Science.gov

Sample records for infrared spectroscopy analysis

  1. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    PubMed

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications.

  2. Mid-infrared spectroscopy for protein analysis: potential and challenges.

    PubMed

    López-Lorente, Ángela I; Mizaikoff, Boris

    2016-04-01

    Mid-infrared (MIR) spectroscopy investigates the interaction of MIR photons with both organic and inorganic molecules via the excitation of vibrational and rotational modes, providing inherent molecular selectivity. In general, infrared (IR) spectroscopy is particularly sensitive to protein structure and structural changes via vibrational resonances originating from the polypeptide backbone or side chains; hence information on the secondary structure of proteins can be obtained in a label-free fashion. In this review, the challenges for IR spectroscopy for protein analysis are discussed as are the potential and limitations of different IR spectroscopic techniques enabling protein analysis. In particular, the amide I spectral range has been widely used to study protein secondary structure, conformational changes, protein aggregation, protein adsorption, and the formation of amyloid fibrils. In addition to representative examples of the potential of IR spectroscopy in various fields related to protein analysis, the potential of protein analysis taking advantage of miniaturized MIR systems, including waveguide-enhanced MIR sensors, is detailed.

  3. Fourier transform infrared spectroscopy for molecular analysis of microbial cells.

    PubMed

    Ojeda, Jesús J; Dittrich, Maria

    2012-01-01

    A rapid and inexpensive method to characterise chemical cell properties and identify the functional groups present in the cell wall is Fourier transform infrared spectroscopy (FTIR). Infrared spectroscopy is a well-established technique to identify functional groups in organic molecules based on their vibration modes at different infrared wave numbers. The presence or absence of functional groups, their protonation states, or any changes due to new interactions can be monitored by analysing the position and intensity of the different infrared absorption bands. Additionally, infrared spectroscopy is non-destructive and can be used to monitor the chemistry of living cells. Despite the complexity of the spectra, the elucidation of functional groups on Gram-negative and Gram-positive bacteria has been already well documented in the literature. Recent advances in detector sensitivity have allowed the use of micro-FTIR spectroscopy as an important analytical tool to analyse biofilm samples without the need of previous treatment. Using FTIR spectroscopy, the infrared bands corresponding to proteins, lipids, polysaccharides, polyphosphate groups, and other carbohydrate functional groups on the bacterial cells can now be identified and compared along different conditions. Despite some differences in FTIR spectra among bacterial strains, experimental conditions, or changes in microbiological parameters, the IR absorption bands between approximately 4,000 and 400 cm(-1) are mainly due to fundamental vibrational modes and can often be assigned to the same particular functional groups. In this chapter, an overview covering the different sample preparation protocols for infrared analysis of bacterial cells is given, alongside the basic principles of the technique, the procedures for calculating vibrational frequencies based on simple harmonic motion, and the advantages and disadvantages of FTIR spectroscopy for the analysis of microorganisms.

  4. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  5. Emerging techniques for soil analysis via mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Linker, R.; Shaviv, A.

    2009-04-01

    Transmittance and diffuse reflectance (DRIFT) spectroscopy in the mid-IR range are well-established methods for soil analysis. Over the last five years, additional mid-IR techniques have been investigated, and in particular: 1. Attenuated total reflectance (ATR) Attenuated total reflectance is commonly used for analysis of liquids and powders for which simple transmittance measurements are not possible. The method relies on a crystal with a high refractive index, which is in contact with the sample and serves as a waveguide for the IR radiation. The radiation beam is directed in such a way that it hits the crystal/sample interface several times, each time penetrating a few microns into the sample. Since the penetration depth is limited to a few microns, very good contact between the sample and the crystal must be ensured, which can be achieved by working with samples close to water saturation. However, the strong absorbance of water in the mid-infrared range as well as the absorbance of some soil constituents (e.g., calcium carbonate) interfere with some of the absorbance bands of interest. This has led to the development of several post-processing methods for analysis of the spectra. The FTIR-ATR technique has been successfully applied to soil classification as well as to determination of nitrate concentration [1, 6-8, 10]. Furthermore, Shaviv et al. [12] demonstrated the possibility of using fiber optics as an ATR devise for direct determination of nitrate concentration in soil extracts. Recently, Du et al. [5] showed that it is possible to differentiate between 14N and 15N in such spectra, which opens very promising opportunities for developing FTIR-ATR based methods for investigating nitrogen transformation in soils by tracing changes in N-isotopic species. 2. Photo-acoustic spectroscopy Photoacoustic spectroscopy (PAS) is based on absorption-induced heating of the sample, which produces pressure fluctuations in a surrounding gas. These fluctuations are

  6. Gas emission analysis based on Fourier transformed infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Xiaowen; Zhang, Xiaofu; Lian, Xu; Jin, Hui

    2014-12-01

    Solar occultation flux (SOF), a new optical technology to detect the gas based on the traditional Fourier transformed infrared spectroscopy (FTIR) developed quickly recently. In this paper, the system and the data analysis is investigated. First a multilayer transmission model of solar radiation is simulated. Then the retrieval process is illustrated. In the proceeding of the data analysis, the Levenberg-Marquardt non-linear square fitting is used to obtain the gas column concentration and the related emission ratio. After the theory certification, the built up system is conducted in a fertilizer plant in Hefei city .The results show SOF is available in the practice and the retrieved gas column concentration can give important information about the pollution emission and dispersion

  7. Discrimination and content analysis of fritillaria using near infrared spectroscopy.

    PubMed

    Meng, Yu; Wang, Shisheng; Cai, Rui; Jiang, Bohai; Zhao, Weijie

    2015-01-01

    Fritillaria is a traditional Chinese herbal medicine which can be used to moisten the lungs. The objective of this study is to develop simple, accurate, and solvent-free methods to discriminate and quantify Fritillaria herbs from seven different origins. Near infrared spectroscopy (NIRS) methods are established for the rapid discrimination of seven different Fritillaria samples and quantitative analysis of their total alkaloids. The scaling to first range method and the partial least square (PLS) method are used for the establishment of qualitative and quantitative analysis models. As a result of evaluation for the qualitative NIR model, the selectivity values between groups are always above 2, and the mistaken judgment rate of fifteen samples in prediction sets was zero. This means that the NIR model can be used to distinguish different species of Fritillaria herbs. The established quantitative NIR model can accurately predict the content of total alkaloids from Fritillaria samples.

  8. Aerosol collection and analysis using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Wong, Diane M.; Meyer, Gerald J.; Roelant, Geoffrey J.; Williams, Barry R.; Miles, Ronald W., Jr.; Manning, Christopher J.

    2004-08-01

    Infrared spectroscopy is routinely employed for the identification of organic molecules and, more recently, for the classification of biological materials. We have developed a sample collection method that facilitates infrared analysis of airborne particulates using a diffuse reflectance (DR) technique. Efforts are underway to extend the method to include simultaneous analysis of vapor phase organics by using adsorbent substrates compatible with the DR technique. This series of laboratory results provides proof-of-principle for both the sample collection and data collection processes. Signal processing of the DR spectra is shown to provide rapid qualitative identification of representative aerosol materials, including particulate matter commonly found in the environment. We compare the results for such materials as bacterial spores, pollens and molds, clays and dusts, smoke and soot. Background correction analysis is shown to be useful for differentiation and identification of these constituents. Issues relating to complex mixtures of environmental samples under highly variable conditions are considered. Instrumentation development and materials research are now underway with the aim of constructing a compact sampling system for near real-time monitoring of aerosol and organic pollutants. A miniature, tilt-compensated Fourier transform spectrometer will provide spectroscopic interrogation. A series of advanced digital signal processing methods are also under development to enhance the sensor package. The approach will be useful for industrial applications, chemical and biological agent detection, and environmental monitoring for chemical vapors, hazardous air pollutants, and allergens.

  9. Potential of Raman and Infrared Spectroscopy for Plant Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, H.

    2008-11-01

    Various mid-infrared (MIR) and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in selected horticultural and agricultural crops are presented. Generally, both spectroscopy techniques allow to identify simultaneously characteristic key bands of individual plant components (e.g. carotenoids, alkaloids, polyacetylenes, fatty acids, amino acids, terpenoids). In contrast to MIR methods Raman spectroscopy mostly does not need any sample pre-treatment; even fresh plant material can be analysed without difficulty because water shows only weak Raman scattering properties. In some cases a significant sensivity enhancement of Raman signals can be achieved if the exciting laser wavelength is adjusted to the absorption range of particular plant chromophores such as carotenoids (Resonance Raman effect). Applying FT-IR or FT Raman micro-spectroscopy the distribution of certain plant constituents in the cell wall can be identified without the need for any physical separation. Furthermore it is also possible to analyse secondary metabolites occurring in the cell vacuoles if significant key bands do not coincide with the spectral background of the plant matrix.

  10. Application of Near Infrared (NIR) Spectroscopy to Peanut Grading and Quality Analysis: Overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Techniques using near infrared (NIR) spectroscopy for quality measurements are becoming more popular in food processing and quality inspection of agricultural commodities. NIR spectroscopy has several advantages over conventional physical and chemical analytical methods of food quality analysis. It ...

  11. Functional data analysis view of functional near infrared spectroscopy data.

    PubMed

    Barati, Zeinab; Zakeri, Issa; Pourrezaei, Kambiz

    2013-11-01

    Functional near infrared spectroscopy (fNIRS) is a powerful tool for the study of oxygenation and hemodynamics of living tissues. Despite the continuous nature of the processes generating the data, analysis of fNIRS data has been limited to discrete-time methods. We propose a technique, namely functional data analysis (fDA), that converts discrete samples to continuous curves. We used fNIRS data collected on forehead during a cold pressor test (CPT) from 20 healthy subjects. Using functional principal component analysis, oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) curves were decomposed into several components based on variability across the subjects. Each component corresponded to an experimental condition and provided qualitative and quantitative information of the shape and weight of that component. Furthermore, we applied functional canonical correlation analysis to investigate the interaction between Hb and HbO2 curves. We showed that the variation of Hb and HbO2 was positively correlated during the CPT, with a "far" channel on right forehead showing a smaller and faster HbO2 variation than Hb. This research suggests the fDA platform for the analysis of fNIRS data, which solves problem of high dimensionality, enables study of response dynamics, enhances characterization of the evoked response, and may improve design of future fNIRS experiments.

  12. Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis

    NASA Astrophysics Data System (ADS)

    Sieger, Markus; Kos, Gregor; Sulyok, Michael; Godejohann, Matthias; Krska, Rudolf; Mizaikoff, Boris

    2017-03-01

    Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B1 in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B1 affected peanuts at EU regulatory limits of 1250 μg kg‑1 and 8 μg kg‑1, respectively.

  13. Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis

    PubMed Central

    Sieger, Markus; Kos, Gregor; Sulyok, Michael; Godejohann, Matthias; Krska, Rudolf; Mizaikoff, Boris

    2017-01-01

    Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B1 in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B1 affected peanuts at EU regulatory limits of 1250 μg kg−1 and 8 μg kg−1, respectively. PMID:28276454

  14. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  15. [Proximate analysis of straw by near infrared spectroscopy (NIRS)].

    PubMed

    Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling

    2009-04-01

    Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.

  16. Rapid analysis of Radix puerariae by near-infrared spectroscopy.

    PubMed

    Lau, Ching-Ching; Chan, Chi-On; Chau, Foo-Tim; Mok, Daniel Kam-Wah

    2009-03-13

    A new, rapid analytical method using near-infrared spectroscopy (NIRS) was developed to differentiate two species of Radix puerariae (GG), Pueraria lobata (YG) and Pueraria thomsonii (FG), and to determine the contents of puerarin, daidzin and total isoflavonoid in the samples. Five isoflavonoids, puerarin, daidzin, daidzein, genistin and genistein were analyzed simultaneously by high-performance liquid chromatography-diode array detection (HPLC-DAD). The total isoflavonoid content was exploited as critical parameter for successful discrimination of the two species. Scattering effect and baseline shift in the NIR spectra were corrected and the spectral features were enhanced by several pre-processing methods. By using linear discriminant analysis (LDA) and soft independent modeling class analogy (SIMCA), samples were separated successfully into two different clusters corresponding to the two GG species. Furthermore, sensitivity and specificity of the classification models were determined to evaluate the performance. Finally, partial least squares (PLS) regression was used to build the correlation models. The results showed that the correlation coefficients of the prediction models are R=0.970 for the puerarin, R=0.939 for daidzin and R=0.969 for total isoflavonoid. The outcome showed that NIRS can serve as routine screening in the quality control of Chinese herbal medicine (CHM).

  17. [Application of near infrared spectroscopy in analysis of wood properties].

    PubMed

    Yao, Sheng; Pu, Jun-wen

    2009-04-01

    There is substantial interest in the improvement of wood properties through genetic selection or a change in silviculture prescription. Tree breeding purpose requires measurement of a large number of samples. However, traditional methods of assessing wood properties are both time consuming and destructive, limiting the numbers of samples that can be processed, so new method would be needed to find. Near infrared spectroscopy (NIR) is an advanced spectroscopic tool for nondestructive evaluation of wood and it can quickly, accurately estimate the properties of increment core, solid wood or wood meal. The present paper reviews the advances in the research on the wood chemistry properties and anatomical properties using NIR.

  18. Infrared heterodyne spectroscopy in astronomy

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1980-01-01

    A heterodyne spectrometer was constructed and applied to problems in infrared astronomical spectroscopy. The instrument offers distinct observational advantages for the detection and analysis of individual spectral lines at Doppler-limited resolution. Observations of carbon dioxide in planetary atmospheres and ammonia in circumstellar environments demonstrate the substantial role that infrared heterodyne techniques will play in the astronomical spectroscopy of the future.

  19. Chemical analysis of surgical smoke by infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Gianella, Michele; Sigrist, Markus W.

    2012-11-01

    The chemical composition of surgical smoke, a gaseous by-product of some surgical devices—lasers, drills, vessel sealing devices—is of great interest due to the many toxic components that have been found to date. For the first time, surgical smoke samples collected during routine keyhole surgery were analyzed with infrared laser spectroscopy. Traces (ppm range) of methane, ethane, ethylene, carbon monoxide and sevoflurane were detected in the samples which consisted mostly of carbon dioxide and water vapor. Except for the anaesthetic sevoflurane, none of the compounds were present at dangerous concentrations. Negative effects on the health of operation room personnel can be excluded for many toxic compounds found in earlier studies, since their concentrations are below recommended exposure limits.

  20. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  1. Shortwave Infrared Imaging Spectroscopy for Analysis of Ancient Paintings.

    PubMed

    Wu, Taixia; Li, Guanghua; Yang, Zehua; Zhang, Hongming; Lei, Yong; Wang, Nan; Zhang, Lifu

    2016-11-21

    Spectral analysis is one of the main non-destructive techniques used to examine cultural relics. Hyperspectral imaging technology, especially on the shortwave infrared (SWIR) band, can clearly extract information from paintings, such as color, pigment composition, damage characteristics, and painting techniques. All of these characteristics have significant scientific and practical value in the study of ancient paintings and other relics and in their protection and restoration. In this study, an ancient painting, numbered Gu-6541, which had been found in the Forbidden City, served as a sample. A ground-based SWIR imaging spectrometer was used to produce hyperspectral images with high spatial and spectral resolution. Results indicated that SWIR imaging spectral data greatly facilitates the extraction of line features used in drafting, even using a single band image. It can be used to identify and classify mineral pigments used in paintings. These images can detect alterations and traces of daub used in painting corrections and, combined with hyperspectral data analysis methods such as band combination or principal component analysis, such information can be extracted to highlight outcomes of interest. In brief, the SWIR imaging spectral technique was found to have a highly favorable effect on the extraction of line features from drawings and on the identification of colors, classification of paintings, and extraction of hidden information.

  2. [Study of infrared spectroscopy quantitative analysis method for methane gas based on data mining].

    PubMed

    Zhang, Ai-Ju

    2013-10-01

    Monitoring of methane gas is one of the important factors affecting the coal mine safety. The online real-time monitoring of the methane gas is used for the mine safety protection. To improve the accuracy of model analysis, in the present paper, the author uses the technology of infrared spectroscopy to study the gas infrared quantitative analysis algorithm. By data mining technology application in multi-component infrared spectroscopy quantitative analysis algorithm, it was found that cluster analysis partial least squares algorithm is obviously superior to simply using partial least squares algorithm in terms of accuracy. In addition, to reduce the influence of the error on the accuracy of model individual calibration samples, the clustering analysis was used for the data preprocessing, and such denoising method was found to improve the analysis accuracy.

  3. [Quality analysis of Chinese bacon with near infrared spectroscopy].

    PubMed

    Zhao, Li-li; Zhang, Lu-da; Song, Zhong-xiang; Li, Yong; Yan, Yan-lu; Ma, Chang-wei

    2007-01-01

    The feasibility of fast and correctly detecting the quality of Chinese bacon by NIR was studied. The acid value (AV) can reflect the quality of Chinese bacon during processing and storage which is prescribed in the Chinese national standard methods definitely. The fat is abundant in Chinese bacon, so the AV index is important for the quality of Bacon. Samples were scanned on the Bruker FTNIR reflected spectra instrument after being ground. The preprocess method of Additional Scattered Correction was used for the mathematic model of AV and moisture content of Chinese Bacon by PLS. The correlation ratio and the RMSCV of AV and moisture content of the prediction set were 0. 98, 0. 25, 0. 90 and 0. 02 respectively. The results showed that NIR spectroscopy analysis technology can be used for fast detecting AV and moisture content of Chinese Bacon.

  4. [Infrared spectroscopy analysis of SF6 using multiscale weighted principal component analysis].

    PubMed

    Peng, Xi; Wang, Xian-Pei; Huang, Yun-Guang

    2012-06-01

    Infrared spectroscopy analysis of SF6 and its derivative is an important method for operating state assessment and fault diagnosis of the gas insulated switchgear (GIS). Traditional methods are complicated and inefficient, and the results can vary with different subjects. In the present work, the feature extraction methods in machine learning are recommended to solve such diagnosis problem, and a multiscale weighted principal component analysis method is proposed. The proposed method combines the advantage of standard principal component analysis and multiscale decomposition to maximize the feature information in different scales, and modifies the importance of the eigenvectors in classification. The classification performance of the proposed method was demonstrated to be 3 to 4 times better than that of the standard PCA for the infrared spectra of SF6 and its derivative provided by Guangxi Research Institute of Electric Power.

  5. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  6. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    PubMed

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  7. Rapid profiling of Swiss cheese by attenuated total reflectance (ATR) infrared spectroscopy and descriptive sensory analysis.

    PubMed

    Kocaoglu-Vurma, N A; Eliardi, A; Drake, M A; Rodriguez-Saona, L E; Harper, W J

    2009-08-01

    The acceptability of cheese depends largely on the flavor formed during ripening. The flavor profiles of cheeses are complex and region- or manufacturer-specific which have made it challenging to understand the chemistry of flavor development and its correlation with sensory properties. Infrared spectroscopy is an attractive technology for the rapid, sensitive, and high-throughput analysis of foods, providing information related to its composition and conformation of food components from the spectra. Our objectives were to establish infrared spectral profiles to discriminate Swiss cheeses produced by different manufacturers in the United States and to develop predictive models for determination of sensory attributes based on infrared spectra. Fifteen samples from 3 Swiss cheese manufacturers were received and analyzed using attenuated total reflectance infrared spectroscopy (ATR-IR). The spectra were analyzed using soft independent modeling of class analogy (SIMCA) to build a classification model. The cheeses were profiled by a trained sensory panel using descriptive sensory analysis. The relationship between the descriptive sensory scores and ATR-IR spectra was assessed using partial least square regression (PLSR) analysis. SIMCA discriminated the Swiss cheeses based on manufacturer and production region. PLSR analysis generated prediction models with correlation coefficients of validation (rVal) between 0.69 and 0.96 with standard error of cross-validation (SECV) ranging from 0.04 to 0.29. Implementation of rapid infrared analysis by the Swiss cheese industry would help to streamline quality assurance.

  8. Quantitative analysis of ice films by near-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Keiser, Joseph T.

    1990-01-01

    One of the outstanding problems in the Space Transportation System is the possibility of the ice buildup on the external fuel tank surface while it is mounted on the launch pad. During the T-2 hours (and holding) period, the frost/ice thickness on the external tank is monitored/measured. However, after the resumption of the countdown time, the tank surface can only be monitored remotely. Currently, remote sensing is done with a TV camera coupled to a thermal imaging device. This device is capable of identifying the presence of ice, especially if it is covered with a layer of frost. However, it has difficulty identifying transparent ice, and, it is not capable of determining the thickness of ice in any case. Thus, there is a need for developing a technique for measuring the thickness of frost/ice on the tank surface during this two hour period before launch. The external tank surface is flooded with sunlight (natural or simulated) before launch. It may be possible, therefore, to analyze the diffuse reflection of sunlight from the external tank to determine the presence and thickness of ice. The purpose was to investigate the feasibility of this approach. A near-infrared spectrophotometer was used to record spectra of ice. It was determined that the optimum frequencies for monitoring the ice films were 1.03 and 1.255 microns.

  9. Analysis and identification of two reconstituted tobacco sheets by three-level infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xian-xue; Xu, Chang-hua; Li, Ming; Sun, Su-qin; Li, Jin-ming; Dong, Wei

    2014-07-01

    Two kinds of reconstituted tobacco (RT) from France (RTF) and China (RTC) were analyzed and identified by a three-level infrared spectroscopy method (Fourier-transform infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two-dimensional infrared correlation spectroscopy (2D-IR)). The conventional IR spectra of RTF parallel samples were more consistent than those of RTC according to their overlapped parallel spectra and IR spectra correlation coefficients. FT-IR spectra of both two RTs were similar in holistic spectral profile except for small differences around 1430 cm-1, indicating that they have similar chemical constituents. By analysis of SD-IR spectra of RTFs and RTCs, more distinct fingerprint features, especially peaks at 1106 (1110), 1054 (1059) and 877 (874) cm-1, were disclosed. Even better reproducibility of five SD-IR spectra of RTF in 1750-1400 cm-1 could be seen intuitively from their stacked spectra and could be confirmed by further similarity evaluation of SD-IR spectra. Existence of calcium carbonate and calcium oxalate could be easily observed in two RTs by comparing their spectra with references. Furthermore, the 2D-IR spectra provided obvious, vivid and intuitive differences of RTF and RTC. Both two RTs had a pair of strong positive auto-peaks in 1600-1400 cm-1. Specifically, the autopeak at 1586 cm-1 in RTF was stronger than the one around 1421 cm-1, whereas the one at 1587 cm-1 in RTC was weaker than that at 1458 cm-1. Consequently, the RTs of two different brands were analyzed and identified thoroughly and RTF had better homogeneity than RTC. As a result, three-level infrared spectroscopy method has proved to be a simple, convenient and efficient method for rapid discrimination and homogeneousness estimation of RT.

  10. [Multi-level identification and analysis about infrared spectroscopy of lophatheri herba].

    PubMed

    Shao, Ying; Wu, Qi-Nan; Gu, Wei; Yue, Wei; Wu, Da-Wei; Fan, Xiu-He

    2014-05-01

    Based on the infrared spectra of Lophatheri Herba and Commelinae Herba, one-dimensional infrared spectra, second derivative spectra and two-dimensional correlated spectra were used to find out the differences between Lophatheri Herba and its imitations, respectively. The common peak ratio and variant peak ratio dual-indexes sequential were calculated and established according to infrared spectra of eleven batches of herbs. Infrared spectral data of Lophatheri Herba cluster analysis was applied to explore the similarity between each sample. The grouping results trend of sequential analysis of dual-indexes and cluster analysis was accordant. The results showed that the differences could be found by multi-level identification, and the source and the quality of the herbs could be effectively distinguished by the two analysis methods. Infrared spectroscopy, used in the present work exhibited some advantages on quick procedures, less sample required, and reliable results, which could provide a new method for the identification of traditional Chinese medicine with the imitations and adulterants, and the control of quality and origin.

  11. Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin

    2015-02-01

    Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.

  12. Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components.

    PubMed

    Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin

    2015-02-05

    Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.

  13. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    PubMed

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  14. Near- Versus Mid-Infrared Spectroscopy for Soil Analysis Emphasizing Carbon and Laboratory Versus On-Site Analysis: Where Are We And What Needs To Be Done?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over several decades, near-infrared reflectance spectroscopy has been shown to be extremely versatile for the rapid analysis of many agricultural materials including forages, foods and grains. More recently, mid-infrared and near-infrared diffuse reflectance spectroscopy (mid-IR and NIRS, respectiv...

  15. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy.

    PubMed

    Wang, Liqun; Mizaikoff, Boris

    2008-07-01

    The objective of this contribution is to review the application of advanced multivariate data-analysis techniques in the field of mid-infrared (MIR) spectroscopic biomedical diagnosis. MIR spectroscopy is a powerful chemical analysis tool for detecting biomedically relevant constituents such as DNA/RNA, proteins, carbohydrates, lipids, etc., and even diseases or disease progression that may induce changes in the chemical composition or structure of biological systems including cells, tissues, and bio-fluids. However, MIR spectra of multiple constituents are usually characterized by strongly overlapping spectral features reflecting the complexity of biological samples. Consequently, MIR spectra of biological samples are frequently difficult to interpret by simple data-analysis techniques. Hence, with increasing complexity of the sample matrix more sophisticated mathematical and statistical data analysis routines are required for deconvoluting spectroscopic data and for providing useful results from information-rich spectroscopic signals. A large body of work relates to the combination of multivariate data-analysis techniques with MIR spectroscopy, and has been applied by a variety of research groups to biomedically relevant areas such as cancer detection and analysis, artery diseases, biomarkers, and other pathologies. The reported results indeed reveal a promising perspective for more widespread application of multivariate data analysis in assisting MIR spectroscopy as a screening or diagnostic tool in biomedical research and clinical studies. While the authors do not mean to ignore any relevant contributions to biomedical analysis across the entire electromagnetic spectrum, they confine the discussion in this contribution to the mid-infrared spectral range as a potentially very useful, yet underutilized frequency region. Selected representative examples without claiming completeness will demonstrate a range of biomedical diagnostic applications with particular

  16. Quantitative analysis of sulfathiazole polymorphs in ternary mixtures by attenuated total reflectance infrared, near-infrared and Raman spectroscopy.

    PubMed

    Hu, Yun; Erxleben, Andrea; Ryder, Alan G; McArdle, Patrick

    2010-11-02

    The simultaneous quantitative analysis of sulfathiazole polymorphs (forms I, III and V) in ternary mixtures by attenuated total reflectance-infrared (ATR-IR), near-infrared (NIR) and Raman spectroscopy combined with multivariate analysis is reported. To reduce the effect of systematic variations, four different data pre-processing methods; multiplicative scatter correction (MSC), standard normal variate (SNV), first and second derivatives, were applied and their performance was evaluated using their prediction errors. It was possible to derive a reliable calibration model for the three polymorphic forms, in powder ternary mixtures, using a partial least squares (PLS) algorithm with SNV pre-processing, which predicted the concentration of polymorphs I, III and V. Root mean square errors of prediction (RMSEP) for ATR-IR spectra were 5.0%, 5.1% and 4.5% for polymorphs I, III and V, respectively, while NIR spectra had a RMSEP of 2.0%, 2.9%, and 2.8% and Raman spectra had a RMSEP of 3.5%, 4.1%, and 3.6% for polymorphs I, III and V, respectively. NIR spectroscopy exhibits the smallest analytical error, higher accuracy and robustness. When these advantages are combined with the greater convenience of NIR's "in glass bottle" sampling method both ATR-IR and Raman methods appear less attractive.

  17. Discrimination of base differences in oligonucleotides using mid-infrared spectroscopy and multivariate analysis.

    PubMed

    Kelly, Jemma G; Martin-Hirsch, Pierre L; Martin, Francis L

    2009-07-01

    Attenuated total reflection Fourier transform-infrared (ATR-FTIR) spectroscopy was employed to interrogate a panel of simple oligonucleotides designed to contain various base differences; combined with subsequent multivariate analysis, we set out to determine whether the specificity of this approach would point to a novel means for mutation detection. Oligonucleotides were designed that were 15 bases in length and contained various combinations of purines (adenine, guanine) or pyrimidines (cytosine, thymine). These were applied to 1 cm x 1 cm low-E reflective glass slides, and triplicate samples were interrogated using ATR-FTIR spectroscopy. Per oligonucleotide sample, 10 independent spectral acquisitions were obtained. Prior to multivariate analysis, infrared spectra were baseline-corrected and vector normalized over the 1750-760 cm(-1) region specific to the chemical bonds of organic molecules. Spectral categories were then analyzed using principal component analysis (PCA) followed by linear discriminant analysis (LDA). Scores plots revealed that PCA-LDA clearly segregated different oligonucleotide sequences, even in the presence of a single base difference. Loadings plots confirmed the chemical entities associated with distinguishing base differences. These results suggest that mid-IR spectroscopy might have future roles in interrogating polymorphic forms of a DNA template.

  18. Near- and Mid-Infrared Reflectance Spectroscopy for the Quantitative and Qualitative Analysis of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several decades near-infrared diffuse reflectance spectroscopy (NIRS) has been used to determine the composition of a variety of agricultural products. More recently, diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) has similarly been shown to be able to determine the co...

  19. [Near infrared spectroscopy analysis method of maize hybrid seed purity discrimination].

    PubMed

    Huang, Hua-Jun; Yan, Yan-Lu; Shen, Bing-Hui; Liu, Zhe; Gu, Jian-Cheng; Li, Shao-Ming; Zhu, De-Hai; Zhang, Xiao-Dong; Ma, Qin; Li, Lin; An, Dong

    2014-05-01

    Near infrared spectroscopy analysis method of discrimination of maize hybrid seed purity was studied with the sample of Nong Hua 101 (NH101) from different origins and years. Spectral acquisition time lasted for 10 months. Using Fourier transform (FT) near infrared spectroscopy instruments, including 23 days in different seasons (divided into five time periods), a total of 920 near infrared diffuse reflectance spectra of single corn grain of those samples were collected. Moving window average, first derivative and vector normalization were used to pretreat all original spectra, principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to reduce data dimensionality, and the discrimination model was established based on biomimetic pattern recognition (BPR) method. Spectral distortion was calibrated by spectra pretreatment, which makes characteristics spatial distribution range of sample spectra set contract. The relative distance between hybrid and female parent increased by nearly 70-fold, and the discrimination model achieved the identification of hybrid and female parent seeds. Through the choice of representative samples, the model's response capacity to the changes in spectral acquisition time, place and environment, etc. was improved. Besides, the model's response capacity to the changes in time and site of seed production was also improved, and the robustness of the model was enhanced. The average correct acceptance rate (CAR) of the test set reached more than 95% while the average correct rejection rate (CRR) of the test set also reached 85%.

  20. An Introductory Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H.

    1995-01-01

    Describes a project designed to introduce infrared spectroscopy as a structure-determination technique. Students are introduced to infrared spectroscopy fundamentals then try to determine the identity of an unknown liquid from its infrared spectrum and molecular weight. The project demonstrates that only rarely can the identity of even simple…

  1. Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach

    PubMed Central

    Taylor, S E; Cheung, K T; Patel, I I; Trevisan, J; Stringfellow, H F; Ashton, K M; Wood, N J; Keating, P J; Martin-Hirsch, P L; Martin, F L

    2011-01-01

    Background: Endometrial cancer is the most common gynaecological malignancy in the United Kingdom. Diagnosis currently involves subjective expert interpretation of highly processed tissue, primarily using microscopy. Previous work has shown that infrared (IR) spectroscopy can be used to distinguish between benign and malignant cells in a variety of tissue types. Methods: Tissue was obtained from 76 patients undergoing hysterectomy, 36 had endometrial cancer. Slivers of endometrial tissue (tumour and tumour-adjacent tissue if present) were dissected and placed in fixative solution. Before analysis, tissues were thinly sliced, washed, mounted on low-E slides and desiccated; 10 IR spectra were obtained per slice by attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy. Derived data was subjected to principal component analysis followed by linear discriminant analysis. Post-spectroscopy analyses, tissue sections were haematoxylin and eosin-stained to provide histological verification. Results: Using this approach, it is possible to distinguish benign from malignant endometrial tissue, and various subtypes of both. Cluster vector plots of benign (verified post-spectroscopy to be free of identifiable pathology) vs malignant tissue indicate the importance of the lipid and secondary protein structure (Amide I and Amide II) regions of the spectrum. Conclusion: These findings point towards the possibility of a simple objective test for endometrial cancer using ATR-FTIR spectroscopy. This would facilitate earlier diagnosis and so reduce the morbidity and mortality associated with this disease. PMID:21326237

  2. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  3. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    NASA Astrophysics Data System (ADS)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  4. FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data.

    PubMed

    Xu, Jingping; Liu, Xiangyu; Zhang, Jinrui; Li, Zhen; Wang, Xindi; Fang, Fang; Niu, Haijing

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS), a promising noninvasive imaging technique, has recently become an increasingly popular tool in resting-state brain functional connectivity (FC) studies. However, the corresponding software packages for FC analysis are still lacking. To facilitate fNIRS-based human functional connectome studies, we developed a MATLAB software package called "functional connectivity analysis tool for near-infrared spectroscopy data" (FC-NIRS). This package includes the main functions of fNIRS data preprocessing, quality control, FC calculation, and network analysis. Because this software has a friendly graphical user interface (GUI), FC-NIRS allows researchers to perform data analysis in an easy, flexible, and quick way. Furthermore, FC-NIRS can accomplish batch processing during data processing and analysis, thereby greatly reducing the time cost of addressing a large number of datasets. Extensive experimental results using real human brain imaging confirm the viability of the toolbox. This novel toolbox is expected to substantially facilitate fNIRS-data-based human functional connectome studies.

