Sample records for infrared spatial interferometer

  1. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  2. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; hide

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  3. Imaging interferometer using dual broadband quantum well infrared photodetectors

    NASA Technical Reports Server (NTRS)

    Reininger, F.; Gunapala, S.; Bandara, S.; Grimm, M.; Johnson, D.; Peters, D.; Leland, S.; Liu, J.; Mumolo, J.; Rafol, D.; hide

    2002-01-01

    The Jet Propulsion Laboratory is developing a new imaging interferometer that has double the efficiency of conventional interferometers and only a fraction of the mass and volume. The project is being funded as part of the Defense Advanced Research Projects Agency (DARPA) Photonic Wavelength And Spatial Signal Processing program (PWASSSP).

  4. Electromagnetic modelling of a space-borne far-infrared interferometer

    NASA Astrophysics Data System (ADS)

    Donohoe, Anthony; O'Sullivan, Créidhe; Murphy, J. Anthony; Bracken, Colm; Savini, Giorgio; Pascale, Enzo; Ade, Peter; Sudiwala, Rashmi; Hornsby, Amber

    2016-02-01

    In this paper I will describe work done as part of an EU-funded project `Far-infrared space interferometer critical assessment' (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.

  5. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  6. Optics Alignment of a Balloon-Borne Far-Infrared Interferometer BETTII

    NASA Technical Reports Server (NTRS)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Sampler, Henry; Juanola Parramon, Roser; Veach, Todd; Fixsen, Dale; Vila Hernandez De Lorenzo, Jor; Silverberg, Robert F.

    2017-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-m baseline far-infrared (FIR: 30 90 micrometer) interferometer providing spatially resolved spectroscopy. The initial scientific focus of BETTII is on clustered star formation, but this capability likely has a much broader scientific application.One critical step in developing an interferometer, such as BETTII, is the optical alignment of the system. We discuss how we determine alignment sensitivities of different optical elements on the interferogram outputs. Accordingly, an alignment plan is executed that makes use of a laser tracker and theodolites for precise optical metrology of both the large external optics and the small optics inside the cryostat. We test our alignment on the ground by pointing BETTII to bright near-infrared sources and obtaining their images in the tracking detectors.

  7. Spatially scanned two-color mid-infrared interferometer for FTU

    NASA Astrophysics Data System (ADS)

    Canton, A.; Innocente, P.; Martini, S.; Tasinato, L.; Tudisco, O.

    2001-01-01

    The design of a scanning beam two-color mid-infrared (MIR) interferometer is presented. The diagnostic is being developed for the Frascati Tokamak Upgrade (FTU) which calls for a new interferometer to perform detailed study of advanced confinement regimes in D-shaped plasmas. After performing a feasibility study and a prototype test, we designed a scanning interferometer based on a resonant tilting mirror providing 40 chords of ≈1 cm diameter and a full profile every 62 μs. Such a high number of chords is obtained with a very simple optical scheme, resulting in a system which is compact, low cost, and easy to align. An important feature of the interferometer is its higher immunity to fringe jumps compared to conventional far infrared (FIR) systems. Three main factors contribute to that: the high critical density associated to MIR beams, the large bandwidth provided by 40 MHz heterodyne detection, and the fact that each scan provides a "self-consistent" profile.

  8. High speed FPGA-based Phasemeter for the far-infrared laser interferometers on EAST

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liu, H.; Zou, Z.; Li, W.; Lian, H.; Jie, Y.

    2017-12-01

    The far-infrared laser-based HCN interferometer and POlarimeter/INTerferometer\\break (POINT) system are important diagnostics for plasma density measurement on EAST tokamak. Both HCN and POINT provide high spatial and temporal resolution of electron density measurement and used for plasma density feedback control. The density is calculated by measuring the real-time phase difference between the reference beams and the probe beams. For long-pulse operations on EAST, the calculation of density has to meet the requirements of Real-Time and high precision. In this paper, a Phasemeter for far-infrared laser-based interferometers will be introduced. The FPGA-based Phasemeter leverages fast ADCs to obtain the three-frequency signals from VDI planar-diode Mixers, and realizes digital filters and an FFT algorithm in FPGA to provide real-time, high precision electron density output. Implementation of the Phasemeter will be helpful for the future plasma real-time feedback control in long-pulse discharge.

  9. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  10. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  11. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  12. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  13. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges

    NASA Astrophysics Data System (ADS)

    Al-Demerdash, Bassem M.; Medhat, Mostafa; Sabry, Yasser M.; Saadany, Bassam; Khalil, Diaa

    2014-03-01

    MEMS spectrometers have very strong potential in future healthcare and environmental monitoring applications, where Michelson interferometers are the core optical engine. Recently, MEMS Michelson interferometers based on using silicon interface as a beam splitter (BS) has been proposed [7, 8]. This allows having a monolithically-integrated on-chip FTIR spectrometer. However silicon BS exhibits high absorption loss in the visible range and high material dispersion in the near infrared (NIR) range. For this reason, we propose in this work a novel MOEMS interferometer allowing operation over wider spectral range covering both the infrared (IR) and the visible ranges. The proposed architecture is based on spatial splitting and combining of optical beams using the imaging properties of Multi-Mode Interference MMI waveguide. The proposed structure includes an optical splitter for spatial splitting an input beam into two beams and a combiner for spatial combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the two beams. The new interferometer is fabricated using DRIE technology on an SOI wafer. The movable mirror is metalized and attached to a comb-drive actuator fabricated in the same lithography step in a self-aligned manner on chip. The novel interferometer is tested as a Fourier transform spectrometer. Red laser, IR laser and absorption spectra of different materials are measured with a resolution of 2.5 nm at 635-nm wavelength. The structure is a very compact one that allows its integration and fabrication on a large scale with very low cost.

  14. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  15. Interferometry on a Balloon; Paving the Way for Space-based Interferometers

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to-far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths- a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  16. A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument

    NASA Astrophysics Data System (ADS)

    Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.

    2016-07-01

    We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.

  17. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  18. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  19. As-built performance of the monolithic interferometers for MIGHTI, the thermsopheric wind and temperature instrument on the Ionospheric Connection Explorer (ICON)

    NASA Astrophysics Data System (ADS)

    Harlander, J.; Englert, C. R.; Brown, C. M.; Marr, K. D.; Miller, I. J.; Zastera, V.; Bach, B.; Mende, S. B.

    2016-12-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) is one of four instruments on the NASA-sponsored Ionospheric Connection (ICON) Explorer mission. ICON investigates the extreme variability of the Earth's ionosphere with a unique combination of sensors on-board a low Earth orbit satellite. MIGHTI uses the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique to derive thermospheric winds by measuring Doppler shifts of atomic oxygen airglow emission lines in the visible spectrum over an altitude range generally not accessible to in-situ probes. Specifically, MIGHTI measures neutral winds utilizing the atomic oxygen O(1S - 1D) transition at 557.7 nm (green line) and the O(1D - 3P) transition at 630.0 nm (red line). In addition, it uses a multiband photometric technique to derive thermospheric temperatures from the spectral shape of the molecular oxygen A-band in the near infrared near 760 nm. Two identical MIGHTI interferometers, oriented on the spacecraft to view a common atmospheric volume from orthogonal lines of sight. Both instruments use the Doppler Asymmetric Spatial Heterodyne (DASH) approach with low order Echelle gratings optimized for the red, green, and near infrared wavelengths detected by MIGHTI. The design of the monolithic DASH interferometers which are the heart of the MIGHTI instrument will be reviewed followed by a description of the interferometer element fabrication, assembly and their as-built performance.

  20. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  1. Infrared atmospheric sounding interferometer correlation interferometry for the retrieval of atmospheric gases: the case of H2O and CO2.

    PubMed

    Grieco, Giuseppe; Masiello, Guido; Serio, Carmine; Jones, Roderic L; Mead, Mohammed I

    2011-08-01

    Correlation interferometry is a particular application of Fourier transform spectroscopy with partially scanned interferograms. Basically, it is a technique to obtain the difference between the spectra of atmospheric radiance at two diverse spectral resolutions. Although the technique could be exploited to design an appropriate correlation interferometer, in this paper we are concerned with the analytical aspects of the method and its application to high-spectral-resolution infrared observations in order to separate the emission of a given atmospheric gas from a spectral signal dominated by surface emission, such as in the case of satellite spectrometers operated in the nadir looking mode. The tool will be used to address some basic questions concerning the vertical spatial resolution of H2O and to develop an algorithm to retrieve the columnar amount of CO2. An application to complete interferograms from the Infrared Atmospheric Sounding Interferometer will be presented and discussed. For H2O, we have concluded that the vertical spatial resolution in the lower troposphere mostly depends on broad features associated with the spectrum, whereas for CO2, we have derived a technique capable of retrieving a CO2 columnar amount with accuracy of ≈±7 parts per million by volume at the level of each single field of view.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.

    We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ {sub 1}-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87more » with the EHT based on four physically motivated models. We confirm that ℓ {sub 1} + TV regularization can achieve an optimal resolution of ∼20%–30% of the diffraction limit λ / D {sub max}, which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.« less

  3. Mid-Infrared Imaging of Exo-Earths: Impact of Exozodiacal Disk Structures

    NASA Technical Reports Server (NTRS)

    Defrere, Denis; Absil, O.; Stark, C.; den Hartog, R.; Danchi, W.

    2011-01-01

    The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. The presence of large amounts of exozodiacal dust around nearby main sequence stars represents however a potential hurdle to obtain mid-infrared spectra of Earth-like planets. Whereas the disk brightness only affects the integration time, the emission of resonant dust structures mixes with the planet signal at the output of the interferometer and could jeopardize the spectroscopic analysis of an Earth-like planet. Fortunately, the high angular resolution provided by space-based interferometry is sufficient to spatially distinguish most of the extended exozodiacal emission from the planetary signal and only the dust located near the planet significantly contributes to the noise level. Considering modeled resonant structures created by Earth-like planets, we address in this talk the role of exozodiacal dust in two different cases: the characterization of Super-Earth planets with single space-based Bracewell interferometers (e.g., the FKSI mission) and the characterization of Earth-like planets with 4-telescope space-based nulling interferometers (e.g., the TPF-I and Darwin projects). In each case, we derive constraints on the disk parameters that can be tolerated without jeopardizing the detection of Earth-like planets

  4. From Michelson and Fizeau to a Space-borne Infrared Instrument Capable of Detecting an Earth Twin: Development and Recent Accomplishments of Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephen; Absil, Olivier; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Defrere, Denis; hide

    2009-01-01

    In recent years, the evolution of technology has led to significant advances in high angular resolution astronomy and the precision of new observations. In particular, the interferometric combination of light from physically separated telescopes has shown both great promise and great challenge. We describe the first scientific results from the Keck Interferometer Nuller an instrument that combines the light of the two largest optical telescopes in the world in the context of the historic development of interferometry from its beginning in the work of Fizeau, Stephan and Michelson. We also describe our efforts to build a space-borne mid-infrared interferometer the Fourier Kelvin Stellar Interferometer (FKSI) - for the characterization of exoplanets. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics, including siderostats, enabling the characterization of exozodiacal debris disks, extrasolar planets and other phenomena requiring extremely high spatial resolution. We are further investigating the possibility of characterizing the atmospheres of several super-Earths and a few Earth twins by a combination of spatial modulation and spectral analysis.

  5. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  6. Confronting Standard Models of Proto-planetary Disks with New Mid-infrared Sizes from the Keck Interferometer

    NASA Astrophysics Data System (ADS)

    Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.; Sitko, Michael L.; Russell, Ray W.; Grady, Carol A.; Day, Amanda N.; Perry, R. B.; Harries, Tim J.; Aarnio, Alicia N.; Colavita, Mark M.; Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien

    2016-08-01

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.

  7. CONFRONTING STANDARD MODELS OF PROTO-PLANETARY DISKS WITH NEW MID-INFRARED SIZES FROM THE KECK INTERFEROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the innermore » rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.« less

  8. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  9. Lunar UV-visible-IR mapping interferometric spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, W. Hayden; Haskin, L.; Korotev, R.; Arvidson, R.; Mckinnon, W.; Hapke, B.; Larson, S.; Lucey, P.

    1992-01-01

    Ultraviolet-visible-infrared mapping digital array scanned interferometers for lunar compositional surveys was developed. The research has defined a no-moving-parts, low-weight and low-power, high-throughput, and electronically adaptable digital array scanned interferometer that achieves measurement objectives encompassing and improving upon all the requirements defined by the LEXSWIG for lunar mineralogical investigation. In addition, LUMIS provides a new, important, ultraviolet spectral mapping, high-spatial-resolution line scan camera, and multispectral camera capabilities. An instrument configuration optimized for spectral mapping and imaging of the lunar surface and provide spectral results in support of the instrument design are described.

  10. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Towards the First Flight

    NASA Technical Reports Server (NTRS)

    Rizzo, Maxime J.; Rinehart, S. A.; Dhabal, A.; Ade, P.; Benford, D. J.; Fixsen, D. J.; Griffin, M.; Juanola Parramon, R.; Leisawitz, D. T.; Maher, S. F.; hide

    2016-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a balloon-borne, far-infrared direct detection interferometer with a baseline of 8 m and two collectors of 50 cm. It is designed to study galactic clustered star formation by providing spatially-resolved spectroscopy of nearby star clusters. It is being assembled and tested at NASA Goddard Space Flight Center for a first flight in Fall 2016. We report on recent progress concerning the pointing control system and discuss the overall status of the project as it gets ready for its commissioning flight.

  11. Research on ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Weijian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2015-10-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent sensor response (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W/(cm-1.sr.cm2) at single sampling. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

  12. High angular resolution and position determinations by infrared interferometry

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Interferometer systems are described in the form of publications and reports. 'Distance Meter Helps Track the Stars', 'Berkeley Heterodyne Interferometer', 'Infrared Heterodyne Spectroscopy of CO2 on Mars', and 'A 10 micron Heterodyne Stellar Interferometer' are papers reported.

  13. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  14. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beall, M., E-mail: mbeall@trialphaenergy.com; Deng, B. H.; Gota, H.

    2016-11-15

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO{sub 2}/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 10{sup 16} m{sup −2} at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n =more » 1 plasma wobble mode.« less

  15. Disk-averaged synthetic spectra of Mars

    NASA Technical Reports Server (NTRS)

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  16. Disk-averaged synthetic spectra of Mars.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-08-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  17. Improved Constraints on the Disk around MWC 349A from the 23 m LBTI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sallum, S.; Eisner, J. A.; Hinz, P. M.

    2017-07-20

    We present new spatially resolved observations of MWC 349A from the Large Binocular Telescope Interferometer (LBTI), a 23 m baseline interferometer made up of two, co-mounted 8 m telescopes. MWC 349A is a B[e] star with an unknown evolutionary state. Proposed scenarios range from a young stellar object, to a B[e] supergiant, to a tight binary system. Radio continuum and recombination line observations of this source revealed a sub-arcsecond bipolar outflow surrounding an ∼100 mas circumstellar disk. Follow-up infrared studies detected the disk, and suggested that it may have skew and an inner clearing. Our new infrared interferometric observations, whichmore » have more than twice the resolution of previously published data sets, support the presence of both skew and a compact infrared excess. They rule out inner clearings with radii greater than ∼14 mas. We show the improvements in disk parameter constraints provided by LBTI, and discuss the inferred disk parameters in the context of the posited evolutionary states for MWC 349A.« less

  18. Sensitivity of an imaging space infrared interferometer.

    PubMed

    Nakajima, T; Matsuhara, H

    2001-02-01

    We study the sensitivities of space infrared interferometers. We formulate the signal-to-noise ratios of infrared images obtained by aperture synthesis in the presence of source shot noise, background shot noise, and detector read noise. We consider the case in which n beams are combined pairwise at n(n-1)/2 detectors and the case in which all the n beams are combined at a single detector. We apply the results to future missions, Terrestrial Planet Finder and Darwin. We also discuss the potential of a far-infrared interferometer for a deep galaxy survey.

  19. Observations of Young Stellar Objects with Infrared Interferometry: Recent Results from PTI, KI and IOTA

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel

    Young stellar objects have been one of the favorite targets of infrared interferometers for many years. In this contribution I will briefly review some of the first results and their contributions to the field and then describe some of the recent results from the Keck Interferometer (KI), the Palomar Testbed Interferometer (PTI) and the Infrared-Optical Telescope Array (IOTA). This conference also saw many exciting new results from the VLTI at both near and mid-infrared wavelengths that are covered by other contributions.

  20. Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube

    NASA Astrophysics Data System (ADS)

    Dohlen, Kjetil; Vives, Sébastien; Rakotonimbahy, Eddy; Sarkar, Tanmoy; Tasnim Ava, Tanzila; Baccichet, Nicola; Savini, Giorgio; Swinyard, Bruce

    2014-07-01

    The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie's [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an algorithm for design of optimal aperture layout based on least-squares minimization is described. A first experimental setup realized by master students is presented, where a 20mm baseline interferometer with 1mm apertures associated with a thermal infrared camera pointed the sun. The absence of fringes in this setup is discussed in terms of spatial spectrum analysis. Finally, we discuss requirements in terms of satellite pointing requirements for such a miniature interferometer.

  1. The Space Infrared Interferometric Telescope (SPIRIT): Optical System Design Considerations

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Leisawitz, David; Martino, Anthony J.; Budinoff, Jason; Quijada, Manuel; Hyde, Tupper

    2007-01-01

    SPIRIT is a candidate NASA Origins Probe mission. It is a spatial and spectral interferometer operating at 4 K with an operating wavelength range 25 - 400 microns. This paper describes the various components of the candidate optical system, including telescopes, pointing and tracking optics, along with their functions. Some of the tradeoffs involved in selecting various components, with their particular characteristics, are described.

  2. Remote sensing of Earth's atmosphere and surface using a digital array scanned interferometer: A new type of imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D.; Valero, Francisco P. J.; Peterson, David L.; Smith, William Hayden

    1991-01-01

    The capabilities of the digital array scanned interferometer (DASI) class of instruments for measuring terrestrial radiation fields over the visible to mid-infrared are evaluated. DASI's are capable of high throughput, sensitivity and spectral resolution and have the potential for field-of-view spatial discrimination (an imaging spectrometer). The simplicity of design and operation of DASI's make them particularly suitable for field and airborne platform based remote sensing. The long term objective is to produce a versatile field instrument which may be applied toward a variety of atmospheric and surface studies. The operation of DASI and its advantages over other spectrometers are discussed.

  3. Interferometer for measuring the dynamic surface topography of a human tear film

    NASA Astrophysics Data System (ADS)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  4. How nonlinear optics can merge interferometry for high resolution imaging

    NASA Astrophysics Data System (ADS)

    Ceus, D.; Reynaud, F.; Tonello, A.; Delage, L.; Grossard, L.

    2017-11-01

    High resolution stellar interferometers are very powerful efficient instruments to get a better knowledge of our Universe through the spatial coherence analysis of the light. For this purpose, the optical fields collected by each telescope Ti are mixed together. From the interferometric pattern, two expected information called the contrast Cij and the phase information φij are extracted. These information lead to the Vij, called the complex visibility, with Vij=Cijexp(jφij). For each telescope doublet TiTj, it is possible to get a complex visibility Vij. The Zernike Van Cittert theorem gives a relationship between the intensity distribution of the object observed and the complex visibility. The combination of the acquired complex visibilities and a reconstruction algorithm allows imaging reconstruction. To avoid lots of technical difficulties related to infrared optics (components transmission, thermal noises, thermal cooling…), our team proposes to explore the possibility of using nonlinear optical techniques. This is a promising alternative detection technique for detecting infrared optical signals. This way, we experimentally demonstrate that frequency conversion does not result in additional bias on the interferometric data supplied by a stellar interferometer. In this presentation, we report on wavelength conversion of the light collected by each telescope from the infrared domain to the visible. The interferometric pattern is observed in the visible domain with our, so called, upconversion interferometer. Thereby, one can benefit from mature optical components mainly used in optical telecommunications (waveguide, coupler, multiplexer…) and efficient low-noise detection schemes up to the single-photon counting level.

  5. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  6. Simulation of the fixed optical path difference of near infrared wind imaging interferometer

    NASA Astrophysics Data System (ADS)

    Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen

    2017-02-01

    As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.

  7. Alignment and Polarization Sensitivity Study for the Cassini-Composite InfraRed Spectrometer (CIRS) Far InfraRed (FIR) Interferometer

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.; Hagopian, John G.

    1998-01-01

    The Composite InfraRed Spectrometer (CIRS) instrument flying on the Cassini spacecraft to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared (MIR) channels. The CIRS FIR channel is a polarizing interferometer that contains three polarizing grid components. These components are an input polarizer, a polarizing beamsplitter, and an output polarizer/analyzer. They consist of a 1.5 micron thick mylar substrate with 2 gm wide copper wires, with 2 gm spacing (4 micron pitch) photolithographically deposited on the substrate. This paper details the polarization sensitivity studies performed on the output polarizer/analyzer, and the alignment sensitivity studies performed on the input polarizer and beamsplitter components in the FIR interferometer.

  8. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  9. Absolute flatness measurements of silicon mirrors by a three-intersection method by near-infrared interferometry

    PubMed Central

    2013-01-01

    Absolute flatness of three silicon plane mirrors have been measured by a three-intersection method based on the three-flat method using a near-infrared interferometer. The interferometer was constructed using a near-infrared laser diode with a 1,310-nm wavelength light where the silicon plane mirror is transparent. The height differences at the coordinate values between the absolute line profiles by the three-intersection method have been evaluated. The height differences of the three flats were 4.5 nm or less. The three-intersection method using the near-infrared interferometer was useful for measuring the absolute flatness of the silicon plane mirrors. PMID:23758916

  10. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  11. Upcoming and Future Missions in the Area of Infrared Astronomy: Spacecraft and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    2004-01-01

    The IRIS instrument on the Voyager spacecrafts made major discoveries with regard to the giant planets, their moons and rings and paved the way for future infrared observations for planetary missions within our solar system. The CIRS instrument of Cassini with much greater spectral-spatial resolution and sensitivity than that provided by IRIS is now rapidly approaching the Saturnian system with orbit insertion on July 1, 2004, for which CIRS is expected to provide an order of magnitude advance beyond that provided by IRIS. The Mars program is also presently dominated by infrared observations in the near to mid-infrared spectral bands for missions such as Mars Global Surveyor and its TES instrument and Odyssey with its THEMIS instrument. In the case of Earth science we have such missions as TIMED, which makes infrared observations of the thermosphere using the SABER instrument. With the newly formed New Frontiers Program we have the opportunity for $650M missions such as Kuiper Belt-Pluto Explorer and Jupiter Polar Orbiter with Probes. Under the Flagship line, once per decade, we have the opportunity for $1B missions for which Europa is presently being considered; for this mission infrared measurements could look for hot spots within the maze of cracks and faults on Europa s surface. On Kuiper Belt- Pluto there is an imaging near-IR spectrometer called LEISA. Another mission on the horizon is Titan Orbiter Aerorover Mission (TOAM) for which there is planned a state-of-art version of CIRS called TIRS on the orbiter that will map out the atmospheric composition with unprecedented wavelength coverage and spectral-spatial resolution. This instrument will also provide temperature maps of the surface of Titan to look for hot spots where life may form. On the same mission there will be a descent imager on the Aerorover (i.e., balloon) similar to that provided by LEISA on the Pluto mission to provide compositional-topographical maps of Titan s surface. Other future mission will also be discussed. Improved thermal detectors could have important applications in solar physics, specifically in the detection of far-IR synchrotron emission from energetic electrons in solar flares. For infrared astronomy we have missions like SIRTF and JWST, which will cover the spectral range from near-IR to far-IR in the search and probing of both new and old planetary systems in our galaxy and the measurement of the most distant galaxies of our universe. SIRTF is scheduled to be launched in August 2003, while JWST will be launched next decade. Another mission is TPF, which will use interferometer techniques at infrared wavelengths to search for planetary systems beyond 2010. With regard to ground based telescopes we have, for example, the twin 10 meter Keck telescopes and the IRTF telescope at Mauna Kea. The Keck telescopes are presently using interferometer techniques. Over the next several decades there are plans for 50 meter to 200 meter telescopes providing near-IR to far-IR measurements with the eventual plan to combine all telescopes using interferometer techniques to provide unprecedented spectral-spatial resolution and sensitivity.

  12. Early Results from the Odyssey THEMIS Investigation

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Bandfield, Joshua L.; Bell, James F., III; Hamilton, Victoria E.; Ivanov, Anton; Jakosky, Bruce M.; Kieffer, Hugh H.; Lane, Melissa D.; Malin, Michael C.; McConnochie, Timothy

    2003-01-01

    The Thermal Emission Imaging System (THEMIS) began studying the surface and atmosphere of Mars in February, 2002 using thermal infrared (IR) multi-spectral imaging between 6.5 and 15 m, and visible/near-IR images from 450 to 850 nm. The infrared observations continue a long series of spacecraft observations of Mars, including the Mariner 6/7 Infrared Spectrometer, the Mariner 9 Infrared Interferometer Spectrometer (IRIS), the Viking Infrared Thermal Mapper (IRTM) investigations, the Phobos Termoscan, and the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). The THEMIS investigation's specific objectives are to: (1) determine the mineralogy of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; (4) investigate polar cap processes at all seasons; and (5) provide a high spatial resolution link to the global hyperspectral mineral mapping from the TES investigation. THEMIS provides substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MGS cameras.

  13. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment

    NASA Technical Reports Server (NTRS)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide

    2016-01-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  14. Simulating the exoplanet yield of a space-based mid-infrared interferometer based on Kepler statistics

    NASA Astrophysics Data System (ADS)

    Kammerer, Jens; Quanz, Sascha P.

    2018-01-01

    Aims: We predict the exoplanet yield of a space-based mid-infrared nulling interferometer using Monte Carlo simulations. We quantify the number and properties of detectable exoplanets and identify those target stars that have the highest or most complete detection rate. We investigate how changes in the underlying technical assumptions and uncertainties in the underlying planet population impact the scientific return. Methods: We simulated 2000 exoplanetary systems, based on planet occurrence statistics from Kepler with randomly orientated orbits and uniformly distributed albedos around each of 326 nearby (d< 20 pc) stars. Assuming thermal equilibrium and blackbody emission, together with the limiting spatial resolution and sensitivity of our simulated instrument in the three specific bands 5.6, 10.0, and 15.0 μm, we quantified the number of detectable exoplanets as a function of their radii and equilibrium temperatures. Results: Approximately exoplanets, with radii 0.5 REarth ≤ Rp ≤ 6 REarth, were detected in at least one band and half were detected in all three bands during 0.52 years of mission time assuming throughputs 3.5 times worse than those for the James Webb Space Telescope and 40% overheads. Accounting for stellar leakage and (unknown) exozodiacal light, the discovery phase of the mission very likely requires 2-3 years in total. The uncertainties in planet yield are dominated by uncertainties in the underlying planet population, but the distribution of the Bond albedos also has a significant impact. Roughly 50% of the detected planets orbit M stars, which also have the highest planet yield per star; the other 50% orbit FGK stars, which show a higher completeness in the detectability. Roughly 85 planets could be habitable (0.5 REarth ≤ Rp ≤ 1.75 REarth and 200 K ≤ Teq ≤ 450 K) and are prime targets for spectroscopic observations in a second mission phase. Comparing these results to those of a large optical/near-infrared telescope, we find that a mid-infrared interferometer would detect more planets and the number of planets depends less strongly on the wavelength. Conclusions: An optimized space-based nulling interferometer operating in the mid-infrared would deliver an unprecedented dataset for the characterization of (small) nearby exoplanets including dozens of potentially habitable worlds.

  15. Dynamic measurement of the corneal tear film with a Twyman-Green interferometer

    NASA Astrophysics Data System (ADS)

    Micali, Jason D.; Greivenkamp, John E.; Primeau, Brian C.

    2014-07-01

    An interferometer for measuring dynamic properties of the in vivo tear film on the human cornea has been developed. The system is a near-infrared instantaneous phase-shifting Twyman-Green interferometer. The laser source is a 785 nm solidstate laser; the system has been carefully designed and calibrated to ensure that the system operates at eye safe levels. Measurements are made over a 6 mm diameter on the cornea. Successive frames of interferometric height measurements are combined to produce movies showing both the quantitative and qualitative changes in the topography of the tear film surface and structure. To date, measurement periods of up to 120 seconds at 28.6 frames per second have been obtained. Several human subjects have been examined using this system, demonstrating a surface height resolution of 25 nm and spatial resolution of 6 μm. Examples of features that have been observed in these in preliminary studies of the tear film include: post-blink disruption, evolution, and stabilization of the tear film; tear film artifacts generated by blinking; tear film evaporation and break-up; and the propagation of foreign objects in the tear film. This paper discusses the interferometer design and presents results from in vivo measurements.

  16. Dynamic measurement of the corneal tear film with a Twyman-Green interferometer

    NASA Astrophysics Data System (ADS)

    Micali, Jason D.; Greivenkamp, John E.; Primeau, Brian C.

    2015-05-01

    An interferometer for measuring dynamic properties of the in vivo tear film on the human cornea has been developed. The system is a near-infrared instantaneous phase-shifting Twyman-Green interferometer. The laser source is a 785 nm solid-state laser, and the system has been carefully designed and calibrated to ensure that the system operates at eye-safe levels. Measurements are made over a 6 mm diameter on the cornea. Successive frames of interferometric height measurements are combined to produce movies showing both the quantitative and qualitative changes in the topography of the tear film surface and structure. To date, measurement periods of up to 120 s at 28.6 frames per second have been obtained. Several human subjects have been examined using this system, demonstrating a surface height resolution of 25 nm and spatial resolution of 6 μm. Examples of features that have been observed in these preliminary studies of the tear film include postblink disruption, evolution, and stabilization of the tear film; tear film artifacts generated by blinking; tear film evaporation and breakup; and the propagation of foreign objects in the tear film. This paper discusses the interferometer design and presents results from in vivo measurements.

  17. Infrared interferometer spectrometer and radiometer (IRIS) instrument for Mariner/Jupiter/Saturn 1977 (MJS'77)

    NASA Technical Reports Server (NTRS)

    Vanous, D. D.

    1974-01-01

    The development and characteristics of the infrared interferometer spectrometer and radiometer (IRIS) instrument for use with the Mariner/Jupiter/Saturn space probe. The subjects discussed are: (1) the electronic design, (2) the opto-mechanical design, (3) reliability analysis, (4) quality control, and (5) program management.

  18. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.

  19. Protoplanetary Worlds at the Astronomical Unit Scale. First Step towards Aperture Synthesis Images

    NASA Astrophysics Data System (ADS)

    Berger, J.; Monnier, J.; Millan-Gabet, R.; Malbet, F.; Benisty, M.; Pedretti, E.; Traub, W.

    Optical interferometry has started to play a crucial role in the field of star formation. In particular, it offers a unique opportunity to observe protoplanetary disks at a spatial scale where planets may be forming. We present here some of the most recent discoveries in this field putting the emphasis on the progress towards direct imaging of proto-planetary worlds at the astronomical unit scale. In particular we develop our use of the IOTA/IONIC3 interferometer to measure closure phase quantities, a powerful observable to quantify the degree of skewness of the infrared emission at spatial scales corresponding to the internal part of the disk.

  20. Optical Analysis And Alignment Applications Using The Infrared Smartt Interferometer

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Bolen, P. D.; Liberman, I.; Seery, B. D.

    1981-12-01

    The possiblility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail.

  1. Optical analysis and alignment applications using the infrared Smartt interferometer

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Bolen, P. D.; Liberman, I.; Seery, B. D.

    The possibility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail.

  2. Far-infrared laser diagnostics on the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Gao, X.; Lu, H. J.; Guo, Q. L.; Wan, Y. X.; Tong, X. D.

    1995-01-01

    A multichannel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-6M tokamak. The structure of the seven-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous-wave glow discharge HCN laser with a cavity length of 3.4 m and power output of about 100 mW at 337 μm. The detection sensitivity was 1/15 fringe with a temporal resolution of 0.1 ms. Experimental results were measured by the seven-channel FIR HCN laser interferometer with edge Ohmic heating, a pumping limiter, and ion cyclotron resonant heating on the HT-6M tokamak are reported.

  3. The Next Century Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1991-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.

  4. First 2.2 micrometer results from the iota interferometer

    NASA Technical Reports Server (NTRS)

    Dyck, H. M.; Benson, J. A.; Carlton, N. P.; Coldwell, C.; Lacasse, M. G.; Nisenson, P.; Panasyuk, A.; Papaliolios, C.; Pearlman, R. D.; Reasenberg, R. D.

    1995-01-01

    We present the first infrared fringe visibility measurements made with the Infrared Optical Telescope Array on Mt. Hopkins. Effective temperatures are derived for RX Boo, RS Cnc, and Beta Peg. RX Boo is the coolest small-amplitude variable giant star to have an effective temperature determination. We compare the size of its photosphere at infrared wavelengths with the sizes of its SiO and H20 radio emission regions. We also discuss initial performance parameters for the interferometer.

  5. The Conceptual Design of the Magdalena Ridge Observatory Interferometer

    NASA Astrophysics Data System (ADS)

    Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.

    We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.

  6. A novel lightweight Fizeau infrared interferometric imaging system

    NASA Astrophysics Data System (ADS)

    Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert

    2016-05-01

    Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.

  7. The Path to Interferometry in Space

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Savini, G.; Holland, W.; Absil, O.; Defrere, D.; Spencer, L.; Leisawitz, D.; Rizzo, M.; Juanola-Parramon, R.; Mozurkewich, D.

    2016-01-01

    For over two decades, astronomers have considered the possibilities for interferometry in space. The first of these missions was the Space Interferometry Mission (SIM), but that was followed by missions for studying exoplanets (e.g Terrestrial Planet Finder, Darwin), and then far-infrared interferometers (e.g. the Space Infrared Interferometric Telescope, the Far-Infrared Interferometer). Unfortunately, following the cancellation of SIM, the future for space-based interferometry has been in doubt, and the interferometric community needs to reevaluate the path forward. While interferometers have strong potential for scientific discovery, there are technological developments still needed, and continued maturation of techniques is important for advocacy to the broader astronomical community. We review the status of several concepts for space-based interferometry, and look for possible synergies between missions oriented towards different science goals.

  8. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  9. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    NASA Technical Reports Server (NTRS)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  10. Designing the Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    While infrared astronomy has revolutionized our understanding of galaxies, stars, and planets, further progress on major questions is stymied by the inescapable fact that the spatial resolution of single-aperture telescopes degrades at long wavelengths. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter boom interferometer to operate in the FIR (30-90 micron) on a high altitude balloon. The long baseline will provide unprecedented angular resolution (approx. 5") in this band. In order for BETTII to be successful, the gondola must be designed carefully to provide a high level of stability with optics designed to send a collimated beam into the cryogenic instrument. We present results from the first 5 months of design effort for BETTII. Over this short period of time, we have made significant progress and are on track to complete the design of BETTII during this year.

  11. Far-forward collective scattering measurements by FIR polarimeter-interferometer on J-TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, P.; Chen, J., E-mail: jiech@hust.edu.cn; Gao, L.

    The multi-channel three-wave polarimeter-interferometer system on J-TEXT tokamak has been exploited to measure far-forward collective scattering from electron density fluctuations. The diagnostic utilizes far infrared lasers operated at 432 μm with 17-channel vertical chords (3 cm chord spacing), covering the entire cross section of plasma. Scattering laser power is measured using a high-sensitivity Schottky planar diode mixer which can also detect polarimetric and interferometric phase simultaneously. The system provides a line-integrated measurement of density fluctuations with maximum measurable wave number: k{sub ⊥max} ≤ 2 cm{sup −1} and time response up to 350 kHz. Feasibility of the diagnostic has been tested,more » showing higher sensitivity to detect fluctuation than interferometric measurement. Capability of providing spatial-resolved information of fluctuation has also been demonstrated in preliminary experimental applications.« less

  12. Broad source fringe formation with a Fresnel biprism and a Mach-Zehnder interferometer.

    PubMed

    Leon, S C

    1987-12-15

    A biprism is used to combine identical spatially incoherent wavefronts that have been split by an amplitude splitting interferometer such as the Mach-Zehnder. The performance of this composite interferometer is evaluated by tracing the chief ray through parallel optical systems using Snell's law and trigonometry. Fringes formed in spatially incoherent light with this optical system are compared with those formed using the Mach-Zehnder and grating interferometers. It is shown that the combination can exhibit extended source fringe formation capability greatly exceeding that of the Mach-Zehnder interferometer.

  13. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-05-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  14. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-11-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  15. Development and testing of the infrared interferometer spectrometer for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    Hanel, R. H.; Schlachman, B.; Vanous, D.; Rogers, D.; Taylor, J. H.

    1971-01-01

    The design, development and testing of the infrared interferometer spectrometer is reported with emphasis on the unique features of the Mariner instrument as compared to previous IRIS instruments flown on the Nimbus meteorological research satellites. The interferometer functions in the spectral range from 50 microns to 6.3 microns. A noise equivalent radiance of 0.5 X 10 to the -7th power W/sq cm/ster/cm has been achieved. Major improvements that were implemented included the cesium iodide beamsplitter and electronic features to suppress the effect of vibration on the Michelson mirror motion and digital filtering through the summation of increased sampling of the infrared signal. A bit error detection and correction scheme was also implemented in order to recover the science data with a higher level of confidence over the telecommunication link.

  16. Recent observations with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  17. Unique construction makes interferometer insensitive to mechanical stresses

    NASA Technical Reports Server (NTRS)

    Beer, R.

    1965-01-01

    Michelson-type interferometer with a cat-eye reflector operates effectively even in the presence of random mechanical stresses. A cubical beamsplitter with dichroic surfaces permits operation in infrared or visible light.

  18. Terrestrial Planet Finder Interferometer: 2007-2008 Progress and Plans

    NASA Technical Reports Server (NTRS)

    Lawson, P. R.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Gappinger, R. O.; Ksendzov, A.; Scharf, D. P.; Booth, A. J.; Beichman, C. A.; Serabyn, E.; hide

    2008-01-01

    This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars. The overall technology roadmap is presented and progress with each of the testbeds is summarized. The current interferometer architecture, design trades, and the viability of possible reduced-scope mission concepts are also presented.

  19. Mid-Infrared Interferometry on Spectral Lines. II. Continuum (Dust) Emission Around IRC +10216 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Lipman, E. A.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    The University of California Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC +10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time variable, and these new data are used to probe the evolution of the dust shells on a decade timescale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically symmetric models at maximum and minimum light both show the inner radius of the IRC +10216 dust shell to be much larger (150 mas) than expected from the dust-condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-infrared imaging, which indicates little or no new dust production in the last 3 yr. Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time variable.

  20. The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2003-01-01

    Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.

