic particle irradiation environments for application to space weather and surface weathering investigations. The Virtual Heliospheric Observatory (VHO), Virtual Energetic Particle Observatory (VEPO), Lunar Solar Origins Exploration (Luna

  8. Infrared spectral measurement of space shuttle glow

    SciTech Connect

    Ahmadijian, M.

    1992-01-01

    Infrared spectral measurements of the space shuttle glow were successfully conducted during the STS-39 space shuttle mission. Analysis indicates that NO, NO[sup +], OH, and CO are among the molecules associated with the infrared glow phenomenon. During orbiter thruster firings the glow intensities in the infrared are enhanced by factors of 10x to 100x with significant changes in spectral distribution. These measurements were obtained with the Spacecraft Kinetic Infrared Test (SKIRT) payload which included a cryogenic infrared circular variable filter (CVF) spectrometer (0.6 [mu]m to 5.4 [mu]) and a number of infrared, visible, and ultraviolet radiometers (0.2 [mu]m to 5.4 [mu]m and 9.9 [mu]m to 10.4 [mu]m). In addition, glow measurements were unsuccessfully attempted with the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) with its 2.5 [mu]m to 25 [mu]m Fourier transform interferometer. SKIRT CVF obtained over 14,000 spectra of quiescent shuttle glow, thruster enhanced shuttle glow, upper atmosphere airglow, aurora, orbiter environment, and deep space non-glow backgrounds during its eight day mission. The SKIRT radiometers operated almost continuously throughout the mission to provide a detailed history of the IR/VIS/UV optical environment associated with the operation of large spacecraft structures in low earth orbit. This dissertation will primarily address those measurements conducted by the SKIRT spectrometer as they relate to space shuttle glow in the infrared. The STS-39 Space Shuttle Discovery was launched from the NASA Kennedy Space Center on 28 April 1991 into a 57 degree inclination circular orbit at an altitude of 260 km.

  9. A Future Large-Aperture UVOIR Space Observatory: Study Overview

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Thronson, Harley A.; Feinberg, Lee; Redding, David; Stahl, H. Philip

    2015-01-01

    The scientific drivers for very high angular resolution coupled with very high sensitivity and wavefront stability in the UV and optical wavelength regime have been well established. These include characterization of exoplanets in the habitable zones of solar type stars, probing the physical properties of the circumgalactic medium around z < 2 galaxies, and resolving stellar populations across a broad range of galactic environments. The 2010 NRC Decadal Survey and the 2013 NASA Science Mission Directorate 30-Year Roadmap identified a large-aperture UVOIR observatory as a priority future space mission. Our joint NASA GSFC/JPL/MSFC/STScI team has extended several earlier studies of the technology and engineering requirements needed to design and build a single filled aperture 10-meter class space-based telescope that can enable these ambitious scientific observations. We present here an overview of our new technical work including a brief summary of the reference science drivers as well as in-depth investigations of the viable telescope architectures, the requirements on thermal control and active wavefront control systems, and the range of possible launch configurations.

  10. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb groundbased observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  11. Heterodyne Receiver Requirements for the Single Aperture Far-Infrared (SAFIR) Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Kooi, Jacob; Oegerle, William (Technical Monitor)

    2003-01-01

    In the next few years, work will commence in earnest on the development of technology for the next generation large cryogenic far-infrared telescope: the Single Aperture Far- Infrared (SAFIR) Observatory. SAFIR's science goals are driven by the fact that youngest stages of almost all phenomena in the universe are shrouded in absorption by cool dust, resulting in the energy being emitted primarily in the far-infrared. The earliest stages of star formation, when gas and dust clouds are collapsing and planets forming, can only be observed in the far-infrared. Spectral diagnostics in the far-infrared are typically quite narrow (approx. 1 km/s) and require high sensitivity to detect them. SAFIR is a 10 m-class telescope designed for cryogenic operation at L2, removing all sources of thermal emission from the telescope and atmosphere. Despite its limited collecting area and angular resolution as compared to the ALMA interferometer, its potential for covering the entire far-infrared band cannot be matched by any ground-based or airborne observatory. This places a new challenge on heterodyne receivers: broad frequency coverage. The ideal mixer would be able to detect frequencies over several octaves (e.g., 0.6 THz - 12 THz) with near quantum-limited performance at all frequencies. In contrast to ground-based observatories, it may not be necessary to strive for high instantaneous bandwidth, as direct detection spectroscopy is preferable for bandwidths of Delta v/ v greater than or equal to 10(exp -4) (e.g., 1 GHz at 10 THz). We consider likely directions for technology development for heterodyne receivers for SAFIR.

  12. TWINKLE - A Low Earth Orbit Visible and Infrared Exoplanet Spectroscopy Observatory

    NASA Astrophysics Data System (ADS)

    Tessenyi, Marcell; Savini, Giorgio; Tinetti, Giovanna; Tennyson, Jonathan; Dhesi, Mekhi; Joshua, Max

    2016-10-01

    Twinkle is a space mission designed for visible and near-IR spectroscopic observations of extrasolar planets. Twinkle's highly stable instrument will allow the photometric and spectroscopic observation of a wide range of planetary classes around different types of stars, with a focus on bright sources close to the ecliptic. The planets will be observed through transit and eclipse photometry and spectroscopy, as well as phase curves, eclipse mapping and multiple narrow-band time-series. The targets observed by Twinkle will be composed of known exoplanets mainly discovered by existing and upcoming ground surveys in our galaxy and will also feature new discoveries by space observatories (K2, GAIA, Cheops, TESS).Twinkle is a small satellite with a payload designed to perform high-quality astrophysical observations while adapting to the design of an existing Low Earth Orbit commercial satellite platform. The SSTL-300 bus, to be launched into a low-Earth sun-synchronous polar orbit by 2019, will carry a half-meter class telescope with two instruments (visible and near-IR spectrographs - between 0.4 and 4.5µm - with resolving power R~300 at the lower end of the wavelength scale) using mostly flight proven spacecraft systems designed by Surrey Satellite Technology Ltd and a combination of high TRL instrumentation and a few lower TRL elements built by a consortium of UK institutes.The Twinkle design will enable the observation of the chemical composition and weather of at least 100 exoplanets in the Milky Way, including super-Earths (rocky planets 1-10 times the mass of Earth), Neptunes, sub-Neptunes and gas giants like Jupiter. It will also allow the follow-up photometric observations of 1000+ exoplanets in the visible and infrared, as well as observations of Solar system objects, bright stars and disks.

  13. The development of infrared detectors and mechanisms for use in future infrared space missions

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1995-01-01

    The environment above earth's atmosphere offers significant advantages in sensitivity and wavelength coverage in infrared astronomy over ground-based observatories. In support of future infrared space missions, technology development efforts were undertaken to develop detectors sensitive to radiation between 2.5 micron and 200 micron. Additionally, work was undertaken to develop mechanisms supporting the imaging and spectroscopy requirements of infrared space missions. Arsenic-doped-Silicon and Antimony-doped-Silicon Blocked Impurity Band detectors, responsive to radiation between 4 micron and 45 micron, were produced in 128x128 picture element arrays with the low noise, high sensitivity performance needed for space environments. Technology development continued on Gallium-doped-Germanium detectors (for use between 80 micron and 200 micron), but were hampered by contamination during manufacture. Antimony-doped-Indium detectors (for use between 2.5 micron and 5 micron) were developed in a 256x256 pixel format with high responsive quantum efficiency and low dark current. Work began on adapting an existing cryogenic mechanism design for space-based missions; then was redirected towards an all-fixed optical design to improve reliability and lower projected mission costs.

  14. The Infrared Telescope in Space (IRTS)

    NASA Technical Reports Server (NTRS)

    Murakami, H.; Bock, J.; Freund, M. M.; Guo, H.; Hirao, T.; Lange, A. E.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Mcmahon, T. J.

    1994-01-01

    The Infrared Telescope in Space (IRTS) is a cryogenically cooled small infrared telescope that will fly aboard the small space platform Space Flyer Unit. It will survey approximately 10% of the sky with a relatively wide beam during its 20 day emission. Four focal-plane instruments will make simultaneous observations of the sky at wavelengths ranging from 1 to 1000 microns. The IRTS will provide significant information on cosmology, interstellar matter, late-type stars, and interplanetary dust. This paper describes the instrumentation and mission.

  15. BIRCAM: A Near-Infrared Camera for the Red Buttes Observatory

    NASA Astrophysics Data System (ADS)

    Monson, Andy; Pierce, M. J.

    2007-12-01

    We describe the construction of a near-infrared camera for the University of Wyoming's 0.6m telescope at Red Buttes Observatory. BIRCAM (Buttes InfraRed CAMera) was developed as a temporary instrument to test the electronic and cryo-mechanical components of a more ambitious near-infrared imaging spectrograph currently under development. Our goal is to use BIRCAM as a test bed for the design and development of cryogenic opto-mechanics and near-infrared data reduction techniques. BIRCAM makes use of a Hawaii-2 array sensitive from 0.8-2.4 microns. Specific design elements that are shown and discussed include: an Offner relay optical design, stepper motor control of a filter wheel and system integration and communication. One of the science projects envisioned for BIRCAM is a photometric survey of northern Galactic Cepheids. Preliminary results are presented.

  16. Space γ-observatory GAMMA-400 Current Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Bonvicini, V.; Topchiev, N. P.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Gorbunov, M. S.; Gusakov, Yu. V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Taraskin, A. A.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu. T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    nuclei and gamma-quanta in energy range E>1.0 GeV. But using lateral aperture it is possible to detect low-energy gammas in the ranges 0.2 - 10 MeV and 10 MeV - 1.0 GeV with energy resolution 8% - 2% and 2% correspondingly accordingly to GAMMA-400 "Technical Project" stage results. Angular resolution in the lateral aperture provides only for low-energy gamma-quanta from non-stationary events (GRB, solar flares and so on) due segments of CC2 count rate analysis. GAMMA-400 γ-ray telescope will be installed onboard the Russian Space Observatory GAMMA-400. The lifetime of the space observatory will be at least seven years. The launch of the space observatory is scheduled for the early 2020s.

  17. Laboratory Astrophysics Needs of the Herschel Space Observatory

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.

    2002-01-01

    The science teams of the Herschel Space Observatory have identified a number of areas where laboratory study is required for proper interpretation of Herschel observational data. The most critical is the collection and compilation of laboratory data on spectral line frequencies, transition probabilities and energy levels for the known astrophysical atomic and molecular species in 670 to 57 micron wavelength range of Herschel. The second most critical need is the compilation of collisional excitation cross sections for the species known to dominate the energy balance in the ISM and the temperature dependent chemical reaction rates. On the theoretical front, chemical and radiative transfer models need to be prepared in advance to assess calibration and identify instrument anomalies. In the next few years there will be a need to incorporate spectroscopists and theoretical chemists into teams of astronomers so that the spectroscopic surveys planned can he properly calibrated and rapidly interpreted once the data becomes available. The science teams have also noted that the enormous prospects for molecular discovery will be greatly handicapped by the nearly complete lack of spectroscopic data for anything not already well known in the ISM. As a minimum, molecular species predicted to exist by chemical models should be subjected to detailed laboratory study to ensure conclusive detections. This has the greatest impact on any astrobiology program that might be proposed for Herschel. Without a significant amount of laboratory work in the very near future Herschel will not be prepared for many planned observations, much less addressing the open questions in molecular astrophysics.

  18. Telescopes for a Space-Based Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    Sankar, Shannon; Livas, Jeffrey

    2017-01-01

    Telescopes are an important part of the science measurement for a space-based gravitational wave observatory. The telescopes should not introduce excess phase noise which might lower the signal-to-noise of the gravitational wave signal. This requirement constrains both the telescope stability and the phase noise due to scattered light. The photoreceiver senses a combination of a local beam, the received beam and scattered light. If the scattered light has significant spatial overlap, and if there is displacement noise in the scatter path, the signal-to-noise of the main measurement can be impacted. We will discuss our approach to addressing this concern. We model the scattered power from the telescope under expected conditions and use these models for evaluating potential telescope designs. We also determine allowable mirror surface roughness and contamination levels from the scattered light models. We implement the best designs by fabricating a series of prototype telescopes of increasing flight readiness, using eLISA as a reference mission for design specifications. Finally, we perform laboratory tests of the fabricated prototype telescope to validate the models and inform our understanding of the eventual flight telescopes.

  19. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  20. NASA Space Observatories Glimpse Faint Afterglow of Nearby Stellar Explosion

    NASA Astrophysics Data System (ADS)

    2005-10-01

    Intricate wisps of glowing gas float amid a myriad of stars in this image created by combining data from NASA's Hubble Space Telescope and Chandra X-ray Observatory. The gas is a supernova remnant, cataloged as N132D, ejected from the explosion of a massive star that occurred some 3,000 years ago. This titanic explosion took place in the Large Magellanic Cloud, a nearby neighbor galaxy of our own Milky Way. The complex structure of N132D is due to the expanding supersonic shock wave from the explosion impacting the interstellar gas of the LMC. Deep within the remnant, the Hubble visible light image reveals a crescent-shaped cloud of pink emission from hydrogen gas, and soft purple wisps that correspond to regions of glowing oxygen emission. A dense background of colorful stars in the LMC is also shown in the Hubble image. The large horseshoe-shaped gas cloud on the left-hand side of the remnant is glowing in X-rays, as imaged by Chandra. In order to emit X-rays, the gas must have been heated to a temperature of about 18 million degrees Fahrenheit (10 million degrees Celsius). A supernova-generated shock wave traveling at a velocity of more than four million miles per hour (2,000 kilometers per second) is continuing to propagate through the low-density medium today. The shock front where the material from the supernova collides with ambient interstellar material in the LMC is responsible for these high temperatures. Chandra image of N132D Chandra image of N132D, 2002 It is estimated that the star that exploded as a supernova to produce the N132D remnant was 10 to 15 times more massive than our own Sun. As fast-moving ejecta from the explosion slam into the cool, dense interstellar clouds in the LMC, complex shock fronts are created. A supernova remnant like N132D provides a rare opportunity for direct observation of stellar material, because it is made of gas that was recently hidden deep inside a star. Thus it provides information on stellar evolution and the

  1. Gaussian beam measurement for HIFI instrument: Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Pantaleev, Miroslav G.; Ermisch, Karsten; Fredrixon, Mathias; Svensson, Magnus; Belitsky, Victor

    2004-09-01

    The Heterodyne Instrument (HIFI) is part of the ESA Herschel Space Observatory Project. The instrument is intended for high-resolution spectroscopy and has a frequency coverage from 480 to 1250 GHz band in five receiver bands and 1410 to 1910 GHz in two additional bands. HIFI is built based on a modular principle: the mixers together with their respective optics are integrated into Mixer Sub-Assemblies (MSA). Each frequency band has two MSAs allocated for horizontal and vertical polarization. In this paper, we present the work done on the design and construction of a Gaussian beam measurement range. One of the unique features of the developed method is a possibility to measure the beam parameters of the MSAs in the absolute coordinate system referred to the device under test. This along with other methods should allow integration of the entire HIFI with the best possible coupling of the antenna beam to the receivers and achieving ultimate performance in such a complicated optical system. The range houses the measured MSA, which is at 4 K ambient temperature, and a continuous wave source placed on a precise scanner entirely under vacuum. Developed triangulation system provides mechanical reference data on the MSA, in-situ, after the entire system is evacuated and the cooling is finished. We adopted a scalar measurement approach where the test source scans the receiver input beam and the mixer IF power is measured. The data collected from 3-4 planar scans are used to calculate the orientation and position of the optical axis. We present results from the first beam measurements for MSA HIFI bands 1 and 2 (480 and 640 GHz), the measurement system performance and accuracy analysis.

  2. Space Based Infrared System High (SBIRS High)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-210 Space Based Infrared System High (SBIRS High) As of FY 2017 President’s Budget Defense...Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be

  3. Single Crystal DMs for Space-Based Observatories

    NASA Astrophysics Data System (ADS)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and

  4. The Stratospheric Observatory for Infrared Astronomy (SOFIA) - next step after Spitzer/Herschel

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a Boeing 747B fitted with a powerful 2.5m infrared telescope that operates at altitudes of 12-14km and observes light from the near-IR to the far-IR wavelength range that is blocked to reach the ground by the Earth's atmosphere (mainly due to water vapor). SOFIA is a joint project between NASA and the German Aerospace Agency (DLR). This new airborne Observatory started early science observations in 2010 and has recently reached full operational capability, with a suite fo currently 4 instruments (and two more to be commissioned) in Cycle 2. Scientific highlights will be presented which include mid-IR broad-band imaging and far-IR high-resolution spectroscopic results which go beyond those of Spitzer and Herschel (star formation studies and astrochemistry). SOFIA will have a projected lifetime of 20 yrs and will be the premier mid- and far-infrared facility in the post-Spitzer and post-Herschel era for many years to come.

  5. Space-Borne Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    1997-01-01

    The objective of this grant is to develop the Far IR Photometer (FIRP), one of four focal plane instruments on the IR Telescope in Space (IRTS). The IRTS was successfully launched in March 18, 1995 aboard the Japanese SFU platform. It surveyed the IR sky for approximately 40 days, and was eventually retrieved by NASA's STS. The FIRP succeeded in surveying approximately 5% of the sky in four bands centered at 150, 250, 400 and 700 microns. Several new technologies were developed using the funds from this grant, including: (1) a high performance gas-gap heat-switch, (2) a He-3 sorption refrigerator that is, to date, the only refrigerator to achieve sub-Kelvin temperatures in orbit, (3) high-sensitivity bolometric detectors with NEP less than 10-16 W(Hz(exp l/2)exp 1/2) when operated from a 300 mK heat sink, (4) readout electronics capable of providing DC stability for the bolometric detectors. Excess noise of unknown origin significantly reduced the sensitivity of the FIRP on orbit. Nevertheless, scientifically significant observations of the spectrum and temperature of the interstellar dust were made, and have been reported.

  6. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  7. Stratospheric Observatory for Infrared Astronomy (SOFIA) Acoustical Resonance Technical Assessment Report

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Kehoe, Michael W.; Gupta, Kajal K.; Kegerise, Michael A.; Ginsberg, Jerry H.; Kolar, Ramesh

    2009-01-01

    A request was submitted on September 2, 2004 concerning the uncertainties regarding the acoustic environment within the Stratospheric Observatory for Infrared Astronomy (SOFIA) cavity, and the potential for structural damage from acoustical resonance or tones, especially if they occur at or near a structural mode. The requestor asked for an independent expert opinion on the approach taken by the SOFIA project to determine if the project's analysis, structural design and proposed approach to flight test were sound and conservative. The findings from this assessment are recorded in this document.

  8. Charting the Winds that Change the Universe, II The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2003-01-01

    The Single Aperture Far Infrared Observatory (SAFIR) will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  9. Spatial distribution of water in the stratosphere of Jupiter from observations with the Herschel space observatory

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Feuchtgruber, H.; Lellouch, E.; de Val-Borro, M.; Jarchow, C.; Moreno, R.; Hartogh, P.; Orton, G.; Greathouse, T. K.; Billebaud, F.; Dobrijevic, M.; Lara, L. M.; Gonzalez, A.; Sagawa, H.

    2013-09-01

    Water in the atmospheres of the outer planets has both an internal and an external source (e.g., [1] and [2] for Jupiter). These sources are separated by a condensation layer, the tropopause cold trap, which acts as a transport barrier between the troposphere and the stratosphere. Thus, the water vapor observed by the Infrared Space Observatory (ISO) in the stratosphere of the giant planets has an external origin [3]. This external supply of water may have several sources: (i) a permanent flux from interplanetary dust particles produced from asteroid collisions and from comet activity [4], (ii) local sources from planetary environments (rings, satellites) [5], (iii) cometary "Shoemaker-Levy 9 (SL9) type" impacts [6]. In the past 15 years, several studies suggested that water in the stratosphere of Jupiter originated from the SL9 comet impacts in July 1994, but a direct proof was missing. We will report the first high S/N spatially resolved mapping observations of water in Jupiter's stratosphere carried out with the Heterodyne Instrument for the Far Infrared (HIFI) [7] and Photodetector Array Camera and Spectrometer (PACS) [8] instruments onboard the ESA Herschel Space Observatory [9]. These observations have been obtained in the framework of the Guaranteed Time Key Program "Water and related chemistry in the Solar System", also known as "Herschel Solar System Observations" (HssO) [10]. In parallel, we have monitored Jupiter's stratospheric temperature with the NASA Infrared Telescope Facility (IRTF) to separate temperature from water variability. We will present the results recently published by our team [11]. Water is found to be restricted to pressures lower than 2mbar. Its column density decreases by a factor of 2-3 between southern and northern latitudes (see Fig. 1), consistently between the HIFI and the PACS 66.4μm maps. Latitudinal temperature variability cannot explain the global north-south asymmetry in the water maps. From the latitudinal and vertical

  10. Project of space research and technology center in Engelhardt astronomical observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.; Gusev, A.; Sherstukov, O.; Kascheev, R.; Zagretdinov, R.

    2012-09-01

    Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions: • EDUCATION • SCIENCE • ASTRONOMICAL TOURISM

  11. WISPIR: A Wide-Field Imaging SPectrograph for the InfraRed for the SPICA Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Mundy, Lee G.

    2010-01-01

    We have undertaken a study of a far infrared imaging spectrometer based on a Fourier transform spectrometer that uses well-understood, high maturity optics, cryogenics, and detectors to further our knowledge of the chemical and astrophysical evolution of the Universe as it formed planets, stars, and the variety of galaxy morphologies that we observe today. The instrument, Wide-field Imaging Spectrometer for the InfraRed (WISPIR), would operate on the SPICA observatory, and will feature a spectral range from 35 - 210 microns and a spectral resolving power of R=1,000 to 6,000, depending on wavelength. WISPIR provides a choice of full-field spectral imaging over a 2'x2' field or long-slit spectral imaging along a 2' slit for studies of astrophysical structures in the local and high-redshift Universe. WISPIR in long-slit mode will attain a sensitivity two orders of magnitude better than what is currently available.

  12. The role of humans and robots in the assembly of large infrared observatories

    NASA Astrophysics Data System (ADS)

    Friedman, Edward J.; Espero, Tracey

    2004-10-01

    Many authors have endorsed the concept of assembly of large optics in space and have pointed out the technology needs for astronauts, infrastructure, robots and the observatories themselves. In this paper, we consider the technical issues associated with the integration and test in space of large optics during the next 15 years or so, when human activity is largely confined to low Earth orbit (LEO). We identify technical areas that need development and define a first version of the processes that might be used to create successful telescope missions that are tested in space. We identify a pathway that supports scalable solutions for very large systems necessary for imaging planets in other solar systems and other magnificent science. The investment in space integration and testing technology will return important dividends to designers of large space optics of the future. This approach to space optics testing is attractive because it overcomes the limits of ground testing associated with large test chambers, star simulators and the effects of gravity. It also directly benefits from, and supports, the technology and infrastructure investments about to be made by the new NASA Exploration Systems Enterprise, allowing both observatories and exploration missions to be assembled.

  13. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-01-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  14. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    NASA Astrophysics Data System (ADS)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-07-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  15. Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Buie, M.

    2014-07-01

    The search for and dynamical characterization of the near-Earth population of objects (NEOs) has been a busy topic for surveys for many years. Most of the work thus far has been from ground-based optical surveys such as the Catalina Sky Survey and LINEAR. These surveys have essentially reached a complete inventory of objects down to 1 km diameter and have shown that the known objects do not pose any significant impact threat. Smaller objects are correspondingly smaller threats but there are more of them and fewer of them have so far been discovered. The next generation of surveys is looking to extend their reach down to much smaller sizes. From an impact risk perspective, those objects as small as 30--40 m are still of interest (similar in size to the Tunguska bolide). Smaller objects than this are largely of interest from a space resource or in-situ analysis efforts. A recent mission concept promoted by the B612 Foundation and Ball Aerospace calls for an infrared survey telescope in a Venus-like orbit, known as the Sentinel Mission. This wide-field facility has been designed to complete the inventory down to a 140 m diameter while also providing substantial constraints on the NEO population down to a Tunguska-sized object. I have been working to develop a suite of tools to provide survey modeling for this class of survey telescope. The purpose of the tool is to uncover hidden complexities that govern mission design and operation while also working to quantitatively understand the orbit quality provided on its catalog of objects without additional followup assets. The baseline mission design calls for a 6.5 year survey lifetime. This survey model is a statistically based tool for establishing completeness as a function of object size and survey duration. Effects modeled include the ability to adjust the field-of-regard (includes all pointing restrictions), field-of-view, focal plane array fill factor, and the observatory orbit. Consequences tracked include time

  16. ESA's X-ray space observatory XMM takes first pictures

    NASA Astrophysics Data System (ADS)

    2000-02-01

    functioning of the observatory. The Optical Monitor also simultaneously viewed the same regions. One RGS spectrometer obtained its first spectra on 25 January; the other will be commissioned at the start of February. This initial series of short and long duration exposures have delighted the Project management team and the scientists even more. First analyses confirm that the spacecraft is extremely stable, the XMM telescopes are focusing perfectly, and the EPIC cameras, Optical Monitor and RGS spectrometers are working exactly as expected. The Science Operations Centre infrastructure, processing and archiving the science data telemetry from the spacecraft, is also performing well. Initial inspection of the first commissioning images immediately showed some unique X-ray views of several celestial objects, to be presented on 9 February. The occasion will give Principal Investigators and Project management the opportunity to comment on the pictures and the excellent start of the XMM mission. The Calibration and Performance Verification phase for XMM's science instruments is to begin on 3 March, with routine science operations starting in June. Press is invited to attend to the press conference that will be held at the Villafranca/ Madrid- Vilspa facility (ESA's Satellite Tracking Station) Apartado 50727, E-2 080 MADRID, Spain. The press event will be broadcast to the other ESA establishments: ESA Headquarters, Paris; ESA/ ESTEC (Space Expo), Noordwijk, the Netherlands; ESA/ESOC, Darmstadt, Germany and ESA/ESRIN, Frascati, Italy. Media representatives wishing to attend the event are kindly requested to fill out the attached reply from and fax it back to the establishment of their choice.

  17. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    NASA Technical Reports Server (NTRS)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  18. Mosaic Infrared Sensor for Space Astronomy (MIRSSA)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of mosaic infrared detector/focal plane arrays for space astronomy is reported. The Mosaic IR Sensor for Space Astronomy (MIRSSA) Program is an effort to develop PV HgCdTe detector arrays with the spectral response of up to 5 micron and silicon CCDs for low temperature applications. Desired background-limited performance (BLIP) for space applications requires an extremely high R sub A product which can be achieved by selecting the detector materials and the operating temperature. The parameters were determined by measurement of HgCdTe PV detector arrays at various temperatures in the SW and MW spectral bands. It is demonstrated that high performance PV HgCdTe detectors can be fabricated for low temperature applications.

  19. Near-Infrared Observations of Neptune's Tropospheric Cloud Layer with the Lick Observatory Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.; Gavel, Donald; Max, Claire; de Pater, Imke; Gibbard, Seran; Macintosh, Bruce; Baines, Kevin H.

    2001-09-01

    We provide one of the first constraints on the combined infrared single-scattering albedo and opacity of Neptune's upper tropospheric cloud layer. For the observations, we used the adaptive optics system on the Lick Observatory's 3 m Shane Telescope (Mount Hamilton, California). The cloud layer is thought to be composed of H2S and extend up to 3.5-4.5 bars. Previously, the single-scattering albedo was measured in the range 0.2-0.94 μm and found to be extremely high (>0.8), but decreasing with increasing wavelength. Assuming an optically thick cloud, we find the best-fit single-scattering albedo of a 3.5 bar layer to be 0.23+0.07-0.08 at 1.27 μm and 0.18+0.03-0.04 at 1.56 μm. Uncertainties in the column density of haze above the cloud layer, and from deconvolution to remove contaminating light scattered by the point-spread function from infrared-bright features, indicate that the cloud could be even darker, but it is unlikely to be brighter than we report. The cloud particles could be brighter than we report if the total near-infrared opacity of the cloud is very low or the cloud's scattering phase function is significantly more forward-scattering at 1.2-1.6 μm than at 0.75 μm.

  20. Optical spectroscopy of comet C/2014 Q2 (Lovejoy) from the Mount Abu Infrared Observatory

    NASA Astrophysics Data System (ADS)

    Venkataramani, Kumar; Ghetiya, Satyesh; Ganesh, Shashikiran; Joshi, U. C.; Agnihotri, Vikrant K.; Baliyan, K. S.

    2016-12-01

    Spectra of comet C/2014 Q2 (Lovejoy) were taken with a low-resolution spectrograph mounted on the 0.5-m telescope at the Mount Abu Infrared Observatory (MIRO), India during 2015 January to May, covering the perihelion and post-perihelion periods. The spectra showed strong molecular emission bands (C2, C3 and CN) in January, close to perihelion. We obtained the scale-lengths for these molecules by fitting the Haser model to the observed column densities. The variations of gas production rates and production rate ratios with heliocentric distance were studied. The extent of dust continuum and its variation with heliocentric distance was also investigated using the Afρ parameter. The comet is seen to become more active in the post-perihelion phase, thus showing an asymmetric behaviour about the perihelion.

  1. Effect of jet engine exhaust on SOFIA straylight performance. [Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    St. Clair Dinger, Ann

    1993-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is being designed at NASA's Ames Research Center as a replacement for the Kuiper Airborne Observatory (KAO). A 2.5-m Nasmyth telescope will be mounted in a Boeing 747 SP and flown at 41,000 ft, above most of the H2O in the earth's atmosphere. In the original SOFIA design, the telescope is located in front of the wings, as it is in the KAO. An alternative design with the telescope placed behind the wings is being studied as part of an effort to reduce cost and weight. In this location, the emission from the engines and the hot H2O molecules in the exhaust become significant straylight sources. The engines and exhaust radiate into the telescope cavity, and illuminate the primary and tertiary mirrors at low telescope elevation angles. The APART/PADE program was used to analyze the straylight at the SOFIA focal plane as a function of wavelength and telescope elevation angle. The emission from the engines and exhaust gas is compared to that from the earth and the telescope itself. Based on the results of this analysis, the SOFIA telescope has been moved behind the wings.

  2. Aerodynamic and Acoustic Flight Test Results for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.

    2013-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.

  3. Aerodynamic and Acoustic Flight Test Results and Results for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Cliatt, Larry J.; Frederick, Michael A.

    2014-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy program, a 747SP airplane was modified to carry a 2.5-m telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the operating envelope of the airplane for astronomical observations, planned to be performed between the altitudes of 35,000 ft and 45,000 ft. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight-test results in the areas of cavity acoustics, stability and control, and air data.

  4. First extragalactic detection of submillimeter CH rotational lines from the Herschel space observatory

    SciTech Connect

    Rangwala, Naseem; Maloney, Philip R.; Glenn, Jason; Kamenetzky, Julia; Wilson, Christine D.; Schirm, Maximilien R. P.; Spinoglio, Luigi; Pereira Santaella, Miguel

    2014-06-20

    We present the first extragalactic detections of several CH rotational transitions in the far-infrared in four nearby galaxies, NGC 1068, Arp 220, M82, and NGC 253, using the Herschel Space Observatory. The CH lines in all four galaxies are a factor of 2-4 brighter than the adjacent HCN and HCO{sup +} J = 6-5 lines (also detected in the same spectra). In the star-formation-dominated galaxies, M82, NGC 253, and Arp 220, the CH/CO abundance ratio is low (∼10{sup –5}), implying that the CH is primarily arising in diffuse and translucent gas where the chemistry is driven by UV radiation as found in the Milky Way interstellar matter. In NGC 1068, which has a luminous active galactic nucleus (AGN), the CH/CO ratio is an order of magnitude higher, suggesting that CH formation is driven by an X-ray-dominated region (XDR). Our XDR models show that both the CH and CO abundances in NGC 1068 can be explained by an XDR-driven chemistry for gas densities and molecular hydrogen column densities that are well constrained by the CO observations. We conclude that the CH/CO ratio may a good indicator of the presence of AGN in galaxies. We also discuss the feasibility of detecting CH in intermediate- to high-z galaxies with ALMA.

  5. Characterization of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) ability to serve as an infrared satellite intercalibration reference

    NASA Astrophysics Data System (ADS)

    Tobin, David; Holz, Robert; Nagle, Fred; Revercomb, Henry

    2016-04-01

    Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a future mission employing an infrared spectrometer with unprecedented calibration accuracy and the ability to assess its calibration on-orbit using a novel verification system. Utilizing this capability for satellite intercalibration is a primary objective of the mission. This paper presents a new infrared intercalibration methodology that minimizes the intercalibration uncertainties and provides uncertainty estimates resulting from the scene variability and instrument noise. Results of a simulation study to characterize realistic spatial and temporal matching differences for simultaneous nadir overpasses (SNOs) of CLARREO and existing hyperspectral sounders are presented. This study, along with experience with intercalibration of real data, finds that intercalibration uncertainties are minimized when the SNOs are not screened for sky conditions but instead weighted based on the observed scene variability. Intercalibration performance is investigated for a 90° polar orbit mission and for a Pathfinder mission on the International Space Station, for various potential CLARREO footprint sizes, and as a function of mission length, scene brightness temperature, and wavelength. The results are encouraging and suggest that biases between CLARREO and sounder observations can be determined with low uncertainty and with high time frequency during a CLARREO mission. For example, the simulations suggest that a CLARREO footprint of 50 to 100 km in diameter is optimal for intercalibration, and that the 3 sigma intercalibration uncertainty is less than 0.1 K for channels at infrared window wavelengths using 2 months of accumulated SNOs, and for more absorbing channels with less scene variability the uncertainties are less than 50 mK.

  6. Features Of Cavity Flow And Acoustics Of Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Klotz, S. P.; Tu, Eugene (Technical Monitor)

    1996-01-01

    The stratospheric observatory for infrared astronomy (SOFIA) is a 2.5 meter aperture Cassegrain telescope with a Nasmyth focus that will be housed in an open cavity in the Boeing 747-SP aircraft and operated at altitudes around 41,000 feet for infrared (IR) viewing of celestial events of astronomical nature. At these altitudes the IR viewing capability of SOFIA far exceeds that of any ground based system. To minimize IR transmission losses, SOFIA will operate with an open cavity. Such an open cavity during flight creates several challenging aerodynamic and aeroacoustic design problems. Foremost of these are: the shear layer over the cavity may cause unwanted resonance if the cavity is untreated; this might give rise to excessive sound pressure levels (SPL) in the cavity and thus affect the unsteady loads on the telescope; the unsteady flow within the cavity produces large dynamic loads and moments that will impact the pointing accuracy of the telescope; the open cavity and the shear layer control devices produce additional drag that will affect directly the time of flight of the mission; the aft location of the cavity down stream of port wing will affect the the flow on the aircraft control surfaces and thus the stability of the aircraft. Also, the highly turbulent shear layer over the cavity and the temperature gradients and 'hot spots' within the cavity can produce a wave front error of the image when it reaches the focal plane of the recorder.

  7. Solar System Observing with the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Cleve, J. Van; Meadows, V. S.; Stansberry, J.

    2003-01-01

    SIRTF is NASA's Space Infrared Telescope Facility. Currently planned for launch on 15 Apr 2003, it is the final element in NASA's Great Observatories Program. SIRTF has an 85 cm diameter f/12 lightweight beryllium telescope, cooled to lekss than 5.5K. It is diffraction-limited at 6.5 microns, and has wavelengthcoverage from 3-180 microns. Its estimated lifetime (limited by cryogen) is 2.5 years at minimum, with a goal of 5+ years. SIRTF has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 microns, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 microns. MIPS (Multiband Imaging Photometer for SIRTF)} does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. The SIRTF Guaranteed Time Observers (GTOs) are planning to observe Outer Solar System satellites and planets, extinct comets and low-albedo asteroids, Centaurs and Kuiper Belt Objects, cometary dust trails, and a few active short-period comets. The GTO programs are listed in detail in the SIRTF Reserved Observations Catalog (ROC). We would like to emphasize that there remain many interesting subjects for the General Observers (GO). Proposal success for the planetary observer community in the first SIRTF GO proposal cycle (GO-1) determines expectations for future GO calls and Solar System use of SIRTF, so we would like promote a strong set of planetary GO-1 proposals. Towards that end, we present this poster, and we will convene a Solar System GO workshop 3.5 months after launch.

  8. Progress and Prospects toward a Space-based Gravitational-Wave Observatory

    NASA Technical Reports Server (NTRS)

    Baker, John

    2012-01-01

    Over the last few years there has been much activity in the effort to produce a space-based gravitational-wave observatory. These efforts have enriched the understanding of the scientific capabilities of such an observatory leading to broad recognition of its value as an astronomical instrument. At the same time, rapidly developing events in the US and Europe have lead to a more complicated outlook than the baseline Laser Interferometer Space Antenna (LISA) project plan of a few years ago. I will discuss recent progress and developments resulting from the European eLISA study and the SGO study in the US and prospects looking forward.