  5. Rapid analysis of polysaccharides contents in Glycyrrhiza by near infrared spectroscopy and chemometrics.

    PubMed

    Zhang, Ci-Hai; Yun, Yong-Huan; Fan, Wei; Liang, Yi-Zeng; Yu, Yue; Tang, Wen-Xian

    2015-08-01

    A method for quantitative analysis of the polysaccharides contents in Glycyrrhiza was developed based on near infrared (NIR) spectroscopy, and by adopting the phenol-sulphuric acid method as the reference method. This is the first time to use this method for predicting polysaccharides contents in Glycyrrhiza. To improve the predictive ability (or robustness) of the model, the competitive adaptive reweighted sampling (CARS) mathematical strategy was used for selecting relevance wavelengths. By using the restricted relevance wavelengths, the PLS model was more efficient and parsimonious. The coefficient of determination of prediction (Rp(2)) and the root mean square error of prediction (RMSEP) of the obtained optimum models were 0.9119 and 0.4350 for polysaccharides. The selected relevance wavelengths were also interpreted. It proved that all the wavelengths selected by CARS were related to functional groups of polysaccharide. The overall results show that NIR spectroscopy combined with chemometrics can be efficiently utilised for analysis of polysaccharides contents in Glycyrrhiza.

  6. Complete quality analysis of commercial surface-active products by Fourier-transform near infrared spectroscopy.

    PubMed

    Martínez-Aguilar, Juan Fco; Ibarra-Montaño, Emma L

    2007-10-15

    Using proper calibration data Fourier-transform near infrared spectroscopy is used for developing multivariate calibrations for different analytical determinations routinely used in the surfactants industry. Four products were studied: oleyl-cetyl alcohol polyethoxylated, cocamidopropyl betaine (CAPB), sodium lauryl sulfate (SLS) and nonylphenol polyethoxylated (NPEO). Calibrations for major as well as very low concentrated compounds were achieved and every model was validated through linearity, bias, accuracy and precision tests, showing good results and the viability of NIR spectroscopy as a full quality control method for this products. Duplicate and complete analysis on a single sample takes at most 3min, requiring neither sample preparation nor the use of reagents. The analytical reference procedures involved in this work represent the typical ones used in the industry and the NIR method shows good results in the analysis of components with weight concentrations less than 1%.

  7. Pushing the detection limit of infrared spectroscopy for structural analysis of dilute protein samples.

    PubMed

    Baldassarre, Maurizio; Barth, Andreas

    2014-11-07

    Fourier-transform infrared spectroscopy is a powerful and versatile tool to investigate the structure and dynamics of proteins in solution. The intrinsically low extinction coefficient of the amide I mode, the main structure-related oscillator, together with the high infrared absorptivity of aqueous media, requires that proteins are studied at high concentrations (>10 mg L(-1)). This may represent a challenge in the study of aggregation-prone proteins and peptides, and questions the significance of structural data obtained for proteins physiologically existing at much lower concentrations. Here we describe the development of a simple experimental approach that increases the detection limit of protein structure analysis by infrared spectroscopy. Our approach relies on custom-made filters to isolate the amide I region (1700-1600 cm(-1)) from irrelevant spectral regions. The sensitivity of the instrument is then increased by background attenuation, an approach consisting in the use of a neutral density filter, such as a non-scattering metal grid, to attentuate the intensity of the background spectrum. When the filters and grid are combined, a 2.4-fold improvement in the noise level can be obtained. We have successfully tested this approach using a highly diluted solution of pyruvate kinase in deuterated medium (0.2% w/v), and found that it provides spectra of a quality comparable to those recorded with a 10-fold higher protein concentration.

  8. Differentiation of neotropical fish species with statistical analysis of fourier transform infrared photoacoustic spectroscopy data.

    PubMed

    Almeida, Francylaine S; Lima, Sandro M; Andrade, Luis H C; Súarez, Yzel R

    2012-07-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was applied to nineteen fish species in Brazil's Upper Paraná River basin to identify differences in the structural composition of their scales. To differentiate the species, a canonical discriminant analysis was used to indicate the most important absorption peaks in the mid-infrared region. Significant differences were found in the chemical composition of scales among the studied fish species, with Wilk's lambda = 5.2 × 10(-6), F((13,18,394)) = 37.57, and P < 0.001, indicating that O-CH(2) wag at 1396 cm(-1) can be used as a biomarker of this species group. The species could be categorized into four groups according to phylogenetic similarity, suggesting that the O-CH(2) 1396 cm(-1) absorbance is related to the biological traits of each species. This procedure can also be used to complement evolutionary studies.

  9. [Near infrared spectroscopy and multivariate statistical process analysis for real-time monitoring of production process].

    PubMed

    Wang, Yi; Ma, Xiang; Wen, Ya-Dong; Zou, Quan; Wang, Jun; Tu, Jia-Run; Cai, Wen-Sheng; Shao, Xue-Guang

    2013-05-01

    Near infrared diffusive reflectance spectroscopy has been applied in on-site or on-line analysis due to its characteristics of fastness, non-destruction and the feasibility for real complex sample analysis. The present work reported a real-time monitoring method for industrial production by using near infrared spectroscopic technique and multivariate statistical process analysis. In the method, the real-time near infrared spectra of the materials are collected on the production line, and then the evaluation of the production process can be achieved by a statistic Hotelling T2 calculated with the established model. In this work, principal component analysis (PCA) is adopted for building the model, and the statistic is calculated by projecting the real-time spectra onto the PCA model. With an application of the method in a practical production, it was demonstrated that a real-time evaluation of the variations in the production can be realized by investigating the changes in the statistic, and the comparison of the products in different batches can be achieved by further statistics of the statistic. Therefore, the proposed method may provide a practical way for quality insurance of production processes.

  10. Infrared spectroscopy of comets

    NASA Technical Reports Server (NTRS)

    Disanti, Michael A.; Mumma, M. J.; Hoban, S. M.; Reuter, D.; Espenak, F.; Storrs, A. D.; Lacy, J.; Parmar, R.; Joyce, R.

    1990-01-01

    An observational search for cometary parent molecules using infrared spectroscopy was conducted in the 1 to 5 micron region. The investigation involved two different observing programs, one at moderate spectral resolution and one at fairly high resolution. The lower resolution was used to study cometary spectra in the vicinity of 3.5 micron at wavelength/change in wavelength is approximately or equal to 10(exp 3). Comets P/Brorsen-Metcalf (1989o), Okazaki-Levy-Rudenko (1989r), and Austin (1990c1) were observed with the Cryogenic Spectrometer (CRSP) at Kitt Peak. The detector incorporated an InSb array with 58 spatial elements, each 2.7 min on the sky, and 62 spectral channels per spatial element. An, as yet, unidentified feature was detected at approximately 3.52 micron in Comet Austin (on 1990 May 4, 5, and 6). The feature is possibly present in P/Brorsen-Metcalf (observed on 1989 August 23 and 25), as well. Comet Okazaki-Levy-Rudenko exhibited continuum emission only in this spectral region at the time of the observations (1989 November 14 and 16). The data are presented, and the relationship between the 3.52 micron feature and cometary activity (e.g., water production rate, visibility of the 3.4 micron emission feature) are discussed. The high resolution program probed comet Austin in the 4.8 micron region. These observations were used to search for emission lines comprising the (1-0) vibration-rotation band of the ground electronic state of CO. Retrieval of the lines allows a probe of the population distribution of levels J' = 1 through 4 of the excited (v' = 1) vibrational state within the ground electronic state of CO. Knowledge of this distribution can be used to constrain the rotational temperature. Preliminary analysis suggests the P3 line was present UT May 16 at roughly the 5 sigma level. Results concerning the existence of other lines, and physical conditions inferred therefrom are discussed.

  11. [Tobacco plant parts similarity analysis based on near-infrared spectroscopy and SIMCA algorithm].

    PubMed

    Yu, Chun-Xia; Ma, Xiang; Zhang, Ye-Hui; Li, Jun-Hui; Zhao, Long-Lian; Xu, Li; Wen, Ya-Dong; Wang, Yi; Zhang, Lu-Da

    2011-04-01

    The appearance features of tobacco reflect its inner quality. Many factors, such as different plant parts, variety and maturity, provide standard and foundation for tobacco production processing. According to the different position of tobacco plant parts, tobacco plants leaves can be divided into five parts as tip, upper-middle, middle, lower-middle and priming leaf respectively. Five hundred tobacco leaf samples (100 each for one of five tobacco plant parts) from Yunnan province in 2008 were collected using near infrared spectroscopy, which all belong to tobacco varieties of K326. The similarity analysis of tobacco plant parts was carried out using mathematical model of SIMCA similarity analysis. The conclusion showed that the tobacco plant parts similarity results based on near-infrared spectroscopy corresponded to the relative tobacco plant parts in Yunnan province. The farther two tobacco plant parts were away from each other, the lower the similarity of corresponding parts was. And the similarity results of adjacent tobacco plant parts were different. The study discussed a method of confirming PC numbers and realized the quantitative similarity analysis between classes. It is instructive in replacement or adjustment of tobacco leaf blending and evaluation of tobacco industrial grading.

  12. Infrared diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Civiš, S.; Cihelka, J.; Matulková, I.

    2010-12-01

    Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm-1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed. Additionally, very sensitive laser absorption techniques of such velocity modulation are discussed for case of laser application in laboratory research of molecular ions. Such sensitive techniques (originally developed for lasers) contributed very much in identifying laboratory microwave spectra of a series of anions (C6H-, C4H-, C2H-, CN-) and their discovery in the interstellar space (C6H-, C4H-).

  13. Rapid and nondestructive analysis of pharmaceutical products using near-infrared diffuse reflectance spectroscopy.

    PubMed

    Li, Pao; Du, Guorong; Cai, Wensheng; Shao, Xueguang

    2012-11-01

    Near-infrared diffuse reflectance spectroscopy (NIRDRS) was applied to classification and quantification of azithromycin tablets with the aid of chemometric multivariate analysis. Repeatability was investigated by repeated measurements, and the effect of morphology was examined by preparing the tablets in four forms, i.e. tablet product, tablet without coating, powder of tablet without coating, and powder of tablet. Furthermore, baseline elimination by continuous wavelet transform (CWT) and wavenumber selection was discussed for improving the repeatability and accuracy of the method. The results show that the spectra of the samples in the four forms can be measured with an acceptable repeatability, and classification of manufacture sites and quantitative analysis of the active pharmaceutical ingredient (API) can be achieved by principal component analysis (PCA) and partial least squares (PLS) regression, respectively. More importantly, baseline elimination and wavenumber selection can significantly simplify the calculation and improve the results.

  14. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    PubMed

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  15. Identification of Bacterial Spores using Statistical Analysis of Fourier Transform Infrared Photoacoustic Spectroscopy Data

    SciTech Connect

    Thompson, Sandra E.; Foster, Nancy S.; Johnson, Timothy J.; Valentine, Nancy B.; Amonette, James E.

    2003-08-28

    Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) has been applied for the first time to the identification and speciation of bacterial spores. With minimal preparation the spores were deposited into the photoacoustic sample cup and their spectra recorded. A total of 40 different samples of 5 different strains of Bacillus spores were analyzed: Bacillus subtilis ATCC 49760, Bacillus atrophaeus ATCC 49337, Bacillus subtilis 6051, Bacillus thuringiensis ssp. kurstaki, and Bacillus globigii Dugway. The statistical methods used included principal-component analysis (PCA), classification and regression trees (CART), and Mahalanobis-distance calculations. Internal cross-validation studies successfully classify the spores according to their bacterial strain in 38 of 40 cases (95%) and 36 of 40 (90%) in cross-validation. Analysis of fifteen blind samples, which included library and other spores, and nonbacterial materials, resulted in correct strain classification the blind samples that were members of the library and correct rejection of the nonbacterial samples.

  16. Analysis of thermal degradation of organic light-emitting diodes with infrared imaging and impedance spectroscopy.

    PubMed

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-12-02

    We propose a route to examine the thermal degradation of organic light-emitting diodes (OLEDs) with infrared (IR) imaging and impedance spectroscopy. Four different OLEDs with tris (8-hydroxyquinolinato) aluminum are prepared in this study for the analysis of thermal degradation. Our comparison of the thermal and electrical characteristics of these OLEDs reveals that the real-time temperatures of these OLEDs obtained from the IR images clearly correlate with the electrical properties and lifetimes. The OLED with poor electrical properties shows a fairly high temperature during the operation and a considerably short lifetime. Based on the correlation of the real-time temperature and the performance of the OLEDs, the impedance results suggest different thermal degradation mechanisms for each of the OLEDs. The analysis method suggested in this study will be helpful in developing OLEDs with higher efficiency and longer lifetime.

  17. Attenuated Total Internal Reflectance Infrared Spectroscopy (ATR-FTIR): A Quantitative Approach for Kidney Stone Analysis

    PubMed Central

    Gulley-Stahl, Heather J.; Haas, Jennifer A.; Schmidt, Katherine A.; Evan, Andrew P.; Sommer, André J.

    2011-01-01

    The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflectance infrared spectroscopy (ATR-FTIR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 ± 0.02% COM/HAP where COM is the analyte and HAP the matrix to 0.26 ± 0.07% HAP/COM where HAP is the analyte and COM the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size. PMID:19589213

  18. Quantitative analysis of virgin coconut oil in cream cosmetics preparations using fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Rohman, A; Man, Yb Che; Sismindari

    2009-10-01

    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.

  19. [Optimizing spectral region in using near-infrared spectroscopy for donkey milk analysis].

    PubMed

    Zheng, Li-Min; Zhang, Lu-Da; Guo, Hui-Yuan; Pang, Kun; Zhang, Wen-Juan; Ren, Fa-Zheng

    2007-11-01

    Donkey milk has aroused more attention in recent years since its nutrition composition shows a higher similarity to human milk than others. Due to the composition difference between cow milk and donkey milk, the present models available for cow milk analysis could not be applied to donkey milk without modifications. A rapid and reliable analysis method is required to measure the nutrition composition of donkey milk. Near infrared spectroscopy is a newly developed method in food industry, but no literature report was found regarding to its application in the analysis of donkey milk. Protein, fat, ash contents and energy value are the major nutrition factors of milk. In the present paper, these factors of donkey milk were investigated by Fourier transform near-infrared (FT-NIR) spectroscopy. The ranges of protein, fat and ash contents, and energy value in donkey milk samples were 1.15%-2.54%, 0.34%-2.67%, 0.28%-0.57% and 355.87-565.17 cal x kg(-1), respectively. The IR spectra ranged f from 3 899.6 to 12 493.4 cm(-1), with a 1 cm(-1) scanning interval. When the principal least square (PLS) regression algorithm is used for spectral regions information extraction, the additional constraint makes the principal components of matrix X to be related with the components of Y which is to be analyzed. Various spectral regions and data pretreatment methods were selected for principal least square (PLS) regression model development. A comparison of the whole and optimized spectral region NIR indicated that the models of selecting optimum spectral region were better than those of the whole spectral region. It was shown that the protein, fat and ash contents, and energy value in donkey milk obtained by chemical methods were well correlated to the respective values predicted by the NIR spectroscopy quantitative analysis model (alpha = 0.05). The RMSEP values were 0.18, 0.117, 0.040 6 and 23.5 respectively, indicating that these predicted values were reliable. These results

  20. [Qualitative-Quantitative Analysis of Rice Bran Oil Adulteration Based on Laser Near Infrared Spectroscopy].

    PubMed

    Tu, Bin; Song, Zhi-qiang; Zheng, Xiao; Zeng, Lu-lu; Yin, Cheng; He, Dong-ping; Qi, Pei-shi

    2015-06-01

    The purpose of this study is mainly to have qualitative-quantitative analysis on the adulteration in rice bran oil by near-infrared spectroscopy analytical technology combined with chemo metrics methods. The author configured 189 adulterated oil samples according to the different mass ratios by selecting rice bran oil as base oil and choosing soybean oil, corn oil, colza oil, and waste oil of catering industry as adulterated oil. Then, the spectral data of samples was collected by using near-infrared spectrometer, and it was pre-processed through the following methods, including without processing, Multiplicative Scatter Correction(MSC), Orthogonal Signal Correction(OSC), Standard Normal Variate and Standard Normal Variate transformation DeTrending(SNV_DT). Furthermore, this article extracted characteristic wavelengths of the spectral datum from the pre-processed date by Successive Projections Algorithm(SPA), established qualitatively classified calibration methods of adulterated oil through classification method of Support Vector Machine(SVM), optimized model parameters(C, g) by Mesh Search Algorithm and determined the optimal process condition. In extracting characteristic wavelengths of the spectral datum from pretreatment by Backward interval Partial Least Squares(BiPLS) and SPA, quantitatively classified calibration models of adulterated oil through Partial Least Squares(PLS) and Support Vector Machine Regression(SVR) was established respectively. In the end, the author optimized the combination of model parameters(C, g) by Mesh Search Algorithm and determined the optimal parameter model. According to the analysis, the accuracy of prediction set and calibration set for SVC model reached 95% and 100% respectively. Compared with the prediction of the adulteration oil content of rice bran oil which was established by the PLS model, the SVR model is the better one, although both of them could implement the content prediction. Furthermore, the correlation

  1. Exhaled air analysis using wideband wave number tuning range infrared laser photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Penkova, Olga V.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2017-01-01

    The infrared laser photoacoustic spectroscopy (LPAS) and the pattern-recognition-based approach for noninvasive express diagnostics of pulmonary diseases on the basis of absorption spectra analysis of the patient's exhaled air are presented. The study involved lung cancer patients (N=9), patients with chronic obstructive pulmonary disease (N=12), and a control group of healthy, nonsmoking volunteers (N=11). The analysis of the measured absorption spectra was based at first on reduction of the dimension of the feature space using principal component analysis; thereafter, the dichotomous classification was carried out using the support vector machine. The gas chromatography-mass spectrometry method (GC-MS) was used as the reference. The estimated mean value of the sensitivity of exhaled air sample analysis by the LPAS in dichotomous classification was not less than 90% and specificity was not less than 69%; the analogous results of analysis by GC-MS were 68% and 60%, respectively. Also, the approach to differential diagnostics based on the set of SVM classifiers usage is presented.

  2. Analysis of pulmonary surfactant by Fourier transform infrared spectroscopy after exposure to sevoflurane and isoflurane.

    PubMed

    Vrbanović Mijatović, Vilena; Šerman, Ljiljana; Gamulin, Ozren

    2017-02-21

    Pulmonary surfactant, consisting primarily of phospholipids and four surfactant-specific proteins, is among the first structures that is exposed to inhalation anesthetics. Consequently, changes of pulmonary surfactant due to this exposure could cause respiratory complications after long anesthetic procedures. Fourier transform infrared (FTIR) spectroscopy was used to explore the effects of two inhalation anesthetics, sevoflurane and isoflurane, on a commercially available pulmonary surfactant. The research was primarily focused on the effect of anesthetics on the lipid component of the surfactant. Four different concentrations of anesthetics were added, and the doses were higher from the low clinical doses typically used. Recorded spectra were analyzed using principal component analysis, and the Student's t-test was performed to confirm the results. The exposure to both anesthetics induced similar changes, consistent with the increase of the anesthetic concentration. The most pronounced effect was on the hydrophilic head group of phospholipids, which is in agreement with the disruption of the hydrogen bond, caused by the anesthetics. A change in the band intensities of CH2 stretching vibrations, indicative of a disordering effect of anesthetics on the hydrophobic tails of phospholipids, was also observed. Changes induced by isoflurane appear to be more pronounced than those induced by sevoflurane. Furthermore, our results suggest that FTIR spectroscopy is a promising tool in studying anesthetic effects on pulmonary surfactant.

  3. A reference-wavelength-based method for improved analysis of near-infrared spectroscopy.

    PubMed

    Chen, Yun; Chen, Wenliang; Shi, Zhenzhi; Yang, Yue; Xu, Kexin

    2009-05-01

    Near-infrared (NIR) spectroscopy has been widely used in many industrial applications. It also has tremendous potential for trace element detection and noninvasive human physiological measurements. In NIR spectroscopy, however, the measurement precision is often dependent on temperature, measurement position, and sample status. In order to improve measurement precision, a method using spectral information at a reference wavelength is developed in this paper. Based on the displacement effect between solvent and solute molecules in a solution, the signal at the reference wavelength is used as an internal reference to correct the spectrum of the sample under test. As an example, the spectra of glucose aqueous solutions under different temperatures are measured, and our method for eliminating the temperature disturbance is evaluated. The experimental results obtained show that the relative error of glucose concentration prediction is 330% per degree before the spectrum correction. After the correction, the relative error is reduced to 5.12%, and the error is no longer dependent on temperature. As the displacement effect can be found commonly in various solutions, the method described in this work may be used to improve the accuracy of spectral analysis of many other solutions.

  4. Analysis of pulmonary surfactant by Fourier transform infrared spectroscopy after exposure to sevoflurane and isoflurane

    PubMed Central

    Mijatović, Vilena Vrbanović; Šerman, Ljiljana; Gamulin, Ozren

    2017-01-01

    Pulmonary surfactant, consisting primarily of phospholipids and four surfactant-specific proteins, is among the first structures that is exposed to inhalation anesthetics. Consequently, changes of pulmonary surfactant due to this exposure could cause respiratory complications after long anesthetic procedures. Fourier transform infrared (FTIR) spectroscopy was used to explore the effects of two inhalation anesthetics, sevoflurane and isoflurane, on a commercially available pulmonary surfactant. The research was primarily focused on the effect of anesthetics on the lipid component of the surfactant. Four different concentrations of anesthetics were added, and the doses were higher from the low clinical doses typically used. Recorded spectra were analyzed using principal component analysis, and the Student’s t-test was performed to confirm the results. The exposure to both anesthetics induced similar changes, consistent with the increase of the anesthetic concentration. The most pronounced effect was on the hydrophilic head group of phospholipids, which is in agreement with the disruption of the hydrogen bond, caused by the anesthetics. A change in the band intensities of CH2 stretching vibrations, indicative of a disordering effect of anesthetics on the hydrophobic tails of phospholipids, was also observed. Changes induced by isoflurane appear to be more pronounced than those induced by sevoflurane. Furthermore, our results suggest that FTIR spectroscopy is a promising tool in studying anesthetic effects on pulmonary surfactant. PMID:28027455

  5. Visible and near-infrared spectroscopy analysis of a polycyclic aromatic hydrocarbon in soils.

    PubMed

    Okparanma, Reuben N; Mouazen, Abdul M

    2013-01-01

    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350-2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0-2.32, root-mean-square error of prediction of 0.21-0.25 mg kg(-1), and coefficient of determination (r (2)) of 0.75-0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon.

  6. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B

    2011-05-01

    Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes.

  7. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    PubMed Central

    Okparanma, Reuben N.; Mouazen, Abdul M.

    2013-01-01

    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon. PMID:24453798

  8. Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics

    PubMed Central

    Retnaningtyas, Yuni; Nuri; Lukman, Hilmia

    2016-01-01

    Infrared (IR) spectroscopy combined with chemometrics has been developed for simple analysis of flavonoid in the medicinal plant extract. Flavonoid was extracted from medicinal plant leaves by ultrasonication and maceration. IR spectra of selected medicinal plant extract were correlated with flavonoid content using chemometrics. The chemometric method used for calibration analysis was Partial Last Square (PLS) and the methods used for classification analysis were Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogies (SIMCA), and Support Vector Machines (SVM). In this study, the calibration of NIR model that showed best calibration with R2 and RMSEC value was 0.9916499 and 2.1521897, respectively, while the accuracy of all classification models (LDA, SIMCA, and SVM) was 100%. R2 and RMSEC of calibration of FTIR model were 0.8653689 and 8.8958149, respectively, while the accuracy of LDA, SIMCA, and SVM was 86.0%, 91.2%, and 77.3%, respectively. PLS and LDA of NIR models were further used to predict unknown flavonoid content in commercial samples. Using these models, the significance of flavonoid content that has been measured by NIR and UV-Vis spectrophotometry was evaluated with paired samples t-test. The flavonoid content that has been measured with both methods gave no significant difference. PMID:27529051

  9. [Discriminant Analysis of Lavender Essential Oil by Attenuated Total Reflectance Infrared Spectroscopy].

    PubMed

    Tang, Jun; Wang, Qing; Tong, Hong; Liao, Xiang; Zhang, Zheng-fang

    2016-03-01

    This work aimed to use attenuated total reflectance Fourier transform infrared spectroscopy to identify the lavender essential oil by establishing a Lavender variety and quality analysis model. So, 96 samples were tested. For all samples, the raw spectra were pretreated as second derivative, and to determine the 1 750-900 cm(-1) wavelengths for pattern recognition analysis on the basis of the variance calculation. The results showed that principal component analysis (PCA) can basically discriminate lavender oil cultivar and the first three principal components mainly represent the ester, alcohol and terpenoid substances. When the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was established, the 68 samples were used for the calibration set. Determination coefficients of OPLS-DA regression curve were 0.959 2, 0.976 4, and 0.958 8 respectively for three varieties of lavender essential oil. Three varieties of essential oil's the root mean square error of prediction (RMSEP) in validation set were 0.142 9, 0.127 3, and 0.124 9, respectively. The discriminant rate of calibration set and the prediction rate of validation set had reached 100%. The model has the very good recognition capability to detect the variety and quality of lavender essential oil. The result indicated that a model which provides a quick, intuitive and feasible method had been built to discriminate lavender oils.

  10. Integration of independent component analysis with near infrared spectroscopy for evaluation of rice freshness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of freshness is an important issue for rice quality. Near infrared spectroscopy, a rapid non-destructive inspection method based on specific absorptions within a given range of wavelengths, has been widely applied for evaluation of internal quality of agricultural products. For the pur...

  11. Analysis of Total Oil and Fatty Acids Composition by Near Infrared Reflectance Spectroscopy in Edible Nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edib...

  12. Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods

    NASA Astrophysics Data System (ADS)

    Caicedo, Alexander; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Wolf, Martin; Van Huffel, Sabine

    2012-11-01

    Cerebral Autoregulation, in clinical practice, is assessed by means of correlation or coherence analysis between mean arterial blood pressure (MABP) and cerebral blood flow (CBF). However, even though there is evidence linking cerebral autoregulation assessment with clinical outcome in preterm infants, available methods lack precision for clinical use. Classical methods, used for cerebral autoregulation, are influenced by the choice of parameters such as the length of the epoch under analysis and the choice of suitable frequency bands. The influence of these parameters, in the derived measurements for cerebral autoregulation, has not yet been evaluated. In this study, cerebral autoregulation was assessed using correlation, coherence, a modified version of coherence and transfer function gain, and phase. The influence of the extra-parameters on the final scores was evaluated by means of sensitivity analysis. The methods were applied to a database of 18 neonates with measurements of MABP and tissue oxygenation index (TOI). TOI reflects changes in CBF and was measured by means of near-infrared spectroscopy.

  13. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review

    PubMed Central

    Kamran, Muhammad A.; Mannan, Malik M. Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized. PMID:27375458

  14. Noise reduction in functional near-infrared spectroscopy signals by independent component analysis.

    PubMed

    Santosa, Hendrik; Hong, Melissa Jiyoun; Kim, Sung-Phil; Hong, Keum-Shik

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is used to detect concentration changes of oxy-hemoglobin and deoxy-hemoglobin in the human brain. The main difficulty entailed in the analysis of fNIRS signals is the fact that the hemodynamic response to a specific neuronal activation is contaminated by physiological and instrument noises, motion artifacts, and other interferences. This paper proposes independent component analysis (ICA) as a means of identifying the original hemodynamic response in the presence of noises. The original hemodynamic response was reconstructed using the primary independent component (IC) and other, less-weighting-coefficient ICs. In order to generate experimental brain stimuli, arithmetic tasks were administered to eight volunteer subjects. The t-value of the reconstructed hemodynamic response was improved by using the ICs found in the measured data. The best t-value out of 16 low-pass-filtered signals was 37, and that of the reconstructed one was 51. Also, the average t-value of the eight subjects' reconstructed signals was 40, whereas that of all of their low-pass-filtered signals was only 20. Overall, the results showed the applicability of the ICA-based method to noise-contamination reduction in brain mapping.

  15. Noise reduction in functional near-infrared spectroscopy signals by independent component analysis

    NASA Astrophysics Data System (ADS)

    Santosa, Hendrik; Jiyoun Hong, Melissa; Kim, Sung-Phil; Hong, Keum-Shik

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is used to detect concentration changes of oxy-hemoglobin and deoxy-hemoglobin in the human brain. The main difficulty entailed in the analysis of fNIRS signals is the fact that the hemodynamic response to a specific neuronal activation is contaminated by physiological and instrument noises, motion artifacts, and other interferences. This paper proposes independent component analysis (ICA) as a means of identifying the original hemodynamic response in the presence of noises. The original hemodynamic response was reconstructed using the primary independent component (IC) and other, less-weighting-coefficient ICs. In order to generate experimental brain stimuli, arithmetic tasks were administered to eight volunteer subjects. The t-value of the reconstructed hemodynamic response was improved by using the ICs found in the measured data. The best t-value out of 16 low-pass-filtered signals was 37, and that of the reconstructed one was 51. Also, the average t-value of the eight subjects' reconstructed signals was 40, whereas that of all of their low-pass-filtered signals was only 20. Overall, the results showed the applicability of the ICA-based method to noise-contamination reduction in brain mapping.

  16. Micro-analysis by near-infrared diffuse reflectance spectroscopy with chemometric methods.

    PubMed

    Liu, Yan; Ning, Yu; Cai, Wensheng; Shao, Xueguang

    2013-11-07

    Great attention has been paid to near-infrared diffuse reflectance spectroscopy (NIRDRS) due to its practicability in analyzing real complex samples. However, the application of the technique in micro-analysis is badly restricted by its low sensitivity or high detection limit. In this study, the possibility of achieving the sensitive detection of micro-components using NIRDRS with the help of chemometric methods is studied with two experimental datasets. The results show that a very high sensitivity can be obtained when the noise and the variant background are minimized. Quantitative determination of low concentrations of pesticides and trace Cr(3+) in solutions is achieved by using preconcentration and chemometric approaches to minimize the noise and background. The absolute prediction error of the method can be as low as 7.6 μg for the pesticide and 28.6 μg for Cr(3+). These quantities are equivalent to 76 ng mL(-1) and 286 ng mL(-1) if 100 mL of solution are used for the analysis.

  17. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    SciTech Connect

    Anderson, Timothy J.; Ai, Yongfeng; Jones, Roger W.; Houk, Robert S.; Jane, Jay-lin; Zhao, Yinsheng; Birt, Diane F.; McClelland, John F.

    2013-01-29

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.

  18. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  19. Thermal and Chemical Characterization of Non-metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.; Griffin, Dennis E. (Technical Monitor)

    2001-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR, The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected real-time, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  20. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    PubMed

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure.

  1. Adulteration detection in milk using infrared spectroscopy combined with two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    He, Bin; Liu, Rong; Yang, Renjie; Xu, Kexin

    2010-02-01

    Adulteration of milk and dairy products has brought serious threats to human health as well as enormous economic losses to the food industry. Considering the diversity of adulterants possibly mixed in milk, such as melamine, urea, tetracycline, sugar/salt and so forth, a rapid, widely available, high-throughput, cost-effective method is needed for detecting each of the components in milk at once. In this paper, a method using Fourier Transform Infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation spectroscopy is established for the discriminative analysis of adulteration in milk. Firstly, the characteristic peaks of the raw milk are found in the 4000-400 cm-1 region by its original spectra. Secondly, the adulterant samples are respectively detected with the same method to establish a spectral database for subsequent comparison. Then, 2D correlation spectra of the samples are obtained which have high time resolution and can provide information about concentration-dependent intensity changes not readily accessible from one-dimensional spectra. And the characteristic peaks in the synchronous 2D correlation spectra of the suspected samples are compared with those of raw milk. The differences among their synchronous spectra imply that the suspected milk sample must contain some kinds of adulterants. Melamine, urea, tetracycline and glucose adulterants in milk are identified respectively. This nondestructive method can be used for a correct discrimination on whether the milk and dairy products are adulterated with deleterious substances and it provides a new simple and cost-effective alternative to test the components of milk.

  2. Geographical differentiation of dried lentil seed (Lens culinaris) samples using diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis.

    PubMed

    Kouvoutsakis, G; Mitsi, C; Tarantilis, P A; Polissiou, M G; Pappas, C S

    2014-02-15

    Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis were used for the geographical differentiation of dried lentil seed (Lens culinaris) samples. Specifically, 18 Greek samples and nine samples imported from other countries were distinguished using the 2250-1720 and 1275-955 cm⁻¹ spectral regions. The differentiation is complete. The combination of DRIFTS and discriminant analysis enables simple, rapid, cheap and accurate differentiation of commercial lentil seeds in terms of geographical origin.

  3. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites.

    PubMed

    Ling, Florence T; Post, Jeffrey E; Heaney, Peter J; Kubicki, James D; Santelli, Cara M

    2017-05-05

    The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from MnO lattice vibrations between 400 and 750cm(-1) yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied to known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~1628cm(-1) may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.

  4. Identification of the epoxy curing mechanism under isothermal conditions by thermal analysis and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hideki; Morita, Shigeaki

    2014-07-01

    A curing reaction of bisphenol A diglycidyl ether epoxy resin with 4,4‧-diaminodicyclohexyl methane hardener was investigated by means of modulated differential scanning calorimetry (MDSC), thermal scanning rheometer (TSR), near-infrared (NIR) and mid-infrared (MIR) spectroscopy. The relation between change in the physical properties and molecular structures during the isothermal curing reaction were studied. MDSC and NIR results corroborated vitrification with the secondary to tertiary amine conversion; the process afforded a three-dimensional cross-linking structure. TSR estimation of the gelation point was corroborated with the NIR-determined maximum concentration of the generated secondary amine. Two-dimensional correlation spectroscopy confirmed that reaction between the primary amine and epoxy occurred more rapidly than any other functional group reaction. The ether groups were generated at the early stage of the curing reaction, and their formation occurred immediately with the generation of hydroxyl groups.

  5. Near infrared spectroscopy and chemometrics analysis of complex traits in animal physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance (NIR) applications have been expanding from the traditional framework of small molecule chemical purity and composition (as defined by spectral libraries) to complex system analysis and holistic exploratory approaches to questions in biochemistry, biophysics and environment...

  6. [Analysis and identification of Semen Glycines Nigrae and Semen Pharbitidis by infrared spectroscopy].