  1. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; hide

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  2. Very Large Telescope Interferometer observations of the dust geometry around R Coronae Borealis stars

    NASA Astrophysics Data System (ADS)

    Bright, S. N.; Chesneau, O.; Clayton, G. C.; De Marco, O.; Leão, I. C.; Nordhaus, J.; Gallagher, J. S.

    2011-06-01

    We are investigating the formation and evolution of dust around the hydrogen-deficient supergiants known as R Coronae Borealis (RCB) stars. We aim to determine the connection between the probable merger past of these stars and their current dust-production activities. We carried out high angular resolution interferometric observations of three RCB stars, namely RY Sgr, V CrA and V854 Cen, with the mid-infrared interferometer (MIDI) on the Very Large Telescope Interferometer (VLTI), using two telescope pairs. The baselines ranged from 30 to 60 m, allowing us to probe the dusty environment at very small spatial scales (˜50 mas or 400R★). The observations of the RCB star dust environments were interpreted using both geometrical models and one-dimensional radiative transfer codes. From our analysis, we find that asymmetric circumstellar material is apparent in RY Sgr, may also exist in V CrA and is possible for V854 Cen. Overall, we find that our observations are consistent with dust forming in clumps ejected randomly around the RCB star so that over time they create a spherically symmetric distribution of dust. However, we conclude that the determination of whether there is a preferred plane of dust ejection must wait until a time series of observations are obtained. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programme 079.D-0415.

  3. Current progress on TPFI nulling architectures at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Gappinger, Robert O.; Wallace, J. Kent; Bartos, Randall D.; Macdonald, Daniel R.; Brown, Kenneth A.

    2005-01-01

    Infrared interferometric nulling is a promising technology for exoplanet detection. Nulling research for the Terrestrial Planet Finder Interferometer has been exploring a variety of interferometer architectures at the Jet Propulsion Laboratory (JPL).

  4. Mariner Jupiter/Saturn 1977 infrared interferometer spectrometer (MJS' 77) design study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design study of the Infrared Interferometer Spectrometer and Radiometer (IRIS) instrument for the Mariner Jupiter/Saturn 1977 mission was conducted. The objective of the study was to investigate a number a potential problem areas identified in previous studies and to develop the instrument system designs along the lines providing for the optimum performance obtainable with the allowable budgets. The considerations for the optical design, mechanical design, and electronic design are examined.

  5. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  6. OHANA, the Optical Hawaiian Array for Nanoradian Astronomy. Towards kilometric infrared arrays

    NASA Astrophysics Data System (ADS)

    Perrin, G.

    Optical/Infrared Interferometry has become a mature technique with more and more astrophysical results in the past years. For historical and technical reasons, the traditional field of investigation of interferometers is stellar physics. With the advent of large telescopes and adaptive optics, more resolving and more sensitive interferometers are within reach with the promise to widen the target list. In particular, extragalactic sources will benefit from this revolution. A prototype instrument, 'OHANA, is described here. 'OHANA uses single-mode fibers to turn the large telescopes of the Mauna Kea summit into a large near-infrared kilometric array.

  7. Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U

    DOE PAGES

    Scott, E. R.; Barchfeld, R.; Riemenschneider, P.; ...

    2016-08-09

    Here, the Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment—Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.

  8. Visible-Infrared Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew

    2013-01-01

    The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.

  9. The Space Infrared Interferometric Telescope (SPIRIT): High-resolution Imaging and Spectroscopy in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Leisawitz, D,; Baker, G.; Barger, A.; Benford, D.; Blain, A; Boyle, R.; Broderick, R.; Budinoff, J.; Carpenter, J.; Caverly, R.; hide

    2007-01-01

    We report results of a recently-completed study of SPIRIT, a candidate NASA Origins Probe. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets form, and why some planets are ice giants and others are rocky; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously. SPIRIT will pave the way to the 1 km maximum baseline interferometer known as the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). In addition to the SPIRIT mission concept, this talk will emphasize the importance of dense u-v plane coverage and describe some of the practical considerations associated with alternative interferometric baseline sampling schemes.

  10. Special topics in infrared interferometry. [Michelson interferometer development

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  11. A Lunar Optical-Ultraviolet-Infrared Synthesis Array (LOUISA)

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Johnson, Stewart W. (Editor); Duric, Nebojsa (Editor)

    1992-01-01

    This document contains papers presented at a workshop held to consider 'optical ultraviolet infrared' interferometric observations from the moon. Part 1 is an introduction. Part 2 is a description of current and planned ground-based interferometers. Part 3 is a description of potential space-based interferometers. Part 4 addresses the potential for interferometry on the moon. Part 5 is the report of the workshop's working groups. Concluding remarks, summary, and conclusions are presented in Part 6.

  12. In-flight Far-Infrared Performance of the CIRS Instrument on Cassini

    NASA Technical Reports Server (NTRS)

    Nixon, Conor A.; Brasunas, John C.; Lakew, Brook; Fettig, Rainer; Jennings, Donald E.; Carlson, Ronald; Kunde, Virgil G.

    2004-01-01

    The Composite Infrared Spectrometer (CIRS) on-board Cassini consists of two interferometers: a conventional Michelson for the mid-infrared; and a Martin-Puplett type in the far-infrared employing wire grid polarizers to split, recombine and analyze the radiation. The far-IR focal plane (FP1) assembly uses two thermopile detectors to measure the final transmitted and reflected beams at the polarizer-analyzer: if one fails, the interferometer can still operate, albeit with a lower efficiency. The combined effect is for good response from 10 to 300/cm, and declining response to 600/cm. This paper will examine in-flight performance of the far-IR interferometer, including NESR and response. Regular noise spikes, resulting from pickup from other electrical sub-systems has been found on the CIRS interferograms, and the removal of these effects is discussed. The radiometric calibration is described, and then we show how the calibration was applied to science data taken during the Jupiter flyby of December 2000. Finally, we discuss signal-to-noise on the calibrated spectra, emphasizing limitations of the current instrument and the potential for improvement in future missions.

  13. VizieR Online Data Catalog: High spatial resolution observations of HM Sge (Sacuto+, 2009)

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Chesneau, O.

    2008-11-01

    All the data products are stored in the FITS-based, optical interferometry data exchange format (OI-FITS), described in Pauls et al. (2005PASP..117.1255P). The OI Exchange Format is a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observations including visibilities and differential phases. Several routines to read and write this format in various languages can be found in: Webpage http://www.mrao.cam.ac.uk/~jsy1001/exchange (2 data files).

  14. VizieR Online Data Catalog: High spatial resolution observations of HM Sge (Sacuto+, 2007)

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Chesneau, O.; Vannier, M.; Cruzalebes, P.

    2007-01-01

    All the data products are stored in the FITS-based, optical interferometry data exchange format (OI-FITS), described in Pauls et al. (2005PASP..117.1255P). The OI Exchange Format is a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observations including visibilities and differential phases. Several routines to read and write this format in various languages can be found in: Webpage http://www.mrao.cam.ac.uk/~jsy1001/exchange (1 data file).

  15. The Wide-Field Imaging Interferometry Testbed: Recent Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2006-01-01

    We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.

  16. Demonstration of a Corner-cube-interferometer LWIR Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Renhorn, Ingmar G. E.; Svensson, Thomas; Cronström, Staffan; Hallberg, Tomas; Persson, Rolf; Lindell, Roland; Boreman, Glenn D.

    2010-01-01

    An interferometric long-wavelength infrared (LWIR) hyperspectral imager is demonstrated, based on a Michelson corner-cube interferometer. This class of system is inherently mechanically robust, and should have advantages over Sagnac-interferometer systems in terms of relaxed beamsplitter-coating specifications, and wider unvignetted field of view. Preliminary performance data from the laboratory prototype system are provided regarding imaging, spectral resolution, and fidelity of acquired spectra.

  17. Water Vapor Measurement and Compensation in the Near and Mid-infrared with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Koresko, Chris D.; Colavita, Mark M.; Serabyn, Eugene; Booth, Andrew; Garcia, Jean I.

    2006-01-01

    A viewgraph presentation describing the methods, motivation and methods for water vapor measurement with the Keck interferometer near and mid infrared radiation band is shown. The topics include: 1) Motivation: Why measure H2O?; 2) Method: How do we measure H2O?; 3) Data: Phase and Group Delays for the K and N Bands; 4) Predicted and Actual Nband Phase and Dispersion; and 5) Validation of Atmospheric Turbulence Models with KI Data.

  18. Cryogenic mechanisms for scanning and interchange of the Fabry-Perot interferometers in the ISO long wavelength spectrometer

    NASA Technical Reports Server (NTRS)

    Davis, G. R.; Furniss, I.; Patrick, T. J.; Sidey, R. C.; Towlson, W. A.

    1991-01-01

    The Infrared Space Observatory (ISO) is an ESA cornerstone mission for infrared astronomy. Schedules for launch in 1993, its four scientific instruments will provide unprecedented sensitivity and spectral resolution at wavelengths which are inaccessible using ground-based techniques. One of these, the Long Wavelength Spectrometer (LWS), will operate in the 45 to 180 micron region (Emery et. al., 1985) and features two Fabry-Perot interferometers mounted on an interchange mechanism. The entire payload module of the spacecraft, comprising the 60 cm telescope and the four focal plane instruments, is maintained at 2 to 4 K by an onboard supply of liquid helium. The mechanical design and testing of the cryogenic interferometer and interchange mechanisms are described.

  19. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress in the Simulation and Synthesis of WIIT Data

    NASA Technical Reports Server (NTRS)

    Juanola Parramon, Roser; Leisawitz, David T.; Bolcar, Matthew R.; Maher, Stephen F.; Rinehart, Stephen A.; Iacchetta, Alex; Savini, Giorgio

    2016-01-01

    The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier (DF) interferometer operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like SPIRIT. This testbed has been used to measure both a geometrically simple test scene and an astronomically representative test scene. Here we present the simulation of recent WIIT measurements using FIInS (the Far-infrared Interferometer Instrument Simulator), the main goal of which is to simulate both the input and the output of a DFM system. FIInS has been modified to perform calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array.

  20. Large-aperture ground glass surface profile measurement using coherence scanning interferometry.

    PubMed

    Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2017-01-23

    We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.

  1. Retrievals with the Infrared Atmospheric Sounding Interferometer

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.

    2007-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.

  2. Quasi-optical analysis of a far-infrared spatio-spectral space interferometer concept

    NASA Astrophysics Data System (ADS)

    Bracken, C.; O'Sullivan, C.; Murphy, J. A.; Donohoe, A.; Savini, G.; Lightfoot, J.; Juanola-Parramon, R.; Fisica Consortium

    2016-07-01

    FISICA (Far-Infrared Space Interferometer Critical Assessment) was a three year study of a far-infrared spatio-spectral double-Fourier interferometer concept. One of the aims of the FISICA study was to set-out a baseline optical design for such a system, and to use a model of the system to simulate realistic telescope beams for use with an end-to-end instrument simulator. This paper describes a two-telescope (and hub) baseline optical design that fulfils the requirements of the FISICA science case, while minimising the optical mass of the system. A number of different modelling techniques were required for the analysis: fast approximate simulation tools such as ray tracing and Gaussian beam methods were employed for initial analysis, with GRASP physical optics used for higher accuracy in the final analysis. Results are shown for the predicted far-field patterns of the telescope primary mirrors under illumination by smooth walled rectangular feed horns. Far-field patterns for both on-axis and off-axis detectors are presented and discussed.

  3. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James, III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared and a far-infrared interferometer and operates at 170 Kelvin. The mid-infrared interferometer is a Michelson- type Fourier transform spectrometer utilizing a 3 inch diameter potassium bromide beamsplitter/compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. The stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  4. A Martin-Puplett cartridge FIR interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Roger J.; Penniman, Edwin E.; Jarboe, Thomas R.

    2004-10-01

    A compact prealigned Martin-Puplett interferometer (MPI) cartridge for plasma interferometry is described. The MPI cartridge groups all components of a MP interferometer, with the exception of the end mirror for the scene beam, on a stand-alone rigid platform. The interferometer system is completed by positioning a cartridge anywhere along and coaxial with the scene beam, considerably reducing the amount of effort in alignment over a discrete component layout. This allows the interferometer to be expanded to any number of interferometry chords consistent with optical access, limited only by the laser power. The cartridge interferometer has been successfully incorporated as amore » second chord on the Helicity Injected Torus II (HIT-II) far infrared interferometer system and a comparison with the discrete component system is presented. Given the utility and compactness of the cartridge, a possible design for a five-chord interferometer arrangement on the HIT-II device is described.« less

  5. Cassini infrared Fourier spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Kunde, Virgil G.; Ade, Peter A.; Barney, Richard D.; Bergman, D.; Bonnal, Jean-Francois; Borelli, R.; Boyd, D.; Brasunas, John C.; Brown, G.; Calcutt, S. B.; Carroll, F.; Courtin, R.; Cretolle, Jacky; Crooke, Julie A.; Davis, Martin A.; Edberg, S.; Fettig, R.; Flasar, M.; Glenar, David A.; Graham, S.; Hagopian, John G.; Hakun, C. F.; Hayes, Patricia A.; Herath, L.; Horn, Linda; Jennings, Donald E.; Karpati, G.; Kellebenz, C.; Lakew, Brook; Lindsay, J.; Lohr, J.; Lyons, James J.; Martineau, Robert J.; Martino, Anthony J.; Matsumura, M.; McCloskey, J.; Melak, T.; Michel, G.; Morell, Armando; Mosier, C.; Pack, L.; Plants, M.; Robinson, D.; Rodriguez, Louis; Romani, Paul; Schaefer, W. J.; Schmidt, Steve; Trujillo, C.; Vellacott, Tim; Wagner, K.; Yun, D.

    1996-10-01

    The composite infrared spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. CIRS will retrieve vertical profiles of temperature and gas composition for the atmospheres of Titan and Saturn, from deep in their tropospheres to high in their stratospheres. CIRS will also retrieve information on the thermal properties and composition of Saturn's rings and Saturnian satellites. CIRS consists of a pair of Fourier Transform Spectrometers (FTSs) which together cover the spectral range from 10-1400 cm-1 with a spectral resolution up to 0.5 cm-1. The two interferometers share a 50 cm beryllium Cassegrain telescope. The far-infrared FTS is a polarizing interferometer covering the 10-600 cm-1 range with a pair of thermopile detectors, and a 3.9 mrad field of view. The mid-infrared FTS is a conventional Michelson interferometer covering 200-1400 cm-1 in two spectral bandpasses: 600-1100 cm- 1100-1400 cm(superscript -1 with a 1 by 10 photovoltaic HgCdTe array. Each pixel of the arrays has an approximate 0.3 mrad field of view. The HgCdTe arrays are cooled to approximately 80K with a passive radiative cooler.

  6. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Choi, Hae Young; Kim, Myoung Jin; Lee, Byeong Ha

    2007-04-01

    We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

  7. Modern Paradigm of Star Formation in the Galaxy

    NASA Astrophysics Data System (ADS)

    Sobolev, A. M.

    2017-06-01

    Understanding by the scientific community of the star formation processes in the Galaxy undergone significant changes in recent years. This is largely due to the development of the observational basis of astronomy in the infrared and submillimeter ranges. Analysis of new observational data obtained in the course of the Herschel project, by radio interferometer ALMA and other modern facilities significantly advanced our understanding of the structure of the regions of star formation, young stellar object vicinities and provided comprehensive data on the mass function of proto-stellar objects in a number of star-forming complexes of the Galaxy. Mapping of the complexes in molecular radio lines allowed to study their spatial and kinematic structure on the spatial scales of tens and hundreds of parsecs. The next breakthrough in this field can be achieved as a result of the planned project “Spektr-MM” (Millimetron) which implies a significant improvement in angular resolution and sensitivity. The use of sensitive interferometers allowed to investigate the details of star formation processes at small spatial scales - down to the size of the solar system (with the help of the ALMA), and even the Sun (in the course of the space project “Spektr-R” = RadioAstron). Significant contribution to the study of the processes of accretion is expected as a result of the project “Spektr-UV” (WSO-UV = “World Space Observatory - Ultraviolet”). Complemented with significant theoretical achievements obtained observational data have greatly promoted our understanding of the star formation processes.

  8. Spatial Heterodyne Spectroscopy for Long-Wave Infrared: First Measurements of Broadband Spectra

    DTIC Science & Technology

    2009-10-01

    are grating spectrometers,1 imaging and nonim- ging Fourier transform spectrometers FTS,2–6 Fabry- erot interferometers,7 and prism spectrographs.8...Same as Report (SAR) 18 . NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 b s p i r b n p s t c 2 c t w l S v s a 2 T p t m t s t f o s a 2 T l t o o l F

  9. To be or not to be Asymmetric? VLTI/MIDI and the Mass-loss Geometry of AGB Stars

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Klotz, D.; Sacuto, S.; Lagadec, E.; Wittkowski, M.; Richichi, A.; Hron, J.; Jorissen, A.; Groenewegen, M. A. T.; Kerschbaum, F.; Verhoelst, T.; Rau, G.; Olofsson, H.; Zhao-Geisler, R.; Matter, A.

    2017-06-01

    The Mid-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) has been used to spatially resolve the dust-forming region of 14 asymptotic giant branch (AGB) stars with different chemistry (O-rich and C-rich) and variability types (Miras, semi-regular, and irregular variables). The main goal of the programme was to detect deviations from spherical symmetry in the dust-forming region of these stars. All the stars of the sample are well resolved with the VLTI, and five are asymmetric and O-rich. This finding contrasts with observations in the near-infrared, where the C-rich objects are found to be more asymmetric than the O-rich ones. The nature of the asymmetric structures so far detected (dusty discs versus blobs)remains uncertain and will require imaging on milli-arcsecond scales.

  10. Charles Hard Townes: Remarkable Scientist and Inspiring Teacher

    NASA Astrophysics Data System (ADS)

    Goldsmith, P. F.

    2015-05-01

    Charles Townes is renowned for his work elucidating the structure of molecules through microwave spectroscopy and for his invention of the maser and the laser. He also had a lifelong interest in astronomy, and in the later portion of his remarkable and long career devoted himself to astronomical research, pioneering the study of molecules in interstellar space and the development of infrared spectroscopy, first from the ground and then from airborne facilities. His interest in high angular resolution, as well as high spectral resolution observations, led to development of the first infrared spatial interferometer employing coherent signal processing techniques. In this short review I will only touch on some of Townes' many scientific contributions, concentrating on astronomy, and will also give some personal thoughts about how he inspired students in their research, helping to make the "Townes Group" at the University of California, Berkeley, an ideal environment in which to start a career in research.

  11. High-resolution Interferometric Observations of Nova RS Ophiuchi and a Proposed Unification Model for Persistent Dust Creation in Recurrent Novae

    NASA Astrophysics Data System (ADS)

    Barry, R. K.; Danchi, W. C.

    2008-12-01

    We review observations of nova RS Ophiuchi using long-baseline near-infrared and mid-infrared interferometry at three observatories: the Keck Interferometer in the Nulling mode (KIN), the Palomar Testbed Interferometer (PTI), and the Infrared and Optical Telescope Array (IOTA). We discuss these observations in the context of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. We discuss how recent observations using the Spitzer Space Telescope and the VLTI support this proposed model.

  12. First Surface-resolved Results with the Infrared Optical Telescope Array Imaging Interferometer: Detection of Asymmetries in Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Traub, W. A.; Berger, J.-P.; Danchi, W. C.; Monnier, J. D.; Willson, L. A.; Carleton, N. P.; Lacasse, M. G.; Millan-Gabet, R.; Pedretti, E.; Schloerb, F. P.; Cotton, W. D.; Townes, C. H.; Brewer, M.; Haguenauer, P.; Kern, P.; Labeye, P.; Malbet, F.; Malin, D.; Pearlman, M.; Perraut, K.; Souccar, K.; Wallace, G.

    2006-11-01

    We have measured nonzero closure phases for about 29% of our sample of 56 nearby asymptotic giant branch (AGB) stars, using the three-telescope Infrared Optical Telescope Array (IOTA) interferometer at near-infrared wavelengths (H band) and with angular resolutions in the range 5-10 mas. These nonzero closure phases can only be generated by asymmetric brightness distributions of the target stars or their surroundings. We discuss how these results were obtained and how they might be interpreted in terms of structures on or near the target stars. We also report measured angular sizes and hypothesize that most Mira stars would show detectable asymmetry if observed with adequate angular resolution.

  13. Soft X-ray holographic grating beam splitter including a double frequency grating for interferometer pre-alignment.

    PubMed

    Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2008-09-15

    Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.

  14. MOEMS Fabry-Pérot interferometer with point-anchored Si-air mirrors for middle infrared

    NASA Astrophysics Data System (ADS)

    Tuohiniemi, Mikko; Näsilä, Antti; Akujärvi, Altti; Blomberg, Martti

    2014-09-01

    We studied how a micromachined Fabry-Pérot interferometer, realized with wide point-anchored Si/air-gap reflectors, performs at the middle-infrared. A computational analysis of the anchor mechanical behavior is also presented. Compared with solid-film reflectors, this technology features better index contrast, which enables a wider stop band and potentially higher resolution. In this work, we investigate whether the performance is improved according to the index-contrast benefit, or whether the mechanical differences play a role. For comparison, we manufactured and characterized another design that applies solid-film reflectors of Si/SiO2 structure. This data is exploited as a reference for a middle-infrared interferometer and as a template for mapping the performance from the simulation results to the measured data. The novel Si/air-gap device was realized as a non-tunable proof-of-concept version. The measured data is mapped into an estimate of the achievable performance of a tunable version. We present the measured transmission and resolution data and compare the simulation models that reproduce the data. The prediction for the tunable middle-infrared Si/air-gap device is then presented. The results indicate that the interferometer’s resolution is expected to have improved twofold and have a much wider stop band compared with the prior art.

  15. The NPOESS Crosstrack Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) as a Companion to the New Generation AIRS/AMSU and IASI/AMSU Sounder Suites

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Pougatchev, N. S.; Zavyalov, V.; Esplin, M.; Blackwell, W. J.; Barnet, C.

    2009-12-01

    The NPOESS Preparatory Project is serving the operations and research community as the bridge mission between the Earth Observing System and the National Polar-orbiting Operational Environmental Satellite System. The Cross-track Infrared Sounder (CrIS), combined with the Advanced Technology Microwave Sounder (ATMS) are the core instruments to provide the key performance temperature and humidity profiles (along with some other atmospheric constituent information). Both the high spectral resolution CrIS and the upgraded microwave sounder (ATMS) will be working in parallel with already orbiting Advanced Atmospheric Infrared Sounder (AIRS/AMSU) on EOS AQUA platform and Infrared Atmospheric Sounding Interferometer (IASI/AMSU) on METOP-A satellite. This presentation will review the CrIS/ATMS capabilities in the context of continuity with the excellent performance records established by AIRS and IASI. The CrIS sensor is in the process of its final calibration and characterization testing and the results and Sensor Data Record process are being validated against this excellent dataset. The comparison between CrIS, AIRS, and IASI will include spectral, spatial, radiometric performance and sounding capability comparisons.

  16. Last technology and results from the IOTA interferometer

    NASA Astrophysics Data System (ADS)

    Pedretti, Ettore; Traub, Wesley A.; Monnier, John D.; Schuller, Peter A.; Ragland, Sam; Berger, Jean–Philippe; Millan-Gabet, Rafael; Wallace, Gary; Burke, Michael; Lacasse, Marc G.; Thureau, Nathalie D.; Carleton, Nathaniel

    2008-07-01

    The infrared optical telescope array (IOTA), one of the most productive interferometers in term of science and new technologies was decommissioned in summer 2006. We discuss the testing of a low-resolution spectrograph coupled with the IOTA-3T integrated-optics beam combiner and some of the scientific results obtained from this instrument.

  17. Mid infrared MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  18. Astronomical imaging Fourier spectroscopy at far-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Brad G.; van der Wiel, Matthijs H. D.; Makiwa, Gibion

    2013-11-01

    The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach–Zehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel–SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.

  19. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  20. High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Danchi, W. C.; Sokoloski, J. L.; Koresko, C.; Wisniewski, J. P.; Serabyn, E.; Traub, W.; Kuchner, M.; Greenhouse, M. A.

    2007-01-01

    We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferometer Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a conventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture telescopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region. Importantly, we see spectral lines excited by the nova flash in the outer region before the blast wave reaches these regions. These lines are from neutral, weakly excited atoms which support the following interpretation. We discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.

  1. Using NIR spatial illumination for detection and mapping chromophore changes during cerebral edema

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Mathews, Marlon S.; Owen, Christopher M.; Binder, Devin K.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.

    2008-02-01

    We used spatially modulated near-infrared (NIR) light to detect and map chromophore changes during cerebral edema in the rat neocortex. Cerebral edema was induced by intraperitoneal injections of free water (35% of body weight). Intracranial pressure (ICP) was measured with an optical fiber based Fabry-Perot interferometer sensor inserted into the parenchyma of the right frontal lobe during water administration. Increase in ICP from a baseline value of 10 cm-water to 145 cm-water was observed. Following induction of cerebral edema, there was a 26+/-1.7% increase in tissue concentration of deoxyhemoglobin and a 47+/-4.7%, 17+/-3% and 37+/-3.7% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively. To the best of our knowledge, this is the first report describing the use of NIR spatial modulation of light for detecting and mapping changes in tissue concentrations of physiologic chromophores over time in response to cerebral edema.

  2. Highly accurate FTIR observations from the scanning HIS aircraft instrument

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Tobin, David C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L., Sr.; van Delst, Paul F. W.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Olson, Erik R.; Dutcher, Steven B.; Taylor, Joseph K.

    2005-01-01

    Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) instrument for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS(2002), CrIS(2006), IASI(2006), GIFTS(200?), HES(2013)]. Follow-on developments at the University of Wisconsin that employ Fourier Transform Infrared (FTIR) for Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the new Scanning HIS aircraft instrument. The Scanning HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. Scanning HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST), are being used for satellite instrument validation and for atmospheric research. A novel detector configuration on Scanning HIS allows the incorporation of a single focal plane and cooler with three or four spectral bands that view the same spot on the ground. The calibration accuracy of the S-HIS and results from recent field campaigns are presented, including validation comparisons with the NASA EOS infrared observations (AIRS and MODIS). Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecrafts (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. It is expected that aircraft flights of the S-HIS and the NAST will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the mission.

  3. The Micro Fourier Transform Interferometer (muFTIR) - A New Field Spectrometer for Acquisition of Infrared Data of Natural Surfaces

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.

    1995-01-01

    A lightweight, rugged, high-spectral-resolution interferometer has been built by Designs and Prototypes based on a set of specifications provided by the Jet Propulsion Laboratory and Dr. J. W. Salisbury (Johns Hopkins University). The instrument, the micro Fourier Transform Interferometer (mFTIR), permits the acquisition of infrared spectra of natural surfaces. Such data can be used to validate low and high spectral resolution data acquired remotely from aircraft and spacecraft in the 3-5 mm and 8-14 mm atmospheric window. The instrument has a spectral resolutions of 6 wavenumbers, weighs 16 kg including batteries and computer, and can be operated easily by two people in the field. Laboratory analysis indicates the instrument is spectrally calibrated to better than 1 wavenumber and the radiometric accuracy is <0.5 K if the radiances from the blackbodies used for calibration bracket the radiance from the sample.

  4. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  5. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  6. Fused off-axis object illumination direct-to-digital holography with a plurality of illumination sources

    DOEpatents

    Price, Jeffery R.; Bingham, Philip R.

    2005-11-08

    Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  7. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  8. Multimode simulations of a wide field of view double-Fourier far-infrared spatio-spectral interferometer

    NASA Astrophysics Data System (ADS)

    Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of

    2018-01-01

    In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.

  9. The Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.

    1999-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.

  10. The MPE/UCB far-infrared imaging Fabry-Perot interferometer (FIFI)

    NASA Technical Reports Server (NTRS)

    Poglitsch, A.; Geis, N.; Genzel, R.; Haggerty, M.; Beeman, J. W.

    1991-01-01

    FIFI, an imaging spectrometer with two or three Fabry-Perot interferometers in a series for astronomical observations in the FIR range, is described. Spectral resolutions of 2 km/s can be obtained with FIFI. Design considerations are discussed as well as optics, the detector array, the transimpedance amplifier array, signal demodulation, data acquisition, and instrument control.

  11. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.

    PubMed

    Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai

    2014-07-28

    This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.

  12. Practical aspects of modern interferometry for optical manufacturing quality control: Part 2

    NASA Astrophysics Data System (ADS)

    Smythe, Robert

    2012-07-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  13. Practical aspects of modern interferometry for optical manufacturing quality control, Part 3

    NASA Astrophysics Data System (ADS)

    Smythe, Robert A.

    2012-09-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  14. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer / Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  15. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer/Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  16. Infrared Smartt Interferometer As An Alignment Tool For Carbon Dioxide Laser Fusion Systems

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Bolen, P. D.

    1980-11-01

    It is essential to minimize the pointing and focusing errors at the focal plane for many applications involving infrared laser systems. In the case of the LASL CO2 laser fusion systems, with two beams in the Gemini System and eight beams in the Helios System, this is particularly important. The LASL Helios CO2 Laser Fusion System has eight 34-cm diameter beams emerging from the power amplifier and each beam is brought to focus by an off-aperture parabola (nearly 77.3-cm focal length) resulting in a nearly F/2.4 beam at the focal plane. The design tolerance at the focal plane for pointing accuracy is +/- 25 microns and for focusing accuracy is +/- 50 microns for this system. This paper describes an alignment scheme based on the use of the infrared Smartt interferometer' and compares the results obtained using this technique and the autocollimating Hartmann scheme2 in a laboratory setup duplicating the target chamber region of one of the beams of the Helios System. The results using the Smartt interferometer show that pointing accuracy of +/- 12.5 microns and focusing accuracies of ± 15 microns are obtained at the focal plane of the system.

  17. The Fourier-Kelvin Stellar Interferometer (FKSI): Infrared Detection and Characterization of Exozodiacal Dust to Super-Earths, A Progress Report

    NASA Technical Reports Server (NTRS)

    Danchi, W.

    2010-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a structurally connected infrared space interferometer with 0.5 m diameter telescopes on a 12.5 m baseline, and is passively cooled to approx.60K. The FKSI operates in the thermal infrared from 3-8 microns in a nulling (or starlight suppressing) mode for the detection and characterization of exoplanets, debris disks, extrasolar zodiacal dust levels. The FKSI will have the highest angular resolution of any infrared space instrument ever made with its nominal resolution of 40 mas at a 5 micron center wavelength. This resolution exceeds that of Spitzer by a factor of 38 and JWST by a factor of 5. The FKSI mission is conceived as a "probe class" or "mid-sized" strategic mission that utilizes technology advances from flagship projects like JWST, SIM, Spitzer, and the technology programs of TPF-I/Darwin. During the past year we began investigating an enhanced version of FKSI with 1-2 m diameter telescopes, passively cooled to 40K, on a 20-m baseline, with a sunshade giving a +/- 45 degree Field-of-Regard. This enhanced design is capable of detecting and characterizing the atmospheres of many 2 Earth-radius super-Earths and a few Earth-twins. We will report progress on the design of the enhanced mission concept and current status of the technologies needed for this mission.

  18. Nonlocal polarization interferometer for entanglement detection

    DOE PAGES

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less

  19. Phase-contrast microtomography using an X-ray interferometer having a 40-μm analyzer

    NASA Astrophysics Data System (ADS)

    Momose, A.; Koyama, I.; Hamaishi, Y.; Yoshikawa, H.; Takeda, T.; Wu, J.; Itai, Y.; Takai, , K.; Uesugi, K.; Suzuki, Y.

    2003-03-01

    Phase-contrast X-ray tomographic experiment using a triple Laue-case (LLL) interferometer having a 40-μm lamella which was fabricated to improve spatial resolution, was carried out using undulator X-rays at SPring-8, Japan. Three-dimensional images mapping the refractive index were measured for various animal tissues. Comparing the images with those obtained in previous experiments using conventional LLL interferometers having a 1-mm lamella, improvement in the spatial resolution was demonstrated in that histological structures, such as hepatic lobules in liver and tubules in kidney, were revealed.

  20. Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure

    NASA Astrophysics Data System (ADS)

    Varga, J.; Gabányi, K. É.; Ábrahám, P.; Chen, L.; Kóspál, Á.; Menu, J.; Ratzka, Th.; van Boekel, R.; Dullemond, C. P.; Henning, Th.; Jaffe, W.; Juhász, A.; Moór, A.; Mosoni, L.; Sipos, N.

    2017-08-01

    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μm silicate feature from emission to absorption temporarily. Aims: We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods: Infrared interferometry can spatially resolve the thermal emission of the circumstellar disk, also giving information about dust processing. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results: The inner disk (r < 1-3 au) spectra exhibit a 10 μm absorption feature related to amorphous silicate grains. The outer disk (r > 1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions: For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk. Based on observations made with the ESO Very Large Telescope Interferometer at Paranal Observatory (Chile) under the programs 088.C-1007 (PI: L. Mosoni), 090.C-0040 (PI: Th. Ratzka), and 092.C-0086 (PI: Th. Ratzka).

  1. Spatially modulated interferometer and beam shearing device therefor

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2004-01-01

    A spatially modulated interferometer incorporates a beam shearing system having a plurality of reflective surfaces defining separate light paths of equal optical path length for two separate output beams. The reflective surfaces are arranged such that when the two beams emerge from the beam shearing system they contain more than 50 percent of the photon flux within the selected spectral pass band. In one embodiment, the reflective surfaces are located on a number of prism elements combined to form a beam shearing prism structure. The interferometer utilizing the beam sharing system of the invention includes fore-optics for collecting light and focusing it into a beam to be sheared, and a detector located at an exit pupil of the device. In a preferred embodiment, the interferometer has no moving parts.

  2. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  3. Measurement of electron density profiles on HT-6M tokamak by 7-channel FIR HCN laser interferometer

    NASA Astrophysics Data System (ADS)

    Xiang, Gao; Qiliang, Guo

    1990-12-01

    Electron density measurements are periormed on HT-6M tokamak using a 7 channel Far-Infrared HCN laser interferometer. From the measured line integrals--7 channel phase shifts the electron density profile is reconstructed by a fit procedure. Results were tested by comparison to Abel inverted. Some recent interesting experimental results were reported.

  4. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    NASA Astrophysics Data System (ADS)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  5. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  6. Evaluation of data thinning strategies for climate applications using the first four years of AIRS hyperspectral data

    NASA Astrophysics Data System (ADS)

    Aumann, Hartmut H.; Fishbein, Evan; Gohlke, Jan

    2007-09-01

    The application of infrared hyper-spectral sounder data to climate research requires the global analysis of multi-decadal time series of various atmosphere, surface or cloud related parameters. The data used in this analysis has to meet stringent global and scene independent absolute accuracy and stability requirements, it also has to be spatially and radiometrically unbiased, manageable in size and self-contained. Self-contained means that the data set contains not only a globally unbiased sample of the state of the Earth Climate system as seen in the infrared, it has to contain enough data to contrast clear with average (cloudy) data and to allow an independent assessment of the radiometric and spectral accuracy and stability of the data. We illustrate this with data from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounder Interferometer (IASI) data. AIRS and IASI were designed with fairly similar functional requirements. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially un-interrupted data are available since September 2002. Since October 2006 IASI is in a 9:30 AM polar orbit at 815 km altitude on the MetOp2 satellite, with data available since May 2007.

  7. Aspheric figure generation using feedback from an infrared phase-shifting interferometer.

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.; Ketelsen, D.

    This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments and how it is affected by the surface roughness produced by each generator tool.

  8. Vibrational dephasing in matter-wave interferometers

    NASA Astrophysics Data System (ADS)

    Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.

    2017-03-01

    Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.

  9. Development of optical ground verification method for μm to sub-mm reflectors

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Thizy, C.; Lemaire, P.; Georges, M.; Mazy, E.; Mazzoli, A.; Houbrechts, Y.; Rochus, P.; Roose, S.; Doyle, D.; Ulbrich, G.

    2017-11-01

    Large reflectors and antennas for the IR to mm wavelength range are being planned for many Earth observation and astronomical space missions and for commercial communication satellites as well. Scientific observatories require large telescopes with precisely shaped reflectors for collecting the electro-magnetic radiation from faint sources. The challenging tasks of on-ground testing are to achieve the required accuracy in the measurement of the reflector shapes and antenna structures and to verify their performance under simulated space conditions (vacuum, low temperatures). Due to the specific surface characteristics of reflectors operating in these spectral regions, standard optical metrology methods employed in the visible spectrum do not provide useful measurement results. The current state-of-the-art commercial metrology systems are not able to measure these types of reflectors because they have to face the measurement of shape and waviness over relatively large areas with a large deformation dynamic range and encompassing a wide range of spatial frequencies. 3-D metrology (tactile coordinate measurement) machines are generally used during the manufacturing process. Unfortunately, these instruments cannot be used in the operational environmental conditions of the reflector. The application of standard visible wavelength interferometric methods is very limited or impossible due to the large relative surface roughnesses involved. A small number of infrared interferometers have been commercially developed over the last 10 years but their applications have also been limited due to poor dynamic range and the restricted spatial resolution of their detectors. These restrictions affect also the surface error slopes that can be captured and makes their application to surfaces manufactured using CRFP honeycomb technologies rather difficult or impossible. It has therefore been considered essential, from the viewpoint of supporting future ESA exploration missions, to develop and realise suitable verification tools based on infrared interferometry and other optical techniques for testing large reflector structures, telescope configurations and their performances under simulated space conditions. Two methods and techniques are developed at CSL. The first one is an IR-phase shifting interferometer with high spatial resolution. This interferometer shall be used specifically for the verification of high precision IR, FIR and sub-mm reflector surfaces and telescopes under both ambient and thermal vacuum conditions. The second one presented hereafter is a holographic method for relative shape measurement. The holographic solution proposed makes use of a home built vacuum compatible holographic camera that allows displacement measurements from typically 20 nanometres to 25 microns in one shot. An iterative process allows the measurement of a total of up to several mm of deformation. Uniquely the system is designed to measure both specular and diffuse surfaces.

  10. FIFI: The MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Geis, Norbert; Genzel, Reinhard; Haggerty, M.; Herrmann, F.; Jackson, J.; Madden, Suzanne C.; Nikola, T.; Poglitsch, Albrecht; Rumitz, M.; Stacey, G. J.

    1995-01-01

    We describe the performance characteristics of the MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer (FIFI) for the Kuiper Airborne Observatory (KAO). The spectrometer features two or three cryogenic tunable Fabry-Perot filters in series giving spectral resolution R of up to 10(exp 5) in the range of 40 microns less than lambda less than 200 microns, and an imaging 5x5 array of photoconductive detectors with variable focal plane plate scale. The instrument works at background limited sensitivity of up to 2 x 10(exp -19) W cm(exp -2) Hz(exp -1/2) per pixel per resolution element at R = 10(exp 5) on the KAO.