  9. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  10. Need for a network of observatories for space debris dynamical and physical characterization

    NASA Astrophysics Data System (ADS)

    Piergentili, Fabrizio; Santoni, Fabio; Castronuovo, Marco; Portelli, Claudio; Cardona, Tommaso; Arena, Lorenzo; Sciré, Gioacchino; Seitzer, Patrick

    2016-01-01

    Space debris represents a major concern for space missions since the risk of impact with uncontrolled objects has increased dramatically in recent years. Passive and active mitigation countermeasures are currently under consideration but, at the base of any of such corrective actions is the space debris continuous monitoring through ground based surveillance systems.At the present, many space agencies have the capability to get optical measurements of space orbiting objects mainly relaying on single observatories. The recent research in the field of space debris, demonstrated how it is possible to increase the effectiveness of optical measurements exploitation by using joint observations of the same target from different sites.The University of Rome "La Sapienza", in collaboration with Italian Space Agency (ASI), is developing a scientific network of observatories dedicated to Space Debris deployed in Italy (S5Scope at Rome and SPADE at Matera) and in Kenya at the Broglio Space Center in Malindi (EQUO). ASI founded a program dedicated to space debris, in order to spread the Italian capability to deal with different aspects of this issue. In this framework, the University of Rome is in charge of coordinating the observatories network both in the operation scheduling and in the data analysis. This work describes the features of the observatories dedicated to space debris observation, highlighting their capabilities and detailing their instrumentation. Moreover, the main features of the scheduler under development, devoted to harmonizing the operations of the network, will be shown. This is a new system, which will autonomously coordinate the observations, aiming to optimize results in terms of number of followed targets, amount of time dedicated to survey, accuracy of orbit determination and feasibility of attitude determination through photometric data.Thus, the authors will describe the techniques developed and applied (i) to implement the multi-site orbit

  11. A scientific program for infrared, submillimeter and radio astronomy from space: A report by the Management Operations Working Group

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Important and fundamental scientific progress can be attained through space observations in the wavelengths longward of 1 micron. The formation of galaxies, stars, and planets, the origin of quasars and the nature of active galactic nuclei, the large scale structure of the Universe, and the problem of the missing mass, are among the major scientific issues that can be addressed by these observations. Significant advances in many areas of astrophysics can be made over the next 20 years by implementing the outlined program. This program combines large observatories with smaller projects to create an overall scheme that emphasized complementarity and synergy, advanced technology, community support and development, and the training of the next generation of scientists. Key aspects of the program include: the Space Infrared Telescope Facility; the Stratospheric Observatory for Infrared Astronomy; a robust program of small missions; and the creation of the technology base for future major observatories.

  12. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA): Capabilities for Planetary and Exoplanetary Science

    NASA Astrophysics Data System (ADS)

    Backman, Dana E.; Reach, W. T.; Dunham, E. W.; Wolf, J.; Rho, J.; SOFIA Science Team

    2012-10-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) enables high angular and spectral resolution observations with its seven first-generation instruments: 3 cameras, 3 spectrometers, and a high-speed photometer. These capabilities make SOFIA a powerful facility for advancing understanding of planetary and exoplanetary atmospheres, star and planet formation processes, and chemistry of the protosolar nebula and protoplanetary disks. SOFIA's Early Science program, using the FORCAST mid-IR camera (PI Terry Herter, Cornell), the GREAT far-IR spectrometer (PI Rolf Guesten, MPIfR), and the HIPO occultation photometer (PI Ted Dunham, Lowell Observatory), is now complete. Some Early Science results were published in special issues of Ap.J.Letters (v.749) and Astronomy & Astrophysics (v.542). Regarding solar system targets, SOFIA obtained mid-IR images of Jupiter and of Comet 103P/Hartley 2 (the latter observations were part of Earth-based support for the EPOXI mission). On 23 June 2011, SOFIA intercepted the center of Pluto's shadow that crossed the Pacific at nearly 30 km/sec. The occultation light curve was observed from SOFIA simultaneously by the HIPO photometer and the Fast Diagnostic Camera (FDC; PI Juergen Wolf, DSI). HIPO is specifically intended for planetary science, including stellar occultations by solar system bodies and extrasolar planet transits. HIPO can be co-mounted with the near-IR camera FLITECAM (PI Ian McLean, UCLA) to provide simultaneous photometric coverage in two bands (0.3-1 and 1-5 microns); this was first demonstrated in October 2011. At longer wavelengths SOFIA will make unique contributions to the characterization of astrochemical processes and molecular contents of planets, exoplanets, and protoplanetary disks with a mid-IR spectrometer, a far-IR imaging spectrometer, and a far-IR camera with grism that are soon to be commissioned.

  13. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer / Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  14. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer/Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  15. Preliminary Parallaxes of 40 L and T Dwarfs from the US Naval Observatory Infrared Astronometry Program

    NASA Technical Reports Server (NTRS)

    Vrba, F. J.; Henden, A. A.; Liginbuhl, C. B.; Guetter, H. H.; Munn, J. A.

    2004-01-01

    We present preliminary trigonometric parallaxes and proper motions for 22 L dwarfs and 18 T dwarfs measured using the ASTROCAM infrared imager on the US naval Observatory (USNO) 1.55 m Strand Astrometric Reflector. The results presented here are based on observations obtained between 2000 September and 2002 November; about half of the objects have an observational time baseline of t 1:3 yr and half t 2:0 yr. Despite these short time baselines, the astrometric quality is sufficient to produce significant new results, especially for the nearer T dwarfs. Seven objects are in common with the USNO optical CCD parallax program for quality control and seven in common with the European Southern Observatory 3.5 m New Technology Telescope parallax program. We compare astrometric quality with both of these programs. Relative to absolute parallax corrections are made by employing Two Micron All Sky Survey and/or Sloan Digital Sky Survey photometry for reference-frame stars. We combine USNO infrared and optical parallaxes with the best available California Institute of Technology (CIT) system photometry to determine MJ , MH, and MK values for 37 L dwarfs between spectral types L0 and L8 and 19 T dwarfs between spectral types T0.5 and T8 and present selected absolute magnitude versus spectral type and color diagrams, based on these results. Luminosities and temperatures are estimated for these objects. Of special interest are the distances of several objects that are at or near the L-T dwarf boundary so that this important transition can be better understood. The previously reported early to mid T dwarf luminosity excess is clearly confirmed and found to be present at J, H, and K. The large number of objects that populate this luminosity-excess region indicate that it cannot be due entirely to selection effects. The T dwarf sequence is extended to MJ 16:9 by 2MASS J041519 0935, which, at d 5:74 pc, is found to be the lluminous LOG (L=L )pa

  16. Exploring science and technology through the Herschel space observatory

    NASA Astrophysics Data System (ADS)

    Minier, V.; Rouzé, M.

    2015-03-01

    Because modern astronomy associates the quest of our origins and high-tech instruments, communicating and teaching astronomy explore both science and technology. We report here on our work in communicating astronomy to the public through Web sites (www.herschel.fr), movies on Dailymotion (www.dailymotion.com/AstrophysiqueTV) and new ITC tools that describe interactively the technological dimension of a space mission for astrophysics.

  17. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    NASA Astrophysics Data System (ADS)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  18. Surveying the Inner Solar System with an Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Reitsema, Harold J.; Linfield, Roger P.

    2016-11-01

    We present an analysis of surveying the inner solar system for objects that may pose some threat to Earth. Most of the analysis is based on understanding the capability provided by Sentinel, a concept for an infrared space-based telescope placed in a heliocentric orbit near the distance of Venus. From this analysis, we show that (1) the size range being targeted can affect the survey design, (2) the orbit distribution of the target sample can affect the survey design, (3) minimum observational arc length during the survey is an important metric of survey performance, and (4) surveys must consider objects as small as D=15{--}30 m to meet the goal of identifying objects that have the potential to cause damage on Earth in the next 100 yr. Sentinel will be able to find 50% of all impactors larger than 40 m in a 6.5 yr survey. The Sentinel mission concept is shown to be as effective as any survey in finding objects bigger than D = 140 m but is more effective when applied to finding smaller objects on Earth-impacting orbits. Sentinel is also more effective at finding objects of interest for human exploration that benefit from lower propulsion requirements. To explore the interaction between space and ground search programs, we also study a case where Sentinel is combined with the Large Synoptic Survey Telescope (LSST) and show the benefit of placing a space-based observatory in an orbit that reduces the overlap in search regions with a ground-based telescope. In this case, Sentinel+LSST can find more than 70% of the impactors larger than 40 m assuming a 6.5 yr lifetime for Sentinel and 10 yr for LSST.

  19. (abstract) Infrared Cirrus and Future Space Based Astronomy

    NASA Technical Reports Server (NTRS)

    Gautier, T. N.

    1993-01-01

    A review of the known properties of the distribution of infrared cirrus is followed by a discussion of the implications of cirrus on observations from space. Probable limitations on space observations due to IR cirrus.

  20. Information Telecommunications of Pushchino Radio Astronomy Observatory, Astro Space Center of Lebedev Physical Institute

    NASA Astrophysics Data System (ADS)

    Dumsky, V.; Isaev, E. A.; Samodurov, V. A.; Likhachev, S. F.; Shatskaya, M. V.; Kitaeva, M. A.; Zaytcev, A. Yu.; Ovchinnikov, I. L.; Kornilov, V. V.

    Buffer data center was created in the territory of the Pushchino Radio Astronomy Observatory three years ago. The necessity of its creation was caused by the high requirements to the speed and quality of the transmission large amounts of scientific and telemetry data received by tracking station RT-22 from the space radio telescope of the international project "Radioastron". The transfer of this data is carried out over a long distance over 100 km from the Pushchino to Moscow center of processing and storage ASC FIAN. And now we use the data center as a center of local network of the Observatory.

  1. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric

    2017-01-01

    Nighttime zenith sky spectral brightness in the 3.3-20 μm wavelength region is reported for an observatory site nearby Eureka on Ellesmere Island in the Canadian High Arctic. Measurements are derived from an automated Fourier-transform spectrograph that operated there continuously over three consecutive winters. During that time, the median through the most transparent portion of the Q window was 460 {Jy} {{arcsec}}-2, falling below 32 {Jy} {{arcsec}}-2 in the N band, and to sub-Jansky levels by M and shortward, reaching only 36 {mJy} {{arcsec}}-2 within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model, allows characterization of background stability and extrapolation into K band. This suggests that the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 μ {Jy} {{arcsec}}-2 at 2.4 μm. That background is comparable to South Pole and more than an order of magnitude less than estimates for the best temperate astronomical sites, all at much higher elevation. Considerations relevant to future facilities, including for polar transient surveys, are discussed.

  2. The Virtual Space Physics Observatory: Quick Access to Data and Tools

    NASA Technical Reports Server (NTRS)

    Cornwell, Carl; Roberts, D. Aaron; McGuire, Robert E.

    2006-01-01

    The Virtual Space Physics Observatory (VSPO; see http://vspo.gsfc.nasa.gov) has grown to provide a way to find and access about 375 data products and services from over 100 spacecraft/observatories in space and solar physics. The datasets are mainly chosen to be the most requested, and include most of the publicly available data products from operating NASA Heliophysics spacecraft as well as from solar observatories measuring across the frequency spectrum. Service links include a "quick orbits" page that uses SSCWeb Web Services to provide a rapid answer to questions such as "What spacecraft were in orbit in July 1992?" and "Where were Geotail, Cluster, and Polar on 2 June 2001?" These queries are linked back to the data search page. The VSPO interface provides many ways of looking for data based on terms used in a registry of resources using the SPASE Data Model that will be the standard for Heliophysics Virtual Observatories. VSPO itself is accessible via an API that allows other applications to use it as a Web Service; this has been implemented in one instance using the ViSBARD visualization program. The VSPO will become part of the Space Physics Data Facility, and will continue to expand its access to data. A challenge for all VOs will be to provide uniform access to data at the variable level, and we will be addressing this question in a number of ways.

  3. Nanosats for a Radio Interferometer Observatory in Space

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Katsanevras, S.; Puy, D.; Bentum, M.

    2015-10-01

    During the last decades, astronomy and space physics changed dramatically our knowledge of the evolution of the Universe. However, our view is still incomplete in the very low frequency range (1- 30 MHz), which is thus one of the last unexplored astrophysical spectral band. Below 30 MHz, ionospheric fluctuations severely perturb groundbased observations. They are impossible below 10 MHz due to the ionospheric cutoff. In addition, man made radio interferences makes it even more difficult to observe from ground at low frequencies. Deploying a radio instrument in space is the only way to open this new window on the Universe. Among the many science objectives for such type of instrumentations, we can find cosmological studies such as the Dark Ages of the Universe, the remote astrophysical objects, pulsars and fast transients, the interstellar medium. The following Solar system and Planetary objectives are also very important: - Sun-Earth Interactions: The Sun is strongly influencing the interplanetary medium (IPM) and the terrestrial geospatial environment. The evolution mechanisms of coronal mass ejections (CME) and their impact on solar system bodies are still not fully understood. This results in large inaccuracies on the eruption models and prediction tools, and their consequences on the Earth environment. Very low frequency radio imaging capabilities (especially for the Type II solar radio bursts, which are linked with interplanetary shocks) should allow the scientific community to make a big step forward in understanding of the physics and the dynamics of these phenomena, by observing the location of the radio source, how they correlate with their associated shocks and how they propagate within the IPM. - Planets and Exoplanets: The Earth and the fourgiant planets are hosting strong magnetic fields producing large magnetospheres. Particle acceleration are very efficient therein and lead to emitting intense low frequency radio waves in their auroral regions. These

  4. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  5. CALET: High energy cosmic ray observatory on International Space Station

    NASA Astrophysics Data System (ADS)

    Mori, Masaki; CALET Collaboration

    2012-12-01

    The CALorimeteric Electron Telescope (CALET) is a Japanese-led international mission being developed as part of the utilization plan for the International Space Station (ISS). CALET will be launched by an H-II B rocket utilizing the Japanese developed HTV (H-II Transfer Vehicle) in 2014. The instrument will be robotically emplaced upon the Exposed Facility attached to the Japanese Experiment Module (JEM-EF). CALET is a calorimeter based instrument which will have superior energy resolution and excellent separation between hadrons and electrons and between charged particles and gamma rays in the GeV to trans-TeV energy range. CALET will address many questions in high energy astrophysics, including (1) the nature of the sources of high energy particles and photons, through the high energy electron spectrum, (2) signatures of dark matter, in either the high energy electron or gamma ray spectrum, (3) the details of particle propagation in the Galaxy, by a combination of energy spectrum measurements of electrons, protons and highercharged nuclei. In this paper the outline and current status of CALET are summarized.

  6. Spitzer Space Telescope Leads NASA's Great Observatories to Uncover Black Holes and Other Hidden Objects in the Distant Universe

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Astronomers unveiled the deepest images from NASA's new Spitzer Space Telescope today, and announced the detection of distant objects -- including several supermassive black holes -- that are nearly invisible in even the deepest images from telescopes operating at other wavelengths. Mark Dickinson, of the National Optical Astronomy Observatory in Tucson, Ariz., and Principal Investigator for the new observations, says, "With these ultra-deep Spitzer images, we are easily seeing objects throughout time and space, out to redshifts of 6 or more, where the most distant known galaxies lie. Moreover, we see some objects that are completely invisible to optical telescopes, but whose existence was hinted at by previous observations from the Chandra and Hubble Observatories." Seven of the objects detected in the Spitzer images may be part of the long-sought population of "missing" supermassive black holes that powered the bright cores of the earliest active galaxies. The discovery finally completes a full accounting of all the X-ray sources seen in one of the deepest surveys of the universe ever taken. This detective story required no less than the combined power of NASA's three Great Observatories in space -- the Hubble Space Telescope, the Chandra X-ray Observatory, and the Spitzer Space Telescope. Each observatory works with different wavelengths of electromagnetic radiation, from the high-energy X-rays that Chandra detects, through visible light with Hubble, and into the infrared with Spitzer. The combination of these telescopes yields far more information than any single instrument would. All three telescopes peered out to distances of up to 13 billion light-years toward a small patch of the southern sky containing more than 10,000 galaxies, in a coordinated project called the Great Observatories Origins Deep Survey (or GOODS, for short). Chandra images detected over two hundred X-ray sources believed to be supermassive black holes lying in the centers of young

  7. Infrared monitoring of nuclear power in space

    NASA Astrophysics Data System (ADS)

    Hafemeister, David W.

    1988-12-01

    Using parameters for unclassified astronomical observatories based on Maui and on the Kuiper Airborne Observatory, we have determined the level of confidence of monitoring a ban on nuclear power in earth orbit. Existing military and astronomical observatories can detect and identify operating nuclear power sources on satellites, such as the Soviet RORSAT and American SP100, with a very high level of confidence to distances beyond geosynchronous orbit. A cold reactor can be detected with a medium level of confidence with visual observations by close-flying reconnaissance satellites with medium confidence, and in the future with very high confidence with the interrogation of neutrons. The smaller thermal sources, RTG and DIPS, could be detected with medium level of confidence under certain conditions. Large pulsed reactors can be detected with a medium confidence level with visual observations from close satellites, and with a very high level of confidence with neutron interrogation.

  8. Site Selection and Deployment Scenarios for Servicing of Deep-Space Observatories

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Fruhwirth, Michael A.; Potter, Seth D.; Leete, Stephen J.; Moe, Rud V.

    2001-01-01

    The deep-space environment and relative transportation accessibility of the Weak Stability Boundary (WSB) region connecting the Earth-Moon and Sun-Earth libration points makes the Sun-Earth L2 an attractive operating location for future observatories. A summary is presented of key characteristics of future observatories designed to operate in this region. The ability to service observatories that operate within the region around the Lagrange points may greatly enhance their reliability, lifetime, and scientific return. The range of servicing missions might begin with initial deployment, assembly, test, and checkout. Post-assembly servicing missions might also include maintenance and repair, critical fluids resupply, and instrument upgrades. We define the range of servicing missions that can be performed with extravehicular activity, with teleoperated robots, and with autonomous robots. We then describe deployment scenarios that affect payload design. A trade study is summarized of the benefits and risks of alternative servicing sites, including at the International Space Station, at other low-Earth-orbit locations, at the Earth-Moon L1 location, and on-site at the Sun-Earth L2 location. Required technology trades and development issues for observatory servicing at each site, and with each level of autonomy, are summarized.

  9. Space-shuttle interfaces/utilization. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The economic aspects of space shuttle application to a representative Earth Observatory Satellite (EOS) operational mission in the various candidate Shuttle modes of launch, retrieval, and resupply are discussed. System maintenance of the same mission capability using a conventional launch vehicle is also considered. The studies are based on application of sophisticated Monte Carlo mission simulation program developed originally for studies of in-space servicing of a military satellite system. The program has been modified to permit evaluation of space shuttle application to low altitude EOS missions in all three modes. The conclusions generated by the EOS system study are developed.

  10. Exploration an the Search for Origins: A Vision for Ultraviolet-Optical-Infrared Space Astronomy

    NASA Technical Reports Server (NTRS)

    Dressler, Alan (Editor); Brown, Robert A.; Davidsen, Arthur F.; Ellis, Richard S.; Freedman, Wendy L.; Green, Richard F.; Hauser, Michael G.; Kirshner, Robert P.; Kulkarni, Shrinivas; Lilly, Simon J.; Margon, Bruce H.; Porco, Carolyn C.; Richstone, Douglas O.; Stockman, H. S.; Thronson, Harley A., Jr.; Tonry, John L.; Truran, James; Weiler, Edward J.

    1996-01-01

    Public support and enthusiasm for astronomy have been strong in the final decades of the twentieth century. Nowhere is this better demonstrated than with the Hubble Space Telescope (HCT), a grand endeavor, which is enabling astronomers to make giant strides in understanding our universe, our place in it, and our relation to it. The NASAs first infrared observatory, the Space Infrared Telescope Facility (SIRTF), promises to take the crucial next steps towards understanding the formation of stars and galaxies. Toward their completion, the HST and Beyond Committee identifies major goals, whose accomplishment will justify a commitment well into the next century: (1) the detailed study of the birth and evolution of normal galaxies such as the Milky Way; (2) the detection of Earth-like planets around other stars and the search for evidence of life on them; (3) NASA should develop a space observatory of aperture 4m or larger, optimized for imaging and spectroscopy over the wavelength range 1-5 microns; and (4) NASA should develop the capability for space interferometry.

  11. Great science observatories in the space station era and OWL efforts in Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshiyuki

    1998-06-01

    A concept of ``Space Factory'' on the International Space Station Alpha (ISSA) is described. By following the four great observatories that purposefully took advantage of the Space Transportation System (STS), the next generation of great observatories is considered. These new astronomical projects require a very large optical telescope whose diameter is of the order of 10 m. Space telescope of this size will require careful assembly and tuning by astronauts on orbit before deployment. Once built, it could visualize the universe to the earliest galaxies, and could explore the earth-like planet in other star-system. The ``Space Factory'' would permit other large-scale observatories for construction in space. A step-by-step advancement of the ``Space Factory'' is conceived by including four or five frontier astrophysics programs. Less demanding experiments would precede the construction project of the most demanding optical telescope. A study in Japan to observe the highest energy cosmic rays from space is synchronized with those being carried out by the OWL team in the USA and the AIRWATCH team in Italy. The Japanese efforts are coordinated in a larger program study of the Space SUBARU, which envisages a plan of orbital construction, fine-tuning and eventual deployment of large scale astrophysical instruments into the desired free-flying orbit. A space observatory of the highest energy cosmic rays can be maximized by a cluster of 6 or 7 units of the wide-angle OWL telescopes, each having a field-of-view (FOV) of ~60°. The ultimate viewing area could be up to 6,000 km×6,000 km, the entire horizon for a 1000 km orbit. Within this large detection area about 105 cosmic hadronic events at above 1020 eV would be observed in a year. It also makes possible to observe the highest energy neutrinos from the known source mechanisms; including cosmic photo-production. Neutrino events from Topological Defects, Gamma Ray Burst fireballs and Blazers are observable as frequently

  12. The National Solar Observatory Digital Library - a resource for space weather studies

    NASA Astrophysics Data System (ADS)

    Hill, F.; Erdwurm, W.; Branston, D.; McGraw, R.

    2000-09-01

    We describe the National Solar Observatory Digital Library (NSODL), consisting of 200GB of on-line archived solar data, a RDBMS search engine, and an Internet HTML-form user interface. The NSODL is open to all users and provides simple access to solar physics data of basic importance for space weather research and forecasting, heliospheric research, and education. The NSODL can be accessed at the URL www.nso.noao.edu/diglib.

  13. Grand Observatory

    NASA Astrophysics Data System (ADS)

    Young, Eric W.

    2002-01-01

    Various concepts have been recently presented for a 100 m class astronomical observatory. The science virtues of such an observatory are many: resolving planets orbiting around other stars, resolving the surface features of other stars, extending our temporal reach back toward the beginning (at and before stellar and galactic development), improving on the Next Generation Space Telescope, and other (perhaps as yet) undiscovered purposes. This observatory would be a general facility instrument with wide spectral range from at least the near ultraviolet to the mid infrared. The concept espoused here is based on a practical, modular design located in a place where temperatures remain (and instruments could operate) within several degrees of absolute zero with no shielding or cooling. This location is the bottom of a crater located near the north or south pole of the moon, most probably the South Polar Depression. In such a location the telescope would never see the sun or the earth, hence the profound cold and absence of stray light. The ideal nature of this location is elaborated herein. It is envisioned that this observatory would be assembled and maintained remotely through the use of expert robotic systems. A base station would be located above the crater rim with (at least occasional) direct line-of-sight access to the earth. Certainly it would be advantageous, but not absolutely essential, to have humans travel to the site to deal with unexpected contingencies. Further, observers and their teams could eventually travel there for extended observational campaigns. Educational activities, in general, could be furthered thru extended human presence. Even recreational visitors and long term habitation might follow.

  14. The World Space Observatory–UV Project as a Tool for Exoplanet Science

    NASA Astrophysics Data System (ADS)

    Shustov, Boris M.; Sachkov, Mikhail E.; Bisikalo, Dmitry V.; de Castro, Ana-Ines Gómez

    During last three decades, astronomers have had practically continuous access to the 100-300 nm spectral range that is unreachable with ground-based instruments but where astrophysical processes can be efficiently studied with unprecedented capability. The successful International Ultraviolet Explorer (IUE) observatory, Russian ASTRON mission and successor instruments such as the COS and STIS spectrographs on-board the Hubble Space Telescope (HST) demonstrate the major impact that observations in the UV wavelength range have had on modern astronomy. Many exoplanetary studies have been performed in the UV domain, both Far-UV and Near-UV. This spectral region contains many resonance lines of common elements, including Ly α, which provided a unique possibility to study physical and chemical properties of planetary atmospheres. Future access to space-based observatories is expected to be very limited. For the next decade, the post-HST era, the World Space Observatory UltraViolet (WSO-UV) will be the only large telescope class mission for UV observations, both spectroscopic and imaging. In its potential, the WSO-UV mission is similar to the HST, but all the observing time will be available for UV astronomy. In this chapter, we briefly outline the WSO-UV mission model, instrumentation description, science management plan as well as some of the key science issues that WSO-UV will address during its lifetime. This information should help exoplanet researchers to start to prepare their future observations with WSO-UV.

  15. Diverse Electron-Induced Optical Emissions from Space Observatory Materials at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Dennison, J.R.; Jensen, Amberly Evans; Wilson, Gregory; Dekany, Justin; Bowers, Charles W.; Meloy, Robert

    2013-01-01

    Electron irradiation experiments have investigated the diverse electron-induced optical and electrical signatures observed in ground-based tests of various space observatory materials at low temperature. Three types of light emission were observed: (i); long-duration cathodoluminescence which persisted as long as the electron beam was on (ii) short-duration (<1 s) arcing, resulting from electrostatic discharge; and (iii) intermediate-duration (100 s) glow-termed "flares". We discuss how the electron currents and arcing-as well as light emission absolute intensity and frequency-depend on electron beam energy, power, and flux and the temperature and thickness of different bulk (polyimides, epoxy resins, and silica glasses) and composite dielectric materials (disordered SiO2 thin films, carbon- and fiberglass-epoxy composites, and macroscopically-conductive carbon-loaded polyimides). We conclude that electron-induced optical emissions resulting from interactions between observatory materials and the space environment electron flux can, in specific circumstances, make significant contributions to the stray light background that could possibly adversely affect the performance of space-based observatories.

  16. The international space station as an observatory for cosmic-ray physics and astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    1999-01-01

    The International Space Station is an ideal platform for observing cosmic rays. Furthermore, it can readily accommodate the instrumentation needed to address all of the top-priority science objectives identified in 1995 by the National Academy of Sciences for ``Plasma Processes that Accelerate Very Energetic Particles and Control Their Propagation.'' These objectives are synergistic in their pursuit of the illusive goal of understanding the origin, acceleration, and propagation of the cosmic radiation. A distributed observatory on the International Space Station may be the key to answering this long-standing question in the first decade of the new millennium.

  17. Application of Compressive Sensing to Gravitational Microlensing Data and Implications for Miniaturized Space Observatories

    NASA Technical Reports Server (NTRS)

    Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.

  18. A Global Upper Atmosphere Observatory Using of Lidar on the International Space Station

    NASA Technical Reports Server (NTRS)

    Clemmons, J. H.; Beck, S. M.; Hecht, J. H.; Corey, C. F.; McLeroy, J. C.; Ferrone, K. L.; Spann, J. F.; Swenson, G. R.; Janches, D.; Giles, B.; Krainak, M.; Yu, A.; Jones, S.

    2014-01-01

    A concept for hosting a lidar facility for the upper atmosphere on the International Space Station (ISS) is presented and discussed. The concept is based on utilizing an existing Large Space Optics mirror having a 2.37-m aperture as the primary mirror in its receiver. This large aperture provides for hosting several transmitter systems to retrieve density, temperature, and wind measurements for several upper atmospheric species. Thus the concept provides for measurements over a wide altitude range (80-600 km), at various time and spatial resolutions, and hosting on the ISS provides nearly global coverage. The baseline concept includes transmitters and receivers for atomic oxygen (80-500 km), metastable helium (400-600 km), and sodium (80-110 km). The facility is conceived as being flexible such that other transmitter/receiver systems could be added to allow the possibility of other species to be studied, such as iron. The presentation discusses the transformative science that would be gained by such an observatory by combining the nearly global coverage afforded by the ISS orbit with the extension of powerful lidar techniques to high altitudes. The challenges in realizing such an observatory are discussed, as are current plans and partnerships to meet those challenges. The presentation also reports on the development status of several components, primarily various independent transmitter/receiver systems, that are under consideration for the baseline observatory. Several institutions are performing these developments.

  19. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    NASA Astrophysics Data System (ADS)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  20. Earth Observatory Satellite system definition study. Report no. 6: Space shuttle interfaces/utilization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The impacts of achieving compatibility of the Earth Observatory Satellite (EOS) with the space shuttle and the potential benefits of space shuttle utilization are discussed. Mission requirements and mission suitability, including the effects of multiple spacecraft missions, are addressed for the full spectrum of the missions. Design impact is assessed primarily against Mission B, but unique requirements reflected by Mission A, B, and C are addressed. The preliminary results indicated that the resupply mission had the most pronounced impact on spacecraft design and cost. Program costs are developed for the design changes necessary to achieve EOS-B compatibility with Space Shuttle operations. Non-recurring and recurring unit costs are determined, including development, test, ground support and logistics, and integration efforts. Mission suitability is addressed in terms of performance, volume, and center of gravity compatibility with both space shuttle and conventional launch vehicle capabilities.

  1. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  2. Space Infrared Astronomy in the 21st Century

    NASA Technical Reports Server (NTRS)

    Mather, John C.; Fisher, Richard (Technical Monitor)

    2000-01-01

    New technology and design approaches have enabled revolutionary improvements in astronomical observations from space. Worldwide plans and dreams include orders of magnitude growth in sensitivity and resolution for all wavelength ranges, and would give the ability to learn our history, from the Big Bang to the conditions for life on Earth. The Next Generation Space Telescope, for example, will be able to see the most distant galaxies as they were being assembled from tiny fragments. It will be 1/4 as massive as the Hubble, with a mirror 3 times as large, cooled to about 30 Kelvin to image infrared radiation. I will discuss plans for NGST and hopes for future large space telescopes, ranging from the Space UV Optical (SUVO) telescope to the Filled Aperture Infrared (FAIR) Telescope, the Space Infrared Interferometric Telescope (SPIRIT), and the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS).

  3. High-performance wobbling subreflector for the Millimetre and Infrared Testa Grigia Observatory 2.6-m telescope

    NASA Astrophysics Data System (ADS)

    Mainella, Gianni; de Bernardis, Paolo; de Petris, Marco; Mandiello, Alfonso; Perciballi, Maurizio; Romeo, Gianni

    1996-05-01

    The Millimetre and Infrared Testa Grigia Observatory 2.6-m Cassegrain telescope has been designed to allow high-sensitivity observations in the millimeter spectral range. For this purpose, in order to reduce unwanted contributions from local foregrounds, we adopted a sky-chopping technique, by wobbling the telescope subreflector. We describe the design and performance of the wobbling system, which can endure external forced two and three fields square-wave modulation and includes features such as high frequency, high amplitude, high duty cycle, low microphonics, and high stability. millimeter-wave telescope.

  4. Cryogenic performance of the space infrared optical payload

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Tan, Fanjiao; Zhang, Wei; Liu, Mingdong; Wang, Haipeng

    2016-10-01

    A model as well as the methodology is proposed to analyze the cryogenic performance of space infrared optical payload. And the model is established from two aspects: imaging quality and background radiation. On the basis of finite element analysis, the deformation of optical surface in cryogenic environment is characterized by Zernike polynomials, and then, the varying pattern of MTF of space cryogenic optical payload could be concluded accordingly. Then from the theory of thermal radiative transfer, the temperature distribution and the deformation of the optical payload under the action of inertial load and thermal load are analyzed based on the finite element method, and the spontaneous radiation and scattering properties of the optical surface and shielding factors between the opto-mechanical structure are considered to establish the radiation calculation model. Furthermore, the cryogenic radiation characteristics of the space infrared optical payload are obtained by the radiation calculation model. Finally, experiments are conducted using an actual off-axis TMA space infrared optical payload. And the results indicate that the background radiation of the space infrared optical payload is decreased by 79% while 33% for MTF at the thermal control temperature of 240K. In this circumstance, the system background radiation is effectively suppressed and the detection sensitivity of the optical payload is improved as well, while the imaging quality is acceptable. The model proposed in this paper can be applied to the analyzing cryogenic properties of space infrared optical payload, and providing theoretical guidance for the design and application of the space cryogenic optical payload.

  5. The Space Infrared Interferometric Telescope (SPIRIT): The Mission Design Solution Space and the Art of the Possible

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Hyde, T. Tupper; Rinehart, Stephen A.; Weiss, Michael

    2008-01-01

    Although the Space Infrared Interferometric Telescope (SPIRIT) was studied as a candidate NASA Origins Probe mission, the real world presents a broader set of options, pressures, and constraints. Fundamentally, SPIRIT is a far-IR observatory for high-resolution imaging and spectroscopy designed to address a variety of compelling scientific questions. How do planetary systems form from protostellar disks, dousing some planets in water while leaving others dry? Where do planets form, and why are some ice giants while others are rocky? How did high-redshift galaxies form and merge to form the present-day population of galaxies? This paper takes a pragmatic look at the mission design solution space for SPIRIT, presents Probe-class and facility-class mission scenarios, and describes optional design changes. The costs and benefits of various mission design alternatives are roughly evaluated, giving a basis for further study and to serve as guidance to policy makers.

  6. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; Shaklan, Stuart B.; Stahl, H. Philip; Thronson, Harley A.

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  7. Constraint-based integration of planning and scheduling for space-based observatory management

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven F.

    1994-01-01

    Progress toward the development of effective, practical solutions to space-based observatory scheduling problems within the HSTS scheduling framework is reported. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) short-term observation scheduling problem. The work was motivated by the limitations of the current solution and, more generally, by the insufficiency of classical planning and scheduling approaches in this problem context. HSTS has subsequently been used to develop improved heuristic solution techniques in related scheduling domains and is currently being applied to develop a scheduling tool for the upcoming Submillimeter Wave Astronomy Satellite (SWAS) mission. The salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research are summarized. Then, some key problem decomposition techniques underlying the integrated planning and scheduling approach to the HST problem are described; research results indicate that these techniques provide leverage in solving space-based observatory scheduling problems. Finally, more recently developed constraint-posting scheduling procedures and the current SWAS application focus are summarized.

  8. Coordinated study of Solar-Terrestrial Observatory (STO) payloads on space station

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Since the publication of the final report of the science study group in October 1984 on the Solar Terrestrial Observatory (STO), its science goals and objectives have been clearly defined and a conceptual design and analysis was carried out by MSFC/NASA. Plans for the possible placing of the STO aboard the Space Station were made. A series of meetings for the STO science study group were held to review the instruments to be placed on the initial STO at Space Station IOC, and the placement of these instruments on the manned space station, polar platform, and the co-orbiting platform. A summary of these initial STO instruments is presented in Section 2. A brief description of the initial plan for the placement of STO instruments is included in Section 3. Finally, in Section 4, the scenario for the operation of the STO is discussed. These results were obtained from the report of the Solar Terrestrial Observatory mini-workshop held at MSFC on 6 June 1985.

  9. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    NASA Astrophysics Data System (ADS)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  10. High Stability Low Scatter Telescope for a Space-based Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    Livas, Jeffrey; Sankar, Shannon

    2017-01-01

    A laser interferometer space-based gravitational wave observatory requires an optical telescope to efficiently transfer laser light between pairs of widely-separated sciencecraft. The application is precision interferometric metrology, and therefore requires the telescope to have high optical pathlength stability, and low scattered light performance. We discuss the expected on-orbit environment and present the latest design, including materials choice trades, surface roughness and cleanliness requirements, and an optical prescription optimized to reduce scattered light. We will also discuss some of the remaining system-level trades. This work is supported by NASA Strategic Astrophysics Technology grant 14-SAT14-0014.

  11. Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.

    2011-01-01

    The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.

  12. An analysis of water in galactic infrared sources using the NASA Lear Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Hilgeman, T.

    1979-01-01

    The Michelson interferometer system on the NASA Lear Jet Airborne Observatory is described as well as the data reduction procedures. The objects observed (standard stars, M stars, a nebula, planets, and the moon) are discussed and the observing parameters are listed for each flight date. The spectra obtained from these data flights are presented, grouped by class of object.

  13. A Technical Overview and Description of SOFIA (Stratospheric Observatory for Infrared Astronomy)

    NASA Technical Reports Server (NTRS)

    Kunz, Nans

    2003-01-01

    This paper provides a technical overview of SOFIA, a unique airborne observatory, from an engineering perspective. It will do this by describing several of the systems of this observatory that are common with mountain top ground based observatories but mostly emphasize those more unique features and systems that are required to facilitate world class astronomy from a highly modified Boeing 747-SP flying at Mach 0.84 in the Stratosphere. This paper provides a technical overview of SOFIA by reviewing each of the performance specifications (the level one requirements for development) and describing some of the technical advancements for the telescope as well as the platform required to achieve these performance specifications. The technical advancements involved include mirror technologies, control system features, the telescope suspension system, and the aircraft open port cavity with associated cavity door that opens in flight and tracks the telescope elevation angle. For background this paper will provide a brief programmatic overview of the SOFIA project including the joint project arrangement between the US and Germany (NASA and DLR). Additionally, this paper will describe the up to date status of the development of SOFIA as the Observatory nears the date of the first test flight in the summer of 2004.