    PubMed

    Du, Juan; Peng, Xi-Yuan; Ma, Fang; Chen, Jian-Bo; Zhou, Qun; Jin, Zhe-Xiong; Sun, Su-Qin

    2014-09-01

    Semen Glycines Nigrae and Semen Pharbitidis containing a large amount of fats and proteins are commonly used in Chinese herbal medicine. Tri-step infrared spectroscopy was applied to fast analyze and identify the two samples. In the conventional infrared spectroscopy, the samples both have obvious characteristic absorption peaks at 1,745 cm(-1) assigned to the stretching mode of C==O in esters. Furthermore, the two kinds of herbs have the peaks at 1,656 and 1,547 cm(-1) assigned to the amide I and II bands of protein. Obviously, the infrared spectra of herbs demonstrate that protein and fat is the major component in two kinds of herbs, and the relative intensity of the peaks assigned to fat and protein indicate their relative content is different. And the result is consistent with the reported. In the second derivative spectra, Semen Pharbitidis has a peak at 1,712 cm(-1) assigned to the organic acid, however, Semen Glycines Nigrae has not this absorption peak. In addition, in the second derivative spectra, appeared more differences between the two samples in shape and intensity of the peaks. In two-dimensional correlation infrared spectra, the two samples were visually distinguished due to their significant differences in auto-peak position and intensity. In the region of 1,500-1,700 cm(-1), Semen Glycines Nigrae has two autopeaks and Semen Pharbitidis has three autopeaks. In the region of 2,800-3,000 cm(-1), the samples both have two autopeaks, but the position of the strongest autopeak is different. It was demonstrated that the Tri-step infrared spectroscopy were successfully applied to fast analyze and identify the two kinds of samples containing the same major component, and made sure the foundation for future researches.

  7. Quantitative analysis and detection of adulteration in pork using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Yuxia; Cheng, Fang; Xie, Lijuan

    2010-04-01

    Authenticity is an important food quality criterion. Rapid methods for confirming authenticity or detecting adulteration are increasingly demanded by food processors and consumers. Near infrared (NIR) spectroscopy has been used to detect economic adulteration in pork . Pork samples were adulterated with liver and chicken in 10% increments. Prediction and quantitative analysis were done using raw data and pretreatment spectra. The optimal prediction result was achieved by partial least aquares(PLS) regression with standard normal variate(SNV) pretreatment for pork adulterated with liver samples, and the correlation coefficient(R value), the root mean square error of calibration(RMSEC) and the root mean square error of prediction (RMSEP) were 0.97706, 0.0673 and 0.0732, respectively. The best model for pork meat adulterated with chicken samples was obtained by PLS with the raw spectra, and the correlation coefficient(R value), RMSEP and RMSEC were 0.98614, 0.0525, and 0.122, respectively. The result shows that NIR technology can be successfully used to detect adulteration in pork meat adulterated with liver and chicken.

  8. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants

    NASA Astrophysics Data System (ADS)

    Hahn, Gitte Holst; Christensen, Karl Bang; Leung, Terence S.; Greisen, Gorm

    2010-05-01

    Coherence between spontaneous fluctuations in arterial blood pressure (ABP) and the cerebral near-infrared spectroscopy signal can detect cerebral autoregulation. Because reliable measurement depends on signals with high signal-to-noise ratio, we hypothesized that coherence is more precisely determined when fluctuations in ABP are large rather than small. Therefore, we investigated whether adjusting for variability in ABP (variabilityABP) improves precision. We examined the impact of variabilityABP within the power spectrum in each measurement and between repeated measurements in preterm infants. We also examined total monitoring time required to discriminate among infants with a simulation study. We studied 22 preterm infants (GA<30) yielding 215 10-min measurements. Surprisingly, adjusting for variabilityABP within the power spectrum did not improve the precision. However, adjusting for the variabilityABP among repeated measurements (i.e., weighting measurements with high variabilityABP in favor of those with low) improved the precision. The evidence of drift in individual infants was weak. Minimum monitoring time needed to discriminate among infants was 1.3-3.7 h. Coherence analysis in low frequencies (0.04-0.1 Hz) had higher precision and statistically more power than in very low frequencies (0.003-0.04 Hz). In conclusion, a reliable detection of cerebral autoregulation takes hours and the precision is improved by adjusting for variabilityABP between repeated measurements.

  9. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System

    PubMed Central

    Takakura, Hiromasa; Nishijo, Hisao; Ishikawa, Akihiro; Shojaku, Hideo

    2015-01-01

    To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information. PMID:26635574

  10. Detergent Analysis in Protein Samples Using Mid-Infrared (MIR) Spectroscopy.

    PubMed

    Das, Chandreyee; Nadler, Timothy; Strug, Ivona

    2015-08-03

    Quantitating relative levels of detergent present in protein preparations or samples derived from biological material, such as tissue or body fluids, is important because the presence of detergent may affect downstream analyses as well as protein structure/function. Especially because sample volumes, analysts' available time, and other resources may be limited, a method that consumes little sample and that is rapid and simple is needed for detergent analysis. It would also be preferable to have a method that is generally applicable across many aliphatic chain-containing molecules with many different physical properties. In this unit, methods are described for analyzing detergents and proteins in detergent-protein mixtures using mid-infrared (MIR) spectroscopy. A protocol is also included for efficient removal of unbound detergents from a protein sample accompanied by MIR-based monitoring of both detergent and protein content. This rapid monitoring of sample preparation during the workflow enables users to make timely decisions about sample preparation strategies that maximize both analyte purity and yield.

  11. Noncontact analysis of the fiber weight per unit area in prepreg by near-infrared spectroscopy.

    PubMed

    Jiang, B; Huang, Y D

    2008-05-26

    The fiber weight per unit area in prepreg is an important factor to ensure the quality of the composite products. Near-infrared spectroscopy (NIRS) technology together with a noncontact reflectance sources has been applied for quality analysis of the fiber weight per unit area. The range of the unit area fiber weight was 13.39-14.14mgcm(-2). The regression method was employed by partial least squares (PLS) and principal components regression (PCR). The calibration model was developed by 55 samples to determine the fiber weight per unit area in prepreg. The determination coefficient (R(2)), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were 0.82, 0.092, 0.099, respectively. The predicted values of the fiber weight per unit area in prepreg measured by NIRS technology were comparable to the values obtained by the reference method. For this technology, the noncontact reflectance sources focused directly on the sample with neither previous treatment nor manipulation. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. Besides, the prepreg could be analyzed one time within 20s without sample destruction.

  12. Interfacial Infrared Vibrational Spectroscopy.

    DTIC Science & Technology

    1986-07-30

    Tetracyanoethylene Anion Radical (79) The cyclic voltammetry for TCNE in acetonitrile solutions containing LiClO4 and tetra-n-butylammonium...acetonitrile. Modulation potential 0.0 V to +0.800 V vs. Ag/Ag+ reference. 73 Figure 31 Cyclic voltammetry of TCNE in acetonitrile: (a) 0.1 M TBAF; (b...spectroscopic data for species at the electrode solution interface (1,2,3) utilized infrared transmitting germanium electrodes in an internal reflectance

  13. [Analysis of soil humus and components after 26 years' fertilization by infrared spectroscopy method].

    PubMed

    Zhang, Yu-Lan; Sun, Cai-Xia; Chen, Zhen-Hua; Li, Dong-Po; Liu, Xing-Bin; Chen, Li-Jun; Wu, Zhi-Jie; Du, Jian-Xiong

    2010-05-01

    The infrared spectrum was used to discuss structure change of soil humus and components of chemical groups in soil humic acids (HA) and fulvic acids (FA) isolated from soils in different fertilization treatment after 26 year's fertilization. The result indicated that using the infrared spectroscopy method for the determination of humus, humus fractions (HA and FA) and their structure is feasible. Fertilization affected the structure and content of soil humus and aromatization degree. After 26 years' fertilization, the infrared spectrum shapes with different treatments are similar, but the characteristic peak intensity is obviously different, which reflects the effects of different fertilization treatments on the structure and amounts of soil humus or functional groups. Compared with no fertilization, little molecule saccharides decreased and aryl-groups increased under application of inorganic fertilizer or combined application of organic and chemical fertilizer. The effect was greater in Treatment NPK and M+NPK than in Treatment M1 N and M2 N. Organic and NPK fertilizer increased the development of soil and increased soil quality to a certain extent. Results showed that organic fertilization increased aromatization degree of soil humus and humus fractions distinctly. The authors could estimate soil humus evolvement of different fertilization with infrared spectroscopy.

  14. Coal analysis by diffuse reflectance near-infrared spectroscopy: Hierarchical cluster and linear discriminant analysis.

    PubMed

    Bona, M T; Andrés, J M

    2007-06-15

    An extensive study was carried out in coal samples coming from several origins trying to establish a relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding near-infrared spectral data. This research was developed by applying both quantitative (partial least squares regression, PLS) and qualitative multivariate analysis techniques (hierarchical cluster analysis, HCA; linear discriminant analysis, LDA), to determine a methodology able to estimate property values for a new coal sample. For that, it was necessary to define homogeneous clusters, whose calibration equations could be obtained with accuracy and precision levels comparable to those provided by commercial online analysers and, study the discrimination level between these groups of samples attending only to the instrumental variables. These two steps were performed in three different situations depending on the variables used for the pattern recognition: property values, spectral data (principal component analysis, PCA) or a combination of both. The results indicated that it was the last situation what offered the best results in both two steps previously described, with the added benefit of outlier detection and removal.

  15. Methodology for cork plank characterization (Quercus suber L.) by near-infrared spectroscopy and image analysis

    NASA Astrophysics Data System (ADS)

    Prades, Cristina; García-Olmo, Juan; Romero-Prieto, Tomás; García de Ceca, José L.; López-Luque, Rafael

    2010-06-01

    The procedures used today to characterize cork plank for the manufacture of cork bottle stoppers continue to be based on a traditional, manual method that is highly subjective. Furthermore, there is no specific legislation regarding cork classification. The objective of this viability study is to assess the potential of near-infrared spectroscopy (NIRS) technology for characterizing cork plank according to the following variables: aspect or visual quality, porosity, moisture and geographical origin. In order to calculate the porosity coefficient, an image analysis program was specifically developed in Visual Basic language for a desktop scanner. A set comprising 170 samples from two geographical areas of Andalusia (Spain) was classified into eight quality classes by visual inspection. Spectra were obtained in the transverse and tangential sections of the cork planks using an NIRSystems 6500 SY II reflectance spectrophotometer. The quantitative calibrations showed cross-validation coefficients of determination of 0.47 for visual quality, 0.69 for porosity and 0.66 for moisture. The results obtained using NIRS technology are promising considering the heterogeneity and variability of a natural product such as cork in spite of the fact that the standard error of cross validation (SECV) in the quantitative analysis is greater than the standard error of laboratory (SEL) for the three variables. The qualitative analysis regarding geographical origin achieved very satisfactory results. Applying these methods in industry will permit quality control procedures to be automated, as well as establishing correlations between the different classification systems currently used in the sector. These methods can be implemented in the cork chain of custody certification and will also provide a certainly more objective tool for assessing the economic value of the product.

  16. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations

    PubMed Central

    Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-01-01

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml−1), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml−1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml−1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml−1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy. PMID:27633337

  17. A Quantitative Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Krahling, Mark D.; Eliason, Robert

    1985-01-01

    Although infrared spectroscopy is used primarily for qualitative identifications, it is possible to use it as a quantitative tool as well. The use of a standard curve to determine percent methanol in a 2,2,2-trifluoroethanol sample is described. Background information, experimental procedures, and results obtained are provided. (JN)

  18. Infrared Spectroscopy of Deuterated Compounds.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment (based on the potassium bromide pressed-pellet method) involving the infrared spectroscopy of deuterated compounds. Deuteration refers to deuterium-hydrogen exchange at active hydrogen sites in the molecule. (JN)

  19. Principal and independent component analysis of concomitant functional near infrared spectroscopy and magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Schelkanova, Irina; Toronov, Vladislav

    2011-07-01

    Although near infrared spectroscopy (NIRS) is now widely used both in emerging clinical techniques and in cognitive neuroscience, the development of the apparatuses and signal processing methods for these applications is still a hot research topic. The main unresolved problem in functional NIRS is the separation of functional signals from the contaminations by systemic and local physiological fluctuations. This problem was approached by using various signal processing methods, including blind signal separation techniques. In particular, principal component analysis (PCA) and independent component analysis (ICA) were applied to the data acquired at the same wavelength and at multiple sites on the human or animal heads during functional activation. These signal processing procedures resulted in a number of principal or independent components that could be attributed to functional activity but their physiological meaning remained unknown. On the other hand, the best physiological specificity is provided by broadband NIRS. Also, a comparison with functional magnetic resonance imaging (fMRI) allows determining the spatial origin of fNIRS signals. In this study we applied PCA and ICA to broadband NIRS data to distill the components correlating with the breath hold activation paradigm and compared them with the simultaneously acquired fMRI signals. Breath holding was used because it generates blood carbon dioxide (CO2) which increases the blood-oxygen-level-dependent (BOLD) signal as CO2 acts as a cerebral vasodilator. Vasodilation causes increased cerebral blood flow which washes deoxyhaemoglobin out of the cerebral capillary bed thus increasing both the cerebral blood volume and oxygenation. Although the original signals were quite diverse, we found very few different components which corresponded to fMRI signals at different locations in the brain and to different physiological chromophores.

  20. Extragalactic infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Joseph, R. D.; Wright, G. S.; Wade, R.; Graham, J. R.; Gatley, I.; Prestwich, A. H.

    1987-01-01

    The spectra of galaxies in the near infrared atmospheric transmission windows are explored. Emission lines were detected due to molecular hydrogen, atomic hydrogen recombination lines, a line attributed to FEII, and a broad CO absorption feature. Lines due to H2 and FEII are especially strong in interacting and merging galaxies, but they were also detected in Seyferts and normal spirals. These lines appear to be shock excited. Multi-aperture measurements show that they emanate from regions as large as 15 kpc. It is argued that starbursts provide the most plausible and consistent model for the excitation of these lines, but the changes of relative line intensity of various species with aperture suggest that other excitation mechanisms are also operating in the outer regions of these galaxies.

  1. Infrared spectroscopy of aerosols

    NASA Astrophysics Data System (ADS)

    Mentel, Th.; Sebald, H.

    2003-04-01

    In our large Aerosol Chamber at the FZ Jülich we apply HR FTIR absorption spectroscopy for the determination of trace gases. In the FTIR spectra we also observe broad absorptions of several 10 to a few 100 cm-1 widths that arise from species in the condensed aerosol phase: liquid H_2O, NO_3^-, SO_42-, HSO_4^-, or dicarboxylic acids. Moreover, the aerosol droplets caused extinctions over several 1000 cm-1 by IR scattering. This allows for in-situ observation of changes in the condensed aerosol phase e.g. on HNO_3 uptake, like the shift of the sulfate/bisulfate equilibrium or the growth by water condensation. The IR absorptions of the condensed aerosol phase provide useful extra information in process studies, if they can be quantified. Therefore the absorption cross section, respective, the absorption index which is the imaginary part of the complex refractive index is needed. We set up an aerosol flow tube in which IR spectroscopy on a 8 m light path and aerosol size distribution measurements in the range from 20 nm - 10 μm can be performed simultaneously. We measured sulfate aerosols at several relative humidities (dry, metastable, deliquescent). We will demonstrate an iterative procedure based on Mie calculations and Kramers Kronig transformation to retrieve the absorption index from the observed IR spectra and the corresponding size distribution (for dry ammonium sulfate). We will compare resulting absorption indices for aqueous sodium bisulfate aerosols at several relative humidties with thermodynamic model calculations for the Na^+/H^+/HSO_4^-/SO_42-/H_2O system.

  2. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    DOE PAGES

    Payne, Courtney E.; Wolfrum, Edward J.

    2015-03-12

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less

  3. Integration of independent component analysis with near infrared spectroscopy for evaluation of rice freshness

    NASA Astrophysics Data System (ADS)

    Chuang, Yung-Kun; Chen, Suming; Delwiche, Stephen R.; Lo, Y. Martin; Tsai, Chao-Yin; Yang, I.-Chang; Hu, Yi-Ping

    2012-05-01

    Determination of freshness is an important issue for rice quality. Near infrared (NIR) spectroscopy, a rapid nondestructive inspection method based on specific absorptions within a given range of wavelengths corresponding to the constituents in the sample, has been widely applied for evaluation of internal quality of agricultural products. Since NIR spectra of a mixture may be approximated as the linear addition of individual spectra of the constituents in the mixture, such a mixture spectrum thus can be regarded as 'blind sources' as the proportion of constituents in the samples remains unknown. A multiuse statistical approach, independent component analysis (ICA), is capable of disassembling the mixture signals of Gaussian distribution into non-Gaussian independent constituents, and (with assumption of independent constituent spectral response) can give a complete explanation about the property of constituents in the mixture. By example, a total of 180 white rice samples were collected from 6 crop seasons (from 2006 to 2010) for the purpose of developing an ICA NIR based procedure for rice freshness. , Values of pH were determined by a conventional (bromothymol blue methyl red) method. The calibration model of white rice yielded Rc = 0.939, SEC = 0.202, rp = 0.803 and SEP = 0.233 using original full wavelength range (400 to 2498 nm) spectra and 5 independent components (ICs). Freshness of the white rice can be distinguished either visually by 3-dimensional diagram composed from ICs 2, 3 and 4, or statistically by a calibration model. The results show that ICA with NIR can quickly identify and effectively quantify the pH value in white rice with high predictability, and has the potential to be a useful tool for evaluating rice freshness.

  4. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    SciTech Connect

    Payne, Courtney E.; Wolfrum, Edward J.

    2015-03-12

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.

  5. Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2003-09-01

    Acetone and water mixtures covering the whole solubility range were measured by Fourier transform infrared attenuated total reflectance spectroscopy. In this system, only water can supply the hydrogen atoms necessary for hydrogen bonding. Using spectral windowing with factor analysis (FA), 10 principal factors were retrieved, five water and five acetone. Hydrogen bonding is observed on the carbonyl stretch band as water is introduced in the solution, redshifting the band further from its gas position than that observed in pure liquid acetone. This indicates that the hydrogen bonding is stronger than the acetone dipole-dipole interactions because it overrides them. A water molecule isolated in acetone is twice H bonded through its two H atoms; although both OH groups are H-bond donors, the OH stretch band is less redshifted (˜138 cm-1) than that of pure liquid water (˜401 cm-1). This is attributable to the two lone electron pairs remaining on the oxygen atom that sustain a large part of the OH valence bond strength. Hydrogen bonds on the water oxygen weaken both its OH valence bonds and modify the OH stretch band when water is added to the solution. The oxygen atoms of both water and acetone can accept 0, 1, and 2 H bonds given by water to yield three water and three acetone situations. Since these six situations are far less than the 10 principal factors retrieved by FA, other perturbations must be present to account for the difference. Although acetone and water are intermingled through H bonds, hydrates in the sense of an acetone molecule sequestering a number of water molecules or altering the H-bonding water network are not present because the principal factors evolve independently.

  6. Attenuated total reflectance Fourier transform infrared spectroscopy analysis of red seal inks on questioned document.

    PubMed

    Nam, Yun Sik; Park, Jin Sook; Kim, Nak-Kyoon; Lee, Yeonhee; Lee, Kang-Bong

    2014-07-01

    Seals are traditionally used in the Far East Asia to stamp an impression on a document in place of a signature. In this study, an accuser claimed that a personal contract regarding mining development rights acquired by a defendant was devolved to the accuser because the defendant stamped the devolvement contract in the presence of the accuser and a witness. The accuser further stated that the seal ink stamped on the devolvement contract was the same as that stamped on the development rights application document. To verify this, the seals used in two documents were analyzed using micro-attenuated total reflectance Fourier transform infrared spectroscopy and infrared spectra. The findings revealed that the seals originated from different manufacturers. Thus, the accuser's claim on the existence of a devolvement contract was proved to be false.

  7. Analysis of colon tumors in rats by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duarte, Janaína; Hage, Raduan; Silveira, Landulfo, Jr.; Silveira, Fabricio; Pacheco, Marcos Tadeu T.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    Biomedical applications of near-infrared Raman spectroscopy have increased their importance at the last ten years. This technique can determinate the molecular composition of materials, allowing a sensible and fast biological diagnosis. It has showed to be a promising tool for health diagnosis due to its high sensibility. Colorectal cancer (CRC) is one of the most common malignant tumors in humans beings. In the last decades many experimental models have been developed in animals based in the use of chemical composites to induce the formation and development of these tumors, many of them present similar characteristics to those of natural occurrence aiming to the attainment of information on genesis, evolution, as well as diagnosis and more efficient therapies for treating these neoplasias. Amongst the most used chemical composites is the 1,2- dimetilhydrazine (DMH) because its morphological and histological similarity to those tumors. This study aims to compare in vivo normal colon tissue and tumoral colon tissue, induced by DMH, in rats by near-infrared Raman spectroscopy to permit the use in the near future for an efficient diagnosis in real time besides being useful as an auxiliary method for several therapies, including the photodynamic therapy.

  8. [Quantitative analysis of nitrate in atmospheric particulates PM2.5 with Fourier transform infrared spectroscopy].

    PubMed

    Liu, Na; Wei, Xiu-li; Gao, Min-guang; Xu, Liang; Jiao, Yang; Li, Sheng; Tong, Jing-jing; Cheng, Si-yang

    2013-09-01

    Airborne fine particulate matter PM2.5 as one of composite core pollutants of air pollution is concerned and NO as one of the main components of water-soluble ions has an important impact on precipitation and human health, so searching a method of rapid and reliable detection is an important work. According to advantages of the Fourier transform infrared spectroscopy technology, the infrared spectrum of NO3- in NH4NO3 was compared with PM2.5 by a sampling method of making film. The result shows that their spectra are consistent with each other. A range of infrared spectra of different masses of NO3- were measured and the absorbance was fitted with mass, correlation and mass range of which are 0.994 8 and 7.82-73.78 microg, respectively. According to the corresponding relationship of mass between solution and sample film, the FTIR of the sample film was measured directly and mass concentrations of NO3- in a month (between 2012-03-20 and 2012-04-20) of Hefei area are listed and the average is 4.1713 microg x m(-3).

  9. Near-infrared confocal micro-Raman spectroscopy combined with PCA-LDA multivariate analysis for detection of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wang, Yue; Liu, Nenrong; Lin, Duo; Weng, Cuncheng; Zhang, Jixue; Zhu, Lihuan; Chen, Weisheng; Chen, Rong; Feng, Shangyuan

    2013-06-01

    The diagnostic capability of using tissue intrinsic micro-Raman signals to obtain biochemical information from human esophageal tissue is presented in this paper. Near-infrared micro-Raman spectroscopy combined with multivariate analysis was applied for discrimination of esophageal cancer tissue from normal tissue samples. Micro-Raman spectroscopy measurements were performed on 54 esophageal cancer tissues and 55 normal tissues in the 400-1750 cm-1 range. The mean Raman spectra showed significant differences between the two groups. Tentative assignments of the Raman bands in the measured tissue spectra suggested some changes in protein structure, a decrease in the relative amount of lactose, and increases in the percentages of tryptophan, collagen and phenylalanine content in esophageal cancer tissue as compared to those of a normal subject. The diagnostic algorithms based on principal component analysis (PCA) and linear discriminate analysis (LDA) achieved a diagnostic sensitivity of 87.0% and specificity of 70.9% for separating cancer from normal esophageal tissue samples. The result demonstrated that near-infrared micro-Raman spectroscopy combined with PCA-LDA analysis could be an effective and sensitive tool for identification of esophageal cancer.

  10. Analysis of carbonyl value of frying oil by fourier transform infrared spectroscopy.

    PubMed

    Zhang, Han; Ma, Jinkui; Miao, Yelian; Tuchiya, Tomohiro; Chen, Jie Yu

    2015-01-01

    A rapid method for determining the carbonyl value of frying oils has been developed using Fourier-transform infrared (FTIR) spectroscopy and chemometrics. One hundred and fifty-six frying oils with different carbonyl values were collected from an actual potato frying process. FTIR spectra in the range of 4000-650 cm(-1) were scanned with a FTIR spectroscopy apparatus using the attenuated total reflectance (ATR) method. A good calibration model was obtained using the partial least-squares (PLS) regression method with full cross validation for predicting the carbonyl value of frying oils. For the model, the coefficients of determination (R(2)), standard errors of cross validation (SECV) and standard errors of prediction (SEP) were 0.99, 1.87 μmol g(-1) and 1.93 μmol g(-1), respectively. Moreover, standard deviation ratios of reference data in the validation sample set to the SEP were higher than 3. This study shows that the carbonyl value of frying oils can be successfully determined to a high accuracy using FTIR spectroscopy combined with PLS regression.

  11. Screening of patients with bronchopulmonary diseases using methods of infrared laser photoacoustic spectroscopy and principal component analysis.

    PubMed

    Kistenev, Yury V; Karapuzikov, Alexander I; Kostyukova, Nadezhda Yu; Starikova, Marina K; Boyko, Andrey A; Bukreeva, Ekaterina B; Bulanova, Anna A; Kolker, Dmitry B; Kuzmin, Dmitry A; Zenov, Konstantin G; Karapuzikov, Alexey A

    2015-06-01

    A human exhaled air analysis by means of infrared (IR) laser photoacoustic spectroscopy is presented. Eleven healthy nonsmoking volunteers (control group) and seven patients with chronic obstructive pulmonary disease (COPD, target group) were involved in the study. The principal component analysis method was used to select the most informative ranges of the absorption spectra of patients' exhaled air in terms of the separation of the studied groups. It is shown that the data of the profiles of exhaled air absorption spectrum in the informative ranges allow identifying COPD patients in comparison to the control group.

  12. Screening of patients with bronchopulmonary diseases using methods of infrared laser photoacoustic spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Karapuzikov, Alexander I.; Kostyukova, Nadezhda Yu.; Starikova, Marina K.; Boyko, Andrey A.; Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kolker, Dmitry B.; Kuzmin, Dmitry A.; Zenov, Konstantin G.; Karapuzikov, Alexey A.

    2015-06-01

    A human exhaled air analysis by means of infrared (IR) laser photoacoustic spectroscopy is presented. Eleven healthy nonsmoking volunteers (control group) and seven patients with chronic obstructive pulmonary disease (COPD, target group) were involved in the study. The principal component analysis method was used to select the most informative ranges of the absorption spectra of patients' exhaled air in terms of the separation of the studied groups. It is shown that the data of the profiles of exhaled air absorption spectrum in the informative ranges allow identifying COPD patients in comparison to the control group.

  13. Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse

    NASA Astrophysics Data System (ADS)

    Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa

    1994-01-01

    Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.

  14. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  15. Fourier transform infrared spectroscopy (FTIR) and multivariate analysis for identification of different vegetable oils used in biodiesel production.

    PubMed

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; Schneider, Rosana de Cássia de Souza

    2013-03-28

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources--canola, cotton, corn, palm, sunflower and soybeans--were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples.

  16. [Analysis of Spirulina powder by Fourier transform infrared spectroscopy and calculation of protein content].

    PubMed

    Liu, Hai-Jing; Xu, Chang-Hua; Li, Wei-Ming; Wang, Feng; Zhou, Qun; Li, An; Zhao, Yue-Liang; Ha, Yi-Ming; Sun, Su-Qin

    2013-04-01

    Spirulina, Spirulina powder and dextrin standard were analyzed and identified by Infrared (IR) spectroscopy. The main components, protein (1 657 and 1 537 cm(-1)) and carbohydrate (1 069 and 1054 cm(-1)), had distinct fingerprint characteristics of IR spectra. By comparing the IR spectra of Spirulina, Spirulina powder and dextrin standard, the dominant nutrition in Spirulina powder was identified as protein and carbohydrate. The dominant accessory added in Spirulina powder was dextrin. Comparing the IR spectra of Spirulina powder from 28 different factories and figuring out the correlation provides the information about the amount of accessory. A standard curve of the ratio of absorption peak intensities to protein content was constructed to accurately determine the amount of protein in Spirulina powder.

  17. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis.

    PubMed

    Gajjar, Ketan; Heppenstall, Lara D; Pang, Weiyi; Ashton, Katherine M; Trevisan, Júlio; Patel, Imran I; Llabjani, Valon; Stringfellow, Helen F; Martin-Hirsch, Pierre L; Dawson, Timothy; Martin, Francis L

    2012-09-06

    The most common initial treatment received by patients with a brain tumour is surgical removal of the growth. Precise histopathological diagnosis of brain tumours is to some extent subjective. Furthermore, currently available diagnostic imaging techniques to delineate the excision border during cytoreductive surgery lack the required spatial precision to aid surgeons. We set out to determine whether infrared (IR) and/or Raman spectroscopy combined with multivariate analysis could be applied to discriminate between normal brain tissue and different tumour types (meningioma, glioma and brain metastasis) based on the unique spectral "fingerprints" of their biochemical composition. Formalin-fixed paraffin-embedded tissue blocks of normal brain and different brain tumours were de-waxed, mounted on low-E slides and desiccated before being analyzed using attenuated total reflection Fourier-transform IR (ATR-FTIR) and Raman spectroscopy. ATR-FTIR spectroscopy showed a clear segregation between normal and different tumour subtypes. Discrimination of tumour classes was also apparent with Raman spectroscopy. Further analysis of spectral data revealed changes in brain biochemical structure associated with different tumours. Decreased tentatively-assigned lipid-to-protein ratio was associated with increased tumour progression. Alteration in cholesterol esters-to-phenylalanine ratio was evident in grade IV glioma and metastatic tumours. The current study indicates that IR and/or Raman spectroscopy have the potential to provide a novel diagnostic approach in the accurate diagnosis of brain tumours and have potential for application in intra-operative diagnosis.

  18. Reflection and transmission mid-infrared spectroscopy for rapid determination of coal properties by multivariate analysis.

    PubMed

    Bona, M T; Andrés, J M

    2008-01-15

    In the present paper, the influence of different acquisition techniques (transmission, diffuse reflectance infrared Fourier transform and attenuated total reflectance) in the determination of nine coal properties related to combustion power plants has been studied. Raw coal samples of different origins were pooled for developing a correlation between the resultant spectra and the corresponding coal properties by multivariate analysis techniques. Thus, the existent collinearity in mid-infrared coal spectra led to the application of partial least squares regression (PLS), studying simultaneously the influence of different spectroscopic units as well as several spectral data mathematical pre-treatments. On the other hand, a principal component analysis (PCA) revealed a relationship between principal components and coal composition in both transmission and reflection techniques. Although the best accuracy and precision results were obtained for coal properties related to organic matter, the system was also able to differentiate coal samples attending to the presence of a specific mineral matter, kaolinite.

  19. [Study on the genuineness and producing area of Panax notoginseng based on infrared spectroscopy combined with discriminant analysis].

    PubMed

    Liu, Fei; Wang, Yuan-zhong; Yang, Chun-yan; Jin, Hang

    2015-01-01

    The genuineness and producing area of Panax notoginseng were studied based on infrared spectroscopy combined with discriminant analysis. The infrared spectra of 136 taproots of P. notoginseng from 13 planting point in 11 counties were collected and the second derivate spectra were calculated by Omnic 8. 0 software. The infrared spectra and their second derivate spectra in the range 1 800 - 700 cm-1 were used to build model by stepwise discriminant analysis, which was in order to distinguish study on the genuineness of P. notoginseng. The model built based on the second derivate spectra showed the better recognition effect for the genuineness of P. notoginseng. The correct rate of returned classification reached to 100%, and the prediction accuracy was 93. 4%. The stability of model was tested by cross validation and the method was performed extrapolation validation. The second derivate spectra combined with the same discriminant analysis method were used to distinguish the producing area of P. notoginseng. The recognition effect of models built based on different range of spectrum and different numbers of samples were compared and found that when the model was built by collecting 8 samples from each planting point as training sample and the spectrum in the range 1 500 - 1 200 cm-1 , the recognition effect was better, with the correct rate of returned classification reached to 99. 0%, and the prediction accuracy was 76. 5%. The results indicated that infrared spectroscopy combined with discriminant analysis showed good recognition effect for the genuineness of P. notoginseng. The method might be a hopeful new method for identification of genuineness of P. notoginseng in practice. The method could recognize the producing area of P. notoginseng to some extent and could be a new thought for identification of the producing area of P. natoginseng.

  20. [Analysis of transgenic and non-transgenic rice leaves using visible/near-infrared spectroscopy].

    PubMed

    Zhu, Wen-chao; Cheng, Fang

    2012-02-01

    Visible/near-infrared (Vis/NIR) spectroscopy was investigated for the fast discrimination of rice leaves with different genes and the determination of chlorophyll content. Least squares-support vector machines (LS-SVM) was employed to discriminate transgenic rice leaves from non-transgenic ones. The classification accuracy of calibration samples reached to 100%. Successive projections algorithm (SPA) was proposed to select effective wavelengths. SPA-LS-SVM discrimination model was performed, and the result indicated that an 87.27% recognition ratio was achieved using only 0.3% of total variables. The optimal performance of each quantification model was achieved after orthogonal signal correction (OSA). Performances treated by SPA were better than that of full-spectrum PLS, which indicated that SPA is a powerful way for effective wavelength selection. The best performance of quantification was obtained by SPA-LS-SVM model; with correlation coefficient (R) and root mean square error of prediction (RMSEP) being 0.902 2 and 1.312 1, respectively. Excellent classification and prediction precision were achieved. The overall results indicated that the new proposed SPA-LS-SVM is a powerful method for varieties recognition and SPAD prediction. This study supplied a new and alternative approach to the further application of Vis/NIR spectroscopy in on-field classification and monitoring.

  1. Rapid Quantitative Analysis of Forest Biomass Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Regression

    PubMed Central

    Fasina, Oladiran O.; Eckhardt, Lori G.