  11. Instrumental concept and preliminary performances of SIFTI: static infrared fourier transform interferometer

    NASA Astrophysics Data System (ADS)

    Hébert, Philippe-Jean; Cansot, E.; Pierangelo, C.; Buil, C.; Bernard, F.; Loesel, J.; Trémas, T.; Perrin, L.; Courau, E.; Casteras, C.; Maussang, I.; Simeoni, D.

    2017-11-01

    The SIFTI (Static Infrared Fourier Transform Interferometer) instrument aims at supporting an important part in a mission for atmospheric pollution sounding from space, by providing high spectral resolution and high Signal to Noise Ratio spectra of the atmosphere. They will allow to resolve tropospheric profiles of ozone (03) and carbon monoxide (C0), especially down to the planetary boundary layer (PBL), an altitude region of very high interest, though poorly monitored to date, for air quality and pollution monitoring. The retrieved profile of ozone, resp. C0, will contain 5 to 7, resp. 2.5 to 4, independent pieces of information. The French space agency CNES (Centre National d'Etudes Spatiales) has proposed and is studying an instrument concept for SIFTI based on a static interferometer, where the needed optical path are generated by a pair of crossed staircase fixed mirrors (replacing the moving reflector of dynamic Fourier transform interferometers like IASI or MIPAS). With the SIFTI design, a very high spectral resolution ( 0.1 cm-1 apodised) is achieved in a very compact optical setup, allowing a large throughput, hence a high SNR. The measurements are performed in the 9.5 μm band for 03 and in the 4.6 μm band for C0. The science return of the sounder can be further increased if an "intelligent pointing" process is implemented. This consists in combining the TIR sounder with a companion TIR imager, providing information on the cloud coverage in the next observed scene. 0nboard, real-time analysis of the IR image is used to command the sounder staring mirror to cloud free areas, which will maximize the probability for probing down to the surface. After the first part of the phase A, the architecture of SIFTI was studied as a trade-off between performance and resource budget. We review the main architecture and functional choices, and their advantages. The preliminary instrument concept is then presented in its main aspects and in terms of main subsystem functions. The preliminary budgets of mass, volume, size and power are also evaluated. Eventually the science performances are estimated, at instrument level and at mission level, and are compared to the specifications. To finish, the ways forward are discussed.

  12. Interferometric thickness calibration of 300 mm silicon wafers

    NASA Astrophysics Data System (ADS)

    Wang, Quandou; Griesmann, Ulf; Polvani, Robert

    2005-12-01

    The "Improved Infrared Interferometer" (IR 3) at the National Institute of Standards and Technology (NIST) is a phase-measuring interferometer, operating at a wavelength of 1550 nm, which is being developed for measuring the thickness and thickness variation of low-doped silicon wafers with diameters up to 300 mm. The purpose of the interferometer is to produce calibrated silicon wafers, with a certified measurement uncertainty, which can be used as reference wafers by wafer manufacturers and metrology tool manufacturers. We give an overview of the design of the interferometer and discuss its application to wafer thickness measurements. The conversion of optical thickness, as measured by the interferometer, to the wafer thickness requires knowledge of the refractive index of the material of the wafer. We describe a method for measuring the refractive index which is then used to establish absolute thickness and thickness variation maps for the wafer.

  13. Optical diffraction interpretation: an alternative to interferometers

    NASA Astrophysics Data System (ADS)

    Bouillet, S.; Audo, F.; Fréville, S.; Eupherte, L.; Rouyer, C.; Daurios, J.

    2015-08-01

    The Laser MégaJoule (LMJ) is a French high power laser project that requires thousands of large optical components. The wavefront performances of all those optics are critical to achieve the desired focal spot shape and to limit the hot spots that could damage the components. Fizeau interferometers and interferometric microscopes are the most commonly used tools to cover the whole range of interesting spatial frequencies. Anyway, in some particular cases like diffractive and/or coated and/or aspheric optics, an interferometric set-up becomes very expensive with the need to build a costly reference component or a specific to-the-wavelength designed interferometer. Despite the increasing spatial resolution of Fizeau interferometers, it may even not be enough, if you are trying to access the highest spatial frequencies of a transmitted wavefront for instance. The method we developed is based upon laser beam diffraction intermediate field measurements and their interpretation with a Fourier analysis and the Talbot effect theory. We demonstrated in previous papers that it is a credible alternative to classical methods. In this paper we go further by analyzing main error sources and discussing main practical difficulties.

  14. High-throughput infrared spectrometer for standoff chemical detection

    NASA Astrophysics Data System (ADS)

    Chadha, Suneet; Stevenson, Chuck; Curtiss, Lawrence E.

    1999-01-01

    Advanced autonomous detection of chemical warfare agents and other organic materials has long been a major military concern. While significant advances have recently been accomplished in remote spectral sensing using rugged FTIRs with point detectors, efforts towards spatial chemical discrimination have been lacking. Foster-Miller, Inc. has developed a radically different mid-IR and long wave IR spectrometer for standoff detection of chemical warfare agents and other molecular species.This no moving parts device will eliminate the cost, complexity, reliability and bandwidth/resolution problems associated with either Fabry Perot or Michelson Interferometer based approaches currently under consideration. Given the small size and performance insensitivity to on-board vibration, high EMI, thermal variations, the proposed optic would easily adapt cryocooling and field deployable requirements for low radiance detection.

  15. Mid-Infrared Interferometry on Spectral Lines. III. Ammonia and Silane around IRC +10216 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    Using the University of California Berkeley Infrared Spatial Interferometer with a radio frequency (RF) filter bank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH3) and silane (SiH4) with very high spectral resolution (λ/Δλ~105) were made. Under the assumptions of spherical symmetry and uniform outflow, these new data permitted the molecular stratification around carbon star IRC +10216 and red supergiant VY CMa to be investigated. For IRC +10216, both ammonia and silane were found to form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones. Specifically, ammonia was found to form before silane in a region of decaying gas turbulence (>~20R*), while the silane is produced in a region of relatively smooth gas flow much farther from the star (>~80R*). The depletion of gas-phase SiS onto grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~40R*).

  16. VIIRS thermal emissive bands on-orbit calibration coefficient performance using vicarious calibration results

    NASA Astrophysics Data System (ADS)

    Moyer, D.; Moeller, C.; De Luccia, F.

    2013-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS), a primary sensor on-board the Suomi-National Polar-orbiting Partnership (SNPP) spacecraft, was launched October 28, 2011. It has 22 bands: 7 thermal emissive bands (TEBs), 14 reflective solar bands (RSBs) and a Day Night Band (DNB). The TEBs cover the spectral wavelengths between 3.7 to 12 μm and have two 371 m and five 742 m spatial resolution bands. A VIIRS Key Performance Parameter (KPP) is the sea surface temperature (SST) which uses bands M12 (3.7 μm), M15 (10.8 μm) and M16's (12.0 μm) calibrated Science Data Records (SDRs). The TEB SDRs rely on pre-launch calibration coefficients used in a quadratic algorithm to convert the detector's response to calibrated radiance. This paper will evaluate the performance of these prelaunch calibration coefficients using vicarious calibration information from the Cross-track Infrared Sounder (CrIS) also onboard the SNPP spacecraft and the Infrared Atmospheric Sounding Interferometer (IASI) on-board the Meteorological Operational (MetOp) satellite. Changes to the pre-launch calibration coefficients' offset term c0 to improve the SDR's performance at cold scene temperatures will also be discussed.

  17. High resolution broad-band spectroscopy in the NIR using the Triplespec externally dispersed interferometer at the Hale telescope

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Edelstein, J.; Sirk, M.; Wishnow, E.; Ishikawa, Y.; McDonald, E.; Shourt, W. V.

    2014-07-01

    High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ˜2,700. Aspects of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.

  18. ON THE DETECTION OF GLOBAL 21-cm SIGNAL FROM REIONIZATION USING INTERFEROMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Saurabh; Subrahmanyan, Ravi; Shankar, N. Udaya

    2015-12-20

    Detection of the global redshifted 21-cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, detection of this faint monopole is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling of receiver noise with mK accuracy and its separation remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, here we explore the theory of the response of interferometers to globalmore » signals. In other words, we discuss the spatial coherence in the electric field arising from the monopole component of the 21-cm signal and methods for its detection using sensor arrays. We proceed by first deriving the response to uniform sky of two-element interferometers made of unit dipole and resonant loop antennas, then extend the analysis to interferometers made of one-dimensional arrays and also consider two-dimensional aperture antennas. Finally, we describe methods by which the coherence might be enhanced so that the interferometer measurements yield improved sensitivity to the monopole component. We conclude (a) that it is indeed possible to measure the global 21-cm from EoR using interferometers, (b) that a practically useful configuration is with omnidirectional antennas as interferometer elements, and (c) that the spatial coherence may be enhanced using, for example, a space beam splitter between the interferometer elements.« less

  19. Progress on FIR interferometry and Thomson Scattering measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2017-10-01

    Spatially resolved measurements of the electron temperature (Te) and density (ne) will be fundamental in assessing the degree to which HIT-SI3 demonstrates closed magnetic flux and energy confinement. Further, electron temperature measurements have not yet been made on an inductively-driven spheromak. Far infrared (FIR) interferometer and Thomson Scattering (TS) systems have been installed on the HIT-SI3 spheromak. The TS system currently implemented on HIT-SI3 was originally designed for other magnetic confinement experiments, and progress continues toward modifying and optimizing for HIT-SI3 plasmas. Initial results suggest that the electron temperature is of order 10 eV. Plans to modify the TS system to provide more sensitivity and accuracy at low temperatures are presented. The line-integrated ne is measured on one chord by the FIR interferometer, with densities near 5x1019 m-3. Four cylindrical volumes have been added to the HIT-SI3 apparatus to enhance passive pumping. It is hoped that this will allow for more control of the density during the 2 ms discharges. Density measurements from before and after the installation of the passive pumping volumes are presented for comparison.

  20. 2006 Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Ireland, Michael; Monnier, John D.; Thiebaut, Eric; Rengaswamy, Sridharan; Baron, Fabien; Young, John S.; Kraus, Stefan; hide

    2006-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  1. Mid-infrared interferometry towards the massive young stellar object CRL 2136: inside the dust rim

    NASA Astrophysics Data System (ADS)

    de Wit, W. J.; Hoare, M. G.; Oudmaijer, R. D.; Nürnberger, D. E. A.; Wheelwright, H. E.; Lumsden, S. L.

    2011-02-01

    Context. Establishing the importance of circumstellar disks and their properties is crucial to fully understand massive star formation. Aims: We aim to spatially resolve the various components that make-up the accretion environment of a massive young stellar object (⪉100 AU), and reproduce the emission from near-infrared to millimeter wavelengths using radiative transfer codes. Methods: We apply mid-infrared spectro-interferometry to the massive young stellar object CRL 2136. The observations were performed with the Very Large Telescope Interferometer and the MIDI instrument at a 42 m baseline probing angular scales of 50 milli-arcseconds. We model the observed visibilities in parallel with diffraction-limited images at both 24.5 μm and in the N-band (with resolutions of 0.6´´and 0.3´´, respectively), as well as the spectral energy distribution. Results: The arcsec-scale spatial information reveals the well-resolved emission from the dusty envelope. By simultaneously modelling the spatial and spectral data, we find that the bulk of the dust emission occurs at several dust sublimation radii (approximately 170 AU). This reproduces the high mid-infrared fluxes and at the same time the low visibilities observed in the MIDI data for wavelengths longward of 8.5 μm. However, shortward of this wavelength the visibility data show a sharp up-turn indicative of compact emission. We discuss various potential sources of this emission. We exclude a dust disk being responsible for the observed spectral imprint on the visibilities. A cool supergiant star and an accretion disk are considered and both shown to be viable origins of the compact mid-infrared emission. Conclusions: We propose that CRL 2136 is embedded in a dusty envelope, which truncates at several times the dust sublimation radius. A dust torus is manifest in the equatorial region. We find that the spectro-interferometric N-band signal can be reproduced by either a gaseous disk or a bloated central star. If the disk extends to the stellar surface, it accretes at a rate of 3.0 × 10-3 M⊙ yr-1. Based on observations with the VLTI, proposal 381.C-0607.

  2. Overview of LBTI: A Multipurpose Facility for High Spatial Resolution Observations

    NASA Technical Reports Server (NTRS)

    Hinz, P. M.; Defrere, D.; Skemer, A.; Bailey, V.; Stone, J.; Spalding, E.; Vaz, A.; Pinna, E.; Puglisi, A.; Esposito, S.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2x8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 micrometer camera (called LMIRCam), and an 8-13 micrometer camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20"x20"); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.

  3. Amplitude and intensity spatial interferometry; Proceedings of the Meeting, Tucson, AZ, Feb. 14-16, 1990

    NASA Technical Reports Server (NTRS)

    Breckinridge, Jim B. (Editor)

    1990-01-01

    Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.

  4. Community Plan for Far-Infrared/Submillimeter Space Astronomy

    NASA Technical Reports Server (NTRS)

    Ade, Peter; Akeson, Rachel; Ali, Shafinaz; Amato, Michael; Arendt, Richard; Baker, Charles; Benford, Dominic; Blain, Andrew; Bock, James; Borne, Kirk

    2004-01-01

    This paper represents the consensus view of the 124 participants in the Second Workshop on New Concepts for Far-Infrared/Submillimeter Space Astronomy.We recommend that NASA pursue the vision for far-IR astronomy outlined in the NAS Decadal Survey, which said: A rational coordinated program for space optical and infrared astronomy would build on the experience gained with NGST1 to construct [a JWST-scale filled-aperture far-IR telescope SAFIR, and then ultimately, in the decade 2010 to 2020, build on the SAFIR, TPF, and SIM experience to assemble a space-based, far-infrared interferometer. SAFIR will study star formation in the young universe, the buildup of elements heavier than hydrogen over cosmic history, the process of galaxy formation, and the early phases of star formation, which occur behind a veil of dust that precludes detection at mid IR and shorter wavelengths. The far-infrared interferometer will resolve distant galaxies to study protogalaxy interactions and mergers and the processes that led to enhanced star formation activity and the formation of Active Galactic Nuclei, and will resolve protostars and debris disks in our Galaxy to study how stars and planetary systems form.

  5. A Data Exchange Standard for Optical (Visible/IR) Interferometry

    NASA Astrophysics Data System (ADS)

    Pauls, T. A.; Young, J. S.; Cotton, W. D.; Monnier, J. D.

    2005-11-01

    This paper describes the OI (Optical Interferometry) Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS) and supports the storage of optical interferometric observables, including squared visibility and closure phase-data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing, and the merging of OI Exchange Format files.

  6. Method and means for generation of tunable laser sidebands in the far-infrared region

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M. (Inventor); Farhoomand, Jam (Inventor)

    1987-01-01

    A method for generating tunable far-infrared radiation is described. The apparatus includes a Schottky-barrier diode which has one side coupled through a conductor to a waveguide that carries a tunable microwave frequency; the diode has an opposite side which is coupled through a radiating whisker to a bias source. Infrared light is directed at the diode, and infrared light with tunable sidebands is radiated by the whisker through an open space to a reflector. The original infrared is separated from a tunable infrared sideband by a polarizing Michelson interferometer.

  7. Stellar interferometers and hypertelescopes: new insights on an angular spatial frequency approach to their non-invariant imaging

    NASA Astrophysics Data System (ADS)

    Dettwiller, L.; Lépine, T.

    2017-12-01

    A general and pure wave theory of image formation for all types of stellar interferometers, including hypertelescopes, is developed in the frame of Fresnel's paraxial approximations of diffraction. For a hypertelescope, we show that the severe lack of translation invariance leads to multiple and strong spatial frequency heterodyning, which codes the very high frequencies detected by the hypertelescope into medium spatial frequencies and introduces a moiré-type ambiguity for extended objects. This explains mathematically the disappointing appearance of poor resolution observed in some image simulations for hypertelescopes.

  8. Simultaneous water vapor and dry air optical path length measurements and compensation with the large binocular telescope interferometer

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Hinz, P.; Downey, E.; Böhm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Pott, J.-U.; Skemer, A.; Spalding, E.; Stone, J.; Vaz, A.

    2016-08-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.

  9. Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; Lane, B. F.; Creech-Eakman, M.; Queloz, D.; PTI Collaboration

    1999-12-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. Following our previous work on resolving spectroscopic binary stars with the Palomar Testbed Interferometer (PTI), we will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival radial velocity data. The six systems for which we will present new orbit models are: 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064). Most of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions. The work described in this paper was performed under contract with the National Aeronautics and Space Administration.

  10. Validation of NH3 satellite observations by ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  11. Inference of the boundary layer structure over the oceans from satellite infrared measurements

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.; Lo, R.; Nath, N. R.

    1978-01-01

    The characteristics of the boundary layer of the atmosphere over the global oceans between about 50 deg N to 40 deg S were remotely sensed for three different periods, about 3 months each, during the year 1970. The spectral measurements made by Nimbus 4 Infrared Interferometer Spectrometer were used for this purpose.

  12. Dynamic interferometer alignment and its utility in UV Fourier transform spectrometer systems

    NASA Technical Reports Server (NTRS)

    Dorval, Rick K.; Engel, James R.; Wyntjes, Geert J.

    1993-01-01

    Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.

  13. Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2014-01-01

    CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.

  14. On the inner disc structure of MWC480: evidence for asymmetries?

    NASA Astrophysics Data System (ADS)

    Jamialahmadi, N.; Lopez, B.; Berio, Ph.; Matter, A.; Flament, S.; Fathivavsari, H.; Ratzka, T.; Sitko, M. L.; Spang, A.; Russell, R. W.

    2018-01-01

    Studying the physical conditions structuring the young circumstellar discs is required for understanding the onset of planet formation. Of particular interest is the protoplanetary disc surrounding the Herbig star MWC480. The structure and properties of the circumstellar disc of MWC480 are studied by infrared interferometry and interpreted from a modelling approach. New observations are driving this study, in particular, some recent Very Large Telescope Interferometer (VLTI)/MIDI data acquired in 2013 December. Our one-component disc model could not reproduce simultaneously all our data: the spectral energy distribution, the near-infrared Keck Interferometer data and the mid-infrared data obtained with the MIDI instrument. In order to explain all measurements, one possibility is to add an asymmetry in our one-component disc model with the assumption that the structure of the disc of MWC480 has not varied with time. Several scenarios are tested, and the one considering the presence of an azimuthal bright feature in the inner component of the disc model provides a better fit of the data.

  15. First SNPP Cal/Val Campaign: Satellite and Aircraft Sounding Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Tian, Jialin; Smith, William L.; Wu, Wan; Kizer, Susan; Goldberg, Mitch; Liu, Q.

    2015-01-01

    Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (SNPP) satellite Environmental Data Record (EDR) is retrieved from calibrated ultraspectral radiance so called Sensor Data Record (SDR). It is critical to understand the accuracy of retrieved EDRs, which mainly depends on SDR accuracy (e.g., instrument random noise and absolute accuracy), an ill-posed retrieval system, and radiative transfer model errors. There are few approaches to validate EDR products, e.g., some common methods are to rely on radiosonde measurements, ground-based measurements, and dedicated aircraft campaign providing in-situ measurements of atmosphere and/or employing similar ultraspectral interferometer sounders. Ultraspectral interferometer sounder aboard aircraft measures SDR to retrieve EDR, which is often used to validate satellite measurements of SDR and EDR. The SNPP Calibration/Validation Campaign was conducted during May 2013. The NASA high-altitude aircraft ER-2 that carried ultraspectral interferometer sounders such as the NASA Atmospheric Sounder Testbed-Interferometer (NAST-I) flew under the SNPP satellite that carries the Cross-track Infrared Sounder (CrIS). Here we inter-compare the EDRs produced with different retrieval algorithms from SDRs measured by the sensors from satellite and aircraft. The available dropsonde and radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis were also used to draw the conclusion from this experiment.

  16. The temporal power spectrum of atmospheric fluctuations due to water vapor

    NASA Astrophysics Data System (ADS)

    Lay, O. P.

    1997-05-01

    Irregular variations in the refractivity of the atmosphere cause fluctuations in the phase measured by interferometers, limiting the spatial resolution that can be obtained. For frequencies up to the far infrared, water vapor is the dominant cause of the variations. The temporal power spectrum of the phase fluctuations is needed to assess correction schemes such as phase referencing using a nearby calibrator and water vapor radiometry. A model is developed for the temporal power spectrum of phase fluctuations measured by an interferometer through a layer of Kolmogorov turbulence of arbitrary thickness. It is found that both the orientation of the baseline with respect to the wind direction and the elevation of the observations can have a large effect on the temporal power spectrum. Plots of the spectral density distribution, where the area under the curve is proportional to phase power, show that substantial contributions from length scales as long as 100 times the interferometer baseline are possible. The model is generally consistent with data from the 12-GHz phase monitor at the Owens Valley Radio Observatory, and allows the data to be extrapolated to an arbitrary baseline, observing frequency and elevation. There is some evidence that there can be more than one component of turbulence present at a given time for the Owens Valley. The validity of the frozen turbulence assumption and the geometrical optics approximation is discussed and found to be reasonable under most conditions. The models and data presented here form the basis of an analysis of phase calibration and water vapor radiometry \\cite[(Lay 1997)]{lay96}.

  17. Long Baseline Nulling Interferometry with the Keck Telescopes: A Progress Report

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Colavita, M. M.; Crawford, S.; Creech-Eakman, M. J.; Dahl, W.; Fanson, J.; hide

    2005-01-01

    The Keck Interferometer Nuller (KIN) is one of the major scientific and technical precursors to the Terrestrial Planet Finder Interferometer (TPF-I) mission. KIN's primary objective is to measure the level of exo-zodiacal mid-infrared emission around nearby main sequence stars, which requires deep broad-band nulling of astronomical sources of a few Janskys at 10 microns. A number of new capabilities are needed in order to reach that goal with the Keck telescopes: mid-infrared coherent recombination, interferometric operation in 'split pupil' mode, N-band optical path stabilization using K-band fringe tracking and internal metrology, and eventually, active atmospheric dispersion correction. We report here on the progress made implementing these new functionalities, and discuss the initial levels of extinction achieved on the sky.

  18. The Fourier Kelvin Stellar Interferometer (FKSI): A Progress Report and Update

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Barry, R. K.; Traub, W. A.; Unwin, S.

    2008-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) mission is a two-telescope infrared space interferometer with a 12.5 meter baseline on a boom, operating from 3-8 (or 10) microns, and passively cooled to about 60 K. The main goals for the mission are the measurement an characterization of the exozodiacal light around nearby stars, debris disks, and characterization of the atmospheres of known exoplanets. We discuss progress on this mission in the context of the recent call from NASA for mission concepts for the upcoming National Academy of Sciences Decadal Survey, where it is considered a medium class mission ($600-800 million) in terms of the overall budget.

  19. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    NASA Astrophysics Data System (ADS)

    Weichert, C.; Köchert, P.; Köning, R.; Flügge, J.; Andreas, B.; Kuetgens, U.; Yacoot, A.

    2012-09-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction.

  20. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  1. Resolving Io's Volcanoes from a Mutual Event Observation at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    de Kleer, K.; Skrutskie, M.; Leisenring, J.; Davies, A. G.; Resnick, A.; Conrad, A.; De Pater, I.; Hinz, P.; Defrere, D.; Veillet, C.

    2016-12-01

    Near-infrared observations of Io during occultation by Jupiter and the other Galilean satellites have been central to ground-based studies of Io's volcanism for decades. When such observations are made using adaptive optics on 8-10m telescopes, the infrared emission from individual features can be resolved at a resolution approaching a few km on Io's surface. On March 8, 2015, the Large Binocular Telescope Interferometer (LBTI) observed Io during a Europa mutual occultation event. Images were obtained at a wavelength of 4.8 microns every 123 milliseconds, corresponding to 2 km on Io's surface. The thermal emission from four hot spots including Loki Patera, Pillan Patera, and Kurdalagon Patera is clearly resolved. The latter two hot spots hosted bright eruptions in early 2015; the thermal emission from these sites likely represents the aftermath of those eruptions. The occultation light curves are used to construct a brightness temperature map for each of the four hot spots, from which the lava age is estimated using a model for cooling basaltic lavas. The thermal mapping of Loki Patera has produced the first-ever temperature map of the entire patera floor at high (10 km) spatial resolution, and the corresponding age distribution yields the resurfacing rate. For each hot spot, the age and spatial extent of the lava is interpreted in the context of its activity during the surrounding months.

  2. The measurement of carbon monoxide and methane in the national capital air quality control region. III - Correlation interferometer results

    NASA Technical Reports Server (NTRS)

    Goldstein, H. W.; Bortner, M. H.; Grenda, R. N.; Dick, R.; Lebel, P. J.; Lamontagne, R. A.

    1976-01-01

    Two types of experiments were performed with a correlation interferometer on-board a Bell Jet Ranger 206 Helicopter. The first consisted of simultaneous ground- and air-truth measurements as the instrumented helicopter passed over the Cheverly site. The second consisted of several measurement flights in and around the national capital air quality control region (Washington, D.C.). The correlation interferometer data, the infrared Fourier spectrometer data, and the integrated altitude sampling data showed agreement within the errors of the individual measurements. High values for CO were found from the D.C. flight data to be reproducible and concentrated in areas of stop-and-go traffic. It is concluded, that pollutants at low altitudes are detectable from an air-borne platform by remote correlation interferometry and that the correlation interferometer measurements agree with ground- and air-truth data.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Stefan; Espaillat, Catherine; Wilner, David J.

    Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 {mu}m), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star)more » that is separated from the optically thick outer disk (radii {approx}> 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of {approx}15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.« less

  4. The Fourier-Kelvin Stellar Interferometer Mission Concept

    NASA Technical Reports Server (NTRS)

    Danchi, W. C.; Allen, R.; Benford, D.; Gezari, D.; Leisawitz, D.; Mundy, L.; Oegerle, William (Technical Monitor)

    2002-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological precursor to TPF as well as Space Infrared Interferometric Telescope (SPIRIT), Submillimeter Probe Evolution of Cosmic Structure (SPECS), and Single Aperture for Infrared Observatory (SAFIR). It will also be a high angular resolution system complementary to Next Generation Space Telescope (NGST). The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We are in the process of studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. The goal of the design study is to determine if a mid-infrared interferometry mission can be performed within the cost and schedule requirements of a Discovery class mission. At the present time we envision the FKSI as comprised of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral data simultaneously for a given orientation of the array. The spacecraft will be rotated to give sufficient Fourier data to reconstruct complex images of a broad range of astrophysical sources.

  5. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller.

  6. AGILIS: Agile Guided Interferometer for Longbaseline Imaging Synthesis. Demonstration and concepts of reconfigurable optical imaging interferometers

    NASA Astrophysics Data System (ADS)

    Woillez, Julien; Lai, Olivier; Perrin, Guy; Reynaud, François; Baril, Marc; Dong, Yue; Fédou, Pierre

    2017-06-01

    Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims: Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods: To support this claim, we report on the successful completion of the `OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the `OHANA project. Results: Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions: AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).

  7. An Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy; hide

    2004-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  8. A compact LWIR hyperspectral system employing a microbolometer array and a variable gap Fabry-Perot interferometer employed as a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Hinrichs, John L.; Akagi, Jason

    2012-06-01

    A prototype long wave infrared Fourier transform spectral imaging system using a wedged Fabry-Perot interferometer and a microbolometer array was designed and built. The instrument can be used at both short (cm) and long standoff ranges (infinity focus). Signal to noise ratios are in the several hundred range for 30 C targets. The sensor is compact, fitting in a volume about 12 x12 x 4 inches.

  9. Design of the Longitudinal Dispersion Compensation System for the CHARA Array

    NASA Astrophysics Data System (ADS)

    Berger, D. H.; Bagnuolo, W. G.

    2001-05-01

    In recent years, the baselines of optical and infrared interferometers have been approaching half of a kilometer in length. With increased spatial layout comes new and challenging problems to solve. One common hurdle occurs when observing objects not perpendicular to the baseline. The result is one beam with added path length that must be added to the non-delayed beam such that identical phase fronts are combined together to produce fringes. For several interferometers without the addition of costly and logistically difficult evacuated delay lines, path length equalization occurs in long buildings through the ambient air medium. This causes a beam which is spectrally dispersed along the optical axis. The undesirable consequence is decreased fringe contrast. A solution is to disperse the uncompensated beam by inserting a block of glass to match the optical path lengths for all wavelengths within the observing waveband. A single glass solution is presented for the CHARA Array. Modeling, design and fabrication methods are also considered. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, California, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University. This research is also funded in part by the Michelson Fellowship Program sponsored by Jet Propulsion Laboratory.

  10. First Keck Interferometer measurements in self-phase referencing mode: spatially resolving circum-stellar line emission of 48 Lib

    NASA Astrophysics Data System (ADS)

    Pott, J.-U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Eisner, J. A.; Monnier, J. D.; Akeson, R. L.; Ghez, A. M.; Graham, J. R.; Hillenbrand, L. A.; Millan-Gabet, R.; Appleby, E.; Berkey, B.; Colavita, M. M.; Cooper, A.; Felizardo, C.; Herstein, J.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.

    2010-07-01

    Recently, the Keck interferometer was upgraded to do self-phase-referencing (SPR) assisted K-band spectroscopy at R ~ 2000. This means, combining a spectral resolution of 150 km/s with an angular resolution of 2.7 mas, while maintaining high sensitiviy. This SPR mode operates two fringe trackers in parallel, and explores several infrastructural requirements for off-axis phase-referencing, as currently being implemented as the KI-ASTRA project. The technology of self-phasereferencing opens the way to reach very high spectral resolution in near-infrared interferometry. We present the scientific capabilities of the KI-SPR mode in detail, at the example of observations of the Be-star 48 Lib. Several spectral lines of the cirumstellar disk are resolved. We describe the first detection of Pfund-lines in an interferometric spectrum of a Be star, in addition to Br γ. The differential phase signal can be used to (i) distinguish circum-stellar line emission from the star, (ii) to directly measure line asymmetries tracing an asymetric gas density distribution, (iii) to reach a differential, astrometric precision beyond single-telescope limits sufficient for studying the radial disk structure. Our data support the existence of a radius-dependent disk density perturbation, typically used to explain slow variations of Be-disk hydrogen line profiles.

  11. Robust Monolithic Ultraviolet Interferometer for the Shimmer Instrument on STPSat-1

    DTIC Science & Technology

    2003-01-01

    wavelength- dependent spatial frequency are produced by a modified Michelson interferometer in which the re- turn mirrors are replaced by conventional...alignment of the spacers, prisms, and gratings to the beam splitter was accom- plished with the aid of a Zerodur plate onto which the bottom surface of

  12. The MIDAS Instrument Design and Characterization

    NASA Astrophysics Data System (ADS)

    Honniball, C. I.; Wright, R.; Lucey, P. G.

    2016-10-01

    The Miniaturized Infrared detector of Atmospheric Species (MIDAS) utilizes an uncooled microbolometer coupled with a Sagnac interferometer. MIDAS will be used to detect and quantify atmospheric constituents for a variety of science applications.

  13. Infrared measurements of a scramjet exhaust. [to determine combustion efficiency

    NASA Technical Reports Server (NTRS)

    Reed, R. A.; Slack, M. W.

    1980-01-01

    Diagnostic 2 - 5 mm infrared spectra of a hydrogen burning scramjet exhaust were measured with an interferometer spectrometer. Exhaust gas temperatures and water vapor partial pressures were determined from the observed intensity and spectral profile of the H2O 2.7 mm infrared emission band. Overall engine combustion efficiencies were derived by combining these measurements with the known engine operating conditions. Efficiencies fall (70 - 50 percent) as fuel equivalence ratios rise (0.4 - 1.0). Data analysis techniques and sensitivity studies are also presented.

  14. Spatially varying geometric phase in classically entangled vector beams of light

    NASA Astrophysics Data System (ADS)

    King-Smith, Andrew; Leary, Cody

    We present theoretical results describing a spatially varying geometric (Pancharatnam) phase present in vector modes of light, in which the polarization and transverse spatial mode degrees of freedom exhibit classical entanglement. We propose an experimental setup capable of characterizing this effect, in which a vector mode propagates through a Mach-Zehnder interferometer with a birefringent phase retarder present in one arm. Since the polarization state of a classically entangled light beam exhibits spatial variation across the transverse mode profile, the phase retarder gives rise to a spatially varying geometric phase in the beam propagating through it. When recombined with the reference beam from the other interferometer arm, the presence of the geometric phase is exhibited in the resulting interference pattern. We acknowledge funding from the Research Corporation for Science Advancement by means of a Cottrell College Science Award.

  15. On the relationship between land surface infrared emissivity and soil moisture

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2018-01-01

    The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially coherent and consistent with that from MW measurements, and, moreover, to achieve our objective of investigating the relationship between land surface IR emissivity and soil moisture.

  16. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Brendt. Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2014-01-01

    Tropopause folds are identified by warm, dry, high-potential vorticity, ozone-rich air and are one explanation for damaging non-convective wind events. Could improved model representation of stratospheric air and associated tropopause folding improve non-convective wind forecasts and high wind warnings? The goal of this study is to assess the impact of assimilating Hyperspectral Infrared (IR) profiles on forecasting stratospheric air, tropopause folds, and associated non-convective winds: (1) AIRS: Atmospheric Infrared Sounder (2) IASI: Infrared Atmospheric Sounding Interferometer (3) CrIMSS: Cross-track Infrared and Microwave Sounding Suite

  17. Remote sensing of the surface emissivity at 9 microns over the globe. [over desert regions with IR Interferometer Spectrometer data

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.

    1976-01-01

    The infrared spectral measurements made by the Nimbus 4 infrared interferometer spectrometer (Iris) for a period of about 10 months are used to study the surface emissivity properties over the globe. It is found that the surface emissivity at 9 microns, as measured by Iris with a circular field of view of about 100-km diameter, is significantly less than unity over arid and semiarid areas. The spectral features in the 8-12-micron window observed over these lands reveal emissivity characteristics essentially due to quartz (SiO2). It is found that these emissivity features are significantly weakened by the presence of clay, clay horizons, or pedogenic horizons in the soil. Low emissivity is observed over sandy or sandy loam areas (psamments) with no clay or pedogenic horizons.

  18. The Fourier-Kelvin Stellar Interferometer (FKSI): A Progress Report and Preliminary Results from Our Laboratory Testbed

    NASA Technical Reports Server (NTRS)

    Berry, Richard; Rajagopa, J.; Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezari, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.

    2005-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the near-infrared to mid-infrared spectral region (3-8 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to JWST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We report additional studies of the imaging capabilities of the FKSI with various configurations of two to five telescopes, studies of the capabilities of FKSI assuming an increase in long wavelength response to 10 or 12 microns (depending on availability of detectors), and preliminary results from our nulling testbed.

  19. The Fourier-Kelvin Stellar Interferometer

    NASA Astrophysics Data System (ADS)

    Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezari, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.; Millan-Gabet, R.; Monnier, J. D.; Mumma, M.; Mundy, L. G.; Noecker, C.; Rajagopal, J.; Seager, S.; Traub, W. A.

    2003-10-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the mid-infrared spectral region (5- 28 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as the NASA Vision Missions SAFIR and SPECS. It will also be a high angular resolution infrared space observatory complementary to JWST. The scientific emphasis of the mission is on detection and spectroscopy of the atmospheres of Extra-solar Giant Planets (EGPs), the search for Brown Dwarfs and other low mass stellar companions, and the evolution of protostellar systems. FKSI can observe these systems from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We present the major results of a set of detailed design studies for the FKSI mission that were performed as a method of understanding major trade-offs pertinent to schedule, cost, and risk in preparation for submission of a Discovery proposal.

  20. Testing the TPF Interferometry Approach before Launch

    NASA Technical Reports Server (NTRS)

    Serabyn, Eugene; Mennesson, Bertrand

    2006-01-01

    One way to directly detect nearby extra-solar planets is via their thermal infrared emission, and with this goal in mind, both NASA and ESA are investigating cryogenic infrared interferometers. Common to both agencies' approaches to faint off-axis source detection near bright stars is the use of a rotating nulling interferometer, such as the Terrestrial Planet Finder interferometer (TPF-I), or Darwin. In this approach, the central star is nulled, while the emission from off-axis sources is transmitted and modulated by the rotation of the off-axis fringes. Because of the high contrasts involved, and the novelty of the measurement technique, it is essential to gain experience with this technique before launch. Here we describe a simple ground-based experiment that can test the essential aspects of the TPF signal measurement and image reconstruction approaches by generating a rotating interferometric baseline within the pupil of a large singleaperture telescope. This approach can mimic potential space-based interferometric configurations, and allow the extraction of signals from off-axis sources using the same algorithms proposed for the space-based missions. This approach should thus allow for testing of the applicability of proposed signal extraction algorithms for the detection of single and multiple near-neighbor companions...

  1. A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement.

    PubMed

    Smith, D T; Pratt, J R; Howard, L P

    2009-03-01

    We have developed a fiber-optic interferometer optimized for best performance in the frequency range from dc to 1 kHz, with displacement linearity of 1% over a range of +/- 25 nm, and noise-limited resolution of 2 pm. The interferometer uses a tunable infrared laser source (nominal 1550 nm wavelength) with high amplitude and wavelength stability, low spontaneous self-emission noise, high sideband suppression, and a coherence control feature that broadens the laser linewidth and dramatically lowers the low-frequency noise in the system. The amplitude stability of the source, combined with the use of specially manufactured "bend-insensitive" fiber and all-spliced fiber construction, results in a robust homodyne interferometer system, which achieves resolution of 40 fm Hz(-1/2) above 20 Hz and approaches the shot-noise-limit of 20 fm Hz(-1/2) at 1 kHz for an optical power of 10 microW, without the need for differential detection. Here we describe the design and construction of the interferometer, as well as modes of operation, and demonstrate its performance.

  2. Assimilation of IASI and AIRS Data: Information Content and Quality Control

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) and Atmospheric Infrared Sounder (AIRS) instruments have two orders of magnitude more channels that the current operational infrared sounder (High Resolution Infra-Red Sounder (HIRS)). This data volume presents a technological challenge for using the data in a data assimilation system. Data reduction will be a necessary for assimilation. It is important to understand the information content of the radiance measurements for data reduction purposes. In this talk, I will discuss issues relating to information content and quality control for assimilation of the AIRS and IASI data.

  3. The Nimbus 4 data catalog. Volume 8: Data orbits 5206-10,120, 1 May 1971 - 30 April 1972

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data from various instruments onboard the Nimbus 4 are presented, including the image dissector camera system, the temperature-humidity infrared radiometer, infrared interferometer spectrometer, and monitor of ultraviolet solar energy experiments. This data was collected from 1 May 1971 to 30 Apr. 1972. Orbital elements and daily sensor data are presented in tabular form.