  14. The Footprint Database and Web Services of the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Dobos, László; Varga-Verebélyi, Erika; Verdugo, Eva; Teyssier, David; Exter, Katrina; Valtchanov, Ivan; Budavári, Tamás; Kiss, Csaba

    2016-10-01

    Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data

  15. Chalcogenide Glass Fibers for Infrared Sensing and Space Optics

    NASA Astrophysics Data System (ADS)

    Bureau, Bruno; Maurugeon, Sébastien; Charpentier, Frederic; Adam, Jean-Luc; Boussard-Plédel, Catherine; Zhang, Xiang-Hua

    This review deals with chalcogenide glasses and fibers. Chemical compositions and physical properties are given for specific glasses well suited for fiber drawing. Fabrication techniques of glass perform are described. Single-index and step-index single-mode fibers are characterized in terms of optical losses in the infrared. Examples of applications of chalcogenide fibers are given, as well as optical sensors in the fields of environment, microbiology and health, and as mode-filters for infrared interferometry in space.

  16. Virtual Observatories for Space Physics Observations and Simulations: New Routes to Efficient Access and Visualization

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2005-01-01

    New tools for data access and visualization promise to make the analysis of space plasma data both more efficient and more powerful, especially for answering questions about the global structure and dynamics of the Sun-Earth system. We will show how new existing tools (particularly the Virtual Space Physics Observatory-VSPO-and the Visual System for Browsing, Analysis and Retrieval of Data-ViSBARD; look for the acronyms in Google) already provide rapid access to such information as spacecraft orbits, browse plots, and detailed data, as well as visualizations that can quickly unite our view of multispacecraft observations. We will show movies illustrating multispacecraft observations of the solar wind and magnetosphere during a magnetic storm, and of simulations of 3 0-spacecraft observations derived from MHD simulations of the magnetosphere sampled along likely trajectories of the spacecraft for the MagCon mission. An important issue remaining to be solved is how best to integrate simulation data and services into the Virtual Observatory environment, and this talk will hopefully stimulate further discussion along these lines.

  17. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Carbone, L.; Cavalleri, A.; Cesarini, A.; Ciani, G.; Congedo, G.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; De Rosa, R.; Diaz-Aguiló, M.; Di Fiore, L.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; García Marín, A. F.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Guzmán, F.; Grado, A.; Grimani, C.; Grynagier, A.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johann, U.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Madden, S.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Monsky, A.; Nicolodi, D.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Raïs, B.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sanjuán, J.; Sarra, P.; Schleicher, A.; Shaul, D.; Slutsky, J.; Sopuerta, C. F.; Stanga, R.; Steier, F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Tröbs, M.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wand, V.; Wanner, G.; Ward, H.; Warren, C.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zambotti, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2016-06-01

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ±0.1 fm s-2/√{Hz } , or (0.54 ±0.01 ) ×10-15 g/√{Hz } , with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ±0.3 ) fm /√{Hz } , about 2 orders of magnitude better than requirements. At f ≤0.5 mHz we observe a low-frequency tail that stays below 12 fm s-2/√{Hz } down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  18. Space infrared telescope pointing control system. Automated star pattern recognition

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Vanbezooijen, R. W. H.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.

  19. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  20. Plans for a Next Generation Space-Based Gravitational-Wave Observatory (NGO)

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Stebbins, Robin T.; Jennrich, Oliver

    2012-01-01

    The European Space Agency (ESA) is currently in the process of selecting a mission for the Cosmic Visions Program. A space-based gravitational wave observatory in the low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum is one of the leading contenders. This low frequency band has a rich spectrum of astrophysical sources, and the LISA concept has been the key mission to cover this science for over twenty years. Tight budgets have recently forced ESA to consider a reformulation of the LISA mission concept that wi" allow the Cosmic Visions Program to proceed on schedule either with the US as a minority participant, or independently of the US altogether. We report on the status of these reformulation efforts.

  1. Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley

    2016-10-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.

  2. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    NASA Astrophysics Data System (ADS)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  3. Building a new space weather facility at the National Observatory of Athens

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis; Belehaki, Anna; Tsiropoula, Georgia; Tsagouri, Ioanna; Anastasiadis, Anastasios; Papaioannou, Athanasios

    2016-01-01

    The PROTEAS project has been initiated at the Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS) of the National Observatory of Athens (NOA). One of its main objectives is to provide observations, processed data and space weather nowcasting and forecasting products, designed to support the space weather research community and operators of commercial and industrial systems. The space weather products to be released by this facility, will be the result of the exploitation of ground-based, as well as space-borne observations and of model results and tools already available or under development by IAASARS researchers. The objective will be achieved through: (a) the operation of a small full-disk solar telescope to conduct regular observations of the Sun in the H-alpha line; (b) the construction of a database with near real-time solar observations which will be available to the community through a web-based facility (HELIOSERVER); (c) the development of a tool for forecasting Solar Energetic Particle (SEP) events in relation to observed solar eruptive events; (d) the upgrade of the Athens Digisonde with digital transceivers and the capability of operating in bi-static link mode and (e) the sustainable operation of the European Digital Upper Atmosphere Server (DIAS) upgraded with additional data sets integrated in an interface with the HELIOSERVER and with improved models for the real-time quantification of the effects of solar eruptive events in the ionosphere.

  4. New Concepts for Far-Infrared and Submillimeter Space Astronomy

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J. (Editor); Leisawitz, David T. (Editor)

    2004-01-01

    The Second Workshop on New Concepts for Far-Infrared and Submillimeter Space Astronomy aimed to highlight the groundbreaking opportunities available for astronomical investigations in the far-infrared to submillimeter using advanced, space-based telescopes. Held at the University of Maryland on March 7-8, 2002, the Workshop was attended by 130 participants from 50 institutions, and represented scientists and engineers from many countries and with a wide variety of experience. The technical content featured 17 invited talks and 44 contributed posters, complemented by two sixperson panels to address questions of astronomy and technology.

  5. Charting the Winds that Change the Universe, II: The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Benford, D. J.; Harvey, P. M.; Lawrence, C. R.; Leisawitz, D. T.; Lester, D. F.; Mather, J. C.; Stacey, G. J.; Werner, M. W.; Yorke, H. W.

    2004-01-01

    SAFIR will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  6. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  7. Space applications of superconductivity - Microwave and infrared detectors

    NASA Technical Reports Server (NTRS)

    Hamilton, C. A.

    1980-01-01

    This is the fifth of a seven part series on the potential applications of superconductivity in space. The potential of superconducting microwave and infrared detectors for space applications is reviewed. The devices considered include bolometers, super-Schottky diodes and Josephson junctions operating as oscillators, mixers, and parametric amplifiers. In each case the description includes the physical mechanism, theoretical limits and the current state of the art for the superconducting device as well as its nonsuperconducting competitors.

  8. Infrared Spectroscopic Data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), SDSS-III Data Release 10

    DOE Data Explorer

    Sloan Digital Sky Survey (SDSS) Data Release 10 is the first spectroscopic release from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), including spectra and derived stellar parameters for more than 50,000 stars. APOGEE is an ongoing survey of ~100,000 stars accessing all parts of the Milky Way. By operating in the infrared (H-band) portion of the electromagnetic spectrum, APOGEE is better able to detect light from stars lying in dusty regions of the Milky Way than surveys conducted in the optical, making this survey particularly well-suited for exploring the Galactic disk and bulge. APOGEE's high resolution spectra provide detailed information about the stellar atmospheres; DR10 provides derived effective temperatures, surface gravities, overall metallicities, and information on the abundances of several chemical elements. [copied from http://www.sdss3.org/dr10/irspec/

  9. Report of the infrared, ultraviolet and space plasma panels

    NASA Technical Reports Server (NTRS)

    Lehmann, J.; Tanner, S. G. (Editor); Wilkerson, T. (Editor)

    1983-01-01

    The status of the payload bay and the needs of infrared, ultraviolet and space plasma experiments were discussed. Those measurements important in each area were reviewed. Issues of concern and how these environmental conditions might impact experiments were considered. Several common issues were revealed, and recommendations were made.

  10. Monitoring the Near-infrared Volcanic Flux from Io's Jupiter-facing Hemisphere from Fan Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Skrutskie, Michael F.; Nelson, Matthew J.; Schmidt, Carl

    2016-10-01

    Fan Mountain Observatory, near Charlottesville, Virginia, is a dark-sky site that supports a number of telescopes including a 31-inch reflecting telescope equipped with a 1024x1024 HgCdTe 1-2.5 um (YJHK) imager. Reflected sunlight ordinarily overwhelms Io's comparatively weak K-band (2.0-2.4 um) volcanic emission in unresolved observations, however when Io is eclipsed in Jupiter's shadow even a small infrared-equipped telescope can detect Io's volcanic emission. The Fan Mountain Infrared Camera observed Io in eclipse at regular intervals, typically weekly, during the few months before and after Jupiter's March 2016 opposition. When in eclipse Io's Jupiter-facing hemisphere is oriented toward Earth with sub-Earth longitudes at the time of observation ranging from 345 - 360 degrees (pre-opposition) to 0 - 15 degrees (post-opposition). A K-band filter (2.04-2.42 um) provided a bulk measurement of Io's volcanic flux weighted largely toward the 2.4 um end of this filter given the typical 500K color temperature of the volcanic emission. Most epochs also included observation in a narrowband filter centered at 2.12 um that, when combined with the broadband "long" wavelength measurement, provided a proxy for color temperature. The K-band flux of Io varied by more than 2 magnitudes during the 7 month observation interval. The [2.12 um - K-band] color of the emission strongly correlated with the K-band flux in the expected sense that the color temperature of the emission increased when Io's broadband volcanic flux was the greatest. One epoch of TripleSpec near-IR Io eclipse spectroscopy (0.90 - 2.45 um; R~3000) from the Apache Point Observatory 3.5-meter telescope provided ground truth for transforming the filter photometry into quantitative temperatures.

  11. The Distribution of Neutron Absorbing Time in the Neutron Detector of the GAMMA-400 Space Observatory

    NASA Astrophysics Data System (ADS)

    Gnezdilov, I. I.; Mukhin, V. I.; Demichev, M. A.

    The neutron detectors (ND) have been designed for the future GAMMA-400 space observatory with 3He-counters and 6LiF/ZnS(Ag) scintillation screens. The ND contribution in the rejection factor for protons in the GAMMA-400 is considered with significantly different number of neutrons generated in the electromagnetic and hadronic cascades. The ND is predominantly made from polyethylene, it has sizes of 100×100×10 cm3. GEANT4 simulation was obtained by the differential distribution of neutron absorbing time as the function of the registration time for different 3He, 6Li concentration. Nomograms were constructed for determining neutrons miscount depending on the number of neutrons crossing the ND and time resolution of the ND. The simulation results showed that the ND with 33 3He-counters detected the neutron fluence 0.23 n/cm2 without neutrons miscount.

  12. Space Acquisitions: Space Based Infrared System Could Benefit from Technology Insertion Planning

    DTIC Science & Technology

    2015-04-01

    insertion—in the Space Based Infrared System (SBIRS) geosynchronous earth orbit (GEO) satellites 5 and 6. However, the assessment was limited in the number...GAO Contact and Staff Acknowledgments 20 Figures Figure 1: Example of a Single Geosynchronous Earth Orbit (GEO) Satellite Field of View 4 Figure 2...System Geosynchronous Earth Orbit Satellite Components 7 Figure 4: Timeline of Space Based Infrared System (SBIRS) Program Events and Efforts to

  13. Heliophysics/Geospace System Observatory: System level science by large-scale space-ground coordination

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Angelopoulos, V.; Moore, T. E.; Samara, M.

    2015-12-01

    Recent multi-satellite and ground-based network measurements have revealed importance of cross-scale and cross-regional coupling processes for understanding key issues in geospace such as magnetic reconnection, substorms and particle acceleration. In particular, localized and fast plasma transport in a global scale has been recognized to play a fundamental role in regulating evolution of the magnetosphere-ionosphere-thermosphere coupling. Those results call for coordinated measurements multi-missions and facilities in a global scale for understanding global coupling processes in a system level. In fact, the National Research Council recommends to use NASA's existing heliophysics flight missions and NSF's ground-based facilities by forming a network of observing platforms that operate simultaneously to investigate the solar system. This array can be thought of as a single observatory, the Heliophysics/Geospace System Observatory (H/GSO). Motivated by the successful launch of MMS and the healthy status of THEMIS, Van Allen Probes and other missions, we plan a strategic use of existing and upcoming assets in space and ground in the next two years. In the 2015-2016 and 2016-2017 northern winter seasons, MMS will be in the dayside over northern Europe, and THEMIS will be in the nightside over North America. In the 2016 and 2017 southern winter seasons, THEMIS will be in the dayside over the South Pole, and MMS will be in the nightside in the Australian sector. These are favorable configurations for simultaneous day-night coupling measurements of magnetic reconnection and related plasma transport both in space and on the ground, and also provide excellent opportunities for cross-scale coupling, global effects of dayside transients, tail-inner magnetosphere coupling, and other global processes. This presentation will give the current status and plan of the H/GSO and these science targets.

  14. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Bassan, M; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Caleno, M; Carbone, L; Cavalleri, A; Cesarini, A; Ciani, G; Congedo, G; Cruise, A M; Danzmann, K; de Deus Silva, M; De Rosa, R; Diaz-Aguiló, M; Di Fiore, L; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fichter, W; Fitzsimons, E D; Flatscher, R; Freschi, M; García Marín, A F; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Guzmán, F; Grado, A; Grimani, C; Grynagier, A; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Johann, U; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C J; Lobo, J A; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Madden, S; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Monsky, A; Nicolodi, D; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Raïs, B; Ramos-Castro, J; Reiche, J; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sanjuán, J; Sarra, P; Schleicher, A; Shaul, D; Slutsky, J; Sopuerta, C F; Stanga, R; Steier, F; Sumner, T; Texier, D; Thorpe, J I; Trenkel, C; Tröbs, M; Tu, H B; Vetrugno, D; Vitale, S; Wand, V; Wanner, G; Ward, H; Warren, C; Wass, P J; Wealthy, D; Weber, W J; Wissel, L; Wittchen, A; Zambotti, A; Zanoni, C; Ziegler, T; Zweifel, P

    2016-06-10

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15}  g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  15. Community Plan for Far-Infrared/Submillimeter Space Astronomy

    NASA Technical Reports Server (NTRS)

    Ade, Peter; Akeson, Rachel; Ali, Shafinaz; Amato, Michael; Arendt, Richard; Baker, Charles; Benford, Dominic; Blain, Andrew; Bock, James; Borne, Kirk

    2004-01-01

    This paper represents the consensus view of the 124 participants in the Second Workshop on New Concepts for Far-Infrared/Submillimeter Space Astronomy.We recommend that NASA pursue the vision for far-IR astronomy outlined in the NAS Decadal Survey, which said: A rational coordinated program for space optical and infrared astronomy would build on the experience gained with NGST1 to construct [a JWST-scale filled-aperture far-IR telescope SAFIR, and then ultimately, in the decade 2010 to 2020, build on the SAFIR, TPF, and SIM experience to assemble a space-based, far-infrared interferometer. SAFIR will study star formation in the young universe, the buildup of elements heavier than hydrogen over cosmic history, the process of galaxy formation, and the early phases of star formation, which occur behind a veil of dust that precludes detection at mid IR and shorter wavelengths. The far-infrared interferometer will resolve distant galaxies to study protogalaxy interactions and mergers and the processes that led to enhanced star formation activity and the formation of Active Galactic Nuclei, and will resolve protostars and debris disks in our Galaxy to study how stars and planetary systems form.

  16. Effect of space exposure on pyroelectric infrared detectors (A0135)

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Clark, I. O.; Crouch, R. K.

    1984-01-01

    The effects of long-duration space exposure and launch environment on the performance of pyroelectric detectors which is important for the prediction of performance degradation, setting exposure limits, or determining shielding requirements was investigated. Air pollution monitoring and thermal mapping of the Earth, which includes the remote sensing of aerosols and limb scanning infrared radiometer projects, requires photodetection in the 6- to 20 micro m region of the spectrum. Pyroelectric detectors can detect radiation in the 1- to 100 micro m region while operating at room temperature. This makes tahe pyroelectric detector a prime candidate to fill the thermal infrared detector requirements.

  17. Instrumentation for Infrared Astronomy in the Collections of the National Air and Space Museum, Smithsonian Institution

    NASA Astrophysics Data System (ADS)

    DeVorkin, David H.

    2017-01-01

    The National Air and Space Museum of the Smithsonian Institution is responsible for preserving the material heritage of modern astronomical history. We place emphasis on American accomplishments, on both airborne and spaceborne instrumentation, and on ground based instrumentation that stimulated and supported spaceborne efforts. At present the astronomical collection includes over 600 objects, of which approximately 40 relate to the history of infrared astronomy. This poster will provide a simple listing of our holdings in infrared and far-infrared astronomy, and will highlight particularly significant early objects, like Cashman and Ektron cells, Leighton and Neugebauer's Caltech 2.2 micron survey telescope, Low's Lear Jet Bolometer, Harwit's first Aerobee IR payload and Fazio's balloon-borne observatory. Elements from more recent missions will also be included, such as instruments from KAO, an IRAS focal plane instrument, FIRAS from COBE, the payload from Boomerang and Woody and Richards' balloonsonde payload. The poster author will invite AAS members to comment on these holdings, provide short stories of their experiences building and using them, and suggest candidates for possible collection.

  18. U.S. Participation in the Extreme Universe Space Observatory on the Japanese Experiment Module

    NASA Astrophysics Data System (ADS)

    Christl, Mark

    This is the lead Institution proposal submitted by the University of Chicago (Angela Olinto, PI) for the U.S. Participation in the Extreme Universe Space Observatory on the Japanese Experiment Module. We propose to discover the origin of extreme energy cosmic rays, those with energies in excess of 60 EeV, produced by the most powerful cosmic accelerators in the universe. We will use the Extreme-Universe Space Observatory (EUSO) instrument, which is to be attached to the Japanese Experiment Module (JEM) on the International Space Station (ISS). JEM-EUSO is being developed by an international collaboration for launch on the Japanese H2 Transfer Vehicle in 2017. This proposal is for the US contribution to the mission which consists of monitoring and calibration with a Global Light System (GLS) of lasers and xenon light sources, data acquisition and analysis software, data archiving, and science results for the first year of the mission. We also propose that NASA make a contribution to the upmass needed to launch JEM-EUSO and attachment point resources. The GLS for JEM-EUSO will be located at 12 sites around the world, supplemented with an aircraft system. The calibrated UV lasers and Xenon flash lamps will generate calibrated optical signatures in the atmosphere within the field of view of JEM-EUSO with similar characteristics to the optical signals of cosmic ray extensive air showers. Throughout its pioneering mission, JEM-EUSO will reconstruct the pointing directions of the lasers and the energy of the lasers and flash lamps to monitor the detector s triggers, and accuracy of energy and direction reconstruction. These are the critical parameters for identifying the sources of the highest energy cosmic rays and for evaluating the scientific performance of this pioneering instrument. Starting in 2014, a prototype of the JEM-EUSO instrument will be flown on a balloon to test its design. We propose to build prototypes of the GLS and use them to test and calibrate the

  19. Management of the camera electronics programme for the World Space Observatory ultraviolet WUVS instrument

    NASA Astrophysics Data System (ADS)

    Patel, Gayatri; Clapp, Matthew; Salter, Mike; Waltham, Nick; Beardsley, Sarah

    2016-08-01

    World Space Observatory Ultraviolet (WSO-UV) is a major international collaboration led by Russia and will study the universe at ultraviolet wavelengths between 115 nm and 320 nm. The WSO Ultraviolet Spectrograph (WUVS) subsystem is led by a consortium of Russian institutes and consists of three spectrographs. RAL Space is contracted by e2v technologies Ltd to provide the CCD readout electronics for each of the three WUVS channels. The programme involves the design, manufacturing, assembly and testing of each Camera Electronics Box (CEB), its associated Interconnection Module (ICM), Electrical Ground Support Equipment (EGSE) and harness. An overview of the programme will be presented, from the initial design phase culminating in the development of an Engineering Model (EM) through qualification whereby an Engineering Qualification Model (EQM) will undergo environmental testing to characterize the performance of the CEB against the space environment, to the delivery of the Flight Models (FMs). The paper will discuss the challenges faced managing a large, dynamic project. This includes managing significant changes in fundamental requirements mid-programme as a result of external political issues which forced a complete re-design of an existing CEB with extensive space heritage but containing many ITAR controlled electronic components to a new, more efficient solution, free of ITAR controlled parts. The methodology and processes used to ensure the demanding schedule is maintained through each stage of the project will be presented including an insight into planning, decision-making, communication, risk management, and resource management; all essential to the continued success of the programme.

  20. MEO and LEO space debris optical observations at Crimean Observatory: first experience and future perspectives.

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Vasilij; Biryukov, Vadim; Agapov, Vladimir; Molotov, Igor

    The near Earth space observation group of Crimean Observatory is performing the regular op-tical monitoring of space debris at GEO region within framework of the International Scientific Optical Network (ISON). During last years we also paid attention to objects on lower orbits due to increasing interest to LEO and MEO regions caused by several catastrophic events happened in the recent past. Optical observations provide high quality information about position and physical properties of space debris at LEO and MEO so they can be considered as another source of data comple-mentary to traditional radar measurements. We will discuss our observations of fragments from Briz-M upper stage (object 28944) and Block-DM ullage motor (25054) explosions. Results of observation of USA-193 debris will be presented. Then we will focus on observations and some photometric properties of FengYun 1C debris as well as Cosmos 2251 and Iridium 33 fragments. Radar cross-section versus optical photometry will be compared. Moreover, estimates of orbital parameters as well as area-to-mass ratio for some observed objects will be given. Most of our observations which we discuss in the paper represent just the first attempt to investigate capabilities of our optical system to observe MEO and LEO objects. But these results are very promising and show good perspectives for the future. We will briefly describe future perspectives of our optical observations of space debris and other objects in MEO and LEO region after the new wide-field telescopes will be put into operation.

  1. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow; Löschl, Philipp; Seifert, Bernhard; Hoilijoki, Sanni; Kraaikamp, Emil; Isha Mrigakshi, Alankrita; Philippe, Thomas; Spina, Sheila; Bröse, Malte; Massahi, Sonny; O'Halloran, Liam; Pereira Blanco, Victor; Stausland, Christoffer; Escoubet, Philippe; Kargl, Günter

    2015-02-01

    Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun. The spacecraft will be separated by an angle of 68° to provide optimum stereoscopic view of the solar corona. We study the feasibility of such a mission and propose a preliminary design for OSCAR.

  2. EPIC Radiance Simulator for Deep Space Climate ObserVatoRy (DSCOVR)

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Marshak, Alexander; Wang, Yujie; Korkin, Sergey; Herman, Jay

    2011-01-01

    The Deep Space Climate ObserVatoRy (DSCOVR) is a planned space weather mission for the Sun and Earth observations from the Lagrangian L1 point. Onboard of DSCOVR is a multispectral imager EPIC designed for unique observations of the full illuminated disk of the Earth with high temporal and 10 km spatial resolution. Depending on latitude, EPIC will observe the same Earth surface area during the course of the day in a wide range of solar and view zenith angles in the backscattering view geometry with the scattering angle of 164-172 . To understand the information content of EPIC data for analysis of the Earth clouds, aerosols and surface properties, an EPIC radiance Simulator was developed covering the UV -VIS-NIR range including the oxygen A and B-bands (A=340, 388, 443, 555, 680, 779.5, 687.7, 763.3 nm). The Simulator uses ancillary data (surface pressure/height, NCEP wind speed) as well as MODIS-based geophysical fields such as spectral surface bidirectional reflectance, column water vapor, and properties of aerosols and clouds including optical depth, effective radius, phase and cloud top height. The original simulations are conducted at 1 km resolution using the look-up table approach and then are averaged to 10 km EPIC radiances. This talk will give an overview of the EPIC Simulator with analysis of results over the continental USA and northern Atlantic.

  3. Status of a Space-Based Gravitational-Wave Observatory at NASA

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin

    2015-08-01

    For over two decades, NASA has studied a flight project to build a gravitational-wave observatory, and partnered with the European Space Agency (ESA) to formulate and study such a mission. The spectacular science and the well-defined and well-studied Laser Interferometer Space Antenna (LISA) mission concept got high recommendations in the U.S. astrophysics decadal surveys of 2000 and 2010.In 2013, ESA selected the science theme, the “Gravitational Universe,” for the third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has begun negotiating a NASA role. The US research community has studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA.This talk will describe the current state of: mission concept studies, US participation in an ESA-led study, technology development, other relevant activities and preparation for the 2020 decadal survey.

  4. The Sky Polarization Observatory (SPOrt): a project to measure the diffused sky polarization from the International Space Station Alpha (ISSA)

    NASA Astrophysics Data System (ADS)

    Cortiglioni, S.

    1999-07-01

    The Sky Polarization Observatory (SPOrt), a project to measure the diffused sky polarization in the frequency range of 22-90 GHz from the International Space Station, is described in its current configuration. Some preliminary considerations about the general topic of polarization in radiometric observations are made, in order to introduce the importance of polarimetric measurements in the more general context of Cosmic Microwave Background observations. The International Space Station is also introduced as a quite good opportunity to address such problematics.

  5. Co-location of Space Geodetic Instruments at the "Quasar" VLBI Network Observatories

    NASA Astrophysics Data System (ADS)

    Finkelstein, A.; Ipatov, A.; Gayazov, I.; Shargorodsky, V.; Smolentsev, S.; Mitryaev, V.; Diyakov, A.; Olifirov, V.; Rahimov, I.

    2012-12-01

    This paper discusses the current status of creating the co-location stations at the observatories of the Russian VLBI network "Quasar". Satellite Laser Ranging systems "Sazhen-TM" manufactured by Research-and-Production Corporation "Precision Systems and Instruments" were installed at all observatories of the network in 2011. The main technical characteristics of the SLR system and the co-location of high-precision observational instruments at the observatories are presented in this paper.

  6. Constructing infrared finite propagators in inflating space-time

    SciTech Connect

    Rajaraman, Arvind; Kumar, Jason; Leblond, Louis

    2010-07-15

    The usual (Bunch-Davies) Feynman propagator of a massless field is not well defined in an expanding universe due to the presence of infrared divergences. We propose a new propagator which yields IR finite answers to any correlation function. The key point is that in a de Sitter space-time there is an ambiguity in the zero mode of the propagator. This ambiguity can be used to cancel the apparent divergences which arise in some loop calculations in eternally (or semieternally) inflating space-time. We refer to this process as zero-mode modification. The residual ambiguity is fixed by observational measurement.

  7. Development of low-noise CCD drive electronics for the world space observatory ultraviolet spectrograph subsystem

    NASA Astrophysics Data System (ADS)

    Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris

    2016-07-01

    World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass

  8. Measuring CO2 from Space: The NASA Orbiting Carbon Observatory-2

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    2010-01-01

    The Orbiting Carbon Observatory (OCO) was the first NASA satellite designed to measure atmospheric carbon dioxide (CO2) from space with the precision, resolution, and coverage needed to detect CO2 surface fluxes. OCO was designed to collect 0.5 to 1 million soundings each day. Typical measurements over land were expected to have precisions of 0.3% within surface footprints smaller less than 3 square km. This project suffered a major setback in February 2009 when the OCO launch vehicle failed to achieve orbit and the satellite was lost. The U.S. Congress has since authorized a restart of the OCO project, and the President's 2010 budget proposal includes funding to develop and fly a replacement for OCO that could be ready for launch no later than February 2013. This mission has been designated OCO-2. While this mission will be a near "carbon copy" of OCO, some changes were needed to replace components that were no longer available. Here, we describe the capabilities, of the OCO-2 mission, highlighting its differences from OCO.

  9. ESA’s L3 mission: A space-based gravitational-wave observatory

    NASA Astrophysics Data System (ADS)

    Mueller, Guido

    2016-04-01

    ESA selected the Gravitational Universe as the science theme for one of its future L-class missions. L3 will measure gravitational waves in the 10µHz to 100mHz window; probably the richest of all gravitational wave windows. Expected sources in this frequency band range from massive black hole mergers to extreme mass ratio inspirals to compact galactic binary systems.The L3 mission is expected to be based on the eLISA/LISA design which was submitted by the eLISA consortium as a notional mission concept. NASA started discussions with ESA how to join L3 and participates in ESA’s Gravitational Observatory Advisory Team. NASA is also in the process of setting up its own L3-Study team to look at potential US contributions to L3. This group will also act as the US partner for the eLISA consortium. In summary, the space component of the GW community has gained significant momentum over the last 12 months and a successful pathfinder mission and potential GW discoveries by Advanced LIGO and/or pulsar timing arrays should further strengthen the case for LISA.

  10. Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.

    1989-01-01

    Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.

  11. Wireless infrared communications for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Crimmins, James W.

    1993-01-01

    Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.

  12. High Resolution Near-Infrared Spectroscopy of Comet C/2013 R1 (Lovejoy) using WINERED at Koyama Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Shinnaka, Yoshiharu; Ogawa, Sayuri; Kobayashi, Hitomi; Kondo, Sohei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Ikeda, Yuji; Yamamoto, Ryo; Izumi, Natsuko; Fukue, Kei; Hamano, Satoshi; Yasui, Chikako; Mito, Hiroyuki; Matsunaga, Noriyuki; Kobayashi, Naoto

    2014-11-01

    High resolution near-infrared spectroscopic observations of comet C/2013 R1 (Lovejoy) using the WINERED ( 3x10^4) spectrometer on the 1.3-m Araki telescope at Koyama Astronomical Observatory were carried out on UT 2013 November 30. The comet was at 0.91 AU from the Sun and 0.49 AU from the Earth at the observations. This comet was considered to originate in the Oort cloud and became bright in visible from October to December 2013. The newly developed instrument, WINERED, was a cross-dispersed Echelle spectrometer that can cover the wavelength range from 0.9 to 1.3 microns simultaneously. Many emission lines were recorded in the high signal-to-noise ratio spectra of comet Lovejoy. We report the line assignment of the detected emission lines and present our preliminary analysis for CN Red-band system.This research program is supported by the MEXT --- Supported Program for the Strategic Research Foundation at Private Universities, 2014 - 2018.

  13. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Wilson, John C.; Hearty, Fred; Skrutskie, Michael F.; Majewski, Steven; Schiavon, Ricardo; Eisenstein, Daniel; Gunn, Jim; Blank, Basil; Henderson, Chuck; Smee, Stephen; Barkhouser, Robert; Harding, Al; Fitzgerald, Greg; Stolberg, Todd; Arns, Jim; Nelson, Matt; Brunner, Sophia; Burton, Adam; Walker, Eric; Lam, Charles; Maseman, Paul; Barr, Jim; Leger, French; Carey, Larry; MacDonald, Nick; Horne, Todd; Young, Erick; Rieke, George; Rieke, Marcia; O'Brien, Tom; Hope, Steve; Krakula, John; Crane, Jeff; Zhao, Bo; Carr, Mike; Harrison, Craig; Stoll, Robert; Vernieri, Mary A.; Holtzman, Jon; Shetrone, Matt; Allende-Prieto, Carlos; Johnson, Jennifer; Frinchaboy, Peter; Zasowski, Gail; Bizyaev, Dmitry; Gillespie, Bruce; Weinberg, David

    2010-07-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) will use a dedicated 300-fiber, narrow-band (1.5-1.7 micron), high resolution (R~30,000), near-infrared spectrograph to survey approximately 100,000 giant stars across the Milky Way. This survey, conducted as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of kinematical and chemical enrichment histories of all Galactic stellar populations. The instrument, currently in fabrication, will be housed in a separate building adjacent to the 2.5 m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous technological challenges and innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation must be minimized, a large (290 mm x 475 mm elliptically-shaped recorded area) mosaic-VPH, an f/1.4 sixelement refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4 m x 2.3 m x 1.3 m.

  14. Discrimination of ultra high energy cosmic rays with the extreme universe space observatory

    NASA Astrophysics Data System (ADS)

    Sáez Cano, G.

    2015-02-01

    This thesis is framed in the study of Ultra High Energy Cosmic Rays (UHECRs) by space-based telescopes such as the Extreme Universe Space Observatory (EUSO) that will be place on the International Space Station (ISS). After a brief summary of the main features of UHECRs in chapter 2, a description of the JEM-EUSO experiment has been carried out in chapter 3. In the following chapters, which are focused on my work, it has been studied how different clouds might affect the development of the Extensive Air Shower (EAS) produced in the atmosphere by UHECRs and detected from space. This effect depends not only on the optical depth and on the altitude of the cloud, but also on some properties of the EAS (such as the arrival direction or the primary energy). In chapter 4 we have investigated how the EAS signal looks like depending on the part of the Field of View (FoV) where it is produced, analyzing the difference in the number of detected photons or in the duration of the shower development in the atmosphere. In chapter 5, a trigger efficiency in cloudy conditions, called cloud efficiency, has been calculated considering the maximum development visibility requirement. This is, the maximum of the shower must be visible. We have estimated how the shower geometry and the primary particle energy are modified by the cloud in comparison with the same case in a clear atmosphere. Also, a three dimensional photon propagation module has been developed to include a more complete model of the atmosphere for a deeper shower study. In chapter 6, the two methods to reconstruct the primary energy of the UHECR and the shower maximum of the EAS in a clear atmosphere have been modified to be used in stratus-like clouds: the Cherenkov method, that relies on the determination of the Cherenkov reflected bump on the top of the cloud, and the slant depth method, which relies on the previous geometry reconstruction of the shower.

  15. Future space missions and ground observatory for measurements of coronal magnetic fields

    NASA Astrophysics Data System (ADS)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    This presentation gives an overview of the near-future perspectives for probing coronal magnetism from space missions (i.e., SCORE and ASPIICS) and ground-based observatory (ESCAPE). Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter. The CorMag filter is part of the ESCAPE experiment to be based at the French-Italian Concordia base in Antarctica. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include new generation, high-efficiency UV polarizer with the capability of imaging polarimetry of the HI Lyman-α, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. The second lauch is scheduled in 2016. Proba-3 is the other future solar mission that would provide the opportunity of diagnosing the coronal magnetic field. Proba-3 is the first precision formation-flying mission to launched in 2019). A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid

  16. Effect of space exposure of pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.

    1992-01-01

    Pyroelectric detectors are one of many different types of infrared radiation detectors. The pyroelectric detectors are of interest for long term space use because they do not require cooling during operation. Also, they can detect at very long wavelengths and they have a relatively flat spectral response. A disadvantage is that the radiation must be chopped in order to be detected by a pyroelectric detector. The objective was to determine the effects of launch and space exposure on the performance of commercially available pyroelectric detectors. The approach was to measure certain detector parameters before and after flight and try to determine the amount and cause of the degradation. The experiment was passive: no data was taken during flight. It is concluded that lithium-tantalate and strontium-barium-niobate are suitable materials for pyroelectric detectors for long term space applications.

  17. The large deployable reflector: A NASA submillimeter-infrared orbiting observatory

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1986-01-01

    The Large Deployable Reflector (LDR) concept is outlined. The LDR telescope is based on a 20-m diameter reflector. The primary mirror is a filled aperture made up of 84 hexagonal panels, each 2 m edge-to-edge. The panels are based on lightweight structural composite materials. The optical configuration is a four mirror two stage system. The primary mirror is passive. The active optical elements for figure control are at the quaternary mirror. The primary mirror panels are supported by a deployable PAC truss backup structure at the vertices of each hexagon. The four focal plane instruments covering the range of 30 to 1000 microns are located near the vertex of the primary mirror. Some instruments will be cooled with stored cryogens to liquid helium temperatures, others to liquid nitrogen temperatures. The spacecraft functions will be located in a resource module behind the primary mirror. The LDR will be transferred to orbit by the space transportation system and assembled and tested at the space station. It will then be boosted to an orbit of greater than or = 700 km as a free flyer.

  18. Properties of Cathodoluminescence for Cryogenic Applications of SiO2-based Space Observatory Optics and Coatings

    NASA Technical Reports Server (NTRS)

    Evans, Amberly; Dennison, J.R.; Wilson, Gregory; Dekany, Justin; Bowers Charles W.; Meloy, Robert; Heaney, James B.

    2013-01-01

    Disordered thin film SiO2SiOx coatings undergoing electron-beam bombardment exhibit cathodoluminescence, which can produce deleterious stray background light in cryogenic space-based astronomical observatories exposed to high-energy electron fluxes from space plasmas. As future observatory missions push the envelope into more extreme environments and more complex and sensitive detection, a fundamental understanding of the dependencies of this cathodoluminescence becomes critical to meet performance objectives of these advanced space-based observatories. Measurements of absolute radiance and emission spectra as functions of incident electron energy, flux, and power typical of space environments are presented for thin (60-200 nm) SiO2SiOx optical coatings on reflective metal substrates over a range of sample temperatures (40-400 K) and emission wavelengths (260-5000 nm). Luminescent intensity and peak wavelengths of four distinct bands were observed in UVVISNIR emission spectra, ranging from 300 nm to 1000 nm. A simple model is proposed that describes the dependence of cathodoluminescence on irradiation time, incident flux and energy, sample thickness, and temperature.

  19. System Engineering the Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Hyde, Tristram T.; Leisawitz, David T.; Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) was designed to accomplish three scientific objectives: (1) learn how planetary systems form from protostellar disks and how they acquire their inhomogeneous chemical composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. SPIRIT will accomplish these objectives through infrared observations with a two aperture interferometric instrument. This paper gives an overview of SPIRIT design and operation, and how the three design cycle concept study was completed. The error budget for several key performance values allocates tolerances to all contributing factors, and a performance model of the spacecraft plus instrument system demonstrates meeting those allocations with margin.