    2016-01-01

    Fourier transform infrared reflectance (FTIR) spectroscopy has been used to predict properties of forest logging residue, a very heterogeneous feedstock material. Properties studied included the chemical composition, thermal reactivity, and energy content. The ability to rapidly determine these properties is vital in the optimization of conversion technologies for the successful commercialization of biobased products. Partial least squares regression of first derivative treated FTIR spectra had good correlations with the conventionally measured properties. For the chemical composition, constructed models generally did a better job of predicting the extractives and lignin content than the carbohydrates. In predicting the thermochemical properties, models for volatile matter and fixed carbon performed very well (i.e., R2 > 0.80, RPD > 2.0). The effect of reducing the wavenumber range to the fingerprint region for PLS modeling and the relationship between the chemical composition and higher heating value of logging residue were also explored. This study is new and different in that it is the first to use FTIR spectroscopy to quantitatively analyze forest logging residue, an abundant resource that can be used as a feedstock in the emerging low carbon economy. Furthermore, it provides a complete and systematic characterization of this heterogeneous raw material. PMID:28003929

  2. Selection of haploid maize kernels from hybrid kernels for plant breeding using near-infrared spectroscopy and SIMCA analysis.

    PubMed

    Jones, Roger W; Reinot, Tonu; Frei, Ursula K; Tseng, Yichia; Lübberstedt, Thomas; McClelland, John F

    2012-04-01

    Samples of haploid and hybrid seed from three different maize donor genotypes after maternal haploid induction were used to test the capability of automated near-infrared transmission spectroscopy to individually differentiate haploid from hybrid seeds. Using a two-step chemometric analysis in which the seeds were first classified according to genotype and then the haploid or hybrid status was determined proved to be the most successful approach. This approach allowed 11 of 13 haploid and 25 of 25 hybrid kernels to be correctly identified from a mixture that included seeds of all the genotypes.

  3. Quantitative analysis of solids in motion by transient infrared emission spectroscopy using hot-gas jet excitation

    SciTech Connect

    Jones, R.W.; McClelland, J.F. )

    1990-10-01

    Quantitative compositional analysis of optically thick solids in motion is demonstrated by using transient infrared emission spectroscopy (TIRES). TIRES greatly reduces the self-absorption that normally degrades conventional emission spectra so that they closely resemble blackbody spectra. Quantitative compositional analyses of poly((methyl methacrylate)-co-(butyl methacrylate)) and poly(ethylene-co-(vinyl acetate)) with standard errors of prediction under 1% were achieved with only a few seconds of data acquisition using principal component regression. Use of a hot-gas jet in place of a laser in the TIRES technique allows study of materials that do not absorb strongly at common laser wavelengths while reducing cost and complexity.

  4. High-resolution synchrotron far infrared spectroscopy of thionyl chloride: Analysis of the ν3 and ν6 fundamental bands

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, Marie-Aline; Mouret, Gaël; Pirali, Olivier; Cuisset, Arnaud

    2015-09-01

    Thionyl chloride (SOCl2) is a volatile inorganic compounds used extensively in industry. Its monitoring in gas phase is critical both for environmental and defense concerns. Previous high-resolution gas phase spectroscopic studies were focused on the microwave region (below 40 GHz) and no rotationally-resolved study of the IR spectrum has been reported to date. We present in this article a rovibrational analysis of the two lowest frequency infrared active bending modes ν3 and ν6 of SOCl2. By means of synchrotron based Fourier-Transform far-infrared spectroscopy on the AILES beamline of the SOLEIL facility, the spectra of the symmetric ν3 (346 cm-1) and asymmetric ν6 (283 cm-1) fundamental bands have been rotationally resolved and analyzed.

  5. Rapid analysis and quantification of fluorescent brighteners in wheat flour by Tri-step infrared spectroscopy and computer vision technology

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Xi; Hu, Wei; Liu, Yuan; Gu, Dong-Chen; Sun, Su-Qin; Xu, Chang-Hua; Wang, Xi-Chang

    2015-11-01

    Fluorescent brightener, industrial whitening agent, has been illegally used to whitening wheat flour. In this article, computer vision technology (E-eyes) and colorimetry were employed to investigate color difference among different concentrations of fluorescent brightener in wheat flour using DMS as an example. Tri-step infrared spectroscopy (Fourier transform-infrared spectroscopy coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2DCOS-IR)) was used to identify and quantitate DMS in wheat flour. According to color analysis, the whitening effect was significant when added with less than 30 mg/g DMS but when more than 100 mg/g, the flour began greenish. Thus it was speculated that the concentration of DMS should be below 100 mg/g in real flour adulterant with DMS. With the increase of the concentration, the spectral similarity of wheat flour with DMS to DMS standard was increasing. SD-IR peaks at 1153 cm-1, 1141 cm-1, 1112 cm-1, 1085 cm-1 and 1025 cm-1 attributed to DMS were regularly enhanced. Furthermore, it could be differentiated by 2DOS-IR between DMS standard and wheat flour added with DMS low to 0.05 mg/g and the bands in the range of 1000-1500 cm-1 could be an exclusive range to identify whether wheat flour contained DMS. Finally, a quantitative prediction model based on IR spectra was established successfully by Partial least squares (PLS) with a concentration range from 1 mg/g to 100 mg/g. The calibration set gave a determination coefficient of 0.9884 with a standard error (RMSEC) of 5.56 and the validation set presented a determination coefficient of 0.9881 with a standard error of 5.73. It was demonstrated that computer vision technology and colorimetry were effective to estimate the content of DMS in wheat flour and the Tri-step infrared macro-fingerprinting combined with PLS was applicable for rapid and nondestructive fluorescent brightener identification and quantitation.

  6. Structural analysis of lime wood biodegraded by white rot fungi through infrared and two dimensional correlation spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Popescu, Carmen-Mihaela; Gradinariu, Petronela; Popescu, Maria-Cristina

    2016-11-01

    The action of the white rot fungi Phanerochaete crisosporium on the structure of lime wood (Tilia cordata) has been studied. The degree of decay was determined by weight loss, which was of 37% after 110 days. The samples were further analyzed by infrared and two dimensional correlation spectroscopy. The recorded spectra for different intervals of decay indicate variations in the intensities and width or wavenumber shifts of the bands assigned, both, for lignin and carbohydrates. An increase in the intensities of the bands from the carbonyl region due to formation of new structures, accompanied by the reduction of the methoxyl and methyl/methylene groups in lignin was evidenced. Further, the differences between reference and decayed wood spectra were examined in detail using 2DCOS spectroscopy and the second derivative analysis and the sequential order of modifications were established.

  7. Application of near infrared spectroscopy to the analysis and fast quality assessment of traditional Chinese medicinal products

    PubMed Central

    Zhang, Chao; Su, Jinghua

    2014-01-01

    Near infrared spectroscopy (NIRS) has been widely applied in both qualitative and quantitative analysis. There is growing interest in its application to traditional Chinese medicine (TCM) and a review of recent developments in the field is timely. To present an overview of recent applications of NIRS to the identification, classification and analysis of TCM products, studies describing the application of NIRS to TCM products are classified into those involving qualitative and quantitative analysis. In addition, the application of NIRS to the detection of illegal additives and the rapid assessment of quality of TCMs by fast inspection are also described. This review covers over 100 studies emphasizing the application of NIRS in different fields. Furthermore, basic analytical principles and specific examples are used to illustrate the feasibility and effectiveness of NIRS in pattern identification. NIRS provides an effective and powerful tool for the qualitative and quantitative analysis of TCM products. PMID:26579382

  8. Infrared imaging spectroscopy and chemometric tools for in situ analysis of an imiquimod pharmaceutical preparation presented as cream

    NASA Astrophysics Data System (ADS)

    Carneiro, Renato Lajarim; Poppi, Ronei Jesus

    2014-01-01

    In the present work the homogeneity of a pharmaceutical formulation presented as a cream was studied using infrared imaging spectroscopy and chemometric methodologies such as principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). A cream formulation, presented as an emulsion, was prepared using imiquimod as the active pharmaceutical ingredient (API) and the excipients: water, vaseline, an emulsifier and a carboxylic acid in order to dissolve the API. After exposure at 45 °C during 3 months to perform accelerated stability test, the presence of some crystals was observed, indicating homogeneity problems in the formulation. PCA exploratory analysis showed that the crystal composition was different from the composition of the emulsion, since the score maps presented crystal structures in the emulsion. MCR-ALS estimated the spectra of the crystals and the emulsion. The crystals presented amine and C-H bands, suggesting that the precipitate was a salt formed by carboxylic acid and imiquimod. These results indicate the potential of infrared imaging spectroscopy in conjunction with chemometric methodologies as an analytical tool to ensure the quality of cream formulations in the pharmaceutical industry.

  9. Infrared imaging spectroscopy and chemometric tools for in situ analysis of an imiquimod pharmaceutical preparation presented as cream.

    PubMed

    Carneiro, Renato Lajarim; Poppi, Ronei Jesus

    2014-01-24

    In the present work the homogeneity of a pharmaceutical formulation presented as a cream was studied using infrared imaging spectroscopy and chemometric methodologies such as principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). A cream formulation, presented as an emulsion, was prepared using imiquimod as the active pharmaceutical ingredient (API) and the excipients: water, vaseline, an emulsifier and a carboxylic acid in order to dissolve the API. After exposure at 45°C during 3 months to perform accelerated stability test, the presence of some crystals was observed, indicating homogeneity problems in the formulation. PCA exploratory analysis showed that the crystal composition was different from the composition of the emulsion, since the score maps presented crystal structures in the emulsion. MCR-ALS estimated the spectra of the crystals and the emulsion. The crystals presented amine and C-H bands, suggesting that the precipitate was a salt formed by carboxylic acid and imiquimod. These results indicate the potential of infrared imaging spectroscopy in conjunction with chemometric methodologies as an analytical tool to ensure the quality of cream formulations in the pharmaceutical industry.

  10. [Identification of different Citrus sinensis (L.) Osbeck trees varieties using Fourier transform infrared spectroscopy and hierarchical cluster analysis].

    PubMed

    Yi, Shi-Lai; Deng, Lie; He, Shao-Lan; Shi, You-Ming; Zheng, Yong-Qiang; Lu, Qiang; Xie, Rang-Jin; Wei, Xian-Guoi; Li, Song-Wei; Jian, Shui-Xian

    2012-11-01

    Researched on diversity of the spring leaf samples of seven different Citrus sinensis (L.) Osbeck varieties by Fourier transform infrared (FTIR) spectroscopy technology, the results showed that the Fourier transform infrared spectra of seven varieties leaves was composited by the absorption band of cellulose and polysaccharide mainly, the wave number of characteristics absorption peaks were similar at their FTIR spectra. However, there were some differences in shape of peaks and relatively absorption intensity. The conspicuous difference was presented at the region between 1 500 and 700 cm(-1) by second derivative spectra. Through the hierarchical cluster analysis (HCA) of second derivative spectra between 1 500 and 700 cm(-1), the results showed that the clustering of the different varieties of Citrus sinensis (L.) Osbeck varieties was classification according to genetic relationship. The results showed that FTIR spectroscopy combined with hierarchical cluster analysis could be used to identify and classify of citrus varieties rapidly, it was an extension method to study on early leaves of varieties orange seedlings.

  11. Classification and structural analysis of live and dead Salmonella cells using Fourier transform infrared spectroscopy and principal component analysis.

    PubMed

    Sundaram, Jaya; Park, Bosoon; Hinton, Arthur; Yoon, Seung Chul; Windham, William R; Lawrence, Kurt C

    2012-02-01

    Fourier transform infrared spectroscopy (FT-IR) was used to detect Salmonella Typhimurium and Salmonella Enteritidis food-borne bacteria and to distinguish between live and dead cells of both serotypes. Bacteria cells were prepared in 10(8) cfu/mL concentration, and 1 mL of each bacterium was loaded individually on the ZnSe attenuated total reflection (ATR) crystal surface (45° ZnSe, 10 bounces, and 48 mm × 5 mm effective area of analysis on the crystal) and scanned for spectral data collection from 4000 to 650 cm(-1) wavenumber. Analysis of spectral signatures of Salmonella isolates was conducted using principal component analysis (PCA). Spectral data were divided into three regions such as 900-1300, 1300-1800, and 3000-2200 cm(-1) based on their spectral signatures. PCA models were developed to differentiate the serotypes and live and dead cells of each serotype. Maximum classification accuracy of 100% was obtained for serotype differentiation as well as for live and dead cells differentiation. Soft independent modeling of class analogy (SIMCA) analysis was carried out on the PCA model and applied to validation sample sets. It gave a predicted classification accuracy of 100% for both the serotypes and its live and dead cells differentiation. The Mahalanobis distance calculated in three different spectral regions showed maximum distance for the 1800-1300 cm(-1) region, followed by the 3000-2200 cm(-1) region, and then by the 1300-900 cm(-1) region. It showed that both of the serotypes have maximum differences in their nucleic acids, DNA/RNA backbone structures, protein, and amide I and amide II bands.

  12. Cost analysis of near-infrared spectroscopy tissue oximetry for monitoring autologous free tissue breast reconstruction.

    PubMed

    Pelletier, Aaron; Tseng, Charles; Agarwal, Shailesh; Park, Julie; Song, David

    2011-10-01

    Free flap monitoring typically requires specialized nursing that can increase medical costs. This study uses near-infrared spectroscopy (NIRS) tissue oximetry to monitor free tissue breast reconstruction. We hypothesize this practice will reduce medical costs by eliminating the need for specialized nursing. From August 2006 to January 2010, women undergoing unilateral free tissue breast reconstruction were enrolled and admitted postoperatively to either the surgical intensive care unit (ICU) or floor. Each underwent continuous monitoring using NIRS tissue oximetry and intermittent clinical examination with surface Doppler ultrasonography. Patient demographics, comorbidities, perioperative details, and financial data were recorded. There were 50 patients studied, all with abdominal-based flaps (25 per group). There were no statistically significant differences in patient demographics, comorbidities, mean flap weight, ischemia time, or length of stay between the ICU and floor groups. Four flaps had vascular complications, all detected by NIRS tissue oximetry. Comparison of hospital costs showed an average reduction of $1937 per patient when monitored on the surgical floor (P = 0.036). NIRS tissue oximetry is a sensitive and reliable monitoring tool, eliminating the need for specialized nursing care. The effect is decreased cost structure and increased hospital contribution margin for autologous free tissue breast reconstruction.

  13. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  14. [Study on analysis of copy paper by Fourier transform infrared spectroscopy].

    PubMed

    Li, Ji-Min; Wang, Yan-Ji; Wang, Jing-Han; Yao, Li-Juan; Zhang, Biao

    2009-06-01

    A new method of fast identification of copy papers by Fourier transform infrared spectroscopy (FTIR) was developed. The kinds of filler and the cellulosic degree of crystallinity were analyzed by FTIR, and the ageing curves of cellulosic paper were studied with heating and ultraviolet light. The cellulosic degree of crystallinity was showed by the ratio of absorbance at 1 429 cm(-1) to that at 893 cm(-1), the standard deviation of different brands of copy papers was 0.010 7-0.016 0, and the standard deviation of the same brands of copy papers was 0.014 8. The kinds of filler and the cellulosic degree of crystallinity were different in copy papers from different brands of different manufacturing plants, different brands of same manufacturing plants and different manufacturing times of the same brands from the same manufacturing plants, and the curves of ageing were different with heating and ultraviolet light. The results of fast identification of copy papers by FTIR are satisfactory.

  15. Short-wave near-infrared spectroscopy of milk powder for brand identification and component analysis.

    PubMed

    Wu, D; Feng, S; He, Y

    2008-03-01

    The aim of the present paper was to provide new insight into the short-wave near-infrared (NIR) spectroscopic analysis of milk powder. Near-infrared spectra in the 800- to 1,025-nm region of 350 samples were analyzed to determine the brands and quality of milk powders. Brand identification was done by a least squares support vector machine (LS-SVM) model coupled with fast fixed-point independent component analysis (ICA). The correct answer rate of the ICA-LS-SVM model reached as high as 98%, which was better than that of the LS-SVM (95%). Contents of fat, protein, and carbohydrate were determined by the LS-SVM and ICA-LS-SVM models. Both processes offered good determination performance for analyzing the main components in milk powder based on short-wave NIR spectra. The coefficients of determination for prediction and root mean square error of prediction of ICA-LS-SVM were 0.983, 0.231, and 0.982, and 0.161, 0.980, and 0.410, respectively, for the 3 components. However, there were less than 10 input variables in the ICA-LS-SVM model compared with 225 in the LS-SVM model. Thus, the processing time was much shorter and the model was simpler. The results presented in this paper demonstrate that the short-wave NIR region is promising for fast and reliable determination of the brand and main components in milk powder.

  16. Fluorescence and Fourier-transform infrared spectroscopy for the analysis of iconic Italian design lamps made of polymeric materials.

    PubMed

    Toja, Francesca; Nevin, Austin; Comelli, Daniela; Levi, Marinella; Cubeddu, Rinaldo; Toniolo, Lucia

    2011-03-01

    The preservation of design object collections requires an understanding of their constituent materials which are often polymeric blends. Challenges associated with aging of complex polymers from objects with an unknown physical history may compromise the interpretation of data from analytical techniques, and therefore complicate the assessment of the condition of polymers in indoor museum environments. This study focuses on the analysis of polymeric materials from three well-known Italian design lamps from the 1960s. To assess the degree of chemical modifications in the polymers, non-destructive molecular spectroscopic techniques, Fourier-transform infrared (FTIR) and fluorescence spectroscopy, have been applied directly on the object surfaces using an optical fiber probe and through examination of micro samples. FTIR spectra of the different polymers, polyvinylacetate (PVAc) for the lamps Taraxacum and Fantasma, and both acrylonitrile-butadiene-styrene polymer (ABS) and cellulose acetate (CA) for the lamp Nesso, allowed the detection of ongoing deterioration processes. Fluorescence spectroscopy proved particularly sensitive for the detection of molecular changes in the polymeric objects, as the spectra obtained from the examined lamps differ significantly from those of the unaged reference materials. Differences in fluorescence spectra are also detected between different points on the same object further indicating the presence of different chemical species on the surfaces. With the aid of complementary data from FTIR spectroscopy, an interpretation of the emission spectra of the studied polymeric objects is here proposed, further suggesting that fluorescence spectroscopy may be useful for following the degradation of historical polymeric objects.

  17. [Study on temperature correctional models of quantitative analysis with near infrared spectroscopy].

    PubMed

    Zhang, Jun; Chen, Hua-cai; Chen, Xing-dan

    2005-06-01

    Effect of enviroment temperature on near infrared spectroscopic quantitative analysis was studied. The temperature correction model was calibrated with 45 wheat samples at different environment temperaturs and with the temperature as an external variable. The constant temperature model was calibated with 45 wheat samples at the same temperature. The predicted results of two models for the protein contents of wheat samples at different temperatures were compared. The results showed that the mean standard error of prediction (SEP) of the temperature correction model was 0.333, but the SEP of constant temperature (22 degrees C) model increased as the temperature difference enlarged, and the SEP is up to 0.602 when using this model at 4 degrees C. It was suggested that the temperature correctional model improves the analysis precision.

  18. Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: A review of recent research developments.

    PubMed

    Wang, Lu; Sun, Da-Wen; Pu, Hongbin; Cheng, Jun-Hu

    2017-05-03

    Nowadays, near-infrared spectroscopy (NIR) has become one of the most efficient and advanced techniques for analysis of food products. Many relevant researches have been conducted in this regard. However, no reviews about the applications of NIR for liquid food analysis are reported. Therefore, this review summarizes the recent research developments of NIR technology in the field of liquid foods, focusing on the detection of quality attributes of various liquid foods, including alcoholic beverages (red wines, rice wines, and beer), nonalcoholic beverages (juice, fruit vinegars, coffee beverages, and cola beverages), dairy products (milk and yogurt), and oils (vegetable, camellia, peanut, and virgin olive oils and frying oil). In addition, the classification and authentication detection of adulteration are also covered. It is hoped that the current paper can serve as a reference source for the future liquid food analysis by NIR techniques.

  19. Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics.

    PubMed

    Kurniawati, Endah; Rohman, Abdul; Triyana, Kuwat

    2014-01-01

    Meatball is one of the favorite foods in Indonesia. For the economic reason (due to the price difference), the substitution of beef meat with pork can occur. In this study, FTIR spectroscopy in combination with chemometrics of partial least square (PLS) and principal component analysis (PCA) was used for analysis of pork fat (lard) in meatball broth. Lard in meatball broth was quantitatively determined at wavenumber region of 1018-1284 cm(-1). The coefficient of determination (R(2)) and root mean square error of calibration (RMSEC) values obtained were 0.9975 and 1.34% (v/v), respectively. Furthermore, the classification of lard and beef fat in meatball broth as well as in commercial samples was performed at wavenumber region of 1200-1000 cm(-1). The results showed that FTIR spectroscopy coupled with chemometrics can be used for quantitative analysis and classification of lard in meatball broth for Halal verification studies. The developed method is simple in operation, rapid and not involving extensive sample preparation.

  20. Fourier transform infrared spectroscopy for Mars science

    NASA Astrophysics Data System (ADS)

    Anderson, Mark S.; Andringa, Jason M.; Carlson, Robert W.; Conrad, Pamela; Hartford, Wayne; Shafer, Michael; Soto, Alejandro; Tsapin, Alexandre I.; Dybwad, Jens Peter; Wadsworth, Winthrop; Hand, Kevin

    2005-03-01

    Presented here is a Fourier transform infrared spectrometer (FTIR) for field studies that serves as a prototype for future Mars science applications. Infrared spectroscopy provides chemical information that is relevant to a number of Mars science questions. This includes mineralogical analysis, nitrogen compound recognition, truth testing of remote sensing measurements, and the ability to detect organic compounds. The challenges and scientific opportunities are given for the in situ FTIR analysis of Mars soil and rock samples. Various FTIR sampling techniques are assessed and compared to other analytical instrumentation. The prototype instrument presented is capable of providing field analysis in a Mars analog Antarctic environment. FTIR analysis of endolithic microbial communities in Antarctic rocks and a Mars meteor are given as analytical examples.

  1. Prediction of bovine milk technological traits from mid-infrared spectroscopy analysis in dairy cows.

    PubMed

    Visentin, G; McDermott, A; McParland, S; Berry, D P; Kenny, O A; Brodkorb, A; Fenelon, M A; De Marchi, M

    2015-09-01

    Rapid, cost-effective monitoring of milk technological traits is a significant challenge for dairy industries specialized in cheese manufacturing. The objective of the present study was to investigate the ability of mid-infrared spectroscopy to predict rennet coagulation time, curd-firming time, curd firmness at 30 and 60min after rennet addition, heat coagulation time, casein micelle size, and pH in cow milk samples, and to quantify associations between these milk technological traits and conventional milk quality traits. Samples (n=713) were collected from 605 cows from multiple herds; the samples represented multiple breeds, stages of lactation, parities, and milking times. Reference analyses were undertaken in accordance with standardized methods, and mid-infrared spectra in the range of 900 to 5,000cm(-1) were available for all samples. Prediction models were developed using partial least squares regression, and prediction accuracy was based on both cross and external validation. The proportion of variance explained by the prediction models in external validation was greatest for pH (71%), followed by rennet coagulation time (55%) and milk heat coagulation time (46%). Models to predict curd firmness 60min from rennet addition and casein micelle size, however, were poor, explaining only 25 and 13%, respectively, of the total variance in each trait within external validation. On average, all prediction models tended to be unbiased. The linear regression coefficient of the reference value on the predicted value varied from 0.17 (casein micelle size regression model) to 0.83 (pH regression model) but all differed from 1. The ratio performance deviation of 1.07 (casein micelle size prediction model) to 1.79 (pH prediction model) for all prediction models in the external validation was <2, suggesting that none of the prediction models could be used for analytical purposes. With the exception of casein micelle size and curd firmness at 60min after rennet addition

  2. Characterization and quantitative analysis of single-walled carbon nanotubes in the aquatic environment using near-infrared fluorescence spectroscopy.

    PubMed

    Schierz, Ariette; Parks, Ashley N; Washburn, Kathryn M; Chandler, G Thomas; Ferguson, P Lee

    2012-11-20

    Near infrared fluorescence (NIRF) spectroscopy is capable of sensitive and selective detection of semiconductive, single-walled carbon nanotubes (SWNT) using the unique electronic bandgap properties of these carbon allotropes. We reported here the first detection and quantitation of SWNT in sediment and biota at environmentally relevant concentrations using NIRF spectroscopy. In addition, we utilized this technique to qualitatively characterize SWNT samples before and after ecotoxicity, bioavailability and fate studies in the aquatic environment. Sample preparation prior to NIRF analysis consisted of surfactant-assisted high power ultrasonication. The bile salt sodium deoxycholate (SDC) enabled efficient extraction and disaggregation of SWNT prior to NIRF analysis. The method was validated using standard-addition experiments in two types of estuarine sediments, yielding recoveries between 66 ± 7% and 103 ± 10% depending on SWNT type and coating used, demonstrating the ability to isolate SWNT from complex sediment matrices. Instrument detection limits were determined to be 15 ng mL(-1) SWNT in 2% SDC solution and method detection limits (including a concentration step) were 62 ng g(-1) for estuarine sediment, and 1.0 μg L(-1) for water. Our work has shown that NIRF spectroscopy is highly sensitive and selective for SWNT and that this technique can be applied to track the environmental and biological fate of this important class of carbon nanomaterial in the aquatic environment.

  3. [Analysis of different parts and tissues of Panax Notoginseng by Fourier transform infrared spectroscopy].

    PubMed

    Li, Jian-Rui; Chen, Jian-Bo; Zhou, Qun; Sun, Su-Qin; Lü, Guang-Hua

    2014-03-01

    The techniques of Fourier transform infrared (FTIR) spectroscopy were applied to analyze the different parts and tissues of Panax Notoginseng (Sanqi, SQ), i.e. rhizome, main root, rootlet, fibrous root, xylem, cambium, phloem and epidermis. Both the FTIR spectra and second derivative spectra of these various parts and tissues of SQ samples were found to be similar. Their dominant component is starch resulting from the characteristic peaks of starch observed at 3 400, 2 930, 1 645, 1 155, 1,080 and 1,020 cm(-1) on the spectra of all these SQ samples. However, the varieties of peaks were found on the spectra among these specific samples. The rhizome contains more saponins than others on the basis of the largest ratio of the peak intensity at 1,077 cm(-1) to that at 1,152 cm(-1). The peaks located at 1 317 and 780 cm(-1) on the FTIR spectra of the rhizome and its epidermis indicate that the two parts of SQ samples contain large amount of calcium oxalate, and its content in the latter is relative larger than that in former. The fibrous root contains much amount of nitrate owing to the obvious characteristic peaks at 1 384 and 831 cm(-1). For the difference among the various tissues of SQ samples, the peaks at 2,926, 2,854 and 1,740 cm(-1) on the FTIR spectra of epidermis is the strongest among the various tissues of main root indicating the largest amount of esters in epidermis. Protein was also found in the cambium of the main root based on the relative strong peaks of amide I and II band at 1,641 and 1,541 cm(-1), respectively. The results indicate that FTIR spectra with its second derivative spectra can show the characteristic of the various parts and tissues of SQ samples in both the holistic chemical constituents and specific chemical components, including organic macromolecule compounds and small inorganic molecule compounds. FTIR spectroscopy is a useful analytical method for the genuine and rapid identification and quality assessment of SQ samples.

  4. Genetic analysis of beef fatty acid composition predicted by near-infrared spectroscopy.

    PubMed

    Cecchinato, A; De Marchi, M; Penasa, M; Casellas, J; Schiavon, S; Bittante, G

    2012-02-01

    The aims of this study were 1) to investigate the potential application of near-infrared spectroscopy (NIRS) to predict intramuscular fat (IMF) and fatty acid (FA) composition of individual meat samples, 2) to estimate heritability of IMF and FA NIRS-based predictions, and 3) to assess the statistical relevance of the genetic background of such predictions by using the Bayes factor (BF) procedure. Young Piemontese bulls (n = 1,298) were raised and fattened on 124 farms, and slaughtered at the same commercial abattoir. Intramuscular fat content and FA composition were analyzed on a random subset of 148 samples of minced and homogenized longissimus thoracis muscle. Near-infrared spectroscopy spectra were collected on all samples (n = 1,298) in reflectance mode between 1,100 and 2,498 nm (every 2 nm) using fresh minced meat samples. Calibration models developed from the random subset of 148 samples were used to predict IMF and FA contents of the remaining 1,150 samples. Intramuscular fat content and FA predictions were analyzed under a Bayesian univariate animal linear models, and the statistical relevance of heritability estimates was assessed through BF; the model with polygenic additive effects was favored when BF > 1. In general, satisfactory results (R(2) > 0.60) were obtained for 6 out of the 8 major FA (C14:0, C:16:0, C16:1, C18:0, C18:1n-9 cis/trans, and C18:1n-11 trans), 6 out of the 19 minor FA (C10:0, C12:0, C17:0, C17:1, C18:2 cis-9,trans-11, and C20:2), and the total SFA, MUFA, and PUFA. Bayes factors between models with and without a genetic component provided values greater than 1 for IMF, C14:0, C16:0, C18:1n-9 cis/trans, C17:0, C17:1, C20:2, SFA, MUFA, and PUFA. The greatest BF was reached by C20:2 (BF >10), suggesting strong evidence of genetic determinism, whereas IMF, C18:1n-9 cis/trans, C17:0, C17:1, MUFA, and PUFA showed substantial evidence favoring the numerator model (3.16 < BF < 10). Point estimates of heritabilities for FA predicted by NIRS

  5. Infrared spectroscopy of NGC 1068

    NASA Astrophysics Data System (ADS)

    Depoy, D. L.

    Spectroscopy of the nucleus of the nearby Seyfert 2 galaxy NGC 1068 has been obtained using the IRTF and the facility Cooled-Grating Array Spectrometer (CGAS). The wavelengths observed covered the expected wavelengths of the Bry (n = 7 4), Br (n = 5 4), and the Pf (n = 7 5) hydrogen recombination lines between 2.2 m and 4.6 m. The CGAS has a 32-element InSb array multiplexed by a Reticon and was used at a resolution of 250 km s-1, allowing accurate determination of the line profiles and surrounding continua simultaneously. For example, the S/N at each spectral position in the Br line spectrum was 100. The data show that the infrared lines are not more broadened than the optical hydrogen recombination lines, suggesting that the presence of an obscured Seyfert 1-like active nucleus is unlikely unless the visual extinction through any obscuring material present is larger than 100 mag.

  6. A Fourier Transform Infrared Spectroscopy Analysis of Carious Dentin from Transparent Zone to Normal Zone

    PubMed Central

    Liu, Y.; Yao, X.; Liu, Y.W.; Wang, Y.

    2015-01-01

    It is well known that caries invasion leads to the differentiation of dentin into zones with altered composition, collagen integrity and mineral identity. However, understanding of these changes from the fundamental perspective of molecular structure has been lacking so far. In light of this, the present work aims to utilize Fourier transform infrared spectroscopy (FTIR) to directly extract molecular information regarding collagen's and hydroxyapatite's structural changes as dentin transitions from the transparent zone (TZ) into the normal zone (NZ). Unembedded ultrathin dentin films were sectioned from carious teeth, and an FTIR imaging system was used to obtain spatially resolved FTIR spectra. According to the mineral-to-matrix ratio image generated from large-area low-spectral-resolution scan, the TZ, the NZ and the intermediate subtransparent zone (STZ) were identified. High-spectral-resolution spectra were taken from each zone and subsequently examined with regard to mineral content, carbonate distribution, collagen denaturation and carbonate substitution patterns. The integrity of collagen's triple helical structure was also evaluated based on spectra collected from demineralized dentin films of selected teeth. The results support the argument that STZ is the real sclerotic layer, and they corroborate the established knowledge that collagen in TZ is hardly altered and therefore should be reserved for reparative purposes. Moreover, the close resemblance between the STZ and the NZ in terms of carbonate content, and that between the STZ and the TZ in terms of being A-type carbonate-rich, suggest that the mineral that initially occludes dentin tubules is hydroxyapatite newly generated from odontoblastic activities, which is then transformed into whitlockite in the demineralization/remineralization process as caries progresses. PMID:24556607

  7. Multi-pass gas cell designed for VOCs analysis by infrared spectroscopy system

    NASA Astrophysics Data System (ADS)

    Wang, Junbo; Wang, Xin; Wei, Haoyun

    2015-10-01

    Volatile Organic Compounds (VOCs) emitted from chemical, petrochemical, and other industries are the most common air pollutants leading to various environmental hazards. Regulations to control the VOCs emissions have been more and more important in China, which requires specific VOCs measurement systems to take measures. Multi-components analysis system, with an infrared spectrometer, a gas handling module and a multi-pass gas cell, is one of the most effective air pollution monitoring facilities. In the VOCs analysis system, the optical multi-pass cell is required to heat to higher than 150 degree Celsius to prevent the condensation of the component gas. Besides that, the gas cell needs to be designed to have an optical path length that matches the detection sensitivity requirement with a compact geometry. In this article, a multi-pass White cell was designed for the high temperature absorption measurements in a specified geometry requirement. The Aberration theory is used to establish the model to accurately calculate the astigmatism for the reflector system. In consideration of getting the optimum output energy, the dimensions of cell geometry, object mirrors and field mirror are optimized by the ray-tracing visible simulation. Then finite element analysis was used to calculate the thermal analysis for the structure of the external and internal elements for high stability. According to the simulation, the cell designed in this paper has an optical path length of 10 meters with an internal volume of 3 liters, and has good stability between room temperature to 227 degree Celsius.

  8. A novel analysis method for near infrared spectroscopy based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenyu; Yang, Hongyu; Liu, Yun; Ruan, Zongcai; Luo, Qingming; Gong, Hui; Lu, Zuhong

    2007-05-01

    Near Infrared Imager (NIRI) has been widely used to access the brain functional activity non-invasively. We use a portable, multi-channel and continuous-wave NIR topography instrument to measure the concentration changes of each hemoglobin species and map cerebral cortex functional activation. By extracting some essential features from the BOLD signals, optical tomography is able to be a new way of neuropsychological studies. Fourier spectral analysis provides a common framework for examining the distribution of global energy in the frequency domain. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. The hemoglobin species concentration changes are of such kind. In this work we develop a new signal processing method using Hilbert-Huang transform to perform spectral analysis of the functional NIRI signals. Compared with wavelet based multi-resolution analysis (MRA), we demonstrated the extraction of task related signal for observation of activation in the prefrontal cortex (PFC) in vision stimulation experiment. This method provides a new analysis tool for functional NIRI signals. Our experimental results show that the proposed approach provides the unique method for reconstructing target signal without losing original information and enables us to understand the episode of functional NIRI more precisely.