  4. Understanding Climate Trends Using IR Brightness Temperature Spectra from AIRS, IASI and CrIS

    NASA Astrophysics Data System (ADS)

    Deslover, D. H.; Nikolla, E.; Knuteson, R. O.; Revercomb, H. E.; Tobin, D. C.

    2016-12-01

    NASA's Atmospheric Infrared Sounder (AIRS) provides a data record that extends from its 2002 launch to the present. The Infrared Atmospheric Sounding Interferometer (IASI) onboard Metop- (A launched in 2006, B in 2012), as well as the Joint Polar Satellite System (JPSS) Cross-track Infrared Sounder (CrIS) launched in 2011, complement this data record. Future infrared sounders with similar capabilities will augment these measurements into the near future. We have created a global data set from these infrared measurements, using the nadir-most observations for each of the aforementioned instruments. We can filter the data based upon spatial, diurnal and seasonal properties to discern trends for a given spectral channel and, therefore, a specific atmospheric layer. Subtle differences between spectral sampling among the three instruments can lead significant differences in the resultant probability distribution functions for similar spectral channels. We take advantage of the higher (0.25 cm-1) IASI spectral resolution to subsample the IASI spectra onto AIRS and CrIS spectral grids to better compare AIRS/IASI and CrIS/IASI trends in the brightness temperature anomalies. To better understand the dependance of trace gases on the measured brightness temperature spectral time-series, a companion study has utilized coincident vertical profiles of stratospheric carbon dioxide, water vapor and ozone concentration are used to infer a correlation with the CrIS brightness temperatures. The goal was to investigate the role of ozone heating and carbon dioxide cooling on the observed brightness temperature spectra. Results from that study will be presented alongside the climate trend analysis.

  5. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  6. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  7. An Interferometric Search for Bright Companions to 51 Pegasi

    NASA Technical Reports Server (NTRS)

    Boden, A. F.; van Belle, G. T.; Colavita, M. M.; Dumont, P. J.; Gubler, J.; Koresko, C. D.; Kulkarni, S. R.; Lane, B. F.; Mobley, D. W.; Shao, M.; hide

    1998-01-01

    We report on a near-infrared, long-baseline interferometric search for luminous companions to the star 51 Pegasi conducted with the Palomar Testbed Interferometer. Our data is completely consistent with a single-star hypothesis.

  8. Terrestrial Planet Finder coronagraph status and enabling technologies

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.; Lisman, Douglas; Shaklan, Stuart B.; Ho, Timothy Y.; Kissil, Andrew; Kwack, Eug-Yun; Lowman, Andrew

    2004-01-01

    The goal of the Terrestrial Planet Finder Project Mission is to find life-bearing planets around nearby stars. Two types of instruments are competing for flight in 2015: a visible coronagraph and an infrared interferometer.

  9. Atmospheric Emitted Radiance Interferometer (AERI) Handbook

    DOE Data Explorer

    Gero, Jonathan; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth's atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols.The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3-19.2 μm (520-3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3-25.0 μm (400-3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.

  10. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  11. Phase shift in atom interferometry due to spacetime curvature

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Brown, Daniel; Hogan, Jason; Kasevich, Mark

    2017-04-01

    In previous matter wave interferometers, the interferometer arm separation was small enough that gravitational tidal forces across the arms can be neglected. Gravitationally-induced phase shifts in such experiments arise from the acceleration of the interfering particles with respect to the interferometer beam splitters and mirrors. By increasing the interferometer arm separation, we enter a new regime in which the arms experience resolvably different gravitational forces. Using a single-source gravity gradiometer, we measure a phase shift associated with the tidal forces induced by a nearby test mass. This is the first observation of spacetime curvature across the spatial extent of a single quantum system. CO acknowledges funding from the Stanford Graduate Fellowship.

  12. Heterodyne interferometer with subatomic periodic nonlinearity.

    PubMed

    Wu, C M; Lawall, J; Deslattes, R D

    1999-07-01

    A new, to our knowledge, heterodyne interferometer for differential displacement measurements is presented. It is, in principle, free of periodic nonlinearity. A pair of spatially separated light beams with different frequencies is produced by two acousto-optic modulators, avoiding the main source of periodic nonlinearity in traditional heterodyne interferometers that are based on a Zeeman split laser. In addition, laser beams of the same frequency are used in the measurement and the reference arms, giving the interferometer theoretically perfect immunity from common-mode displacement. We experimentally demonstrated a residual level of periodic nonlinearity of less than 20 pm in amplitude. The remaining periodic error is attributed to unbalanced ghost reflections that drift slowly with time.

  13. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes

    NASA Astrophysics Data System (ADS)

    Specht, Paul E.; Jilek, Brook A.

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  14. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.

    PubMed

    Specht, Paul E; Jilek, Brook A

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  15. Effect of spectral sampling on the temporal coherence analysis of a broadband source in a SFG interferometer.

    PubMed

    Darré, Pascaline; Szemendera, Ludovic; Grossard, Ludovic; Delage, Laurent; Reynaud, François

    2015-10-05

    In the frame of sum frequency generation of a broadband infrared source, we aim to enlarge the converted bandwidth by using a pump frequency comb while keeping a high conversion efficiency. The nonlinear effects are simultaneously induced in the same nonlinear medium. In this paper, we investigate the spectral filtering effect on the temporal coherence behavior with a Mach-Zehnder interferometer using two pump lines. We show that joined effects of quasi-phase matching and spectral sampling lead to an original coherence behavior.

  16. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the European MetOp platform as well as a planned series of Chinese polar orbiting satellites. The detailed understanding of the land surface infrared emission is a crucial step in the effective utilization of these advanced sounder instruments for the extraction of atmospheric composition information (esp. water vapor vertical profile) over land, which is a key goal for numerical weather prediction data assimilation.

  17. Wavelength-division and spatial multiplexing using tandem interferometers for Bragg grating sensor networks

    NASA Astrophysics Data System (ADS)

    Kalli, K.; Brady, G. P.; Webb, D. J.; Jackson, D. A.; Zhang, L.; Bennion, I.

    1995-12-01

    We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 n 3 / \\radical Hz \\end-radical at 7 Hz for a wavelength of 1535 nm.

  18. Self-referenced interferometer for cylindrical surfaces.

    PubMed

    Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef

    2015-11-20

    We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.

  19. Computerized lateral-shear interferometer

    NASA Astrophysics Data System (ADS)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  20. University of Wisconsin-Madison Participation in the International Water-Vapor Project (IHOP)

    NASA Technical Reports Server (NTRS)

    Knuteson, Robert; Antonelli, Paolo; Best, Fred; Dutcher, Steve; Feltz, Wayne; Revercomb, Henry

    2003-01-01

    This is the final report for NASA grant NAG-1-02057/University of Wisconsin-Madison/Dr. Henry E Revercomb, PI. This grant supported the University of Wisconsin-Madison participation in the International Water-Vapor Project (IHOP) experiment in May-June 2002. The upwelling thermal infrared emission from the surface and atmosphere over the U. S. Southern Great Plains was obtained from the NASA DC-8 with the Scanning High-resolution Interferometer Sounder (S-HIS) instrument, Analysis of the S-HIS radiances were used to obtain atmospheric temperature profiles below the aircraft. In a complementary manner, the downwelling thermal infrared emission at the surface was obtained by the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) instrument from a mobile research vehicle and used to profile the atmospheric boundary layer at the Homestead site. This report summarizes the observations of the S-HIS and AERI instruments during IHOP including validation against in situ observations.

  1. Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy.

    PubMed

    Vakarin, Vladyslav; Ramírez, Joan Manel; Frigerio, Jacopo; Ballabio, Andrea; Le Roux, Xavier; Liu, Qiankun; Bouville, David; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2017-09-01

    This Letter explores the use of Ge-rich Si 0.2 Ge 0.8 waveguides on graded Si 1-x Ge x substrate for the demonstration of ultra-wideband photonic integrated circuits in the mid-infrared (mid-IR) wavelength range. We designed, fabricated, and characterized broadband Mach-Zehnder interferometers fully covering a range of 3 μm in the mid-IR band. The fabricated devices operate indistinctly in quasi-TE and quasi-TM polarizations, and have an extinction ratio higher than 10 dB over the entire operating wavelength range. The obtained results are in good correlation with theoretical predictions, while numerical simulations indicate that the device bandwidth can reach one octave with low additional losses. This Letter paves the way for further realization of mid-IR integrated spectrometers using low-index-contrast Si 1-x Ge x waveguides with high germanium concentration.

  2. Far Infrared Spectrometry of the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  3. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the GeoFTS design is mature and flight ready.

  4. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  5. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  6. Analysis for signal-to-noise ratio of hyper-spectral imaging FTIR interferometer

    NASA Astrophysics Data System (ADS)

    Li, Xun-niu; Zheng, Wei-jian; Lei, Zheng-gang; Wang, Hai-yang; Fu, Yan-peng

    2013-08-01

    Signal-to-noise Ratio of hyper-spectral imaging FTIR interferometer system plays a decisive role on the performance of the instrument. It is necessary to analyze them in the development process. Based on the simplified target/background model, the energy transfer model of the LWIR hyper-spectral imaging interferometer has been discussed. The noise equivalent spectral radiance (NESR) and its influencing factors of the interferometer system was analyzed, and the signal-to-noise(SNR) was calculated by using the properties of NESR and incident radiance. In a typical application environment, using standard atmospheric model of USA(1976 COESA) as a background, and set a reasonable target/background temperature difference, and take Michelson spatial modulation Fourier Transform interferometer as an example, the paper had calculated the NESR and the SNR of the interferometer system which using the commercially LWIR cooled FPA and UFPA detector. The system noise sources of the instrument were also analyzed in the paper. The results of those analyses can be used to optimize and pre-estimate the performance of the interferometer system, and analysis the applicable conditions of use different detectors. It has important guiding significance for the LWIR interferometer spectrometer design.

  7. A quantum cascade laser-based Mach-Zehnder interferometer for chemical sensing employing molecular absorption and dispersion

    NASA Astrophysics Data System (ADS)

    Hayden, Jakob; Hugger, Stefan; Fuchs, Frank; Lendl, Bernhard

    2018-02-01

    We employ a novel spectroscopic setup based on an external cavity quantum cascade laser and a Mach-Zehnder interferometer to simultaneously record spectra of absorption and dispersion of liquid samples in the mid-infrared. We describe the theory underlying the interferometric measurement and discuss its implications for the experiment. The capability of simultaneously recording a refractive index and absorption spectrum is demonstrated for a sample of acetone in cyclohexane. The recording of absorption spectra is experimentally investigated in more detail to illustrate the method's capabilities as compared to direct absorption spectroscopy. We find that absorption signals are recorded with strongly suppressed background, but with smaller absolute sensitivity. A possibility of optimizing the setup's performance by unbalancing the interferometer is presented.

  8. Study of the Imaging Capabilities of SPIRIT/SPECS Concept Interferometers

    NASA Technical Reports Server (NTRS)

    Allen, Ronald J.

    2002-01-01

    Several new space science mission concepts under development at NASA-GSFC for astronomy are intended to carry out synthetic imaging using Michelson interferometers or direct (Fizeau) imaging with sparse apertures. Examples of these mission concepts include the Stellar Imager (SI), the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Fourier-Kelvin Stellar Interferometer (FKSI). We have been developing computer-based simulators for these missions. These simulators are aimed at providing a quantitative evaluation of the imaging capabilities of the mission by modeling the performance on different realistic targets in terms of sensitivity, angular resolution, and dynamic range. Both Fizeau and Michelson modes of operation can be considered. Our work is based on adapting a computer simulator called imSIM which was initially written for the Space Interferometer Mission in order to simulate the imaging mode of new missions such as those listed. This report covers the activities we have undertaken to provide a preliminary version of a simulator for the SPIRIT mission concept.

  9. Reference Interferometer Using a Semiconductor Laser/LED Reference Source in a Cryogenic Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Martino, Anthony J.; Cornwell, Donald M.

    1998-01-01

    A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.

  10. Hunt for infrared photons from the first binary neutron star merger

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Growth Collaboration [Global Relay Of Observatories Watching Transients

    2017-10-01

    Yesterday, within two seconds of 2017 August 17 12:41:04 GMT, both LIGO interferometers and the Fermi satellite detected gravitational waves from a neutron star merger and a short contemporaneous gamma ray burst! We now have a promising optical and infrared counterpart. This may very well be a historic moment in multi-messenger astronomy, and may even prove to be of the same league as neutrinos from SN,1987A. Here, we request the Spitzer Space Telescope to engage in the hunt for infrared photons.

  11. Spatial two-photon interference in a Hong-Ou-Mandel interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Heonoh; Kwon, Osung; Kim, Wonsik

    2006-02-15

    We report the observation of the cosine modulation in the coincidence rates from a Hong-Ou-Mandel (HOM) interferometer. Spatial interference fringes are seen by minute rotations of one mirror about the vertical axis, while the beam splitter is fixed in the center position. The results show that the maximum visibility of the fringe is 0.81, and the photon pairs separated by less than 1.52 mm in the source plane are measured to be indistinguishable. It turns out that it is possible to invert the HOM dips to peaks by the rotation of the mirror.

  12. An Overview of the Mid-Infrared Spectro-Interferometer MATISSE: Science, Concept, and Current Status

    NASA Technical Reports Server (NTRS)

    Matter, A.; Lopez, B.; Antonelli, P.; Lehmitz, M.; Bettonvil, F.; Beckmann, U.; Lagarde, S.; Jaffe, W.; Petrov, R. G.; Berio, P.; hide

    2016-01-01

    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 microns, exploring angular scales as small as 3 mas (L band) 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R approx. 30 to R approx. 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.

  13. P-REx: The Piston Reconstruction Experiment for infrared interferometry

    NASA Astrophysics Data System (ADS)

    Widmann, Felix; Pott, Jörg-Uwe; Velasco, Sergio

    2018-03-01

    For sensitive infrared interferometry, it is crucial to control the differential piston evolution between the used telescopes. This is classically done by the use of a fringe tracker. In this work, we develop a new method to reconstruct the temporal piston variation from the atmosphere, by using real-time data from adaptive optics (AO) wavefront sensing: the Piston Reconstruction Experiment (P-REx). In order to understand the principle performance of the system in a realistic multilayer atmosphere, it is first extensively tested in simulations. The gained insights are then used to apply P-REx to real data, in order to demonstrate the benefit of using P-REx as an auxiliary system in a real interferometer. All tests show positive results, which encourages further research and eventually a real implementation. Especially, the tests on on-sky data showed that the atmosphere is, under decent observing conditions, sufficiently well structured and stable, in order to apply P-REx. It was possible to conveniently reconstruct the piston evolution in two-thirds of the data sets from good observing conditions (r0 ˜ 30 cm). The main conclusion is that applying the piston reconstruction in a real system would reduce the piston variation from around 10 μm down to 1-2 μm over time-scales of up to two seconds. This suggests an application for mid-infrared interferometry, for example for MATISSE at the very large telescope interferometer or the large binocular telescope interferometer. P-REx therefore provides the possibility to improve interferometric measurements without the need for more complex AO systems than already in regular use at 8-m-class telescopes.

  14. Optical spatial heterodyne interferometric Fourier transform technique (OSHIFT) and a resulting interferometer

    NASA Astrophysics Data System (ADS)

    Georges, James A., III

    2007-09-01

    This article reports on the novel patent pending Optical Spatial Heterodyne Interferometric Fourier Transform Technique (the OSHIFT technique), the resulting interferometer also referred to as OSHIFT, and its preliminary results. OSHIFT was borne out of the following requirements: wavefront sensitivity on the order of 1/100 waves, high-frequency wavefront spatial sampling, snapshot 100Hz operation, and the ability to deal with discontinuous wavefronts. The first two capabilities lend themselves to the use of traditional interferometric techniques; however, the last two prove difficult for standard techniques, e.g., phase shifting interferometry tends to take a time sequence of images and most interferometers require estimation of a center fringe across wavefront discontinuities. OSHIFT overcomes these challenges by employing a spatial heterodyning concept in the Fourier (image) plane of the optic-under-test. This concept, the mathematical theory, an autocorrelation view of operation, and the design with results of OSHIFT will be discussed. Also discussed will be future concepts such as a sensor that could interrogate an entire imaging system as well as a methodology to create innovative imaging systems that encode wavefront information onto the image. Certain techniques and systems described in this paper are the subject of a patent application currently pending in the United States Patent Office.

  15. Practical protocols for fast histopathology by Fourier transform infrared spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Keith, Frances N.; Reddy, Rohith K.; Bhargava, Rohit

    2008-02-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation.

  16. SAFARI optical system architecture and design concept

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter

    2016-07-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

  17. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    NASA Astrophysics Data System (ADS)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  18. NONLINEAR AND FIBER OPTICS: Transverse traveling pulses in bistable interferometers with competing nonlinearities

    NASA Astrophysics Data System (ADS)

    Rzhanov, Yu A.; Grigor'yants, A. V.; Balkareĭ, Yu I.; Elinson, M. I.

    1990-04-01

    A detailed qualitative description is given of the formation and propagation of leading edges of transverse traveling pulses in a bistable semiconductor interferometer with competing concentration and thermal mechanisms of nonlinear refraction. It is shown that, depending on the laser pumping rate and the heat transfer conditions, two types of traveling pulses may exist with elevated and reduced transmission. Each of these may be initiated by a local change in the input intensity of any sign. When the interferometer is pumped by a spatially inhomogeneous, (for example, Gaussian) beam, periodic spontaneous initiation of both types of traveling pulses may take place at the periphery or in the center of a beam. Traveling pulses are modeled numerically under various interferometer pumping conditions.

  19. Integrated optics interferometer for high precision displacement measurement

    NASA Astrophysics Data System (ADS)

    Persegol, Dominique; Collomb, Virginie; Minier, Vincent

    2017-11-01

    We present the design and fabrication aspects of an integrated optics interferometer used in the optical head of a compact and lightweight displacement sensor developed for spatial applications. The process for fabricating the waveguides of the optical chip is a double thermal ion exchange of silver and sodium in a silicate glass. This two step process is adapted for the fabrication of high numerical aperture buried waveguides having negligible losses for bending radius as low as 10 mm. The optical head of the sensor is composed of a reference arm, a sensing arm and an interferometer which generates a one dimensional fringe pattern allowing a multiphase detection. Four waveguides placed at the output of the interferometer deliver four ideally 90° phase shifted signals.

  20. SPECS: the kilometer-baseline far-IR interferometer in NASA's space science roadmap

    NASA Astrophysics Data System (ADS)

    Leisawitz, David T.; Abel, Tom; Allen, Ronald J.; Benford, Dominic J.; Blain, Andrew; Bombardelli, Claudio; Calzetti, Daniela; DiPirro, Michael J.; Ehrenfreund, Pascale; Evans, Neal J., II; Fischer, Jacqueline; Harwit, Martin; Hyde, Tristram T.; Kuchner, Marc J.; Leitner, Jesse A.; Lorenzini, Enrico C.; Mather, John C.; Menten, Karl M.; Moseley, Samuel H., Jr.; Mundy, Lee G.; Nakagawa, Takao; Neufeld, David A.; Pearson, John C.; Rinehart, Stephen A.; Roman, Juan; Satyapal, Shobita; Silverberg, Robert F.; Stahl, H. Philip; Swain, Mark R.; Swanson, Theodore D.; Traub, Wesley A.; Wright, Edward L.; Yorke, Harold W.

    2004-10-01

    Ultimately, after the Single Aperture Far-IR (SAFIR) telescope, astrophysicists will need a far-IR observatory that provides angular resolution comparable to that of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and theoretical models for galaxy, star, and planet formation and evolution can be subjected to important observational tests. This paper updates information provided in a 2000 SPIE paper on the scientific motivation and design concepts for interferometric missions SPIRIT (the Space Infrared Interferometric Telescope) and SPECS (the Submillimeter Probe of the Evolution of Cosmic Structure). SPECS is a kilometer baseline far-IR/submillimeter imaging and spectral interferometer that depends on formation flying, and SPIRIT is a highly-capable pathfinder interferometer on a boom with a maximum baseline in the 30 - 50 m range. We describe recent community planning activities, remind readers of the scientific rationale for space-based far-infrared imaging interferometry, present updated design concepts for the SPIRIT and SPECS missions, and describe the main issues currently under study. The engineering and technology requirements for SPIRIT and SPECS, additional design details, recent technology developments, and technology roadmaps are given in a companion paper in the Proceedings of the conference on New Frontiers in Stellar Interferometry.

  1. Manufacture, alignment and measurement for a reflective triplet optics in imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Yuan, Liyin; He, Zhiping; Wang, Yueming; Lv, Gang

    2016-09-01

    Reflective triplet (RT) optics is an optical form with decenters and tilts of all the three mirrors. It can be used in spectrometer as collimator and reimager to get fine optical and spectral performances. To alleviate thermal and assembly stress deformation, opto-mechanical integrated design suggests that as with all the machine elements and the mainframe, the mirrors substrates are aluminum. All the mirrors are manufactured by single-point diamond turning technology and measured by interferometer or profilometer. Because of retro-reflection by grating or prism and reimaging away from the object field, solo three mirrors optical path of RT has some aberrations. So its alignment and measurement needs an aberration corrected measuring optical system with auxiliary plane and sphere mirrors and in which the RT optics used in four pass. Manufacture, alignment and measurement for a RT optics used in long wave infrared grating spectrometer is discussed here. We realized the manufacture, alignment and test for the RT optics of a longwave infrared spectromter by CMM and interferometer. Wavefront error test by interferometer and surface profiles measured by profilometer indicate that performances of the manufactured mirrors exceed the requirements. Interferogram of the assembled RT optics shows that wavefront error rms is less than 0.0493λ@10.6μm vs design result 0.0207λ.

  2. Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission

    NASA Astrophysics Data System (ADS)

    Kirchschlager, Florian; Wolf, Sebastian; Brunngräber, Robert; Matter, Alexis; Krivov, Alexander V.; Labdon, Aaron

    2018-01-01

    Hot exozodiacal dust emission was detected in recent surveys around two dozen main-sequence stars at distances of less than 1 au using the H- and K-band interferometry. Due to the high contrast as well as the small angular distance between the circumstellar dust and the star, direct observation of this dust component is challenging. An alternative way to explore the hot exozodiacal dust is provided by mid-infrared interferometry. We analyse the L, M and N bands interferometric signature of this emission in order to find stronger constraints for the properties and the origin of the hot exozodiacal dust. Considering the parameters of nine debris disc systems derived previously, we model the discs in each of these bands. We find that the M band possesses the best conditions to detect hot dust emission, closely followed by L and N bands. The hot dust in three systems - HD 22484 (10 Tau), HD 102647 (β Leo) and HD 177724 (ζ Aql) - shows a strong signal in the visibility functions, which may even allow one to constrain the dust location. In particular, observations in the mid-infrared could help to determine whether the dust piles up at the sublimation radius or is located at radii up to 1 au. In addition, we explore observations of the hot exozodiacal dust with the upcoming mid-infrared interferometer Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) at the Very Large Telescope Interferometer.

  3. Atmospheric ammonia and particulate inorganic nitrogen over the United States

    EPA Science Inventory

    We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Ch...

  4. Imaging Stellar Surfaces with an Agile 12-Telescopes Visible Interferometer for the VLTI

    NASA Astrophysics Data System (ADS)

    Woillez, Julien

    2018-04-01

    Imaging stellar surfaces with an optical interferometer requires a large number of telescopes and the extensive use of the bootstrapping technique to reach the high spatial frequencies where the surface details are revealed. An idea would use all 6 dual-star delay lines of VLTI to deploy an agile 12-telescopes single-mode visible interferometer on the Paranal mountain. The concept relies on single-mode fiber technologies that have been demonstrated by the `OHANA and `OHANA IKI projects. We present the expected performance of this concept and explore its potential for the study of stellar surfaces.

  5. Requirements Formulation and Dynamic Jitter Analysis for Fourier-Kelvin Stellar Interferometer

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Hyde, Tristram; Blaurock, Carl; Bolognese, Jeff; Howard, Joseph; Danchi, William

    2004-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) has been proposed to detect and characterize extra solar giant planets. The baseline configuration for FKSI is a two- aperture, structurally connected nulling interferometer, capable of providing null depth less than lo4 in the infrared. The objective of this paper is to summarize the process for setting the top level requirements and the jitter analysis performed on FKSI to date. The first part of the paper discusses the derivation of dynamic stability requirements, necessary for meeting the FKSI nulling demands. An integrated model including structures, optics, and control systems has been developed to support dynamic jitter analysis and requirements verification. The second part of the paper describes how the integrated model is used to investigate the effects of reaction wheel disturbances on pointing and optical path difference stabilities.

  6. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  7. Imaging and Modeling Nearby Stellar Systems through Infrared Interferometers

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Monnier, J. D.; Ten Brummelaar, T.; Sturmann, L.; Millan-Gabet, R.; Baron, F.; Kraus, S.; Zhao, M.; CHARA

    2014-01-01

    Long-baseline infrared interferometers with sub-milliarcsecond angular resolution can now resolve photospheric features and the circumstellar environments of nearby massive stars. Closure phase measurements have made model-independent imaging possible. During the thesis, I have expanded Michigan Infrared Combiner (MIRC) from a 4-beam combiner to a 6-beam combiner to improve the (u,v) coverage, and installed Photometric Channels system to reduce the RMS of data by a factor of 3. I am also in charge of the Wavefront Sensor of the CHARA Adaptive Optics project to increase the sensitivity of the telescope array to enlarge the observable Young Stellar Objects (YSOs). My scientific research has focused on using mainly MIRC at CHARA to model and image rapidly rotating stars. The results are crucial for testing the next generation of stellar models that incorporate evolution of internal angular momentum. Observations of Be stars with MIRC have resolved the innermost parts of the disks, allowing us to study the evolution of the disks and star-disk interactions. I have also adopted a semi-analytical disk model to constrain Mid-InfraRed (MIR) disks of YSOs using interferometric and spectroscopic data.

  8. Vertical Scales of Turbulence at the Mount Wilson Observatory

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Lowe, Stephen T.; Bester, Manfred; Danchi, William C.; Townes, Charles H.

    1995-01-01

    The vertical scales of turbulence at the Mount Wilson Observatory are inferred from data from the University of California at Berkeley Infrared Spatial Interferometer (ISI), by modeling path length fluctuations observed in the interferometric paths to celestial objects and those in instrumental ground-based paths. The correlations between the stellar and ground-based path length fluctuations and the temporal statistics of those fluctuations are modeled on various timescales to constrain the vertical scales. A Kolmogorov-Taylor turbulence model with a finite outer scale was used to simulate ISI data. The simulation also included the white instrumental noise of the interferometer, aperture-filtering effects, and the data analysis algorithms. The simulations suggest that the path delay fluctuations observed in the 1992-1993 ISI data are largely consistent with being generated by refractivity fluctuations at two characteristic vertical scales: one extending to a height of 45 m above the ground, with a wind speed of about 1 m/ s, and another at a much higher altitude, with a wind speed of about 10 m/ s. The height of the lower layer is of the order of the dimensions of trees and other structures near the interferometer, which suggests that these objects, including elements of the interferometer, may play a role in generating the lower layer of turbulence. The modeling indicates that the high- attitude component contributes primarily to short-period (less than 10 s) fluctuations, while the lower component dominates the long-period (up to a few minutes) fluctuations. The lower component turbulent height, along with outer scales of the order of 10 m, suggest that the baseline dependence of long-term interferometric, atmospheric fluctuations should weaken for baselines greater than a few tens of meters. Simulations further show that there is the potential for improving the seeing or astrometric accuracy by about 30%-50% on average, if the path length fluctuations in the lower component are directly calibrated. Statistical and systematic effects induce an error of about 15 m in the estimate of the lower component turbulent altitude.

  9. Improving demodulation accuracy of low-coherence interferometer against spatial-frequency nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Wu, Zhenhai

    2013-12-01

    We present an effective method to compensate the spatial-frequency nonlinearity for polarized low-coherence interferometer with location-dependent dispersion element. Through the use of location-dependent dispersive characteristics, the method establishes the exact relationship between wave number and discrete Fourier transform (DFT) serial number. The jump errors in traditional absolute phase algorithm are also avoided with nonlinearity compensation. We carried out experiments with an optical fiber Fabry-Perot (F-P) pressure sensing system to verify the effectiveness. The demodulated error is less than 0.139kPa in the range of 170kPa when using our nonlinearity compensation process in the demodulation.

  10. An atom interferometer inside a hollow-core photonic crystal fiber

    PubMed Central

    Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu

    2018-01-01

    Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180

  11. Development of a feed monitor system for a helium-cooled Michelson intererometer for the Spacelab

    NASA Technical Reports Server (NTRS)

    Essenwanger, P.

    1980-01-01

    A Michelson interferometer feed monitor system developed for Spacelab is described. The device is helium cooled and is to be used to measure far infrared radiation sources in space. Performance data and development sequence are presented.

  12. Fourier emission infrared microspectrophotometer for surface analysis. I - Application to lubrication problems

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; King, V. W.

    1979-01-01

    A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.

  13. High resolution spectroscopy in the microwave and far infrared

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  14. Uncooled long-wave infrared hyperspectral imaging

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G. (Inventor)

    2006-01-01

    A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.

  15. An electronically tunable, first-order Fabry-Perot infrared filter

    NASA Astrophysics Data System (ADS)

    Knudtson, J. T.; Levy, D. S.; Herr, K. C.

    1995-04-01

    A tunable infrared filter capable of scanning from 8.2 to 12.8 micrometers has been designed, constructed and tested. It is a first order Fabry Perot interferometer with piezoelectrically driven cavity spacing. Multilayer dielectric coatings for the partially transmitting mirrors were designed to minimize the wavelength dependent phase change produced by reflection. The transmission bandwidth ranged from 2.8 to 4.0% across the tuning range. Continuous scanning at 20 Hz rates was demonstrated.

  16. Observations of the orbital debris complex by the Midcourse Space Experiment (MSX) satellite

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Anz-Meador, Phillip; Talent, Dave

    1997-01-01

    The midcourse space experiment (MSX) provides the opportunity to observe debris at multiple, simultaneous wavelengths, or in conjunction with other sensors and prior data sets. The instruments onboard MSX include an infrared telescope, an infrared interferometer, a visible telescope, an ultraviolet telescope and a spectroscopic imager. The spacecraft carries calibration spheres for instrument calibration and atmospheric drag studies. The experimental program, the implementation aspects, the data reduction techniques and the preliminary results are described.

  17. Design of an Fiber-Coupled Laser Heterodyne Interferometer for the FLARE

    NASA Astrophysics Data System (ADS)

    Frank, Samuel; Yoo, Jongsoo; Ji, Hantao; Jara-Almonte, Jon

    2016-10-01

    The FLARE (Facility for Laboratory Reconnection Experiments), which is currently under construction at PPPL, requires a complete set of laboratory plasma diagnostics. The Langmuir probes that will be used in the device to gather local density data require a reliable interferometer system to serve as baseline for density measurement calibration. A fully fiber-coupled infrared laser heterodyne interferometer has been designed in order to serve as the primary line-integrated electron density diagnostic. Thanks to advances in the communications industry many fiber optic devices and phase detection methods have advanced significantly becoming increasingly reliable and inexpensive. Fully fiber coupling a plasma interferometer greatly simplifies alignment procedures needed since the only free space laser path needing alignment is through the plasma itself. Fiber-coupling also provides significant resistance to vibrational noise, a common problem in plasma interferometry systems. This device also uses a greatly simplified phase detection scheme in which chips, originally developed for the communications industry, capable of directly detecting the phase shift of a signal with high time resolution. The design and initial performance of the system will be discussed.

  18. Measurement of infrared optical constants with visible photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry; Krivitsky, Leonid

    2018-04-01

    We demonstrate a new scheme for infrared spectroscopy with visible light sources and detectors. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and infrared photons are split into two paths and the infrared photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and infrared. The transmission coefficient and the refractive index of the sample in the infrared range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient infrared detectors and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range.

  19. Balloon-borne and aircraft infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.; Coffey, M. T.; Mankin, W. G.

    1984-01-01

    Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the nu9 band at 12.2 microns, which have been identified in high-resolution balloon-borne and aircraft solar absorption spectra. The balloon-borne spectral data were recorded at sunset with the 0.02/cm resolution University of Denver interferometer system, from a float altitude of 33.5 km near Alamogordo, New Mexico, on March 23, 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06/cm resolution interferometer aboard a jet aircraft at 12 km altitude, near 35 deg N, 96 deg W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the column value obtained from the aircraft data.

  20. Tunable MOEMS Fabry-Perot interferometer for miniaturized spectral sensing in near-infrared

    NASA Astrophysics Data System (ADS)

    Rissanen, A.; Mannila, R.; Tuohiniemi, M.; Akujärvi, A.; Antila, J.

    2014-03-01

    This paper presents a novel MOEMS Fabry-Perot interferometer (FPI) process platform for the range of 800 - 1050 nm. Simulation results including design and optimization of device properties in terms of transmission peak width, tuning range and electrical properties are discussed. Process flow for the device fabrication is presented, with overall process integration and backend dicing steps resulting in successful fabrication yield. The mirrors of the FPI consist of LPCVD (low-pressure chemical vapor) deposited polySi-SiN λ/4-thin film Bragg reflectors, with the air gap formed by sacrificial SiO2 etching in HF vapor. Silicon substrate below the optical aperture is removed by inductively coupled plasma (ICP) etching to ensure transmission in the visible - near infra-red (NIR), which is below silicon transmission range. The characterized optical properties of the chips are compared to the simulated values. Achieved optical aperture diameter size enables utilization of the chips in both imaging as well as single-point spectral sensors.

  1. Coordinate interferometric system for measuring the position of a sample with infrared telecom laser diode

    NASA Astrophysics Data System (ADS)

    Holá, Miroslava; Lazar, Josef; Čížek, Martin; Hucl, Václav; Řeřucha, Šimon; Číp, Ondřej

    2016-11-01

    We report on a design of an interferometric position measuring system for control of a sample stage in an e-beam writer with reproducibility of the position on nanometer level and resolution below nanometer. We introduced differential configuration of the interferometer where the position is measured with respect to a central reference point to eliminate deformations caused by thermal and pressure effects on the vacuum chamber. The reference is here the electron gun of the writer. The interferometer is designed to operate at infrared, telecommunication wavelength due to the risk of interference of stray light with sensitive photodetectors in the chamber. The laser source is here a narrow-linewidth DFB laser diode with electronics of our own design offering precision and stability of temperature and current, low-noise, protection from rf interference, and high-frequency modulation. Detection of the interferometric signal relies on a novel derivative technique utilizing hf frequency modulation and phase-sensitive detection.

  2. Information content in Iris spectra. [Infrared Interferometer Spectrometer of Nimbus 4 satellite

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1975-01-01

    Spectra from the satellite instrument Iris (infrared interferometer spectrometer) were examined to find the number of independent variables needed to describe the broad-band high-resolution spectral data. The radiated power in the atmospheric window from 771 to 981 per cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis, the residual variability (observed spectrum minus best-fit spectrum) in an ensemble of observations was partitioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when it was inserted in the spectral-fitting functions, was adequate to describe most spectra to within the noise level of Iris. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel, broad field of view) scanner (window channel, small field of view) as an efficient observing instrument.

  3. Second SNPP Cal/Val Campaign: Environmental Data Retrieval Analysis

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Tian, Jialin; Smith, William L.; Kizer, Susan H.; Goldberg, Mitch D.

    2016-01-01

    Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (Soumi NPP) satellite Environmental Data Records (EDRs) are retrieved from calibrated ultraspectral radiance or Sensor Data Records (SDRs). Understanding the accuracy of retrieved EDRs is critical. The second Suomi NPP Calibration/Validation field campaign was conducted during March 2015 with flights over Greenland. The NASA high-altitude ER-2 aircraft carrying ultraspectral interferometer sounders such as the National Airborne Sounder Testbed-Interferometer (NAST-I) flew under the Suomi NPP satellite that carries the Crosstrack Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). Herein we inter-compare the EDRs produced from different retrieval algorithms employed on these satellite and aircraft campaign data. The available radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to assess atmospheric temperature and moisture retrievals from the aircraft and satellite platforms. Preliminary results of this experiment under a winter, Arctic environment are presented.

  4. Migrating the Mach-Zehnder chemical and bio-sensor to the mid-infrared region

    NASA Astrophysics Data System (ADS)

    Leidner, L.; Ewald, M.; Sieger, M.; Mizaikoff, B.; Gauglitz, G.

    2013-05-01

    The properties of integrated optical phase-modulated Mach-Zehnder interferometers (IO-MZI) are used to set up a new generation of chemical and biochemical sensors working in the mid-infrared. First applications of the MZI principle were introduced in the beginning 1990s. They range from a gas sensor to monitor organic solvent concentrations1 to setting up an immunoassay for the detection of the herbicide simazine2. Most if not all sensors of MZI type operate at wavelengths of the visible or near infrared spectrum. There are several reasons to change this strategy and move into the mid-infrared spectral range (MIR): higher manufacturing tolerances, increased evanescent field penetration depth, signal amplification by surface enhanced infrared absorption effect (SEIRA), species identification by MIR fingerprints. The basis of the planned MIR-MZI is a GaAs waveguide pattern epitaxially grown on a substrate3. As a first step towards nanostructuring the waveguide surface, chemical deposition of Au nanoparticles on GaAs transducers was established. For the use of MIR-MZI sensors in bioanalytical assay development, chemical immobilization of molecular recognition elements on GaAs transducers was carried out. The modified surfaces were characterized by atomic force microscopy (AFM), dark field microscopy, contact angle measurements and ellipsometric data as well as by a modified version of Reflectometric Interference Spectroscopy (RIfS)4. It was possible to monitor both the immobilization of gold nanoparticles and time-resolved specific binding using a model antibody antigen assay. After successful setup of relevant assays with RIfS, e.g. the detection of bacteria or endocrine disruptors, the assays are designed to be transferred onto the mid-infrared Mach-Zehnder interferometer.

  5. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    NASA Astrophysics Data System (ADS)

    Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.

    1991-03-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.

  6. Adaptive DFT-based Interferometer Fringe Tracking

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2004-01-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.

  7. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, M.; Campbell, D.R.; Johnson, C.W.

    1991-01-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less

  8. Heterodyne interferometer with angstrom-level periodic nonlinearity

    DOEpatents

    Schmitz, Tony L.; Beckwith, John F.

    2005-01-25

    Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acousto-optic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.