  20. Luciola hypertelescope space observatory: versatile, upgradable high-resolution imaging, from stars to deep-field cosmology

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Le Coroller, Hervé; Dejonghe, Julien; Lardière, Olivier; Aime, Claude; Dohlen, Kjetil; Mourard, Denis; Lyon, Richard; Carpenter, Kenneth G.

    2009-03-01

    Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v = 30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent

  1. Luciola Hypertelescope Space Observatory. Versatile, Upgradable High-Resolution Imaging,from Stars to Deep-Field Cosmology

    NASA Technical Reports Server (NTRS)

    Labeyrie, Antoine; Le Coroller, Herve; Dejonghe, Julien; Lardiere, Olivier; Aime, Claude; Dohlen, Kjetil; Mourard, Denis; Lyon, Richard; Carpenter, Kenneth G.

    2008-01-01

    Luciola is a large (one kilometer) "multi-aperture densified-pupil imaging interferometer", or "hypertelescope" employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a pupil densifier micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having hundreds of thousands of individual receivers . With its high limiting magnitude, reaching the mv=30 limit of HST when 100 collectors of 25cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1200 Angstrom ultra-violet to the 20 micron infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras ( currently 200 to 1000nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade

  2. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1

  3. Space Object Characterization Studies and the Magdalena Ridge Observatory's 2.4-meter Telescope

    NASA Astrophysics Data System (ADS)

    Ryan, E.; Ryan, W.

    The Magdalena Ridge Observatory's (MRO) fast-tracking 2.4-meter telescope is located at 10,612 feet atop the Magdalena Mountains in Central New Mexico, and is presently transitioning to an operational status. The MRO 2.4-meter is one of the largest telescopes in the world that has as its primary mission the physical characterization of small bodies (both natural and artificial) in the Solar System. The 2.4-meter's control system is designed to provide convenient and accurate non-sidereal tracking, and the telescope is capable of rapid movement (slew rates are up to 15 degrees/sec) making it an ideal instrument for non-resolved imaging of low-Earth orbit (LEO) space objects. The 2.4-meter telescope can accommodate a wide variety of instrument systems, and support the fabrication, integration, and operation of new instrumentation as well as the development of new and innovative techniques in space object identification studies. Currently, we are investigating various methods to enhance and improve existing capabilities for unique discrimination of resident space objects. The temporal brightness variations (i.e., lightcurves) of unresolved targets such as artificial satellites can be used to develop a powerful tool for general characterization studies. Analysis of these temporal signatures permits the extraction of pertinent distinguishing features, and may also be an indicator for a change in general health status of a satellite. Payne (2005) and Gregory (2005) have demonstrated what can be obtained by adding multi-color information to traditional photometric intensity measurements for geosynchronous satellites. Our current focus is to introduce supplementary discriminators, including polarization data and simultaneously obtained spectral and temporal data. We will discuss new methods for incorporating such data, with a specific emphasis toward LEOs as our target objects. Our observing strategy will be to choose a statistically robust target set with know properties

  4. Miniature high-performance infrared spectrometer for space applications

    NASA Astrophysics Data System (ADS)

    Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh

    2004-06-01

    Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next-generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.

  5. CIRiS: Compact Infrared Radiometer in Space

    NASA Astrophysics Data System (ADS)

    Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.

    2016-09-01

    The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.

  6. Space Acquisitions: DOD’s Goals for Resolving Space Based Infrared System Software Problems are Ambitious

    DTIC Science & Technology

    2008-09-01

    Resolving Space Based Infrared System Software Problems Are Ambitious September 2008 GAO-08- 1073 Report Documentation Page Form...click on GAO-08- 1073 . For more information, contact Cristina T. Chaplain at (202) 512-4841 or chaplainc@gao.gov. Highlights of GAO-08- 1073 , a... 1073 SBIRS Software Abbreviations DOD Department of Defense FFRDC

  7. Space Object Temperature Determination from Multi-Band Infrared Measurements

    DTIC Science & Technology

    2008-09-16

    equivalent isophotal emissions. Resident Space Objects; Infrared Observations UNL UNL UNL UNL 9 Kathleen E. Kraemer 781-377-7377 Reset INSTRUCTIONS FOR...show that the characteristic parameters are more consistent with the Planck function model when expressed as their equivalent isophotal emissions...Calculations. Sensor Band Minimum Wavelength (μm) Maximum Wavelength (μm) Isophotal Wavelength (μm) A 5.88 11.19 8.28 C 10.53 13.70 12.13 D 12.66

  8. Composite Image of the Cat's Eye From Chandra X-Ray Observatory and Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Left image: The x-ray data from the Chandra X-Ray Observatory (CXO) has revealed a bright central star surrounded by a cloud of multimillion-degree gas in the planetary nebula known as the Cat's Eye. This CXO image, where the intensity of the x-ray emission is correlated to the brightness of the orange coloring, captures the expulsion of material from a star that is expected to collapse into a white dwarf in a few million years. The intensity of x-rays from the central star was unexpected, and it is the first time astronomers have seen such x-ray emission from the central star of a planetary nebula. Right image: An image of Cat's Eye taken by the Hubble Space Telescope (HST). By comparing the CXO data with that from the HST, researchers are able to see where the hotter, x-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by the HST. The CXO team found that the chemical abundance in the region of hot gas (its x-ray intensity is shown in purple) was not like those in the wind from the central star and different from the outer cooler material (the red and green structures.) Although still incredibly energetic and hot enough to radiate x-rays, CXO shows the hot gas to be somewhat cooler than scientists would have expected for such a system. CXO image credit: (NASA/UIUC/Y. Chu et al.) HST image credit: (NASA/HST)

  9. The Far-Infrared Photometer on the Infrared Telescope in Space

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Freund, M. M.; Sato, S.; Hirao, T.; Matsumoto, T.; Watabe, T.

    1994-01-01

    We describe the design and calibration of the Far-Infrared Photometer (FIRP), one of four focal plane instruments on the Infrared Telescope in Space (IRTS). The FIRP will provide absolute photometry in four bands centered at 150, 250, 400, and 700 microns with spectral resolution wavelength/wavelength spread is approximately 3 and spatial resolution delta theta = 0.5 degrees. High sensitivity is achieved by using bolometric detectors operated at 300 mK in an AC bridge circuit. The closed-cycle He-3 refrigerator can be recycled in orbit. A 2 K shutter provides a zero reference for each field of view. More than 10% of the sky will be surveyed during the 3 week mission lifetime with a sensitivity of less than 10(exp -13) W per sq cm per sr per 0.5 degree pixel.

  10. Far-Infrared Line Mapper (FILM) on the Infrared Telescope in Space

    NASA Astrophysics Data System (ADS)

    Shibai, Hiroshi; Yui, Masao; Matsuhara, Hideo; Hiromoto, Norihisa; Nakagawa, Takao; Okuda, Haruyuki

    1994-06-01

    We have developed a Far-Infrared Line Mapper (FILM) as one of the four focal plane instruments on the Infrared Telescope in Space (IRTS). The FILM is a grating spectrometer designed to simultaneously measure (C II) 158 microns and (O I) 63 microns line intensities and continuum emission near the (C II) line with spatial resolution of 8 arcmin. Very high sensitivity and accuracy are achieved by using stressed and unstressed Ge: Ga detectors at 1.8 K with a helium cooled telescope and by using a spectral scanner to distinguish the line emission from the continuum emission. Line intensities of the (C II) and the (O I) will be mapped over 10% of the sky with much higher sensitivity than the previous survey measurements.

  11. A Far Infrared Photometer (FIRP) for the infrared telescope in space (IRTS)

    NASA Technical Reports Server (NTRS)

    Freund, M. M.; Hirao, T.; Matsumoto, T.; Sato, S.; Watabe, T.; Brubaker, G. K.; Duband, L.; Grossman, B.; Larkin, N.; Lumetta, S.

    1993-01-01

    We describe the design and calibration of the Far-Infrared Photometer (FIRP), one of four focal plane instruments on the Infrared Telescope in Space (IRTS). The FIRP will provide absolute photometry in four bands centered at 150, 250, 400, and 700 micrometers with spectral resolution lambda/(Delta lambda) approx. = 3 and spatial resolution Delta theta = 0.5 degrees. High sensitivity is achieved by using bolometric detectors operated at 300 mK in an AC bridge circuit. The closed-cycle He-3 refrigerator can be recycled in orbit. A 2 K shutter provides a zero reference for each field of view. More than 10% of the sky will be surveyed during the approximately 3 week mission lifetime with a sensitivity of less than 10(exp -13) W/((sq cm)(sr)) per 0.5 degree pixel.

  12. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Miller, J. Scott; Minow, Joseph I.; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz, Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (less than 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE

  13. A Large Aperture Lidar Observatory for Exploring the Interaction of Our Atmosphere with Space (Invited)

    NASA Astrophysics Data System (ADS)

    Thayer, J. P.; Gardner, C. S.; Swenson, G. R.

    2013-12-01

    The mesopause region has been the subject of intensive study during the past decade because it is recognized as a critical region connecting our sensible atmosphere to the near-space environment. Processes in this region include a host of wave dynamics, heat and constituent transport, turbulence, polar mesospheric cloud formation, and the influx of meteoric material. Moreover, the neutral gas properties above the mesopause from 100 - 200 km altitude are poorly characterized and are influenced by additional processes that include solar EUV absorption / ionization, eddy to molecular diffusion, neutral wind dynamo action, and geomagnetic activity. Thus, this altitude region is a complex confluence of space and atmosphere processes that ultimately determine its properties. Fundamentally these processes are operating in any planetary atmosphere and must be understood in order to advance understanding of habitability and sustainability of a planetary system. While observational and modeling capabilities are evolving, progress in characterizing neutral properties and related processes in the mesopause region and above has been inhibited because they cannot be observed in sufficient detail and at high enough altitudes with existing instrumentation. This is especially true of the neutral atmosphere from 50 - 1000 km, where observations of its properties, dynamics and thermal structure are either sparse or nonexistent. A Large-Aperture Lidar Observatory (LALO) would enable significant progress by providing critical measurements of atmospheric constituents and parameters at greatly enhanced resolution and at much higher altitudes than is possible today. A large telescope in combination with modern high-power lasers, would enable observations of the neutral atmosphere to 1000 km altitude with a sensitivity and resolution approximately 1000 times better than can be achieved with the most powerful lidar systems in operation today. There are no technology barriers to realizing

  14. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    NASA Astrophysics Data System (ADS)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra's high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1

  15. Effect of space exposure on pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.

    1992-01-01

    Pyroelectric detectors are one of the many different types of infrared radiation detectors. Pyroelectric detectors are of interest for long-term space use because they do not require cooling during operation. Also, they can detect at very long wavelengths and they have a relatively flat spectral response. A disadvantage is that the radiation must be chopped in order to be detected by a pyroelectric detector. The objective of the experiment was to determine the effects of launch and space exposure on the performance of commercially available pyroelectric detectors. The approach was to measure performance parameters of the detectors before and after flight on the Long-Duration Exposure Facility (LDEF) and determine the loss of detector performance. The experiment was passive; no data was taken during flight.

  16. Infrared Fibers for Use in Space-Based Smart Structures

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Infrared optical fibers are finding a number of applications including laser surgery, remote sensing, and nuclear radiation resistant links. Utilizing these fibers in space-based structures is another application, which can be exploited. Acoustic and thermal sensing are two areas in which these fibers could be utilized. In particular, fibers could be embedded in IM7/8552 toughened epoxy and incorporated into space structures both external and internal. ZBLAN optical fibers are a candidate, which have been studied extensively over the past 20 years for terrestrial applications. For the past seven years the effects of gravity on the crystallization behavior of ZBLAN optical fiber has been studied. It has been found that ZBLAN crystallization is suppressed in microgravity. This lack of crystallization leads to a fiber with better transmission characteristics than its terrestrial counterpart.

  17. OPTICAL POLARIMETRY OF THE BLAZAR CGRaBS J0211+1051 FROM MOUNT ABU INFRARED OBSERVATORY

    SciTech Connect

    Chandra, Sunil; Baliyan, Kiran S.; Ganesh, Shashikiran; Joshi, Umesh C.

    2012-02-10

    We report the detection of high polarization in the first detailed optical linear polarization measurements on the BL Lac object CGRaBS J0211+1051, which flared in {gamma}-rays on 2011 January 23 as reported by Fermi. The observations were made during 2011 January 30-February 3 using a photo-polarimeter mounted at the 1.2 m telescope of Mount Abu Infrared Observatory. CGRaBS J0211+1051 was detected to have a {approx}21.05% {+-} 0.41% degree of polarization (DP) with a steady position angle (P.A.) at 43 Degree-Sign on 2011 January 30. During January 31 and February 1, while polarization shows some variation, the P.A. remained steady through the night. Several polarization flashes occurred during February 2 and 3 resulting in changes in the DP by more than 4% at short timescales ({approx}17-45 minutes). The intra-night variability shown by the source appears to be related to the turbulence in the relativistic jet. A mild wavelength dependence of polarization is not ruled out during the nights of February 2 and 3. The source exhibited significant inter-night variations in the DP (changing by about 2%-9%) and P.A. (changing by 2 Degree-Sign -22 Degree-Sign ) during the five nights of observations. A sudden change in the P.A. accompanied by a rise in the DP could be indicative of the fresh injection of plasma in the jet. The detection of a high and variable DP suggests that the source is a low-energy peaked blazar.

  18. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  19. ESA presents INTEGRAL, its space observatory for Gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    1998-09-01

    more strange than the energetic radiation coming from the centre of distant galaxies are flashes of extremely powerful radiation that suddenly appear somewhere on the gamma-sky and disappear again after a short time. These gamma-bursts seem to be the biggest observed explosions in the Universe. But nobody knows their source. Integral will help to solve this long-standing mystery. ESA, the pioneer in gamma-ray astronomy The satellite as it can now be seen at ESA's test centre is five meters high and weighs more than four tonnes. Two main instruments observe the gamma-rays. An imager will give the sharpest gamma-ray images. It is provided by a consortium led by an Italian scientist. Gamma-rays ignore lenses and mirror, so INTEGRAL makes its images with so-called coded-masks. A coded-mask telescope is basically a pinhole camera, but with a larger aperture, i.e. many pinholes. A spectrometer will gauge gamma-ray energies extremely precisely. It is developed by a team of scientists under joint French-German leadership and will be a 100 times more sensitive than the previous high spectral resolution space instrument. It is made of a high-purity Germanium detector that has to be cooled down to minus 188 degree Celsius. These two gamma-ray-instruments are supported by two monitor instruments that play a crucial role in the detection and identification of the gamma-ray sources. An X-ray monitor developed in Denmark will observe X-rays, still powerful but less energetic than gamma-rays. An optical telescope provided by Spain will observe the visible light emitted by the energetic objects. Switzerland will host the Integral Science Data Centre which will preprocess and distribute the scientific data. The mission is conceived as an observatory led by ESA with Russia contributing the launcher and NASA providing tracking support with its Deep Space Network. Alenia Aerospazio in Turin, Italy is ESA's prime contractor for building INTEGRAL. Launch by a Russian Proton rocket from

  20. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    NASA Technical Reports Server (NTRS)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  1. Space infrared telescope pointing control system. Infrared telescope tracking in the presence of target motion

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schneider, J. B.

    1986-01-01

    The use of charge-coupled-devices, or CCD's, has been documented by a number of sources as an effective means of providing a measurement of spacecraft attitude with respect to the stars. A method exists of defocussing and interpolation of the resulting shape of a star image over a small subsection of a large CCD array. This yields an increase in the accuracy of the device by better than an order of magnitude over the case when the star image is focussed upon a single CCD pixel. This research examines the effect that image motion has upon the overall precision of this star sensor when applied to an orbiting infrared observatory. While CCD's collect energy within the visible spectrum of light, the targets of scientific interest may well have no appreciable visible emissions. Image motion has the effect of smearing the image of the star in the direction of motion during a particular sampling interval. The presence of image motion is incorporated into a Kalman filter for the system, and it is shown that the addition of a gyro command term is adequate to compensate for the effect of image motion in the measurement. The updated gyro model is included in this analysis, but has natural frequencies faster than the projected star tracker sample rate for dim stars. The system state equations are reduced by modelling gyro drift as a white noise process. There exists a tradeoff in selected star tracker sample time between the CCD, which has improved noise characteristics as sample time increases, and the gyro, which will potentially drift further between long attitude updates. A sample time which minimizes pointing estimation error exists for the random drift gyro model as well as for a random walk gyro model.

  2. Transient Astrophysics Observatory (TAO)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; TAO Team

    2016-10-01

    The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.

  3. Astro-Mineralogy: The Comparison of Infrared Spectra from Astrophysical Environments with those from Interplanetary Dust Particles (IDPs)

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III; Molster, F. J.; Sitko, M. L.; Bradley, J. P.

    2001-01-01

    The infrared spectral properties of interplanetary dust particles are directly compared with those of astronomical dust in several astrophysical environments as measured by the Infrared Space Observatory (ISO). Additional information is contained in the original extended abstract.

  4. Far-infrared spectroscopy of galaxies

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1989-01-01

    Far infrared (FIR) spectral line emission from galaxies is discussed with respect to past, present and near future observations. A review of the importance of the FIR lines as probes of the interstellar medium is presented. The various fine structure emission lines detected from the archetypal starburst galaxy M82, and the (C II) line radiation which is now observed toward a large variety of external galaxies are discussed. The improvements allowed by the advent of the Stratospheric Observatory For Infrared Astronomy (SOFIA), the Infrared Space Observatory (ISO) and the Space Infrared Telescope Facility (SIRTF) are underlined.

  5. ASTRO-1: a 1.8m unobscured space observatory for next generation UV/visible astrophysics and exoplanet exploration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Egerman, Robert; Morse, Jon A.; Wilkes, Belinda

    2016-07-01

    The Hubble Space Telescope has been a scientific marvel that has provided unimaginable imagery and scientific discovery. Its exquisite UV/Visible imaging performance is unmatched from the ground. In NASA's future planning, the earliest possible successor mission would be in the 3030s, well beyond the expected lifetime of Hubble. The ASTRO-1 space telescope is a 1.8m off-axis (unobscured) observatory that looks to fill this critical void with Hubble-like performance to continue the scientific quest while also providing the possibility for exoplanet research with a coronagraphic instrument and/or a free flying starshade. BoldlyGo Institute seeks to reach beyond NASA funding to leverage the high public interest in space research and exploration, and the search for life beyond Earth.

  6. The possibilities of simultaneous detection of gamma rays, cosmic-ray electrons and positrons on the GAMMA-400 space observatory

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Aptekar, R. L.; Arkhangelskaya, I. V.; Boezio, M.; Bonvicini, V.; Dolgoshein, B. A.; Farber, M. O.; Fradkin, M. I.; Gecha, V. Ya.; Kachanov, V. A.; Kaplin, V. A.; Mazets, E. P.; Menshenin, A. L.; Picozza, P.; Prilutskii, O. F.; Rodin, V. G.; Runtso, M. F.; Spillantini, P.; Suchkov, S. I.; Topchiev, N. P.; Vacchi, A.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.

    2011-02-01

    The GAMMA-400 space observatory will provide precise measurements of gamma rays, electrons, and positrons in the energy range 0.1-3000 GeV. The good angular and energy resolutions, as well as identification capabilities (angular resolution ~0.01°, energy resolution ~1%, and proton rejection factor ~106) will allow us to study the main galactic and extragalactic sources, diffuse gamma-ray background, gamma-ray bursts, and to measure electron and positron fluxes. The peculiar characteristics of the experiment is simultaneous detection of gamma rays and cosmic-ray electrons and positrons, which can be connected with annihilation or decay of dark matter particles.

  7. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  8. Optimal Out-Of-Ecliptic Orbits for Short-Term Space-Borne Infrared Telescope Missions

    NASA Astrophysics Data System (ADS)

    Nir, Gali; Gurfil, Pini

    2011-01-01

    This paper presents a new approach for designing orbits for infrared (IR) space-borne observatories using multiple gravity assists. A large displacement normal to the ecliptic plane mitigates the noise generated by the local zodiacal dust, thereby reducing the size, weight, and complexity of the telescope. Although previous works focused on long-term missions, allowing very long transfer times to out-of-ecliptic orbits, this paper considers short-duration missions, for which the transfer times are tightly constrained. To reduce the transfer time, the flyby sequence includes the inner planets only: Venus, Earth, and Mars. Moreover, in order to reduce energy requirements, a fuel-optimal multiple gravity-assisted trajectory is designed. The problem is modeled using the patched-conic approximation and solved using a hybrid genetic algorithm coupled to a pattern search. Efficient trajectories requiring a minimum velocity addition, although providing a maximum observation time, are found and validated using an N-body simulation. The TPF-I mission is used as a benchmark in order to quantify the benefits of an out-of-ecliptic orbit. It is shown that the newly found orbits allow a reduction in the collector area compared to halo orbits.

  9. Prototype secondary mirror assembly design for the space infrared telescope facility

    NASA Technical Reports Server (NTRS)

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.

    1989-01-01

    The authors describe the design of a liquid helium temperature prototype secondary mirror assembly (PSMA) under developement for the NASA Space Infrared Telescope Facility (SIRTF) program. The SIRTF secondary mirror assembly must operate below 4 K and provide highly precise two-axis dynamic tilting (chopping) in addition to the conventional functions needed by the SIRTF observatory. The PSMA design uses a fused quartz mirror kinematically attached at its center to an aluminum cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feedback provided by pairs of differential position sensors. The voice coil actuators are mounted on a second flexture-pivoted mass, enhancing servo system stability and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose dimensional characteristics are nominally identical to those of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a six-degree-of-freedom focus and centering mechanism using pivoted actuation levers driven by lead screw/harmonic drive/stepper motor assemblies.

  10. Computation of the Fluid and Optical Fields About the Stratospheric Observatory for Infrared Astronomy (SOFIA) and the Coupling of Fluids, Dynamics, and Control Laws on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    The June 1992 to May 1993 grant NCC-2-677 provided for the continued demonstration of Computational Fluid Dynamics (CFD) as applied to the Stratospheric Observatory for Infrared Astronomy (SOFIA). While earlier grant years allowed validation of CFD through comparison against experiments, this year a new design proposal was evaluated. The new configuration would place the cavity aft of the wing, as opposed to the earlier baseline which was located immediately aft of the cockpit. This aft cavity placement allows for simplified structural and aircraft modification requirements, thus lowering the program cost of this national astronomy resource. Three appendices concerning this subject are presented.

  11. Direct conversion of infrared radiant energy for space power applications

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  12. Molecular Shocks Associated with Massive Young Stars: CO Line Images with a New Far-Infrared Spectroscopic Camera on the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Watson, Dan M.

    1997-01-01

    Under the terms of our contract with NASA Ames Research Center, the University of Rochester (UR) offers the following final technical report on grant NAG 2-958, Molecular shocks associated with massive young stars: CO line images with a new far-infrared spectroscopic camera, given for implementation of the UR Far-Infrared Spectroscopic Camera (FISC) on the Kuiper Airborne Observatory (KAO), and use of this camera for observations of star-formation regions 1. Two KAO flights in FY 1995, the final year of KAO operations, were awarded to this program, conditional upon a technical readiness confirmation which was given in January 1995. The funding period covered in this report is 1 October 1994 - 30 September 1996. The project was supported with $30,000, and no funds remained at the conclusion of the project.

  13. Cryogenic Far-Infrared Laser Absorptivity Measurements of the Herschel Space Observatory Telescope Mirror Coatings

    DTIC Science & Technology

    2004-07-01

    spectroscopy over the 55– 70-m spectral range, are expected to be back- round limited by the thermal self-emission of the elescope’s reflecting mirrors. To... bsorption coefficient, path-length difference correc- ions, electrical power absorbed, and signal ratio of he absolute powermeter to the Scientech

  14. Mission and Instrument Design Trades for a Space-based Gravitational Wave Observatory to Maximize Science Return

    NASA Astrophysics Data System (ADS)

    Livas, Jeffrey; Baker, John; Stebbins, Robin; Thorpe, James; Larson, Shane; Sesana, Alberto

    2016-03-01

    A space-based gravitational wave observatory is required to access the rich array of astrophysical sources expected at frequencies between 0.0001 and 0.1 Hz. The European Space Agency (ESA) chose the Gravitational Universe as the science theme of its L3 launch opportunity. A call for mission proposals will be released soon after the completion of the LISA Pathfinder (LPF) mission. LPF is scheduled to start science operations in March 2016, and finish by the end of the year, so an optimized mission concept is needed now. There are a number of possible design choices for both the instrument and the mission. One of the goals for a good mission design is to maximize the science return while minimizing risk and keeping costs low. This presentation will review some of the main design choices for a LISA-like laser interferometry mission and the impact of these choices on cost, risk, and science return.

  15. Test method on infrared system range based on space compression

    NASA Astrophysics Data System (ADS)

    Chen, Zhen-xing; Shi, Sheng-bing; Han, Fu-li

    2016-09-01

    Infrared thermal imaging system generates image based on infrared radiation difference between object and background and is a passive work mode. Range is important performance and necessary appraised test item in appraisal test for infrared system. In this paper, aim is carrying out infrared system range test in laboratory , simulated test ground is designed based on object equivalent, background analog, object characteristic control, air attenuation characteristic, infrared jamming analog and so on, repeatable and controllable tests are finished, problem of traditional field test method is solved.

  16. Review of black surfaces for space-borne infrared systems

    NASA Astrophysics Data System (ADS)

    Persky, M. J.

    1999-05-01

    Low reflectivity (``black'') surface treatments for space-borne infrared systems are reviewed. The uses of black surfaces in general, as well as for specific space-borne applications are discussed. Compositions of a wide variety of surface treatments with examples of experimental data to characterize performances are provided. Specific treatments included are: Ames 24E paint; AZKO 463 (Sikkens, Cat-A-Lac) paint; Ball IR black paint; Chemglaze (Aeroglaze) Z306 and Z302 paints; Eccosorb 268E paint; Parsons Black paint; black anodize; black Hardlub; black Hardcoat; Martin Black; InfraBlack; Enhanced Martin Black; Ebonal C; Teflon; ion beam textured; appliqués black chrome; black etched beryllium on beryllium; plasma sprayed boron on beryllium; plasma sprayed beryllium on beryllium; boron carbide on POCO graphite; and Kapton. Data presented for some but not all of the surfaces include: spectrally integrated, 5-25 μm hemispherical-directional reflectance; spectral reflectance at wavelengths between 2 and 500 μm for a variety of incident angles from 5° to 80° and bidirectional reflectance at a number of wavelengths between 5 and 300 μm for a variety of incident angles from 0° to 80°. The instrumentation employed to obtain these data is briefly described. Long term stability of optical performance, as well as manufacturing reproducibility is demonstrated for several of the surfaces. Outgassing and atomic oxygen interaction information is also included. Methodology for calorimetric measurement of hemispherical emittance as an alternative to optical measurements is given.

  17. ESA switches its infrared space telescope off and will clean its orbit

    NASA Astrophysics Data System (ADS)

    1998-05-01

    already working on one of ISO's successors, the Far Infrared and Submillimetre Space Telescope, FIRST. Footnote about ISO ISO was put into orbit in November 1995, by an Ariane 44P launcher at Europe's Spaceport at Kourou in French Guiana. As an unprecedented observatory for infrared astronomy, able to examine cool and hidden places in the Universe, ISO has successfully made more than 26,000 observations. A supply of liquid helium, used to cool the telescope and instruments close to the absolute zero of temperature, lasted more than 30% longer than expected, but ran out on 8 April 1998 (see ESA Press Information Note No.11-98 of 9 April).

  18. About using wide field lens optics for Space Surveillance Systems in Odessa Astronomical observatory (Ukraine)

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Volkoff, S. K.; Karpenko, G. F.; Titenko, V. V.; Yamnitsky, V. A.; Tkachenko, A. A.

    2007-08-01

    On base results of the observations in Odessa astronomical observatory, is shown obvious fact. The possibility of the using domestic wide field lens optics for monitoring high orbital artificial Earth satellite objects for the calculations elements of orbits. With wide field lens optics "Tair-19 5003", limited magnitude consist 15m.5 per 10 seconds of the accumulation, average square-error (ASE) of the measurements of the coordinates slowly move GSS consist not more than 2 arcsec. Beside 90% measurements has ASE not more 1 arcsec. At surveillance of the area of the equator by width 5° areas 500 deg2 are discovered all 40 active "standing" GSS, 12 passive GSS and 2 high elliptical orbital satellites (HEO). Is shown perspective possibility of the use WFO for monitoring LEO height before of 2 000 km. 90% of 39 object LEO fixed in mode "beam-park" (the still telescope) in current 1 hour, surelay are identified using catalog NORAD.

  19. Scientific and Mission Requirements of Next-generation Space Infrared Space Telescope SPICA

    NASA Astrophysics Data System (ADS)

    Matsuhara, Hideo; Nakagawa, Takao; Ichikawa, Takashi; Takami, Michihiro; Sakon, Itsuki

    SPICA (Space Infrared Telescope for Cosmology Astrophysics) is a next-generation space tele-scope for mid-and far-infrared astronomy, based on the heritage of AKARI, Spitzer, and Her-schel, Here we introduce Mission Requirement Document (MRD), where scientific and mission requirement of SPICA are described. The MRD clarifies the objectives of the SPICA mission. These objectives are more concretely expressed by various scientific targets, and based on these targets, the mission requirements, such as required specifications of the mission instrumenta-tions, scientific operations etc. are defined. Also the success criteria, by which the evaluation of the mission achievement will be addressed, are clearly described. The mission requirements described here will give the baseline of the study of the system requirements. In the future, The MRD will also be used to confirm the development status, system performance, and operational results on orbit etc. are well in-line with the mission requirements. To summarize, the most important mission requirement of SPICA is to realize a large, mono-lithic (not segmented) 3-m class or larger mirror cooled down below 6K, in order to perform extremely deep imaging and spectroscopy at 5-210µm.

  20. The chromosphere of α Cen A as seen by the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Montesinos, B.; Liseau, R.; DUNES Team

    2015-05-01

    Chromospheres and coronae are common phenomena on solar-type stars. Understanding the heating of those layers requires the direct access to the relevant empirical data. In particular, the chromospheric temperature minimum, i.e. the region of the atmosphere where the temperature undergoes a reversal and starts increasing to reach values of the order of MK in the corona, can be observed directly in the far infrared and in the submillimetre spectral regime. In this paper we present the results of the observations obtained in those ranges of the solar twin α Cen A. Similar to the Sun, the far infrared emission of this star originates in the temperature minimum above the stellar photosphere. To our knowledge, this is the first time a temperature minimum has been directly measured on a main-sequence star other than the Sun. This contribution is a summary of the the results presented in ``α Centauri in the far infrared. First measurements of the temperature minimum of a star other than the Sun'' (Liseau et al 2013, A&A, 549, L7) based on results from the Herschel} Open Time Key Project DUNES and APEX/LABOCA observations.

  1. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Mike

    1992-01-01

    A summary is presented of plans for the future NASA astrophysics missions called SIRTF (Space Infrared Telescope Facility), SOFIA (Stratospheric Observatory for Infrared Astronomy), SMIM (Submillimeter Intermdiate Mission), and AIM (Astrometric Interferometry Mission), the Greater Observatories, and MFPE (Mission From Planet Earth). Technology needs for these missions are briefly described.

  2. An infrared high rate video imager for various space applications

    NASA Astrophysics Data System (ADS)

    Svedhem, Hâkan; Koschny, Detlef

    2010-05-01

    Modern spacecraft with high data transmission capabilities have opened up the possibility to fly video rate imagers in space. Several fields concerned with observations of transient phenomena can benefit significantly from imaging at video frame rate. Some applications are observations and characterization of bolides/meteors, sprites, lightning, volcanic eruptions, and impacts on airless bodies. Applications can be found both on low and high Earth orbiting spacecraft as well as on planetary and lunar orbiters. The optimum wavelength range varies depending on the application but we will focus here on the near infrared, partly since it allows exploration of a new field and partly because it, in many cases, allows operation both during day and night. Such an instrument has to our knowledge never flown in space so far. The only sensors of a similar kind fly on US defense satellites for monitoring launches of ballistic missiles. The data from these sensors, however, is largely inaccessible to scientists. We have developed a bread-board version of such an instrument, the SPOSH-IR. The instrument is based on an earlier technology development - SPOSH - a Smart Panoramic Optical Sensor Head, for operation in the visible range, but with the sensor replace by a cooled IR detector and new optics. The instrument is using a Sofradir 320x256 pixel HgCdTe detector array with 30µm pixel size, mounted directly on top of a four stage thermoelectric Peltier cooler. The detector-cooler combination is integrated into an evacuated closed package with a glass window on its front side. The detector has a sensitive range between 0.8 and 2.5 µm. The optical part is a seven lens design with a focal length of 6 mm and a FOV 90deg by 72 deg optimized for use at SWIR. The detector operates at 200K while the optics operates at ambient temperature. The optics and electronics for the bread-board has been designed and built by Jena-Optronik, Jena, Germany. This talk will present the design and the

  3. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    techniques such as attenuated total reflectance [6]. The two final papers deal with what seem to be wholly different scientific fields [7, 8]. One paper describes SOFIA, an aeroplane-based astronomical observatory covering the whole IR range [7], while the other represents a small review of the quite new topic of terahertz physics at the upper end of the IR spectral range, from around 30 µm to 3 mm wavelength, and its many applications in science and industry [8]. Although artificially separated, all these fields use similar kinds of detectors, similar kinds of IR sources and similar technologies, while the instruments use the same physical principles. We are convinced that the field of infrared physics will develop over the next decade in the same dynamic way as during the last, and this special issue may serve as starting point for regular submissions on the topic. At any rate, it shines a light on this fascinating and many-faceted subject, which started more than 200 years ago. References [1] Mangold K, Shaw J A and Vollmer M 2013 The physics of near-infrared photography Eur. J. Phys. 34 S51-71 [2] Vollmer M and Möllmann K-P 2013 Characterization of IR cameras in student labs Eur. J. Phys. 34 S73-90 [3] Ibarra-Castanedo C, Tarpani J R and Maldague X P V 2013 Nondestructive testing with thermography Eur. J. Phys. 34 S91-109 [4] Shaw J A and Nugent P W 2013 Physics principles in radiometric infrared imaging of clouds in the atmosphere Eur. J. Phys. 34 S111-21 [5] Möllmann K-P and Vollmer M 2013 Fourier transform infrared spectroscopy in physics laboratory courses Eur. J. Phys. 34 S123-37 [6] Heise H M, Fritzsche J, Tkatsch H, Waag F, Karch K, Henze K, Delbeck S and Budde J 2013 Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products Eur. J. Phys. 34 S139-59 [7] Krabbe A, Mehlert D, Röser H-P and Scorza C 2013 SOFIA, an airborne observatory for infrared astronomy

  4. Great Observatories Present Rainbow of a Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Spitzer, Hubble and Chandra space observatories teamed up to create this multi-wavelength, false-colored view of the M82 galaxy. The lively portrait celebrates Hubble's 'sweet sixteen' birthday.

    X-ray data recorded by Chandra appears in blue; infrared light recorded by Spitzer appears in red; Hubble's observations of hydrogen emission appear in orange, and the bluest visible light appears in yellow-green.

    About the Movie M82 is shown in all its wavelength glory. Dissolving from Chandra X-ray Observatory images of three X-ray energy bands to images in three bands of the infrared spectrum taken by the Spitzer Space Telescope, and ending with the Hubble Space Telescope's visible- and near-infrared-light image. The three observatories' images were composited to reveal the galaxy's stars, as well as gas and dust features.

    Note: The size of the Full-Res TIFF for the still image is 4299 samples x 3490 lines.

  5. Progress Towards a Space-Based Gravitational-Wave Observatory Since 2010

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2015-01-01

    Laser Interferometer Space Antenna (LISA): Focus of all work since 1993; Unchanged since 1997; Project in Phase A since 2004; Extensive formulation work and products; Reviewed and recommended in many major reviews: AANM (NRC, 2001), TRIP (HQ, 2003), Connecting Quarks with the Cosmos (NRC, 2003), AETD (GSFC, 2005). Beyond Einstein Program: (NRC, 2007), NWNH (NRC, 2010): Second in large space projects after WFIRST. Recommended for a new start. Contingent on Lisa Pathfinder success and a roughly 50-50 European partnership.

  6. Flight Results of the Chandra X-ray Observatory Inertial Upper Stage Space Mission

    NASA Technical Reports Server (NTRS)

    Tillotson, R.; Walter, R.

    2000-01-01

    Under contract to NASA, a specially configured version of the Boeing developed Inertial Upper Stage (IUS) booster was provided by Boeing to deliver NASA's 1.5 billion dollar Chandra X-Ray Observatory satellite into a highly elliptical transfer orbit from a Shuttle provided circular park orbit. Subsequently, the final orbit of the Chandra satellite was to be achieved using the Chandra Integral Propulsion System (IPS) through a series of IPS burns. On 23 July 1999 the Shuttle Columbia (STS-93) was launched with the IUS/Chandra stack in the Shuttle payload bay. Unfortunately, the Shuttle Orbiter was unexpectantly inserted into an off-nominal park orbit due to a Shuttle propulsion anomaly occurring during ascent. Following the IUS/Chandra on-orbit deployment from the Shuttle, at seven hours from liftoff, the flight proven IUS GN&C system successfully injected Chandra into the targeted transfer orbit, in spite of the off-nominal park orbit. This paper describes the IUS GN&C system, discusses the specific IUS GN&C mission data load development, analyses and testing for the Chandra mission, and concludes with a summary of flight results for the IUS part of the Chandra mission.