  9. Conceptual design and structural analysis of the spectroscopy of the atmosphere using far infrared emission (SAFIRE) instrument

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Averill, Robert D.

    1992-01-01

    The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.

  10. Analysis of organic vapors in the workplace by remote sensing Fourier transform infrared spectroscopy.

    PubMed

    Xiao, H; Levine, S P; Nowak, J; Puskar, M; Spear, R C

    1993-09-01

    A Remote Sensing-Fourier Transform Infrared (RS-FTIR) system was applied to identify and quantify air contaminants along the beam, ranging from single compounds to mixtures, in various workplaces. Gas chromatography (GC) was used to provide information of point concentration variation by means of analyzing charcoal tube samples placed along the beam path. The results indicated a correlation between the charcoal tube-GC and the RS-FTIR for the analysis of most compounds. Discrepancies were found for some compounds, such as acetone, due to inhomogeneous concentration distributions along the IR beam, and due to the overlap of the acetone signal with off-scale water peaks. The study also demonstrated that there was little effect on quantitative analysis from partial or complete IR beam blockages during measurement. Qualitative analysis of unexpected compounds using RS-FTIR was also evaluated. In addition, the ability of the RS-FTIR to detect a sudden release of chemicals was demonstrated in the study.

  11. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy.

    PubMed

    Zhu, Ying; Tan, Tuck Lee

    2016-04-15

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.

  12. Geographic classification of spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis.

    PubMed

    Liu, L; Cozzolino, D; Cynkar, W U; Gishen, M; Colby, C B

    2006-09-06

    Visible (vis) and near-infrared (NIR) spectroscopy combined with multivariate analysis was used to classify the geographical origin of commercial Tempranillo wines from Australia and Spain. Wines (n = 63) were scanned in the vis and NIR regions (400-2500 nm) in a monochromator instrument in transmission. Principal component analysis (PCA), discriminant partial least-squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) based on PCA scores were used to classify Tempranillo wines according to their geographical origin. Full cross-validation (leave-one-out) was used as validation method when PCA and LDA classification models were developed. PLS-DA models correctly classified 100% and 84.7% of the Australian and Spanish Tempranillo wine samples, respectively. LDA calibration models correctly classified 72% of the Australian wines and 85% of the Spanish wines. These results demonstrate the potential use of vis and NIR spectroscopy, combined with chemometrics as a rapid method to classify Tempranillo wines accordingly to their geographical origin.

  13. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Tan, Tuck Lee

    2016-04-01

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.

  14. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid-liquid extraction.

    PubMed

    Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel; Brassier, Judit; Alcalà, Manel; Blanco, Marcelo

    2015-03-06

    We developed and evaluated two different strategies for determining abuse drugs based on (i) the analysis of saliva by ion mobility spectrometry (IMS) after thermal desorption and (ii) the joint use of IMS and infrared (IR) spectroscopy after liquid-liquid microextraction (LLME) to enable the sensitivity-enhanced detection and double confirmation of ecstasy (MDMA) abuse. Both strategies proved effective for the intended purpose. Analysing saliva by IMS after thermal desorption, which provides a limit of detection (LOD) of 160μgL(-1), requires adding 0.2M acetic acid to the sample and using the truncated negative second derivative of the ion mobility spectrum. The joint use of IMS and IR spectroscopy after LLME provides an LOD of 11μgL(-1) with the former technique and 800μgL(-1) with the latter, in addition to a limit of confirmation (LOC) of 1.5mgL(-1). Using IMS after thermal desorption simplifies the operational procedure, and using it jointly with IR spectroscopy after LLME allows double confirmation of MDMA abuse with two techniques based on different principles (viz., IMS drift times and IR spectra). Also, it affords on-site analyses, albeit at a lower throughput.

  15. Handbook of Infrared Spectroscopy of Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Tolstoy, Valeri P.; Chernyshova, Irina; Skryshevsky, Valeri A.

    2003-05-01

    Because of the rapid increase in commercially available Fourier transform infrared spectrometers and computers over the past ten years, it has now become feasible to use IR spectrometry to characterize very thin films at extended interfaces. At the same time, interest in thin films has grown tremendously because of applications in microelectronics, sensors, catalysis, and nanotechnology. The Handbook of Infrared Spectroscopy of Ultrathin Films provides a practical guide to experimental methods, up-to-date theory, and considerable reference data, critical for scientists who want to measure and interpret IR spectra of ultrathin films. This authoritative volume also: Offers information needed to effectively apply IR spectroscopy to the analysis and evaluation of thin and ultrathin films on flat and rough surfaces and on powders at solid-gaseous, solid-liquid, liquid-gaseous, liquid-liquid, and solid-solid interfaces. Provides full discussion of theory underlying techniques Describes experimental methods in detail, including optimum conditions for recording spectra and the interpretation of spectra Gives detailed information on equipment, accessories, and techniques Provides IR spectroscopic data tables as appendixes, including the first compilation of published data on longitudinal frequencies of different substances Covers new approaches, such as Surface Enhanced IR spectroscopy (SEIR), time-resolved FTIR spectroscopy, high-resolution microspectroscopy and using synchotron radiation

  16. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].

    PubMed

    Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui

    2016-01-01

    In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct

  17. Infrared overtone spectroscopy and vibrational analysis of a Fermi resonance in nitric acid: Experiment and theory.

    PubMed

    Konen, Ian M; Li, Eunice X J; Lester, Marsha I; Vázquez, Juana; Stanton, John F

    2006-08-21

    High resolution infrared spectra of nitric acid have been recorded in the first OH overtone region under jet-cooled conditions using a sequential IR-UV excitation method. Vibrational bands observed at 6933.39(3), 6938.75(4), and 6951.985(3) cm(-1) (origins) with relative intensities of 0.42(1), 0.38(1), and 0.20(1) are attributed to strongly mixed states involved in a Fermi resonance. A vibrational deperturbation analysis suggests that the optically bright OH overtone stretch (2nu1) at 6939.2(1) cm(-1) is coupled directly to the nu1 + 2nu2 state at 6946.4(1) cm(-1) and indirectly to the 3nu2 + nu3 + nu7 state at 6938.5(1) cm(-1). Both the identity of the zero-order states and the indirect coupling scheme are deduced from complementary CCSD(T) calculations in conjunction with second-order vibrational perturbation theory. The deperturbation analysis also yields the experimental coupling between 2nu1 and nu1 + 2nu2 of -6.9(1) cm(-1), and that between the two dark states of +5.0(1) cm(-1). The calculated vibrational energies and couplings are in near quantitative agreement with experimentally derived values except for a predicted twofold stronger coupling of 2nu1 to nu1 + 2nu2. Weaker coupling of the strongly mixed states to a dense background of vibrational states via intramolecular vibrational energy redistribution is evident from the experimental linewidths of 0.08 and 0.25 cm(-1) for the higher energy and two overlapping lower energy bands, respectively. A comprehensive rotational analysis of the higher energy band yields spectroscopic parameters and the direction of the OH overtone transition dipole moment.

  18. Diagnosing basal cell carcinoma in vivo by near-infrared Raman spectroscopy: a Principal Components Analysis discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo, Jr.; Silveira, Fabrício L.; Bodanese, Benito; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.

    2012-02-01

    This work demonstrated the discrimination among basal cell carcinoma (BCC) and normal human skin in vivo using near-infrared Raman spectroscopy. Spectra were obtained in the suspected lesion prior resectional surgery. After tissue withdrawn, biopsy fragments were submitted to histopathology. Spectra were also obtained in the adjacent, clinically normal skin. Raman spectra were measured using a Raman spectrometer (830 nm) with a fiber Raman probe. By comparing the mean spectra of BCC with the normal skin, it has been found important differences in the 800-1000 cm-1 and 1250-1350 cm-1 (vibrations of C-C and amide III, respectively, from lipids and proteins). A discrimination algorithm based on Principal Components Analysis and Mahalanobis distance (PCA/MD) could discriminate the spectra of both tissues with high sensitivity and specificity.

  19. Chemometric Analysis of Multiple Species of Bacillus Bacterial Endospores Using Infrared Spectroscopy: Discrimination to the Strain Level

    SciTech Connect

    Forrester, Joel B.; Valentine, Nancy B.; Su, Yin-Fong; Johnson, Timothy J.

    2009-09-28

    Previous work using infrared spectroscopy has shown potential for rapid discrimination between bacteria in either their sporulated or vegetative states, as well as between bacteria and other common interferents. For species within one physiological state, however, distinction is far more challenging, and requires chemometrics. In the current study, we have narrowed the field of study by eliminating the confounding issues of vegetative cells as well as growth media and focused on using IR spectra to distinguish between different species all in the sporulated state. Using principal component analysis (PCA) and a classification method based upon similarity measurements, we demonstrate a successful identification rate to the species level of 85% for Bacillus spores grown and sporulated in a glucose broth medium.

  20. Comparing paraffined and deparaffinized breast cancer tissue samples and an analysis of Raman spectroscopy and infrared methods

    NASA Astrophysics Data System (ADS)

    Depciuch, J.; Kaznowska, E.; Szmuc, K.; Zawlik, I.; Cholewa, M.; Heraud, P.; Cebulski, J.

    2016-05-01

    Breast cancer makes up a quarter of all cancer in women, which is why research into new diagnostic methods and sample preparations need to be developed at an accelerated pace. Researchers are looking for diagnostic tools to detect when an individual has cancer cells and use that information to see what measurements and approaches can be used to take further diagnostic steps. The most common method of sample preparation is the imbibing of tumor tissue in paraffin, which can produce a background for spectroscopic measurements in the range of 500-3500 cm-1. In this study we demonstrated that proper preparation of paraffin-embedded specimens and the measurement methodology can eliminate paraffin vibration, as was done in the work Depciuch et al. 2015. Thanks to this spectroscopic technique there may become a reliable and accurate method of diagnosing breast cancer based on the evidence found from the prepared samples. The study compared the results obtained through Raman spectroscopy and FTIR (Fourier Transform Infrared) measurements of healthy and cancerous breast tissues that were either embedded in paraffin or deparaffinized. The resulting spectrum and accurate analysis led to the conclusion that the appropriate measurement of the background and the elimination of peaks from the paraffin had the greatest impact on the reliability of results. Furthermore, after the accurate, detailed studies FTIR and Raman spectroscopy on samples of breast tissue that were deparaffinized or embedded in paraffin, including a complete analysis of the peak after transformation Kramers-Kröning (KK), it was found that sample preparation did not affect the result obtained by measuring the reflectance in the mid-infrared range, and that this only had a minimal effect relating to the intensity obtained by the measurement of the Raman peak. Only in special cases, when Raman spectroscopic methods are used for research to find the peculiarities of the spectra, are deparaffinization recommended

  1. Infrared spectroscopy study of irradiated PVDF

    SciTech Connect

    Chappa, Veronica; Grosso, Mariela del; Garcia Bermudez, Gerardo; Behar, Moni

    2007-10-26

    The effects induced by 1 MeV/amu ion irradiations were compared to those induced by 4-12 MeV/amu irradiations. Structural analysis with infrared spectroscopy (FTIR) was carried out on PVDF irradiated using C and He beams with different fluences. From these spectra it was observed, as a function of fluence, an overall destruction of the polymer, amorphization of the crystalline regions and the creation of in-chain unsaturations. The track dimensions were determined using a previously developed Monte Carlo simulation code and these results were compared to a semiempirical model.

  2. Connecting caddisworm silk structure and mechanical properties: combined infrared spectroscopy and mechanical analysis

    PubMed Central

    Ashton, Nicholas N.; Pan, Huaizhong; Stewart, Russell J.

    2016-01-01

    The underwater silk of an aquatic casemaking caddisfly larvae (Hesperophylax occidentalis) is viscoelastic, and displays distinct yield behaviour, large strain cycle hysteresis and near complete recovery of its initial strength and stiffness when unloaded. Yield followed by a stress plateau has been attributed to sequential rupture of serial Ca2+-cross-linked phosphoserine (pS) β-domains. Spontaneous recovery has been attributed to refolding of the Ca2+/pS domains powered by an elastic network. In this study, native Ca2+ ions were exchanged with other metal ions, followed by combined mechanical and FTIR analysis to probe the contribution of pS/metal ion complexes to silk mechanical properties. After exchange of Ca2+ with Na+, the fibres are soft elastomers and the infrared spectra are consistent with Cv3 symmetry of the – groups. Multivalent metal ions decreased the – symmetry and the symmetric stretching modes (vs) split in a manner characteristic of ordered phosphate compounds, such as phosphate minerals and lamellar bilayers of phosphatidic acid lipids. Integrated intensities of the vs bands, indicative of the metal ion's effect on transition dipole moment of the P–O bonds, and thereby the strength of the phosphate metal complex, increased in the order: Na+ < Mg2+ < Sr2+ < Ba2+ < Ca2+ < Eu3+ < La3+ < Zn2+ < Fe2+. With a subset of the metal ion series, the initial stiffness and yield stress of metal ion-exchanged fibres increased in the same order: establishing the link between phosphate transition dipole moments and silk fibre strength. PMID:27278649

  3. Drill hole logging with infrared spectroscopy

    USGS Publications Warehouse

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  4. Infrared Spectroscopy of Anhydrous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Flynn, G. J.

    2003-01-01

    Infrared (IR) spectroscopy is the primary means of mineralogical analysis of materials outside our solar system. The identity and properties of circumstellar grains are inferred from spectral comparisons between astronomical observations and laboratory data from natural and synthetic materials. These comparisons have been facilitated by the Infrared Space Observatory (ISO), which obtained IR spectra from numerous astrophysical objects over a wide spectral range (out to 50/cm) where crystalline silicates and other phases have distinct features. The anhydrous interplanetary dust particles (IDPs) are particularly important comparison materials because some IDPs contain carbonaceous material with non-solar D/H and N-15/N-14 ratios and amorphous and crystalline silicates with non-solar 0- isotopic ratios, demonstrating that these IDPs contain preserved interstellar material. Here, we report on micro- Fourier transform (FT) IR spectrometry of IDPs, focusing on the inorganic components of primitive IDPs (FTIR spectra from the organic/carbonacecous materials in IDPs are described elsewhere).

  5. [Study on the application of ridge regression to near-infrared spectroscopy quantitative analysis and optimum wavelength selection].

    PubMed

    Zhang, Man; Liu, Xu-Hua; He, Xiong-Kui; Zhang, Lu-Da; Zhao, Long-Lian; Li, Jun-Hui

    2010-05-01

    In the present paper, taking 66 wheat samples for testing materials, ridge regression technology in near-infrared (NIR) spectroscopy quantitative analysis was researched. The NIR-ridge regression model for determination of protein content was established by NIR spectral data of 44 wheat samples to predict the protein content of the other 22 samples. The average relative error was 0.015 18 between the predictive results and Kjeldahl's values (chemical analysis values). And the predictive results were compared with those values derived through partial least squares (PLS) method, showing that ridge regression method was deserved to be chosen for NIR spectroscopy quantitative analysis. Furthermore, in order to reduce the disturbance to predictive capacity of the quantitative analysis model resulting from irrelevant information, one effective way is to screen the wavelength information. In order to select the spectral information with more content information and stronger relativity with the composition or the nature of the samples to improve the model's predictive accuracy, ridge regression was used to select wavelength information in this paper. The NIR-ridge regression model was established with the spectral information at 4 wavelength points, which were selected from 1 297 wavelength points, to predict the protein content of the 22 samples. The average relative error was 0.013 7 and the correlation coefficient reached 0.981 7 between the predictive results and Kjeldahl's values. The results showed that ridge regression was able to screen the essential wavelength information from a large amount of spectral information. It not only can simplify the model and effectively reduce the disturbance resulting from collinearity information, but also has practical significance for designing special NIR analysis instrument for analyzing specific component in some special samples.

  6. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine.

    PubMed

    Zhang, Yong; Cong, Qian; Xie, Yunfei; JingxiuYang; Zhao, Bing

    2008-12-15

    It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with gamma=1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

  7. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Cong, Qian; Xie, Yunfei; Yang, Jingxiu; Zhao, Bing

    2008-12-01

    It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with γ = 1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

  8. Direct determination of lycopene content in tomatoes (Lycopersicon esculentum) by attenuated total reflectance infrared spectroscopy and multivariate analysis.

    PubMed

    Halim, Yuwana; Schwartz, Steven J; Francis, David; Baldauf, Nathan A; Rodriguez-Saona, Luis E

    2006-01-01

    Lycopene is a potent antioxidant that has been shown to play critical roles in disease prevention. Efficient assays for detection and quantification of lycopene are desirable as alternatives to time- and labor-intensive methods. Attenuated total reflectance infrared (ATR-IR) spectroscopy was used for quantification of lycopene in tomato varieties. Calibration models were developed by partial least-squares regression (PLSR) using quantitative measures of lycopene concentration from liquid chromatography as reference method. IR spectra showed a distinct marker band at 957 cm(-1) for trans Carbon-Hydrogen (CH) deformation vibration of lycopene. PLSR models predicted the lycopene content accurately and reproducibly with a correlation coefficient (sigma) of 0.96 and standard error of cross-validation <0.80 mg/100 g. ATR-IR spectroscopy allowed for rapid, simple, and accurate determination of lycopene in tomatoes with minimal sample preparation. Results suggest that the ATR-IR method is applicable for high-throughput quantitative analysis and screening for lycopene in tomatoes.

  9. Real time and non-destructive analysis of tablet coating thickness using acoustic microscopy and infrared diffuse reflectance spectroscopy.

    PubMed

    Bikiaris, D; Koutri, I; Alexiadis, D; Damtsios, A; Karagiannis, G

    2012-11-15

    Tablet coating thicknesses were estimated using several techniques such as weight gain and scanning electron microscopy (SEM), in comparison with acoustic microscopy and diffuse reflectance spectroscopy. Acoustic microscopy, used for the first time in such an application, is based on the physical phenomenon of ultrasound propagation through the materials and the echoes generated by their interfaces. Based on the time of flights (TOFs) of the echoes from the coating surface and the tablet, it is possible to calculate the coating thickness. In order to evaluate the accuracy and robustness of these methods, drug tablets were coated with Kollicoat SR polymer for several times, so that to prepare tablets with different coating thicknesses. Tablets with 3, 6 and 9 wt% coating material have been prepared and based on SEM micrographs it was found that the tablet coating thickness is 71.99 ± 1.2 μm, 92.5 ± 1.7 μm and 132.3 ± 2.1 μm, respectively (SEM analysis). The tablet coating thicknesses measured with acoustic microscopy and infrared diffuse reflectance spectroscopy, were in agreement with those obtained using SEM. This verifies that both techniques can be successfully applied for real time and non-destructive thickness measurements of tablet coating. Furthermore, both techniques, compared with SEM and weight gained measurements, are fast and fully automated.

  10. Analysis of Atmospheric Composition and Tropospheric Variability With Integrated Open- Path and Ground-Based Solar Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Compton, R. N.; Hager, J. S.

    2006-12-01

    Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.

  11. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain

    PubMed Central

    Huppert, Theodore J.; Diamond, Solomon G.; Franceschini, Maria A.; Boas, David A.

    2009-01-01

    Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic changes within the brain. By this technique, changes in the optical absorption of light are recorded over time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhemoglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The growing popularity of this technique is in part associated with a lower cost and increased portability of NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance imaging and positron emission tomography. With this increasing number of applications, new techniques for the processing, analysis, and interpretation of NIRS data are continually being developed. We review some of the time-series and functional analysis techniques that are currently used in NIRS studies, we describe the practical implementation of various signal processing techniques for removing physiological, instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS analysis in comparison with other brain imaging modalities. These methods are described within the context of the MATLAB-based graphical user interface program, HomER, which we have developed and distributed to facilitate the processing of optical functional brain data. PMID:19340120

  12. Analyzing Brain Functions by Subject Classification of Functional Near-Infrared Spectroscopy Data Using Convolutional Neural Networks Analysis

    PubMed Central

    Hanawa, Kenya; Tamura, Ryota; Hachisuka, Keisuke

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for noninvasive mapping of relative changes in regional cortical activity but is limited for quantitative comparisons among cortical sites, subjects, and populations. We have developed a convolutional neural network (CNN) analysis method that learns feature vectors for accurate identification of group differences in fNIRS responses. In this study, subject gender was classified using CNN analysis of fNIRS data. fNIRS data were acquired from male and female subjects during a visual number memory task performed in a white noise environment because previous studies had revealed that the pattern of cortical blood flow during the task differed between males and females. A learned classifier accurately distinguished males from females based on distinct fNIRS signals from regions of interest (ROI) including the inferior frontal gyrus and premotor areas that were identified by the learning algorithm. These cortical regions are associated with memory storage, attention, and task motor response. The accuracy of the classifier suggests stable gender-based differences in cerebral blood flow during this task. The proposed CNN analysis method can objectively identify ROIs using fNIRS time series data for machine learning to distinguish features between groups. PMID:27872636

  13. [Study of thermal perturbation of natural bamboo fiber by two dimensional correlation analysis and Fourier transform infrared spectroscopy].

    PubMed

    Huang, An-min; Wang, Ge; Zhou, Qun; Liu, Jun-liang; Sun, Su-qin

    2008-06-01

    The Fourier transform infrared spectroscopy (FTIR) combined with generalized two-dimensional correlation analysis was applied to study the mini-heating process of natural bamboo fiber. The absorption peaks of natural bamboo fiber and bamboo in the FTIR spectra were different, which showed the contents of lignin and hemicelluloses of natural bamboo fiber was lower than those of bamboo. The changes in absorption peaks of natural bamboo fiber in the FTIR spectra at different temperatures were inconspicuous during heating up from 50 to 120 degrees C, which showed that there was not oxidation reaction in natural bamboo fiber during the process. With the help of 2D correlation analysis, the changes of different groups of natural bamboo fiber and bamboo during heating process were reflected. The strongest autopeak of them was all aroused at 1 665 cm1 in synchronous spectrum. The difference was that there were several weak auto-peaks and cross peaks in the natural bamboo fiber, but in the bamboo, one stronger 5 x 5 group was aroused in the 833-1230 cm(-1). Region the reason was the difference in chemistry composition and the change degree during heating process. In conclusion, the 2D correlation analysis of FTIR can be a new method to analyze the microcosmic dynamic change in the structure of natural bamboo fiber and bamboo during the mini-heating process and also offers an important theory gist for the study of oxidation mechanism of them.

  14. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  15. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    PubMed

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  16. Infrared spectroscopy analysis of hemp (Cannabis sativa) after selective delignification by Bjerkandera sp. at different nitrogen levels.

    PubMed

    Dorado, J; Almendros, G; Field, J A.; Sierra-Alvarez, R

    2001-04-05

    Fourier-transform infrared (FT-IR) spectroscopy has been used to monitor changes in C/N-modified lignocellulosic substrates from Cannabis sativa L. in a 7-week solid-state fermentation with the white-rot fungus Bjerkandera sp. strain BOS55. The microbial transformation of hemp was considered as a pretreatment to pulping processes in paper industries. Special emphasis was paid on the N-content of the substrate, which was modified by: (i) external ammonium inputs, (ii) water extraction, and (iii) protease treatment.Selective delignification in the N-limited media was observed. The most diagnostic FT-IR spectral bands in relation to changes in the lignocellulosic substrate were those corresponding to alkyl structures (2920, 1460 cm(-1)), carboxyl groups (1720 cm(-1)), amides (1650, 1540 cm(-1)) and carbohydrate (mainly 1030 cm(-1)). Simple and multiple regression functions revealed the potential of FT-IR in accurately reflecting substrate composition features previously determined by wet chemical methods. Correspondence analysis suggests C/N-dependent degradation patterns, and discriminant analysis confirmed that the differences between N-limited, N-enriched and the original substrate were significant (P < 0.05) in terms of the intensities of five FT-IR diagnostic bands (1030, 1130, 1270, 1540 and 1650 cm(-1)).The results suggest that, in the system studied, the FT-IR spectroscopy is a reliable alternative to wet chemical analyses in the routine monitoring of the success of the biologic process since it reflects both qualitative and quantitative changes and it is very sensitive to lignin alteration and to carbohydrate and protein concentration.

  17. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface

    PubMed Central

    Qureshi, Nauman Khalid; Noori, Farzan Majeed; Hong, Keum-Shik

    2016-01-01

    We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest) using functional near-infrared spectroscopy (fNIRS) signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbour (kNN), the Naïve Bayes approach, support vector machine (SVM), and artificial neural networks (ANN), were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that the p values were statistically significant relative to all of the other classifiers (p < 0.005) using HbO signals. PMID:27725827

  18. Confirmation of brand identity of a Trappist beer by mid-infrared spectroscopy coupled with multivariate data analysis.

    PubMed

    Engel, Jasper; Blanchet, Lionel; Buydens, Lutgarde M C; Downey, Gerard

    2012-09-15

    Authentication of foods is of importance both to consumers and producers for e.g. confidence in label descriptions and brand protection, respectively. The authentication of beers has received limited attention and in most cases only small data sets were analysed. In this study, Fourier-transform infrared attenuated total reflectance (FT-IR ATR) spectroscopy was applied to a set of 267 beers (53 different brands) to confirm claimed identity for samples of a single beer brand based on their spectral profiles. Skewness-adjusted robust principal component analysis (ROBPCA) was deployed to detect outliers in the data. Subsequently, extended canonical variates analysis (ECVA) was used to reduce the dimensionality of the data while simultaneously achieving maximum class separation. Finally, the reduced data were used as inputs to various linear and non-linear classifiers. Work focused on the specific identification of Rochefort 8° (a Trappist beer) and both direct and indirect (using an hierarchical approach) identification strategies were studied. For the classification problems Rochefort vs. non-Rochefort, Rochefort 8° vs. non-Rochefort 8° and Rochefort 8° vs. Rochefort 6° and 10°, correct prediction abilities of 93.8%, 93.3% and 97.3%, respectively were achieved.

  19. Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Noponen, Tommi; Meriläinen, Pekka

    2009-09-01

    Near-infrared spectroscopy (NIRS) is a method for noninvasive estimation of cerebral hemodynamic changes. Principal component analysis (PCA) and independent component analysis (ICA) can be used for decomposing a set of signals to underlying components. Our objective is to determine whether PCA or ICA is more efficient in identifying and removing scalp blood flow interference from multichannel NIRS signals. Concentration changes of oxygenated (HbO2) and deoxygenated (HbR) hemoglobin are measured on the forehead with multichannel NIRS during hyper- and hypocapnia. PCA and ICA are used separately to identify and remove signal contribution from extracerebral tissue, and the resulting estimates of cerebral responses are compared to the expected cerebral responses. Both methods were able to reduce extracerebral contribution to the signals, but PCA typically performs equal to or better than ICA. The improvement in 3-cm signal quality achieved with both methods is comparable to increasing the source-detector separation from 3 to 5 cm. Especially PCA appears to be well suited for use in NIRS applications where the cerebral activation is diffuse, such as monitoring of global cerebral oxygenation and hemodynamics. Performance differences between PCA and ICA could be attributed primarily to different criteria for identifying the surface effect.

  20. Extraction of fast neuronal changes from multichannel functional near-infrared spectroscopy signals using independent component analysis

    NASA Astrophysics Data System (ADS)

    Morren, Geert; Wolf, Martin; Lemmerling, Philippe; Wolf, Ursula; Choi, Jee H.; Gratton, Enrico; De Lathauwer, Lieven; Van Huffel, Sabine

    2002-06-01

    Fast changes in the range of milliseconds in the optical properties of cerebral tissue, which are associated with brain activity, can be detected using non-invasive near-infrared spectroscopy (NIRS). These changes in light scattering are due to an alteration in the refractive index at neuronal membranes. The aim of this study was to develop highly sensitive data analysis algorithms to detect this fast signal, which is small compared to other physiological signals. A frequency-domain tissue oximeter, whose laser diodes were modulated at 110MHz was used. The amplitude, mean intensity and phase of the modulated optical signal was measured at 96Hz sample rate. The probe consisting of 4 crossed source detector pairs was placed above the motor cortex, contralateral to the hand performing a tapping exercise consisting of alternating rest- and tapping periods of 20s each. The tapping frequency, which was set to 3.55Hz or 2.5 times the heart rate of the subject to avoid the influence of harmonics on the signal, could not be observed in any of the individual signals measured by the detectors. An adaptive filter was used to remove the arterial pulsatility from the optical signals. Independent Component Analysis allowed to separate signal components in which the tapping frequency was clearly visible.

  1. [Preliminary study on identification of heroin from different route with clustering analysis by fourier transform infrared spectroscopy].

    PubMed

    Cai, Xi-lan; Wu, Guo-ping

    2007-12-01

    In the present paper, using Fourier transform infrared (FTIR) absorption spectrometry, the characteristic peaks of fingerprint infrared spectra of heroin samples from different routes were identified with clustering analysis successfully. It is a very fast, simple and reliable method. That is to say, a new method for the discrimination of heroin seizured from different routes is provided.

  2. Laboratory far-infrared spectroscopy of terrestrial sulphides to support analysis of cosmic dust spectra

    NASA Astrophysics Data System (ADS)

    Brusentsova, T.; Peale, R. E.; Maukonen, D.; Figueiredo, P.; Harlow, G. E.; Ebel, D. S.; Nissinboim, A.; Sherman, K.; Lisse, C. M.

    2012-03-01

    As an aid in interpreting data from space far-infrared (far-IR) missions, such as the Herschel Space Observatory with its Photodetector Array Camera and Spectrometer, this paper presents spectroscopic studies of selected naturally occurring terrestrial sulphide minerals in the wavelength range 15-250 μm. The data can also be used to support the return from other, both past and planned, IR space missions, such as the Infrared Space Observatory, Spitzer, SOFIA, SPiCA and Millimetron. In this study, we present far-IR spectra for 11 natural sulphide minerals in the form of dispersed powders of micron particle dimensions. Samples of various sulphides from the American Museum of Natural History mineral collection were selected based on criteria of diversity and potential astrophysical relevancy, based on their identification in Stardust, in stratospheric interplanetary dust particle samples, or in meteorites. Mineral species include digenite, galena, alabandite, sphalerite, wurtzite, covellite, pyrrhotite, pyrite, marcasite, chalcopyrite and stibnite. Most of the sulphides examined possess prominent and characteristic features in the far-IR range. Spectra obtained are compared to those available from previous studies. Far-IR peak frequencies and mass absorption coefficient values are tabulated. Effects of particle size distribution, low temperature, and provenance on IR spectra are demonstrated for selected samples.

  3. Validation of a multipoint near-infrared spectroscopy method for in-line moisture content analysis during freeze-drying.

    PubMed

    Kauppinen, Ari; Toiviainen, Maunu; Lehtonen, Marko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko

    2014-07-01

    This study assessed the validity of a multipoint near-infrared (NIR) spectroscopy method for in-line moisture content analysis during a freeze-drying process. It is known that the moisture content affects the stability of a freeze-dried product and hence it is a major critical quality attribute. Therefore assessment of the validity of an analytical method for moisture content determination is vital to ensure the quality of the final product. An aqueous sucrose solution was used as the model formulation of the study. The NIR spectra were calibrated to the moisture content using partial least squares (PLS) regression with coulometric Karl Fischer (KF) titration as the reference method. Different spectral preprocessing methods were compared for the PLS models. A calibration model transfer protocol was established to enable the use of the method in the multipoint mode. The accuracy profile was used as a decision tool to determine the validity of the method. The final PLS model, in which NIR spectra were preprocessed with standard normal variate transformation (SNV), resulted in low root mean square error of prediction value of 0.04%-m/v, i.e. evidence of sufficient overall accuracy of the model. The validation results revealed that the accuracy of the model was acceptable within the moisture content range 0.16-0.70%-m/v that is specific for the latter stages of the freeze-drying process. In addition, the results demonstrated the method's reliable in-process performance and robustness. Thus, the multipoint NIR spectroscopy method was proved capable of providing in-line evaluation of moisture content and it is readily available for use in laboratory scale freeze-drying research and development.

  4. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2003-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. Any sample material that will interact with infrared light produces a spectrum and, although normally associated with organic materials, inorganic compounds may also be infrared active. The technique is rapid, reproducible and usually non-invasive to the sample. That it is non-invasive allows for additional characterization of the original material using other analytical techniques including thermal analysis and RAMAN spectroscopic techniques. With the appropriate accessories, the technique can be used to examine samples in liquid, solid or gas phase. Both aqueous and non-aqueous free-flowing solutions can be analyzed, as can viscous liquids such as heavy oils and greases. Solid samples of varying sizes and shapes may also be examined and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be analyzed. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  5. Quantitative analysis of mebendazole polymorphs in pharmaceutical raw materials using near-infrared spectroscopy.

    PubMed

    da Silva, Vitor H; Gonçalves, Jacqueline L; Vasconcelos, Fernanda V C; Pimentel, M Fernanda; Pereira, Claudete F

    2015-11-10

    This work evaluates the feasibility of using NIR spectroscopy for quantification of three polymorphs of mebendazole (MBZ) in pharmaceutical raw materials. Thirty ternary mixtures of polymorphic forms of MBZ were prepared, varying the content of forms A and C from 0 to 100% (w/w), and for form B from 0 to 30% (w/w). Reflectance NIR spectra were used to develop partial least square (PLS) regression models using all spectral variables and the variables with significant regression coefficients selected by the Jack-Knife algorithm (PLS/JK). MBZ polymorphs were quantified with RMSEP values of 2.37% w/w, 1.23% w/w and 1.48% w/w for polymorphs A, B and C, respectively. This is an easy, fast and feasible method for monitoring the quality of raw pharmaceutical materials of MBZ according to polymorph purity.

  6. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy.