  9. Numerical simulation and experimental verification of extended source interferometer

    NASA Astrophysics Data System (ADS)

    Hou, Yinlong; Li, Lin; Wang, Shanshan; Wang, Xiao; Zang, Haijun; Zhu, Qiudong

    2013-12-01

    Extended source interferometer, compared with the classical point source interferometer, can suppress coherent noise of environment and system, decrease dust scattering effects and reduce high-frequency error of reference surface. Numerical simulation and experimental verification of extended source interferometer are discussed in this paper. In order to provide guidance for the experiment, the modeling of the extended source interferometer is realized by using optical design software Zemax. Matlab codes are programmed to rectify the field parameters of the optical system automatically and get a series of interferometric data conveniently. The communication technique of DDE (Dynamic Data Exchange) was used to connect Zemax and Matlab. Then the visibility of interference fringes can be calculated through adding the collected interferometric data. Combined with the simulation, the experimental platform of the extended source interferometer was established, which consists of an extended source, interference cavity and image collection system. The decrease of high-frequency error of reference surface and coherent noise of the environment is verified. The relation between the spatial coherence and the size, shape, intensity distribution of the extended source is also verified through the analysis of the visibility of interference fringes. The simulation result is in line with the result given by real extended source interferometer. Simulation result shows that the model can simulate the actual optical interference of the extended source interferometer quite well. Therefore, the simulation platform can be used to guide the experiment of interferometer which is based on various extended sources.

  10. Image Reconstruction from Data Collected with an Imaging Interferometer

    NASA Astrophysics Data System (ADS)

    DeSantis, Z. J.; Thurman, S. T.; Hix, T. T.; Ogden, C. E.

    The intensity distribution of an incoherent source and the spatial coherence function at some distance away are related by a Fourier transform, via the Van Cittert-Zernike theorem. Imaging interferometers measure the spatial coherence of light propagated from the incoherently illuminated object by combining light from spatially separated points to measure interference fringes. The contrast and phase of the fringe are the amplitude and phase of a Fourier component of the source’s intensity distribution. The Fiber-Coupled Interferometer (FCI) testbed is a visible light, lab-based imaging interferometer designed to test aspects of an envisioned ground-based interferometer for imaging geosynchronous satellites. The front half of the FCI testbed consists of the scene projection optics, which includes an incoherently backlit scene, located at the focus of a 1 m aperture f/100 telescope. The projected light was collected by the back half of the FCI testbed. The collection optics consisted of three 11 mm aperture fiber-coupled telescopes. Light in the fibers was combined pairwise and dispersed onto a sensor to measure the interference fringe as a function of wavelength, which produces a radial spoke of measurements in the Fourier domain. The visibility function was sampled throughout the Fourier domain by recording fringe data at many different scene rotations and collection telescope separations. Our image reconstruction algorithm successfully produced images for the three scenes we tested: asymmetric pair of pinholes, U.S. Air Force resolution bar target, and satellite scene. The bar target reconstruction shows detail and resolution near the predicted resolution limit. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting the official views or policies of the Department of Defense or the U.S. Government.

  11. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Bochen; Ding, Xiaoli; Werner, Charles; Tan, Kai; Zhang, Bin; Jiang, Mi; Zhao, Jingwen; Xu, Youlin

    2018-04-01

    Structural health monitoring of long-span bridges is a critical process in ensuring the operational safety of the structures. In this paper, we present experimental results of monitoring the displacements of two long-span bridges in Hong Kong Ting Kau Bridge (TKB) and Tsing Ma Bridge (TMB) with a terrestrial microwave radar interferometer named the GAMMA Portable Radar Interferometer (GPRI). A technique for fusing the measurements from two receiving antennas of the radar instrument is proposed. In addition, a two-step phase unwrapping approach is also tested. The results reveal the bridge dynamic responses under different loading conditions, including winds, vehicle traffic, and passing trains. The results also show that the terrestrial microwave radar interferometer can be used to monitor the dynamics of long-span bridges with unprecedented spatial and temporal resolutions.

  12. Science with MATISSE

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Lopez, Bruno; Augereau, Jean-Charles; Delbo, Marco; Dominik, Carsten; Henning, Thomas; Hofmann, Karl-Heinz; Hogerheijde, Michiel; Hron, Josef; Jaffe, Walter; Lanz, Thierry; Meisenheimer, Klaus; Millour, Florentin; Pantin, Eric; Petrov, Roman; Schertl, Dieter; van Boekel, Roy; Weigelt, Gerd; Chiavassa, Andrea; Juhasz, Attila; Matter, Alexis; Meilland, Anthony; Nardetto, Nicolas; Paladini, Claudia

    2016-07-01

    We present an overview of the scientific potential of MATISSE, the Multi Aperture mid-Infrared SpectroScopic Experiment for the Very Large Telescope Interferometer. For this purpose we outline selected case studies from various areas, such as star and planet formation, active galactic nuclei, evolved stars, extrasolar planets, and solar system minor bodies and discuss strategies for the planning and analysis of future MATISSE observations. Moreover, the importance of MATISSE observations in the context of complementary high-angular resolution observations at near-infrared and submillimeter/millimeter wavelengths is highlighted.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebreton, J.; Beichman, C.; Millan-Gabet, R.

    Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star η Crv is especially striking, as it shows strong mid- and far-infrared excesses despite an age of ∼1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectrophotometric data, as well as resolved Herschel images, to determine the dust spatial distribution in the inner exozodi and in the outermore » belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the ∼400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets.« less

  14. Correlated tuning of the speckle pattern in an interferometer based on a multimode fiber-optic waveguide

    NASA Astrophysics Data System (ADS)

    Bykovskii, Iu. A.; Kul'Chin, Iu. N.; Obukh, V. F.; Smirnov, V. L.

    1990-08-01

    The correlated tuning of the speckle pattern in the radiation field of a single-fiber multimode interferometer is investigated experimentally and analytically in the presence of external action. It is found that correlated changes in the speckle pattern are observed in both the near and the far emission fields of the waveguide. An expression is obtained which provides a way to determine the maximum size of the speckle correlation region. The use of spatial filtering for isolating the effect of correlated speckle pattern tuning is suggested. It is shown that the use of a spatial filter makes it possible to increase the efficiency of fiber-optic transducers.

  15. Revealing the Sub-Barrier Phase using a Spatiotemporal Interferometer with Orthogonal Two-Color Laser Fields of Comparable Intensity

    NASA Astrophysics Data System (ADS)

    Han, Meng; Ge, Peipei; Shao, Yun; Liu, Ming-Ming; Deng, Yongkai; Wu, Chengyin; Gong, Qihuang; Liu, Yunquan

    2017-08-01

    We measure photoelectron momentum distributions of Ar atoms in orthogonally polarized two-color laser fields with comparable intensities. The synthesized laser field is used to manipulate the oscillating tunneling barrier and the subsequent motion of electrons onto two spatial dimensions. The subcycle structures associated with the temporal double-slit interference are spatially separated and enhanced. We use such a spatiotemporal interferometer to reveal sub-barrier phase of strong-field tunneling ionization. This study shows that the tunneling process transfers the initial phase onto momentum distribution. Our work has the implication that the sub-barrier phase plays an indispensable role in photoelectron interference processes.

  16. Method for extracting long-equivalent wavelength interferometric information

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor)

    1991-01-01

    A process for extracting long-equivalent wavelength interferometric information from a two-wavelength polychromatic or achromatic interferometer. The process comprises the steps of simultaneously recording a non-linear sum of two different frequency visible light interferograms on a high resolution film and then placing the developed film in an optical train for Fourier transformation, low pass spatial filtering and inverse transformation of the film image to produce low spatial frequency fringes corresponding to a long-equivalent wavelength interferogram. The recorded non-linear sum irradiance derived from the two-wavelength interferometer is obtained by controlling the exposure so that the average interferogram irradiance is set at either the noise level threshold or the saturation level threshold of the film.

  17. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  18. IOTA: recent science and technology

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter; Berger, J.-P.; Carleton, N. P.; Hagenauer, P.; Kern, P. Y.; Labeye, P. R.; Lacasse, M. G.; Malbet, F.; Millan-Gabet, R.; Monnier, J. D.; Pearlman, M. R.; Pedretti, E.; Rousselet-Perraut, K.; Ragland, S. D.; Schuller, P. A.; Traub, W. A.; Wallace, G.

    2006-06-01

    We present a brief review of recent scientific and technical advances at the Infrared Optical Telescope Array (IOTA). IOTA is a long-baseline interferometer located atop Mount Hopkins, Arizona. Recent work has emphasized the use of the three-telescope interferometer completed in 2002. We report on results obtained on a range of scientific targets, including AGB stars, Herbig AeBe Stars, binary stars, and the recent outburst of the recurrent nova RS Oph. We report the completion of a new spectrometer which allows visibility measurements at several high spectral resolution channels simultaneously. Finally, it is our sad duty to report that IOTA will be closed this year.

  19. A starting point of an integrated optics concept for a space-based interferometer

    NASA Astrophysics Data System (ADS)

    Labadie, Lucas; Kern, Pierre; Schanen, Isabelle

    2017-11-01

    This article deals with instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency. The necessity to have a reliable and performant system for beam recombination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferomety in the near infrared. However, since Darwin will operate in the mid infrared, this requires extending the integrated optics concept in this spectral range. This paper presents the guiding lines of the characterization work that should validate a new integrated optics concept for the mid infrared. We present also one example of characterization experiment we are working on.

  20. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibrationmore » show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.« less

  1. Basis-neutral Hilbert-space analyzers

    PubMed Central

    Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.

    2017-01-01

    Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331

  2. Measuring ocean coherence time with dual-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Carande, Richard E.

    1992-01-01

    Using the Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) interferometer, measurements of the ocean coherence time at L and C band can be made at high spatial resolution. Fundamental to this measurement is the ability to image the ocean interferometrically at two different time-lags, or baselines. By modifying the operating procedure of the existing two antenna interferometer, a technique was developed make these measurements. L band coherence times are measured and presented.

  3. Characterization and initial field test of a long wave thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Gabrieli, A.; Wright, R.; Porter, J. N.; Lucey, P. G.; Crites, S.; Garbeil, H.; Pilger, E. J.; Wood, M.

    2015-12-01

    The ability to quantify volcanic SO2 and image the spatial distribution in plumes either by day or by night would be beneficial to volcanologists. In this project, a newly developed remote sensing long-wave thermal infrared imaging hyperspectral sensor, was tested. The system employs a Sagnac interferometer and an uncooled microbolometer in rapid scanning configuration. This instrument is able to collect hyperspectral images of the scene between 8 and 14 and for each pixel a spectrum containing 50 samples can be retrieved. Images are spectrally and radiometrically calibrated using an IR source with a narrow band filter and two black bodies. The sensitivity of the system was studied by using a gas cell containing various known concentrations of SO2, which are representative of those found in volcanic plumes. Measured spectra were compared with theoretical spectra obtained from MODTRAN5 with the same viewing geometry and spectral resolution as the sensor. The MODTRAN5 calculations were carried out using a radiative transfer algorithm which accounts for the transmission and emission both inside and outside of the gas cell. These preliminary results and field measurements at Kīlauea volcano, Hawai'i will be discussed demonstrating the performance of the system and the ability of retrieving SO2 plume concentrations.

  4. Nulling Data Reduction and On-Sky Performance of the Large Binocular Telescope Interferometer

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P. M.; Mennesson, B.; Hoffman, W. F.; Millan-Gabet, R.; Skemer, A. J.; Bailey, V.; Danchi, W. C.; Downy, E. C.; Durney, O.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5-13 micrometers). In this paper, we focus on the mid-infrared (8-13 micrometers) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star Beta Leo. This is equivalent to an exozodiacal disk density of 15-30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems.

  5. Air-Lubricated Lead Screw

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1983-01-01

    Air lubricated lead screw and nut carefully machined to have closely matched closely fitting threads. Compressed air injected into two plenums encircle nut and flow through orifices to lubricate mating threads. Originally developed to position precisely interferometer retroreflector for airborne measurement of solar infrared radiation, device now has positioning accuracy of 0.25 micron.

  6. The Visual Orbit and Evolutionary State of 12 Bootes

    NASA Technical Reports Server (NTRS)

    Boden, A.; Creech-Eakman, M.; Queloz, D.

    1999-01-01

    Herein we report the determination of the 12 Boo visual orbit from near-infrared, long-baseline interferometric measurements taken with the Palomar Testbed Interferometer (PTI). We further add photometric and spectroscopic measurements in an attempt to understand the fundamental stellar parameters and evolution of the 12 Boo components.

  7. 432- μm laser's beam-waist measurement for the polarimeter/interferometer on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Z. X.; Liu, H. Q.; Jie, Y. X.; Wu, M. Q.; Lan, T.; Zhu, X.; Zou, Z. Y.; Yang, Y.; Wei, X. C.; Zeng, L.; Li, G. S.; Gao, X.

    2014-10-01

    A far-infrared (FIR) polarimeter/interferometer (PI) system is under development for measurements of the current-density and the electron-density profiles in the EAST tokamak. The system will utilize three identical 432- μm CHCOOH lasers pumped by a CO2 laser. Measurements of the laser beam's waist size and position are basic works. This paper will introduce three methods with a beam profiler and several focusing optical elements. The beam profiler can be used to show the spatial energy distribution of the laser beam. The active area of the profiler is 12.4 × 12.4 mm2. Some focusing optical elements are needed to focus the beam in order for the beam profiler to receive the entire laser beam. Two principles and three methods are used in the measurement. The first and the third methods are based on the same principle, and the second method adopts an other principle. Due to the fast and convenient measurement, although the first method is a special form of the third and it can only give the size of beam waist, it is essential to the development of the experiment and it can provide guidance for the choices of the sizes of the optical elements in the next step. A concave mirror, a high-density polyethylene (HDPE) lens and a polymethylpentene (TPX) lens are each used in the measurement process. The results of these methods are close enough for the design of PI system's optical path.

  8. Implementation of Time-Resolved Step-Scan Fourier Transform Infrared (FT-IR) Spectroscopy Using a kHz Repetition Rate Pump Laser

    PubMed Central

    MAGANA, DONNY; PARUL, DZMITRY; DYER, R. BRIAN; SHREVE, ANDREW P.

    2011-01-01

    Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)3Cl2 in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers. PMID:21513597

  9. Experimental Constraints of the Exotic Shearing of Space-Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Jonathan William

    2016-08-01

    The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exoticmore » coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.« less

  10. Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods.

    PubMed

    Gallego, Sergi; Márquez, Andrés; Méndez, David; Ortuño, Manuel; Neipp, Cristian; Fernández, Elena; Pascual, Inmaculada; Beléndez, Augusto

    2008-05-10

    One of the problems associated with photopolymers as optical recording media is the thickness variation during the recording process. Different values of shrinkages or swelling are reported in the literature for photopolymers. Furthermore, these variations depend on the spatial frequencies of the gratings stored in the materials. Thickness variations can be measured using different methods: studying the deviation from the Bragg's angle for nonslanted gratings, using MicroXAM S/N 8038 interferometer, or by the thermomechanical analysis experiments. In a previous paper, we began the characterization of the properties of a polyvinyl alcohol/acrylamide based photopolymer at the lowest end of recorded spatial frequencies. In this work, we continue analyzing the thickness variations of these materials using a reflection interferometer. With this technique we are able to obtain the variations of the layers refractive index and, therefore, a direct estimation of the polymer refractive index.

  11. Advanced Gouy phase high harmonics interferometer

    NASA Astrophysics Data System (ADS)

    Mustary, M. H.; Laban, D. E.; Wood, J. B. O.; Palmer, A. J.; Holdsworth, J.; Litvinyuk, I. V.; Sang, R. T.

    2018-05-01

    We describe an extreme ultraviolet (XUV) interferometric technique that can resolve ∼100 zeptoseconds (10‑21 s) delay between high harmonic emissions from two successive sources separated spatially along the laser propagation in a single Gaussian beam focus. Several improvements on our earlier work have been implemented in the advanced interferometer. In this paper, we report on the design, characterization and optimization of the advanced Gouy phase interferometer. Temporal coherence for both atomic argon and molecular hydrogen gases has been observed for several harmonic orders. It has been shown that phase shift of XUV pulses mainly originates from the emission time delay due to the Gouy phase in the laser focus and the observed interference is independent of the generating medium. This interferometer can be a useful tool for measuring the relative phase shift between any two gas species and for studying ultrafast dynamics of their electronic and nuclear motion.

  12. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.

  13. In-line interferometer for broadband near-field scanning optical spectroscopy.

    PubMed

    Brauer, Jens; Zhan, Jinxin; Chimeh, Abbas; Korte, Anke; Lienau, Christoph; Gross, Petra

    2017-06-26

    We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.

  14. A Study of Imaging Interferometer Simulators

    NASA Technical Reports Server (NTRS)

    Allen, Ronald J.

    2002-01-01

    Several new space science mission concepts under development at NASA-GSFC for astronomy are intended to carry out synthetic imaging using Michelson interferometers or direct (Fizeau) imaging with sparse apertures. Examples of these mission concepts include the Stellar Imager (SI), the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Fourier-Kelvin Stellar Interferometer (FKSI). We have been developing computer-based simulators for these missions. These simulators are aimed at providing a quantitative evaluation of the imaging capabilities of the mission by modelling the performance on different realistic targets in terms of sensitivity, angular resolution, and dynamic range. Both Fizeau and Michelson modes of operation can be considered. Our work is based on adapting a computer simulator called imSIM, which was initially written for the Space Interferometer Mission in order to simulate the imaging mode of new missions such as those listed. In a recent GSFC-funded study we have successfully written a preliminary version of a simulator SISIM for the Stellar Imager and carried out some preliminary studies with it. In a separately funded study we have also been applying these methods to SPECS/SPIRIT.

  15. Design and qualification of the interferometer for the GOSAT-2 spectrometer

    NASA Astrophysics Data System (ADS)

    Montembault, Yan; Moreau, Louis; Roux, Michel; Buijs, Henry; Soucy, Marc-André

    2016-10-01

    GOSAT-2 is the successor of the Greenhouse gases Observing SATellite (GOSAT, "IBUKI") launched in 2009 by Japan Aerospace Exploration Agency (JAXA). GOSAT-2 will continue and enhance space borne measurements of greenhouse gases started by GOSAT and monitor the impacts of climate change and human activities on the carbon cycle. It will also contribute to climate science and climate change related policies. The GOSAT-2 spacecraft will carry two earth observation instruments: FTS-2, the second generation of the TANSO-FTS and CAI-2, a Cloud and Aerosol Imager. Mitsubishi Electric Corporation is the prime contractor of GOSAT-2. Harris is the subcontractor of the spectrometer. ABB, who successfully designed, manufactured, and delivered the interferometer for the TANSO-FTS instrument for GOSAT, is currently delivering the modulator for the FTS-2 instrument to Mitsubishi Electric Corporation. Built on the TANSO-FTS heritage, FTS-2 is a thermal and near infrared sensor for carbon observation based on a Fourier transform spectrometer featuring larger optical throughput than TANSO-FTS. This paper presents an overview of the design of the FTS-2 interferometer as well as key qualification and performance verification activities conducted on the interferometer flight model.

  16. Simulation of Mirror Distortion in Free-Electron LASER Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Freund; S. V. Benson; Michelle D. Shinn

    2006-09-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measuremore » the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  17. Bunch Length Measurements at JLab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Evtushenko; J. L. Coleman; K. Jordan

    2006-09-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measuremore » the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  18. Beam masking to reduce cyclic error in beam launcher of interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Bell, Raymond Mark (Inventor); Dutta, Kalyan (Inventor)

    2005-01-01

    Embodiments of the present invention are directed to reducing cyclic error in the beam launcher of an interferometer. In one embodiment, an interferometry apparatus comprises a reference beam directed along a reference path, and a measurement beam spatially separated from the reference beam and being directed along a measurement path contacting a measurement object. The reference beam and the measurement beam have a single frequency. At least a portion of the reference beam and at least a portion of the measurement beam overlapping along a common path. One or more masks are disposed in the common path or in the reference path and the measurement path to spatially isolate the reference beam and the measurement beam from one another.

  19. Design of interferometer system on Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.

    2012-01-01

    A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.

  20. Development of phase detection schemes based on surface plasmon resonance using interferometry.

    PubMed

    Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin

    2014-08-28

    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  1. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    PubMed Central

    Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin

    2014-01-01

    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117

  2. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    NASA Astrophysics Data System (ADS)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  3. Design of a space-based infrared imaging interferometer

    NASA Astrophysics Data System (ADS)

    Hart, Michael; Hope, Douglas; Romeo, Robert

    2017-07-01

    Present space-based optical imaging sensors are expensive. Launch costs are dictated by weight and size, and system design must take into account the low fault tolerance of a system that cannot be readily accessed once deployed. We describe the design and first prototype of the space-based infrared imaging interferometer (SIRII) that aims to mitigate several aspects of the cost challenge. SIRII is a six-element Fizeau interferometer intended to operate in the short-wave and midwave IR spectral regions over a 6×6 mrad field of view. The volume is smaller by a factor of three than a filled-aperture telescope with equivalent resolving power. The structure and primary optics are fabricated from light-weight space-qualified carbon fiber reinforced polymer; they are easy to replicate and inexpensive. The design is intended to permit one-time alignment during assembly, with no need for further adjustment once on orbit. A three-element prototype of the SIRII imager has been constructed with a unit telescope primary mirror diameter of 165 mm and edge-to-edge baseline of 540 mm. The optics, structure, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. The initial motivation for the development of SIRII was the long-term collection of technical intelligence from geosynchronous orbit, but the scalable nature of the design will likely make it suitable for a range of IR imaging scenarios.

  4. Faraday-effect polarimeter-interferometer system for current density measurement on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. Q.; Jie, Y. X., E-mail: yx-jie@ipp.ac.cn; Zou, Z. Y.

    2014-11-15

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10{sup 16} m{sup −2} (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  5. Science objectives for ground- and space-based optical/IR interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen T.

    1992-01-01

    Ground-based interferometry will make spectacular strides in the next decade. However, it will always be limited by the turbulence of the terrestrial atmosphere. Some of the most exciting and subtle problems may only be addressed from a stable platform above the atmosphere. The lunar surface offers such a platform, nearly ideal in many respects. Once built, such a telescope array will not only resolve key fundamental problems, but will revolutionize virtually every topic in observational astronomy. Estimates of the possible performance of lunar and ground-based interferometers of the 21st century shows that the lunar interferometer reaches the faintest sources of all wavelengths, but has the most significant advantage in the infrared.

  6. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  7. Adaptive optics; Proceedings of the Meeting, Arlington, VA, April 10, 11, 1985

    NASA Astrophysics Data System (ADS)

    Ludman, J. E.

    Papers are presented on the directed energy program for ballistic missile defense, a self-referencing wavefront interferometer for laser sources, the effects of mirror grating distortions on diffraction spots at wavefront sensors, and the optical design of an all-reflecting, high-resolution camera for active-optics on ground-based telescopes. Also considered are transverse coherence length observations, time dependent statistics of upper atmosphere optical turbulence, high altitude acoustic soundings, and the Cramer-Rao lower bound on wavefront sensor error. Other topics include wavefront reconstruction from noisy slope or difference data using the discrete Fourier transform, acoustooptic adaptive signal processing, the recording of phase deformations on a PLZT wafer for holographic and spatial light modulator applications, and an optical phase reconstructor using a multiplier-accumulator approach. Papers are also presented on an integrated optics wavefront measurement sensor, a new optical preprocessor for automatic vision systems, a model for predicting infrared atmospheric emission fluctuations, and optical logic gates and flip-flops based on polarization-bistable semiconductor lasers.

  8. The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA

    NASA Technical Reports Server (NTRS)

    Leisawitz, Dave

    2007-01-01

    We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.

  9. Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD)

    NASA Astrophysics Data System (ADS)

    Hammond, Barney; Popa, Mirela

    2005-05-01

    This paper presents a system-level description of the Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD). JSLSCAD is a passive Fourier Transform InfraRed (FTIR) based remote sensing system for detecting chemical warfare agents. Unlike predecessor systems, JSLSCAD is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The sensor is interfaced to a small, high performance spatial scanner that provides high-speed, two-axis area coverage. Command, control, and processing electronics have been coupled with real time control software and robust detection/discrimination algorithms. Operator interfaces include local and remote options in addition to interfaces to external communications networks. The modular system design facilitates interfacing to the many platforms targeted for JSLSCAD.

  10. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric

    2017-11-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).

  11. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Bernard, Frédéric

    2004-06-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).

  12. High Vertically Resolved Atmospheric State Revealed with IASI Single FOV Retrievals under All-weather Conditions

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, L. Peter; Strow, Larrybee; Mango, Stephen A.

    2008-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated to benefit future NPOESS operation.

  13. Resolution and Orbit Reconstruction of Spectroscopic Binary Stars with the Palomar Testbed Interferometer

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; Lane, B. F.; Creech-Eakman, M. J.; Queloz, D.; Koresko, C. D.

    2000-05-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. For the past several years we have had an ongoing program of resolving and reconstructing the visual and physical orbits of spectroscopic binary stars with PTI, with the goal of obtaining precise dynamical mass estimates and other physical parameters. We will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival and new spectroscopic radial velocity data. The systems for which we will discuss our orbit models are: iota Pegasi (HD 210027), 64 Psc (HD 4676), 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064), and 3 Boo (HD 120064). All of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions.

  14. Participation in the Analysis of the Far-Infrared/Submillmeter Interferometer

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.

    2005-01-01

    We have contributed to the development of the Submillimiter Probe of the Evolution of Cosmic Structure (SPECS) by analyzing various aspects related to the tethers that connect the spacecraft of this space interferometer. We have focused our analysis on key topics as follows: (a) helping in the configuration selection; (b) computing the system eigenfrequencies as a function of baseline length; (c) developing techniques and conceptual design of devices for damping the tether oscillations; (d) carrying out numerical simulations of tethered formation to assess the effects of environmental perturbations upon the baseline length variation; (e) developing control laws for reconfiguring the baseline length; (f) devising control laws for fast retargeting of the interferometer at moderate baseline lengths; (g) estimating the survivability to micrometeoroid impacts of a tether at L2; and (h) developing a conceptual design of a high- strength and survivable tether. The work was conducted for NASA Goddard Space Flight Center under Grant NNG04GQ21G with William Danchi as technical monitor.

  15. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    NASA Technical Reports Server (NTRS)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  16. A High Resolution Phase Shifting Interferometer.

    NASA Astrophysics Data System (ADS)

    Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen

    1997-03-01

    Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation

  17. Validation of the design of a high resolution all-reflection Michelson interferometer for atmospheric spectroscopy

    NASA Astrophysics Data System (ADS)

    Carlson, Scott M.

    1993-06-01

    The design of a high resolution plane grating all-reflection Michelson interferometer for ionospheric spectroscopy was analyzed using ray tracing techniques. This interferometer produces an interference pattern whose spatial frequency is wavelength dependent. The instrument is intended for remote observations of the atomic oxygen triplet emission line profile at 1304 A in the thermosphere from sounding rocket or satellite platforms. The device was modeled using the PC-based ray tracing application, DART, and results analyzed through fourier techniques using the PC with Windows version of the Interactive Data Language (IDL). Through these methods, instrument resolution, resolving power, and bandpass were determined. An analysis of the effects of aperture size and shape on instrument performance was also conducted.

  18. Parallel multiplex laser feedback interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn

    2013-12-15

    We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less

  19. A Fiber Interferometer for the Magnetized Shock Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Christian

    2012-08-30

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radiallymore » resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.« less

  20. A Fiber Interferometer for the Magnetized Shock Experiment

    NASA Astrophysics Data System (ADS)

    Yoo, C. B.; Gao, K. W.; Weber, T. E.; Intrator, T. P.

    2012-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  1. The Nature of Ultraluminous Galaxies: Infrared Space Observatory Analysis and Instrument Team

    NASA Technical Reports Server (NTRS)

    Satyapal, Shobita

    2001-01-01

    The scientific goal of the proposed research was to investigate the physical conditions in the nuclear regions of infrared luminous galaxies by carrying out detailed infrared spectroscopic observations of a large sample of infrared luminous galaxies. During the past year, these observations have been successfully analyzed and extensive modeling using photoionization and photodissociation codes has been carried out. Two first-author publications and a second-author publication have been submitted to the Astrophysical Journal and results were presented at two invited talks. Four additional journal papers are in preparation and will be submitted during year 2 of the grant. The secondary project included in this program was the development of a near-infrared cryogenic Fabry-Perot interferometer for use on future large aperture telescopes. System integration and room temperature testing was successfully carried out for this project during year 1.

  2. Terrestrial Planet Finder Interferometer Technology Status and Plans

    NASA Technical Reports Server (NTRS)

    Lawson, Perter R.; Ahmed, A.; Gappinger, R. O.; Ksendzov, A.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Scharf, D. P.; Wallace, J. K.; Ware, B.

    2006-01-01

    A viewgraph presentation on the technology status and plans for Terrestrial Planet Finder Interferometer is shown. The topics include: 1) The Navigator Program; 2) TPF-I Project Overview; 3) Project Organization; 4) Technology Plan for TPF-I; 5) TPF-I Testbeds; 6) Nulling Error Budget; 7) Nulling Testbeds; 8) Nulling Requirements; 9) Achromatic Nulling Testbed; 10) Single Mode Spatial Filter Technology; 11) Adaptive Nuller Testbed; 12) TPF-I: Planet Detection Testbed (PDT); 13) Planet Detection Testbed Phase Modulation Experiment; and 14) Formation Control Testbed.

  3. Maiden flight of the infrared sounder GLORIA

    NASA Astrophysics Data System (ADS)

    Friedl-Vallon, Felix; Gloria-Team

    2013-05-01

    The Gimballed Limb Radiance Imager of the Atmosphere (GLORIA) instrument is an imaging Fourier transform spectrometer that is capable to operate on various high altitude research aircraft and on stratospheric balloons. The instrument is a joint development of the Helmholtz Centers Jülich and Karlsruhe Institute of Technology. GLORIA has flown for the first time in December 2011 on board the Russian Geophysica M55 research aircraft. Atmospheric measurements with GLORIA are possible in limb and nadir geometry. The scientific focus in limb sounding mode is on dynamics, tropopause region, TTL and polar UTLS. The nadir mode is tailored to processes in the troposphere such as biomass burning events and high precision methane measurements. The combination of limb and nadir will combine good spatial resolution in both the troposphere and lower stratosphere. In addition, GLORIA serves as a proof of concept instrument for the candidate ESA Earth explorer mission PREMIER. The GLORIA spectrometer consists of a classical Michelson interferometer combined with an infrared camera. The spectral range of the first instrument version extends from 780 cm-1 to 1400 cm-1 with a spectral resolution of up to 0.075 cm-1. The high speed HgCdTe focal plane array with 256×256 elements allows in the limb mode an extremely high spatial sampling of up to 100 m in the vertical domain. The spectrometer is mounted in a gimballed frame that permits agility in elevational and azimuthal direction, as well as image rotation. Scene acquisition and scene stabilisation are accomplished by a control system based on an inertial measurement unit. Limb scenes can be chosen within 45° and 132° to the flight direction of the aircraft allowing tomographic analysis of sampled air volumes.

  4. Regional trace gas monitoring simplified - A linear retrieval scheme for carbon monoxide from hyperspectral soundings

    NASA Astrophysics Data System (ADS)

    Smith, N.; Huang, A.; Weisz, E.; Annegarn, H. J.

    2011-12-01

    The Fast Linear Inversion Trace gas System (FLITS) is designed to retrieve tropospheric total column trace gas densities [molec.cm-2] from space-borne hyperspectral infrared soundings. The objective to develop a new retrieval scheme was motivated by the need for near real-time air quality monitoring at high spatial resolution. We present a case study of FLITS carbon monoxide (CO) retrievals from daytime (descending orbit) Infrared Atmospheric Sounding Interferometer (IASI) measurements that have a 0.5 cm-1 spectral resolution and 12 km footprint at nadir. The standard Level 2 IASI CO retrieval product (COL2) is available in near real-time but is spatially averaged over 2 x 2 pixels, or 50 x 50 km, and thus more suitable for global analysis. The study region is Southern Africa (south of the equator) for the period 28-31 August 2008. An atmospheric background estimate is obtained from a chemical transport model, emissivity from regional measurements and surface temperature (ST) from space-borne retrievals. The CO background error is set to 10%. FLITS retrieves CO by assuming a simple linear relationship between the IASI measurements and background estimate of the atmosphere and surface parameters. This differs from the COL2 algorithm that treats CO retrieval as a moderately non-linear problem. When compared to COL2, the FLITS retrievals display similar trends in distribution and transport of CO over time with the advantage of an improved spatial resolution (single-pixel). The value of the averaging kernel (A) is consistently above 0.5 and indicates that FLITS retrievals have a stable dependence on the measurement. This stability is achieved through careful channel selection in the strongest CO absorption lines (2050-2225 cm-1) and joint retrieval with skin temperature (IASI sensitivity to CO is highly correlated with ST), thus no spatial averaging is necessary. We conclude that the simplicity and stability of FLITS make it useful first as a research tool, i.e. the algorithm is easy to understand and computationally simple enough to run on most desktop computers, and second, as an operational tool that can calculate near real-time CO retrievals at instrument resolution for regional monitoring.

  5. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-05-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lens elements. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far commercial measurement systems were not available for testing of IR objectives since many materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The fiber-optic set-up is based on a Michelson-Interferometer in which the light from a broadband super-luminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a photo detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative lens' surface distances are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. The set-up allows the contactless determination of thicknesses and air gaps inside of assembled infrared objective lenses with accuracy in the micron range. It therefore is a tool for the precise manufacturing or quality control.

  6. Infrared Imaging of Capella with the IOTA Closure Phase Interferometer

    NASA Astrophysics Data System (ADS)

    Kraus, S.; Schloerb, F. P.; Traub, W. A.; Carleton, N. P.; Lacasse, M.; Pearlman, M.; Monnier, J. D.; Millan-Gabet, R.; Berger, J.-P.; Haguenauer, P.; Perraut, K.; Kern, P.; Malbet, F.; Labeye, P.

    2005-07-01

    We present infrared aperture synthesis maps produced with the upgraded Infrared Optical Telescope Array interferometer. Michelson interferograms on the close binary system Capella (α Aur) were obtained in the H band between 2002 November 12 and 16 using the IONIC3 beam combiner. With baselines of 15m<=B<=38 m, we were able to determine the relative position of the binary components with milliarcsecond precision and to track their movement along the ~14° arc covered by our observation run. We briefly describe the algorithms used for visibility and closure phase estimation. Three different hybrid mapping and bispectrum fitting techniques were implemented within one software framework and used to reconstruct the source brightness distribution. By dividing our data into subsets, the system could be mapped at three epochs, revealing the motion of the stars. The precise position of the binary components was also determined with model fits, which in addition revealed IAa/IAb=1.49+/-0.10 and apparent stellar uniform-disk diameters of ΘAa=8.9+/-0.6 mas and ΘAb=5.8+/-0.8 mas. To improve the (u,v)-plane coverage, we compensated this orbital motion by applying a rotation-compensating coordinate transformation. The resulting model-independent map with a beam size of 5.4mas×2.6 mas allows the resolution of the stellar surfaces of the Capella giants themselves.

  7. A technique for phase correction in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.

    2018-03-01

    Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.

  8. Observations of winds with an incoherent lidar detector

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Barnes, John E.; Hays, Paul B.

    1992-01-01

    A Fabry-Perot interferometer and image-plane detector system to be used as a receiver for a Doppler lidar have been developed. This system incorporates the latest technology in multichannel detectors, and it is an important step toward the development of operational wind profiler systems for the atmosphere. The instrumentation includes a stable high-resolution optically contacted plane etalon and a multiring anode detector to scan the image plane of the Fabry-Perot interferometer spatially. The high wavelength resolution provided by the interferometer permits the aerosol and molecular components of the backscattered signal to be distinguished, and the Doppler shift of either component can then be used to determine the wind altitude profile. The receiver performance has been tested by measuring the wind profile in the boundary layer. The Fabry-Perot interferometer and image-plane detector characteristics are described and sample measurements are presented. The potential of the system as a wind profiler in the troposphere, the stratosphere, and the mesosphere is also considered.

  9. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  10. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  11. Measurements of spatially resolved velocity variations in shock compressed heterogeneous materials using a line-imaging velocity interferometer

    NASA Astrophysics Data System (ADS)

    Trott, Wayne M.; Knudson, Marcus D.; Chhabildas, Lalit C.; Asay, James R.

    2000-04-01

    Relatively straightforward changes in the design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging instrument that allows adjustment of spatial resolution over a wide range. As a result, line-imaging ORVIS can be tailored to various specific applications involving dynamic deformation of heterogeneous materials as required by their characteristic length scales (ranging from a few μm for ferroelectric ceramics to a few mm for concrete). A line-imaging system has been successfully interfaced to a compressed gas gun driver and fielded on numerous tests in combination with simultaneous dual delay-leg, "push-pull" VISAR measurements. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Results are presented that illustrate the capability for recording detailed spatially resolved material response.

  12. Airborne Passive Remote Sensing of the Troposphere in Nashville/Middle Tennessee Area During the 1995 Southern Oxidants Study

    NASA Technical Reports Server (NTRS)

    Rider, D. M.; Worden, H. M.; Beer, R.; Nandi, S.; Sparks, L. C.

    1998-01-01

    In July of 1995 the Airborne Emission Spectrometer was deployed to Nashville, Tennessee to participate in the 1995 Ozone Study Intensive Campaign of the Southern Oxidants Study. AES is a high resolution mid-infrared interferometer that measures the spectrum of upwelling radiation in the 650-4250 cm-1 range.