  7. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  8. Space-Based Gravitational-Wave Observatory (SGO) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey; McNamara, Paul; Jennrich, Oliver

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a space-based gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return.

  9. Atmospheric carbon dioxide at Mauna Loa Observatory 1. NOAA global monitoring for climatic change measurements with a nondispersive infrared analyzer, 1974--1985

    SciTech Connect

    Komhyr, W. D.; Harris, T. B.; Waterman, L. S.; Chin, J. F. S.; Thoning, K. W.

    1989-06-20

    Atmospheric CO/sub 2/ measurements made with a nondispersive infrared analyzer during 1974--1985 at Mauna Lao Observatory, Hawaii, are described, with emphasis on the measurement methodology, calibrations, and data accuracy. Monthly mean CO/sub 2/ data, representative of global background conditions, are presented for the period of record. The monthly means were derived from an all-data base of CO/sub 2/ hourly averged archived at the National Oceanic and Atmospheric Administration (NOAA) Geophysical Monitoring for Climatic Change (GMCC) facility in Boulder, Colorado; at the Carbon Dioxide Information Analysis Center (CDIAC) in Oak Ridge, Tennessee; and in the microfiche version of this paper. Flags in the all-data base identify CO/sub 2/ hourly averages that have been deemed unreliable because of sampling and analysis problems or that are unrepresentative of clean background air because of influences of the local environment, for example, CO/sub 2/ uptake by nearby vegetation or contamination and pollution effects. The select NOAA GMCC monthly mean data are compared with similar data obtained independently at Mauna Loa Observatory by the Scripps Institution of Oceanography. The averge difference of corresponding monthly mean CO/sub 2/ values for the two data sets is 0.15/plus minus/0.18 ppm, where the indicated variability is the standard deviation. Careful scrutiny of the NOAA GMCC measurement, calibration, and data processing procedures that might have caused the small bias in the data has revealed no unusual errors. /copyright/ American Geophysical Union 1989

  10. NASA Marshall Space Flight Center Solar Observatory Report, July to December 1992

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during July-December 1992. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  11. Astronomy and space sciences studies - use of a remotely controlled robotic observatory

    NASA Astrophysics Data System (ADS)

    Priskitch, Ray

    Trinity College in Perth, Western Australia, has designed a self-paced online astronomy and space science course in response to the Earth & Beyond strand of the State's Curriculum Framework learning environment. The course also provides senior physics students the opportunity to undertake research that contributes towards their school-based assessment. Special features of the course include use of the first remotely controlled robotic telescope in a secondary school within Australia, and direct real time links to NASA's Johnson Space Centre. The quantum leap in telescope design and control technology introduces users, especially school students, to a means of data collection and processing that hitherto was in the realm of the professional astronomer. No longer must students be, both in time and space, located at the telescope when an event is taking place. Convenience of use and the high quality of data allows students to undertake scientific investigations that were impractical or of dubious quality beforehand. The Astronomy and Space Sciences course at Trinity offers students the opportunity to explore the solar system and the universe beyond whilst also incorporating a wide range of subjects other than science per se such as mathematics, computing, geography, multimedia, religious education and art. Skills developed in this course are of practical value, such as image processing, and the context of the studies serve to illuminate and stimulate student awareness of our unique environment and its finiteness.

  12. NASA Marshall Space Flight Center Solar Observatory report, January - June 1992

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during Jan. to Jun. 1992. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code.

  13. NASA Marshall Space Flight Center Solar Observatory report, March - May 1994

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during March-May 1994. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  14. NASA Marshall Space Flight Center solar observatory report, January - June 1993

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January-June 1993. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  15. Lessons from a High-Impact Observatory: The Hubble Space Telescope’s Science Productivity between 1998 and 2008

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Lagerstrom, Jill; Reid, Iain Neill; Levay, Karen L.; Fraser, Elizabeth; Nota, Antonella; Henneken, Edwin

    2010-07-01

    Almost two decades of continuous operation of the versatile and productive Hubble Space Telescope (HST) provide uniquely well-documented, robust statistics to study the scientific impact of a major astronomical observatory. We compiled a detailed database of refereed articles that use HST data for analysis and show it to be >95% complete. This HST Publication Database is publicly available and searchable: it contains more than 8700 articles, cited more than 300,000 times in the literature. By cross-linking this data set with our extensive proposal database and NASA’s ADS service, we are able to trace the evolution of ideas from the proposal stage through the observations and publication steps to the final impact on the astronomical literature. Here we present a detailed study of HST’s performance, including the temporal evolution of the publication rate, the citation statistics, the relative contributions from different program types, the time allocation strategy, and the relative contributions of the HST instruments. We also discuss the properties of typical and very highly-cited articles. By analyzing this complete and well-characterized database, we identify five key features that contribute to the productivity and high impact of the observatory: (1) the time allocation policies; (2) the well-characterized HST archive; (3) the breadth of science projects ranging from the solar system to cosmology; (4) the Director’s Discretionary time allocations; (5) the large international user community and its involvement in the observatory’s functions. In addition, we find the following general characteristics. Following its launch, HST’s productivity has been steadily increasing; 8 yr after launch, HST reached equilibrium between the incoming data volume and the number of published articles that are based on those data. The overall productivity, however, is still steadily increasing due to the increasing number of archival articles. We find that small programs

  16. Coordination of Advanced Solar Observatory (ASO) Science Working Group (SWG) for the study of instrument accommodation and operational requirements on space station

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1989-01-01

    The objectives are to coordinate the activities of the Science Working Group (SWG) of the Advanced Solar Observatory (ASO) for the study of instruments accommodation and operation requirements on board space station. In order to facilitate the progress of the objective, two conferences were organized, together with two small group discussions.

  17. HIRDES - The high-resolution double-echelle spectrograph for the World Space Observatory Ultraviolet (WSO/UV)

    NASA Astrophysics Data System (ADS)

    Werner, K.; Wso/Uv-Hirdes Team

    The World Space Observatory Ultraviolet WSO UV is a multi-national project grown out of the needs of the astronomical community to have future access to the ultraviolet range of the electromagnetic spectrum The development of the WSO UV S C and the telescope is headed by the Russian Federal Space Agency Roscosmos The mission is scheduled to be launched in 2010 into the L2 orbit The WSO UV consists of a single Ultraviolet Telescope incorporating a primary mirror of 1 7 m diameter feeding UV spectrometer and UV imagers The UV spectrometer comprises three different single spectrographs two high resolution echelle spectrographs - the High Resolution Double Echelle Spectrograph HIRDES - and a low dispersion long slit instrument Within the HIRDES the spectral band 102 - 310 nm is separated to feed two echelle spectrographs covering the UV range between 174 and 310 nm UVES and the Vacuum-UV range between 102 and 176 nm VUVES with a very high spectral resolution of 50000 Each spectrograph encompasses a stand-alone optical bench structure with a fully redundant high-speed MCP detector system the optomechanics and a network of mechanisms with different functionalities The fundamental technical concept is based on the heritage of the two previous ORFEUS-SPAS missions The phase B1 development activities are described in this paper under consideration of performance aspects design drivers the related trade offs e g mechanical concepts material selection MCP detector efficiency etc and the critical functional and environmental test

  18. Solar-Heliospheric-Interstellar Cosmic Ray Tour with the NASA Virtual Energetic Particle Observatory and the Space Physics Data Facility

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; Lal, Nand; McGuire, Robert E.

    2015-04-01

    NASA now has a large collection of solar, heliospheric, and local interstellar (Voyager 1) cosmic ray particle data sets that can be accessed through the data system services of the NASA Virtual Energetic Particle Observatory (VEPO) in collaboration with the NASA Space Physics Data Facility SPDF), respectively led by the first and last authors. The VEPO services were developed to enhance the long-existing OMNIWeb solar wind and energetic particle services of SPDF for on-line browse, correlative, and statistical analysis of NASA and ESA mission fields, plasma, and energetic particle data. In this presentation we take of tour through VEPO and SPDF of SEP reservoir events, the outer heliosphere earlier surveyed by the Pioneer, Voyager, and Ulysses spacecraft and now being probed by New Horizons, and the heliosheath-heliopause-interstellar regions now being explored by the Voyagers and IBEX. Implications of the latter measurements are also considered for the flux spectra of low to high energy cosmic rays in interstellar space.

  19. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  20. Trigger and Reconstruction Algorithms for the Japanese Experiment Module- Extreme Universe Space Observatory (JEM-EUSO)

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Andreev, Valeri; Christl, M. J.; Cline, David B.; Crawford, Hank; Judd, E. G.; Pennypacker, Carl; Watts, J. W.

    2007-01-01

    The JEM-EUSO collaboration intends to study high energy cosmic ray showers using a large downward looking telescope mounted on the Japanese Experiment Module of the International Space Station. The telescope focal plane is instrumented with approx.300k pixels operating as a digital camera, taking snapshots at approx. 1MHz rate. We report an investigation of the trigger and reconstruction efficiency of various algorithms based on time and spatial analysis of the pixel images. Our goal is to develop trigger and reconstruction algorithms that will allow the instrument to detect energies low enough to connect smoothly to ground-based observations.

  1. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  2. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  3. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  4. Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories

    NASA Astrophysics Data System (ADS)

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud

    2011-10-01

    Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.

  5. Selection of infrared black(s) for the Space Infra-Red Telescope Facility (SIRTF): a surface-by-surface performance comparison

    NASA Astrophysics Data System (ADS)

    Dinger, Ann S.

    1994-10-01

    SIRTF, the Space Infrared Telescope Facility, is planned to be the final one of NASA's four great observatories. It is a cryogenically cooled telescope designed to perform background- limited observations at all wavelengths between 2 and 220 micrometers . This stringent straylight requirement necessitates the use of infrared black coatings on all non-optical telescope surfaces. In order to make an informed decision, the SIRTF Study Office supported a long- range program to characterize the performance of a variety of black coatings over the full SIRTF wavelength range. Measurements of both specular reflectance and BRDF made by Sheldon Smith were incorporated into a model that predicts the blacks' BRDF coefficients at other wavelengths. The restrahlen reflectance peaks of Martin Black and Martin Infrablack at 2.2 and 5.4 micrometers are included in the model. An APART analysis of the current SIRTF telescope design was performed at wavelengths of 2.2, 3.5, 12.5, 60, and 200 micrometers . Evaluation of the relative performances of Martin Optical Black and Ames 24E2 on several critical surfaces led to the conclusion that the SIRTF straylight rejection could be enhanced by selecting different coatings for different surfaces. A very diffuse black is best on the mirror stops and secondary support struts, while a specular black could be a better choice for the vaned telescope barrel. Many coatings that are black and diffusely scattering at short wavelengths become quite bright and specular at long wavelengths. Extreme caution must be taken when using a black that becomes specular on any surface that can be seen from the telescope plane.

  6. A Cluster Of Activities On Coma From The Hubble Space Telescope, StarDate, And McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Jogee, S.; Fricke, K.; Preston, S.

    2011-01-01

    With a goal of providing a vast audience of students, teachers, the general public, and Spanish-speakers with activities to learn about research on the Coma cluster of galaxies based on the HST ACS Treasury survey of Coma, McDonald Observatory used a many-faceted approach. Since this research offered an unprecedented legacy dataset, part of the challenge was to convey the importance of this project to a diverse audience. The methodology was to create different products for different (overlapping) audiences. Five radio programs were produced in English and Spanish for distribution on over 500 radio stations in the US and Mexico with a listening audience of over 2 million; in addition to the radio listeners, there were over 13,000 downloads of the English scripts and almost 6000 of the Spanish. Images were prepared for use in the StarDate Online Astronomy Picture of the Week, for ViewSpace (used in museums), and for the StarDate/Universo Teacher Guide. A high-school level activity on the Coma Cluster was prepared and distributed both on-line and in an upgraded printed version of the StarDate/Universo Teacher Guide. This guide has been distributed to over 1700 teachers nationally. A YouTube video about careers and research in astronomy using the Coma cluster as an example was produced. Just as the activities were varied, so were the evaluation methods. This material is based upon work supported by the National Aeronautics and Space Administration under Grant/Contract/Agreement No. HST-EO-10861.35-A issued through the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  7. Developing an Efficient Planetary Space Weather Alert Service using Virtual Observatory Standards

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Benson, Kevin; Le Sidaner, Pierre; André, Nicolas; Tomasik, Lukas

    2016-04-01

    The objective of this Task is to identify user requirements, develop the way to implement event alerts, and chain those to the 1) planetary event and 2) planetary space weather predictions. The expected service of alerts will be developed with the objective to facilitate discovery or prediction announcements within the PSWD user community in order to watch or warn against specific events. The ultimate objective is to set up dedicated amateur and/or professional observation campaigns, diffuse contextual information for science data analysis, and enable safety operations of planet-orbiting spacecraft against the risks of impacts from meteors or solar wind disturbances. OBSPARIS and UCL will study and adapt VOEvent to those purposes. CNRS-IRAP and SRC will study the way to implement VOEvent as a service for the PSWD tools.

  8. Restoration, Enhancement, and Distribution of the ATLAS-1 Imaging Spectrometric Observatory (ISO) Space Science Data Set

    NASA Technical Reports Server (NTRS)

    Germany, G. A.

    2001-01-01

    The primary goal of the funded task was to restore and distribute the ISO ATLAS-1 space science data set with enhanced software and database utilities. The first year was primarily dedicated to physically transferring the data from its original format to its initial CD archival format. The remainder of the first year was devoted to the verification of the restored data set and database. The second year was devoted to the enhancement of the data set, especially the development of IDL utilities and redesign of the database and search interface as needed. This period was also devoted to distribution of the rescued data set, principally the creation and maintenance of a web interface to the data set. The final six months was dedicated to working with NSSDC to create a permanent, off site, hive of the data set and supporting utilities. This time was also used to resolve last minute quality and design issues.

  9. Mission Architecture Study Results for a Space-Based Gravitational-Wave Observatory (SGO)

    NASA Astrophysics Data System (ADS)

    Livas, Jeffrey C.; SGO Mission Concept Development Team

    2013-01-01

    The low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum has a rich collection of astrophysical sources, and the Laser Interferometer Space Antenna (LISA) concept has been the key mission to cover this science for over twenty years. Although highly ranked in the 2010 Decadal Survey for the spectacular science return, tight budgets have forced NASA to consider a reformulation of the LISA mission concept at a lower cost point, even if at the expense of some of the science. We report the results of a mission architecture study that considered various options according to cost, risk, technical readiness, and the ability to address the Decadal-endorsed science goals.

  10. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  11. Infrared single mode chalcogenide glass fiber for space.

    PubMed

    Houizot, P; Boussard-Plédel, C; Faber, A J; Cheng, L K; Bureau, B; Van Nijnatten, P A; Gielesen, W L M; Pereira do Carmo, J; Lucas, J

    2007-09-17

    An important measuring technique under study for the DARWIN planet finding mission, is nulling interferometry, enabling the detection of the weak infrared emission lines of an orbiting planet. This technique requires a perfect wavefront of the light beams to be combined in the interferometer. By using a single mode waveguide before detection, wavefront errors are filtered and a virtually perfect plane wavefront is obtained. In this paper the results on the development and the optical characterisation of suitable infrared transmitting chalcogenide glasses and mid-IR guiding optical fibers are reported. Two different perform techniques for manufacturing core-cladding chalcogenide fibers are described. Two types of step index fibers, prepared with Te(2)As(3)Se(5) chalcogenide glasses, offer single mode guidance at 10.6 mum.

  12. Next space solar observatory SOLAR-C: mission instruments and science objectives

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Watanabe, T.; Hara, H.; Ichimoto, K.; Kubo, M.; Kusano, K.; Sakao, T.; Shimizu, T.; Suematsu, Y.; Tsuneta, S.

    2012-12-01

    SOLAR-C, the fourth space solar mission in Japan, is under study with a launch target of fiscal year 2018. A key concept of the mission is to view the photosphere, chromosphere, and corona as one system coupled by magnetic fields along with resolving the size scale of fundamental physical processes connecting these atmospheric layers. It is especially important to study magnetic structure in the chromosphere as an interface layer between the photosphere and the corona. The SOLAR-C satellite is equipped with three telescopes, the Solar UV-Visible-IR Telescope (SUVIT), the EUV/FUV High Throughput Spectroscopic Telescope (EUVS/LEMUR), and the X-ray Imaging Telescope (XIT). Observations with SUVIT of photospheric and chromospheric magnetic fields make it possible to infer three dimensional magnetic structure extending from the photosphere to the chromosphere and corona.This helps to identify magnetic structures causing magnetic reconnection, and clarify how waves are propagated, reflected, and dissipated. Phenomena indicative of or byproducts of magnetic reconnection, such as flows and shocks, are to be captured by SUVIT and by spectroscopic observations using EUVS/LEMUR, while XIT observes rapid changes in temperature distribution of plasma heated by shock waves.

  13. Utilization of Solar Dynamics Observatory space weather digital image data for comparative analysis with application to Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.

    2012-10-01

    Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.

  14. Exo-C: a probe-scale space observatory for direct imaging and spectroscopy of extrasolar planetary systems

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl R.; Dekens, Frank G.; Brenner, Michael P.; Warfield, Keith R.; Belikov, Ruslan; Brugarolas, Paul B.; Bryden, Geoffrey; Cahoy, Kerri L.; Chakrabarti, Supriya; Dubovitsky, Serge; Effinger, Robert T.; Hirsch, Brian; Kissil, Andrew; Krist, John E.; Lang, Jared J.; Marley, Mark S.; McElwain, Michael W.; Meadows, Victoria S.; Nissen, Joel; Oseas, Jeffrey M.; Pong, Chris; Serabyn, Eugene; Sunada, Eric; Trauger, John T.; Unwin, Stephen C.

    2015-09-01

    "Exo-C" is NASAs first community study of a modest aperture space telescope mission that is optimized for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discovering previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable Earth-like exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. Key elements are an unobscured telescope aperture, an internal coronagraph with deformable mirrors for precise wavefront control, and an orbit and observatory design chosen for high thermal stability. Exo-C has a similar telescope aperture, orbit, lifetime, and spacecraft bus requirements to the highly successful Kepler mission (which is our cost reference). Much of the needed technology development is being pursued under the WFIRST coronagraph study and would support a mission start in 2017, should NASA decide to proceed. This paper summarizes the study final report completed in March 2015.

  15. History of Space-Based Infrared Astronomy and the Air Force Infrared Celestial Backgrounds Program

    DTIC Science & Technology

    2008-04-18

    this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...Infrared Surveys ........................................................................................ 253 9.5. The Search for Near-Earth...www.dtic.mil/dtic/ search /tr/index.html) or the National Technical Information Service (NTIS – http://ntis.gov); I provide the unique nine character

  16. Infrared astronomy takes center stage

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick C.; Gatley, Ian; Hollenbach, David

    1991-01-01

    Characteristics of infrared astronomy, including the ability to detect cool matter, explore the hidden universe, reveal a wealth of spectral lines, and reach back to the beginning of time are outlined. Ground-based infrared observations such as observations in the thermal infrared region are discussed as well as observations utilizing infrared telescopes aboard NASA aircraft and orbiting telescopes. The Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy are described, and it is pointed out that infrared astronomers can penetrate obscuring dust to study stars and interstellar matter throughout the Milky Way galaxy. Application of various infrared instruments to the investigation of stars and planets is emphasized, and focus is placed on the discovery of clouds or disks of particles around mature stars and acquisition of high-resolution spectra of the gaseous and solid materials orbiting on the fringes of the solar system.

  17. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  18. SOFIA Observatory Obtains 'First Light' Images

    NASA Video Gallery

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, successfully obtained its "First Light"" images during an overnight flight May 26. Scientists are now processing the data gathered...

  19. Effect of space exposure on pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.; Clark, Ivan O.

    1991-01-01

    Twenty pyroelectric type infrared detectors were flown onboard the Long Duration Exposure Facility (LDEF). The detector chips were of three different pyroelectric materials: lithium-tantalate, strontium-barium-niobate, and triglycine-sulfide. The experiment was passive; no measurements were taken during the flight. Performance of the detectors was measured before and after flight. Postflight measurements revealed that detectors made of lithium-tantalate and strontium-barium-niobate suffered no measureable loss in performance. Detectors made of triglycine-sulfide suffered complete loss of performance, but so did the control samples of the same material. Repoling of the triglycine-sulfide failed to revive the detectors.

  20. Golden legacy from ESA's observatory

    NASA Astrophysics Data System (ADS)

    2003-07-01

    ISO was the first space observatory able to see the sky in infrared light. Using its eyes, we have discovered many new phenomena that have radically changed our view of the Universe. Everybody knows that when something is heated it glows. However, things also glow with a light our eyes cannot detect at room temperature: infrared light. Infrared telescopes do not work well on the Earth’s surface because such light is absorbed by the atmosphere. ISO looked at the cold parts of the universe, usually the 'cold and dusty' parts. It peered into clouds of dust and gas where stars were being born, observing for the first time the earliest stages of star formation. It discovered, for example, that stars begin to form at temperatures as low as -250°C or less. Scientists were able to follow the evolution of dust from where it is produced (that is, old stars - the massive 'dust factories') to the regions where it forms new planetary systems. ISO found that most young stars are surrounded by discs of dust that could harbour planets. The observatory also analysed the chemical composition of cosmic dust, thereby opening up a new field of research, ‘astromineralogy’. With ISO we have been able to discover the presence of water in many different regions in space. Another new discipline, 'astrochemistry', was boosted when ISO discovered that the water molecule is common in the Universe, even in distant galaxies, and complex organic molecules like benzene readily form in the surroundings of some stars. "ISO results are impacting most fields of astronomical research, almost literally from comets to cosmology," explains Alberto Salama, ISO Project Scientist. "Some results answer questions. Others open new fields. Some are already being followed up by existing telescopes; others have to await future facilities." When ISO's operational life ended, in 1998, its observations became freely available to the world scientific community via ISO’s data archive. In May 2003 the

  1. Infrared Space Astrometry Missions ˜ JASMINE Missions ˜

    NASA Astrophysics Data System (ADS)

    Gouda, N.

    2012-08-01

    "JASMINE" is an abbreviation of Japan Astrometry Satellite Mission for Infrared Exploration. Three satellites are planned as a series of JASMINE missions, as a step-by-step approach, to overcome technical issues and promote scientific results. These are Nano-JASMINE, Small-JASMINE and (medium-sized) JASMINE. JASMINE missions provide the positions and proper motions of celestial objects. Nano-JASMINE uses a very small nano-satellite and is scheduled to be launched in 2013. Nano-JASMINE will operate in zw-band (˜ 0.8μm) to perform an all sky survey with an accuracy of 3 milli-arcseconds for position and parallaxes. Small-JASMINE will observe towards a region around the Galactic center and other small regions, which include interesting scientific targets, with accuracies of 10 to 50 μ-arcseconds in an infrared Hw-band (˜ 1.7 μm). The target launch date is around 2017. (Medium-sized) JASMINE is an extended mission of Small-JASMINE, which will observe towards almost the whole region of the Galactic bulge with accuracies of ˜ 10 μ arcseconds in Kw-band (˜ 2.0μ m). The target launch date is the first half of the 2020s.

  2. The Space Infrared Telescope for Cosmology and Astrophysics and Pending US Contribution

    NASA Astrophysics Data System (ADS)

    Bradford, Charles; SPICA Consortium; SAFARI Consortium

    2017-01-01

    SPICA is a cryogenic space-borne observatory designed for optimal sensitivity in the mid-infrared through submillimeter range: 17-250 microns. The mission is an ESA / JAXA collaboration, now under review in the ESA Cosmic Visions M5 opportunity, which has final approval in 2019, and launch in the late 2020 decade. SPICA will feature a 2.5-meter telescope cooled to below 8K, this offers the potential for 100-1000-fold advances in sensitivity beyond that obtained with Herschel and SOFIA in the far-IR. With a line sensitivity of ~5x10^-20 W/m^2 (1 h, 5 sigma), SPICA will be a complement to JWST and ALMA for deep spectroscopic observations. Integrated over cosmic history, star formation has occurred predominantly in dust-obscured regions which are inaccessible in the rest-frame UV and optical. Both the luminosity history and the detailed physics that govern it can only be directly measured in the mid-IR-submillimeter. Similarly, forming stars and planetary systems cool primarily through the far-IR. By taking advantage of the low-background platform, the SPICA instruments are designed for these investigations. The SPICA mid-IR instrument (SMI) will provide R~50 imaging spectroscopy and R~1,000 full-band slit-fed spectroscopy from 17 to 36 microns, with a high-resolution (R=25,000) capability from 12-18 microns. The SPICA far-IR instrument (SAFARI) will cover 34 to at least 250 microns with multiple R~300 wide-band grating spectrometer modules coupling to high-sensitivity far-IR detectors. A R~3,000 scanned-etalon module will also be available for Galactic targets with bright continua and/or dense line spectra. In the current SPICA division of responsibilities, ESA will take the lead role, provide the telescope, the fine-attitude sensor, and the spacecraft bus. JAXA will provide the cryogenic system, the SMI instrument, integrate the telescope and instruments, and provide the launch vehicle. The SAFARI instrument will be provided by a consortium funded by the European

  3. Performance of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Wilson, John C.; Hearty, F.; Skrutskie, M. F.; Majewski, S. R.; Schiavon, R.; Eisenstein, D.; Gunn, J.; Holtzman, J.; Nidever, D.; Gillespie, B.; Weinberg, D.; Blank, B.; Henderson, C.; Smee, S.; Barkhouser, R.; Harding, A.; Hope, S.; Fitzgerald, G.; Stolberg, T.; Arns, J.; Nelson, M.; Brunner, S.; Burton, A.; Walker, E.; Lam, C.; Maseman, P.; Barr, J.; Leger, F.; Carey, L.; MacDonald, N.; Ebelke, G.; Beland, S.; Horne, T.; Young, E.; Rieke, G.; Rieke, M.; O'Brien, T.; Crane, J.; Carr, M.; Harrison, C.; Stoll, R.; Vernieri, M.; Shetrone, M.; Allende-Prieto, C.; Johnson, J.; Frinchaboy, P.; Zasowski, G.; Garcia Perez, A.; Bizyaev, D.; Cunha, K.; Smith, V. V.; Meszaros, Sz.; Zhao, B.; Hayden, M.; Chojnowski, S. D.; Andrews, B.; Loomis, C.; Owen, R.; Klaene, M.; Brinkmann, J.; Stauffer, F.; Long, D.; Jordan, W.; Holder, D.; Cope, F.; Naugle, T.; Pfaffenberger, B.; Schlegel, D.; Blanton, M.; Muna, D.; Weaver, B.; Snedden, S.; Pan, K.; Brewington, H.; Malanushenko, E.; Malanushenko, V.; Simmons, A.; Oravetz, D.; Mahadevan, S.; Halverson, S.

    2012-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) uses a dedicated 300-fiber, narrow-band near-infrared (1.51-1.7 μm), high resolution (R~22,500) spectrograph to survey approximately 100,000 giant stars across the Milky Way. This three-year survey, in operation since late-summer 2011 as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of the kinematical and chemical enrichment histories of all Galactic stellar populations. We present the performance of the instrument from its first year in operation. The instrument is housed in a separate building adjacent to the 2.5-m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation had to be minimized, a large mosaic-VPH (290 mm x 475 mm elliptically-shaped recorded area), an f/1.4 six-element refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-infrared detectors mounted in a 1 x 3 mosaic with sub-pixel translation capability, and all of these components housed within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4-m x 2.3-m x 1.3-m.

  4. Optical and infrared backgrounds from the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Dolch, Timothy

    The sum total of the energy released by the earliest era of star formation should show up today within the diffuse extragalactic background light (EBL), its signature peaking in the near-infrared. There is considerable controversy over estimates of the average EBL per steradian at optical and infrared wavelengths, over measurements of background fluctuations, and over the interpretation of the measurements. Resolving this controversy is important because the EBL constrains the history of galaxy evolution. The fluctuations and their colors may also contain important information about Population III stars and the earliest era of star formation. We compare number counts from recent galaxy surveys, correcting for their differing passbands. With some assumptions about galaxy sizes and surface-brightness profiles, we account for the light missed in standard photometric estimates, integrating the resulting corrected counts to estimate the total EBL due to resolved galaxies as well as undetected galaxies. We then present an analysis of background fluctuations in observations of the HUDF, the GOODS field, and the CANDELS fields obtained with WFC3. The fluctuation signal provides a constraint on the slope of galaxy counts fainter than the levels of individual detection, as well as their typical angular sizes. The color dependence of the fluctuations provides a constraint on the redshift distribution of these very faint sources. The spatial and spectral information from these anisotropies, even in their non-detection, provide valuable information about the era of reionization, when the first stars and galaxies formed. Via various analysis tools such as power spectra and P(D) fitting, best-fit models to faint sources can be obtained.

  5. Design of a Space Borne Autonomous Infrared Tracking System

    DTIC Science & Technology

    2004-03-01

    8217, hsv (6),’FaceColor’,’flat ’); theta_last = 0;%axis([-.2 .2 -.2 .2 -.2 .2]); axis square;break % Motion for ii= 1 :num_pts %transform... 1 Space Control...88 ix List of Figures Figure Page 1

  6. First light observation of GIGMICS (germanium immersion grating mid-infrared cryogenic spectrograph) by Kanata 1.5-m Telescope at Higashi-Hiroshima Observatory

    NASA Astrophysics Data System (ADS)

    Hirahara, Yasuhiro; Aoki, Keishin; Ohta, Kanako; Shibata, Sho; Hirao, Tsuyoshi; Tatamitani, Yoshio; Ebizuka, Noboru; Kawabata, Koji S.; Yoshida, Michitoshi; Uemura, Makoto; Oosugi, Takashi; Kawaguchi, Kentaro; Fujimori, Ryuji; Ohiwa, Hiroki; Nagahiro, Hisayuki

    2012-09-01

    We have developed a germanium immersion grating mid-infrared cryogenic spectrograph (GIGMICS) designed for the Nasmyth focus stage of NAOJ Subaru 8.2-m telescope, which operates at N-band (8-13 μm) in wavelength (λ) with maximum resolving power R(≡λ/Δλ) ~ 50,000. A single crystal germanium echelle immersion grating (30 × 30 × 72 mm) for collimated beam size of 28 mmφ was fabricated by utilizing ultra precision micro-grinding method coupled with the ELID (ELectrolytic In-process Dressing) technique (Ohmori, H. 1992, Ebizuka et al. 2003, Tokoro et al. 2003). After the critical test for the application to the laboratory gas-phase IR high-resolution spectroscopy(Hirahara et al. 2010), we have conducted the "first light" astronomical observation of GIGMICS by the Kanata 1.5-m telescope at Higashi- Hiroshima Observatory from January to April, 2011. Toward many astronomical objects such as the Moon, Venus, Jupiter, circumstellar envelopes of late-type stars, proto-planetary nebulae, and interstellar molecular clouds in the vicinity of star-forming regions, we conducted spectroscopic observations in the N-band region.

  7. Cloud Height Retrieval with Oxygen A and B Bands for the Deep Space Climate Observatory (DSCOVR) Mission

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2012-01-01

    Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed.

  8. The Early Infrared Temporal Development of Nova Delphini 2013 (V339 DEL) Observed with the Stratospheric Observatory for Infrared Astronomy (SOFIA) and from the Ground

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Evans, A.; Helton, L. A.; Shenoy, D. P.; Banerjee, D. P. K.; Woodward, C. E.; Vacca, W. D.; Dykhoff, D. A.; Ashok, N. M.; Cass, A. C.; Carlon, R. L.; Corgan, D. T.; Eyres, S. P. S.; Joshi, V.; Keller, Luke D.; Krautter, J.; Liimets, T.; Rushton, M.; Starrfield, S.

    2015-10-01

    We present ground-based infrared photometry, JHK spectroscopy, and 5-28 μm SOFIA FORCAST spectroscopy documenting the early temporal development of Nova Delphini 2013 (V339 Del). We derive a distance of ˜4.5 kpc using data available from the early expansion of the fireball. This distance gives an outburst luminosity of ˜8.3 × 105 {L}⊙ making V339 Del the most luminous CO nova on record. Our data provide new constraints on the ejected gas mass and the dust yield in fast CO novae. The ejected gas mass as estimated by the cutoff wavelength during the free-free emission phase is ˜7.5 × 10-5 {M}⊙ . There is evidence for the formation of ˜1.2(±0.4) × 10-7 {M}⊙ of dust about 102 days after outburst. The gas to dust ratio of ˜470/1-940/1 implies that dust production was much less efficient in V339 Del than is the case for most CO novae.

  9. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael S.

    1992-01-01

    NASA's plans in the field of space astronomy and astrophysics through the first decade of the next century are reviewed with reference to specific missions and mission concepts. The missions discussed include the Space Infrared Telescope Facility, the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Intermediate Mission, the Astrometric Interferometry Mission, the Greater Observatories program, and Mission from Planet Earth. Plans to develop optics and sensors technology to enable these missions are also discussed.

  10. The Descent of the Serpent: Using a Successful Ancient Solar Observatories Webcast from Chichen Itza to Highlight Space Weather Research

    NASA Astrophysics Data System (ADS)

    Hawkins, I.; Higdon, R.; Cline, T.

    2006-12-01

    Over the past seven years, NASA's Sun-Earth Connection Education Forum has sponsored and coordinated education and public outreach events to highlight NASA's heliophysics research and discoveries. Our strategy involves using celestial events, such as total solar eclipses and the Transit of Venus, as well as Sun-Earth Day during the March Equinox, to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium and other museums, Ideum, NASA TV, NASA heliophysics missions, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide and internationally. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. As part of an Ancient Observatories theme in 2005, we have successfully featured solar alignments with ancient structures made by indigenous cultures that mark the equinoxes and/or solstices in cultural and historical parks in the Americas. In partnership with the Exploratorium, we produced broadcast-quality and webcast programming during the March equinox that shared heliophysics within a broad cultural context with formal and informal education audiences internationally. The program: "Descent of the Serpent" featured the light and shadow effect at sunset that takes place during the spring equinox at the Pyramid of El Castillo, in Chichén Itzá (México). This program made unique and authentic cultural connections to the knowledge of solar astronomy of the Maya, the living Mayan culture of today, and the importance of the Sun across the ages. We involved Sun-Earth Connection scientists, their missions, and research

  11. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  12. Carnegie Observatories

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Carnegie Observatories were founded in 1902 by George Ellery Hale. Their first facility was the MOUNT WILSON OBSERVATORY, located in the San Gabriel Mountains above Pasadena, California. Originally a solar observatory, it moved into stellar, galactic and extragalactic research with the construction of the 60 in (1.5 m), and 100 in (2.5 m) telescopes, each of which was the largest in the world...

  13. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  14. Regulating the infrared by mode matching: A massless scalar in expanding spaces with constant deceleration

    SciTech Connect

    Janssen, T. M.; Prokopec, T.

    2011-04-15

    In this paper we consider a massless scalar field, with a possible coupling {xi} to the Ricci scalar in a D dimensional Friedmann-Lemaitre-Robertson-Walker space-time with a constant deceleration parameter q={epsilon}-1, {epsilon}=-H/H{sup 2}. Correlation functions for the Bunch-Davies vacuum of such a theory have long been known to be infrared divergent for a wide range of values of {epsilon}. We resolve these divergences by explicitly matching the space-time under consideration to a space-time without infrared divergencies. Such a procedure ensures that all correlation functions with respect to the vacuum in the space-time of interest are infrared finite. In this newly defined vacuum we construct the coincidence limit of the propagator and as an example calculate the expectation value of the stress-energy tensor. We find that this approach gives both in the ultraviolet and in the infrared satisfactory results. Moreover, we find that, unless the effective mass due to the coupling to the Ricci scalar {xi}R is negative, quantum contributions to the energy density always dilute away faster, or just as fast, as the background energy density. Therefore, quantum backreaction is insignificant at the one-loop order, unless {xi}R is negative. Finally we compare this approach with known results where the infrared is regulated by placing the Universe in a finite box. In an accelerating universe, the results are qualitatively the same, provided one identifies the size of the Universe with the physical Hubble radius at the time of the matching. In a decelerating universe, however, the two schemes give different late time behavior for the quantum stress-energy tensor. This happens because in this case the length scale at which one regulates the infrared becomes sub-Hubble at late times.

  15. Contamination control requirements implementation for the James Webb Space Telescope (JWST), part 2: spacecraft, sunshield, observatory, and launch

    NASA Astrophysics Data System (ADS)

    Wooldridge, Eve M.; Schweiss, Andrea; Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha; Macias, Matthew; McGregor, R. Daniel; Farmer, Greg; Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter; Romero, Beatriz; Breton, Jacques

    2014-09-01

    This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton™ layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented.

  16. Thermal and cryogenic design study for space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Urbach, A. R.; Kelly, T.; Poley, R.