    PubMed

    Hu, Jun; Xiao, Rui; Shen, Dekui; Zhang, Huiyan

    2013-01-01

    Structural characteristics of benzene-ethanol-extracted lignin (BEL) and acetone-extracted lignin (AL) precipitated from black liquor were identified by elemental analysis, FTIR, (13)C NMR, and (1)H NMR, while the thermal behaviors were examined with thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR). The frequency of β-O-4 bonds per 100 C9 monomeric units was 28 and 17 for BEL and AL. Two-stage pyrolysis processes were observed for the two lignins. The mass loss rate of the initial solvent evolution stage (110-180 °C) of BEL was greater than that of AL. The two lignins presented slightly different mass loss curves and evolution profiles of gases in the main pyrolysis stage (280-500 °C). A global kinetic model was proposed for lignin pyrolysis and activation energies of 39.5 and 38.8 kJ/mol was obtained for BEL and AL. The results enhance understanding of lignin pyrolysis and facilitate commercial utilization of black-liquor lignin.

  7. Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Seong, Myeongsu; Phillips, Zephaniah; Mai, Phuong Minh; Yeo, Chaebeom; Song, Cheol; Lee, Kijoon; Kim, Jae Gwan

    2016-02-01

    A combined diffuse speckle contrast analysis (DSCA)-near-infrared spectroscopy (NIRS) system is proposed to simultaneously measure qualitative blood flow and blood oxygenation changes in human tissue. The system employs an optical switch to alternate two laser sources at two different wavelengths and a CCD camera to capture the speckle image. Therefore, an optical density can be measured from two wavelengths for NIRS measurements and a speckle contrast can be calculated for DSCA measurements. In order to validate the system, a flow phantom test and an arm occlusion protocol for arterial and venous occlusion were performed. Shorter exposure times (<1 ms) show a higher drop (between 50% and 66%) and recovery of 1/KS2 values after occlusion (approximately 150%), but longer exposure time (3 ms) shows more consistent hemodynamic changes. For four subjects, the 1/KS2 values dropped to an average of 82.1±4.0% during the occlusion period and the average recovery of 1/KS2 values after occlusion was 109.1±0.8%. There was also an approximately equivalent amplitude change in oxyhemoglobin (OHb) and deoxyhemoglobin (RHb) during arterial occlusion (max RHb=0.0085±0.0024 mM/DPF, min OHb=-0.0057±0.0044 mM/DPF). The sensitivity of the system makes it a suitable modality to observe qualitative hemodynamic trends during induced physiological changes.

  8. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications.

    PubMed

    Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M

    2017-05-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.

  9. Vasorelaxation Study and Tri-Step Infrared Spectroscopy Analysis of Malaysian Local Herbs

    PubMed Central

    Tan, Chu Shan; Loh, Yean Chun; Ahmad, Mariam; Zaini Asmawi, Mohd.; Yam, Mun Fei

    2016-01-01

    Objectives: The aim of this paper is to investigate the activities of Malaysian local herbs (Clinacanthus nutans Lindau, Strobilanthes crispus, Murdannia bracteata, Elephantopus scaber Linn., Pereskia bleo, Pereskia grandifolia Haw., Vernonia amygdalina, and Swietenia macrophylla King) for anti-hypertensive and vasorelaxant activity. An infrared (IR) macro-fingerprinting technique consisting of conventional fourier transform IR (FTIR), second-derivative IR (SD-IR), and two-dimensional correlation IR (2D-correlation IR) analyses were used to determine the main constituents and the fingerprints of the Malaysian local herbs. Methods: The herbs were collected, ground into powder form, and then macerated by using three different solvents: distilled water, 50% ethanol, and 95% ethanol, respectively. The potentials of the extracts produced from these herbs for use as vasorelaxants were determined. Additionally, the fingerprints of these herbs were analyzed by using FTIR spectra, SD-IR spectra, and 2D-correlation IR spectra in order to identify their main constituents and to provide useful information for future pharmacodynamics studies. Results: Swietenia macrophylla King has the highest potential in terms of vasorelaxant activity, followed by Vernonia amygdalina, Pereskia bleo, Strobilanthes crispus, Elephantopus scaber Linn., Pereskia grandifolia Haw., Clinacanthus nutans Lindau, and Murdannia bracteata. The tri-step IR macro-fingerprint of the herbs revealed that most of them contained proteins. Pereskia bleo and Pereskia grandifolia Haw. were found to contain calcium oxalate while Swietenia macrophylla King was found to contain large amounts of flavonoids. Conclusion: The flavonoid content of the herbs affects their vasorelaxant activity, and the tri-step IR macro- fingerprint method can be used as an analytical tool to determine the activity of a herbal medicine in terms of its vasorelaxant effect. PMID:27386148

  10. Discrimination of Wild Paris Based on Near Infrared Spectroscopy and High Performance Liquid Chromatography Combined with Multivariate Analysis

    PubMed Central

    Zhao, Yanli; Zhang, Ji; Yuan, Tianjun; Shen, Tao; Li, Wei; Yang, Shihua; Hou, Ying; Wang, Yuanzhong; Jin, Hang

    2014-01-01

    Different geographical origins and species of Paris obtained from southwestern China were discriminated by near infrared (NIR) spectroscopy and high performance liquid chromatography (HPLC) combined with multivariate analysis. The NIR parameter settings were scanning (64 times), resolution (4 cm−1), scanning range (10000 cm−1∼4000 cm−1) and parallel collection (3 times). NIR spectrum was optimized by TQ 8.6 software, and the ranges 7455∼6852 cm−1 and 5973∼4007 cm−1 were selected according to the spectrum standard deviation. The contents of polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII and total steroid saponins were detected by HPLC. The contents of chemical components data matrix and spectrum data matrix were integrated and analyzed by partial least squares discriminant analysis (PLS-DA). From the PLS-DA model of NIR spectrum, Paris samples were separated into three groups according to the different geographical origins. The R2X and Q2Y described accumulative contribution rates were 99.50% and 94.03% of the total variance, respectively. The PLS-DA model according to 12 species of Paris described 99.62% of the variation in X and predicted 95.23% in Y. The results of the contents of chemical components described differences among collections quantitatively. A multivariate statistical model of PLS-DA showed geographical origins of Paris had a much greater influence on Paris compared with species. NIR and HPLC combined with multivariate analysis could discriminate different geographical origins and different species. The quality of Paris showed regional dependence. PMID:24558477

  11. Discrimination of wild Paris based on near infrared spectroscopy and high performance liquid chromatography combined with multivariate analysis.

    PubMed

    Zhao, Yanli; Zhang, Ji; Yuan, Tianjun; Shen, Tao; Li, Wei; Yang, Shihua; Hou, Ying; Wang, Yuanzhong; Jin, Hang

    2014-01-01

    Different geographical origins and species of Paris obtained from southwestern China were discriminated by near infrared (NIR) spectroscopy and high performance liquid chromatography (HPLC) combined with multivariate analysis. The NIR parameter settings were scanning (64 times), resolution (4 cm(-1)), scanning range (10,000 cm(-1)∼4000 cm(-1)) and parallel collection (3 times). NIR spectrum was optimized by TQ 8.6 software, and the ranges 7455∼6852 cm(-1) and 5973∼4007 cm(-1) were selected according to the spectrum standard deviation. The contents of polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII and total steroid saponins were detected by HPLC. The contents of chemical components data matrix and spectrum data matrix were integrated and analyzed by partial least squares discriminant analysis (PLS-DA). From the PLS-DA model of NIR spectrum, Paris samples were separated into three groups according to the different geographical origins. The R(2)X and Q(2)Y described accumulative contribution rates were 99.50% and 94.03% of the total variance, respectively. The PLS-DA model according to 12 species of Paris described 99.62% of the variation in X and predicted 95.23% in Y. The results of the contents of chemical components described differences among collections quantitatively. A multivariate statistical model of PLS-DA showed geographical origins of Paris had a much greater influence on Paris compared with species. NIR and HPLC combined with multivariate analysis could discriminate different geographical origins and different species. The quality of Paris showed regional dependence.

  12. Laboratory Far-infrared Spectroscopy Of Terrestrial Phyllosilicates To Support Analysis Of Cosmic Dust Spectra.

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet; Brusentsova, T.; Peale, R.; Maukonen, D.; Figueiredo, P.; Harlow, G. H.; Ebel, D. S.; Nissinboim, A.; Sherman, K.; Lisse, C. M.

    2012-01-01

    Poster Abstract: 219th AAS Meeting M. Yesiltas1, T. Brusentsova1, R. E. Peale1, D. Maukonen1, P. Figueiredo1, G. E. Harlow2, D. S. Ebel2, A. Nissinboim2, K. Sherman2, and C. M. Lisse3 Remote spectral detection of hydrated minerals is of general interest in the solar system and dusty circumstellar disks. This paper presents spectroscopy of terrestrial phyllosilicate minerals in the wavelength range 15 - 250 µm to support interpretation of returned data from far-IR space-missions such as the Herschel Space Observatory. The far-IR spectral region beyond 15 micron wavelength is especially diagnostic of mineral composition and crystal structure. Relatively little far-IR spectral data exists in the literature on suitably-characterized naturally-occurring phyllosilicate minerals in the wavelength range 60-210 microns corresponding to the PACS instrument of Herschel Space Observatory. Extending the database of laboratory far-IR spectra of terrestrial mineral analogs is therefore desirable and timely. Seventeen phyllosilicate minerals expected in various astronomical environments were sampled from the American Museum of Natural History for diversity and astrophysical relevancy, based on their identification in Stardust, in stratospheric IDP samples, or in meteorites. These include serpentines (Antigorite and Chrysotile), smectites (Talc, Pyrophyllite, Vermiculite, Montmorillonite, Beidellite, Saponite, Nontronite and Hectorite), chlorites (Clinochlore), micas (Muscovite, Paragonite, Margarite, Clintonite, Biotite and Illite), and kaolinites (Dickite, Nacrite, Kaolinite, Halloysite, Attapulgite and Sepiolite). Spectra of micron-sized powder suspensions in polyethelyne pellets reveal prominent and characteristic far-IR features, which differ significantly in some cases from already published spectra, where available. Acknowledgements : This research was supported by NASA-JPL Contract # 1327221. 1Department of Physics, University of Central Florida, Orlando FL 32816 USA2

  13. Buccal microbiology analyzed by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    de Abreu, Geraldo Magno Alves; da Silva, Gislene Rodrigues; Khouri, Sônia; Favero, Priscila Pereira; Raniero, Leandro; Martin, Airton Abrahão

    2012-01-01

    Rapid microbiological identification and characterization are very important in dentistry and medicine. In addition to dental diseases, pathogens are directly linked to cases of endocarditis, premature delivery, low birth weight, and loss of organ transplants. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze oral pathogens Aggregatibacter actinomycetemcomitans ATCC 29523, Aggregatibacter actinomycetemcomitans-JP2, and Aggregatibacter actinomycetemcomitans which was clinically isolated from the human blood-CI. Significant spectra differences were found among each organism allowing the identification and characterization of each bacterial species. Vibrational modes in the regions of 3500-2800 cm-1, the 1484-1420 cm-1, and 1000-750 cm-1 were used in this differentiation. The identification and classification of each strain were performed by cluster analysis achieving 100% separation of strains. This study demonstrated that FTIR can be used to decrease the identification time, compared to the traditional methods, of fastidious buccal microorganisms associated with the etiology of the manifestation of periodontitis.

  14. Optical Spectroscopy of Luminous Infrared Galaxies. II. Analysis of the Nuclear and Long-Slit Data

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Kim, D.-C.; Sanders, D. B.; Mazzarella, J. M.; Soifer, B. T.

    1995-05-01

    A spectroscopic survey of a sample of 200 luminous IRAS galaxies (LIGs: L_ir_^7^ > 3 x 10^10^ L_sun_; H_0_ = 75 km s^-1^ Mpc^-1^) was carried out using the Palomar 5 meter and University of Hawaii 2.2 m telescopes. Kim et al. (1995) described the data-taking and data-reduction procedures and presented line and continuum measurements extracted from the nucleus of these objects. In this paper, the nuclear data are combined with circumnuclear measurements on 23 of these galaxies to investigate the properties of the line-emitting gas and underlying stellar population in and out of the nucleus. The nuclear spectra of these galaxies were classified as H II region-like" or "AGN-like" using a large number of line-ratio diagnostics corrected for the underlying stellar absorption features. This correction is an important source of errors in some previous studies. The emission-line spectra of many AGNs were found to-be of relatively low ionization level and were therefore classified as LINER. We confirm that both the fraction of LIGs with AGN spectra and the fraction of Seyferts among the AGN increase with infrared luminosity, reaching values of 62% and 54% at the highest observed luminosities, respectively. The fraction of LINERs, on the other hand, is relatively constant at ~27%. The source of the ionization of the emission-line gas often is a function of the distance from the nucleus. Based on the emission-line ratios and the strengths of the stellar absorption features, circumnuclear starburst activity is a common feature of LIGs, regardless of their nuclear spectral types. The emission-line, absorption-line, continuum, radio, and IRAS properties of the LINERs suggest that most of the LINER emission in these infrared-selected galaxies is produced through shock ionization rather than photoionization by a genuine active nucleus. The nuclear region of Seyfert LIGs is found to be slightly less reddened than that of the LINERs and H II galaxies. The dust distribution generally

  15. Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials

    SciTech Connect

    Anderson, Timothy J.

    2014-12-01

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight week study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  16. Theoretical analysis of tablet hardness prediction using chemoinformetric near-infrared spectroscopy.

    PubMed

    Tanabe, Hideaki; Otsuka, Kuniko; Otsuka, Makoto

    2007-07-01

    In order to clarify the theoretical basis of the variability in the measurement of tablet hardness by compression pressure, NIR spectroscopic methods were used to predict tablet hardness of the formulations. Tablets (200 mg, 8 mm in diameter) consisting of berberine chloride, lactose, and potato starch were formed at various compression pressures (59, 78, 98, 127, 195 MPa). The hardness and the distribution of micropores were measured. The reflectance NIR spectra of various compressed tablets were used as a calibration set to establish a calibration model to predict tablet hardness by principal component regression (PCR) analysis. The distribution of micropores was shifted to a smaller pore size with increasing compression pressure. The total pore volume of tablets decreased as the compression pressure increased. The hardness increased as the compression pressure increased. The hardness could be predicted using a calibration model consisting of 7 principal components (PCs) obtained by PCR. The relationship between the predicted and the actual hardness values exhibited a straight line, an R(2) of 0.925. In order to understand the theoretical analysis (scientific background) of calibration models used to evaluate tablet hardness, the standard error of cross validation (SEV) values, the loading vectors of each PC and the regression vector were investigated. The result obtained with the calibration models for hardness suggested that the regression vector might involve physical and chemical factors. In contrast, the porosity could be predicted using a calibration model composed of 2 PCs. The relationship between the predicted and the actual total pore volume showed a straight line with R(2) = 0.801. The regression vector of the total pore volume might be due to physical factors.

  17. Nonlinear infrared spectroscopy free from spectral selection

    PubMed Central

    Paterova, Anna; Lung, Shaun; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2017-01-01

    Infrared (IR) spectroscopy is an indispensable tool for many practical applications including material analysis and sensing. Existing IR spectroscopy techniques face challenges related to the inferior performance and the high cost of IR-grade components. Here, we develop a new method, which allows studying properties of materials in the IR range using only visible light optics and detectors. It is based on the nonlinear interference of entangled photons, generated via Spontaneous Parametric Down Conversion (SPDC). In our interferometer, the phase of the signal photon in the visible range depends on the phase of an entangled IR photon. When the IR photon is traveling through the media, its properties can be found from observations of the visible photon. We directly acquire the SPDC signal with a visible range CCD camera and use a numerical algorithm to infer the absorption coefficient and the refraction index of the sample in the IR range. Our method does not require the use of a spectrometer and a slit, thus it allows achieving higher signal-to-noise ratio than the earlier developed method. PMID:28218302

  18. Nonlinear infrared spectroscopy free from spectral selection

    NASA Astrophysics Data System (ADS)

    Paterova, Anna; Lung, Shaun; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2017-02-01

    Infrared (IR) spectroscopy is an indispensable tool for many practical applications including material analysis and sensing. Existing IR spectroscopy techniques face challenges related to the inferior performance and the high cost of IR-grade components. Here, we develop a new method, which allows studying properties of materials in the IR range using only visible light optics and detectors. It is based on the nonlinear interference of entangled photons, generated via Spontaneous Parametric Down Conversion (SPDC). In our interferometer, the phase of the signal photon in the visible range depends on the phase of an entangled IR photon. When the IR photon is traveling through the media, its properties can be found from observations of the visible photon. We directly acquire the SPDC signal with a visible range CCD camera and use a numerical algorithm to infer the absorption coefficient and the refraction index of the sample in the IR range. Our method does not require the use of a spectrometer and a slit, thus it allows achieving higher signal-to-noise ratio than the earlier developed method.

  19. The process of the reduction of azo dyes used in dyeing textiles on the basis of infrared spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Pielesz, A.

    1999-11-01

    Nowadays the world observes a widespread campaign against the use in yarn of dangerous, carcinogenic amines which penetrate human organisms. Their source in organisms is the process of biological reduction of azo dyes which are used in dyeing yarn. The current obligatory methods of aromatic amine identification are the widely understood chromatographic methods. In this work, the identification of amines through the fourier transform infrared spectroscopy has been suggested. The results of the experiments have allowed the use of the same method in aromatic amine identification.

  20. Potential and limitation of mid-infrared attenuated total reflectance spectroscopy for real time analysis of raw milk in milking lines.

    PubMed

    Linker, Raphael; Etzion, Yael

    2009-02-01

    Real-time information about milk composition would be very useful for managing the milking process. Mid-infrared spectroscopy, which relies on fundamental modes of molecular vibrations, is routinely used for off-line analysis of milk and the purpose of the present study was to investigate the potential of attenuated total reflectance mid-infrared spectroscopy for real-time analysis of milk in milking lines. The study was conducted with 189 samples from over 70 cows that were collected during an 18 months period. Principal component analysis, wavelets and neural networks were used to develop various models for predicting protein and fat concentration. Although reasonable protein models were obtained for some seasonal sub-datasets (determination errors infrared radiation that causes the spectra to be very sensitive to the presence of fat globules or fat biofilms in the boundary layer that forms at the interface between the milk and the crystal that serves both as radiation waveguide and sensing element. Since manipulations such as homogenisation are not permissible for in-line analysis, these results show that the potential of mid-infrared attenuated total reflectance spectroscopy for in-line milk analysis is indeed quite limited.

  1. Infrared spectroscopy of ionic clusters

    SciTech Connect

    Price, J.M. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  2. Flap monitoring using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Keller, Alex; Wright, Leigh P.; Elmandjra, Mohamed; Mao, Jian-min

    2006-02-01

    We report results of clinical trials on flap monitoring in 65 plastic surgeries. Hemoglobin oxygen saturation of flap tissue (StO II) was monitored non-invasively by using ODISsey TM tissue oximeter, an infrared spectroscopic device. StO II measurements were conducted both intra-operatively and post-operatively. From the intra-operative measurements, we observed that StO II values dropped when the main blood vessels supplying the flap were clamped in surgery, and that StO II jumped after anastomosis to a value close to its pre-operative value. From post-operative monitoring measurements for the 65 flap cases, each lasted two days or so, we found that the StO II values approach to a level close to the baseline if the surgery was successful, and that the StO II value dropped to a value below 30% if there is a perfusion compromise, such as vascular thrombosis.

  3. Analysis of the Spectral Characteristics of Pure Moxa Stick Burning by Hyperspectral Imaging and Fourier Transform Infrared Spectroscopy

    PubMed Central

    Li, Yin-long

    2016-01-01

    The objective of this study was to investigate the spectra characteristics (SC) at wavelengths of 400~1000 nm and 2.5~15.5 μm of pure moxa stick (MS) during its 25-minute burning process using new spectral imaging techniques. Spectral images were collected for the burning pure MS at 5, 10, 15, 20, and 25 min using hyperspectral imaging (HSI) and Fourier transform infrared spectroscopy (FTIR) for the first time. The results showed that, at wavelengths of 400~1000 nm, the spectral range of the cross section of MS burning was 750~980 nm; the peak position was 860 nm. At wavelengths of 2.5~15.5 μm, the spectral range of the cross section of MS burning was 3.0~4.0 μm; the peak position was approximately 3.5 μm. The radiation spectra of MS burning include litter red and amount of infrared (but mainly near infrared) wavelengths. The temperature, blood perfusion, and oxygen saturation increase of Shenshu (BL23) after moxibustion radiation were observed too. According to mechanism of photobiological effects and moxibustion biological effects, it was inferred that moxibustion effects should be linked with moxibustion SC. This study provided new data and means for physical properties of moxibustion research. PMID:27721889

  4. Measurement of lipid supplements in poultry feed by infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid measurement of a fatty acid supplement in poultry feed formulations was performed using near infrared (NIR) spectroscopy with chemometric analysis. A standard feed formulation was amended with up to 10 wt% fatty acid supplement containing docosahexaenoic acid (DHA) and scanned from 10,000 cm-1...

  5. High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development

    PubMed Central

    2014-01-01

    Background In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). Results The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. Conclusion Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly

  6. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    SciTech Connect

    Datskos, P.G. |; Rajic, S.; Datskou, I.; Egert, C.M.

    1997-10-01

    The authors have investigated a novel infrared microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the infrared photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors (surface acoustic waves, quartz crystal microbalances) require highly selective coatings to achieve chemical specificity. In contrast, infrared microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. They have obtained infrared photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region2.5 to 14.5 {micro}m. They found that in the wavelength region 2.5 to 14.5 {micro}m DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 {micro}m and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with infrared absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  7. Wavelet coherence analysis of cerebral oxygenation signals measured by near-infrared spectroscopy in sailors: an exploratory, experimental study

    PubMed Central

    Bu, Lingguo; Li, Jianfeng; Li, Fangyi; Liu, Heshan; Li, Zengyong

    2016-01-01

    Objective The objective of this study was to assess the effects of long-term offshore work on cerebral oxygenation oscillations in sailors based on the wavelet phase coherence (WPCO) of near-infrared spectroscopy (NIRS) signals. Methods The fatigue severity scale (FSS) was first applied to assess the fatigue level of sailors and age-matched controls. Continuous recordings of NIRS signals were then obtained from the prefrontal lobes in 30 healthy sailors and 30 age-matched controls during the resting state. WPCO between the left and right prefrontal oscillations was analysed and Pearson correlation analysis was used to study the relationship between the FSS and the wavelet amplitude (WA), and between the FSS and the WPCO level. Results The periodic oscillations of Delta (HbO2) signals were identified at six frequency intervals: I (0.6–2 Hz); II (0.145–0.6 Hz); III (0.052–0.145 Hz); IV (0.021–0.052 Hz); V (0.0095–0.021 Hz); and VI (0.005–0.0095 Hz). The WA in intervals I (F=8.823, p=0.004) and III (F=4.729, p=0.034) was significantly lower in sailors than that in the controls. The WPCO values of sailor group were significantly lower in intervals III (F=4.686, p=0.039), IV (F=4.864, p=0.036) and V (F=5.195, p=0.03) than those of the control group. In the sailor group, the WA in interval I (r=−0.799, p<0.01) and in interval III (r=−0.721, p<0.01) exhibited a negative correlation with the FSS. Also, the WPCO exhibited a negative correlation with the FSS in intervals III (r=−0.839, p<0.01), IV (r=−0.765, p<0.01) and V (r=−0.775, p<0.01) in the sailor group. Conclusions The negative correlation between WA and FSS indicates that the lower oscillatory activities might contribute to the development of fatigue. The low WPCO in intervals III, IV and V represents a reduced phase synchronisation of myogenic, neurogenic and endothelial metabolic activities respectively and this may suggest a decline of cognitive function. PMID:27810980

  8. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  9. Infrared Spectroscopy of Blood for Disease Identification

    NASA Astrophysics Data System (ADS)

    Pichardo, J. L.; Huerta-Franco, R.; Álvarez, R. R.; Bernal, J.; Gutiérrez-Juárez, G.; Palomares-Anda, P.

    2003-09-01

    Total reflectance attenuated infrared Fourier transform spectroscopy was used to analyze blood samples. Plasma and red blood cells were separated by centrifugation. The spectra were recorded from 200 to 4000 cm-1 under the same conditions for all samples. Samples of healthy donors were compared with those patients with different diseases (polycythemia and high blood pressure). Patients were under medical control at the time of the study. However, the preliminary results reveal that blood samples from healthy subjects had different infrared spectra compared to the non healthy patients.

  10. 105 NEAR-INFRARED SPECTROSCOPY AND AQUAPHOTOMICS ANALYSIS OF SERUM FROM MARES EXPOSED TO THE FUNGAL MYCOTOXIN ZEARALENONE.

    PubMed

    Vance, C K; Counsell, K R; Agcanas, L A; Shappell, N; Bowers, S; Willard, S T; Ryan, P L

    2016-01-01

    Aquaphotomics is a branch of near-infrared (NIR) spectroscopy in which bond vibrations from organic molecules and water create unique spectral absorbance patterns to profile complex aqueous mixtures. Aquaphotomics has been shown to detect virus infected soybean plants from extracts, classify probiotic bacteria, and detect contamination of aquatic ecosystems. We have used aquaphotomics to characterise serum profiles from horses in various phases of the reproductive cycle such as oestrus and diestrus. Because serum is a complex solution of biomolecules, various modes of serum processing (e.g. large protein removal for proteomics or mass spectrometry) may provide different NIR spectral profiles for quantitative analysis of specific compounds or their effects. Zearalenone is a fungal mycotoxin that may have estrogenic potential in mares and is found in feedstuffs. The objectives of this study were to (1) establish NIR spectral profiles of serum and protein-precipitated serum (PPS) collected at peak oestrus from mares; (2) determine if NIR profiles correlate and quantify E2 concentrations in serum or PPS; and (3) determine if NIR can detect differences in serum chemistry of zearalenone-treated mares. Mares were fed zearalenone daily at low (2mg, 2 mares, 5 cycles) and high (8mg, 1 mare, 3 cycles) concentrations, plus control (0mg, 1 mare, 3 cycles). Oestrus cycles were monitored by ultrasound and serum hormone analysis. Serum collected at peak oestrus had E2 values determined by radioimmunoassay (range 0.02-16.87pgmL(-1)). Protein precipitated serum had high and medium MW proteins removed with acetonitrile. NIR spectra, collected in triplicate with a 1mm quartz cuvette and ASD FieldSpec(®)3 (Boulder, CO, USA), were pre-treated with a Savitsky-Golay 1(st) derivative for inspection of spectral features, principal component analysis, and partial least-squares regression (PLS) to investigate spectral correlations to E2 concentrations and zearalenone treatment effects. The

  11. Application of near-infrared spectroscopy combined with multivariate analysis in monitoring of crude heparin purification process.

    PubMed

    Zang, Hengchang; Wang, Jinfeng; Li, Lian; Zhang, Hui; Jiang, Wei; Wang, Fengshan

    2013-05-15

    Ion-exchange chromatography is a widely used purification technology in the heparin manufacturing process. To improve the efficiency and understand the process directly, a rapid and equally precise method needs to be developed to measure heparin concentration in chromatography process. Here, two robust partial least squares regression (PLS-R) models were established for quantification of heparin based on the near-infrared (NIR) spectroscopy with 80 samples of adsorption process and 76 samples of elution process. Several variables selection algorithms, including correlation coefficient method, successive projection algorithm (SPA) and interval partial least squares (iPLSs), were performed to remove non-informative variables. The results showed that the correlation coefficient of validation (Rp) and the residual predictive deviation (RPD) corresponded to 0.957 and 3.4472 for adsorption process, 0.968 and 3.9849 for elution process, respectively. The approach was found considerable potential for real-time monitoring the heparin concentration of chromatography process.

  12. Application of near-infrared spectroscopy combined with multivariate analysis in monitoring of crude heparin purification process

    NASA Astrophysics Data System (ADS)

    Zang, Hengchang; Wang, Jinfeng; Li, Lian; Zhang, Hui; Jiang, Wei; Wang, Fengshan

    2013-05-01

    Ion-exchange chromatography is a widely used purification technology in the heparin manufacturing process. To improve the efficiency and understand the process directly, a rapid and equally precise method needs to be developed to measure heparin concentration in chromatography process. Here, two robust partial least squares regression (PLS-R) models were established for quantification of heparin based on the near-infrared (NIR) spectroscopy with 80 samples of adsorption process and 76 samples of elution process. Several variables selection algorithms, including correlation coefficient method, successive projection algorithm (SPA) and interval partial least squares (iPLSs), were performed to remove non-informative variables. The results showed that the correlation coefficient of validation (Rp) and the residual predictive deviation (RPD) corresponded to 0.957 and 3.4472 for adsorption process, 0.968 and 3.9849 for elution process, respectively. The approach was found considerable potential for real-time monitoring the heparin concentration of chromatography process.

  13. [Infrared spectroscopy application in soil organic matter].

    PubMed

    Wu, J; Xi, S; Jiang, Y

    1998-02-01

    As an important method to study the constitution and properties of macromolecular organic compounds, the infrared spectroscopy has been more and more widely taken in the researches of soil organic matters (SOM). Especially,the application of FTIR and the combined uses of FTIR with chromatogram etc. have made the researches of SOM get a great progress in many aspects. In this paper, the infrared spectroscopy applications were reviewed in SOM. It includes the following contents: the methods to study SOM by IR, studies on the constitution of soil humic substances (SHS), extraction of SOM and classification of SHS, decomposition, transformation and humification of organic matters, the differences of SOM in different situations, the interactions of SHS with metais, clay minerals and other organics in soil.

  14. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.

    PubMed

    Musingarabwi, Davirai M; Nieuwoudt, Hélène H; Young, Philip R; Eyéghè-Bickong, Hans A; Vivier, Melané A

    2016-01-01

    Fourier transform (FT) near-infrared (NIR) and attenuated total reflection (ATR) FT mid-infrared (MIR) spectroscopy were used to qualitatively and quantitatively analyse Vitis vinifera L. cv Sauvignon blanc grape berries. FT-NIR and ATR FT-MIR spectroscopy, coupled with spectral preprocessing and multivariate data analysis (MVDA), provided reliable methods to qualitatively assess berry samples at five distinct developmental stages: green, pre-véraison, véraison, post-véraison and ripe (harvest), without any prior metabolite extraction. Compared to NIR spectra, MIR spectra provided more reliable discrimination between the berry samples from the different developmental stages. Interestingly, ATR FT-MIR spectra from fresh homogenized berry samples proved more discriminatory than spectra from frozen homogenized berry samples. Different developmental stages were discriminated by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In order to generate partial least squares (PLS) models from the MIR/NIR spectral datasets; the major sugars (glucose and fructose) and organic acids (malic acid, succinic acid and tartaric acid) were separated and quantified by high performance liquid chromatography (HPLC) and the data used as a reference dataset. PLS regression was used to develop calibration models to predict the concentration of the major sugars and organic acids in the berry samples from different developmental stages. Our data show that infrared (IR) spectroscopy could provide a rapid, reproducible and cost-effective alternative to the chromatographic analysis of the sugar and organic acid composition of grape berries at various developmental stages, using small sample volumes and requiring limited sample preparation. This provides scope and support for the possible development of hand-held devices to assess quality parameters in field-settings in real-time and non-destructively using IR technologies.

  15. Bioprocess monitoring using near-infrared spectroscopy.

    PubMed

    Suehara, Ken-ichiro; Yano, Takuo

    2004-01-01

    Near-infrared spectroscopy (NIR) is a nondestructive analytical technique that has been used for simultaneous prediction of the concentrations of several substrates, products and constructs in mixtures sampled from fermentation processes. In this chapter, we discuss applications of NIR for the monitoring of bioprocesses involving rice vinegar, compost, glycolipid, L-glutamic acid, lactic acid fermentation, mushroom cultivation, and Koji production. This includes detailed discussion of applications of NIR to process management of rice vinegar fermentation and compost fermentation. In the present study, absorbance at wavelengths between 400 and 2500 nm was measured at 2 nm intervals. To obtain calibration equations, multiple linear regression (MLR) was performed on NIR spectral data and conventional analysis values of a calibration sample set. To validate these calibration equations, they were used to calculate concentrations of a prediction sample set, which were then compared with concentrations measured by conventional methods. There was excellent agreement between the results of the conventional method and those of the NIR method, when both were used to analyze culture broth of rice vinegar fermentation and solid-state fermented compost. These results indicate that NIR is a useful method for monitoring and control of bioprocesses.

  16. Quantitative analysis of H-species in anisotropic minerals by polarized infrared spectroscopy along three orthogonal directions

    NASA Astrophysics Data System (ADS)

    Shuai, Kang; Yang, Xiaozhi

    2017-03-01

    Infrared spectroscopy is a powerful technique for probing H-species in nominally anhydrous minerals, and a particular goal of considerable efforts has been providing a simple yet accurate method for the quantification. The available methods, with either polarized or unpolarized analyses, are usually time-consuming or, in some cases, subjected to larger uncertainty than theoretically expected. It is shown here that an empirical approach for measuring the concentration, by determining three polarized infrared spectra along any three mutually perpendicular directions, is theoretically and in particular experimentally correct. The theoretical background is established by considering the integrated absorbance, and the experimental measurements are based on a careful evaluation of the species and content of H in a series of gem-quality orthogonal, monoclinic and triclinic crystals, including olivine, orthopyroxene, clinopyroxene, orthoclase and albite (natural and H-annealed). The results demonstrate that the sum of the integrated absorbance from two polarized spectra along two perpendicular directions in any given plane is a constant, and that the sum of the integrated absorbance from three polarized spectra along any three orthogonal directions is of essentially the same accuracy as that along the principal axes. It is also shown that this method works well, with a relative accuracy within 10%, even at some extreme cases where the sample absorption bands are both intense and strongly anisotropic.