  13. MONA, LISA and VINCI Soon Ready to Travel to Paranal

    NASA Astrophysics Data System (ADS)

    2000-11-01

    First Instruments for the VLT Interferometer Summary A few months from now, light from celestial objects will be directed for the first time towards ESO's Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). During this "First Light" event and the subsequent test phase, the light will be recorded with a special test instrument, VINCI (VLT INterferometer Commissioning Instrument). The main components of this high-tech instrument are aptly named MONA (a system that combines the light beams from several telescopes by means of optical fibers) and LISA (the infrared camera). VINCI was designed and constructed within a fruitful collaboration between ESO and several research institutes and industrial companies in France and Germany . It is now being assembled at the ESO Headquarters in Garching (Germany) and will soon be ready for installation at the telescope on Paranal. With the VLTI and VINCI, Europe's astronomers are now entering the first, crucial phase of an exciting scientific and technology venture that will ultimately put the world's most powerful optical/IR interferometric facility in their hands . PR Photo 31/00 : VINCI during tests at the ESO Headquarters in Garching. The VLT Interferometer (VLTI) ESO Press Photo 31/00 ESO Press Photo 31/00 [Preview; JPEG: 400 x 301; 43k] [Normal; JPEG: 800 x 602;208xk] [Full-Res; JPEG: 1923 x 1448; 2.2Mb] PR Photo 31/00 shows the various components of the complex VINCI instrument for the VLT Interferometer , during the current tests at the Optical Laboratory at the ESO Headquarters in Garching (Germany). It will later be installed in "clean-room" conditions within the Interferometric Laboratory at the Paranal Observatory. This electronic photo was obtained for documentary purposes. VINCI (VLT INterferometer Commissioning Instrument) is the "First Light" instrument for the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). Early in 2001, it will be used for the first tests of this very complex system. Subsequently, it will serve to tune this key research facility to the highest possible performance. The VLTI is based on the combination of light (beams) from the telescopes at Paranal. Of these, the four 8.2-m Unit Telescopes are already in operation - they will soon be joined by three 1.8-m telescopes that can be relocated on rails, cf. PR Photo 43b/99. By means of a system of mirrors, the light from two or more of these telescopes will be guided to the central Interferometric Laboratory , at the center of the observing platform on Paranal. Information about the heart of this complex system, the Delay Lines that are located in the underground Interferometric Tunnel, is available with the recent ESO PR Photos 26a-e/00. The VLTI will later receive other front-line instruments, e.g. AMBER , MIDI and PRIMA. When fully ready some years from now, the VLTI will produce extremely sharp images. This will have a major impact on different types of exciting astronomical observations, e.g.: * the direct discovery and imaging of extra-solar planets comparable to Jupiter, * the discovery and imaging of low-mass stars such as brown dwarfs, * observations of star-forming regions and to better understand the physical processes that give birth to stars, * spectral analysis of the atmospheres of nearby stars, and * imaging the objects of the very core of our Galaxy and the detection of black holes in active nuclei of galaxies. The VINCI test instrument The new instrument, VINCI , will soon be delivered to Paranal by the Département de Recherche Spatiale (Department for Space Research), a joint unit of the Centre Nationale de la Recherche Scientifique (French National Centre for Scientific Research) and the Paris Observatory. VINCI is a functional copy of the FLUOR instrument - now at the IOTA (Infrared Optical Telescope Array) interferometer - that has been upgraded and adapted to the needs of the VLTI. FLUOR was developed by the Département de Recherche Spatiale (DESPA) of the Paris Observatory. It was used in 1991 at the Kitt Peak National Observatory (Arizona, USA), for the first (coherent) combination of the light beams from two independent telescopes by means of optical fibers of fluoride glass. It has since been in operation for five years as a focal instrument at the IOTA Interferometer (Mount Hopkins, Arizona, USA) within a collaboration with the Harvard Smithsonian Center for Astrophysics), producing a rich harvest of scientific data. The VINCI partners The VINCI instrument is constructed in a collaboration between ESO (that also finances it) and the following laboratories and institutes: * DESPA (Paris Observatory) provides the expertise, the general concept, the development and integration of the optomechanics (with the exception of the camera) and the electronics, * Observatoire Midi-Pyrénées that produces the control software * The LISA infrared camera is developed by the Max-Planck-Institut für Extraterrestrische Physik (Garching, Germany), and * ESO provides the IR camera electronics and the overall observational software and is also responsible for the final integration. DESPA delivered VINCI to ESO in Garching on September 27, 2000, and is now assembling the instrument in the ESO optical workshop. It will stay here during three months, until it has been fully integrated and thoroughly tested. It will then be shipped to Paranal at the beginning of next year. After set-up and further tests, the first observations on the sky are expected in late March 2001. Fluoride fibers guide the light The heart of VINCI - named MONA - is a fiber optics beam combine unit. It is the outcome of a fertile, 10-year research partnership between Science (DESPA) and Industry ("Le Verre Fluoré" [2]). Optical fibers will be used to combine the light from two telescopes inside VINCI . Since the instrument will be working in the near-infrared region of the spectrum (wavelength 2-2.5 µm), it is necessary to use optical fibers made of a special type of glass that is transparent at these wavelengths. By far the best best material for this is fluoride glass . It was invented by one of the co-founders of the company "Le Verre Fluoré", the only manufacturer of this kind of highly specialized material in the world. Optical fibers of fluoride glass from this company are therefore used in VINCI . They are of a special type ("monomode") with a very narrow core measuring only 6.5 µm (0.065 mm) across. Light that is collected by one of the telescopes in the VLTI array (e.g., by the 50 m 2 mirror of a VLT Unit Telescope) is guided through the VLTI system of optics and finally enters this core. The fibers guide the light and at the same time "clean" the light beam by eliminating the errors introduced by the atmospheric turbulence, hereby improving the accuracy of the measurements by a factor of 10. DESPA has shown that this is indeed possible by means of real astronomical observations with the FLUOR experiment. Following this positive demonstration, it has been decided to equip the instrumentation of all interferometers currently under construction with fibers or equivalent systems.

  14. Design Enhancements of the Fourier Kelvin Stellar Interferometer to Enable Detection of Earth Twins

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephan; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Kern, Pierre; Leger, Alain; hide

    2009-01-01

    During the last few years, considerable effort has been directed towards very large-scale (> $5 billion) missions to detect and characterize Mars-radius to Earth-radius planets around nearby stars; such as the Terrestrial Planet Finder Interferometer and Darwin missions. However, technological issues such as formation flying and control of systematic noise sources will likely prevent these missions from entering Phase A until at least the end of the next decade. Presently more than 350 planets have been discovered by a variety of techniques, and little is known about the majority of them other than their approximate mass. However, a simplified nulling interferometer operating in the near- to mid-infrared (e.g. approx. 5-15 microns), like the enhanced version of the Fourier Kelvin Stellar Interferometer (FKSI), can characterize the atmospheres of a large sample of the known planets - including Earth twins. Many other scientific problems can be addressed with a system like FKSI, including the studies of debris disks, active galactic nuclei, and low mass companions around nearby stars. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics including siderostats.

  15. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Evtushenko; James Coleman; Kevin Jordan

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beammore » with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  16. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, P.; Coleman, J.; Jordan, K.

    2006-11-20

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam withmore » any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  17. Design Optimization Considerations for the MROI

    NASA Astrophysics Data System (ADS)

    Creech-Eakman, M. J.; Buscher, D. F.; Haniff, C. A.; MROI Team

    2014-04-01

    The Magdalena Ridge Observatory Interferometer (MROI) has been conceived to be a 10 element 1.4m aperture imaging interferometer working in the optical and near-infrared and located at a altitude of 10,500 feet in the mountains of south-central New Mexico. When designing the MROI, we attempted to take lessons learned from the design of other similar facilities and specifically considered sensitivity, speed of data collection, scalability and mobility of the design, along with polarization preservation and imaging capabilities to attain the present model for the facility. Several papers detailing the specifics of the design of the MROI and the philosophy behind the certain choices or trade-offs have been published in the past few years. These references and those listed therein are listed below.

  18. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.

    PubMed

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-28

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  19. Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong

    2013-06-01

    By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.

  20. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  1. Deep Fabry-Perot imaging of NGC 6240: Kinematic evidence for merging galaxies

    NASA Technical Reports Server (NTRS)

    Hawthorn, J. Bland; Wilson, A. S.; Tully, R. B.

    1990-01-01

    The authors have observed the superluminous, infrared galaxy NGC 6240 (z = 0.025) at H alpha with the Hawaii Imaging Fabry-Perot Interferometer (HIFI - Bland and Tully 1989). During the past decade, observational evidence from all wavebands indicates that the unusual appearance of NGC 6240 has resulted from a collision between two gas-rich systems, a view which is supported by our spectrophotometric data. However, the origin of the enormous infrared luminosity (4 times 10(exp 11) solar luminosity) detected by the Infrared Astronomy Satellite (IRAS) remains highly controversial, where opinions differ on the relative roles of large-scale shocks, massive star formation or a buried 'active' nucleus. These mechanisms are discussed in the light of the author's Fabry-Perot observations.

  2. 4D measurements of biological and synthetic structures using a dynamic interferometer

    NASA Astrophysics Data System (ADS)

    Toto-Arellano, Noel-Ivan

    2017-12-01

    Considering the deficiency of time elapsed for phase-stepping interferometric techniques and the need of developing non-contact and on-line measurement with high accuracy, a single-shot phase-shifting triple-interferometer (PSTI) is developed for analysis of characteristics of transparent structures and optical path difference (OPD) measurements. In the proposed PSTI, coupled three interferometers which generate four interference patterns, and a polarizer array is used as phase shifters to produce four spatially separated interferograms with π/2-phase shifts, which are recorded in a single capture by a camera. The configuration of the PSTI allows dynamic measurements (4D measurements) and does not require vibration isolation. We have applied the developed system to examine the size and OPD of cells, and the slope of thin films

  3. Results of a rocket-Nimbus sounder comparison experiment

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Finger, F. G.

    1972-01-01

    Stratospheric temperature data obtained from instrumentation on board Nimbus 3 and 4 are compared with conventional rocket soundings to determine the compatibility of measurements. The Arcasonde 1A and Datasonde were the primary rocketsondes used, but acoustic grenade and pitot probe soundings were also involved. Observed temperature profiles and computed radiances obtained from rocket soundings are compared with 15-microns data provided by the satellite infrared spectrometers, the infrared interferometer spectrometer, and the selective chopper radiometer onboard the satellites. A reasonable agreement between the rocket and satellite data is indicated, but variations are noted which are related to the sounding techniques.

  4. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  5. DR Tauri: Temporal variability of the brightness distribution in the potential planet-forming region

    NASA Astrophysics Data System (ADS)

    Brunngräber, R.; Wolf, S.; Ratzka, Th.; Ober, F.

    2016-01-01

    Aims: We investigate the variability of the brightness distribution and the changing density structure of the protoplanetary disk around DR Tau, a classical T Tauri star. DR Tau is known for its peculiar variations from the ultraviolet (UV) to the mid-infrared (MIR). Our goal is to constrain the temporal variation of the disk structure based on photometric and MIR interferometric data. Methods: We observed DR Tau with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) at three epochs separated by about nine years, two months, respectively. We fit the spectral energy distribution and the MIR visibilities with radiative transfer simulations. Results: We are able to reproduce the spectral energy distribution as well as the MIR visibility for one of the three epochs (third epoch) with a basic disk model. We were able to reproduce the very different visibility curve obtained nine years earlier with a very similar baseline (first epoch), using the same disk model with a smaller scale height. The same density distribution also reproduces the observation made with a higher spatial resolution in the second epoch, I.e. only two months before the third epoch. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under the programs 074.C-0342(A) and 092.C-0726(A,B).

  6. Prototyping of MWIR MEMS-based optical filter combined with HgCdTe detector

    NASA Astrophysics Data System (ADS)

    Kozak, Dmitry A.; Fernandez, Bautista; Velicu, Silviu; Kubby, Joel

    2010-02-01

    In the past decades, there have been several attempts to create a tunable optical detector with operation in the infrared. The drive for creating such a filter is its wide range of applications, from passive night vision to biological and chemical sensors. Such a device would combine a tunable optical filter with a wide-range detector. In this work, we propose using a Fabry-Perot interferometer centered in the mid-wave infrared (MWIR) spectrum with an HgCdTe detector. Using a MEMS-based interferometer with an integrated Bragg stack will allow in-plane operation over a wide range. Because such devices have a tendency to warp, creating less-than-perfect optical surfaces, the Fabry-Perot interferometer is prototyped using the SOI-MUMPS process to ensure desirable operation. The mechanical design is aimed at optimal optical flatness of the moving membranes and a low operating voltage. The prototype is tested for these requirements. An HgCdTe detector provides greater performance than a pyroelectic detector used in some previous work, allowing for lower noise, greater detection speed and higher sensitivity. Both a custom HgCdTe detector and commercially available pyroelectric detector are tested with commercial optical filter. In previous work, monolithic integration of HgCdTe detectors with optical filters proved to be problematic. Part of this work investigates the best approach to combining these two components, either monolithically in HgCdTe or using a hybrid packaging approach where a silicon MEMS Fabry-Perot filter is bonded at low temperature to a HgCdTe detector.

  7. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  8. Enabling High Spectral Resolution Thermal Imaging from CubeSat and MicroSatellite Platforms Using Uncooled Microbolometers and a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.; Pilger, E. J.; Honniball, C.; Gabrieli, A.

    2016-12-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. This is attributable to two factors. Firstly, earth emits less light than it reflects, reducing the signal available to measure in the TIR, and secondly, instruments designed to measure (and spectrally decompose) this signal are more complex, massive, and expensive than their VSWIR counterparts, largely due to the need to cryogenically cool the detector and optics. However, this measurement gap needs to be filled, as LWIR data provide fundamentally different information than VSWIR measurements. The TIRCIS instrument (Thermal Infra-Red Compact Imaging Spectrometer), developed at the Hawaii Institute of Geophysics and Planetology, uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data in the 8-14 micron spectral range. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm × 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite as part of the ORS-4 mission in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible (the accompanying image shows a quartz spectrum composed of 17 spectral samples). Our performance model indicates signal-to-noise ratios of 400-800:1.

  9. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  10. Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.

    PubMed

    Yu, Zhihao; Tian, Zhipeng; Wang, Anbo

    2017-02-15

    In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.

  11. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig

    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  12. Interferometric at-wavelength flare characterization of EUV optical systems

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2001-01-01

    The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

  13. Computer Generated Hologram System for Wavefront Measurement System Calibration

    NASA Technical Reports Server (NTRS)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  14. An array of correlated atom interferometers to study to study the local fluctuations of the gravitational field and its impact on low fequency gravitational waves observations

    NASA Astrophysics Data System (ADS)

    Bouyer, P.; Canuel, B.; Pelisson, S.; Harms, J.; Bertoldi, A.; Gaffet, S.; Landragin, A.; Lefevre, G.; Riou, I.; Geiger, R.

    2016-12-01

    We will present here the Matter-Wave laser Interferometer Gravitation Antenna, MIGA, a hybrid instrument composed of a network of atom interferometers horizontally aligned and interrogated by the resonant field of an optical cavity. This detector will provide measurements of sub Hertz variations of the gravitational strain tensor. MIGA will bring new methods for geophysics for the characterization of spatial and temporal variations of the local gravity field and will also be a demonstrator for future low frequency Gravitational Wave (GW) detections. The recent first direct observation of gravitational radiation opens the way towards a novel astronomy requires a new class of low frequency Gravitational Wave detectors such as MIGA. Nevertheless, the fluctuations of the Earth gravitational field over different baselines are of high relevance for the functioning of such experiments. Indeed, a fluctuating gravity gradient causes a tidal effect that cannot, in principle, be distinguished from Gravitational Waves.This so-called « Newtonian Noise » is therefore considered up to now as a fundamental limit for any ground based detector and the main reason for restricting future low frequency GW detectors to space. Nevertheless, these two contributions may become discernible by the use of a network of test masses. Indeed, both GW and NN effects will have different spatial signatures over the test mass network. While GW has extremely long characteristic length, NN has shorter characteristic lengths going from the meter to a few kilometers.The array of distant Atom Interferometers in MIGA can be used as network of test masses, which can be correlated using a common laser link. Differential measurements between the atom interferometers of the Network enables for a large reduction of the effect of NN and opens the way towards the realization of low frequency GW detectors.In this paper, we will detail the projection of background NN in the underground environment of the LSBB and present GW interferometer geometries enabling its reduction.

  15. VEGA/CHARA interferometric observations of Cepheids. I. A resolved structure around the prototype classical Cepheid δ Cep in the visible spectral range

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Mérand, A.; Mourard, D.; Storm, J.; Gieren, W.; Fouqué, P.; Gallenne, A.; Graczyk, D.; Kervella, P.; Neilson, H.; Pietrzynski, G.; Pilecki, B.; Breitfelder, J.; Berio, P.; Challouf, M.; Clausse, J.-M.; Ligi, R.; Mathias, P.; Meilland, A.; Perraut, K.; Poretti, E.; Rainer, M.; Spang, A.; Stee, P.; Tallon-Bosc, I.; ten Brummelaar, T.

    2016-09-01

    Context. The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. The underlying assumption is that the photospheres probed in the infrared and in the visible are located at the same layer in the star whatever the pulsation phase. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. Aims: This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Methods: Observations of δ Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. Results: These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of θCSE = 8.9 ± 3.0 mas and a relative flux contribution of fCSE = 0.07 ± 0.01. A model of visible nebula (a background source filling the field of view of the interferometer) with the same relative flux contribution is also consistent with our data at small spatial frequencies. However, in both cases, we find discrepancies in the squared visibilities at high spatial frequencies (maximum 2σ) with two different regimes over the pulsation cycle of the star, φ = 0.0 - 0.8 and φ = 0.8-1.0. We provide several hypotheses to explain these discrepancies, but more observations and theoretical investigations are necessary before a firm conclusion can be drawn. Conclusions: For the first time we have been able to detect in the visible domain a resolved structure around δ Cep. We have also shown that a simple model cannot explain the observations, and more work will be necessary in the future, both on observations and modelling. The data are available on the Jean-Marie Mariotti Center OiDB service (http://oidb.jmmc.fr) and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A45

  16. Gas monitoring onboard ISS using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  17. Fringe-jump corrected far infrared tangential interferometer/polarimeter for a real-time density feedback control system of NSTX plasmasa)

    NASA Astrophysics Data System (ADS)

    Juhn, J.-W.; Lee, K. C.; Hwang, Y. S.; Domier, C. W.; Luhmann, N. C.; Leblanc, B. P.; Mueller, D.; Gates, D. A.; Kaita, R.

    2010-10-01

    The far infrared tangential interferometer/polarimeter (FIReTIP) of the National Spherical Torus Experiment (NSTX) has been set up to provide reliable electron density signals for a real-time density feedback control system. This work consists of two main parts: suppression of the fringe jumps that have been prohibiting the plasma density from use in the direct feedback to actuators and the conceptual design of a density feedback control system including the FIReTIP, control hardware, and software that takes advantage of the NSTX plasma control system (PCS). By investigating numerous shot data after July 2009 when the new electronics were installed, fringe jumps in the FIReTIP are well characterized, and consequently the suppressing algorithms are working properly as shown in comparisons with the Thomson scattering diagnostic. This approach is also applicable to signals taken at a 5 kHz sampling rate, which is a fundamental constraint imposed by the digitizers providing inputs to the PCS. The fringe jump correction algorithm, as well as safety and feedback modules, will be included as submodules either in the gas injection system category or a new category of density in the PCS.

  18. Systems level feasibility study for the detection of extra-solar planets. Volume 1: Infrared interferometer (IRIS) known as the Stanford Concept

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A sensor system for the direct detection of extrasolar planets from an Earth orbit is evaluated: a spinning, infrared interferometer (IRIS). It is shuttle deployed, free flying, requires no on-orbit assembly and no reservicing over a design life of five years. The sensor concept and the mission objectives are reviewed, and the performance characteristics of a baseline sensor for standard observation conditions are derived. A baseline sensor design is given and the enabling technology discussed. Cost and weight estimates are performed; and a schedule for an IRIS program including technology development and assessment of risk are given. Finally, the sensor is compared with the apodized visual telescope sensor (APOTS) proposed for the same mission. The major conclusions are: that with moderate to strong technology advances, particularly in the fields of long life cryogenics, dynamical control, mirror manufacturing, and optical alignment, the detection of a Jupiter like planet around a Sunlike star at a distance of 30 light years is feasible, with a 3 meter aperture and an observation time of 1 hour. By contrast, major and possibly unlikely breakthroughs in mirror technology are required for APOTS to match this performance.

  19. Long wave infrared (8 to 14 microns) hyperspectral imager based on an uncooled thermal camera and the traditional CI block interferometer (SI-LWIR-UC)

    NASA Astrophysics Data System (ADS)

    Cabib, Dario; Lavi, Moshe; Gil, Amir; Milman, Uri

    2011-06-01

    Since the early '90's CI has been involved in the development of FTIR hyperspectral imagers based on a Sagnac or similar type of interferometer. CI also pioneered the commercialization of such hyperspectral imagers in those years. After having developed a visible version based on a CCD in the early '90's (taken on by a spin-off company for biomedical applications) and a 3 to 5 micron infrared version based on a cooled InSb camera in 2008, it is now developing an LWIR version based on an uncooled camera for the 8 to 14 microns range. In this paper we will present design features and expected performance of the system. The instrument is designed to be rugged for field use, yield a relatively high spectral resolution of 8 cm-1, an IFOV of 0.5 mrad., a 640x480 pixel spectral cube in less than a minute and a noise equivalent spectral radiance of 40 nW/cm2/sr/cm-1 at 10μ. The actually measured performance will be presented in a future paper.

  20. Imaging reconstruction for infrared interferometry: first images of YSOs environment

    NASA Astrophysics Data System (ADS)

    Renard, S.; Malbet, F.; Thiébaut, E.; Berger, J.-P.

    2008-07-01

    The study of protoplanetary disks, where the planets are believed to form, will certainly allow the formation of our Solar System to be understood. To conduct observations of these objects at the milli-arcsecond scale, infrared interferometry provides the right performances for T Tauri, FU Ori or Herbig Ae/Be stars. However, the only information obtained so far are scarce visibility measurements which are directly tested with models. With the outcome of recent interferometers, one can foresee obtaining images reconstructed independently of the models. In fact, several interferometers including IOTA and AMBER on the VLTI already provide the possibility to recombine three telescopes at once and thus to obtain the data necessary to reconstruct images. In this paper, we describe the use of MIRA, an image reconstruction algorithm developed for optical interferometry data (squared visibilities and closure phases) by E. Thiébaut. We foresee also to use the spectral information given by AMBER data to constrain even better the reconstructed images. We describe the use of MIRA to reconstruct images of young stellar objects out of actual data, in particular the multiple system GW Orionis (IOTA, 2004), and discuss the encountered difficulties.

  1. Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Components include the EAC, heat exchanger, sample cell control (SCC), sample cells, source, interferometer, electronics, carousel drive, infrared (IR) beam, and carousel. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The Generic Electronics Module (GEM) provides all carousel and

  2. Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung

    2007-01-01

    A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.

  3. Adaptive DFT-Based Interferometer Fringe Tracking

    NASA Astrophysics Data System (ADS)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  4. Astronomical Optical Interferometry. I. Methods and Instrumentation

    NASA Astrophysics Data System (ADS)

    Jankov, S.

    2010-12-01

    Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  5. OIFITS 2: the 2nd version of the data exchange standard for optical interferometry

    NASA Astrophysics Data System (ADS)

    Duvert, Gilles; Young, John; Hummel, Christian A.

    2017-01-01

    This paper describes version 2 of the Optical Interferometry exchange Format (OIFITS), the standard for exchanging calibrated data from optical (visible or infrared) interferometers. This IAU-endorsed standard has been in use for 10 years at most of the past and current optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI and the Keck interferometer. Software is available for reading, writing and merging OIFITS files. This version 2 provides definitions of additional data tables (for example for polarisation measurements), addressing the needs of future interferometric instruments. Also included are data columns for a more rigorous description of measurement errors and their correlations. In that, this document is a step towards the design of a common data model for optical interferometry. Finally, the main OIFITS header is expanded with several new keywords summarising the content to allow doing data base searches. We request that comments and suggestions related to OIFITS be directed to the OLBIN email list. (See http://www.jmmc.fr/olbin-forum for information on how to subscribe and post to the list.)

  6. Adaptive DFT-Based Interferometer Fringe Tracking

    NASA Astrophysics Data System (ADS)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2005-12-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  7. Gas Laser Interferometer in the Electric Conversion Laboratory

    NASA Image and Video Library

    1966-10-21

    Richard Lancashire operates a gas laser interferometer in the Electric Conversion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis was in the midst of a long-term effort to develop methods of delivering electrical power to spacecraft using nuclear, solar, or electrochemical technologies. Lancashire was measuring the thermionic diode’s plasma particle density. The thermionic diodes were being studied for possible use in radioisotope thermoelectric generators for use in space. Microwave interferometry was one method of measuring transient plasmas. The interferometer measured the difference between the frequencies of two laser beams, one of which passed through the diode. The electron density was measured by revealing the phase shift of the transmitted microwave beam brought about by a change in the plasma refraction. Microwave interferometry, however, offers poor spatial resolution and has limited range of applicability.

  8. A climatology of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Müller, Rolf; Grooß, Jens-Uwe; Tritscher, Ines; Höpfner, Michael; Pitts, Michael; Orr, Andrew; Riese, Martin

    2018-04-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the European Space Agency (ESA) Envisat satellite operated from July 2002 to April 2012. The infrared limb emission measurements provide a unique dataset of day and night observations of polar stratospheric clouds (PSCs) up to both poles. A recent classification method for PSC types in infrared (IR) limb spectra using spectral measurements in different atmospheric window regions has been applied to the complete mission period of MIPAS. The method uses a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption on a combination of a well-established two-colour ratio method and multiple 2-D probability density functions of brightness temperature differences. The Bayesian classifier distinguishes between solid particles of ice, nitric acid trihydrate (NAT), and liquid droplets of supercooled ternary solution (STS), as well as mixed types. A climatology of MIPAS PSC occurrence and specific PSC classes has been compiled. Comparisons with results from the classification scheme of the spaceborne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol-Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite show excellent correspondence in the spatial and temporal evolution for the area of PSC coverage (APSC) even for each PSC class. Probability density functions of the PSC temperature, retrieved for each class with respect to equilibrium temperature of ice and based on coincident temperatures from meteorological reanalyses, are in accordance with the microphysical knowledge of the formation processes with respect to temperature for all three PSC types.This paper represents unprecedented pole-covering day- and nighttime climatology of the PSC distributions and their composition of different particle types. The dataset allows analyses on the temporal and spatial development of the PSC formation process over multiple winters. At first view, a more general comparison of APSC and AICE retrieved from the observations and from the existence temperature for NAT and ice particles based on the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis temperature data shows the high potential of the climatology for the validation and improvement of PSC schemes in chemical transport and chemistry-climate models.

  9. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter Through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared (MIR) and a far-infrared interferometer (FIR) and operates at 170 Kelvin. The MIR is a Michelson Fourier transform spectrometer utilizing a 76 mm (3 inch) diameter potassium bromide beamsplitter and compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. 'Me stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  10. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    PubMed

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  11. WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Thuillier, G.; Gault, W. A.; Solheim, B. H.; Hersom, C.; Alunni, J. M.; Brun, J.-F.; Brune, S.; Charlot, P.; Cogger, L. L.

    1993-01-01

    The WIND imaging interferometer (WINDII) was launched on the Upper Atmosphere Research Satellite (UARS) on September 12, 1991. This joint project, sponsored by the Canadian Space Agency and the French Centre National d'Etudes Spatiales, in collaboration with NASA, has the responsibility of measuring the global wind pattern at the top of the altitude range covered by UARS. WINDII measures wind, temperature, and emission rate over the altitude range 80 to 300 km by using the visible region airglow emission from these altitudes as a target and employing optical Doppler interferometry to measure the small wavelength shifts of the narrow atomic and molecular airglow emission lines induced by the bulk velocity of the atmosphere carrying the emitting species. The instrument used is an all-glass field-widened achromatically and thermally compensated phase-stepping Michelson interferometer, along with a bare CCD detector that images the airglow limb through the interferometer. A sequence of phase-stepped images is processed to derive the wind velocity for two orthogonal view directions, yielding the vector horizontal wind. The process of data analysis, including the inversion of apparent quantities to vertical profiles, is described.

  12. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  13. LINC-NIRVANA for the large binocular telescope: setting up the world's largest near infrared binoculars for astronomy

    NASA Astrophysics Data System (ADS)

    Hofferbert, Ralph; Baumeister, Harald; Bertram, Thomas; Berwein, Jürgen; Bizenberger, Peter; Böhm, Armin; Böhm, Michael; Borelli, José Luis; Brangier, Matthieu; Briegel, Florian; Conrad, Albert; De Bonis, Fulvio; Follert, Roman; Herbst, Tom; Huber, Armin; Kittmann, Frank; Kürster, Martin; Laun, Werner; Mall, Ulrich; Meschke, Daniel; Mohr, Lars; Naranjo, Vianak; Pavlov, Aleksei; Pott, Jörg-Uwe; Rix, Hans-Walter; Rohloff, Ralf-Rainer; Schinnerer, Eva; Storz, Clemens; Trowitzsch, Jan; Yan, Zhaojun; Zhang, Xianyu; Eckart, Andreas; Horrobin, Matthew; Rost, Steffen; Straubmeier, Christian; Wank, Imke; Zuther, Jens; Beckmann, Udo; Connot, Claus; Heininger, Matthias; Hofmann, Karl-Heinz; Kröner, Tim; Nussbaum, Eddy; Schertl, Dieter; Weigelt, Gerd; Bergomi, Maria; Brunelli, Alessandro; Dima, Marco; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca; Ragazzoni, Roberto; Viotto, Valentina; Arcidiacono, Carmelo; Bregoli, Giovanni; Ciliegi, Paolo; Cosentino, Guiseppe; Diolaiti, Emiliano; Foppiani, Italo; Lombini, Matteo; Schreiber, Laura; D'Alessio, Francesco; Li Causi, Gianluca; Lorenzetti, Dario; Vitali, Fabrizio; Bertero, Mario; Boccacci, Patrizia; La Camera, Andrea

    2013-08-01

    LINC-NIRVANA (LN) is the near-infrared, Fizeau-type imaging interferometer for the large binocular telescope (LBT) on Mt. Graham, Arizona (elevation of 3267 m). The instrument is currently being built by a consortium of German and Italian institutes under the leadership of the Max Planck Institute for Astronomy in Heidelberg, Germany. It will combine the radiation from both 8.4 m primary mirrors of LBT in such a way that the sensitivity of a 11.9 m telescope and the spatial resolution of a 22.8 m telescope will be obtained within a 10.5×10.5 arcsec scientific field of view. Interferometric fringes of the combined beams are tracked in an oval field with diameters of 1 and 1.5 arcmin. In addition, both incoming beams are individually corrected by LN's multiconjugate adaptive optics system to reduce atmospheric image distortion over a circular field of up to 6 arcmin in diameter. A comprehensive technical overview of the instrument is presented, comprising the detailed design of LN's four major systems for interferometric imaging and fringe tracking, both in the near infrared range of 1 to 2.4 μm, as well as atmospheric turbulence correction at two altitudes, both in the visible range of 0.6 to 0.9 μm. The resulting performance capabilities and a short outlook of some of the major science goals will be presented. In addition, the roadmap for the related assembly, integration, and verification process are discussed. To avoid late interface-related risks, strategies for early hardware as well as software interactions with the telescope have been elaborated. The goal is to ship LN to the LBT in 2014.

  14. Broadband interferometric characterization of divergence and spatial chirp.

    PubMed

    Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-09-01

    We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

  15. General solution for quantitative dark-field contrast imaging with grating interferometers

    NASA Astrophysics Data System (ADS)

    Strobl, M.

    2014-11-01

    Grating interferometer based imaging with X-rays and neutrons has proven to hold huge potential for applications in key research fields conveying biology and medicine as well as engineering and magnetism, respectively. The thereby amenable dark-field imaging modality implied the promise to access structural information beyond reach of direct spatial resolution. However, only here a yet missing approach is reported that finally allows exploiting this outstanding potential for non-destructive materials characterizations. It enables to obtain quantitative structural small angle scattering information combined with up to 3-dimensional spatial image resolution even at lab based x-ray or at neutron sources. The implied two orders of magnitude efficiency gain as compared to currently available techniques in this regime paves the way for unprecedented structural investigations of complex sample systems of interest for material science in a vast range of fields.

  16. The optical design of a far infrared imaging FTS for SPICA

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Zuluaga, Pablo; Jellema, Willem; González Fernández, Luis Miguel; Belenguer, Tomas; Torres Redondo, Josefina; Kooijman, Peter Paul; Najarro, Francisco; Eggens, Martin; Roelfsema, Peter; Nakagawa, Takao

    2014-08-01

    This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.

  17. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  18. VLT/PIONIER Imaging of Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Montargès, Miguel

    2018-04-01

    PIONIER (Precision Integrated-Optics Near-infrared Imaging ExpeRiment) was the first 4-telescope instrument installed at the Very Large Telescope Interferometer (VLTI) in 2010. Benefiting from the multiple interferometric configurations available at the Cerro Paranal observatory, it can efficiently image stellar surfaces. With their large linear sizes, nearby red supergiant stars are among the most interesting targets for such instrument. Near infrared interferometry allows to study their surface in order to get a better understanding of their mass loss, mostly by constraining the characteristics of their photospheric features. I will review recent results obtain with VLTI/PIONIER on red supergiant stars, and emphasize the different techniques used to analyze these observations.

  19. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  20. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  1. Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiances

    NASA Astrophysics Data System (ADS)

    Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine

    2009-03-01

    Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.

  2. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2014-11-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying on-board MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izana, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because of similar sensitivities. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES one, which are bias corrected, but an important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observations comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.

  3. High Resolution SOFIA/EXES Spectroscopy of CH4 and SO2 toward Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Boogert, Abraham C. A.; Richter, Matt; DeWitt, Curtis; Indriolo, Nick; Neufeld, David A.; Karska, Agata; Bergin, Edwin A.; Smith, Rachel L.; Montiel, Edward

    2017-01-01

    The ro-vibrational transitions of molecules in the near to mid-infrared are excellent tracers of the composition, dynamics, and excitation of the inner regions of Young Stellar Objects (YSOs). They sample a wide range of excitations in a short wavelength range, they can be seen in absorption against strong hot dust continuum sources, and they trace molecules without permanent dipole moment not observable at radio wavelengths. In particular, at high infrared spectral resolution, spatial scales smaller than those imaged by millimeter wave interferometers can be studied dynamically.We present high resolution (R=λ/Δλ˜50,000-100,000 6-12 km/s) infrared (7-8 μm) spectra of massive YSOs observed with the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory For Infrared Astronomy (SOFIA). Absorption lines of gas phase methane (CH4) are detected in our Cycle 2 observations. CH4 is thought to be a starting point of the formation of carbon chain molecules. Abundances are derived in the different dynamical regions along the sight-line towards the central star by comparing the line profiles to those of CO and other species observed at ground based facilities such as EXES' sister instrument TEXES at IRTF and Gemini. A search is also conducted for sulfur-dioxide, using data from our ongoing Cycle 4 program. SO2 was previously detected towards these massive YSOs with the space-based ISO/SWS instrument (Keane et al. 2001, A&A 376, L5) at much lower spectral resolution (R˜2,000). At high spectral resolution we should be able to pin-point the dynamical location of this SO2 gas. Up to 98% of the sulfur in dense clouds and protostellar envelopes is presently missing, and we are searching for that with the EXES/SOFIA observations.

  4. The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.

    2014-07-01

    The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.

  5. Interferometer-Controlled Optical Tweezers Constructed for Nanotechnology and Biotechnology

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.

  6. Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering.

    PubMed

    Masoudi, Ali; Belal, Mohammad; Newson, Trevor P

    2013-09-01

    A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.

  7. An analysis of water in galactic infrared sources using the NASA Lear Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Hilgeman, T.

    1979-01-01

    The Michelson interferometer system on the NASA Lear Jet Airborne Observatory is described as well as the data reduction procedures. The objects observed (standard stars, M stars, a nebula, planets, and the moon) are discussed and the observing parameters are listed for each flight date. The spectra obtained from these data flights are presented, grouped by class of object.

  8. Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer

    DTIC Science & Technology

    2015-09-18

    geostationary satel- lite with the Navy Prototype Optical Interferome- ter,” in Proc. Optical and Infrared Interferometry II, W. C. Danchi, F...Cormier, “Imag- ing of geostationary satellites with the MRO inter- ferometer,” in Proc. Advanced Maui Optical and Space Surveillance Technologies... geostationary satellites: Signal-to-noise considerations,” in Proc. Advanced Maui Optical and Space Surveillance Technologies Conference, 2011. 6. D

  9. Technology Plan for the Terrestrial Planet Finder Interferometer

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Dooley, Jennifer A. (Editor)

    2005-01-01

    The technology plan for the Terrestrial Planet Finder Interferometer (TPF-I) describes the breadth of technology development currently envisaged to enable TPF-I to search for habitable worlds around nearby stars. TPF-I is currently in Pre-Phase A (the Advanced Study Phase) of its development. For planning purposes, it is expected to enter into Phase A in 2010 and be launched sometime before 2020. TPF-I is being developed concurrently with the Terrestrial Planet Finder Coronagraph (TPF-C), whose launch is anticipated in 201 6. The missions are being designed with the capability to detect Earth-like planets should they exist in the habitable zones of Sun-like (F,G, and K) stars out to a distance of about 60 light-years. Each mission will have the starlight-suppression and spectroscopic capability to enable the characterization of extrasolar planetary atmospheres, identifying biomarkers and signs of life. TPF-C is designed as a visible-light coronagraph; TPF-I is designed as a mid-infrared formation-flying interferometer. The two missions, working together, promise to yield unambiguous detections and characterizations of Earth-like planets. The challenges of planet detections with mid-infrared formation-flying interferometry are described within this technology plan. The approach to developing the technology is described through roadmaps that lead from our current state of the art through the different phases of mission development to launch. Technology metrics and milestones are given to measure progress. The emphasis of the plan is development and acquisition of technology during pre-Phase A to establish feasibility of the mission to enter Phase A sometime around 2010. Plans beyond 2010 are outlined. The plan contains descriptions of the development of new component technology as well as testbeds that demonstrate the viability of new techniques and technology required for the mission. Starlight-suppression (nulling) and formation-flying technology are highlighted. Although the techniques are described herein, the descriptions are only at a high-level, and tutorial material is not included. The reader is expected to have some familiarity with the principles of long-baseline mid-infrared interferometry. Selected references to existing literature are given where relevant.

  10. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  11. The 1.5 meter solar telescope GREGOR

    NASA Astrophysics Data System (ADS)

    Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A.

    2012-11-01

    The 1.5 m telescope GREGOR opens a new window to the understanding of solar small-scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro-polarimeter for the visible wavelength range, the GRating Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest solar telescope and number 3 in the world. Its all-reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR is equipped with a high-order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro-polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness.

  12. The close circumstellar environment of the semi-regular S-type star π 1 Gruis

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Chesneau, O.; Ohnaka, K.; Quirrenbach, A.; Lopez, B.