    1984-01-01

    A study was conducted to determine the ability of an all superfluid helium design to meet the performance requirements of background limited to 200 micrometer, and a two year lifetime for a one meter class free flying infrared observatory. Both a 98 deg and 28.5 deg inclination orbits were examined, and aperture shade designs were developed for both orbits. A unique forebaffle cooling design significantly reduces the sensitivity to aperture heat loads. With certain restrictions on observing modes, the study determined that an all superfluid helium Dewar will meet the temperature and lifetime requirements. A dual cryogen SFHe/SH2 system was also investigated for the 28.5 deg orbit and found to provide a more constant forebaffle temperature but with only a slight improvement in lifetime.

  17. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  18. Observatories: History

    NASA Astrophysics Data System (ADS)

    Krisciunas, K.; Murdin, P.

    2000-11-01

    An astronomical OBSERVATORY is a building, installation or institution dedicated to the systematic and regular observation of celestial objects for the purpose of understanding their physical nature, or for purposes of time reckoning and keeping the calendar. At a bona fide observatory such work constitutes a main activity, not just an incidental one. While the ancient Egyptians, Babylonians, Chi...

  19. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  20. US Instrument Options for the SPICA Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Carter, Ruth; Benner, Steve; Rossetti, Dino; Leete, Stephen; Townsend, Jackie; Keer, Beth; Davis, Chris

    2012-01-01

    NASA has engaged in studying options for a US contribution to the Japanese-led Space II Astrophysics (SPICA). This cryogenic 3m-class telescope builds on the scientific and technological legacies of Akari and Hershel. The primary portion of a US contribution would be a far-infrared spectrometer, but with a sensitivity several hundred times greater than Herschel, opening up this wavelength range for study of emission lines from galaxies up to the highest redshifts. We describe efforts to formulate an approach that fits within project and programmatic constraints and fulfills the scientific promise of the SPICA observatory.

  1. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Ceryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Smith, Miles; Waczynski, Augustyn; Wen, Yiting; Wilson, Donna; Xia-Serafino, Wei

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  2. Recent Progress with the JWST Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2014-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micrometers - 28 micrometers. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. JWST is a segmented mirror telescope operating at (is) approximately 40K, a temperature achieved by passive cooling of the observatory, via a large, 5-layer membrane-based sunshield. We present an overview of the observatory systems design, the science instruments and the mission science objectives. With the completion of the Spacecraft Critical Design Review, the spacecraft has also fully transitioned to fabrication. We will discuss recent highlights associated with the Observatory, including completion and delivery of the primary mirror segments, delivery of the primary mirror backplane and its wings, and the delivery of five template membrane layers. We will also summarize the current predicted performance of the telescope, including stray light, pointing and image quality following the completion of the final design review. Finally, the current schedule through to launch will be presented with a summary of integration and test activities planned when the science payload is delivered to Northrop Grumman following cryo-optical testing at the Johns Space Flight Center.

  3. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  4. The Space Infrared Interferometric Telescope (SPIRIT): High-resolution Imaging and Spectroscopy in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Leisawitz, D,; Baker, G.; Barger, A.; Benford, D.; Blain, A; Boyle, R.; Broderick, R.; Budinoff, J.; Carpenter, J.; Caverly, R.; Chen, P.; Cooley, S.; Cottingham, C.; Crooke, J.; DiPietro, D.; Femiano, M.; Ferrer, A.; Fischer, J.; Gardner, J.; Hallock, L.; Harris, K.; Hartman, K.; Harwit, M.; Hillenbrand, L.; Hyde, T.

    2007-01-01

    We report results of a recently-completed study of SPIRIT, a candidate NASA Origins Probe. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets form, and why some planets are ice giants and others are rocky; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously. SPIRIT will pave the way to the 1 km maximum baseline interferometer known as the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). In addition to the SPIRIT mission concept, this talk will emphasize the importance of dense u-v plane coverage and describe some of the practical considerations associated with alternative interferometric baseline sampling schemes.

  5. High-resolution infrared detector and its electronic unit for space application

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Montmessin, F.; Korablev, O.; Trokhimovsky, A.; Poiet, G.; Bel, J.-B.

    2015-05-01

    High-resolution infrared detector is used extensively for military and civilian purposes. Military applications include target acquisition, surveillance, night vision, and tracking. Civilian applications include, among others, scientific observations. For our space systems, we want to use the products developed by SOFRADIR Company. Thus, we have developed a space electronic unit that is used to control the high-resolution SCORPIO-MW infrared detector, which has a format of 640×512 pixels with 15μm×15μm pixel pitch. The detector within microelectronics based on infrared mid-wave (MW) complementary metal oxide semiconductors (CMOS) uses a micro-cooler in order to keep its temperature around 100 K. The standard wavelength range (3 to 5μm) is adapted to the 2.2 to 4.3μm wavelength range thanks to adaptation of the optical interface of the detector and with an antireflection coating. With our electronic system, we can acquire 3 images per second. To increase the signal to noise ratio, we have the opportunity to make a summation of 15 frames per image. Through this article, we will describe the space electronic system that we have developed in order to achieve space observations (e.g. Atmospheric Chemistry Suite package for ExoMars Trace Gas Orbiter).

  6. In Pursuit of New Worlds: Searches for and Studies of Transiting Exoplanets from Three Space-Based Observatories

    NASA Astrophysics Data System (ADS)

    Ballard, Sarah Ashley

    2012-01-01

    This thesis presents studies of transiting exoplanets using observations gathered in large part from space, with the NASA EPOXI Mission, the Spitzer Space Telescope, and the Kepler Mission. The first part of this thesis describes searches for additional transiting planets in known exoplanet systems, using time series photometry gathered as part of the NASA EPOXI Mission. Using the EPOXI light curves spanning weeks for each star, we searched six exoplanetary systems for signatures of additional transiting planets. These six systems include five hosts to hot Jupiters: HAT-P-4, TrES-3, TrES-2, WASP-3, and HAT-P-7, and one host to a hot Neptune: GJ 436. We place upper limits on the presence of additional transiting planets in the super-Earth radius range for GJ 436 in Chapter 2, and in the Neptune-to-Saturn radius range for the other five systems in Chapter 4. Chapter 3 details a search for additional transits of a hypothesized planet smaller than the Earth, whose presence was suggested by the EPOXI observations of GJ 436. In that study, we demonstrate the sensitivity of Warm Spitzer observations to transits of a sub-Earth-sized planet. The fifth chapter details the characterization and validation of the Kepler-19 system, which hosts a transiting 2.2 R⊕ planet, Kepler-19b. We demonstrate the planetary nature of the transit signal with an analysis that combines information from high-resolution spectroscopy, the shape of the transit light curve, adaptive optics imaging, and near-infrared transits of the planet. The sinusoidal variation in the transit times of Kepler-19b indicates the presence of an additional perturbing body, and comprises the first definitive detection of a planet using the transit timing variation method. While we cannot uniquely determine the mass and orbital period of Kepler-19c, we establish that its mass must be less than 6 times the mass of Jupiter. The sixth chapter presents evidence for the validation of a 2.0 R ⊕ planet residing in the

  7. Conceiving and Marketing NASA's Great Observatories

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    2009-01-01

    In late 1984, Dr. Charles P. (Charlie) Pellerin Jr., director of the Astrophysics Division of NASA's Office of Space Science and Applications (OSSA) faced a dilemma. Congress and the White House had given approval to work that would lead to the launch of the Gamma Ray Observatory and the Hubble Space Telescope, but competing segments of the astronomical community were clamoring for two additional missions, the Space Infrared Telescope Facility (SIRTF) and the Advanced X-ray Astrophysics Facility (AXAF). Pellerin knew that Congress would not countenance a request for another costly astronomical space observatory so soon after approving GRO and HST. He also foresaw that if he arbitrarily assigned priority to either AXAF or SIRTF he would split the astronomical community. The losing faction would be up on Capitol Hill, lobbying Congress to reverse the decision; and Congress would do what it always does with split communities --- nothing. Pellerin called a meeting of leading astrophysicists to see how a persuasive argument could be made for both these new observatories and to market them as vital to a first comprehensive inventory of the universe conducted across all wavelength ranges. The group provided Pellerin a rotating membership of astrophysicists, who could debate and resolve issues so that decisions he reached would have solid community support. It also helped him to market his ideas in Congress. Ultimately, the concept of the Great Observatories came to be accepted; but its implementation faced myriad difficulties. False starts, political alliances that never worked out, and dramatic changes of direction necessitated by the Challenger disaster of early 1986 continually kept progress off balance. My paper follows these twists and turns from late 1984 to the announcement, on February 1, 1988, that President Reagan's FY89 budget proposal to Congress had designated AXAF for a new start.

  8. Architecture and performance of the space-based Far-Infrared Interferometer Instrument Simulator

    NASA Astrophysics Data System (ADS)

    Juanola-Parramon, R.; Fenech, D. M.; Savini, G.

    2016-04-01

    FIRI (Far Infra-Red Interferometer) is a spatial and spectral space interferometer with an operating wavelength range of 25-400 μm and sub-arcsecond angular resolution. It is based on the combination of stellar interferometry and Fourier transform spectroscopy to perform spectroscopy at high angular resolution in the far-infrared. The resulting technique is referred to as double Fourier spatio-spectral interferometry. With increased spatial and spectral resolution come a number of interesting science cases such as the formation and evolution of AGN and the characterization of gas, ice and dust in discs undergoing planetary formation, among others. To study the feasibility of a FIRI system, the Far-Infrared Interferometer Instrument Simulator (FIInS) has been developed. With FIInS, once a set of modelled scientific data is available, one can compare an input sky map with the synthesized one after data reduction algorithms have been applied.

  9. The Geostationary Remote Infrared Pollution Sounder (GRIPS): measurement of the carbon gases from space

    NASA Astrophysics Data System (ADS)

    Schoeberl, M.; Dickerson, R.; Marshall, B. T.; McHugh, M.; Fish, C.; Bloom, H.

    2013-09-01

    Climate change and air quality are the most pressing environmental issues of the 21st century. Despite decades of research, the sources and sinks of key greenhouse gases remain highly uncertain [IPCC1] making quantitative predictions of atmospheric composition and their impacts. The Geostationary Remote Infrared Pollution Sounder (GRIPS) is a multi-purpose instrument designed to reduce uncertainty associated with atmospheric radiative forcing. GRIPS will measure will measure greenhouse gases and aerosols - two of the most important elements in the earth's radiation budget. GRIPS will observe carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), - the carbon gases, nitrous oxide (N2O), water vapor and aerosols with unprecedented precision through the atmosphere. The GRIPS instrument uses gas filter correlation radiometry (GFCR) to detect reflected and thermal IR radiation to detect the gases and the reflected solar radiation in the visible and short-wave infrared bands for aerosols. GRIPS is designed to have sensitivity down to the Earth's surface at ~2-8km nadir resolution. GRIPS can resolve CO2, CO, and CH4 anomalies in the planetary boundary layer and the free troposphere to quantify lofting, diurnal variations and longrange transport. With repeated measurements throughout the day GRIPS can maximize the number of cloud free measurements determining biogenic and anthropogenic sources, sinks, and fluxes. GRIPS is highly complementary to the Orbiting Carbon Observatory, OCO-2, the geostationary Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Advanced Baseline Imager (ABI) and other existing and planned missions.

  10. TALC: a new deployable concept for a 20m far-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Durand, Gilles; Sauvage, Marc; Bonnet, Aymeric; Rodriguez, Louis; Ronayette, Samuel; Chanial, Pierre; Scola, Loris; Révéret, Vincent; Aussel, Hervé; Carty, Michael; Durand, Matthis; Durand, Lancelot; Tremblin, Pascal; Pantin, Eric; Berthe, Michel; Martignac, Jérôme; Motte, Frédérique; Talvard, Michel; Minier, Vincent; Bultel, Pascal

    2014-08-01

    TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20m and ring thickness of 3m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryocooler at 0.3K as one of the main instruments. This

  11. Infrared dynamics of the massive ϕ4 theory on de Sitter space

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. T.; Popov, F. K.; Slepukhin, V. M.

    2013-07-01

    We study massive real scalar ϕ4 theory in the expanding Poincare patch of de Sitter space. We calculate the leading two-loop infrared contribution to the two-point function in this theory. We do that for the massive fields both from the principal and complementary series. As can be expected at this order, light fields from the complementary series show stronger infrared effects than the heavy fields from the principal one. For the principal series, unlike the complementary one, we can derive the kinetic equation from the system of Dyson-Schwinger equation, which allows us to sum up the leading infrared contributions from all loops. We find two peculiar solutions of the kinetic equation. One of them describes the stationary Gibbons-Hawking-type distribution for the density per comoving volume. Another solution shows explosive (square root of the pole in finite proper time) growth of the particle number density per comoving volume. That signals the possibility of the destruction of the expanding Poincaré patch even by the very massive fields. We conclude with the consideration of the infrared divergences in global de Sitter space and in its contracting Poincaré patch.

  12. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  13. Scale-space point spread function based framework to boost infrared target detection algorithms

    NASA Astrophysics Data System (ADS)

    Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan

    2016-07-01

    Small target detection is one of the major concern in the development of infrared surveillance systems. Detection algorithms based on Gaussian target modeling have attracted most attention from researchers in this field. However, the lack of accurate target modeling limits the performance of this type of infrared small target detection algorithms. In this paper, signal to clutter ratio (SCR) improvement mechanism based on the matched filter is described in detail and effect of Point Spread Function (PSF) on the intensity and spatial distribution of the target pixels is clarified comprehensively. In the following, a new parametric model for small infrared targets is developed based on the PSF of imaging system which can be considered as a matched filter. Based on this model, a new framework to boost model-based infrared target detection algorithms is presented. In order to show the performance of this new framework, the proposed model is adopted in Laplacian scale-space algorithms which is a well-known algorithm in the small infrared target detection field. Simulation results show that the proposed framework has better detection performance in comparison with the Gaussian one and improves the overall performance of IRST system. By analyzing the performance of the proposed algorithm based on this new framework in a quantitative manner, this new framework shows at least 20% improvement in the output SCR values in comparison with Laplacian of Gaussian (LoG) algorithm.

  14. Prediction of the Vibroacoustic Response of the Equipment Mounted on the Infrared Space Telescope "SPICA"

    NASA Astrophysics Data System (ADS)

    Akagi, Hiroki; Ando, Shigemasa; Shi, Qinzhong; Yamawaki, Toshiko

    2014-06-01

    The infrared space telescope "SPICA" (Space Infrared Telescope for Cosmology and Astrophysics) is a structurally-complex spacecraft, which requires the less conservative prediction of the random vibration at interface in order to reduce the over-margin issue for designing the strength on critical structure of optical instrument in the early stage of development, and to relieve the risk of overweight designing. This paper proposes Combination of FEA and SEA Methods to predict the vibroacoustic response of the equipment mounted on SPICA, and less conservative specification of the random vibration environments. Furthermore, a method of force-limiting to notch the specification over a certain frequency range during designing and a random vibration test is shown. Force-limiting specification is calculated using a simplified approach by multiplying the article's apparent mass to the equivalent of vibroacoustic response at interface.

  15. Space-exposure effects on optical-baffle coatings at far-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Blue, M. D.; Perkowitz, S.

    1992-01-01

    Reflectance of six optical-black coatings was remeasured over the near-infrared to the far-infrared region after nearly six years in space aboard the Long Duration Exposure Facility satellite. Measurements were made at room temperature and at cryogenic temperatures. The most notable effect was a general decrease in reflectance for typical samples at all wavelengths. Analysis indicates that this decrease is caused by an increase in absorption resulting from an increase in the imaginary part of the index of refraction, and not by a change in thickness, or increased surface roughness giving rise to increased scattering. These results suggest that such optical-baffle materials will provide enhanced performance as a result of aging in the space environment.

  16. Energy Diagnoses of Nine Infrared Luminous Galaxies Based on 3-4 Micron Spectra

    DTIC Science & Technology

    2000-12-20

    spectrometer (CGS4; Moun- tain et al. 1990) to obtain 3È4 km spectra of the IRLGs and NGC 253 with UKIRT on Mauna Kea , Hawaii. An observ- ing log is...DIAGNOSES OF NINE INFRARED LUMINOUS GALAXIES BASED ON 3È4 MICRON SPECTRA MASATOSHI IMANISHI1 National Astronomical Observatory , Mitaka, Tokyo 181-8588...feature at 7.7 km, systematic studies of the energy sources of IRLGs have been reported based on the Infrared Space Observatory (ISO) spectra at

  17. Taosi Observatory

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  18. Absolute Infrared Calibration of Standard Stars by the Midcourse Space Experiment

    DTIC Science & Technology

    2004-04-01

    fluxes of standard stars. Using standard stars to calibrate space- and ground-based observations of astronomical sources and Earth satellites has the... Satellite (IRAS). "* Cohen et al. (1 992a; Paper I) derived the absolute infrared flux for a Lyr by extrapolating the recommended visual flux of Hayes... characterized spectral bands. Cohen et al. (1992a) assigned the 1.45 percent uncertainty derived by Hayes (1985) for the calibration in the visual to the

  19. A space telescope for infrared spectroscopy of earth-like planets

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Cheng, A. Y. S.; Woolf, N. J.

    1986-01-01

    It is shown here that a space telescope of 16 m diameter, apodized in a new way, could image and measure oxygen n in the thermal infrared spectral of earthlike planets up to 4 pc away. The problems of visible light imaging for this case are discussed, and it is argued that imaging the thermal emission, with greatly reduced requirements for gain and hence surface accuracy, is preferable. The requirements for such imaging are discussed, including the apodization solution.

  20. Evaluation of high temperature superconductive thermal bridges for space-borne cryogenic infrared detectors

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1993-01-01

    The focus of this research is on the reduction of the refrigeration requirements for infrared sensors operating in space through the use of high temperature superconductive (HTS) materials as electronic leads between the cooled sensors and the relatively warmer data acquisition components. Specifically, this initial study was directed towards the design of an experiment to quantify the thermal performance of these materials in the space environment. First, an intensive review of relevant literature was undertaken, and then, design requirements were formulated. From this background information, a preliminary experimental design was developed. Additional studies will involve a thermal analysis of the experiment and further modifications of the experimental design.

  1. Invited review article: The Chandra X-ray Observatory.

    PubMed

    Schwartz, Daniel A

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  2. Electromagnetic modelling of a space-borne far-infrared interferometer

    NASA Astrophysics Data System (ADS)

    Donohoe, Anthony; O'Sullivan, Créidhe; Murphy, J. Anthony; Bracken, Colm; Savini, Giorgio; Pascale, Enzo; Ade, Peter; Sudiwala, Rashmi; Hornsby, Amber

    2016-02-01

    In this paper I will describe work done as part of an EU-funded project `Far-infrared space interferometer critical assessment' (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.

  3. The Spitzer Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Werner, M. W.

    2005-01-01

    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is about five years. Spitzer is thus both a scientific and a technical precursor to the infrared astronomy missions of the future. This very brief paper refers interested readers to several sets of recent publications which describe both the scientific and the technical features of Spitzer in detail. Note that, until 2003 December, Spitzer was known as the Space Infrared Telescope Facility (SIRTF).

  4. The Magdalena Ridge Observatory's 2.4-meter Fast-Tracking Telescope: Space Situational Awareness and the Near-Earth Environment

    NASA Astrophysics Data System (ADS)

    Ryan, E.; Ryan, W.

    2011-09-01

    To address Space Situational Awareness (SSA) needs, researchers at the Magdalena Ridge Observatory 2.4-meter telescope are investigating various methods to enhance and improve existing capabilities for unique spectral discrimination of resident space objects in low-Earth orbits. As a synergistic compliment to this endeavor, we are working to provide astrometric follow-up and physical characterization (including spectral studies) data of newly discovered near-Earth asteroids and comets in a framework important to planetary defense. One objective is to derive rotation rates for these bodies, and to place the results in context with previous data to enhance our understanding of asteroid impact physics and better address the threat from NEOs having Earth-crossing orbits. Rotation rate can be used to infer internal structure, which is a physical property important to assessing the energy required for object disruption or other forms of hazard mitigation.

  5. Space-based infrared scanning sensor LOS determination and calibration using star observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang

    2015-10-01

    This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.

  6. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiment (A0056)

    NASA Technical Reports Server (NTRS)

    Hawkins, Gary J.; Seeley, John S.; Hunneman, Roger

    1992-01-01

    Infrared optical multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. The effects are summarized of that environment on the physical and optical properties of the filters and materials flown.

  7. A Compact Infrared Space Telescope MIRIS and its Preliminary Observational Results

    NASA Astrophysics Data System (ADS)

    Han, Wonyong; Pyo, Jeonghyun; Kim, Il-Joong; Lee, Dae-Hee; Jeong, Woong-Seob; Moon, Bongkon; Park, Youngsik; Park, Sung-Joon; Lee, Dukhang; Park, Won-Kee; Ko, Kyeongyeon; Kim, Min Gyu; Nam, Uk-Won; Park, Hong-Young; Lee, Hyung Mok; Matsumoto, Toshio

    2015-08-01

    The first Korean infrared space telescope MIRIS (Milti-purpose InfraRed Imaging System) was successfully launched in November 2013, as the main payload of Korean STSAT-3 (Science and Technology Satellite-3). After the initial on-orbit operation for verification, the observations are made with MIRIS for the fluctuation of Cosmic Infrared Background (CIB) and the Galactic Plane survey. For the study of near-infrared background, MIRIS surveyed large areas (> 10° x 10°) around the pole regions: the north ecliptic pole (NEP), the north and south Galactic poles (NGP, SGP), while the NEP region is continually monitored for the instrumental calibration and the zodiacal light study. In addition, the Paschen-α Galactic plane survey has been made with two narrow-band filters (at 1.88 μm and 1.84+1.92 μm) for the study of warm interstellar medium. We plan to continue surveying the entire galactic plane with the latitude of ±3°, and expect to be completed by 2015. The data are still under the stage of reduction and analysis, and guest observations are on-going. We present some of the preliminary results.

  8. Fusion of infrared and visible images based on saliency scale-space in frequency domain

    NASA Astrophysics Data System (ADS)

    Chen, Yanfei; Sang, Nong; Dan, Zhiping

    2015-12-01

    A fusion algorithm of infrared and visible images based on saliency scale-space in the frequency domain was proposed. Focus of human attention is directed towards the salient targets which interpret the most important information in the image. For the given registered infrared and visible images, firstly, visual features are extracted to obtain the input hypercomplex matrix. Secondly, the Hypercomplex Fourier Transform (HFT) is used to obtain the salient regions of the infrared and visible images respectively, the convolution of the input hypercomplex matrix amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale which is equivalent to an image saliency detector are done. The saliency maps are obtained by reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. Thirdly, the salient regions are fused with the adoptive weighting fusion rules, and the nonsalient regions are fused with the rule based on region energy (RE) and region sharpness (RS), then the fused image is obtained. Experimental results show that the presented algorithm can hold high spectrum information of the visual image, and effectively get the thermal targets information at different scales of the infrared image.

  9. NASA's Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Clarke, Steven

    2016-04-01

    NASA formulates and implements a national research program for understanding the Sun and its interactions with the Earth and the solar system and how these phenomena impact life and society. This research provides theory, data, and modeling development services to national and international space weather efforts utilizing a coordinated and complementary fleet of spacecraft, called the Heliophysics System Observatory (HSO), to understand the Sun and its interactions with Earth and the solar system, including space weather. This presentation will focus on NASA's role in space weather research and the contributions the agency continues to provide to the science of space weather, leveraging inter-agency and international collaborations for the benefit of society.

  10. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  11. Remote Infrared Imaging of the Space Shuttle During Hypersonic Flight: HYTHIRM Mission Operations and Coordination

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.

    2011-01-01

    The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.

  12. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  13. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  14. An ISO far-infrared survey of line and continuum emission for 227 galaxies

    NASA Technical Reports Server (NTRS)

    Brauher, J. R.

    2002-01-01

    Far-infrared line and continuum fluxes are presented for a sample of 227 galaxies observed with the Long Wavelength Spectrometer on the Infrared Space Observatory, selected from the ISO Data Archive and having an IRAS 60/100 mu m color ration of 0.2-1.4 and IRAS 60 mu m flux density between 0.1 Jy and 1300 Jy.

  15. Modeling and research of a space-based spacecraft infrared detection system.

    PubMed

    Li, Wenhao; Liu, Zhaohui; Mu, You; Yang, Rui; Zhang, Xing

    2017-03-20

    When a spacecraft is in orbit, it is almost impossible to check its working condition. Almost all payload would generate waste heat when working, which is usually ejected by a radiator. By observing the radiator, we can catch a glimpse of a spacecraft's inner information. A thorough model of a space-based infrared detection system is analyzed, taking the radiator into account, which, to the best of our knowledge, has seldom been considered. The calculation result shows that infrared radiation reflected by spacecraft is weak compared with the spacecraft's self-radiation in 8-12 μm, and the contrast ratio between the radiator and surrounding area could be the criterion for judging the working condition of a spacecraft. The limit of detection distance is also increased due the higher temperature of the radiator.

  16. Detectors for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.

    2004-01-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  17. The International Virtual Observatory: Summary of the first decade

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2012-01-01

    International Virtual Observatory is a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that will combine existing databases from ground-based and space-born observatories and make them easily accessible to researchers. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies have been compiled from observations in a variety of wavelengths: optical, radio, infrared, gamma ray, X-ray and more. Each wavelength can provide different information about a celestial event or object, but also requires a special expertise to interpret. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. The International Virtual Observatory Alliance (IVOA) represents 20 national and international projects working in coordination to realize the essential technologies and interoperability standards necessary to create a new research infrastructure. Russian Virtual Observatory is one of the founders and important members of the IVOA. The International Virtual Observatory project was launched about ten years ago, and its major achievements in science and technology in recent years are discussed in this paper. Standards for accessing large astronomical data sets were developed. Such data sets can accommodate the full range of wavelengths and observational techniques for all types of astronomical data: catalogues, images, spectra and time series. The described standards include standards for metadata, data formats, query language, etc. Services for the federation of massive, distributed data sets, regardless of the wavelength, resolution and type of data were

  18. United Kingdom Infrared Telescope's Spectrograph Observations of Human-Made Space Objects

    NASA Technical Reports Server (NTRS)

    Buckalew, Brent; Abercromby, Kira; Lederer, Susan; Cowardin, Heather; Frith, James

    2017-01-01

    Presented here are the results of the United Kingdom Infrared Telescope (UKIRT) spectral observations of human-made space objects taken from 2014 to 2015. The data collected using the UKIRT 1-5 micron Imager Spectrometer (UIST) cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 18 different orbiting objects at or near geosynchronous orbit (GEO). Two of the objects are controlled spacecraft, twelve are non-controlled spacecraft, one is a rocket body, and three are cataloged as debris. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials; thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons and silicon. The spacecraft, both the controlled and non-controlled, show distinct features due to the presence of solar panels whereas the rocket bodies do not. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give well-correlated indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. A comparison conducted between objects observed previously with the NASA Infrared Telescope Facility (IRTF) shows similar materials and trends from the two telescopes and different times. However, based on the current state of the model, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft

  19. Infrared Telescope Facility's Spectrograph Observations of Human-Made Space Objects

    NASA Technical Reports Server (NTRS)

    Abercromby, K.; Buckalew, B.; Abell, P.; Cowardin, H.

    2015-01-01

    Presented here are the results of the Infrared Telescope Facility (IRTF) spectral observations of human-made space objects taken from 2006 to 2008. The data collected using the SpeX infrared spectrograph cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 20 different orbiting objects at or near the geosynchronous (GEO) regime. Four of the objects were controlled spacecraft, seven were non-controlled spacecraft, five were rocket bodies, and the final four were cataloged as debris pieces. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials, thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons, silicon, and thermal emission. The spacecraft, both the controlled and non-controlled, show distinct features due to the presence of solar panels, whereas the rocket bodies do not. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give excellent indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. However, based on the current state of the comparison between the observations and the laboratory data, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft, rocket bodies, or debris.

  20. A SPITZER SPACE TELESCOPE FAR-INFRARED SPECTRAL ATLAS OF COMPACT SOURCES IN THE MAGELLANIC CLOUDS. II. THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Van Loon, Jacco Th.; Oliveira, Joana M.; Gordon, Karl D.; Sloan, G. C.; Engelbracht, C. W.

    2010-04-15

    We present far-infrared spectra, {lambda} = 52-93 {mu}m, obtained with the Spitzer Space Telescope in the spectral energy distribution mode of its Multiband Imaging Photometer for Spitzer instrument, of a selection of luminous compact far-infrared sources in the Small Magellanic Cloud (SMC). These comprise nine young stellar objects (YSOs), the compact H II region N 81 and a similar object within N 84, and two red supergiants (RSGs). We use the spectra to constrain the presence and temperature of cool dust and the excitation conditions within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding interstellar medium. We compare these results with those obtained in the Large Magellanic Cloud (LMC). The spectra of the sources in N 81 (of which we also show the Infrared Space Observatory-Long-wavelength Spectrograph spectrum between 50 and 170 {mu}m) and N 84 both display strong [O I] {lambda}63 {mu}m and [O III] {lambda}88 {mu}m fine-structure line emission. We attribute these lines to strong shocks and photo-ionized gas, respectively, in a 'champagne flow' scenario. The nitrogen content of these two H II regions is very low, definitely N(N)/N(O) < 0.04 but possibly as low as N(N)/N(O) < 0.01. Overall, the oxygen lines and dust continuum are weaker in star-forming objects in the SMC than in the LMC. We attribute this to the lower metallicity of the SMC compared to that of the LMC. While the dust mass differs in proportion to metallicity, the oxygen mass differs less; both observations can be reconciled with higher densities inside star-forming cloud cores in the SMC than in the LMC. The dust in the YSOs in the SMC is warmer (37-51 K) than in comparable objects in the LMC (32-44 K). We attribute this to the reduced shielding and reduced cooling at the low metallicity of the SMC. On the other hand, the efficiency of the photo-electric effect to heat the gas is found to be indistinguishable to that measured in the same manner

  1. An Overview of the Performance of the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2004-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA s Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST - formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel support also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  2. Dudley Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Dudley Observatory, in Schenectady, New York, is a private foundation supporting research and education in astronomy, astrophysics and the history of astronomy. Chartered in 1852, it is the oldest organization in the US, outside academia and government, dedicated to the support of astronomical research. For more than a century it was a world leader in astrometry, with such achievements as pub...

  3. MOOSE: A Multi-Spectral Observatory Of Sensitive EMCCDs for innovative research in space physics and aeronomy

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R. G.; Hampton, D. L.; Trondsen, T.

    2012-12-01

    The Multi-Spectral Observatory Of Sensitive EMCCDs (MOOSE) consists of 5 imaging systems and is the result of an NSF-funded Major Research Instrumentation project. The main objective of MOOSE is to provide a resource to all members of the scientific community that have interests in imaging low-light-level phenomena, such as aurora, airglow, and meteors. Each imager consists of an Andor DU-888 Electron Multiplying CCD (EMCCD), combined with a telecentric optics section, made by Keo Scientific Ltd., with a selection of available angular fields of view. During the northern hemisphere winter the system is typically based and operated at Poker Flat Research Range in Alaska, but any or all imagers can be shipped anywhere in individual stand-alone cases. We will discuss the main components of the MOOSE project, including the imagers, optics, lenses and filters, as well as the Linux-based control software that enables remote operation. We will also discuss the calibration of the imagers along with the initial deployments and testing done. We are requesting community input regarding operational modes, such as filter and field of view combinations, frame rates, and potentially moving some imagers to other locations, either for tomography or for larger spatial coverage. In addition, given the large volume of auroral image data already available, we are encouraging collaborations for which we will freely distribute the data and any analysis tools already developed. Most significantly, initial science highlights relating to aurora, airglow and meteors will be discussed in the context of the creative and innovative ways that the MOOSE observatory can be used in order to address a new realm of science topics, previously unachievable with traditional single imager systems.

  4. Far infrared supplement: Catalog of infrared observations

    NASA Astrophysics Data System (ADS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1982-10-01

    The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965.

  5. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965.

  6. Wavefront Sensing and Control Technology for Submillimeter and Far-Infrared Space Telescopes

    NASA Technical Reports Server (NTRS)

    Redding, Dave

    2004-01-01

    The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.

  7. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  8. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  9. Observatories in earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji (Editor)

    1990-01-01

    The present volume on observations in earth orbit and beyond discusses current and future missions, launch vehicles, the relative merits of various observatories, and long-term future issues. Attention is given to the Granat automatic spacecraft, the prospects of the Hipparcos mission, EUV and FUV astronomy from Voyagers 1 and 2, and the X-ray Timing Explorer. Topics addressed include the SAX mission for X-ray astronomy, the Space Infrared Telescope Facility, the Ulysses mission in the high-latitude heliosphere, and science operations for future space astrophysics missions. Also discussed are science observations with the IUE using the one-gyro mode, new methods of determining spacecraft attitude, cryogenic testing of optics for ISOCAM, and the stellar X-ray polarimeter for the Spectrum-X-Gamma mission.

  10. Experiments with "wide field" for Space Surveillance Systems in Odessa Astronomical observatory (Ukraine). Prodolzhen eksperiment s "shirokim polem" dlya zadach kontrolya kosmicheskogo prostranstva v Odesskoy astronomicheskoy observatorii

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.

    2007-08-01

    In OAO on point Mayaki (40 km for city) is continued observations geostationary (GSS) and low orbital (LEO) satellites with using more inexpensive domestic, "ready to use", wide field optic lens for the reason: To get limited magnitude on high orbital cosmic object (HEO) to 15m in to view telescope 3 -7 degrees for time accumulation 10-15 sec. To value the possibility of the use WFO for monitoring LEO on low orbit by height less than 2 000 km with limited magnitude to 11m on star for 1 sec. accumulations. 90% LEO from 39 objects are surely identified using catalog NORAD. About obtain the results possible to read in article: "About using wide field lens optics for Space Surveillance Systems in Odessa Astronomical observatory" (in Russian).

  11. The effects of aberrations (low order and quilting) on the performance of the all-composite design for the Herschel Space Observatory

    NASA Technical Reports Server (NTRS)

    Catanzaro, B.; Thomas, James A.; Backovsky, S.; Barber, D.; Small, D.; Johnston, R.; Cohen, E. J.

    2001-01-01

    The effects of specific aberrations on the optical performance of the all-composite design for the Herschel Space Observatory are examined. A review of the all-composite design for the large aperture (3.5 m) telescope that satisfies the target specifications is presented. Cryogenic experiments with carbon fiber reinforced polymer (CFRP) 2 m demonstration mirror have yielded empirical bounds on the high-and low-order spatial frequency aberrations that will be anticipated in the full 3.5 m Ritchey-Chretien telescope design. Detailed analysis is presented on the effect of the low order aberrations of the primary mirror on the system wavefront error and encircled energy. Predictable limits of correction via low order shaping of the secondary mirror are described. The impact of higher order surface errors on the encircled energy and the stray light will also be presented. Comments are made regarding the impact of the optical prescription and CRFP design on flight telescope testing.

  12. SOFIA Observatory Conducts Night Checkout Flight

    NASA Video Gallery

    This spectacular video captures NASA's Stratospheric Observatory for Infrared Astronomy as it flew a nighttime checkout flight over northern and central California the first week of March 2013. The...

  13. Technology challenges for space interferometry: The option of mid-infrared integrated optics

    NASA Astrophysics Data System (ADS)

    Labadie, L.; Kern, P.; Labeye, P.; Lecoarer, E.; Vigreux-Bercovici, C.; Pradel, A.; Broquin, J.-E.; Kirschner, V.

    Nulling interferometry is a technique providing high angular resolution which is the core of the space missions Darwin and TPF. The first objective is to reach a deep degree of starlight cancelation in the range 6 20 μm, in order to observe and to characterize the signal from an earth-like planet. Among the numerous technological challenges involved in these missions, the question of the beam combination and wavefront filtering has an important place. A single-mode integrated optics (IO) beam combiner could support both the functions of filtering and the interferometric combination, simplifying the instrumental design. Such a perspective has been explored in this work within the project Integrated Optics for Darwin (IODA), which aims at developing a first IO combiner in the mid-infrared. The solutions reviewed here to manufacture the combiner here are based on infrared dielectric materials on one side, and on metallic conductive waveguides on the other side. With this work, additional inputs are offered to pursue the investigation on mid-infrared photonics devices.

  14. Infrared transfer radiometer for broadband and spectral calibration of space chambers

    NASA Astrophysics Data System (ADS)

    Jung, Timothy M.; Carter, Adriaan C.; Woods, Solomon I.; Kaplan, Simon G.; Datla, Raju U.

    2010-04-01

    The Low-Background Infrared (LBIR) facility at NIST has recently completed construction of an infrared transfer radiometer with an integrated cryogenic Fourier transform spectrometer (Cryo-FTS). This mobile system can be deployed to customer sites for broadband and spectral calibrations of space chambers and low-background HWIL testbeds. The Missile Defense Transfer Radiometer (MDXR) has many of the capabilities of a complete IR calibration facility and will replace our existing filter-based transfer radiometer (BXR) as the NIST standard detector deployed to MDA facilities. The MDXR features numerous improvements over the BXR, including: a cryogenic Fourier transform spectrometer, an on-board absolute cryogenic radiometer (ACR), an internal blackbody reference, and an integrated collimator. The Cryo-FTS can be used to measure high resolution spectra from 4 to 20 micrometers, using a Si:As blocked-impurity-band (BIB) detector. The on-board ACR can be used for self-calibration of the MDXR BIB as well as for absolute measurements of infrared sources. A set of filter wheels and a rotating polarizer within the MDXR allow for filter-based and polarization-sensitive measurements. The optical design of the MDXR makes both radiance and irradiance measurements possible and enables calibration of both divergent and collimated sources. Details of the various MDXR components will be presented as well as initial testing data on their performance.