  17. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  18. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S; Irudayaraj, Joseph; Ileleji, Klein

    2015-03-01

    The coffee strip-picking harvesting method, preferred in Brazil, results in high percentages of immature and overripe beans, as the fruits in a single tree branch do not reach ripeness at the same time. This practice, together with inappropriate processing and storage conditions, contribute to the production of high amounts of defective coffee beans in Brazil, which upon roasting will impart negative sensory aspects to the beverage. Therefore, the development of analytical methodologies that will enable the discrimination and quantification of defective and non-defective coffees after roasting is rather desirable. Given that infrared spectroscopy has been successfully applied to coffee analysis, the objective of this work was to evaluate and to compare the performances of Fourier transform infrared (FTIR) and near infrared (NIR) spectroscopies for the quantification of defective beans in roasted coffees. Defective and non-defective Arabica coffee beans were manually selected, roasted, ground and sieved. Mixtures of defective and non-defective roasted and ground coffees were produced and analyzed, with % defects ranging from 0% to 30%. FTIR and NIR spectra were recorded, respectively, within a range of 3100-800 cm(-1) and 1200-2400 nm and submitted to mathematical processing. Quantitative models were developed by partial least squares regression (PLSR). Excellent predictive results were obtained indicating that defective coffees could be satisfactorily quantified. The correlation coefficients and the root mean squared errors of validation for the FTIR and NIR models developed to quantify the amount of defective roasted coffees mixed with non-defective ones were, respectively, as high as 0.891 and as low as 0.032, and as high as 0.953 and as low as 0.026. A comparison between the two techniques indicated that NIR provided more robust models.

  19. Nonlinear photothermal mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Totachawattana, Atcha; Erramilli, Shyamsunder; Sander, Michelle Y.

    2016-10-01

    Mid-infrared photothermal spectroscopy is a pump-probe technique for label-free and non-destructive sample characterization by targeting intrinsic vibrational modes. In this method, the mid-infrared pump beam excites a temperature-induced change in the refractive index of the sample. This laser-induced change in the refractive index is measured by a near-infrared probe laser using lock-in detection. At increased pump powers, emerging nonlinear phenomena not previously demonstrated in other mid-infrared techniques are observed. Nonlinear study of a 6 μm-thick 4-Octyl-4'-Cyanobiphenyl (8CB) liquid crystal sample is conducted by targeting the C=C stretching band at 1606 cm-1. At high pump powers, nonlinear signal enhancement and multiple pitchfork bifurcations of the spectral features are observed. An explanation of the nonlinear peak splitting is provided by the formation of bubbles in the sample at high pump powers. The discontinuous refractive index across the bubble interface results in a decrease in the forward scatter of the probe beam. This effect can be recorded as a bifurcation of the absorption peak in the photothermal spectrum. These nonlinear effects are not present in direct measurements of the mid-infrared beam. Evolution of the nonlinear photothermal spectrum of 8CB liquid crystal with increasing pump power shows enhancement of the absorption peak at 1606 cm-1. Multiple pitchfork bifurcations and spectral narrowing of the photothermal spectrum are demonstrated. This novel nonlinear regime presents potential for improved spectral resolution as well as a new regime for sample characterization in mid-infrared photothermal spectroscopy.

  20. Implementation of Traditional and Real-World Cooperative Learning Techniques in Quantitative Analysis Including Near Infrared Spectroscopy for Analysis of Live Fish

    NASA Astrophysics Data System (ADS)

    Houghton, Tracy P.; Kalivas, John H.

    2000-10-01

    It is important for a modern quantitative analysis laboratory course to contain gravimetric and volumetric analysis exercises implemented with standard unknowns. By analyzing unknowns, students learn crucial laboratory skills. It is also advantageous to introduce real-world samples and cooperative learning structure into the lab course. A one-semester sophomore course at Idaho State University is divided into two parts: students individually perform traditional unknown analyses, and as groups, they study an aquatic ecosystem simulated by a trout aquarium. Ecosystem analyses include the important chemical components of the nitrogen cycle, dissolved oxygen, and alkalinity. In addition to examining the aquatic system, trout are removed temporarily from the aquarium for analysis of lipid and moisture content using near infrared (NIR) spectroscopy. For the ecosystem investigation, students also determine costs of analyses and conduct quality-control studies. At the completion of the course, students are well versed in classical methods of analysis as well as educated on the relevance of modern technology, including up-to-date instrumentation and sophisticated multivariate calibration and prediction procedures. Course assessment results are summarized in the paper.

  1. Classification and structural analysis of live and dead salmonella cells using fourier transform infrared (FT-IR) spectroscopy and principle component analysis (PCA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...

  2. Near-Infrared Versus Mid-Infrared for the Quantitative and Qualitative Analysis of Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over several decades, near-infrared reflectance spectroscopy has been shown to be extremely versatile for the rapid analysis of many agricultural materials including forages, foods and grains. More recently, mid-infrared and near-infrared diffuse reflectance spectroscopy (DRIFTS and NIRS, respective...

  3. Rovibrational analysis of the ethylene isotopologue 13C2D4 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Godfrey, Peter D.; McNaughton, Don

    2015-01-01

    The Fourier transform infrared (FTIR) spectrum of the unperturbed a-type ν12 band of 13C2D4 was recorded at an unapodized resolution of 0.0063 cm-1 between 1000 and 1140 cm-1 for a rovibrational analysis. By assigning and fitting a total of 2068 infrared transitions using a Watson's A-reduced and S-reduced Hamiltonians in the Ir representation, rovibrational constants for the upper state (ν12 = 1) up to five quartic centrifugal distortion terms were derived for the first time. The root-mean-square (rms) deviation of the fits was 0.00034 cm-1 both in the A-reduction and S-reduction Hamiltonian. The ground state rovibrational constants of 13C2D4 in the A-reduced and S-reduced Hamiltonians were also determined for the first time by a fit of 985 combination-differences from the present infrared measurements, with rms deviation of 0.00036 cm-1. The ν12 band centre of 13C2D4 was at 1069.970824(17) cm-1 and at 1069.970799(17) cm-1 for the A-reduced and S-reduced Hamiltonians respectively. The ground state constants of 13C2D4 from this experimental work are in close agreement to those derived from theoretical calculations using the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CSSD(T)/cc-pVTZ levels of theory.

  4. Rapid and undamaged analysis of crude and processed Radix Scrophulariae by Fourier transform infrared spectroscopy coupled with soft independent modeling of class analogy

    PubMed Central

    Zhu, Huiping; Cao, Gang; Cai, Hao; Cai, Baochang; Hu, Jue

    2014-01-01

    Objective: The main objective of this work is to determine the feasibility of identification of crude and processed Radix Scrophulariae using the Fourier transform infrared spectroscopy couple with soft independent modeling of class analogy (FT-IR-SIMCA). Materials and Methods: A total of 50 different crude Radix Scrophulariae was used to product processed ones. The spectra were acquired by FT-IR spectroscopy using a diffuse reflectance fiber optic probe. For the multivariate analysis, SIMCA was used. Results showed that FT-IR-SIMCA was useful to discriminate the processed Radix Scrophulariae samples from crude samples. These samples could be successfully classified by SIMCA. Results: In all cases, the recognition and rejection rates were 97.8% and 100%, respectively. When testing with the blind sample that was picked out from the chosen samples, the accuracy was up to 90%. Conclusion: It means that the methodology is capable of accurately separating processed Radix Scrophulariae from crude samples. PMID:25210313

  5. In-line near-infrared (NIR) and Raman spectroscopy coupled with principal component analysis (PCA) for in situ evaluation of the transesterification reaction.

    PubMed

    Fontalvo-Gómez, Miriam; Colucci, José A; Velez, Natasha; Romañach, Rodolfo J

    2013-10-01

    Biodiesel was synthesized from different commercially available oils while in-line Raman and near-infrared (NIR) spectra were obtained simultaneously, and the spectral changes that occurred during the reaction were evaluated with principal component analysis (PCA). Raman and NIR spectra were acquired every 30 s with fiber optic probes inserted into the reaction vessel. The reaction was performed at 60-70 °C using magnetic stirring. The time of reaction was 90 min, and during this time, 180 Raman and NIR spectra were collected. NIR spectra were collected using a transflectance probe and an optical path length of 1 mm at 8 cm(-1) spectral resolution and averaging 32 scans; for Raman spectra a 3 s exposure time and three accumulations were adequate for the analysis. Raman spectroscopy showed the ester conversion as evidenced by the displacement of the C=O band from 1747 to 1744 cm(-1) and the decrease in the intensity of the 1000-1050 cm(-1) band and the 1405 cm(-1) band as methanol was consumed in the reaction. NIR spectra also showed the decrease in methanol concentration with the band in the 4750-5000 cm(-1) region; this signal is present in the spectra of the transesterification reaction but not in the neat oils. The variations in the intensity of the methanol band were a main factor in the in-line monitoring of the transesterification reaction using Raman and NIR spectroscopy. The score plot of the first principal component showed the progress of the reaction. The final product was analyzed using (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy and using mid-infrared spectroscopy, confirming the conversion of the oils to biodiesel.

  6. Infrared Analysis Using Tissue Paper.

    ERIC Educational Resources Information Center

    Owen, Noel L.; Wood, Steven G.

    1987-01-01

    Described is a quick, easy, and cheap, but effective method of obtaining infrared spectra of solids and nonvolatile liquids by Fourier transform infrared spectroscopy. The technique uses tissue paper as a support matrix. (RH)

  7. Mid infrared emission spectroscopy of carbon plasma.

    PubMed

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-05

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  8. Mid infrared emission spectroscopy of carbon plasma

    NASA Astrophysics Data System (ADS)

    Nemes, Laszlo; Brown, Ei Ei; Yang, Clayton S.-C.; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6 μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10 μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5 μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  9. Quantitative Analysis of Salidroside and p-Tyrosol in the Traditional Tibetan Medicine Rhodiola crenulata by Fourier Transform Near-Infrared Spectroscopy.

    PubMed

    Li, Tao; He, Xuan

    2016-01-01

    A nondestructive, efficient, and rapid method for quantitative analysis of two bioactive components (salidroside and p-tyrosol) in Rhodiola crenulata, a traditional Tibetan medicine, by Fourier transform near-infrared (FT-NIR) spectroscopy was developed. Near-infrared diffuse reflectance spectra in the range of 4000 to 10000 cm(-1) of 50 samples of Rhodiola crenulata with different sources were measured. To get a satisfying result, partial least squares regression (PLSR) was used to establish NIR models for salidroside and p-tyrosol content determination. Different preprocessing methods, including smoothing, taking a second derivative, standard normal variate (SNV) transformation, and multiplicative scatter correction (MSC), were investigated to improve the model accuracy of PLSR. The performance of the two final models (salidroside model and p-tyrosol model) was evaluated by factors such as the values of correlation coefficient (R(2)), root mean square error of prediction (RMSEP), and root mean square error of calibration (RMSEC). The optimal results of the PLSR model of salidroside showed that R(2), RMSEP and RMSEC were 0.99572, 0.0294 and 0.0309, respectively. Meanwhile, in the optimization model of p-tyrosol, the R(2), RMSEP and RMSEC were 0.99714, 0.0154 and 0.0168, respectively. These results demonstrate that FT-NIR spectroscopy not only provides a precise, rapid method for quantitative analysis of major effective constituents in Rhodiola crenulata, but can also be applied to the quality control of Rhodiola crenulata.

  10. Critical Review Upon the Role and Potential of Fluorescence and Near-Infrared Imaging and Absorption Spectroscopy in Cancer Related Cells, Serum, Saliva, Urine and Tissue Analysis.

    PubMed

    Huck, Christian W; Ozaki, Yukihiro; Huck-Pezzei, Verena A

    2016-01-01

    During the last years, non-invasive or minimally invasive diagnostic tools in cancer diagnostics have become more important. Many fluorescence spectroscopic methodologies have been established for nearly all different kinds of cancer. The reason therefore is its high sensitivity, low amount of sample required, short testing time, and the suitability for in situ testing. The potential influence factors for cancer diagnostics and the subsequent suitability of the method to different applications are well described. Near-Infrared spectroscopy (NIRS) is based on differences of endogenous chromophores between cancer and normal tissues using either oxyhaemoglobin or deoxy-haemoglobin, lipid or water bands, or a combination of two or more of these diagnostic markers. These marker bands are known to provide the fundamental for the diagnosis of several cancers and the spectroscopic setup can be applied for the analysis of cells, urine and tissue. For the preparation of this review the literature published during the last fifteen years has been taken into consideration. It will provide an overview on the importance of the fluorescence and NIRS tools in cancer analysis giving hints about how these techniques can play a crucial role in cancer diagnosis, treatment decisions and therapy. The two techniques, fluorescence and near-infrared spectroscopy (NIRS) are faced to each other and individual advantages and/or drawbacks are discussed. Finally, it will be taken into consideration; how the synergistic combination of different approaches can give additional information related to development and progression stages of cancer.

  11. Infrared spectroscopy of wafer-scale graphene.

    PubMed

    Yan, Hugen; Xia, Fengnian; Zhu, Wenjuan; Freitag, Marcus; Dimitrakopoulos, Christos; Bol, Ageeth A; Tulevski, George; Avouris, Phaedon

    2011-12-27

    We report spectroscopy results from the mid- to far-infrared on wafer-scale graphene, grown either epitaxially on silicon carbide or by chemical vapor deposition. The free carrier absorption (Drude peak) is simultaneously obtained with the universal optical conductivity (due to interband transitions) and the wavelength at which Pauli blocking occurs due to band filling. From these, the graphene layer number, doping level, sheet resistivity, carrier mobility, and scattering rate can be inferred. The mid-IR absorption of epitaxial two-layer graphene shows a less pronounced peak at 0.37 ± 0.02 eV compared to that in exfoliated bilayer graphene. In heavily chemically doped single-layer graphene, a record high transmission reduction due to free carriers approaching 40% at 250 μm (40 cm(-1)) is measured in this atomically thin material, supporting the great potential of graphene in far-infrared and terahertz optoelectronics.

  12. Analysis of maize ( Zea mays ) kernel density and volume using microcomputed tomography and single-kernel near-infrared spectroscopy.

    PubMed

    Gustin, Jeffery L; Jackson, Sean; Williams, Chekeria; Patel, Anokhee; Armstrong, Paul; Peter, Gary F; Settles, A Mark

    2013-11-20

    Maize kernel density affects milling quality of the grain. Kernel density of bulk samples can be predicted by near-infrared reflectance (NIR) spectroscopy, but no accurate method to measure individual kernel density has been reported. This study demonstrates that individual kernel density and volume are accurately measured using X-ray microcomputed tomography (μCT). Kernel density was significantly correlated with kernel volume, air space within the kernel, and protein content. Embryo density and volume did not influence overall kernel density. Partial least-squares (PLS) regression of μCT traits with single-kernel NIR spectra gave stable predictive models for kernel density (R(2) = 0.78, SEP = 0.034 g/cm(3)) and volume (R(2) = 0.86, SEP = 2.88 cm(3)). Density and volume predictions were accurate for data collected over 10 months based on kernel weights calculated from predicted density and volume (R(2) = 0.83, SEP = 24.78 mg). Kernel density was significantly correlated with bulk test weight (r = 0.80), suggesting that selection of dense kernels can translate to improved agronomic performance.

  13. Application of visible and near infrared spectroscopy for rapid analysis of chrysin and galangin in Chinese propolis.

    PubMed

    Nie, Pengcheng; Xia, Zhengyan; Sun, Da-Wen; He, Yong

    2013-08-13

    A novel method for the rapid determination of chrysin and galangin in Chinese propolis of poplar origin by means of visible and near infrared spectroscopy (Vis-NIR) was developed. Spectral data of 114 Chinese propolis samples were acquired in the 325 to 1,075 nm wavelength range using a Vis-NIR spectroradiometer. The reference values of chrysin and galangin of the samples were determined by high performance liquid chromatography (HPLC). Partial least squares (PLS) models were established using the spectra analyzed by different preprocessing methods. The effective wavelengths were selected by successive projections algorithm (SPA) and employed as the inputs of PLS, back propagation-artificial neural networks (BP-ANN), multiple linear regression (MLR) and least square-support vector machine (LS-SVM) models. The best results were achieved by SPA-BP-ANN models established with the Savitzky-Golay smoothing (SG) preprocessed spectra, where the r and RMSEP were 0.9823 and 1.5239 for galangin determination and 0.9668 and 2.4841 for chrysin determination, respectively. The results show that Vis-NIR demosntrates powerful capability for the rapid determination of chrysin and galangin contents in Chinese propolis.

  14. Detection of Endolithes Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumas, S.; Dutil, Y.; Joncas, G.

    2009-12-01

    On Earth, the Dry Valleys of Antarctica provide the closest martian-like environment for the study of extremophiles. Colonies of bacterias are protected from the freezing temperatures, the drought and UV light. They represent almost half of the biomass of those regions. Due to their resilience, endolithes are one possible model of martian biota. We propose to use infrared spectroscopy to remotely detect those colonies even if there is no obvious sign of their presence. This remote sensing approach reduces the risk of contamination or damage to the samples.

  15. Analysis and identification of irradiated Spirulina powder by a three-step infrared macro-fingerprint spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hai Jing; Xu, Chang Hua; Zhou, Qun; Wang, Feng; Li, Wei Ming; Ha, Yi Ming; Sun, Su Qin

    2013-04-01

    A three-step infrared (IR) macro-fingerprint method combining conventional IR spectra, and the secondary derivative spectra with two-dimensional infrared correlation spectroscopy (2D-IR), was developed to analyze Spirulina powder before and after gamma irradiation. In the IR spectra, most of the absorption peaks of samples irradiated at 1, 2.7, 6, and 10.4 kGy had lower intensities than the non-irradiated ones, whereas peaks at 1152, 1078, and 1051 cm-1 were slightly enhanced with irradiation at 2.7, 6, and 10.4 kGy. Their second derivative spectra amplified the differences and revealed that irradiation affected the C=O band of carboxylic acid and esters, and the N-H band of proteins. The peaks at 1746 and 1741 cm-1, and those at 1730 and 1725 cm-1 became two broad peaks. Meanwhile, the three sharp peaks at 1548 cm-1, 1544 cm-1 and 1536 cm-1 changed to two broad peaks at around 1547 and 1534 cm-1 after irradiation at doses higher than 1 kGy. The characteristic IR bands from 1700 cm-1 to 1600 cm-1, which represent the C=O band in proteins, also have different shapes and intensities after irradiation. The finding indicated that irradiation affected the secondary structures of protein which was confirmed by curve fitting results. During the process of increasing the temperature from 50 to 210 °C, the ratio of amide I to II in absorption intensities in the 2D-IR spectra of the irradiated samples varied with different response for different samples. Saccharides in Spirulina powder had a higher thermostability than proteins, but the autopeaks of irradiated samples did show differences from the non-irradiated sample. The intensity of autopeaks at 1012 cm-1 increased dramatically in the irradiated samples while that of peaks at 1053, 1071, and 1083 cm-1 decreased after irradiation. Based on the three-step IR macro-fingerprint method, irradiated Spirulina powder samples were successfully and fast identified and discriminated.

  16. Tracking the curing process of automotive paint by moving-window two-dimensional infrared correlation spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Chen, Jian-bo; Sun, Su-qin; Yu, Jing; Zhou, Qun

    2014-07-01

    Moving-window two-dimensional correlation spectroscopy (MW2DCOS) and principal component analysis (PCA) were combined to interpret the time serial infrared spectra. The curing process of an automotive paint sample was tracked by attenuated total reflection Fourier transform infrared spectroscopy. Score plots of the first and second principal components showed that the curing process contained three stages. Meanwhile, the loading spectra indicated that the solvent was a mixture of aromatic compounds. Absorption peaks which changed significantly in each stage were revealed by auto-peak MW2DCOS. Furthermore, point-line and point-point MW2DCOS demonstrated the time-resolved relationship between absorption peaks from toluene, xylene and resin. In summary, the evaporation of toluene was the first stage of the curing process of this automotive paint sample. Next, the mixture of o-xylene, m-xylene and p-xylene began to evaporate in the second stage. After the evaporation of the solvent, the solid paint membrane was formed. For the interpretation of the time serial spectra, PCA is useful to estimate the number of significant chemical components and to find out the important turning points of the process, while MW2DCOS can show the changes of the spectral peaks and the relationship between them step by step. The combination of PCA and MW2DCOS is very interesting to extract and display the time-resolved information in the time serial spectra.

  17. Infrared spectroscopy of mass-selected carbocations

    SciTech Connect

    Duncan, Michael A.

    2015-01-22

    Small carbocations are of longstanding interest in astrophysics, but there are few measurements of their infrared spectroscopy in the gas phase at low temperature. There are fewer-still measurements of spectra across the full range of IR frequencies useful to obtain an IR signature of these ions to detect them in space. We have developed a pulsed-discharge supersonic nozzle ion source producing high densities of small carbocations at low temperatures (50–70K). We employ mass-selected photodissociation spectroscopy and the method of rare gas “tagging”, together with new broadly tunable infrared OPO lasers, to obtain IR spectra for a variety of small carbocations including C{sub 2}H{sub 3}{sup +}, C{sub 3}H{sub 3}{sup +}, C{sub 3}H{sub 5}{sup +}, protonated benzene and protonated naphthalene. Spectra in the frequency range of 600–4500 cm{sup −1} provide new IR data for these ions and evidence for the presence of co-existing isomeric structures (e.g., C{sub 3}H{sub 3}{sup +} is present as both cyclopropenyl and propargyl). Protonated naphthalene has sharp bands at 6.2, 7.7 and 8.6 microns matching prominent features in the UIR spectra.

  18. Exploring Geographical Differentiation of the Hoelen Medicinal Mushroom, Wolfiporia extensa (Agaricomycetes), Using Fourier-Transform Infrared Spectroscopy Combined with Multivariate Analysis.

    PubMed

    Li, Yan; Zhang, Ji; Zhao, Yanli; Liu, Honggao; Wang, Yuanzhong; Jin, Hang

    2016-01-01

    In this study the geographical differentiation of dried sclerotia of the medicinal mushroom Wolfiporia extensa, obtained from different regions in Yunnan Province, China, was explored using Fourier-transform infrared (FT-IR) spectroscopy coupled with multivariate data analysis. The FT-IR spectra of 97 samples were obtained for wave numbers ranging from 4000 to 400 cm-1. Then, the fingerprint region of 1800-600 cm-1 of the FT-IR spectrum, rather than the full spectrum, was analyzed. Different pretreatments were applied on the spectra, and a discriminant analysis model based on the Mahalanobis distance was developed to select an optimal pretreatment combination. Two unsupervised pattern recognition procedures- principal component analysis and hierarchical cluster analysis-were applied to enhance the authenticity of discrimination of the specimens. The results showed that excellent classification could be obtained after optimizing spectral pretreatment. The tested samples were successfully discriminated according to their geographical locations. The chemical properties of dried sclerotia of W. extensa were clearly dependent on the mushroom's geographical origins. Furthermore, an interesting finding implied that the elevations of collection areas may have effects on the chemical components of wild W. extensa sclerotia. Overall, this study highlights the feasibility of FT-IR spectroscopy combined with multivariate data analysis in particular for exploring the distinction of different regional W. extensa sclerotia samples. This research could also serve as a basis for the exploitation and utilization of medicinal mushrooms.

  19. Simple, fast, and accurate methodology for quantitative analysis using Fourier transform infrared spectroscopy, with bio-hybrid fuel cell examples.

    PubMed

    Mackie, David M; Jahnke, Justin P; Benyamin, Marcus S; Sumner, James J

    2016-01-01

    The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR) instruments have evolved until they are now more complicated than necessary for many users' purposes. We present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique across disciplines by occasional users.•Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust.•Relies on component spectra, minimization of errors, and local adaptive mesh refinement.•Tested successfully on real mixtures of up to nine components. We show that our methodology is robust to challenging experimental conditions such as similar substances, component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we analyze biological, chemical, and physical aspects of bio-hybrid fuel cells.

  20. Secondary structure components and properties of the melibiose permease from Escherichia coli: a fourier transform infrared spectroscopy analysis.

    PubMed Central

    Dave, N; Troullier, A; Mus-Veteau, I; Duñach, M; Leblanc, G; Padrós, E

    2000-01-01

    The structure of the melibiose permease from Escherichia coli has been investigated by Fourier transform infrared spectroscopy, using the purified transporter either in the solubilized state or reconstituted in E. coli lipids. In both instances, the spectra suggest that the permease secondary structure is dominated by alpha-helical components (up to 50%) and contains beta-structure (20%) and additional components assigned to turns, 3(10) helix, and nonordered structures (30%). Two distinct and strong absorption bands are recorded at 1660 and 1653 cm(-1), i.e., in the usual range of absorption of helices of membrane proteins. Moreover, conditions that preserve the transporter functionality (reconstitution in liposomes or solubilization with dodecyl maltoside) make possible the detection of two separate alpha-helical bands of comparable intensity. In contrast, a single intense band, centered at approximately 1656 cm(-1), is recorded from the inactive permease in Triton X-100, or a merged and broader signal is recorded after the solubilized protein is heated in dodecyl maltoside. It is suggested that in the functional permease, distinct signals at 1660 and 1653 cm(-1) arise from two different populations of alpha-helical domains. Furthermore, the sodium- and/or melibiose-induced changes in amide I line shape, and in particular, in the relative amplitudes of the 1660 and 1653 cm(-1) bands, indicate that the secondary structure is modified during the early step of sugar transport. Finally, the observation that approximately 80% of the backbone amide protons can be exchanged suggests high conformational flexibility and/or a large accessibility of the membrane domains to the aqueous solvent. PMID:10920008

  1. Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging.

    PubMed

    Mansouri, Chemseddine; L'huillier, Jean-Pierre; Kashou, Nasser H; Humeau, Anne

    2010-05-01

    Theoretical analysis of spatial distribution of near-infrared light propagation in head tissues is very important in brain function measurement, since it is impossible to measure the effective optical path length of the detected signal or the effect of optical fibre arrangement on the regions of measurement or its sensitivity. In this study a realistic head model generated from structure data from magnetic resonance imaging (MRI) was introduced into a three-dimensional Monte Carlo code and the sensitivity of functional near-infrared measurement was analysed. The effects of the distance between source and detector, and of the optical properties of the probed tissues, on the sensitivity of the optical measurement to deep layers of the adult head were investigated. The spatial sensitivity profiles of photons in the head, the so-called banana shape, and the partial mean optical path lengths in the skin-scalp and brain tissues were calculated, so that the contribution of different parts of the head to near-infrared spectroscopy signals could be examined. It was shown that the signal detected in brain function measurements was greatly affected by the heterogeneity of the head tissue and its scattering properties, particularly for the shorter interfibre distances.

  2. [Identification of pearl powder using microscopic infrared reflectance spectroscopy].

    PubMed

    Zhang, Xuan; Hu, Chao; Yan, Yan; Yang, Hai-Feng; Li, Jun-Fang; Bai, Hua; Xi, Guang-Cheng; Liao, Jie

    2014-09-01

    Pearl is a precious ornament and traditional Chinese medicine, which application history in China is more than 2000 years. It is well known that the chemical ingredients of shell and pearl are very similar, which all of them including calcium carbonate and various amino acids. Generally, shell powders also can be used as medicine; however, its medicinal value is much lower than that of pearl powders. Due to the feature similarity between pearl powders and shell powders, the distinguishment of them by detecting chemical composition and morphology is very difficult. It should be noted that shell powders have been often posing as pearl powders in markets, which seriously infringes the interests of consumers. Identification of pearl powder was investigated by microscopic infrared reflectance spectroscopy, and pearl powder as well as shell powder was calcined at different temperatures for different time before infrared reflectance spectroscopy analysis. The experimental results indicated that when calcined at 400 °C for 30 minutes under atmospheric pressure, aragonite in pearl powder partly transformed into calcite, while aragonite in shell powder completely transformed into calcite. At the same time, the difference in phase transition between the pearl powders 'and shell powders can be easily detected by using the microscopic infrared reflectance spectroscopy. Therefore, based on the difference in their phase transition process, infrared reflectance spectroscopy can be used to identify phase transformation differences between pearl powder and shell powder. It's more meaningfully that the proposed infrared reflectance spec- troscopy method was also investigated for the applicability to other common counterfeits, such as oyster shell powders and abalone shell powders, and the results show that the method can be a simple, efficiently and accurately method for identification of pearl powder.

  3. Numerous applications of fiber optic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy for subsurface structural analysis

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr

    1999-10-01

    A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.

  4. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    NASA Technical Reports Server (NTRS)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  5. Soil type recognition as improved by genetic algorithm-based variable selection using near infrared spectroscopy and partial least squares discriminant analysis

    PubMed Central

    Xie, Hongtu; Zhao, Jinsong; Wang, Qiubing; Sui, Yueyu; Wang, Jingkuan; Yang, Xueming; Zhang, Xudong; Liang, Chao

    2015-01-01

    Soil types have traditionally been determined by soil physical and chemical properties, diagnostic horizons and pedogenic processes based on a given classification system. This is a laborious and time consuming process. Near infrared (NIR) spectroscopy can comprehensively characterize soil properties, and may provide a viable alternative method for soil type recognition. Here, we presented a partial least squares discriminant analysis (PLSDA) method based on the NIR spectra for the accurate recognition of the types of 230 soil samples collected from farmland topsoils (0–10 cm), representing 5 different soil classes (Albic Luvisols, Haplic Luvisols, Chernozems, Eutric Cambisols and Phaeozems) in northeast China. We found that the PLSDA had an internal validation accuracy of 89% and external validation accuracy of 83% on average, while variable selection with the genetic algorithm (GA and GA-PLSDA) improved this to 92% and 93%. Our results indicate that the GA variable selection technique can significantly improve the accuracy rate of soil type recognition using NIR spectroscopy, suggesting that the proposed methodology is a promising alternative for recognizing soil types using NIR spectroscopy. PMID:26086823

  6. On the structure of human hair melanins from an infrared spectroscopy analysis of their interactions with Cu 2+ ions

    NASA Astrophysics Data System (ADS)

    Bilińska, Barbara

    2001-10-01

    Melanins were isolated from dark and red human hair and complexed with copper ions at various pH values in a complexing medium. IR spectra of melanins and their Cu 2+-complexes for pellets with KBr were obtained. The IR spectra indicate that Cu 2+ ions bound to melanins are fixed by different carboxyl and hydroxyl (phenolic and/or alcoholic) groups in the macromolecule. From these results it is concluded that, generally, melanin carboxyl groups are responsible for interactions of metal ions with the melanin molecule. Complexes of melanins isolated from dark and red human hair show structural differences when analysed by IR spectroscopy. Conclusions from these investigations assist in the differentiation of structures of analysed hair melanins. IR spectral analysis of melanin samples and their complexes suggest that melanin samples obtained from red hair may contain eumelanin.

  7. Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis

    NASA Astrophysics Data System (ADS)

    de Siqueira e Oliveira, Fernanda SantAna; Giana, Hector Enrique; Silveira, Landulfo

    2012-10-01

    A method, based on Raman spectroscopy, for identification of different microorganisms involved in bacterial urinary tract infections has been proposed. Spectra were collected from different bacterial colonies (Gram-negative: Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Enterobacter cloacae, and Gram-positive: Staphylococcus aureus and Enterococcus spp.), grown on culture medium (agar), using a Raman spectrometer with a fiber Raman probe (830 nm). Colonies were scraped from the agar surface and placed on an aluminum foil for Raman measurements. After preprocessing, spectra were submitted to a principal component analysis and Mahalanobis distance (PCA/MD) discrimination algorithm. We found that the mean Raman spectra of different bacterial species show similar bands, and S. aureus was well characterized by strong bands related to carotenoids. PCA/MD could discriminate Gram-positive bacteria with sensitivity and specificity of 100% and Gram-negative bacteria with sensitivity ranging from 58 to 88% and specificity ranging from 87% to 99%.

  8. Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis

    NASA Astrophysics Data System (ADS)

    de Siqueira e Oliveira, Fernanda S.; Giana, Hector E.; Silveira, Landulfo, Jr.

    2012-03-01

    It has been proposed a method based on Raman spectroscopy for identification of different microorganisms involved in bacterial urinary tract infections. Spectra were collected from different bacterial colonies (Gram negative: E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, E. cloacae and Gram positive: S. aureus and Enterococcus sp.), grown in culture medium (Agar), using a Raman spectrometer with a fiber Raman probe (830 nm). Colonies were scraped from Agar surface placed in an aluminum foil for Raman measurements. After pre-processing, spectra were submitted to a Principal Component Analysis and Mahalanobis distance (PCA/MD) discrimination algorithm. It has been found that the mean Raman spectra of different bacterial species show similar bands, being the S. aureus well characterized by strong bands related to carotenoids. PCA/MD could discriminate Gram positive bacteria with sensitivity and specificity of 100% and Gram negative bacteria with good sensitivity and high specificity.

  9. Analysis of Hypodermic Needles and Syringes for the Presence of Blood and Polydimethylsiloxane (Silicone) Utilizing Microchemical Tests and Infrared Spectroscopy.

    PubMed

    Crowe, John B; Lanzarotta, Adam; Witkowski, Mark R; Andria, Sara E

    2015-07-01

    Suspect hypodermic needles and syringes were seized from an unlicensed individual who was allegedly injecting patients with silicone (polydimethylsiloxane [PDMS]) for cosmetic enhancement. Since control syringe barrels and needles often contain an interfering PDMS lubricant, a risk for false positives of foreign PDMS exists. The focus of this report was to minimize this risk and determine a quick and reliable test for the presence of blood in PDMS matrices. Using ATR-FT-IR spectroscopy, the risk for false-positive identification of foreign PDMS was reduced by (i) overfilling the sampling aperture to prevent spectral distortions and (ii) sampling a region of the suspect syringe/needle assembly where manufacturer-applied PDMS is not typically located. Analysis for blood indicated that the Teichman microchemical test was effective for detecting blood in the presence of PDMS. Overall, detecting PDMS established intent and detecting blood established that the needle containing the PDMS had been used for injection.

  10. [Infrared spectroscopy and XRD studies of coral fossils].

    PubMed

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  11. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.; Casella, Amanda J.; Peterman, Dean; Bryan, Samuel A.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  12. Rapid detection and identification of Pseudomonas aeruginosa and Escherichia coli as pure and mixed cultures in bottled drinking water using fourier transform infrared spectroscopy and multivariate analysis.