    2008-05-01

    Aims: We study the close circumstellar environment of the nearby S-type star π1 Gruis using high spatial-resolution, mid-infrared observations from the ESO/VLTI. Methods: Spectra and visibilities were obtained with the MIDI interferometer on the VLT Auxiliary Telescopes. The cool M5III giant β Gruis was used as bright primary calibrator, and a dedicated spectro-interferometric study was undertaken to determine its angular diameter accurately. The MIDI measurements were fitted with the 1D numerical radiative transfer code DUSTY to determine the dust shell parameters of π1 Gruis. Taking into account the low spatial extension of the model in the 8-9 μm spectral band for the smallest projected baselines, we consider the possibility of a supplementary molecular shell. Results: The MIDI visibility and phase data are mostly dominated by the spherical 21 mas (694 R_⊙) central star, while the extended dusty environment is over-resolved even with the shortest baselines. No obvious departure from spherical symmetry is found on the milliarcsecond scale. The spectro-interferometric observations are well-fitted by an optically thin (τ_dust<0.01 in the N band) dust shell that is located at about 14 stellar radii with a typical temperature of 700 K and composed of 70% silicate and 30% of amorphous alumina grains. An optically thin (τ_mol<0.1 in the N band) H{2}O + SiO molecular shell extending from the photosphere of the star up to 4.4 stellar radii with a typical temperature of 1000 K is added to the model to improve the fit in the 8-9 μm spectral band. We discuss the probable binary origin of asymmetries as revealed by millimetric observations. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 077.D-0294(D/E/F). Reduced visibilities and differential phases are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/482/561

  13. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator.

    PubMed

    Thangaraj, J; Andonian, G; Thurman-Keup, R; Ruan, J; Johnson, A S; Lumpkin, A; Santucci, J; Maxwell, T; Murokh, A; Ruelas, M; Ovodenko, A

    2012-04-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (~0.24 mm) and 1.5 ps (~0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches. © 2012 American Institute of Physics

  14. Sun Radio Interferometer Space Experiment (SunRISE)

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 < f < 15 MHz) radio bursts that always are detected from space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  15. Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry

    NASA Technical Reports Server (NTRS)

    Hong, Yie-Ming

    1973-01-01

    Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.

  16. Demonstration of a real-time interferometer as a bunch-lenght monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-03-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (-0.24 mm) and 1.5 ps (-0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  17. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-04-15

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps ({approx}0.24 mm) and 1.5 ps ({approx}0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  18. Comparison Study of Lightning observations from VHF interferometer and Geostationary Lightning Mapper

    NASA Astrophysics Data System (ADS)

    Kudo, A.; Stock, M.; Ushio, T.

    2017-12-01

    We compared the optical observation from Geostationary Lightning Mapper (GLM) which is mounted on the geostationary meteorological satellite GOES-16 launched last year, and the radio observations from the ground-based VHF broad band interferometer. GLM detects 777.4 nm wavelength infrared optical signals from thunderstorm cells which are illuminated by the heated path during lightning discharge, and was developed mainly for the purpose of increasing the lead time for warning of severe weather and clarifying the discharge mechanism. Its detection has 2 ms frame rate, and 8 km square of space resolution at nadir. The VHF broad band interferometer is able to capture the electromagnetic waves from 20 MHz to 75 MHz and estimate the direction of arrival of the radiation sources using the interferometry technique. This system also has capability of observing the fast discharge process which cannot be captured by other systems, so it is expected to able to make detailed comparison. The recording duration of the system is 1 second. We installed the VHF broad band interferometer which consists of three VHF antenna and one fast antenna at Huntsville, Alabama from April 22nd to May 15th and in this total observation period, 720 triggers of data were observed by the interferometer. For comparison, we adopted the data from April 27th , April 30th. Most April 27th data has GLM "event" detection which is coincident time period. In time-elevation plot comparison, we found GLM detection timing was well coincide with interferometer during K-changes or return strokes and few detection during breakdown process. On the other hand, no GLM detection near the site for all data in April 30th and we are triyng to figure out the reason. We would like to thank University of Alabama Huntsville, New Mexico Institute of Mining and Technology, and RAIRAN Pte. Ltd for the help during the campaign.

  19. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits.

    PubMed

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo; Lin, Timothy; Zhou, Jianyang; Ye, Longfang; Cai, Zhiping

    2015-12-14

    Modulating spatial near-infrared light for ultra-compact electro-optic devices is a critical issue in optical communication and imaging applications. To date, spatial near-infrared modulators based on graphene have been reported, but they showed limited modulation effects due to the relatively weak light-graphene interaction. In combination with graphene and metallic nanoslits, we design a kind of ultrathin near-infrared perfect absorber with enhanced spatial modulation effects and independence on a wide range of incident angles. The modulated spectral shift of central wavelength is up to 258.2 nm in the near-infrared range, which is more promising in applications than state-of-the-art devices. The modulation enhancement is attributed to the plasmonic nanoslit mode, in which the optical electric field is highly concentrated in the deep subwavelength scale and the light-graphene interaction is significantly strengthened. The physical insight is deeply revealed by a combination of equivalent circuit and electromagnetic field analysis. The design principles are not only crucial for spatial near-infrared modulators, but also provide a key guide for developing active near-infrared patch nanoantennas based on graphene.

  20. Performance and applications of a hypertemporal hyperspectral Fourier-transform infrared spectroradiometer

    NASA Astrophysics Data System (ADS)

    King, Bruce H.; Ellis, Thomas; Old, Tom E.

    2009-05-01

    A fast-scanning, high-resolution FTIR spectroradiometer has been designed and built for use in remote sensing, stand-off detection, and spectral-temporal characterization of fast, energetic infrared events. The instrument design uses a Michelson-type interferometer with a rotary modulator which is capable of continuous measurement of infrared spectra at a rate of 1000 scans per second with 4 cm-1 resolution in the 2 - 25 micron spectral range. Sensitivity, spectral accuracy, and radiometric precision are discussed along with specific design parameters. This instrument can be used for passive sensing as a stand-alone sensor, or for active sensing as a receiver when used in conjunction with a highenergy excitation source such as a laser. Applications include muzzle flash signature measurement, ordnance detonation characterization, missile plume identification, and rocket motor combustion diagnostics.

  1. The Navy Precision Optical Interferometer: an update

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Baines, Ellyn K.; Schmitt, Henrique R.; Restaino, Sergio R.; Clark, James H.; Benson, James A.; Hutter, Donald J.; Zavala, Robert T.; van Belle, Gerard T.

    2016-08-01

    We describe the current status of the Navy Precision Optical Interferometer (NPOI), including developments since the last SPIE meeting. The NPOI group has added stations as far as 250m from the array center and added numerous infrastructure improvements. Science programs include stellar diameters and limb darkening, binary orbits, Be star disks, exoplanet host stars, and progress toward high-resolution stellar surface imaging. Technical and infrastructure projects include on-sky demonstrations of baseline bootstrapping with six array elements and of the VISION beam combiner, control system updates, integration of the long delay lines, and updated firmware for the Classic beam combiner. Our plans to add up to four 1.8 m telescopes are no longer viable, but we have recently acquired separate funding for adding three 1 m AO-equipped telescopes and an infrared beam combiner to the array.

  2. Direct Interferometric Imaging with IOTA Interferometer: Morphology of the Water Shell around U Ori

    NASA Astrophysics Data System (ADS)

    Pluzhnik, Eugene; Ragland, S.; Le Coroller, H.; Cotton, W.; Danchi, W.; Traub, W.; Willson, L.

    2007-12-01

    Optical interferometric observations of Mira stars with adequate resolution using the 3-telescope Infrared Optical Telescope Array (IOTA) interferometer have shown detectable asymmetry in several Mira stars. Several mechanisms have been proposed to explain the observed asymmetry. In this paper, we present subsequent IOTA observations of a Mira star, namely, U Ori taken at 1.51, 1.64 and 1.78 μm in 2005. The reconstructed images based on a model independent algorithm are also presented. These images show asymmetric structures of the water shell that is similar to the structure of 22 GHz masers obtained by Vlemmings et al. in 2003. We explore the possibility of the detection of molecular shell rotation with a period of about 30 years by comparing our results with radio observations and discuss a possible geometric structure of the shell.

  3. White Light Heterodyne Interferometry SNR

    DTIC Science & Technology

    2015-04-09

    interferometers in the visible- and near-IR, where shot - noise -limited detectors are available. In the LWIR, the advantage of a direct detection...wavebands where shot - noise -limited detection is possible with direct detection systems, the relationship changes in the mid-wave infrared (MWIR) and...flux, without either having to split the light N – 1 ways or take the extra shot - noise penalty from Fizeau beam combining light from all apertures

  4. Results of Absolute Cavity Pyrgeometer (ACP), InfraRed Integrating Sphere (IRIS), and Atmospheric Emitted Radiance Interferometer (AERI) Comparisons and CIMO Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Ibrahim M; Dooraghi, Michael R; Sengupta, Manajit

    Presenting results of five comparisons between ACPs and IRISs and the difference between the longwave irradiance measured by the ACPs and IRISs versus the average irradiance measured by the WISG. The process of CIMO recommendation to establish the world reference for measuring the atmospheric longwave irradiance with traceability to the International System of Units (SI) is also presented.

  5. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-10-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lenses. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far, commercial measurement systems were not available for testing of IR objectives since most materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The set-up is based on a Michelson interferometer in which the light from a broadband superluminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative distances of the lens surfaces are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. Together with an LWIR autocollimator, this technique allows for the determination of centering errors, lens thicknesses and air spacings of assembled IR objective lenses with a micron accuracy. It is therefore a tool for precision manufacturing and quality control.

  6. A long-wave infrared hyperspectral sensor for Shadow class UAVs

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.; Akagi, Jason T.; Hinrichs, John L.; Crites, S. T.; Wright, R.

    2013-05-01

    The University of Hawaii has developed a concept to ruggedize an existing thermal infrared hyperspectral system for use in the NASA SIERRA UAV. The Hawaii Institute of Geophysics and Planetology has developed a suite of instruments that acquire high spectral resolution thermal infrared image data with low mass and power consumption by combining microbolometers with stationary interferometers, allowing us to achieve hyperspectral resolution (20 wavenumbers between 8 and 14 micrometers), with signal to noise ratios as high as 1500:1. Several similar instruments have been developed and flown by our research group. One recent iteration, developed under NASA EPSCoR funding and designed for inclusion on a microsatellite (Thermal Hyperspectral Imager; THI), has a mass of 11 kg. Making THI ready for deployment on the SIERRA will involve incorporating improvements made in building nine thermal interferometric hyperspectral systems for commercial and government sponsors as part of HIGP's wider program. This includes: a) hardening the system for operation in the SIERRA environment, b) compact design for the calibration system, c) reconfiguring software for autonomous operation, d) incorporating HIGP-developed detectors with increased responsiveness at the 8 micron end of the TIR range, and e) an improved interferometer to increase SNR for imaging at the SIERRA's air speed. UAVs provide a unique platform for science investigations that the proposed instrument, UAVTHI, will be well placed to facilitate (e.g. very high temporal resolution measurements of temporally dynamic phenomena, such as wildfires and volcanic ash clouds). Its spectral range is suited to measuring gas plumes, including sulfur dioxide and carbon dioxide, which exhibit absorption features in the 8 to 14 micron range.

  7. Far infrared diagnostics of electron concentration in combustion MHD plasmas using interferometry and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Kuzmenko, P. J.

    1985-12-01

    The plasma electrical conductivity is a key parameter in determining the efficiency of an magnetohydrodynamic (MHD) generator. Electromagnetic waves offer an accurate, non-intrusive probe. The electron concentration and mobility may be deduced from the refractive index and absorption coefficient measured with an interferometer. The first experiment used an HCOOH laser at 393.6 microns feeding a Michelson interferometer mounted around a combustor duct with open ports. Simultaneous measurements of positive ion density and plasma temperature made with a Langmuir probe and line reversal apparatus verified the operation of the interferometer. With a magnetic field present, measurement of the polarization rotation and induced ellipticity in a wave traveling along the field provides information on the plasma conductivity. Compared to interferometry, diagnostic apparatus based on Faraday rotation offers simpler optics and requires far less stringent mechanical stability at a cost of lower sensitivity. An advanced detection scheme, using a polarizing beam splitter improved the sensitivity to be comparable to that of interferometry. Interferometry is the preferred technique for small scale, high accuracy measurements, with Faraday rotation reserved for large systems or measurements within a working generator.

  8. Mid-Infrared Spectrally-Dispersed Visibilities of Massive Stars Observed with the MIDI Instrument on the VLTI

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.; Rajagopal, J.; Barry, R.; Richardson, L. J.; Lopez, B.; Chesneau, O.; Danchi, W. C.

    The mechanism driving dust production in massive stars remains somewhat mysterious. However, recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet (WR) stars strongly support the theory that dust formation in these objects is a result of colliding winds in binaries. Consistent with this theory, there is also evidence that suggests the prototypical Luminous Blue Variable (LBV) star, Eta Carinae, is a binary. To explore and quantify this possible explanation, we have conducted a high resolution interferometric survey of late-type massive stars utilizing the VLTI, Keck, and IOTA interferometers. We present here the motivation for this study as well as the first results from the MIDI instrument on the VLTI. (Details of the Keck Interferometer and IOTA interferometer observations are discussed in this workshop by Rajagopal et al.). Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. The pectrally-dispersed visibilities obtained with the MIDI observations will provide the first steps towards answering many outstanding issues in our understanding of this critical phase of massive star evolution

  9. Progress on the FIReTIP Diagnostic on NSTX-U

    NASA Astrophysics Data System (ADS)

    Scott, Evan; Barchfeld, Robert; Riemenschneider, Paul; Muscatello, Chris; Sohrabi, Mohammad; Domier, Calvin; Ren, Yang; Kaita, Robert; Luhmann, Neville, Jr.; NSTX-U Team

    2016-10-01

    The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system on NSTX-U at the PPPL aims to provide robust, line-averaged electron density measurements. The system consists of three optically-pumped 119 µm methanol lasers, one of which can be tuned via Stark broadening, allowing for uniquely high intermediate frequencies and time resolutions. One of the major goals of FIReTIP is to incorporate it into the NSTX-U plasma control system (PCS) for real-time plasma density feedback control. The front-end optics mounted to Bay G, which shape and position the beam going into the plasma, and internal retroreflector located near Bay B, which facilitates double-pass measurements, are hard-mounted to the NSTX-U vacuum vessel. Because interferometric density measurements are sensitive to vibrational effects, FIReTIP has been upgraded to a two-color interferometer system with the inclusion of a 633 nm laser interferometer for the direct measurement of vibrations and a field programmable gate array (FPGA) for the subsequent subtraction of vibrational effects from the density measurement in real-time. This work is supported by the U.S. Department of Energy Grant DE-FG02-99ER54518.

  10. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  11. Seasonal Disappearance of Far-Infrared Haze in Titan's Stratosphere

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Anderson, C. M.; Flasar, F. M.; Nixon, C. A.; Kunde, V. G.; Achterberg, R. K.; Cottini, V.; deKok, R.; Coustenis, A.; Vinatier, S.; hide

    2012-01-01

    A far-infrared emission band attributed to volatile or refractory haze in Titan's stratosphere has been decreasing in intensity since Cassini's arrival in 2004. The 220 cm(sup -1) feature, first seen by the Voyager Infrared Interferometer Spectrometer, has only been found in Titan's winter polar region. The emission peaks at about 140 km altitude near the winter stratospheric temperature minimum. Observations recorded over the period 2004-2012 by the Composite Infrared Spectrometer on Cassini show a decrease in the intensity of this feature by about a factor of four. Possible seasonal causes of this decline are an increase in photolytic destruction of source chemicals at high altitude, a lessening of condensation as solar heating increased, or a weakening of downwelling of vapors. As of early 2012, the 220 cm(sup -1) haze has not yet been detected in the south. The haze composition is unknown, but its decrease is similar to that of HC3N gas in Titan's polar stratosphere, pointing to a nitrile origin.

  12. Synchrotron Based Fourier Transform Far-Infrared Spectroscopy of CH3NO2

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Billinghurst, Brant E.; May, Tim; Dawadi, Mahesh B.; Perry, David S.

    2013-06-01

    As a slightly asymmetric top molecule (κ = 0.25) with both a free internal rotor and a methyl group, CH_3NO_2 is a benchmark system for studies of torsional motion in a 6-fold potential and of the coupling between a large amplitude vibration and other small-amplitude vibrations. For this purpose, rotationally resolved infrared spectra of CH_3NO_2, have been recorded using the Far-Infrared beamline at the Canadian Light Source, which is equipped with a high resolution Bruker IFS 125HR spectrometer. The observed infrared spectra, in the range 550-1000cm^{-1}, are the average of 300 interferometer scans collected at a nominal resolution of 0.00096cm^{-1}. Two a-type bands, centered at 657.08cm^{-1}for NO symmetric bend and at 917.99cm^{-1}for CN-stretch, have been measured. The initial analysis of a number of torsional states is currently being carried out and the progress will be reported in this talk.

  13. Fundamental limitations of cavity-assisted atom interferometry

    NASA Astrophysics Data System (ADS)

    Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.

    2017-11-01

    Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.

  14. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    NASA Astrophysics Data System (ADS)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.

    2018-03-01

    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  15. Laser heterodyne detection techniques. [for atmospheric monitoring applications

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1976-01-01

    The principles of heterodyne radiometry are examined, taking into account thermal radiation, the Dicke microwave radiometer, photomixing in the infrared, and signal-to-noise considerations. The passive heterodyne radiometer is considered and a description is presented of heterodyne techniques in active monitoring systems. Attention is given to gas emissivities in the infrared, component requirements, experimental heterodyne detection of gases, a comparison of the passive heterodyne radiometer with the Michelson interferometer-spectrometer, airborne monitoring applications, turbulence effects on passive heterodyne radiometry, sensitivity improvements with heterodyning, atmosphere-induced degradation of bistatic system performance, pollutant detection experiments with a bistatic system, and the airborne laser absorption spectrometer. Future improvements in spectral flexibility are also discussed.

  16. Design of a cryogenic test facility for evaluating the performance of interferometric components of the SPICA/SAFARI instrument

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.

  17. Select Methodology for Validating Advanced Satellite Measurement Systems

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xi; Smith, William L.

    2008-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns including satellite under-flights with well calibrated FTS sensors aboard high-altitude aircraft are an essential part of the validation task. This presentation focuses on an overview of validation methodology developed for assessment of high spectral resolution infrared systems, and includes results of preliminary studies performed to investigate the performance of the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A satellite.

  18. Analysis and design of optically pumped far infrared oscillators and amplifiers

    NASA Technical Reports Server (NTRS)

    Galantowicz, T. A.

    1978-01-01

    A waveguide laser oscillator was designed and experimental measurements made of relationships among output power, pressure, pump power, pump frequency, cavity tuning, output beam pattern, and cavity mirror properties for various active gases. A waveguide regenerative amplifier was designed and gain measurements were made for various active gases. An external Fabry-Perot interferometer was fabricated and used for accurate wavelength determination and for measurements of the refractive indices of solids transparent in the far infrared. An electronic system was designed and constructed to provide an appropriate error signal for use in feedback control of pump frequency. Pump feedback from the FIR laser was decoupled using a vibrating mirror to phase modulate the pump signal.

  19. A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    NASA Astrophysics Data System (ADS)

    Piron, P.; Delacroix, C.; Huby, E.; Mawet, D.; Karlsson, M.; Ruane, G.; Habraken, S.; Absil, O.; Surdej, J.

    2015-09-01

    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed.

  20. OVMS: the optical path difference and vibration monitoring system for the LBT and its interferometers

    NASA Astrophysics Data System (ADS)

    Kürster, M.; Bertram, T.; Borelli, J. L.; Brix, M.; Gässler, W.; Herbst, T. M.; Naranjo, V.; Pott, J.-U.; Trowitzsch, J.; Connors, T. E.; Hinz, P. M.; McMahon, T. J.; Ashby, D. S.; Brynnel, J. G.; Cushing, N. J.; Edgin, T.; Esguerra, J. D.; Green, R. F.; Kraus, J.; Little, J.; Beckmann, U.; Weigelt, G. P.

    2010-07-01

    Characterisation, mitigation and correction of telescope vibrations have proven to be crucial for the performance of astronomical infrared interferometers. The project teams of the interferometers for the LBT, LINC-NIRVANA and LBTI, and LBT Observatory (LBTO) have embarked on a joint effort to implement an accelerometer-based vibration measurement system distributed over the optical elements of the LBT. OVMS, the Optical Path Difference and Vibration Monitoring System will serve to (i) ensure conditions suitable for adaptive optics (AO) and interferometric (IF) observations and (ii) utilize vibration information, converted into tip-tilt and optical path difference data, in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers. The system hardware is mainly developed by Steward Observatory's LBTI team and its installation at the LBT is underway. The OVMS software development and associated computer infrastructure is the responsibility of the LINC-NIRVANA team at MPIA Heidelberg. Initially, the OVMS will fill a data archive provided by LBTO that will be used to study vibration data and correlate them with telescope movements and environmental parameters thereby identifiying sources of vibrations and to eliminate or mitigate them. Data display tools will help LBTO staff to keep vibrations within predefined thresholds for quiet conditions for AO and IF observations. Later-on real-time data from the OVMS will be fed into the control loops of the AO systems and IF instruments in order to permit the correction of vibration signals with frequencies up to 450 Hz.

  1. Cloud properties inferred from 8-12 micron data

    NASA Technical Reports Server (NTRS)

    Strabala, Kathleen I.; Ackerman, Steven A.; Menzel, W. Paul

    1994-01-01

    A trispectral combination of observations at 8-, 11-, and 12-micron bands is suggested for detecting cloud and cloud properties in the infrared. Atmospheric ice and water vapor absorption peak in opposite halves of the window region so that positive 8-minus-11-micron brightness temperature differences indicate cloud, while near-zero or negative differences indicate clear regions. The absorption coefficient for water increases more between 11 and 12 microns than between 8 and 11 microns, while for ice, the reverse is true. Cloud phases is determined by a scatter diagram of 8-minus-11-micron versus 11-minus-12-micron brightness temperature differences; ice cloud shows a slope greater than 1 and water cloud less than 1. The trispectral brightness temperature method was tested upon high-resolution interferometer data resulting in clear-cloud and cloud-phase delineation. Simulations using differing 8-micron bandwidths revealed no significant degradation of cloud property detection. Thus, the 8-micron bandwidth for future satellites can be selected based on the requirements of other applications, such as surface characterization studies. Application of the technique to current polar-orbiting High-Resolution Infrared Sounder (HIRS)-Advanced Very High Resolution Radiometer (AVHRR) datasets is constrained by the nonuniformity of the cloud scenes sensed within the large HIRS field of view. Analysis of MAS (MODIS Airborne Simulator) high-spatial resolution (500 m) data with all three 8-, 11-, and 12-micron bands revealed sharp delineation of differing cloud and background scenes, from which a simple automated threshold technique was developed. Cloud phase, clear-sky, and qualitative differences in cloud emissivity and cloud height were identified on a case study segment from 24 November 1991, consistent with the scene. More rigorous techniques would allow further cloud parameter clarification. The opportunities for global cloud delineation with the Moderate-Resolution Imaging Spectrometer (MODIS) appear excellent. The spectral selection, the spatial resolution, and the global coverage are all well suited for significant advances.

  2. Operating manual holographic interferometry system for 2 x 2 foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Craig, J. E.

    1981-01-01

    A holographic interferometer system was installed in a 2X2 foot transonic wind tunnel. The system incorporates a modern, 10 pps, Nd:YAG pulsed laser which provides reliable operation and is easy to align. The spatial filtering requirements of the unstable resonator beam are described as well as the integration of the system into the existing Schieren system. A two plate holographic interferometer is used to reconstruct flow field data. For static wind tunnel models the single exposure holograms are recorded in the usual manner; however, for dynamic models such as oscillating airfoils, synchronous laser hologram recording is used.

  3. Using a Mach-Zehnder interferometer to deduce nitrogen density mapping

    NASA Astrophysics Data System (ADS)

    Boudaoud, F.; Lemerini, M.

    2015-07-01

    This work presents an optical method using the Mach-Zehnder interferometer. We especially diagnose a pure nitrogen gas subjected to a point to plane corona discharge, and visualize the density spatial map. The interelectrode distance equals 6 mm and the variation of the optical path has been measured at different pressures: 220 Torr, 400 Torr, and 760 Torr. The interferograms are recorded with a CCD camera, and the numerical analysis of these interferograms is assured by the inverse Abel transformation. The nitrogen density is extracted through the Gladstone-Dale relation. The obtained results are in close agreement with values available in the literature.

  4. Interferometric study of Betelgeuse in H band

    NASA Astrophysics Data System (ADS)

    Haubois, X.; Perrin, G.; Lacour, S.; Schuller, P. A.; Monnier, J. D.; Berger, J.-P.; Ridgway, S. T.; Millan-Gabet, R.; Pedretti, E.; Traub, W. A.

    2006-06-01

    We present 3 telescope interferometric observations of the super giant star Betelgeuse (Alpha Ori, M2Iab) using the IOTA/IONIC interferometer (Whipple Observatory, Arizona) in early October 2005. Since IOTA is a 3 telescope interferometer, we were able to make closure phase measurements which allow us to image the star with several pixels across the disk. We discuss the fondamental parameters of Betelgeuse such as diameter, limb darkening and effective temperature. For the first time at this spatial resolution in the H band, closure phases provide interesting insights on the features of the object since we detect a spot corresponding to 0.5% of the total received flux.

  5. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  6. Development of the First Latin-American Radio Interferometer

    NASA Astrophysics Data System (ADS)

    Cecatto, J. R.; Sawant, H. S.; Fernandes, F. C. R.; Vilas Boas, J. W. S.

    2009-05-01

    First Latin-American radio interferometer is being developed at INPE, Cachoeira Paulista, Brazil, in a collaborative program between several national and international institutions coordinated by a Brazilian team of scientists and engineers. The interferometer is designated as Brazilian Decimetric Array (BDA) and its 5 element prototype of 4 m diameter antennas (Phase-I) was put into operation by November 2004 at Cachoeira Paulista (Longitude: 45° 00' 20'' W and Latitude: 22° 41' 19'' S) for engineering and operational tests with a frequency range of 1.2-1.7 GHz, baselines up to 216 m in the E-W direction, and time resolution of 0.1 second. Observations of the Sun and strong calibration sources (Cygnus-A, Taurus-A) were carried out. Unidimensional solar map at 1.6 GHz was produced with a spatial resolution less than 3 arcminutes. Also, investigation of the solar brightness temperature (T[b]) variation was possible on a day-to-day and hour-to-hour basis. This investigation show for example a steady increase on T[b] starting from 15:00 UT on December 08, 2004. Interpretations of these results will be presented. In 2005, the first phase of development has finished. Now, Phase-II has begun during which the array will have 21 additional antennas and operate with increased frequency range as well as improved spatial resolution. It is planned to finish it by March 2009. Details of this will be presented.

  7. Utilizing the Precessing Orbit of TRMM to Produce Hourly Corrections of Geostationary Infrared Imager Data with the VIRS Sensor

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra

    2017-01-01

    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration coefficients. Then VIRS is used as a diurnal calibration reference transfer to produce hourly corrections of GEOsat IR imager BT. For the 9 three-axis stabilized GEO imagers concurrent with VIRS, the midnight effect increased the BT on average by 0.5 K (11 microns) and 0.4 K (12 microns), with a peak at approx.01:00 local time. As expected, the spin-stabilized GEOsats revealed a smaller diurnal temperature cycle (mostly < 0.2 K) with inconsistent peak hours.

  8. Spatially resolved mid-infrared observations of the triple system T Tauri

    NASA Astrophysics Data System (ADS)

    Ratzka, Th.; Schegerer, A. A.; Leinert, Ch.; Ábrahám, P.; Henning, Th.; Herbst, T. M.; Köhler, R.; Wolf, S.; Zinnecker, H.

    2009-08-01

    Aims: The aim of this study is to enhance our knowledge of the characteristics and distribution of the circumstellar dust associated with the individual components of the young hierarchical triple system T Tau. Methods: To reach this goal, observations in the N-band (8-13 μm) with the two-telescope interferometric instrument MIDI at the VLTI were performed. For the northern component of the T Tau system, projected baseline lengths of 43 m, 62 m, and 85 m were used. For the southern binary projected baseline lengths of equivalent resolution could be utilised. Our study is based on both the interferometric and the spectrophotometric measurements and is supplemented by new visual and infrared photometry. Also, the phases were investigated to determine the dominating mid-infrared source in the close southern binary. The data were fit with the help of a sophisticated physical disc model. This model utilises the radiative transfer code MC3D that is based on the Monte-Carlo method. Results: Extended mid-infrared emission is found around all three components of the system. Simultaneous fits to the photometric and interferometric data confirm the picture of an almost face-on circumstellar disc around T Tau N. Towards this star, the silicate band is seen in emission. This emission feature is used to model the dust content of the circumstellar disc. Clear signs of dust processing are found. Towards T Tau S, the silicate band is seen in absorption. This absorption is strongly pronounced towards the infrared companion T Tau Sa as can be seen from the first individual N-band spectra for the two southern components. Our fits support the previous suggestion that an almost edge-on disc is present around T Tau Sa. This disc is thus misaligned with respect to the circumstellar disc around T Tau N. The interferometric data indicate that the disc around T Tau Sa is oriented in the north-south direction, which favours this source as launching site for the east-western jet. We further determine from the interferometric data the relative positions of the components of the southern binary in the N-band. We find good agreement with recent position measurements in the near-infrared. Based on observations with the Very Large Telescope Interferometer (VLTI, proposal 074. C-0209(A) and 077.C-0176(C)).

  9. Adaptive spatial filtering using photochromic glass

    NASA Astrophysics Data System (ADS)

    Potton, R. J.

    1999-12-01

    Commercially available photochromic glasses exhibit a wide range of spectral sensitivities and darkening response times. Short wavelengths are more effective than long ones for causing darkening but at least one type of glass is effectively darkened by red light (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 633 nm) with an intensity of about 1 kW m-2. Used as adaptive spatial filters, these glasses attenuate a wavefront by an amount that depends on their recent exposure to light. One type of optical processing that can be performed with such filters is drift nulling in an interferometer excited by light of a wavelength within the sensitivity spectrum of the photochrome. This form of processing has been demonstrated by dithering the speckle pattern in a single-fibre multimode interferometer. The dither allows phase-sensitive detection techniques to be used in the detection of signal-induced phase variations in a frequency band extending from the inverse response time of the photochrome to the dither frequency.

  10. Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression.

    PubMed

    Gappinger, Robert O; Diaz, Rosemary T; Ksendzov, Alexander; Lawson, Peter R; Lay, Oliver P; Liewer, Kurt M; Loya, Frank M; Martin, Stefan R; Serabyn, Eugene; Wallace, James K

    2009-02-10

    Phase shifters are a key component of nulling interferometry, one of the potential routes to enabling the measurement of faint exoplanet spectra. Here, three different achromatic phase shifters are evaluated experimentally in the mid-infrared, where such nulling interferometers may someday operate. The methods evaluated include the use of dispersive glasses, a through-focus field inversion, and field reversals on reflection from antisymmetric flat-mirror periscopes. All three approaches yielded deep, broadband, mid-infrared nulls, but the deepest broadband nulls were obtained with the periscope architecture. In the periscope system, average null depths of 4x10(-5) were obtained with a 25% bandwidth, and 2x10(-5) with a 20% bandwidth, at a central wavelength of 9.5 mum. The best short term nulls at 20% bandwidth were approximately 9x10(-6), in line with error budget predictions and the limits of the current generation of hardware.

  11. A Multiwavelength Study of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    McCollough, M. L; Robinson, C. R.; Zhang, S. N.; Paciesas, W. S.; Harmon, B. A.; Hjellming, R. M.; Rupen, M.; Waltman, E. B.; Foster, R. S.; Ghigo, F. D.

    1997-01-01

    We present a global comparison of long term observations of the hard X-ray (20-100 keV), soft X-ray (1.5-12 keV), infrared (1-2 micron) and radio (2.25, 8.3 and 15 GHz) bands for the unusual X-ray binary Cygnus X-3. Data were obtained in the hard X-ray band from CGRO/BATSE, in the soft X-ray band from Rossi Xray Timing Explorer (RXTE)/ASM, in the radio band from the Green Bank Interferometer and Ryle Telescope and in the infrared band from various ground based observatories. Radio flares, quenched radio states and quiescent radio emission can all be associated with changes in the hard and soft X-ray intensity. The injection of plasma into the radio jet is directly related to changes in the hard and soft X-ray emission. The infrared observations are examined in the context of these findings.

  12. Aspheric figure generation using feedback from an infrared phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.; Ketelsen, D.

    An infrared phase-shifting interferometric system has been integrated with a novel optical figure generator at the University of Arizona Optical Sciences Center. This unique generator facility can produce generalized axially symmetric surface figures in a timely and cost-effective manner. The success of this facility depends on both its ability to efficiently remove material while forming the surface figure, and its ability to monitor the surface figure during the generation process to provide feedback to the optician. The facility has been used on several occasions to custom-generate off-axis parabolic segments. Figures to within 0.30 microns rms of the desired figure have been obtained. This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments, and how it is affected by the surface roughness produced by each generator tool.

  13. Surveying the IR corona during the 2017 solar eclipse

    NASA Astrophysics Data System (ADS)

    Bryans, P.; Hannigan, J. W.; Sewell, S. D.; Judge, P. G.

    2017-12-01

    The spectral emission of the infrared solar corona is the most promising direct diagnostic of the coronal magnetic field, and yet remains poorly measured. During the 2017 total solar eclipse, we will perform the first spectral survey of the IR corona using the NCAR Airborne Interferometer. This Fourier Transform Infrared Spectrometer is configured to observe the coronal spectrum from 1.5 to 5.5 microns at R 10,000 from a ground-based site. The location is atop Casper Mountain, Wyoming (42.73ºN, 106.32ºW, 2400 masl), 8 km from the center-line of totality. In this presentation, we will outline the need for such measurements, describe the instrument design and adaptation for the eclipse measurement, observation scheme, and present preliminary results. We will also discuss implications for observing infrared coronal lines from the ground, for example with the upcoming DKIST facility.

  14. Atomic emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  15. Grating Beam Combiner.

    DTIC Science & Technology

    1982-12-01

    with an nff-axis section of a 16-in. paraboloid. The expanded beam is split using a •• dielectrically coated 12.5-in. glass beam splitter at...equivalently the groove straightness). This was done prior to a recoating of the 12.5-in. beam splitter used in the interferometer after which it displayed...alternative to the full-aperture holographic sampler. It diffracts samples of an outgoing high-energy infrared (IR) beam and an incoming designator beam

  16. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  17. Navy Prototype Optical Interferometer observations of geosynchronous satellites.

    PubMed

    Hindsley, Robert B; Armstrong, J Thomas; Schmitt, Henrique R; Andrews, Jonathan R; Restaino, Sergio R; Wilcox, Christopher C; Vrba, Frederick J; Benson, James A; DiVittorio, Michael E; Hutter, Donald J; Shankland, Paul D; Gregory, Steven A

    2011-06-10

    Using a 15.9  m baseline at the Navy Prototype Optical Interferometer (NPOI), we have successfully detected interferometric fringes in observations of the geosynchronous satellite (geosat) DirecTV-9S while it glinted on two nights in March 2009. The fringe visibilities can be fitted by a model consisting of two components, one resolved (≳3.7  m) and one unresolved (∼1.1  m). Both the length of the glint and the specular albedos are consistent with the notion that the glinting surfaces are not completely flat and scatter reflected sunlight into an opening angle of roughly 15°. Enhancements to the NPOI that would improve geosat observations include adding an infrared capability, which could extend the glint season, and adding larger, adaptive-optics equipped telescopes. Future work may test the feasibility of observing geosats with aperture-masked large telescopes and of developing an array of six to nine elements.

  18. The Terrestrial Planet Finder and Darwin Missions

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2004-01-01

    Both in the United States and in Europe, teams of scientists and engineers are exploring the feasibility of the Terrestrial Planet Finder (TPF) and Darwin missions, which are designed to search for Earth-like planets in the habitable zone of nearby stars. In the US, the TPF Science Working Group is studying four options - small (4m by 6 m primary mirror) and large (4m by 10 m primary mirror) coronagraphs for planet detection at visible wavelengths, and structurally connected and free-flyer interferometers at thermal infrared wavelengths. The US TPF-SWG is charged with selecting an option for NASA by the end of 2006. In Europe the Darwin Terrestrial Exo-planet Advisory Team (TE- SAT) is exploring the free-flyer interferometer option only at this time. I will discuss the vurtures and difficulties of detecting and characterizing extra-solar planets in both wavelength regions as well as some of the technical challenges and progress in the past year.

  19. Electromagnetic evidence that SSS17a is the result of a binary neutron star merger

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Foley, R. J.; Kasen, D.; Murguia-Berthier, A.; Ramirez-Ruiz, E.; Coulter, D. A.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Boutsia, K.; Contreras, C.; Di Mille, F.; Madore, B. F.; Morrell, N.; Pan, Y.-C.; Prochaska, J. X.; Rest, A.; Rojas-Bravo, C.; Siebert, M. R.; Simon, J. D.; Ulloa, N.

    2017-12-01

    Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.

  20. A compact LWIR imaging spectrometer with a variable gap Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Gao, Jiaobo; Wang, Nan; Zhao, Yujie; Zhang, Lei; Gao, Shan

    2017-02-01

    Fourier transform spectroscopy is a widely employed method for obtaining spectra, with applications ranging from the desktop to remote sensing. The long wave infrared (LWIR) interferometric spectral imaging system is always with huge volume and large weight. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (FP) interferometer is researched. With the system working principle analyzed, theoretically, it is researched that how to make certain the primary parameter, such as, the reflectivity of the two interferometric cavity surfaces, field of view (FOV) and f-number of the imaging lens. A prototype is developed and a good experimental result of CO2 laser is obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.

  1. The use of a cubesat to validate technological bricks in space

    NASA Astrophysics Data System (ADS)

    Rakotonimbahy, E.; Vives, S.; Dohlen, K.; Savini, G.; Iafolla, V.

    2017-11-01

    In the framework of the FP7 program FISICA (Far Infrared Space Interferometer Critical Assessment), we are developing a cubesat platform which will be used for the validation in space of two technological bricks relevant for FIRI. The first brick is a high-precision accelerometer which could be used in a future space mission as fundamental element for the dynamic control loop of the interferometer. The second brick is a miniaturized version of an imaging multi-aperture telescope. Ultimately, such an instrument could be composed of numerous space-born mirror segments flying in precise formation on baselines of hundreds or thousands of meters, providing high-resolution glimpses of distant worlds. We are proposing to build a very first space-born demonstrator of such an instrument which will fit into the limited resources of one cubesat. In this paper, we will describe the detailed design of the cubesat hosting the two payloads.

  2. Electromagnetic evidence that SSS17a is the result of a binary neutron star merger.

    PubMed

    Kilpatrick, C D; Foley, R J; Kasen, D; Murguia-Berthier, A; Ramirez-Ruiz, E; Coulter, D A; Drout, M R; Piro, A L; Shappee, B J; Boutsia, K; Contreras, C; Di Mille, F; Madore, B F; Morrell, N; Pan, Y-C; Prochaska, J X; Rest, A; Rojas-Bravo, C; Siebert, M R; Simon, J D; Ulloa, N

    2017-12-22

    Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result. Copyright © 2017, American Association for the Advancement of Science.