  15. A dc-coupled, high sensitivity bolometric detector system for the Infrared Telescope in Space

    NASA Technical Reports Server (NTRS)

    Devlin, M.; Lange, A. E.; Wilbanks, T.; Sato, S.

    1993-01-01

    We report the performance of an ac bridge readout system that has been developed for use on the Infrared Telescope in Space which is scheduled for launch in 1994. The ac bridge readout provides excellent dc stability enabling observing strategies well-suited to space-borne observations. The ability to modulate the optical signal slowly allows the use of new, highly sensitive, long time-constant bolometers. At 300 mK, the bolometers have an electrical noise equivalent power of 3 x 10 exp -17 W/sq rt Hz. The total noise of the differential signal, including amplifier noise, is less than 8 x 10 exp -17 W/sq rt Hz at frequencies as low as 35 mHz.

  16. Astrometry with Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Benedict, G.; Murdin, P.

    2000-11-01

    In 1990 NASA launched the HUBBLE SPACE TELESCOPE. In addition to cameras and spectrographs usable from the far ultraviolet to the near-infrared, the observatory contains three white-light INTERFEROMETERS. As part of engineering and science support their primary task was telescope guiding; to position and hold science targets within the science instrument apertures with tolerances approaching 0.1'...

  17. 1981 Aeronautics and Space Highlights

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This video presentation covers Shuttle flights 1 and 2, Spacelab, mobile workstation, Voyager 2 Saturn, Infrared Astronomy Satellite, Hubble Space Telescope, Kuiper Airborne Observatory, High Altitude Earth Survey, Landsat, aerodynamic research, electric cars, wind energy, XV-15, Quiet Shorthaul Research Aircraft, X-14 BVTOL, 40 x 80 Wind Tunnel, and turboprop research.

  18. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  19. Space Studies Board, 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1994 report of the Space Studies Board of the National Research Council summarizes the charter and organization of the board, activities and membership, major and short reports, and congressional testimony. A cumulative bibliography of the Space Studies (formerly Space Science) Board and its committees is provided. An appendix contains reports of the panel to review Earth Observing System Data and Information System (EOSDIS) plans. Major reports cover scientific opportunities in the human exploration of space, the dichotomy between funding and effectiveness in space physics, an integrated strategy for the planetary sciences for the years 1995-2010, and Office of Naval Research (ONR) research opportunities in upper atmospheric sciences. Short reports cover utilization of the space station, life and microgravity sciences and the space station program, Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy, and the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe.

  20. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  1. The Case for Space-Borne Far-Infrared Line Surveys

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Bradford, C. M.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H. T.; Zmuidzinas, J.

    2004-01-01

    The combination of sensitive direct detectors and a cooled aperture promises orders of magnitude improvement in the sensitivity and survey time for far-infrared and submillimeter spectroscopy compared to existing or planned capabilities. Continuing advances in direct detector technology enable spectroscopy that approaches the background limit available only from space at these wavelengths. Because the spectral confusion limit is significantly lower than the more familiar spatial confusion limit encountered in imaging applications, spectroscopy can be carried out to comparable depth with a significantly smaller aperture. We are developing a novel waveguide-coupled grating spectrometer that disperses radiation into a wide instantaneous bandwidth with moderate resolution (R 1000) in a compact 2-dimensional format. A line survey instrument coupled to a modest cooled single aperture provides an attractive scientific application for spectroscopy with direct detectors. Using a suite of waveguide spectrometers, we can obtain complete coverage over the entire far-infrared and sub-millimeter. This concept requires no moving parts to modulate the optical signal. Such an instrument would be able to conduct a far-infrared line survey 10 6 times faster than planned capabilities, assuming existing detector technology. However, if historical improvements in bolometer sensitivity continue, so that photon-limited sensitivity is obtained, the integration time can be further reduced by 2 to 4 orders of magnitude, depending on wavelength. The line flux sensitivity would be comparable to ALMA, but at shorter wavelengths and with the continuous coverage needed to extract line fluxes for sources at unknown redshifts. For example, this capability would break the current spectroscopic bottleneck in the study of far-infrared galaxies, the recently discovered, rapidly evolving objects abundant at cosmological distances.

  2. Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; Tack, Steve; Bush, Brett C.; Dantowitz, Ronald F.; Kozubal, Marek J.

    2012-01-01

    High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpness

  3. First Light Infrared Observations with the 1.6 Meter Solar Telescope in Big Bear: Origins of Space Weather Telescope

    DTIC Science & Technology

    2012-08-16

    later transported toward the corona . 2)We investigated properties of magnetic fields in nearly 400 solar active regions. Time profiles of...1.6 Meter Solar Telescope in Big Bear: Origins of Space Weather Telescope. 5a. CONTRACT NUMBER FA9550-09-1-0655 5b. GRANT NUMBER 5c. PROGRAM...STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT In early 2009 at Big Bear Solar Observatory (BBSO), first light science observations were made

  4. A Giant Leap Towards a Space-based Gravitational-Wave Observatory: LISA Pathfinder, the LISA Test Package, and ST7-DRS

    NASA Astrophysics Data System (ADS)

    Thorpe, James; McNamara, Paul; Ziemer, John; LPF Team, LTP Team, ST7-DRS Team

    2015-01-01

    The science case for a space-based gravitational wave instrument observing in the milliHertz band covers a wide area of topics in astrophysics and fundamental physics including galaxy formation and evolution, black hole growth, compact object demographics, gravitational physics, and cosmology. This strong science case is largely responsible for the high rankings received by the Laser Interferometer Space Antenna (LISA) mission in major reviews in both the US and Europe. A key element of the development of LISA is the LISA Pathfinder (LPF) technology demonstrator mission, which will launch in the coming year. Led by ESA and a consortium of European national agencies and with a minority contribution from NASA, LPF will demonstrate several key technologies for the LISA concept. LPF includes two scientific payloads: the European LISA Technology Package (LTP) and the NASA-provided ST7-DRS. The mission will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, micro-Newton thrusters, and picometer-level laser metrology. We will present an overview of the LISA Pathfinder mission, the LTP and ST7-DRS payloads, and their expected impact on the larger effort to realize a space-based gravitational wave observatory.

  5. Characterization of direct readout Si:Sb and Si:Ga infrared detector arrays for space-based astronomy

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Mccreight, Craig R.; Goebel, John H.; Moss, Nicolas N.; Savage, Maureen L.

    1988-01-01

    Preliminary test results from the evaluation of Si:Sb and Si:Ga 58 x 62-element infrared detector arrays are presented. These devices are being characterized under background conditions and readout rates representative of operation in orbiting, crogenically-cooled infrared observatories. The arrays are hybridized to silicon direct-readout multiplexers which allow random-access and nondestructive readout. Array performance optimization is being conducted with a flexible microcomputer-based drive and readoaut electronics system. Preliminary Si:Sb measurements indicate a sense node capacitance of 0.06 pF, peak (28-micron) responsivity above 3 A/W at 2V bias, read noise of 130 rms e(-), dark current approximately 10 e(-)/s, and a well capacity greater than 10 to the 5th e(-). The limited test data available on the performance of the Si:Ga array are also discussed.

  6. Far-Infrared Space Interferometers: Future Windows on Star and Planet Formation

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2004-01-01

    Far-IR space interferometers will provide observational access to a spectral region containing many important cooling and diagnostic spectral lines and the bulk of the thermal emission from dust at angular scales critical to advancing our understanding of the star and planet formation process. We will describe concepts for the Space Infrared Interferometric Telescope (SPIRIT) and the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). Both of these candidate NASA missions are imaging and spectral Michelson interferometers operating in the wavelength range -40 - 800 microns. SPIRIT, which could be launched in a decade as a NASA Origins Probe, is built on a deployable boom and has a maximum baseline length of -30 - 50 m, yielding sub-arcsecond resolution in the far-IR. SPIRIT will thus provide far-IR/sub-mm measurements complementary to the near- and mid-IR measurements obtainable with the James Webb Space Telescope (JWST), and well matched to JWST observations in angular resolution. Ultimately SPECS, a NASA Vision Mission, will use formation flying to attain baseline lengths up to 1 km, and thus angular resolution comparable to that of the Hubble Space Telescope and the Atacama Large Millimeter Array. We will report preliminary results of the NASA-sponsored SPIRIT and SPECS mission studies, which are now underway.

  7. Infrared Astronomy and Education: Linking Infrared Whole Sky Mapping with Teacher and Student Research

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, Bryan; Thaller, Michelle; Gorjian, Varoujan; Borders, Kyla; Pitman, Peter; Pereira, Vincent; Sepulveda, Babs; Stark, Ron; Knisely, Cindy; Dandrea, Amy; Winglee, Robert; Plecki, Marge; Goebel, Jeri; Condit, Matt; Kelly, Susan

    The Spitzer Space Telescope and the recently launched WISE (Wide Field Infrared Survey Explorer) observe the sky in infrared light. Among the objects WISE will study are asteroids, the coolest and dimmest stars, and the most luminous galaxies. Secondary students can do authentic research using infrared data. For example, students will use WISE data to mea-sure physical properties of asteroids. In order to prepare students and teachers at this level with a high level of rigor and scientific understanding, the WISE and the Spitzer Space Tele-scope Education programs provided an immersive teacher professional development workshop in infrared astronomy.The lessons learned from the Spitzer and WISE teacher and student pro-grams can be applied to other programs engaging them in authentic research experiences using data from space-borne observatories such as Herschel and Planck. Recently, WISE Educator Ambassadors and NASA Explorer School teachers developed and led an infrared astronomy workshop at Arecibo Observatory in PuertoRico. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance and age of objects in the Universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and the Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. We will outline specific steps for sec-ondary astronomy professional development, detail student involvement in infrared telescope data analysis, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional secondary professional development and student involvement in infrared astronomy. Funding was

  8. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  9. Solar System Object Extraction for Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Müller, T. G.; Duran, F. R.

    Astronomy archives cover at different wavelengths all possible types of astronomical sources, including many dedicated and also serendipitous observations of solar system objects (SSO). It is difficult to handle SSOs in a ``typical'' archive way due to their apparent movement in the sky, ranging from a fraction of an arcsec/hour for Trans-Neptunian objects up to a few degrees for Near-Earth objects, and their enormous brightness change. To locate known SSOs in astronomical images, one needs to calculate highly accurate observatory-centric ephemeris for the image epochs. In crowed fields also rough brightness estimates are required for SSO identifications. The current data base includes, additionally to the planets and their satellites, about 200 comets and more than 100 000 asteroids. These constraints usually limit search procedures either to a small number of objects or to only a few frames. We present a possible solution to handle SSOs with known orbits in a systematic way for large numbers of sky frames. Our first attempts consisted in cross correlating about 5 Million 3'×3' sky fields, taken by the Infrared Space Observatory, against the data base of SSOs. The final source identification was based on reliable N-body ephemeris calculations and infrared brightness estimates. We aimed for the following goals: (1) ``Cleaning'' of stellar, galactic and extragalactic catalogue lists from SSOs; (2) Identifying serendipitously seen well-known SSOs for calibration purposes; (3) Extracting asteroids and comets for further scientific investigations; We believe that our experience in solving these problems might also be helpful for future developements of ``Virtual Observatories''.

  10. Overview of the Chandra X-Ray Observatory Facility

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory (originally called the Advanced X-Ray Astrophysics Facility - AXAF) is the X-Ray component of NASA's "Great Observatory" Program. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to scientific proposals for its use. The Observatory is the product of the efforts of many organizations in the United States and Europe. The Great Observatories also include the Hubble Space Telescope for space-based observations of astronomical objects primarily in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma- Ray Observatory that was designed to observe gamma-ray emission from astronomical objects, and the soon-to-be-launched Space Infrared Telescope Facility (SIRTF). The Chandra X-Ray Observatory (hereafter CXO) is sensitive to X-rays in the energy range from below 0.1 to above 10.0 keV corresponding to wavelengths from 12 to 0.12 nanometers. The relationship among the various parts of the electromagnetic spectrum, sorted by characteristic temperature and the corresponding wavelength, is illustrated. The German physicist Wilhelm Roentgen discovered what he thought was a new form of radiation in 1895. He called it X-radiation to summarize its properties. The radiation had the ability to pass through many materials that easily absorb visible light and to free electrons from atoms. We now know that X-rays are nothing more than light (electromagnetic radiation) but at high energies. Light has been given many names: radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation are all different forms. Radio waves are composed of low energy particles of light (photons). Optical photons - the only photons perceived by the human eye - are a million times more energetic than the typical radio photon, whereas the energies of X-ray photons range from hundreds to thousands of times higher than that of optical photons. Very low temperature systems

  11. Improving Arecibo Observatory's Hardware

    NASA Astrophysics Data System (ADS)

    Van Rooy, Paula; Whitlow, Dana; Seymour, Andrew

    2017-01-01

    The Puerto-rican Ultimate Pulsar Processing Instrument (PUPPI) is a key backend for time-domain observations at Arecibo Observatory. PUPPI enables pulsar timing used for gravitational wave studies, single pulse studies of pulsars, searches for new pulsars, and allows in depth studies of Fast Radio Bursts (FRBs). Unfortunately, PUPPI is presently restricted to only certain Arecibo receivers due to its input frequency and bandwidth requirements. Here we present the design process, building, bench testing, and updates on the implementation of a one-channel breadboard of a new frequency mixer at the Arecibo Observatory. The function of the frequency mixer design is to translate a 1.1-1.9 GHz band to 0.8 - 1.6 GHz band, where PUPPI samples the data at the second Nyquist zone. When this seemingly simple device is fully implemented, it will allow for the further expansion of the abilities of PUPPI. Mainly it will expand PUPPI's frequency agility to higher frequencies from 4 to 10 GHz, by enabling it to work with many more of Arecibo's receivers. We hope this becomes particularly useful, now that a FRB has been detected at these higher frequencies. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association. The Arecibo Observatory REU is funded under grant AST-1559849 to Universidad Metropolitana

  12. La Plata Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Forte, Juan Carlos; Cora, Sofia A.

    La Plata, the current capital city of the province of Buenos Aires, was founded on 19 November 1882 by governor Dardo Rocha, and built on an innovative design giving emphasis to the quality of the public space, official and educational buildings. The Astronomical Observatory was one of the first inhabitants of the main park of the city; its construction started in 1883 including two telescopes that ranked among the largest in the southern hemisphere at that time and also several instruments devoted to positional astronomy (e.g. a meridian circle and a zenith telescope). A dedicated effort has being invested during the last 15 years in order to recover some of the original instrumentation (kept in a small museum) as well as the distinctive architectural values. In 1905, the Observatory, the School of Agriculture and the Museum of Natural Sciences (one of the most important museums in South America) became part of the backbone of La Plata National University, an institution with a strong and distinctive profile in exact and natural sciences. The First School for Astronomy and Related Sciences had been harboured by the Observatory since 1935, and became the current Faculty of Astronomical and Geophysical Sciences in 1983. This last institution carries PhD programs and also a number of teaching activities at different levels. These activities are the roots of a strong connection of the Observatory with the city.

  13. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; Maher, S. F.; Mentzell, J. E.; Mundy, L. G.; Rizzo, M. J.; Silverberg, R. F.; Staguhn, J. G.

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  14. The Great Observatories All-Sky LIRG Survey: Herschel Image Atlas and Aperture Photometry

    NASA Astrophysics Data System (ADS)

    Chu, Jason K.; Sanders, D. B.; Larson, K. L.; Mazzarella, J. M.; Howell, J. H.; Díaz-Santos, T.; Xu, K. C.; Paladini, R.; Schulz, B.; Shupe, D.; Appleton, P.; Armus, L.; Billot, N.; Chan, B. H. P.; Evans, A. S.; Fadda, D.; Frayer, D. T.; Haan, S.; Ishida, C. M.; Iwasawa, K.; Kim, D.-C.; Lord, S.; Murphy, E.; Petric, A.; Privon, G. C.; Surace, J. A.; Treister, E.

    2017-04-01

    Far-infrared images and photometry are presented for 201 Luminous and Ultraluminous Infrared Galaxies [LIRGs: log ({L}{IR}/{L}ȯ )=11.00{--}11.99, ULIRGs: log ({L}{IR}/{L}ȯ )=12.00{--}12.99], in the Great Observatories All-Sky LIRG Survey (GOALS), based on observations with the Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) instruments. The image atlas displays each GOALS target in the three PACS bands (70, 100, and 160 μm) and the three SPIRE bands (250, 350, and 500 μm), optimized to reveal structures at both high and low surface brightness levels, with images scaled to simplify comparison of structures in the same physical areas of ∼100 × 100 kpc2. Flux densities of companion galaxies in merging systems are provided where possible, depending on their angular separation and the spatial resolution in each passband, along with integrated system fluxes (sum of components). This data set constitutes the imaging and photometric component of the GOALS Herschel OT1 observing program, and is complementary to atlases presented for the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory. Collectively, these data will enable a wide range of detailed studies of active galactic nucleus and starburst activity within the most luminous infrared galaxies in the local universe. Based on Herschel Space Observatory observations. Herschel is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia, and important participation from NASA.

  15. The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA

    NASA Technical Reports Server (NTRS)

    Leisawitz, Dave

    2007-01-01

    We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.

  16. Columbia University Participation in the Infrared Space Observatory (ISO) Guest Obs. Program: Evolution of Near-Infrared Lines from the Formation of Supernova Remnant 1987A

    NASA Technical Reports Server (NTRS)

    Crotts, Arlin P. S.

    2000-01-01

    The goal of this project is to determine the mass loss history of a sample of seven mass losing Asymptotic Giant Branch stars. This is done by observing their circumstellar dust shells which contain a record of the most recent mass loss history. The further away from the star we are able to detect this increasingly fainter dust emission the further back we can look into the mass loss history.

  17. From Single Pixels to Many Megapixels: Progress in Astronomical Infrared Imaging from Space-borne Telescopes

    NASA Astrophysics Data System (ADS)

    Pipher, Judith

    2017-01-01

    In the 1960s, rocket infrared astronomy was in its infancy. The Cornell group planned a succession of rocket launches of a small cryogenically cooled telescope above much of the atmosphere. Cornell graduate students were tasked with hand-making single pixel detectors for the focal plane at wavelengths ranging from ~5 microns to just short of 1 mm. “Images” could only be constructed from scans of objects such as HII regions/giant molecular clouds, the galactic center, and of diffuse radiation from the various IR backgrounds. IRAS and COBE, followed by the KAO utilized ever more sensitive single IR detectors, and revolutionized our understanding of the Universe. The first IR arrays came onto the scene in the early 1970s - and in 1983 several experiments for the space mission SIRTF (later named Spitzer Space Telescope following launch 20 years later) were selected, all boasting (relatively small) arrays. Europe’s ISO and Herschel also employed arrays to good advantage, as has SOFIA, and now, many-megapixel IR arrays are sufficiently well-developed for upcoming space missions.

  18. James Webb Space Telescope Mid Infra-Red Instrument Pulse-Tube Cryocooler Electronics

    NASA Technical Reports Server (NTRS)

    Harvey, D.; Flowers, T.; Liu, N.; Moore, K.; Tran, D.; Valenzuela, P.; Franklin, B.; Michaels, D.

    2013-01-01

    The latest generation of long life, space pulse-tube cryocoolers require electronics capable of controlling self-induced vibration down to a fraction of a newton and coldhead temperature with high accuracy down to a few kelvin. Other functions include engineering diagnostics, heater and valve control, telemetry and safety protection of the cryocooler subsystem against extreme environments and operational anomalies. The electronics are designed to survive the thermal, vibration, shock and radiation environment of launch and orbit, while providing a design life in excess of 10 years on-orbit. A number of our current generation high reliability radiation-hardened electronics units are in various stages of integration on several space flight payloads. This paper describes the features and performance of our latest flight electronics designed for the pulse-tube cryocooler that is the pre-cooler for a closed cycle Joule-Thomson cooler providing 6K cooling for the James Webb Space Telescope (JWST) Mid Infra-Red Instrument (MIRI). The electronics is capable of highly accurate temperature control over the temperature range from 4K to 15K. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter controls peak-to-peak reflected ripple current on the primary power bus to a very low level. The 9 kg unit is capable of delivering 360W continuous power to NGAS's 3-stage pulse-tube High-Capacity Cryocooler (HCC).

  19. Quasi-optical analysis of a far-infrared spatio-spectral space interferometer concept

    NASA Astrophysics Data System (ADS)

    Bracken, C.; O'Sullivan, C.; Murphy, J. A.; Donohoe, A.; Savini, G.; Lightfoot, J.; Juanola-Parramon, R.

    2016-07-01

    FISICA (Far-Infrared Space Interferometer Critical Assessment) was a three year study of a far-infrared spatio-spectral double-Fourier interferometer concept. One of the aims of the FISICA study was to set-out a baseline optical design for such a system, and to use a model of the system to simulate realistic telescope beams for use with an end-to-end instrument simulator. This paper describes a two-telescope (and hub) baseline optical design that fulfils the requirements of the FISICA science case, while minimising the optical mass of the system. A number of different modelling techniques were required for the analysis: fast approximate simulation tools such as ray tracing and Gaussian beam methods were employed for initial analysis, with GRASP physical optics used for higher accuracy in the final analysis. Results are shown for the predicted far-field patterns of the telescope primary mirrors under illumination by smooth walled rectangular feed horns. Far-field patterns for both on-axis and off-axis detectors are presented and discussed.

  20. Focus on the positive: lessons learned from focus determination of infrared space optics

    NASA Astrophysics Data System (ADS)

    Egan, Jacob; Rigg, Kevin

    2016-09-01

    Wide field of view optics paired with large starer infrared detector arrays can be notoriously difficult to place into focus. This paper will discuss the lessons learned in taking one such system from being more than 20x out of its focus specification to within focus in a single iteration. Traditionally the tight tolerances required for space borne applications forces the system designer to carefully consider many effects that may otherwise be negligible. These include changes in system tolerances between ambient to cryogenic temperature, lens boule property differences, test setup to properly mimic the flight thermal profile, lack of commercially available lasers with the proper wavelength, and several others. In this case, some key pieces of information were not provided when the system arrived at Northrop Grumman's Azusa facility for unit integration and through-focus testing. The presented approach involves taking extremely out-of-focus responses from point sources at various focus positions and combining them with optical modeling parameters to determine how to best reposition the detector array to the best plane of focus. A successful implementation of the approach will be presented using data from a wide field-of-view infrared sensor.

  1. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    SciTech Connect

    Schneider, Adam C.; Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Mace, Gregory N.; Wright, Edward L.; Eisenhardt, Peter R.; Skrutskie, M. F.; Griffith, Roger L.; Marsh, Kenneth A.

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.

  2. Study of advanced InSb arrays for SIRTF (Space Infrared Telescope Facility)

    NASA Technical Reports Server (NTRS)

    Hoffman, Alan; Feitt, Robert

    1989-01-01

    The Santa Barbara Research Center has completed a study leading to the development of advanced Indium Antimonide detector arrays for the Space Infrared Telescope Facility (SIRTF) Focal Plane Array Detector (FPAD) Subsystem of the Infrared Array Camera (IRAC) Band 1. The overall goal of the study was to perform design tradeoff studies, analysis and research to develop a Direct Readout Integrated Circuit to be hybridized to an advanced, high performance InSb detector array that would satisfy the technical requirements for Band 1 as specified in the IRAC Instrument Requirements Document (IRD), IRAC-202. The overall goal of the study was divided into both a near-term goal and a far-term goal. The near-term goal identifies current technology available that approaches, and in some cases meets the program technological goals as specified in IRAC-202. The far-term goal identifies technology development required to completely achieve SIRTF program goals. Analyses of potential detector materials indicates that InSb presently meets all Band 1 requirements and is considered to be the baseline approach due to technical maturity. The major issue with regard to photovoltaic detectors such as InSb and HgCdTe is to achieve a reduction in detector capacitance.

  3. Space Studies Board Annual Report 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The following summaries of major reports are presented: (1) 'Scientific Opportunities in the Human Exploration of Space;' (2) 'A Space Physics Paradox;' (3) 'An Integrated Strategy for the Planetary Sciences;' and (4) 'ONR (Office of Naval Research) Research Opportunities in Upper Atmospheric Sciences.' Short reports on the following topics are also presented: life and microgravity sciences and the Space Station Program, the Space Infrared Telescope Facility and the Stratospheric Observatory for infrared astronomy, the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe, and the utilization of the Space Station.

  4. Infrared sensor system for mobile-robot positioning in intelligent spaces.

    PubMed

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  5. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    PubMed Central

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907

  6. The control unit of the near infrared spectrograph of the Euclid space mission: detailed design

    NASA Astrophysics Data System (ADS)

    Toledo-Moreo, Rafael; Colodro-Conde, Carlos; Gómez-Sáenz-de-Tejada, Jaime; Pérez-Lizán, David; Díaz-García, José Javier; Tubío-Araujo, Óscar; Raichs, Cayetano; Catalán, Jordi; Rebolo-López, Rafael

    2016-07-01

    The Near Infrared Spectrograph and Photometer (NISP) is one of the instruments on board the ESA EUCLID mission. The Universidad Politécnica de Cartagena and Instituto de Astrofísica de Canarias are responsible of the Instrument Control Unit of the NISP (NI-ICU) in the Euclid Consortium. The NI-ICU hardware is developed by CRISA (Airbus Defence and Space), and its main functions are: communication with the S/C and the Data Processing Unit, control of the Filter and Grism Wheels, control of the Calibration Unit and thermal control of the instrument. This paper presents the NI-ICU status of definition and design at the end of the detailed design phase.

  7. Estimating Shape and Micro-Motion Parameter of Rotationally Symmetric Space Objects from the Infrared Signature

    PubMed Central

    Wu, Yabei; Lu, Huanzhang; Zhao, Fei; Zhang, Zhiyong

    2016-01-01

    Shape serves as an important additional feature for space target classification, which is complementary to those made available. Since different shapes lead to different projection functions, the projection property can be regarded as one kind of shape feature. In this work, the problem of estimating the projection function from the infrared signature of the object is addressed. We show that the projection function of any rotationally symmetric object can be approximately represented as a linear combination of some base functions. Based on this fact, the signal model of the emissivity-area product sequence is constructed, which is a particular mathematical function of the linear coefficients and micro-motion parameters. Then, the least square estimator is proposed to estimate the projection function and micro-motion parameters jointly. Experiments validate the effectiveness of the proposed method. PMID:27763500

  8. Pointing and control system design study for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J. N.; Sridhar, B.; Cochran, R. W.

    1984-01-01

    The design and performance of pointing and control systems for two space infrared telescope facility vehicles were examined. The need for active compensation of image jitter using the secondary mirror or other optical elements was determined. In addition, a control system to allow the telescope to perform small angle slews, and to accomplish large angle slews at the rate of 15 deg per minute was designed. Both the 98 deg and the 28 deg inclination orbits were examined, and spacecraft designs were developed for each. The results indicate that active optical compensation of line-of-sight errors is not necessary if the system is allowed to settle for roughly ten seconds after a slew maneuver. The results are contingent on the assumption of rigid body dynamics, and a single structural mode between spacecraft and telescope. Helium slosh for a half full 4000 liter tank was analyzed, and did not represent a major control problem.

  9. LDEF (Prelaunch), AO135 : Effect of Space Exposure on Pyroelectric Infrared Detectors, Tray E05

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO135 : Effect of Space Exposure on Pyroelectric Infrared Detectors, Tray E05 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the integrated tray on the LDEF. The Space Exposure on Pyroelectric Infrared Detectors Experiment (AO135) consist of twenty detectors of three different types of materials, lithium-tantalate, strontium-barium-niobate and triglycine-sulfide. The Pyroelectric infrered detector experiment is an integral part of the Active Optical System Component Experiment (S0050) that contains 136 test specimen and is located in a six (6) inch deep LDEF peripheral experiment tray. The experiment tray is divided into six sections, each consisting of a 1/4 inch thick chromic anodized aluminum base plate and a 1/16th inch thick aluminum hat shaped structure for mounting the test specimen. The test specimen are typi- cally placed in fiberglass-epoxy retainer strip assemblies prior to installation on the hat shaped mounting structure. Five of the six sections are covered by a 1/8 inch thick anodized aluminum sun screen with openings that allowed 56 percent transmission over the central region. Two subexperiments, The Optical Materials and UV Detectors Experiment (S0050-01) consist of 15 optical windows, filters and detectors and occupies one of the trays six sub-sections and The Optical Substrates and Coatings Experiment (S0050-02 ) that includes 12 substrates and coatings and a secondary experiment, The Holographic Data Storage Crystal Experiment (AO044) with four crystals, are also mounted in the integrated tray. The experiment structure was assembled with non-magnetic stainless steel fasteners.

  10. Near-infrared detection of WD 0806-661 B with the Hubble space telescope

    SciTech Connect

    Luhman, K. L.; Esplin, T. L.; Morley, C. V.; Burgasser, A. J.; Bochanski, J. J.

    2014-10-10

    WD 0806-661 B is one of the coldest known brown dwarfs (T {sub eff} = 300-345 K) based on previous mid-infrared photometry from the Spitzer Space Telescope. In addition, it is a benchmark for testing theoretical models of brown dwarfs because its age and distance are well constrained via its primary star (2 ± 0.5 Gyr, 19.2 ± 0.6 pc). We present the first near-infrared detection of this object, which has been achieved through F110W imaging (∼Y + J) with the Wide Field Camera 3 on board the Hubble Space Telescope. We measure a Vega magnitude of m {sub 110} = 25.70 ± 0.08, which implies J ∼ 25.0. When combined with the Spitzer photometry, our estimate of J helps to better define the empirical sequence of the coldest brown dwarfs in M {sub 4.5} versus J – [4.5]. The positions of WD 0806-661 B and other Y dwarfs in that diagram are best matched by the cloudy models of Burrows et al. and the cloudless models of Saumon et al., both of which employ chemical equilibrium. The calculations by Morley et al. for 50% cloud coverage differ only modestly from the data. Spectroscopy would enable a more stringent test of the models, but based on our F110W measurement, such observations are currently possible only with Hubble, and would require at least ∼10 orbits to reach a signal-to-noise ratio of ∼5.

  11. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.

    1999-01-01

    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  12. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; Jakob, Holger; Killebrew, Jana; Lampater, Ulrich; Mandushev, Georgi; Marcum, Pamela; Meyer, Allan; Pfueller, Enrico; Reinacher, Andreas; Roeser, Hans-Peter; Savage, Maureen; Teufel, Stefan; Wiedemann, Manuel

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  13. SOFIA observatory performance and characterization

    NASA Astrophysics Data System (ADS)

    Temi, Pasquale; Marcum, Pamela M.; Miller, Walter E.; Dunham, Edward W.; McLean, Ian S.; Wolf, Jurgen; Becklin, Eric E.; Bida, Thomas A.; Brewster, Rick; Casey, Sean C.; Collins, Peter L.; Horner, Scott D.; Jakob, Holger; Jensen, Stephen C.; Killebrew, Jana L.; Lampater, Ulrich; Mandushev, Georgi I.; Meyer, Allen W.; Pfueller, Enrico; Reinacher, Andreas; Rho, Jeonghee; Roellig, Thomas L.; Savage, Maureen L.; Smith, Erin C.; Teufel, Stefan; Wiedemann, Manuel

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument conguration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. This paper reports on the data collected during these flights and presents current SOFIA Observatory performance and characterization.

  14. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.

    2010-01-01

    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next

  15. Building ISOC Status Displays for the Large AreaTelescope aboard the Gamma Ray Large Area Space Telescope (GLAST) Observatory

    SciTech Connect

    Ketchum, Christina; /SLAC

    2006-09-01

    In September 2007 the Gamma Ray Large Area Space Telescope (GLAST) is scheduled to launch aboard a Delta II rocket in order to put two high-energy gamma-ray detectors, the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM) into low earth orbit. The Instrument Science Operations Center (ISOC) at SLAC is responsible for the LAT operations for the duration of the mission, and will therefore build an operations center including a monitoring station at SLAC to inform operations staff and visitors of the status of the LAT instrument and GLAST. This monitoring station is to include sky maps showing the location of GLAST in its orbit as well as the LAT's projected field of view on the sky containing known gamma-ray sources. The display also requires a world map showing the locations of GLAST and three Tracking and Data Relay Satellites (TDRS) relative to the ground, their trail lines, and ''footprint'' circles indicating the range of communications for each satellite. The final display will also include a space view showing the orbiting and pointing information of GLAST and the TDRS satellites. In order to build the displays the astronomy programs Xephem, DS9, SatTrack, and STK were employed to model the position of GLAST and pointing information of the LAT instrument, and the programming utilities Python and Cron were used in Unix to obtain updated information from database and load them into the programs at regular intervals. Through these methods the indicated displays were created and combined to produce a monitoring display for the LAT and GLAST.

  16. The Infrared Spectral Imaging Radiometer and Laser Altimeter on STS-85 (an Aircraft Style Experiment Flown in Space)

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1999-01-01

    Improvements in the remote sensing of clouds from space in the future will come from instruments with higher spatial and spectral resolution on more platforms and supported by active sounding. The space shuttle hitchhiker system allows new measurements to be prototyped in space with costs, operating flexibility and data volumes similar to aircraft experiments. The Infrared Spectral Imaging Radiometer and Shuttle Laser Altimeter hitchhiker experiment was flown in 1997. The experiment tested the use of uncooled thermal infrared imaging, laser cloud altitude measurements and high spatial resolution, tri-spectral sensing of cloud particle size and phase. A 1/4 km resolution, fifty orbit data set was obtained from STS-85. The presentation will focus on the use of the shuttle as an experiment platform and cover possible transition to the space station in the future.

  17. Leak Location and Classification in the Space Shuttle Main Engine Nozzle by Infrared Testing

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.; Lansing, Mathew

    2003-01-01

    The Space Shuttle Main Engine (SSME) is composed of cooling tubes brazed to the inside of a conical structural jacket. Because of the geometry there are regions that can't be inspected for leaks using the bubble solution and low-pressure method. The temperature change due escaping gas is detectable on the surface of the nozzle under the correct conditions. The methods and results presented in this summary address the thermographic identification of leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera is used to record the minute temperature change associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner "hot wall" surface as the nozzle is pressurized. These images are enhanced by digitally subtracting a thermal reference image taken before pressurization, greatly diminishing background noise. The method provides a nonintrusive way of localizing the tube that is leaking and the exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation.

  18. Observations of the infrared solar spectrum from space by the ATMOS experiment.

    PubMed

    Abrams, M C; Goldman, A; Gunson, M R; Rinsland, C P; Zander, R

    1996-06-01

    The final flight of the Atmospheric Trace Molecule Spectroscopy experiment as part of the Atmospheric Laboratory for Applications and Science (ATLAS-3) Space Shuttle mission in 1994 provided a new opportunity to measure broadband (625-4800 cm(-1), 2.1-16 µm) infrared solar spectra at anunapodized resolution of 0.01 cm(-1) from space. The majority of the observations were obtained as exoatmospheric, near Sun center, absorption spectra, which were later ratioed to grazing atmospheric measurements to compute the atmospheric transmission of the Earth's atmosphere and analyzed for vertical profiles of minor and trace gases. Relative to the SPACELAB-3 mission that produced 4800 high Sun spectra (which were averaged into four grand average spectra), the ATLAS-3 mission produced some 40,000 high Sun spectra (which have been similarly averaged) with an improvement in signal-to-noise ratio of a factor of 3-4 in the spectral region between 1000 and 4800 cm(-1). A brief description of the spectral calibration and spectral quality is given as well as the location of electronic archives of these spectra.

  19. Infrared Heater Used in Qualification Testing of International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    2004-01-01

    Two heat rejection radiator systems for the International Space Station (ISS) have undergone thermal vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the Space Power Facility (SPF), the largest thermal vacuum chamber in the world. The heat rejection system radiator was tested first; it removes heat from the ISS crew living quarters. The second system tested was the photovoltaic radiator (PVR), which rejects heat from the ISS photovoltaic arrays and the electrical power-conditioning equipment. The testing included thermal cycling, hot- and cold-soaked deployments, thermal gradient deployments, verification of the onboard heater controls, and for the PVR, thermal performance tests with ammonia flow. Both radiator systems are orbital replacement units for ease of replacement on the ISS. One key to the success of these tests was the performance of the infrared heater system. It was used in conjunction with a gaseous-nitrogen-cooled cryoshroud in the SPF vacuum chamber to achieve the required thermal vacuum conditions for the qualification tests. The heater, which was designed specifically for these tests, was highly successful and easily met the test requirements. This report discusses the heating requirements, the heater design features, the design approach, and the mathematical basis of the design.