  3. Retrieval of volcanic ash properties from the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Ventress, Lucy; Carboni, Elisa; Smith, Andrew; Grainger, Don; Dudhia, Anu; Hayer, Catherine

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI), on board both the MetOp-A and MetOp-B platforms, is a Fourier transform spectrometer covering the mid-infrared (IR) from 645-2760cm-1 (3.62-15.5 μm) with a spectral resolution of 0.5cm-1 (apodised) and a pixel diameter at nadir of 12km. These characteristics allow global coverage to be achieved twice daily for each instrument and make IASI a very useful tool for the observation of larger aerosol particles (such as desert dust and volcanic ash) and the tracking of volcanic plumes. In recent years, following the eruption of Eyjafjallajökull, interest in the the ability to detect and characterise volcanic ash plumes has peaked due to the hazards to aviation. The thermal infrared spectra shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. The ash signature depends upon both the composition and size distribution of ash particles as well as the altitude of the volcanic plume. To retrieve ash properties, IASI brightness temperature spectra are analysed using an optimal estimation retrieval scheme and a forward model based on RTTOV. Initially, IASI pixels are flagged for the presence of volcanic ash using a linear retrieval detection method based on departures from a background state. Given a positive ash signal, the RTTOV output for a clean atmosphere (containing atmospheric gases but no cloud or aerosol/ash) is combined with an ash/cloud layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. The retrieved parameters are ash optical depth (at a reference wavelength of 550nm), ash effective radius, layer altitude and surface temperature. The potential for distinguishing between different ash types is explored and a sensitivity study of the retrieval algorithm is presented. Results are shown from studies of the evolution and composition of ash plumes for recent volcanic eruptions.

  4. Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun

    2014-12-01

    Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

  5. φ-OTDR sensing system with bidirectional pumped fiber Raman amplifier and unbalanced MZ interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Tian, Ming; Dong, Lei

    2017-10-01

    In order to improve the detection distance and the sensitivity, we propose a novel distributed optical fiber sensing system. This system is composed of bidirectional pumping fiber Raman amplifier and unbalanced fiber Mach-Zehnder interferometer. Based on the interference mechanism of phase sensitive optical time domain reflectometer (φ-OTDR), the system can get the sensing information of the whole optical fiber by analyzing the backward scattered light. The interferometer is used as the demodulator of the sensing system, which consists of a 3×3 coupler and two faraday rotator mirrors. By means of the demodulator, the signal light is divided into three beams with fixed phase difference. To deal with these three signals, we can get the vibration information directly on the optical fiber. Through experimental study, this system has a high sensitivity. The maximum sensing length and the spatial resolution of the φ-OTDR system are 100 km and 10 m. The signal to noise ratio about 18 dB is achieved.

  6. Demonstration of a robust magnonic spin wave interferometer.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  7. Demonstration of a robust magnonic spin wave interferometer

    PubMed Central

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-01-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe. PMID:27443989

  8. Solar VLBI

    NASA Technical Reports Server (NTRS)

    Tapping, K. F.; Kuijpers, J.

    1986-01-01

    In April, 1981, radio telescopes at Dwingeloo (The Netherlands) and Onsala (Sweden) were used as a long-baseline interferometer at a wavelength of 18 cm. The baseline of 619 km gave a spatial resolution on the Sun of about 45 km. The major problems of Solar Very Long Baseline Interferometry are discussed.

  9. Dual-domain point diffraction interferometer

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2000-01-01

    A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.

  10. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  11. Imaging spectrometer measurement of water vapor in the 400 to 2500 nm spectral region

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.; Conel, James E.; Dozier, Jeff

    1995-01-01

    The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) measures the total upwelling spectral radiance from 400 to 2500 nm sampled at 10 nm intervals. The instrument acquires spectral data at an altitude of 20 km above sea level, as images of 11 by up to 100 km at 17x17 meter spatial sampling. We have developed a nonlinear spectral fitting algorithm coupled with a radiative transfer code to derive the total path water vapor from the spectrum, measured for each spatial element in an AVIRIS image. The algorithm compensates for variation in the surface spectral reflectance and atmospheric aerosols. It uses water vapor absorption bands centered at 940 nm, 1040 nm, and 1380 nm. We analyze data sets with water vapor abundances ranging from 1 to 40 perceptible millimeters. In one data set, the total path water vapor varies from 7 to 21 mm over a distance of less than 10 km. We have analyzed a time series of five images acquired at 12 minute intervals; these show spatially heterogeneous changes of advocated water vapor of 25 percent over 1 hour. The algorithm determines water vapor for images with a range of ground covers, including bare rock and soil, sparse to dense vegetation, snow and ice, open water, and clouds. The precision of the water vapor determination approaches one percent. However, the precision is sensitive to the absolute abundance and the absorption strength of the atmospheric water vapor band analyzed. We have evaluated the accuracy of the algorithm by comparing several surface-based determinations of water vapor at the time of the AVIRIS data acquisition. The agreement between the AVIRIS measured water vapor and the in situ surface radiometer and surface interferometer measured water vapor is 5 to 10 percent.

  12. CLAIRE: a Canadian Small Satellite Mission for Measurement of Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Sloan, James; Grant, Cordell; Germain, Stephane; Durak, Berke; McKeever, Jason; Latendresse, Vincent

    2016-07-01

    CLAIRE, a Canadian mission operated by GHGSat Inc. of Montreal, is the world's first satellite designed to measure greenhouse gas emissions from single targeted industrial facilities. Claire was launched earlier this year into a 500 km polar sun-synchronous orbit selected to provide an acceptable balance between return frequency and spatial resolution. Extensive simulations of oil & gas facilities, power plants, hydro reservoirs and even animal feedlots were used to predict the mission performance. The principal goal is to measure the emission rates of carbon dioxide and methane from selected targets with greater precision and lower cost than ground-based alternatives. CLAIRE will measure sources having surface areas less than 10 x 10 km2 with a spatial resolution better than 50 m, thereby providing industrial site operators and government regulators with the information they need to understand, manage and ultimately to reduce greenhouse gas emissions more economically. The sensor is based on a Fabry-Perot interferometer, coupled with a 2D InGaAs focal plane array operating in the short-wave infrared with a spectral resolution of about 0.1 nm. The patented, high étendue, instrument design provides signal to noise ratios that permit quantification of emission rates with accuracies adequate for most regulatory reporting thresholds. The very high spatial resolution of the density maps produced by the CLAIRE mission resolves plume shapes and emitter locations so that advanced dispersion models can derive accurate emission rates of multiple sources within the field of view. The satellite bus, provided by the University of Toronto's Space Flight Laboratory, is based on the well-characterized NEMO architecture, including hardware that has significant spaceflight heritage. The mission is currently undergoing initial test and validation measurements in preparation for commercial operation later this year.

  13. Comparison of spatial variability in visible and near-infrared spectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1992-01-01

    The visible and near-infrared bands of the Landsat Thematic Mapper (TM) and the Satellite Pour l'Observation de la Terre (SPOT) were analyzed to determine which band contained more spatial variability. It is important for applications that require spatial information, such as those dealing with mapping linear features and automatic image-to-image correlation, to know which spectral band image should be used. Statistical and visual analyses were used in the project. The amount of variance in an 11 by 11 pixel spatial filter and in the first difference at the six spacings of 1, 5, 11, 23, 47, and 95 pixels was computed for the visible and near-infrared bands. The results indicate that the near-infrared band has more spatial variability than the visible band, especially in images covering densely vegetated areas. -Author

  14. Optical Frequency Comb Fourier Transform Spectroscopy with Resolution Exceeding the Limit Set by the Optical Path Difference

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin

    2015-06-01

    Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.

  15. Illusion optics in chaotic light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Suheng; Gan Shu; Xiong Jun

    2010-08-15

    The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoreticalmore » proposal of similar effects in complementary media.« less

  16. A recent history of science cases for optical interferometry

    NASA Astrophysics Data System (ADS)

    Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre

    2018-04-01

    Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.

  17. NLTE modeling of a small active region filament observed with the VTT

    NASA Astrophysics Data System (ADS)

    Schwartz, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Gömöry, P.; Rybák, J.; Heinzel, P.; Kučera, A.

    2016-11-01

    An active region mini-discretionary-filament was observed with the Vacuum Tower Telescope (VTT) in Tenerife simultaneously in the He I infrared triplet using the Tenerife Infrared Polarimeter 1 (TIP 1), in Hα with the TESOS Fabry-Pérot interferometer, and in Ca II 8542 Å with the VTT spectrograph. The spectropolarimetric data were inverted using the HAZEL code and Hα profiles were modelled by solving a NLTE radiative transfer in a simple isobaric and isothermal 2D slab irradiated both from its bottom and sides from the solar surface. It was found that the mini-discretionary-filament is composed of horizontal fluxtubes, along which the cool plasma of T˜10 000 K can flow with very large, even supersonic, velocities.

  18. Director's Discretionary Fund Report for Fiscal Year 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics covered include: Waterproofing the Space Shuttle tiles, thermal protection system for Reusable Launch Vehicles, computer modeling of the thermal conductivity of cometary ice, effects of ozone depletion and ultraviolet radiation on plants, a novel telemetric biosensor to monitor blood pH on-line, ion mobility in polymer electrolytes for lithium-polymer batteries, a microwave-pumped far infrared photoconductor, and a new method for measuring cloud liquid vapor using near infrared remote sensing. Also included: laser-spectroscopic instrument for turbulence measurement, remote sensing of aircraft contrails using a field portable imaging interferometer, development of a silicon-micromachined gas chromatography system for determination of planetary surface composition, planar Doppler velocimetry, chaos in interstellar chemistry, and a limited pressure cycle engine for high-speed output.

  19. Study of plastic strain localization mechanisms caused by nonequilibrium transitions in mesodefect ensembles under high-speed loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokovikov, Mikhail, E-mail: sokovikov@icmm.ru; Chudinov, Vasiliy; Bilalov, Dmitry

    2015-10-27

    The behavior of specimens dynamically loaded during split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in-situ using a high-speed infrared camera CEDIP Silver 450M. The temperature field distribution obtained at different time allowed one to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infrared camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profiler and a scanning electron microscope. The development of plasticmore » shear instability regions has been simulated numerically.« less

  20. Optical Diagnostics on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2016-10-01

    Interferometry and Thomson Scattering are implemented on the HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) device to provide time resolved measurements of electron density and spatially resolved measurements of electron temperature, respectively. HIT-SI3 is a modification of the original HIT-SI apparatus that uses three injectors instead of two. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and spheromak stability. The interferometer system makes use of an intermediate frequency between two parallel 184.3 μm Far-Infrared (FIR) laser cavities which are optically pumped by a CO2 laser. The phase shift in this beat frequency due to the plasma index of refraction is used to calculate the line-integrated electron density. To measure the electron temperature, Thomson Scattered light from a 20 J (1 GW pulse) Ruby laser off of free electrons in the HIT-SI3 plasma is measured simultaneously at four locations across the spheromak (nominally 23 cm minor radius). Polychromators bin the collected light into 3 spectral bands to detect the relative level of scattering. Work supported by the D.O.E.

  1. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    PubMed

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  2. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong

    2017-11-01

    A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.

  3. IBIS: An Interferometer-Based Imaging System for Detecting Extrasolar Planets with a Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Diner, David J.

    1989-01-01

    The direct detection of extrasolar planetary systems is a challenging observational objective. The observing system must be able to detect faint planetary signals against the background of diffracted and scattered starlight, zodiacal light, and in the IR, mirror thermal radiation. As part of a JPL study, we concluded that the best long-term approach is a 10-20 m filled-aperture telescope operating in the thermal IR (10-15 microns). At these wavelengths, the star/planet flux ratio is on the order of 10(exp 6)-10(exp 8). Our study supports the work of Angel et al., who proposed a cooled 16-m IR telescope and a special apodization mask to suppress the stellar light within a limited angular region around the star. Our scheme differs in that it is capable of stellar suppression over a much broader field-of- view, enabling more efficient planet searches. To do this, certain key optical signal-processing components are needed, including a coronagraph to apodize the stellar diffraction pattern, an infrared interferometer to provide further starlight suppression, a complementary visible-wavelength interferometer to sense figure errors in the telescope optics, and a deformable mirror to adaptively compensate for these errors. Because of the central role of interferometry we have designated this concept the Interferometer-Based Imaging System (IBIS). IBIS incorporates techniques originally suggested by Ken Knight for extrasolar planet detection at visible wavelengths. The type of telescope discussed at this workshop is well suited to implementation of the IBIS concept.

  4. Enabling two-dimensional fourier transform electronic spectroscopy on quantum dots

    NASA Astrophysics Data System (ADS)

    Hill, Robert John, Jr.

    Colloidal semiconductor nanocrystals exhibit unique properties not seen in their bulk counterparts. Quantum confinement of carriers causes a size-tunable bandgap, making them attractive candidates for solar cells. Fundamental understanding of their spectra and carrier dynamics is obscured by inhomogeneous broadening arising from the size distribution. Because quantum dots have long excited state lifetimes and are sensitive to both air and moisture, there are many potential artifacts in femtosecond experiments. Two-dimensional electronic spectroscopy promises insight into the photo-physics, but required key instrumental advances. Optics that can process a broad bandwidth without distortion are required for a two-dimensional optical spectrometer. To control pathlength differences for femtosecond time delays, hollow retro-reflectors are used on actively stabilized delay lines in interferometers. The fabrication of rigid, lightweight, precision hollow rooftop retroreflectors that allow beams to be stacked while preserving polarization is described. The rigidity and low mass enable active stabilization of an interferometer to within 0.6 nm rms displacement, while the return beam deviation is sufficient for Fourier transform spectroscopy with a frequency precision of better than 1 cm -1. Keeping samples oxygen and moisture free while providing fresh sample between laser shots is challenging in an interferometer. A low-vibration spinning sample cell was designed and built to keep samples oxygen free for days while allowing active stabilization of interferometer displacement to ˜1 nm. Combining these technologies has enabled 2D short-wave infrared spectroscopy on colloidal PbSe nanocrystals. 2D spectra demonstrate the advantages of this key instrumentation while providing valuable insight into the low-lying electronic states of colloidal quantum dots.

  5. IMPACT OF η{sub Earth} ON THE CAPABILITIES OF AFFORDABLE SPACE MISSIONS TO DETECT BIOSIGNATURES ON EXTRASOLAR PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Léger, Alain; Defrère, Denis; Malbet, Fabien

    2015-08-01

    We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a functionmore » of η{sub Earth}. When Kepler gives its final estimation for η{sub Earth}, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, η{sub Earth} = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest.« less

  6. Multiorder etalon sounder (MOES) development and test for balloon experiment

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES concept and laboratory experiments were worked on for the past several years. Both theoretical studies and laboratory prototype experiments showed that MOES is very competitive compared with other high resolution sounders in terms of complexity and performance and has great potential as a compact and rugged high resolution atmospheric temperature and trace species sounder from the polar platform or the geostationary platform. The logical next step is to convert our laboratory prototype to a balloon instrument, so that field test of MOES can be carried out to prove the feasibility and capability of this new technology. Some of the activities related to the development of MOES for a possible balloon flight demonstration are described. Those research activities include the imaging quality study on the CLIO, the design and construction of a MOES laboratory prototype, the test and calibration of the MOES prototype, and the design of the balloon flight gondola.

  7. Operational Implementation Design for the Earth System Prediction Capability (ESPC): A First-Look

    DTIC Science & Technology

    2014-02-20

    Hybrid NAVDAS-AR data assimilation system assisting by providing dynamic estimates of the error in the background forecasts. 2.1.2 NAVDAS-AR – the...directly assimilates radiances from microwave radiometers and from interferometers and spectrometers in the infrared, and bending angle from Global...real-time analysis (at +3:00). Late in the 12-hr watch (around +8:00), a post-time NAVGEM/NAVDAS-AR run generates the background fields for the next

  8. DISENTANGLING CONFUSED STARS AT THE GALACTIC CENTER WITH LONG-BASELINE INFRARED INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Jordan M.; Eisner, J. A.; Monnier, J. D.

    2012-08-01

    We present simulations of Keck Interferometer ASTRA and VLTI GRAVITY observations of mock star fields in orbit within {approx}50 mas of Sgr A*. Dual-field phase referencing techniques, as implemented on ASTRA and planned for GRAVITY, will provide the sensitivity to observe Sgr A* with long-baseline infrared interferometers. Our results show an improvement in the confusion noise limit over current astrometric surveys, opening a window to study stellar sources in the region. Since the Keck Interferometer has only a single baseline, the improvement in the confusion limit depends on source position angles. The GRAVITY instrument will yield a more compact andmore » symmetric point-spread function, providing an improvement in confusion noise which will not depend as strongly on position angle. Our Keck results show the ability to characterize the star field as containing zero, few, or many bright stellar sources. We are also able to detect and track a source down to m{sub K} {approx} 18 through the least confused regions of our field of view at a precision of {approx}200 {mu}as along the baseline direction. This level of precision improves with source brightness. Our GRAVITY results show the potential to detect and track multiple sources in the field. GRAVITY will perform {approx}10 {mu}as astrometry on an m{sub K} = 16.3 source and {approx}200 {mu}as astrometry on an m{sub K} = 18.8 source in 6 hr of monitoring a crowded field. Monitoring the orbits of several stars will provide the ability to distinguish between multiple post-Newtonian orbital effects, including those due to an extended mass distribution around Sgr A* and to low-order general relativistic effects. ASTRA and GRAVITY both have the potential to detect and monitor sources very close to Sgr A*. Early characterizations of the field by ASTRA, including the possibility of a precise source detection, could provide valuable information for future GRAVITY implementation and observation.« less

  9. Electro-optic correlator for large-format microwave interferometry: Up-conversion and correlation stages performance analysis

    NASA Astrophysics Data System (ADS)

    Ortiz, D.; Casas, Francisco J.; Ruiz-Lombera, R.; Mirapeix, J.

    2017-04-01

    In this paper, a microwave interferometer prototype with a near-infra-red optical correlator is proposed as a solution to get a large-format interferometer with hundreds of receivers for radio astronomy applications. A 10 Gbits/s Lithium Niobate modulator has been tested as part of an electro-optic correlator up-conversion stage that will be integrated in the interferometer prototype. Its internal circuitry consists of a single-drive modulator biased by a SubMiniature version A (SMA) connector allowing to up-convert microwave signals with bandwidths up to 12.5 GHz to the near infrared band. In order to characterize it, a 12 GHz tone and a bias voltage were applied to the SMA input using a polarization tee. Two different experimental techniques to stabilize the modulator operation point in its minimum optical carrier output power are described. The best achieved results showed a rather stable spectrum in amplitude and wavelength at the output of the modulator with an optical carrier level 23 dB lower than the signal of interest. On the other hand, preliminary measurements were made to analyze the correlation stage, using 4f and 6f optical configurations to characterize both the antenna/fiber array configuration and the corresponding point spread function.

  10. The Dual Role of Starbursts and Active Galactic Nuclei in Driving Extreme Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Gowardhan, Avani; Spoon, Henrik; Riechers, Dominik A.; González-Alfonso, Eduardo; Farrah, Duncan; Fischer, Jacqueline; Darling, Jeremy; Fergulio, Chiara; Afonso, Jose; Bizzocchi, Luca

    2018-05-01

    We report molecular gas observations of IRAS 20100‑4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using Atacama Large Millimeter Array and Plateau de Bure Interferometer observations, we spatially resolve the CO (1‑0) emission from the outflowing molecular gas in both and find maximum outflow velocities of v max ∼ 1600 and ∼1700 km s‑1 for IRAS 20100‑4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of {\\dot{M}}OF}∼ 670 and ∼350 M ⊙ yr‑1, respectively, corresponding to molecular gas depletion timescales {τ }OF}dep}∼ 11 and ∼16 Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, {τ }SFR}dep}∼ 33 and ∼46 Myr, respectively. To determine the outflow driving mechanism, we compare the starburst luminosity (L *) and active galactic nucleus (AGN) luminosity (L AGN) to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern L AGN. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with L * and L IR as with L AGN, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows.

  11. Confocal shift interferometry of coherent emission from trapped dipolar excitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repp, J.; Nanosystems Initiative Munich; Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München

    2014-12-15

    We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.

  12. Fizeau Fourier transform imaging spectroscopy: missing data reconstruction.

    PubMed

    Thurman, Samuel T; Fienup, James R

    2008-04-28

    Fizeau Fourier transform imaging spectroscopy yields both spatial and spectral information about an object. Spectral information, however, is not obtained for a finite area of low spatial frequencies. A nonlinear reconstruction algorithm based on a gray-world approximation is presented. Reconstruction results from simulated data agree well with ideal Michelson interferometer-based spectral imagery. This result implies that segmented-aperture telescopes and multiple telescope arrays designed for conventional imaging can be used to gather useful spectral data through Fizeau FTIS without the need for additional hardware.

  13. A Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.

  14. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.

  15. Monitoring a local extreme weather event with the scope of hyperspectral sounding

    NASA Astrophysics Data System (ADS)

    Satapathy, Jyotirmayee; Jangid, Buddhi Prakash

    2018-06-01

    Operational space-based hyperspectral Infrared sounders retrieve atmospheric temperature and humidity profiles from the measured radiances. These sounders like Atmospheric InfraRed Sounder, Infrared Atmospheric Sounding Interferometer as well as INSAT-3D sounders on geostationary orbit have proved to be very successful in providing these retrievals on global and regional scales, respectively, with good enough spatio-temporal resolutions and are well competent with that of traditional profiles from radiosondes and models fields. The aim of this work is to show how these new generation hyperspectral Infrared sounders can benefit in real-time weather monitoring. We have considered a regional extreme weather event to demonstrate how the profiles retrieved from these operational sounders are consistent with the environmental conditions which have led to this severe weather event. This work has also made use of data products of Moderate Resolution Imaging Spectroradiometer as well as by radiative transfer simulation of clear and cloudy atmospheric conditions using Numerical Weather Prediction profiles in conjunction with INSAT-3D sounder. Our results indicate the potential use of high-quality hyperspectral atmospheric profiles to aid in delineation of real-time weather prediction.

  16. Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators

    NASA Technical Reports Server (NTRS)

    Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen

    2012-01-01

    For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.

  17. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye technologies, type: IR-75).

  18. Instantaneous field of view and spatial sampling of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures the upwelling radiance in 224 spectral bands. These data are required as images of approximately 11 by up to 100 km in extent at nominally 20 by 20 meter spatial resolution. In this paper we describe the underlying spatial sampling and spatial response characteristics of AVIRIS.

  19. Utilizing the precessing orbit of TRMM to produce hourly corrections of geostationary infrared imager data with the VIRS sensor

    NASA Astrophysics Data System (ADS)

    Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra

    2017-08-01

    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infraredchannel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration coefficients. Then VIRS is used as a diurnal calibration reference transfer to produce hourly corrections of GEOsat IR imager BT. For the 9 three-axis stabilized GEO imagers concurrent with VIRS, the midnight effect increased the BT on average by 0.5 K (11 μm) and 0.4 K (12 μm), with a peak at 01:00 local time. As expected, the spin-stabilized GEOsats revealed a smaller diurnal temperature cycle (mostly < 0.2 K) with inconsistent peak hours.

  20. Ground- and Space-based Observations of Horizontally-extensive Lightning Flashes

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Cummins, K. L.; Bitzer, P. M.

    2017-12-01

    Horizontally-extensive lightning flashes occur frequently in association with mature and late phases of multicellular thunderstorms, both in trailing stratiform regions and horizontally-extensive anvils. The spatial relationship between these flashes and the parent cloud volume is of importance for space launch operational decision making, and is of broader scientific interest. Before this question can be accurately addressed, there is a need to understand the degree to which current lightning observation systems can depict the spatial extent of these long flashes. In this ongoing work, we will intercompare the depiction of horizontally-extensive flashes using several ground-based lightning locating systems (LLSs) located at Kennedy Space Center (KSC) with space-based observations observed by the recently-launched Geostationary Lightning Mapper (GLM) onboard the GOES-16 satellite. Ground-based datasets include the KSC Lightning Mapping Array (KSCLMA), the operational narrowband digital interferometer network MERLIN, and the combined cloud-to-ground and cloud lightning dataset produced by the U.S. National Lightning Detection Network (NLDN). The KSCLMA system is a network of VHF time-of-arrival sensors that preferentially report breakdown processes, and MERLIN is a network of VHF interferometers that point to the discharges in the horizontal plane. Observations to date indicate that MERLIN and the KSCSLMA provide similar overall descriptions of the spatial and temporal extent of these flashes, while the NLDN does not provide adequate spatial mapping of these flashes. The KSC LMA system has much better location accuracy, and provides excellent 3-dimensional representation within 100 km of KSC. It also has sufficient sensitivity to provide 2-dimensional flash mapping within 250 km of KSC. The MERLIN system provides a more-detailed representation of fast leader propagation (in 2 dimensions) with 100 km of KSC. Earlier work during the CHUVA campaign in Brazil with similar systems and the (orbital) Lightning Imaging System (LIS) has shown that the interferometric data correlated much better in space and time with the LIS optical observations. We are currently investigating this relationship at KSC, where both the LMA and interferometer perform much better than the systems used during CHUVA.

  1. A freely available real-time operating system well suited for astronomy and the physical sciences

    NASA Astrophysics Data System (ADS)

    Pedretti, Ettore; Monnier, John D.; Thureau, Nathalie D.; Berger, David H.

    2006-06-01

    This paper wants to be a practical example in building a real-time data-acquisition and control system from scratch using relatively non-expensive PC hardware and open-source software. The practical example of building the control system for the Michigan Infrared Combiner (MIRC) at the CHARA interferometer will be used to give the reader a 'hands-on' experience in installing and configuring the RTAI-Fusion real-time operating system and developing a complete control system with it.

  2. Contactless ultrasonic device to measure surface acoustic wave velocities versus temperature.

    PubMed

    Hubert, C; Nadal, M H; Ravel-Chapuis, G; Oltra, R

    2007-02-01

    A complete optical experimental setup for generating and detecting surface acoustic waves [Rayleigh waves (RWs)] in metals versus temperature up to the melting point is described. The RWs were excited by a pulsed Nd:YAG laser and detected by a high sensitivity subangstrom heterodyne interferometer. A special furnace was used to heat the sample using infrared radiation with a regulation of the sample temperature less than 0.1 K. First measurements on an aluminum alloy sample are presented to validate the setup.

  3. Long baseline interferometric observations of HD 195019: no K dwarf companion detected

    NASA Technical Reports Server (NTRS)

    Koresko, C.; Memmesson, B.; Boden, A. F.; Akeson, R. L.; Fisher, D. A.; Butter, R. P.; Marcy, G. W.; Vogt, S. S.

    2003-01-01

    Radial velocity measurements of the G3V/IV star HD 195019 revealed the presence of an orbiting companion with m sin(i) = 3.5 Jupiter masses and a period of 18 days. Here we present new visability measurements obtained at the Palomar Testbed Interferometer which rule out any companion in an orbit consistent with the spectroscopic data and having more than 1% of the flux of the primary star in the near-infrared K band.

  4. Optical remote sensing of properties and concentrations of atmospheric trace constituents

    NASA Astrophysics Data System (ADS)

    Vladutescu, Daniela Viviana

    The effect of human activities on the global climate may lead to large disturbances of the economic, social and political circumstances in the middle and long term. Understanding the dynamics of the Earth's climate is therefore of high importance and one of the major scientific challenges of our time. The estimation of the contribution of the Earth's climate system components needs observation and continuous monitoring of various atmospheric physical and chemical parameters. Temperature, water vapor and greenhouse gases concentration, aerosol and clouds loads, and atmospheric dynamics are parameters of particular importance in this respect. The quantification of the anthropogenic influence on the dynamics of these above-mentioned parameters is of crucial importance nowadays but still affected by significant uncertainties. In the present context of these huge uncertainties in our understanding of how these different atmospheric compounds contribute to the radiative forcing, a significant part of my research interest is related to the following topics: (1) Development of lidar (Light Detection and Ranging)-based remote sensing techniques for monitoring atmospheric compounds and processes; (2) Aerosols hygroscopic properties and atmospheric modeling; (3) Water vapor mixing ratio and relative humidity estimation in the troposphere; (4) Characterization of the long-range transported aerosols; (5) Ambient gases detection using Fourier Transform Interferometers (FTIR); (6) Design of inexpensive Fabry Perot Interferometer for visible and near infrared for land and ocean surface remote sensing applications. The lidar-based remote sensing measurement techniques for the monitoring of climate change parameters where implemented at the City College of the City University of New York (CCNY/CUNY) LIDAR station and are presented in the second section of the paper. The geographical location of the CCNY lidar station is 40.86N, -73.86W. Among the lidar retrievals one important application is the detection of water vapor in the atmosphere. Water vapor is an important greenhouse gas due to its high concentration in the atmosphere (parts per thousand), among the trace constituents, and its interaction with tropospheric aerosols particles. The upward convection of water vapor and aerosols due to intense heating of the ground lead to aggregation of water particles or ice on aerosols in the air forming different types of clouds at various altitudes. In this regard a reliable method of retrieving atmospheric water vapor profiles is presented in the third part of the paper. The proposed technique here is the Raman lidar procedure that is calibrated afterwards. The accuracy of the water vapor measurements is obtained by calibration techniques based on different techniques that where compared and validated. The calibration method is based on data fusion from different sources like: GPS (global positioning system) sunphotometer, radiosonde. The condensation of water vapor on aerosols is affecting their size, shape, refractive index and chemical composition. The warming or cooling effect of the clouds hence formed are both possible depending on the cloud location, cover, composition and structure. The effect of these clouds on radiative global forcing and therefore on the short and long term global climate is of high interest in the scientific world. In an effort to understand the hygroscopic properties of aerosols, a major interest is manifested in obtaining accurate vertical water vapor profiles simultaneously with aerosol extinction and backscatter profiles. A reliable method of retrieving atmospheric water vapor profiles and aerosols backscatter and extinction in the same atmospheric volume is presented in the fourth chapter of the paper. As mentioned above the determination of greenhouse gases and other molecular pollutants is important in process control as well as environmental monitoring. Since many molecular vibrational modes are in the infrared, molecules can absorb light from an infrared source (such as the sun or an artificial source such as a glow rod) and therefore, if the source spectrum is known, the absorption spectra of the sample can be measured. Therefore, any spectroscopy method needs a well characterized infrared source as well as an accurate high resolution spectrometer. In the fifth chapter of the paper is presented a standard technique for open-path detection of greenhouse gases which is based on Fourier Transform Infrared Spectroscopy (FTIR). A MIDAC open path FTIR instrument is presented along with measurements and analyses. In the group of spectrometers with a high spatial spectral resolution is found as well the Fabry Perot Interferometer that is presented in chapter 6. A visible-near infrared (VIS-NIR) scanning Fabry Perot Imager design is proposed based on combinations of Fabry Perot etalons and/or broadband interference filters that can in principle be used as a hyperspectral sensors from geostationary spaceborne platforms. Keywords. Lidar, Raman, Mie, water vapor mixing ratio, backscatter, extinction, relative humidity, aerosol hygroscopic properties, atmospheric model, FTIR, FPI, green house gases

  5. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    NASA Astrophysics Data System (ADS)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  6. Interferometer with Continuously Varying Path Length Measured in Wavelengths to the Reference Mirror

    NASA Technical Reports Server (NTRS)

    Ohara, Tetsuo (Inventor)

    2016-01-01

    An interferometer in which the path length of the reference beam, measured in wavelengths, is continuously changing in sinusoidal fashion and the interference signal created by combining the measurement beam and the reference beam is processed in real time to obtain the physical distance along the measurement beam between the measured surface and a spatial reference frame such as the beam splitter. The processing involves analyzing the Fourier series of the intensity signal at one or more optical detectors in real time and using the time-domain multi-frequency harmonic signals to extract the phase information independently at each pixel position of one or more optical detectors and converting the phase information to distance information.

  7. Distributed fiber sensing system with wide frequency response and accurate location

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Feng, Hao; Zeng, Zhoumo

    2016-02-01

    A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.

  8. Improved method to fully compensate the spatial phase nonuniformity of LCoS devices with a Fizeau interferometer.

    PubMed

    Lu, Qiang; Sheng, Lei; Zeng, Fei; Gao, Shijie; Qiao, Yanfeng

    2016-10-01

    Liquid crystal on silicon (LCoS) devices usually show spatial phase nonuniformity (SPNU) in applications of phase modulation, which comprises the phase retardance nonuniformity (PRNU) as a function of the applied voltage and inherent wavefront distortion (WFD) introduced by the device itself. We propose a multipoint calibration method utilizing a Fizeau interferometer to compensate SPNU of the device. Calibration of PRNU is realized by defining a grid of 3×6 cells onto the aperture and then calculating phase retardance of each cell versus a gradient gray pattern. With designing an adjusted gray pattern calculated by the calibrated multipoint phase retardance function, compensation of inherent WFD is achieved. The peak-to-valley (PV) value of the residual WFD compensated by the multipoint calibration method is significantly reduced from 2.5λ to 0.140λ, while the PV value of the residual WFD after global calibration is reduced to 0.364λ. Experimental results of the generated finite-energy 2D Airy beams in Fourier space demonstrate the effectiveness of this multipoint calibration method.

  9. Ultraspectral imaging for propulsion test monitoring

    NASA Astrophysics Data System (ADS)

    Otten, Leonard John, III; Jones, Bernard A.; Prinzing, Philip; Swantner, William H.; Rafert, Bruce

    2002-02-01

    Under a NASA Stennis Space Center (SSC) SBIR, technologies required for an imaging spectral radiometer with wavenumber spectral resolution and milliradian spatial resolution that operates over the 8 micrometers to 12 micrometers (LWIR), and 3 micrometers to 5 micrometers (MWIR) bands, for use in a non-intrusive monitoring static rocket firing application are being investigated. The research is based on a spatially modulated Fourier transform spectral imager to take advantage of the inherent benefits in these devices in the MWIR and LWIR. The research verified optical techniques that could be merged with a Sagnac interferometer to create conceptual designs for an LWIR imaging spectrometer that has a 0.4 cm-1 spectral resolution using an available HgCdTe detector. These same techniques produce an MWIR imaging spectrometer with 1.5 cm-1 spectral resolution based on a commercial InSb array. Initial laboratory measurements indicate that the modeled spectral resolution is being met. Applications to environmental measurement applications under standard temperatures can be undertaken by taking advantage of several unique features of the Sagnac interferometer in being able to decouple the limiting aperature from the spectral resolution.

  10. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  11. Adaptive optics and interferometry

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Ridgway, Stephen

    1991-01-01

    Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.

  12. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  13. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    NASA Astrophysics Data System (ADS)

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  14. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokovikov, Mikhail, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru; Chudinov, Vasiliy, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru; Bilalov, Dmitry, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer andmore » a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.« less

  15. Illuminating Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; GROWTH (Global Relay of Observatories Watching Transients Happen) Team

    2018-01-01

    On August 17 2017, for the first time, an electromagnetic counterpart to gravitational waves was detected. Two neutron stars merged and lit up the entire electromagnetic spectrum, from gamma-rays to the radio. The infrared signature vividly demonstrates that neutron star mergers are indeed the long-sought production sites that forge heavy elements by r-process nucleosynthesis. The weak gamma-rays are dissimilar to classical short gamma-ray bursts with ultra-relativistic jets. Instead, by synthesizing a panchromatic dataset, we suggest that break-out of a wide-angle, mildly-relativistic cocoon engulfing the jet elegantly explains the low-luminosity gamma-rays, the high-luminosity ultraviolet-optical-infrared and the delayed radio/X-ray emission. I conclude with the promise of a literally bright and loud future, thanks to even more sensitive survey telescopes and gravitational wave interferometers.

  16. Generation of hollow Gaussian beams by spatial filtering

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Zhao, Haifa; Liu, Jianlong; Lin, Jie; Ashfaq Ahmad, Muhammad; Liu, Shutian

    2007-08-01

    We demonstrate that hollow Gaussian beams can be obtained from Fourier transform of the differentials of a Gaussian beam, and thus they can be generated by spatial filtering in the Fourier domain with spatial filters that consist of binomial combinations of even-order Hermite polynomials. A typical 4f optical system and a Michelson interferometer type system are proposed to implement the proposed scheme. Numerical results have proved the validity and effectiveness of this method. Furthermore, other polynomial Gaussian beams can also be generated by using this scheme. This approach is simple and may find significant applications in generating the dark hollow beams for nanophotonic technology.

  17. Generation of hollow Gaussian beams by spatial filtering.

    PubMed

    Liu, Zhengjun; Zhao, Haifa; Liu, Jianlong; Lin, Jie; Ahmad, Muhammad Ashfaq; Liu, Shutian

    2007-08-01

    We demonstrate that hollow Gaussian beams can be obtained from Fourier transform of the differentials of a Gaussian beam, and thus they can be generated by spatial filtering in the Fourier domain with spatial filters that consist of binomial combinations of even-order Hermite polynomials. A typical 4f optical system and a Michelson interferometer type system are proposed to implement the proposed scheme. Numerical results have proved the validity and effectiveness of this method. Furthermore, other polynomial Gaussian beams can also be generated by using this scheme. This approach is simple and may find significant applications in generating the dark hollow beams for nanophotonic technology.

  18. Multi-chord fiber-coupled interferometer with a long coherence length laser

    NASA Astrophysics Data System (ADS)

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.

    2012-03-01

    This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.

  19. Hyperspectral imager for components identification in the atmosphere

    NASA Astrophysics Data System (ADS)

    Dewandel, Jean-Luc; Beghuin, Didier; Dubois, Xavier; Antoine, Philippe

    2017-11-01

    Several applications require the identification of chemical elements during re-entry of material in the atmosphere. The materials can be from human origin or meteorites. The Automated Transfer Vehicle (ATV) re-entry has been filmed with conventional camera from airborne manual operation. In order to permit the identification of the separate elements from their glow, spectral analysis needs to be added to the video data. In a LET-SME contract with ESA, Lambda-X has built a Fourier Transform Imaging Spectrometer to permit, in a future work, to bring the technology to the readiness level required for the application. In this paper, the principles of the Fourier Transform Imaging spectroscopy are recalled, the different interferometers suitable for supporting the technique are reviewed and the selection process is explained. The final selection of the interferometer corresponds to a birefringent prism based common path shear interferometer. The design of the breadboard and its performances are presented in terms of spatial resolution, aperture, and spectral resolution. A discussion is open regarding perspective of the technique for other remote sensing applications compared to more usual push broom configurations.

  20. Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing.

    PubMed

    Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T

    2015-11-01

    We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells.

Top