  20. European agreement on James Webb Space Telescope's Mid-Infrared Instrument (MIRI) signed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Artist's impression of the JWST hi-res Size hi-res: 1601 kb Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Artist's impression of the JWST Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Observing the first light, the James Webb Space Telescope (JWST) will help to solve outstanding questions about our place in the evolving Universe. MIRI, the Mid-Infrared Instrument, is one of the four instruments on board the JWST, the mission scheduled to follow on the heritage of Hubble in 2011. MIRI will be built in cooperation between Europe and the United States (NASA), both equally contributing to its funding. MIRI’s optics, core of the instrument, will be provided by a consortium of European institutes. According to this formal agreement, ESA will manage and co-ordinate the whole development of the European part of MIRI and act as the sole interface with NASA, which is leading the JWST project. This marks a difference with respect to the previous ESA scientific missions. In the past the funding and the development of the scientific instruments was agreed by the participating ESA Member States on the basis of purely informal arrangements with ESA. In this case, the Member States involved in MIRI have agreed on formally guaranteeing the required level of funding on the basis of a multi-lateral international agreement, which still keeps scientists in key roles. Over the past years, missions have become more complex and demanding, and more costly within an ever tighter budget. They also require a more and more specific expertise which is spread throughout the vast European scientific community. As a result, a new management procedure for co-ordination of payload development has become a necessity to

  1. Observations of the Infrared Solar Spectrum from Space by the ATMOS Experiment

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Goldman, A.; Gunson, M. R.; Rinsland, C. P.; Zander, R.

    1999-01-01

    The final flight of the Atmospheric Trace Molecule Spectroscopy experiment as part of the Atmospheric na Laboratory for Applications and Science (ATLAS-3) Space Shuttle mission in 1994 provided a new opportunity to measure broadband 625-4800/ cm, 2.1 - 16 micron infrared solar spectra at an unapodized resolution of 0.0l/ cm from space. The majority of the observations were obtained as exoatmospheric, of near Sun center, absorption spectra, which were later ratioed to grazing atmospheric measurements to compute the atmospheric transmission of the Earth's atmosphere and analyzed for vertical profiles of minor and trace gases. Relative to the SPACELAB-3 mission that produced 4800 high Sun spectra (which were averaged into four grand average spectra), the ATLAS-3 mission produced some 40,000 high Sun spectra (which have been similarly averaged) with an improvement in signal-to-noise ratio of a factor of 3-4 in the spectral region between 1000 and 4800/ cm. A brief description of the spectral calibration and spectral quality is given as well as the location of electronic archives of these spectra.

  2. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  3. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil

    NASA Astrophysics Data System (ADS)

    Vaz Peres, Lucas; Bencherif, Hassan; Mbatha, Nkanyiso; Passaglia Schuch, André; Toihir, Abdoulwahab Mohamed; Bègue, Nelson; Portafaix, Thierry; Anabor, Vagner; Kirsch Pinheiro, Damaris; Paes Leme, Neusa Maria; Valentin Bageston, José; Schuch, Nelson Jorge

    2017-01-01

    This paper presents 23 years (1992-2014) of quasi-continuous measurements of the total ozone column (TOC) over the Southern Space Observatory (SSO) in São Martinho da Serra, Brazil (29.26° S, 53.48° and 488 m altitude). The TOC was measured by a Brewer spectrometer, and the results are also compared to daily and monthly observations from the TOMS (Total Ozone Mapping Spectrometer) and OMI (Ozone Monitoring Instrument) satellite instruments. Analyses of the main interannual modes of variability computed using the wavelet transform method were performed. A favorable agreement between the Brewer spectrophotometer and satellite datasets was found. The seasonal TOC variation is dominated by an annual cycle, with a minimum of approximately 260 DU in April and a maximum of approximately 295 DU in September. The wavelet analysis applied in the SSO TOC anomaly time series revealed that the Quasi-Biennial Oscillation (QBO) modulation was the main mode of interannual variability. The comparison between the SSO TOC anomaly time series with the QBO index revealed that the two are in opposite phases.

  4. Optimization of the Neutron Detector Design Based on the 6LiF/ZnS(Ag) Scintillation Screens for the GAMMA-400 Space Observatory

    NASA Astrophysics Data System (ADS)

    Gnezdilov, I. I.; Dedenko, G. L.; Ibragimov, R. F.; Idalov, V. A.; Kadilin, V. V.; Kaplun, A. A.; Klemetiev, A. V.; Mukhin, V. I.; Taraskin, A. A.; Turin, E. M.; Zaripov, R. N.

    The Neutron Detector (ND) is a new detector sub-system for the future GAMMA-400 space observatory. It aims to complement the instrument's GAMMA-400 electromagnetic calorimeter (CsI(Tl), total depth is 25.0 X0) in identifying cosmic-ray electrons from ∼ 100 MeV up to 3 TeV. Such electrons are of significant scientific interest, but their identification is complicated by the overwhelmingly more abundant hadronic cosmic rays, hence making significant hadronic rejection power of paramount importance. Particle showers initiated by nuclei in the GAMMA-400 calorimeter have a profile different from an electron-induced electromagnetic cascade, and the hadron rejection power deriving from this difference can be significantly enhanced by making use of the thermal neutron activity at late (>100 ns) times relative to the start of the shower. Indeed hadron-induced showers tend to be accompanied by significantly more neutron activity than electromagnetic showers. In the described ND for capturing thermalized neutrons applied isotope 6Li, which is part of the scintillation screen 6LiF/ZnS(Ag). ND placed are under the electromagnetic calorimeter. The results GEANT4 simulation of the ND shows that ND has high neutron detection efficiency.

  5. Long-term Observations of Jovian Mid-Infrared Aurora, Hydrocarbon Abundances, and Temperature: Ground-based and Space-based Comparison and Preparation for Juno

    NASA Astrophysics Data System (ADS)

    Kostiuk, T.; Hewagama, T.; Livengood, T. A.; Fast, K. E.; Bjoraker, G. L.; Carlson, R. C.; Schmuelling, F.

    2015-12-01

    With Juno's approach to Jupiter in 2016 nearing, we report on long term measurements of Jupiter's thermal infrared aurora covering spectral and altitude regions that will complement Juno observational capabilities. Previously acquired spectral data from ground-based observatories as well as by Voyager IRIS and Cassini CIRS during Jupiter flybys will be investigated using current methods and capabilities. The thermal (mid-) IR aurora from Jupiter's polar regions, hydrocarbon abundances, and thermal structure retrieved from the ground and from space-based investigations will be compared and used to illustrate the different capabilities and complementarity of the measurement platforms. We report on the reexamination and re-analysis of hydrocarbon emission spectra from Jupiter obtained using ground-based ultra-high spectral resolution infrared heterodyne spectroscopy (IRHS) and Fourier transform spectroscopy (FTS) from Cassini CIRS during its flyby of Jupiter in 2000-2001 and Voyager IRIS data obtained during flybys in 1979. Measurements with IRHS have been made over 30 years, primarily of ethane near 12 micrometer wavelength. These measurements yield fully resolved individual spectral lines whose shape provides unique information on variability of temperature and abundance. CIRS and IRIS data at coarser spectral resolution provide extended spatial distributions covering a broad spectral region, including abundances and auroral response of hydrocarbon constituents in the 8-13 micrometer spectral region (ethane, methane, ethylene, and acetylene). Analysis shows detailed spatial variability of the primary hydrocarbons in northern latitudes. Temporal changes of the ethane line emission over three solar cycles and comparison of retrievals from ethane data taken contemporaneously during the Cassini flyby by both techniques will be compared and results discussed. From these analyses, the expectation is that the thermal IR auroral emission may be low during the Juno tour at

  6. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    NASA Technical Reports Server (NTRS)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; Lunine, Jonathan; Sumi, Takahiro; Tanner, Angelle; Traub, Wesley

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  7. 195-year history of Mykolayiv Observatory: events and people

    NASA Astrophysics Data System (ADS)

    Shulga, O. V.; Yanishevska, L. M.

    2017-02-01

    The basic stages of the history of the Mykolaiv Astronomical Observatory are shown. The main results of the Observatory activities are presented by the catalogs of star positions, major and minor planets in the Solar system, space objects in the Earth orbit. The information on the qualitative and quantitative structure of the Observatory, cooperation with the observatories of Ukraine and foreign countries as well as major projects carried out in the Observatory is provided.

  8. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. In addition to the state-of-the-art Very Large Telescope and the four Auxiliary Telescopes of 1.8-m diameter which can move to relocate in up to 30 different locations feeding the interferometer, Paranal will also be home to the 2.6-m VLT Survey telescope (VST) and the 4.2-m VISTA IR survey telescope. Both Paranal and La Silla have a proven record of their unique ability to address most current issues in observational astronomy. In 2004 alone, each observatory provided data for the publication of about 350 peer-reviewed journal articles, more than any other ground-based observatory. With the present merging of these top-ranking astronomical observatories, fostering synergies and harmonizing the many diverse activities, ESO and the entire community of European astronomers will profit even more from these highly efficient research facilities. Images of ESO's observatories and telescopes are available in the ESO gallery.

  9. The solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.

    1978-01-01

    The larger system of the earth environment is controlled externally by electromagnetic and particle energy from the sun. Recent studies have shown that the sun is a variable star with changes in its radiation which produce significant effects in the earth's climate and weather. The study of the solar-terrestrial system requires simultaneous, long-duration observations of the different elements or 'links' in the solar-terrestrial chain. Many investigations must be conducted in space from a vantage point above the earth's atmosphere where all of the sun's emissions can be observed free from atmospheric distortion, where the magnetospheric particles and fields can be measured directly, and where the atmosphere can be observed on a global scale. The extension of the Shuttle on-orbit capability in connection with the development of the power module will offer an important near-term step in an evolutionary process leading toward a permanent manned Solar Terrestrial Observatory capability in low-earth orbit. Attention is given to the required solar-terrestrial measurements, the operation of the Solar Terrestrial Observatory, and an evolutionary approach to the Solar Terrestrial Observatory.

  10. Megalithic observatory Kokino

    NASA Astrophysics Data System (ADS)

    Cenev, Gj.

    2006-05-01

    In 2001, on the footpath of a mountain peak, near the village of Kokino, archeologist Jovica Stankovski discovered an archeological site from The Bronze Age. The site occupies a large area and is scaled in two levels. Several stone seats (thrones) are dominant in this site and they are pointing towards the east horizon. The high concentration of the movable archeological material found on the upper platform probably indicates its use in a function containing still unknown cult activities. Due to precise measurements and a detailed archaeoastronomical analysis of the site performed in the past three years by Gjore Cenev, physicist from the Planetarium in Skopje, it was shown that the site has characteristics of a sacred site, but also of a Megalithic Observatory. The markers found in this observatory point on the summer and winter solstices and spring and autumn equinoxes. It can be seen that on both sides of the solstice markers, that there are markers for establishing Moon's positions. The markers are crafted in such a way that for example on days when special rites were performed (harvest rites for example) the Sun filled a narrow space of the marker and special ray lighted the man sitting on only one of the thrones, which of course had a special meaning. According to the positions of the markers that are used for Sun marking, especially on the solstice days, it was calculated that this observatory dates from 1800 B.C.

  11. Passive coolers for pre-cooling of JT loops for deep space infrared imaging applications

    NASA Astrophysics Data System (ADS)

    Zhang, Burt; Larson, Melora; Rodriguez, Jose

    2010-09-01

    Infrared instruments (IR) for deep space imaging missions, such as the James Webb Space Telescope (JWST) and Planck, require cryogenic cooling for proper operation of their focal plane arrays (FPA) in far infrared and sub-millimeter wavelength ranges. The FPA is sometimes located meters away from the spacecraft. To meet such remote cooling requirement, a Joule-Thomson (J-T) loop becomes a convenient choice for either direct cooling for the FPA or for serving as a heat sink for a cascade cooling system. The refrigerant lines of the JT loop inevitably suffer parasitic heat leak primarily due to IR backload as they traverse from the spacecraft to the FPA. An actively cooled JT loop using a mechanical pre-cooler located at the spacecraft will experience the highest parasitic heat leak since the lines are cold through the entire length whereas a passively cooled JT loop can utilize a number of radiators to cool the lines down gradually in stages and hence reduce the heat leak. In addition to savings in power and mass, a passive cooler offers consistent and predictable performance with practically no performance degradation in a thermally stable orbit, such as one around the Sun-Earth L2 point. Passive coolers are less popular in low temperature applications when their cooling capacity diminishes rapidly in proportion to T4 until the temperature reaches a point where either the parasitic heat leak becomes so significant or its size becomes so excessive that the passive cooling scheme becomes impractical. Despite the limited capacity, passive cooling may still prove to be a viable alternative to active cooling depending on the operating temperature and heat dissipation rate of the FPA. The current effort aims at evaluating the merit of using passive coolers as an alternative to using a mechanical cooler for pre-cooling of a JT loop for remote IR instrument cooling. A parametric study is conducted to explore the merits of passive cooling of a JT loop in a temperature range

  12. The Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2001-01-01

    The Chandra X-Ray Observatory is the X-ray component of NASA's Great observatories which also includes the recently decommissioned Compton Gamma Ray Observatory, the Hubble Space Telescope, and the soon to be launched Space Infra Red Telescope Facility. Chandra is a unique X-ray astronomy facility for high-resolution imaging and for high-resolution spectroscopy. Chandra's performance advantage over other X-ray observatories is analogous to that of the Hubble Space Telescope over ground-based observatories. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to proposals for its use. Data becomes public one year after the observation. The Observatory is the product of the efforts of many commercial, academic, and government organizations in the United States and Europe. NASA's Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; TRW Space and Electronics Group served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the observatory; the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations.

  13. A SPITZER SPACE TELESCOPE FAR-INFRARED SPECTRAL ATLAS OF COMPACT SOURCES IN THE MAGELLANIC CLOUDS. I. THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Van Loon, Jacco Th.; Oliveira, Joana M.; Gordon, Karl D.; Meixner, Margaret; Shiao, Bernie; Boyer, Martha L.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Marengo, Massimo; Indebetouw, Remy; Chen, C.-H. Rosie; Sloan, G. C.

    2010-01-15

    sun} of ISM dust was swept up. On the other hand, some of the compact H II regions display pronounced [O III] {lambda}88 {mu}m emission. The efficiency of photoelectric heating in the interfaces of ionized gas and molecular clouds is estimated at 0.1%-0.3%. We confirm earlier indications of a low nitrogen content in the LMC. Evidence for solid state emission features is found in both young and evolved objects, but the carriers of these features remain elusive; some of the YSOs are found to contain crystalline water ice. The spectra constitute a valuable resource for the planning and interpretation of observations with the Herschel Space Observatory and the Stratospheric Observatory For Infrared Astronomy.

  14. The Hubble Space Telescope Survey of BL Lacertae Objects. IV. Infrared Imaging of Host Galaxies

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Urry, C. Megan; Padovani, Paolo; Calzetti, Daniela; O'Dowd, Matthew

    2000-11-01

    The Hubble Space Telescope NICMOS Camera 2 was used for H-band imaging of 12 BL Lacertae objects taken from the larger sample observed with the WFPC2 in the R band by Urry and coworkers and Scarpa and coworkers. Ten of the 12 BL Lacs are clearly resolved, and the detected host galaxies are large, bright ellipticals with average absolute magnitude =-26.2+/-0.45 mag and effective radius =10+/-5 kpc. The rest-frame integrated color of the host galaxies is on average =2.3+/-0.3, consistent with the value for both radio galaxies and normal, nonactive elliptical galaxies and indicating that the dominant stellar population is old. The host galaxies tend to be bluer in their outer regions than in their cores, with average color gradient Δ(R-H)/Δlogr=-0.2 mag, again consistent with results for normal nonactive elliptical galaxies. The infrared Kormendy relation, derived for the first time for BL Lac host galaxies, is μe=3.8logre+14.8, fully in agreement with the relation for normal ellipticals. The close similarity between BL Lac host galaxies and normal ellipticals suggests that the active nucleus has surprisingly little effect on the host galaxy. This supports a picture in which all elliptical galaxies harbor black holes that can be actively accreting for some fraction of their lifetime.

  15. Mid-infrared imaging of 18 planetary nebulae using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.; Ramos-Larios, G.

    2008-01-01

    We present 3.6-, 4.5-, 5.8- and 8.0-μm photometric mapping of 18 galactic planetary nebulae, based on observations taken with the Spitzer Space Telescope. These are shown to have morphologies which are sometimes quite different from those observed in the visible, with much of the emission arising outside the ionized shells. There is also evidence for a change in nebular sizes between the differing photometric bands. An analysis of mid-infrared (MIR) colours suggests that many nebulae have dust/polycyclic aromatic hydrocarbon (PAH) emission components, and it seems likely that longer wave MIR fluxes (in particular) are associated with PAH emission features. Such features are likely to be associated, in addition, with photodissociative regimes, where shock fragmentation of dust may lead to the replenishment of smaller PAH grains. Finally, we note that the source Ap 2-1 possesses a particularly interesting structure, and may represent a case in which the nebular shell is ploughing through an enveloping HII region. Similarly, it appears that central emission in M 2-48 may arise from a warm and dusty collimating disc.

  16. MEASURING HIGH-PRECISION ASTROMETRY WITH THE INFRARED ARRAY CAMERA ON THE SPITZER SPACE TELESCOPE

    SciTech Connect

    Esplin, T. L.; Luhman, K. L.

    2016-01-15

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively.

  17. Mechanical cooler system for the next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Shinozaki, Keisuke; Ogawa, Hiroyuki; Nakagawa, Takao; Sato, Yoichi; Sugita, Hiroyuki; Yamawaki, Toshihiko; Mizutani, Tadahito; Matsuhara, Hideo; Kawada, Mitsunobu; Okabayashi, Akinobu; Tsunematsu, Shoji; Narasaki, Katsuhiro; Shibai, Hiroshi

    2016-07-01

    The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) is a pre-project of JAXA in collaboration with ESA to be launched in the 2020s. The SPICA mission is to be launched into a halo orbit around the second Lagrangian point in the Sun-Earth system, which allows us to use effective radiant cooling in combination with a mechanical cooling system in order to cool a 2.5m-class large IR telescope below 8K. Recently, a new system design in particular thermal structure of the payload module has been studied by considering the technical feasibility of a cryogenic cooled telescope within current constraints of the mission in the CDF (Concurrent Design Facility) study of ESA/ESTEC. Then, the thermal design of the mechanical cooler system, for which the Japanese side is responsible, has been examined based on the CDF study and the feasible solution giving a proper margin has been obtained. As a baseline, 4K / 1K-class Joule-Thomson coolers are used to cool the telescope and thermal interface for Focal Plane Instruments (FPIs). Additionally, two sets of double stirling coolers (2STs) are used to cool the Telescope shield. In this design, nominal operation of FPIs can be kept when one mechanical cooler is in failure.

  18. A System Trade Study of Remote Infrared Imaging for Space Shuttle Reentry

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Ross, Martin N.; Baize, Rosemary; Horvath, Thomas J.; Berry, Scott A.; Krasa, Paul W.

    2008-01-01

    A trade study reviewing the primary operational parameters concerning the deployment of imaging assets in support of the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was undertaken. The objective was to determine key variables and constraints for obtaining thermal images of the Space Shuttle orbiter during reentry. The trade study investigated the performance characteristics and operating environment of optical instrumentation that may be deployed during a HYTHIRM data collection mission, and specified contributions to the Point Spread Function. It also investigated the constraints that have to be considered in order to optimize deployment through the use of mission planning tools. These tools simulate the radiance modeling of the vehicle as well as the expected spatial resolution based on the Orbiter trajectory and placement of land based or airborne optical sensors for given Mach numbers. Lastly, this report focused on the tools and methodology that have to be in place for real-time mission planning in order to handle the myriad of variables such as trajectory ground track, weather, and instrumentation availability that may only be known in the hours prior to landing.

  19. Design of a prototype secondary mirror assembly for the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Stier, Mark T.; Bolin, Kenneth N.; Duffy, Michael A.; Gullapalli, Sarma N.; Krim, Michael H.; Rockwell, Richard A.; Sileo, Francis R.

    1990-01-01

    The design of a liquid helium temperature prototype secondary mirror assembly (PSMA) under development for the NASA Space Infrared Telescope Facility (SIRTF) program is described. The SIRTF assembly must operate below 4 K and provide the functions of highly precise two-axis periodic tilting ('chopping') in addition to the conventional functions of focus and collimation adjustment. The PSMA design employs a fused quartz mirror kinematically attached at its center to an aluminum cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using an aluminum flexure pivot of unique design and a four-actuator control system with feedback provided by pairs of differential position sensors. The voice coil actuators are mounted on a second flexure-pivoted mass to enhance servosystem stability and isolate the telescope from vibration-induced disturbances. The mirror/cruciform and reaction mass are attached to opposite sides of an aluminum mounting plate whose position relative to the outer housing is controlled by a six-degree-of-freedom focus and centering mechanism using pivoted actuation levers driven by lead screw/harmonic drive/stepper motor assemblies.

  20. Migrating an In-Operation Space Observatory Data Processing Chain Towards a SOA Oriented Architecture, and the Benefits for Other Space Missions

    NASA Astrophysics Data System (ADS)

    Perez, O.; Vallejo, J. C.; Perez, R. F.

    2013-10-01

    The XMM-Newton Science Control System is currently under a migration exercise aiming to preserve the processing functionality up to the end of the mission, but also to enhance the user accessibility to the different processing and monitoring subsystems. This migration exercise is also providing new insights into how different architectures can help to support other space missions with large demands on processing and storage needs. Service Oriented Architectures and Cloud have also been used in EO missions with results of high interest in storage and processing. In this paper, a prototyping activity is described to face storage and processing in the case of XMM-Newton having in mind its application to other missions with similar needs.

  1. Enhanced Spectral Analysis of SEP Reservoir Events by OMNIWeb Multi-Source Browse Services of the Space Physics Data Facility and the Virtual Energetic Particle Observatory

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; McGuire, Robert

    2015-04-01

    The NASA Space Physics Data Facility and Virtual Energetic Particle Observatory (VEPO) have jointly upgraded the highly used OMNIWeb services for heliospheric solar wind data to also include energetic electron, proton, and heavier ion data in a variety of graphical browse formats. The underlying OMNI and VEPO data now span just over a half century from 1963 to the present. The new services include overlay of differential flux spectra from multiple instruments and spacecraft, scatter plots of fluxes from two user-selected energy channels, distribution function histograms of selected parameters, and spectrograms of flux vs. energy and time. Users can also overlay directional flux spectra from different angular channels. Data from most current and some past (Helios 1&2, Pioneer 10&11) heliospheric spacecraft and instruments are wholly or partially covered by these evolving new services. The traditional OMNI service of correlating magnetic field and plasma data from L1 to 1 AU solar wind sources is also being extended for other spacecraft, e.g. Voyager 1 and 2, to correlations with energetic particle channels. The user capability is, for example, demonstrated to rapidly scan through particle flux spectra from consecutive time periods for so-called “reservoir” events, in which solar energetic particle flux spectra converge in shape and amplitude from multiple spacecraft sources within the inner heliosphere. Such events are important for understanding spectral evolution of global heliospheric events and for intercalibration of flux data from multiple instruments of the same and different spacecraft. These services are accessible at http://omniweb.gsfc.nasa.gov/. SPDF and VEPO are separately accessible at http://spdf.gsfc.nasa.gov/ and http://vepo.gsfc.nasa.gov/.In the future we will propose to extend OMNIWeb particle flux data coverage to the plasma and suprathermal energy range.

  2. Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting. Investigations during CONT14 at the Onsala Space Observatory

    NASA Astrophysics Data System (ADS)

    Lösler, Michael; Haas, Rüdiger; Eschelbach, Cornelia

    2016-05-01

    During the 15-day-long global very long baseline interferometry campaign CONT14, a terrestrial monitoring campaign was carried out at the Onsala Space Observatory. The goal of these efforts was to monitor the reference point of the Onsala 20 m radio telescope during normal telescope operations. Parts of the local site network as well as a number of reflectors that were mounted on the 20 m radio telescope were observed in an automated and continual way using the in-house-developed software package HEIMDALL. The analysis of the observed data was performed using a new concept for a coordinate-based network adjustment to allow the full adjustment process in a true Cartesian global reference frame. The Akaike Information Criterion was used to select the preferable functional model for the network adjustment. The comprehensive stochastic model of this network adjustment process considers over 25 parameters, and, to describe the persistence of the observations performed during the monitoring with a very high measurement frequency, includes also time-dependent covariances. In total 15 individual solutions for the radio telescope reference point were derived, based on monitoring observations during the normal operation of the radio telescope. Since the radio telescope was moving continually, the influence of timing errors was studied and considered in the adjustment process. Finally, recursive filter techniques were introduced to combine the 15 individual solutions. Accuracies at the sub-millimeter level could be achieved for the radio telescope reference point. Thus, the presented monitoring concept fulfills the requirement proposed by the global geodetic observing system.

  3. Climatology of biologically-active ultraviolet radiation at the Brazilian Southern Space Observatory (29ºS, 53ºW)

    NASA Astrophysics Data System (ADS)

    Henrique Rampelotto, Pabulo; Rigozo, Nivaor R.; Schuch, Nelson Jorge; Kirsch Pinheiro, Damaris

    Despite of lower atmospheric ozone levels and the reported cases of higher solar UV compared to the northern hemisphere there are fewer sites undertaking long term monitoring of the spectral solar UV in the southern hemisphere. In this context, the aim of this work was to analyze the variations of the biologically-active ultraviolet radiation (BAUVR) for the DNA, Erythemal and SCUP-h (skin cancer) action spectra measured by Brewer Spectrophotometer at the Brazilian Southern Space Observatory (29.4S, 53.8W, 480m a.s.l) from 1996 to 2008. Diurnal and seasonal variations have been reported. The comparison for clear and cloudy sky days demonstrated that cloud is a major factor, both in the unpredictability and variability of the BAUVR throughout the day. For sunny summer days, when the solar zenith angle (SZA) varies from 7o to 77o , the DNA action spectra presented the higher sensitivity with the SZA variation. Erythemal and SCUP-h spectra presented a slight variation and the behaviors of both measures are similar. In terms of seasonal variations, the maximum values were observed for January and minimum values for June considering all biologically weighted radiation. The ratio MAX/MIN values demonstrated that the DNA weighted radiation presented the higher seasonal variation (8.3) in comparison with 5.6 for Erythema and 5.7 for SCUP-h. Therefore, the complete database here documented may be used to further improve and in the validation of satellite-derived BAUVR data.

  4. Mission Planning for the CHANDRA X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Mullins, Larry D.; Stone, Russell, L.; Evans, Steven W.

    1999-01-01

    The CHANDRA x-ray observatory started life as the Advanced X-ray Facility (AXAF) but was renamed Chandra in December of 1998 at the of a nationwide contest by NASA to name the new observatory. The honors the Nobel Prize winning astrophysicist S. Chandrasekar who astrophysics at the University of Chicago for more than 50 years, following graduate studies at Cambridge University in England. The observatory has been under construction for a decade under the management of the Observatory observatory, Projects office at the Marshall Space Flight Center; the same office that oversaw the construction of the Hubble Space Telescope and the Compton Gamma Ray Observatory. This observatory is a member of NASA's great observatory series of missions of which Hubble and Compton are members. This paper describes the mission planning that was conducted at MSFC to design the orbit and launch window that would permit the new observatory to function properly.

  5. Sensitivity analysis of a space-based multi-band infrared imager for GEO belt debris study

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, Jeremy

    2016-05-01

    Thousands of space objects in the Earth orbital-region known as the GEO belt are categorized as debris. Relatively little is known about the thousands of space debris objects. Remote sensing techniques offer the only viable opportunity to learn more about these objects. In this paper an analysis is performed for observations using a hypothetical space-based multi-band infrared instrument to measure characteristics of GEO belt space debris. The purpose of this study is to understand the limitations of such an instrument and sensing modality for studying GEO belt space debris. Although certain aspects of this study are analytical, the results are anchored with results from the NASA-WISE experiments.

  6. Study of wind retrieval from space-borne infrared coherent lidar in cloudy atmosphere.

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Okamoto, Kozo; Ochiai, Satoshi

    2015-04-01

    Future spaceborne tropospheric wind missions using infrared coherent lidar are currently being studied in Japan and in the United States [1,2]. The line-of-sight wind velocity is retrieved from the Doppler shift frequency of the signal returned by aerosol particles. However a large percentage (70-80%) of the measured single-shot intensity profiles are expected to be contaminated by clouds [3]. A large number of cloud contaminated profiles (>40%) will be characterized by a cloud-top signal intensity stronger than the aerosol signal by a factor of one order of magnitude, and by a strong attenuation of the signal backscattered from below the clouds. Profiles including more than one cloud layer are also expected. This work is a simulation study dealing with the impacts of clouds on wind retrieval. We focus on the three following points: 1) definition of an algorithm for optimizing the wind retrieval from the cloud-top signal, 2) assessment of the clouds impact on the measurement performance and, 3) definition of a method for averaging the measurements before the retrieval. The retrieval simulations are conducted considering the instrumental characteristics selected for the Japanese study: wavelength at 2 µm, PRF of 30 Hz, pulse power of 0.125 mJ and platform altitude between 200-400 km. Liquid and ice clouds are considered. The analysis uses data from atmospheric models and statistics of cloud effects derived from CALIPSO measurements such as in [3]. A special focus is put on the average method of the measurements before retrieval. Good retrievals in the mid-upper troposphere implie the average of measured single-range power spectra over large horizontal (100 km) and vertical (1 km) ranges. Large differences of signal intensities due to the presence of clouds and the clouds non-uniform distribution have to be taken into account when averaging the data to optimize the measurement performances. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T

  7. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  8. Michelson geostationary gravitational wave observatory.

    NASA Astrophysics Data System (ADS)

    Anderson, A. J.

    Studies made during the previous year are outlined. These studies have indicated that a Michelson mm wave interferometer observatory (MGO) operating in geostationary orbit is the best configuration satisfying both current operational and design constraints. It is proposed to study the design of this space laboratory interferometer and to study the inclusion of an inertial transponder in this design.

  9. DSN Transient Observatory

    NASA Astrophysics Data System (ADS)

    Kuiper, T. B. H.; Monroe, R. M.; White, L. A.; Miro, C. Garcia; Levin, S. M.; Majid, W. A.; Soriano, M.

    The Deep Space Network (DSN) Transient Observatory (DTO) is a signal processing facility that can monitor up to four DSN downlink bands for astronomically interesting signals. The monitoring is done commensally with reception of deep space mission telemetry. The initial signal processing is done with two CASPERa ROACH1 boards, each handling one or two baseband signals. Each ROACH1 has a 10 GBe interface with a GPU-equipped Debian Linux workstation for additional processing. The initial science programs include monitoring Mars for electrostatic discharges, radio spectral lines, searches for fast radio bursts and pulsars and SETI. The facility will be available to the scientific community through a peer review process.

  10. Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.

    2010-01-01

    High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal

  11. Temporal Evolution of SL-9 Impact Sites on Jupiter and Global Maps of Jupiter from Multi-Observatory Visible and Infrared Images

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.

    1996-01-01

    site location measurements. HST images were also acquired and used to calibrate the results and to improve the sample. The resources available enabled an in-depth study only of impact site A, however, many more images have since become available through the global network observations through Lowell Observatory.

  12. The Infrared Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  13. Feasibility of using Extreme Ultraviolet Explorer (EUVE) reaction wheels to satisfy Space Infrared Telescope Facility (SIRTF) maneuver requirements

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.

    1990-01-01

    A digital computer simulation is used to determine if the extreme ultraviolet explorer (EUVE) reaction wheels can provide sufficient torque and momentum storage capability to meet the space infrared telescope facility (SIRTF) maneuver requirements. A brief description of the pointing control system (PCS) and the sensor and actuator dynamic models used in the simulation is presented. A model to represent a disturbance such as fluid sloshing is developed. Results developed with the simulation, and a discussion of these results are presented.

  14. The Performance and Scientific Rationale for an Infrared Imaging Fourier Transform Spectrograph on a Large Space Telescope

    DTIC Science & Technology

    1998-06-22

    their youth. An exciting prospect is the study of extrasolar giant planets (EGPs) that have been ejected from young planetary systems. The unexpected...spectrometers developed at the Goddard Space Flight Center (GSFC) flew on board the Mariner 9 mission to Mars and were carried to the outer planets by the...giant gaseous planets (e.g., Jupiter; Hanel et al. 1979). The Composite Infrared Spectrom- eter (CIRS), currently traveling to Saturn on board the Cassini

  15. Conceptual design of a cryogenic system for the next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Sugita, H.; Shinozaki, K.; Okamoto, A.; Yamawaki, T.; Komatsu, K.; Nakagawa, T.; Murakami, H.; Matsuhara, H.; Murakami, M.; Takada, M.; Takai, S.; Okabayashi, A.; Kanao, K.; Tsunematsu, S.; Otsuka, K.; Narasaki, K.

    2010-07-01

    The conceptual design of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) has been studied as a pre-project of the Japan Aerospace Exploration Agency (JAXA) in collaboration with ESA to be launched in 2018. The SPICA is transferred into a halo orbit around the second Lagrangian point in the Sun-Earth system, where radiant cooling is available effectively. The SPICA has a large IR telescope 3 m in diameter, which is cooled without cryogen to below 6 K by the radiant and mechanical cooling system. Therefore, the SPICA mission will cover mid- and far-IR astronomy with high sensitivity and spatial resolution during a long period of over 5 years for goal. Most heat radiation from the sun and spacecraft is blocked by the Sun Shield and thermal radiation shields covered with Multi-Layer Insulator (MLI) to limit heat radiation to the Scientific Instrument Assembly (SIA). The SIA, which is composed of the primary mirrors and optical benches equipped with Focal Plane Instruments (FPIs), is refrigerated to below 6 K by two sets of 4K-class Joule-Thomson (JT) cooler with a cooling power of 40 mW at 4.5 K. The Far-IR detector is refrigerated to 1.7 K by two sets of 1K-class JT coolers with a cooling power of 10 mW at 1.7 K. Improvements for the higher reliability and sufficient cooling performance are required in the development of SPICA mechanical cryocoolers. Thermal analysis indicates that the SPICA cryogenic system works effectively to limit the total heat load on the SIA to 41.2 mW. This paper describes the conceptual design of the SPICA cryogenic system, which was established with thermal feasibility for nominal operation mode.

  16. Global Infrared Observations of Roughness Induced Transition on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Zalameda, Joseph N.; Wood, William A.; Berry, Scott A.; Schwartz, Richard J.; Dantowitz, Ronald F.; Spisz, Thomas S.; Taylor, Jeff C.

    2012-01-01

    High resolution infrared observations made from a mobile ground based optical system captured the laminar-to-turbulent boundary layer transition process as it occurred during Space Shuttle Endeavour's return to earth following its final mission in 2011. The STS-134 imagery was part of a larger effort to demonstrate an emerging and reliable non-intrusive global thermal measurement capability and to complement a series of boundary layer transition flight experiments that were flown on the Shuttle. The STS-134 observations are believed to be the first time that the development and movement of a hypersonic boundary layer transition front has been witnessed in flight over the entire vehicle surface and in particular, at unprecedented spatial resolution. Additionally, benchmark surface temperature maps of the Orbiter lower surface collected over multiple flights and spanning a Mach range of 18 to 6 are now available and represent an opportunity for collaborative comparison with computational techniques focused on hypersonic transition and turbulence modeling. The synergy of the global temperature maps with the companion in-situ thermocouple measurements serve as an example of the effective leveraging of resources to achieve a common goal of advancing our understanding of the complex nature of high Mach number transition. It is shown that quantitative imaging can open the door to a multitude of national and international opportunities for partnership associated with flight-testing and subsequent validation of numerical simulation techniques. The quantitative imaging applications highlighted in this paper offer unique and complementary flight measurement alternatives and suggest collaborative instrumentation opportunities to advance the state of the art in transition prediction and maximize the return on investment in terms of developmental flight tests for future vehicle designs.

  17. Micro-spec: an Integrated Direct-detection Spectrometer for Far-infrared Space Telescopes

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements.Micro-Spec (µ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 (micrometers) wavelength range which will enable a wide range of flight missions that would otherwise be challenging due tothe large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 sq cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for micro-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance.Two point designs with resolving power of 260 and 520 and an RMS phase error less than approximately 0.004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  18. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  19. Space weathering effects in Diviner Lunar Radiometer multispectral infrared measurements of the lunar Christiansen Feature: Characteristics and mitigation

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Greenhagen, Benjamin T.; Song, Eugenie; Arnold, Jessica A.; Lemelin, Myriam; Hanna, Kerri Donaldson; Bowles, Neil E.; Glotch, Timothy D.; Paige, David A.

    2017-02-01

    Multispectral infrared measurements by the Diviner Lunar Radiometer Experiment on the Lunar Renaissance Orbiter enable the characterization of the position of the Christiansen Feature, a thermal infrared spectral feature that laboratory work has shown is proportional to the bulk silica content of lunar surface materials. Diviner measurements show that the position of this feature is also influenced by the changes in optical and physical properties of the lunar surface with exposure to space, the process known as space weathering. Large rayed craters and lunar swirls show corresponding Christiansen Feature anomalies. The space weathering effect is likely due to differences in thermal gradients in the optical surface imposed by the space weathering control of albedo. However, inspected at high resolution, locations with extreme compositions and Christiansen Feature wavelength positions - silica-rich and olivine-rich areas - do not have extreme albedos, and fall off the albedo- Christiansen Feature wavelength position trend occupied by most of the Moon. These areas demonstrate that the Christiansen Feature wavelength position contains compositional information and is not solely dictated by albedo. An optical maturity parameter derived from near-IR measurements is used to partly correct Diviner data for space weathering influences.

  20. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.