    PubMed

    Al-Qadiri, Hamzah M; Al-Holy, Murad A; Lin, Mengshi; Alami, Nivin I; Cavinato, Anna G; Rasco, Barbara A

    2006-08-09

    Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis were used to identify Pseudomonas aeruginosa and Escherichia coli ATCC 25922 inoculated into bottled drinking water. Three inoculation treatments were examined: (i) E. coli ATCC 25922 (N = 3), (ii) P. aeruginosa (N = 3), and (iii) a 1:1 (v:v) mixed culture of both P. aeruginosa and E. coli ATCC 25922 (N = 3). The control treatment was noninoculated drinking water (N = 3). Second derivative transformation and loadings plots over the range of 1800-900 cm(-1) indicate variations in the following bacterial constituents: amide I band ca. 1650 cm(-1), amide II band ca. 1540 cm(-1), phosphodiester backbone of nucleic acids ca. 1242 and 1080 cm(-1), and polysaccharide compounds ca. 1050-950 cm(-1). Cells with the different treatments were clearly segregated from a mean centered principal component analysis. By using soft independent modeling of class analogy analysis, spectra from a given treatment could be correctly classified 83-88% of the time. These results suggest that FT-IR spectroscopy can determine whether a pure culture is present, in addition to confirming that this method can discriminate between closely related bacteria based on differences in biochemical and phenotypic characteristics that can be detected in this spectral region.

  13. Surface Inspection using fourier transform infrared spectroscopy

    SciTech Connect

    Powell, G.L.; Smyrl, N.R.; Williams, D.M.; Meyers, H.M. III; Barber, T.E.; Marrero-Rivera, M.

    1994-08-08

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces. Detection limits under the best of conditions are in the subnanometer range (i.e., near absolute cleanliness), excellent performance is obtained in the submicrometer range, and useful performance may exist for films tens of microns thick. Identifying and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and gritblasted 7075 aluminum alloy and D6AC steel are described. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques for quantitatively applying oils to metals, subsequently verifying the application, and nonlinear relationships between reflectance and the quantity of oil are discussed.

  14. Infrared spectroscopy of different phosphates structures.

    PubMed

    Jastrzębski, W; Sitarz, M; Rokita, M; Bułat, K

    2011-08-15

    Infrared (IR) spectroscopic studies of mineral and synthetic phosphates have been presented. The interpretation of the spectra has been preceded by the isolated [PO(4)](3-) tetrahedron spectra analyse. The K(3)PO(4) saturated aqueous solution was measured in the special cell for liquids. The obtained IR results have been compared with the theoretical number of IR-active modes. The number and positions of the bands due to P-O vibrations have been established. The phase composition of the phosphates has been determined using XRD and IR spectroscopy methods. The influence of non-tetrahedral cations on the shape of the spectra and the positions of bands has been analysed and the crystalline field splitting effect has been discussed.

  15. Near-infrared spectroscopy combined with equidistant combination partial least squares applied to multi-index analysis of corn

    NASA Astrophysics Data System (ADS)

    Lyu, Ning; Chen, Jiemei; Pan, Tao; Yao, Lijun; Han, Yun; Yu, Jing

    2016-05-01

    Development of small, dedicated, reagentless, and low-cost spectrometer has broad application prospects in large-scale agriculture. An appropriate wavelength selection method is a key, albeit difficult, technical aspect. A novel wavelength selection method, named equidistant combination partial least squares (EC-PLS), was applied for wavenumber selection for near-infrared analysis of crude protein, moisture, and crude fat in corn. Based on the EC-PLS, a model set that includes various models equivalent to the optimal model was proposed to select independent and joint-analyses models. The independent analysis models for crude protein, moisture, and crude fat contained only 16, 12, and 22 wavenumbers, whereas the joint-analyses model for the three indicators contained only 27 wavenumbers. Random validation samples excluded from the modeling process were used to validate the four selected models. For the independent analysis models, the validation root mean square errors (V_SEP), validation correlation coefficients (V_RP), and relative validation root mean square errors (V_RSEP) of prediction were 0.271%, 0.946, and 2.8% for crude protein, 0.275%, 0.936, and 2.6% for moisture, and 0.183%, 0.924, and 4.5% for crude fat, respectively. For the joint-analyses model, the V_SEP, V_RP, and V_RSEP were 0.302%, 0.934, and 3.2% for crude protein, 0.280%, 0.935, and 2.7% for moisture, and 0.228%, 0.910, and 5.6% for crude fat, respectively. The results indicated good validation effects and low complexity. Thus, the established models were simple and efficient. The proposed wavenumber selection method provided also valuable reference for designing small dedicated spectrometer for corn. Moreover, the methodological framework and optimization algorithm are universal, such that they can be applied to other fields.

  16. Design and Signature Analysis of Remote Trace-Gas Identification Methodology Based on Infrared-Terahertz Double-Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tanner, Elizabeth A.; Phillips, Dane J.; Persons, Christopher M.; De Lucia, Frank C.; Everitt, Henry O.

    2014-11-01

    The practicality of a newly proposed infrared-terahertz (IR-THz) double-resonance (DR) spectroscopic technique for remote trace-gas identification is explored. The strength of the DR signatures depends on known molecular parameters from which a combination of pump-probe transitions may be identified to recognize a specific analyte. Atmospheric pressure broadening of the IR and THz trace-gas spectra relaxes the stringent pump coincidence requirement, allowing many DR signatures to be excited, some of which occur in the favorable atmospheric transmission windows below 500 GHz. By designing the DR spectrometer and performing a detailed signal analysis, the pump-probe power requirements for detecting trace amounts of methyl fluoride, methyl chloride, or methyl bromide may be estimated for distances up to 1 km. The strength of the DR signature increases linearly with pump intensity but only as the square root of the probe power because the received signal is in the Townes noise limit. The concept of a specificity matrix is introduced and used to quantify the recognition specificity and calculate the probability of false positive detection of an interferent.

  17. Combination of micro-dialysis and infrared spectroscopy: a multianalyte assay for accurate biofluid analysis and patient monitoring

    NASA Astrophysics Data System (ADS)

    Vahlsing, Thorsten; Delbeck, Sven; Budde, Janpeter; Ihrig, Dieter; Heise, H. Michael

    2016-03-01

    Micro-dialysis can be used for continuously harvesting body fluids, while a multi-component analysis of the dialysates by infrared spectrometry offers splendid opportunities for monitoring substrates and metabolites such as glucose, lactate and others small enough to penetrate the semi-permeable dialysis membranes. However, a drawback of this process are variable recovery rates, which can be observed especially for subcutaneously implanted catheters in human subjects. Isotonic perfusates were investigated with acetate and mannitol as recovery markers for the dialysis of human serum at 37°C to mimic in vivo patient monitoring. The latter non-ionic substance has been suggested for application when other ionic substances such as bicarbonate or pH are also to be determined. Simultaneously for acetate and mannitol, the depletion of the marker substances from the perfusates using different micro-dialysis devices was investigated under various flow-rates. Relationships between relative dialysate marker concentrations and glucose recovery rates were determined based on multivariate calibrations. For quantification, classical least squares with reference spectra for modelling the serum dialysates was used, rendering a basis for reliable blood glucose and lactate measurements.

  18. Qualitative and simultaneous quantitative analysis of cimetidine polymorphs by ultraviolet-visible and shortwave near-infrared diffuse reflectance spectroscopy and multivariate calibration models.

    PubMed

    Feng, Yuyan; Li, Xiangling; Xu, Kailin; Zou, Huayu; Li, Hui; Liang, Bing

    2015-02-01

    The object of the present study was to investigate the feasibility of applying ultraviolet-visible and shortwave near-infrared diffuse reflectance spectroscopy (UV-vis-SWNIR DRS) coupled with chemometrics in qualitative and simultaneous quantitative analysis of drug polymorphs, using cimetidine as a model drug. Three polymorphic forms (A, B and D) and a mixed crystal (M1) of cimetidine, obtained by preparation under different crystallization conditions, were characterized by microscopy, X-ray powder diffraction (XRPD) and infrared spectroscopy (IR). The discriminant models of four forms (A, B, D and M1) were established by discriminant partial least squares (PLS-DA) using different pretreated spectra. The R and RMSEP of samples in the prediction set by discriminant model with original spectra were 0.9959 and 0.1004. Among the quantitative models of binary mixtures (A and D) established by partial least squares (PLS) and least squares-support vector machine (LS-SVM) with different pretreated spectra, the LS-SVM models based on original and MSC spectra had better prediction effect with a R of 1.0000 and a RMSEP of 0.0134 for form A, and a R of 1.0000 and a RMSEP of 0.0024 for form D. For ternary mixtures, the established PLS quantitative models based on normalized spectra had relatively better prediction effect for forms A, B and D with R of 0.9901, 0.9820 and 0.9794 and RMSEP of 0.0471, 0.0529 and 0.0594, respectively. This research indicated that UV-vis-SWNIR DRS can be used as a simple, rapid, nondestructive qualitative and quantitative method for the analysis of drug polymorphs.

  19. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhou, Qun; Zhang, Gui-jun; Sun, Su-qin; Guo, Yi-zhen

    2016-11-01

    As a kind of expensive perfume and valuable herb, the commercial Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy and two-dimensional (2D) correlation analysis are employed to establish a simple and quick identification method for the authentic and adulterated ALR. In the conventional infrared spectra, the standard ALR has a strong peak at 1658 cm-1 referring to the conjugated carbonyl of resin, while this peak is absent in the adulterated samples. The position, intensity, and shape of the auto-peaks and cross-peaks of the authentic and adulterated ALR are much different in the synchronous 2D correlation spectra with thermal perturbation. In the range of 1700-1500 cm-1, the standard ALR has four obvious auto-peaks, while the strongest one is at 1659 cm-1. The adulterated sample w-1 has three obvious auto-peaks and the strongest one is at 1647 cm-1. The adulterated sample w-2 has three obvious auto-peaks and the strongest one is at 1519 cm-1. The adulterated sample w-3 has four obvious auto-peaks and the strongest one is at 1690 cm-1. The above auto-peaks confirm that the standard ALR contains a certain content of resin compounds, while the three counterfeits contain little or different resins. The results show the potential of FT-IR spectroscopy and 2D correlation analysis in the simple and quick identification of authentic and adulterated ALR.

  20. [Progress in noninvasive biochemical examination by near infrared spectroscopy].

    PubMed

    Ding, Hai-quan; Lu, Qi-peng; Peng, Zhong-qi; Chen, Xing-dan

    2010-08-01

    In the early nineties of last century, great importance had been gradually attached to the potential of near-infrared spectroscopy (NIRS) in the human body noninvasive biochemical examination. However, the human body is extremely complex. Although research teams have made some achievements in experimental simulations and in-vitro analysis, there is still no substantive breakthrough in clinical application now. The present paper discusses the key problems which prevent NIRS from achieving human noninvasive clinical biochemical examination, such as weak signal, the interference of human tissue background and the problem of blood volume change. The thoughts of noninvasive biomedical examination using NIRS are divided into two categories in terms of analytical method, that is classical near-infrared analysis and issue background interference elimination analysis. This paper also introduces in detail the current status of the two categories in the world, and believes that the second category is more promising to be successful in clinical application under the existing conditions.

  1. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    NASA Technical Reports Server (NTRS)

    Huff, Tim; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. The technique is rapid, reproducible and usually non-invasive. With the appropriate accessories, the technique can be used to examine samples in either a solid, liquid or gas phase. Solid samples of varying sizes and shapes may be used, and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be examined. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Both aqueous and non-aqueous free-flowing solutions can be analyzed using appropriate IR techniques, as can viscous liquids such as heavy oils and greases. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  2. Optical & Infrared Spectroscopy of Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Tinetti, G.

    2010-10-01

    Two types of spectra can be measured from transiting extrasolar planets. The primary eclipse provides a transmission spectra of the exoplanet's limb as the planet passes in front of the star. These data probe the gas and particle composition of the atmosphere, as well as the atmospheric scale height. The secondary eclipse measures the emission of mainly the planet's dayside atmosphere from the planet plus star's emission minus the emission of star alone, when it eclipses the planet. These data probe the temperature and composition structure of the exoplanet. Only in the past 3 years, have infrared transmission and emission spectroscopy revealed the presence of the primary carbon and oxygen species (CH4, CO2, CO, and H2O). Efforts to constrain the abundances of these molecules are hindered by degenerate effects of the temperature and composition in the emission spectra. Transmission spectra, while less sensitive to the atmospheric temperatures, are difficult to interpret because the composition derived depends delicately on the assumed radius at a specified pressure level. This talk will discuss the correlations in the degenerate solutions that result from the radiative transfer analyses of both emission and transmission spectroscopy. The physical implications of these correlations are assessed in order to determine the temperature and composition structure of extrasolar planets, and their significance with respect to the exoplanet's chemistry and dynamics.

  3. A novel near-infrared spectroscopy and chemometrics method for rapid analysis of several chemical components and antioxidant activity of mint (Mentha haplocalyx Briq.) samples.

    PubMed

    Dong, Wenjiang; Ni, Yongnian; Kokot, Serge

    2014-01-01

    A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.

  4. Infrared spectroscopy analysis of mixed DPPC/fibrinogen layer behavior at the air/liquid interface under a continuous compression-expansion condition.

    PubMed

    Yin, Chia-Lin; Chang, Chien-Hsiang

    2006-07-18

    The mixed layer behavior of dipalmitoyl phosphatidylcholine (DPPC) with fibrinogen at continuously compressed-expanded air/liquid interfaces was analyzed in situ by infrared reflection-absorption spectroscopy (IRRAS). The reflectance-absorbance (RA) intensities and/or wavenumbers of nu(a)-CH2 and amide I bands for a mixed DPPC/fibrinogen layer at the interface were obtained directly by an infrared spectrometer with a monolayer/grazing angle accessory and a removable Langmuir trough. The nu(a)-CH2 RA intensity-area hysteresis curves of a DPPC monolayer indicate a significant loss of free DPPC molecules at the interface during the first compression stage, which is also supported by the corresponding nu(a)-CH2 wavenumber-area hysteresis curves. For a mixed DPPC/fibrinogen layer at the interface, the amide I RA intensity-area hysteresis curves suggest that the fibrinogen molecules were expelled from the interface upon compression, apparently because of the presence of insoluble DPPC molecules. The squeeze-out of fibrinogen evidently removed a pronounced amount of DPPC from the interface, as judged from the corresponding nu(a)-CH2 intensity and wavenumber data. Moreover, significant adsorption of fibrinogen was found during the subsequent interface expansion stage. With the in situ IRRAS analysis of the mixed layer behavior at the interface, the induced loss of DPPC by fibrinogen expulsion from the compressed interface and the dominant adsorption of fibrinogen to the expanded interface were clearly demonstrated.

  5. Development of infrared photothermal deflection spectroscopy (mirage effect) for analysis of condensed-phase aerosols collected in a micro-orifice uniform deposit impactor.

    PubMed

    Dada, Oluwatosin O; Bialkowski, Stephen E

    2008-12-01

    The potential of mid-infrared photothermal deflection spectrometry for aerosol analysis is demonstrated. Ammonium nitrate aerosols are deposited on a flat substrate using a micro-orifice uniform deposit impactor (MOUDI). Photothermal spectroscopy with optical beam deflection (mirage effect) is used to detect deposited aerosols. Photothermal deflection from aerosols is measured by using pulsed infrared laser light to heat up aerosols collected on the substrate. The deflection signal is obtained by measuring the position of a spot from a beam of light as it passes near the heated surface. The results indicate non-rotating impaction as the preferred MOUDI impaction method. Energy-dependent photothermal measurement shows a linear relationship between signal and laser intensity, and no loss of signal with time is observed. The detection limit from the signal-mass curve is 7.31 ng. For 30 minutes collection time and 30 L/min flow rate of the impactor, the limit of detection in terms of aerosol mass concentration is 0.65 microg m(-3).

  6. A novel method of carbon dioxide clumped isotope analysis with tunable infra-red laser direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2016-04-01

    Precise clumped isotopes analysis of carbon dioxide opens up new horizons of atmospheric and biogeochemical research. Recent advances in laser and spectroscopic techniques provides us necessary instrumentation to access extremely low sub-permill variations of multiply-substituted isotopologues. We present an advanced analysis method of carbon dioxide clumped isotopes using direct absorption spectroscopy. Our assessments predict the ultimate precision of the new method on the sub-permill level comparable to state of the art mass spectrometry. Among the most auspicious intrinsic properties of this method we highlight genuine Δ16O13C18O and Δ16O13C18O measurements without isobaric interference, measurement cycle duration of several minutes versus hours for mass spectrometric analysis, reduced sample size of ˜ 10 μmol and high flexibility, allowing us to perform in-situ measurements. The pilot version of the instrument is being developed in an international collaboration framework between Heidelberg University, Germany and Pierre and Marie Curie University, Paris, France. It employs two continuous interband quantum cascade lasers tuned at 4.439 μm and 4.329 μm to measure doubly ( 16O13C18O, 16O13C17O) and singly ( 16O12C16O, 16O13C16O, 16O12C17O, 16O12C18O) substituted isotopologues, respectively. Two identical Herriot cells are filled with dry pure CO2 sample and reference gas at working pressure of 1 - 10 mbar. Cells provide optical path lengths of ˜ 17 m for the laser tuned at doubly substituted isotopologues lines and use a single pass for the laser tuned at the stronger lines of singly substituted isotopologues. Light outside of the gas cells is coupled into optical fiber to avoid absorption by ambient air CO2. Simulations predict sub-permill precision at working pressure of 1 mbar and room temperature stabilised at the ±10 mK level. Our prime target is to apply the proposed method for continuous in-situ analysis of CO2. We are foreseeing potential

  7. Identifications of household's spores using mid infrared spectroscopy.

    PubMed

    Dixit, Vivechana; Cho, Byoung Kwan; Obendorf, Kay; Tewari, Jagdish

    2014-04-05

    Exposure to household fungi is very common both inside and outside the house and can cause health issues. The application of fourier transforms mid infrared spectroscopy (FTIR) as a screening technique for the detection and identification of household fungi was investigated. Early detection and identification of these household pathogens is very important and critical for their control. The current available methods for identification of fungi are time consuming, expensive and not very specific. Mid IR spectroscopy is a reliable and sensitive technique for the detection of spores. FTIR Spectra of four household fungi such as Aspergillus Ochraceus, Aspergillus Niger, Candida Glabrata and Penicillium Roguefortii were recorded in the mid infrared range from 600 to 4000cm(-1) using attenuated total reflectance (ATR) sampling accessory. Chemometrics analysis using principal component analysis (PCA), canonical variate analysis (CVA) and linear discriminant analysis (LDA) were performed to discriminate the fungi samples. Correspondence analysis (CA) was performed in order to visualize the relationship between different spores. An optimum classification of 100% was achieved for four different fungi. Results demonstrated that discriminant analysis of the FTIR spectra of fungi could be used for rapid detection of household fungi.

  8. Infrared spectroscopy and spectroscopic imaging in forensic science.

    PubMed

    Ewing, Andrew V; Kazarian, Sergei G

    2017-01-16

    Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.

  9. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    PubMed

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  10. Rapid discrimination and determination of antibiotics drugs in plastic syringes using near infrared spectroscopy with chemometric analysis: Application to amoxicillin and penicillin.

    PubMed

    Lê, Laetitia Minh Mai; Eveleigh, Luc; Hasnaoui, Ikram; Prognon, Patrice; Baillet-Guffroy, Arlette; Caudron, Eric

    2017-02-14

    The aim of this study was to investigate near infrared spectroscopy (NIRS) combined to chemometric analysis to discriminate and quantify three antibiotics by direct measurement in plastic syringes.Solutions of benzylpenicillin (PENI), amoxicillin (AMOX) and amoxicillin/clavulanic acid (AMOX/CLAV) were analyzed at therapeutic concentrations in glass vials and plastic syringes with NIR spectrometer by direct measurement. Chemometric analysis using partial least squares regression and discriminative analysis was conducted to develop qualitative and quantitative calibration models. Discrimination of the three antibiotics was optimal for concentrated solutions with 100% of accuracy. For quantitative analysis, the three antibiotics furnished a linear response (R²>0.9994) for concentrations ranging from 0.05 to 0.2 g/mL for AMOX, 0.1 to 1.0 MUI/mL for PENI and 0.005 to 0.05 g/mL for AMOX/CLAV with excellent repeatability (maximum 1.3%) and intermediate precision (maximum of 3.2%). Based on proposed models, 94.4% of analyzed AMOX syringes, 80.0% of AMOX/CLAV syringes and 85.7% of PENI syringes were compliant with a relative error including the limit of ± 15%.NIRS as rapid, non-invasive and non-destructive analytical method represents a potentially powerful tool to further develop for securing the drug administration circuit of healthcare institutions to ensure that patients receive the correct product at the right dose.

  11. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  12. Classification of broiler breast fillets according to storage and to freeze-thaw treatment using near infrared spectroscopy and multivariate analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/near-infrared (NIR) spectroscopy has shown potential for successfully classifying broiler breast fillets according to their texture properties. Freshness and shelf life are also important quality characteristics of boneless skinless chicken breast products in the marketplace. This study deal...

  13. Near-infrared spectroscopy of dark asteroids.

    PubMed

    Barucci, M A; Lazzarin, M; Owen, T; Barbieri, C; Fulchignoni, M

    1994-08-01

    Near-infrared (J, H and K bands) spectra of nine dark asteroids (chosen among a sample of supposed primitive objects between C and D classes) have been obtained at the Mauna Kea Observatory (Hawaii) with the 2.2-m telescope using KSPEC as spectrograph. The aim of this work was to search for evidence of the presence of organic materials in these objects as found in other planetary bodies as 5145 Pholus, and in some cometary nuclei. A careful analysis of the data has revealed flat or slightly redder spectra than the solar one for all observed asteroids. No evidence of distinct absorption features was found.

  14. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  15. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies

    PubMed Central

    Daood, Umer; Swee Heng, Chan; Neo Chiew Lian, Jennifer; Fawzy, Amr S

    2015-01-01

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite–resin, and sectioned into resin–dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration. PMID:25257880

  16. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies.

    PubMed

    Daood, Umer; Swee Heng, Chan; Neo Chiew Lian, Jennifer; Fawzy, Amr S

    2015-06-26

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite-resin, and sectioned into resin-dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration.

  17. An infrared spectroscopy method to detect ammonia in gastric juice.

    PubMed

    Giovannozzi, Andrea M; Pennecchi, Francesca; Muller, Paul; Balma Tivola, Paolo; Roncari, Silvia; Rossi, Andrea M

    2015-11-01

    Ammonia in gastric juice is considered a potential biomarker for Helicobacter pylori infection and as a factor contributing to gastric mucosal injury. High ammonia concentrations are also found in patients with chronic renal failure, peptic ulcer disease, and chronic gastritis. Rapid and specific methods for ammonia detection are urgently required by the medical community. Here we present a method to detect ammonia directly in gastric juice based on Fourier transform infrared spectroscopy. The ammonia dissolved in biological liquid samples as ammonium ion was released in air as a gas by the shifting of the pH equilibrium of the ammonium/ammonia reaction and was detected in line by a Fourier transform infrared spectroscopy system equipped with a gas cell for the quantification. The method developed provided high sensitivity and selectivity in ammonia detection both in pure standard solutions and in a simulated gastric juice matrix over the range of diagnostic concentrations tested. Preliminary analyses were also performed on real gastric juice samples from patients with gastric mucosal injury and with symptoms of H. pylori infection, and the results were in agreement with the clinicopathology information. The whole analysis, performed in less than 10 min, can be directly applied on the sample without extraction procedures and it ensures high specificity of detection because of the ammonia fingerprint absorption bands in the infrared spectrum. This method could be easily used with endoscopy instrumentation to provide information in real time and would enable the endoscopist to improve and integrate gastroscopic examinations.

  18. Infrared spectroscopy of anionic hydrated fluorobenzenes

    NASA Astrophysics Data System (ADS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-09-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C6F6-•H2O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules.

  19. Rotationally resolved infrared spectroscopy of adamantane

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm-1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of the SOLEIL synchrotron) as well as a classical globar. Adamantane is a spherical top molecule with tetrahedral symmetry (Td point group) and has no permanent dipole moment in its vibronic ground state. Of the 72 fundamental vibrational modes in adamantane, only 11 are IR active. Here we present rotationally resolved spectra for seven of them: ν30, ν28, ν27, ν26, ν25, ν24, and ν23. The typical rotational structure of spherical tops is observed and analyzed using the STDS software developed in the Dijon group, which provides the first accurate energy levels and rotational constants for seven fundamental modes. Rotational levels with quantum numbers as high as J = 107 have been identified and included in the fit leading to a typical standard deviation of about 10-3 cm-1.

  20. Near-infrared spectroscopy. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy`s (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program.

  1. Sampling and Analysis of Organophosphorus Compounds on a Thermoelectric Cold Plate Using Fourier Transform Infrared Emission Spectroscopy

    DTIC Science & Technology

    1990-07-01

    natural component of the earth’s atmosphere and is also a pollutant formed in urban air along with oxides of nitrogen and sulfur. Some organic...was applied neat. 3. RESULTS 3.1 Infrared Emission Measurements . Initially for the emission measurements , a thin film of the pesticide phorate was...tor personnel in conjunction with CRDEC scientists. This research addressed the sampling of organophosphorus compounds from the air and their detection

  2. Near-Infrared Spectroscopy and Geostatistical Analysis for Modeling Spatial Distribution of Analytical Constituents in Bulk Animal By-Product Protein Meals.

    PubMed

    Adame-Siles, José A; Fearn, Tom; Guerrero-Ginel, José E; Garrido-Varo, Ana; Maroto-Molina, Francisco; Pérez-Marín, Dolores

    2017-03-01

    Control and inspection operations within the context of safety and quality assessment of bulk foods and feeds are not only of particular importance, they are also demanding challenges, given the complexity of food/feed production systems and the variability of product properties. Existing methodologies have a variety of limitations, such as high costs of implementation per sample or shortcomings in early detection of potential threats for human/animal health or quality deviations. Therefore, new proposals are required for the analysis of raw materials in situ in a more efficient and cost-effective manner. For this purpose, a pilot laboratory study was performed on a set of bulk lots of animal by-product protein meals to introduce and test an approach based on near-infrared (NIR) spectroscopy and geostatistical analysis. Spectral data, provided by a fiber optic probe connected to a Fourier transform (FT) NIR spectrometer, were used to predict moisture and crude protein content at each sampling point. Variographic analysis was carried out for spatial structure characterization, while ordinary Kriging achieved continuous maps for those parameters. The results indicated that the methodology could be a first approximation to an approach that, properly complemented with the Theory of Sampling and supported by experimental validation in real-life conditions, would enhance efficiency and the decision-making process regarding safety and adulteration issues.

  3. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell; Amanda J. Casella; Dean R. Peterman; Samuel A. Bryan

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  4. Effective Identification of Low-Gliadin Wheat Lines by Near Infrared Spectroscopy (NIRS): Implications for the Development and Analysis of Foodstuffs Suitable for Celiac Patients

    PubMed Central

    García-Molina, María Dolores; García-Olmo, Juan; Barro, Francisco

    2016-01-01

    Scope The aim of this work was to assess the ability of Near Infrared Spectroscopy (NIRS) to distinguish wheat lines with low gliadin content, obtained by RNA interference (RNAi), from non-transgenic wheat lines. The discriminant analysis was performed using both whole grain and flour. The transgenic sample set included 409 samples for whole grain sorting and 414 samples for flour experiments, while the non-transgenic set consisted of 126 and 156 samples for whole grain and flour, respectively. Methods and Results Samples were scanned using a Foss-NIR Systems 6500 System II instrument. Discrimination models were developed using the entire spectral range (400–2500 nm) and ranges of 400–780 nm, 800–1098 nm and 1100–2500 nm, followed by analysis of means of partial least square (PLS). Two external validations were made, using samples from the years 2013 and 2014 and a minimum of 99% of the flour samples and 96% of the whole grain samples were classified correctly. Conclusions The results demonstrate the ability of NIRS to successfully discriminate between wheat samples with low-gliadin content and wild types. These findings are important for the development and analysis of foodstuff for celiac disease (CD) patients to achieve better dietary composition and a reduction in disease incidence. PMID:27018786

  5. Rapid Classification of Turmeric Based on DNA Fingerprint by Near-Infrared Spectroscopy Combined with Moving Window Partial Least Squares-Discrimination Analysis.

    PubMed

    Kasemsumran, Sumaporn; Suttiwijitpukdee, Nattaporn; Keeratinijakal, Vichein

    2017-01-01

    In this research, near-infrared (NIR) spectroscopy in combination with moving window partial least squares-discrimination analysis (MWPLS-DA) was utilized to discriminate the variety of turmeric based on DNA markers, which correlated to the quantity of curcuminoid. Curcuminoid was used as a marker compound in variety identification due to the most pharmacological properties of turmeric possessed from it. MWPLS-DA optimized informative NIR spectral regions for the fitting and prediction to {-1/1}-coded turmeric varieties, indicating variables in the development of latent variables in discrimination analysis. Consequently, MWPLS-DA benefited in the selection of combined informative NIR spectral regions of 1100 - 1260, 1300 - 1500 and 1880 - 2500 nm for classification modeling of turmeric variety with 148 calibration samples, and yielded the results better than that obtained from a partial least squares-discrimination analysis (PLS-DA) model built by using the whole NIR spectral region. An effective and rapid strategy of using NIR in combination with MWPLS-DA provided the best variety identification results of 100% in both specificity and total accuracy for 48 test samples.

  6. Improving the screening of potato breeding lines for specific nutritional traits using portable mid-infrared spectroscopy and multivariate analysis.

    PubMed

    Ayvaz, Huseyin; Bozdogan, Adnan; Giusti, M Monica; Mortas, Mustafa; Gomez, Rene; Rodriguez-Saona, Luis E

    2016-11-15

    Efficient selection of potato varieties with enhanced nutritional quality requires simple, accurate and cost effective assays to obtain tuber chemical composition information. In this study, 75 Andean native potato samples from 7 Solanum species with different colors were characterized and quantified for their anthocyanin, phenolics and sugar content using traditional reference methods. IR (infrared) spectra of potato extracts were collected using a portable infrared system and partial least squares regression (PLSR) calibration models were developed. These models were validated using both full cross-validation and an independent sample set giving strong linear correlation coefficients of prediction (rPred)>0.91 and standard error of prediction (SEP) of 24mg/100g phenolics, 7mg/100g monomeric anthocyanins, 0.1g/100g reducing sugars and 0.12g/100g sucrose. Overall, portable infrared system with PLSR showed great potential to facilitate potato breeding and certain aspects of crop management, material selection for potato processing and related research by providing alternative prediction models.

  7. A study of infrared spectroscopy de-noising based on LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao

    2015-12-01

    Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.

  8. Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy.

    PubMed

    Chesson, Lesley A; Bowen, Gabriel J; Ehleringer, James R

    2010-11-15

    Hydrogen (δ(2)H) and oxygen (δ(18)O) stable isotope analysis is useful when tracing the origin of water in beverages, but traditional analytical techniques are limited to pure or extracted waters. We measured the isotopic composition of extracted beverage water using both isotope ratio infrared spectroscopy (IRIS; specifically, wavelength-scanned cavity ring-down spectroscopy) and isotope ratio mass spectrometry (IRMS). We also analyzed beer, sodas, juices, and milk 'as is' using IRIS. For IRIS analysis, four sequential injections of each sample were measured and data were corrected for sample-to-sample memory using injections (a) 1-4, (b) 2-4, and (c) 3-4. The variation between δ(2)H and δ(18)O values calculated using the three correction methods was larger for unextracted (i.e., complex) beverages than for waters. The memory correction was smallest when using injections 3-4. Beverage water δ(2)H and δ(18)O values generally fit the Global Meteoric Water Line, with the exception of water from fruit juices. The beverage water stable isotope ratios measured using IRIS agreed well with the IRMS data and fit 1:1 lines, with the exception of sodas and juices (δ(2)H values) and beers (δ(18)O values). The δ(2)H and δ(18)O values of waters extracted from beer, soda, juice, and milk were correlated with complex beverage δ(2)H and δ(18)O values (r = 0.998 and 0.997, respectively) and generally fit 1:1 lines. We conclude that it is possible to analyze complex beverages, without water extraction, using IRIS although caution is needed when analyzing beverages containing sugars, which can clog the syringe and increase memory, or alcohol, a known spectral interference.

  9. Raman and infrared spectroscopy of selected vanadates.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Weier, Matt L; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO

  10. Raman and infrared spectroscopy of selected vanadates

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Erickson, Kristy L.; Weier, Matt L.; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V 10O 28) 6-. Decavanadate consists of four distinct VO 6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm -1. Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm -1 and originate from four distinct VO 6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V 5O 14) 3- units. Barnesite is characterised by a single Raman band at 1010 cm -1, whilst hummerite has Raman bands at 999 and 962 cm -1. The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO 6 sites. Metarossite is characterised by a strong band at 953 cm -1. These bands are assigned to ν1 symmetric stretching modes of (V 6O 16) 2- units and terminal VO 3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm -1 and in the 803-833 cm -1 region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to ν 3 antisymmetric stretching of (V 10O 28) 6- units or (V 5O 14) 3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm -1 region and are assigned to the ν2 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. Raman bands are observed in the 530-620 cm -1 region and are assigned to the ν4 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are

  11. Non-destructive analysis of the two subspecies of African elephants, mammoth, hippopotamus, and sperm whale ivories by visible and short-wave near infrared spectroscopy and chemometrics.

    PubMed

    Shimoyama, Masahiko; Morimoto, Susumu; Ozaki, Yukihiro

    2004-06-01

    Visible (VIS) and short-wave near infrared (SW-NIR) spectroscopy was used for non-destructive analysis of ivories. VIS-SW-NIR (500-1000 nm) spectra were measured in situ for five kinds of ivories, that is two subspecies of African elephants, mammoth, hippopotamus, and sperm whale. Chemometrics analyses were carried out for the spectral data from 500 to 1000 nm region. The five kinds of ivories were clearly discriminated from each other on the scores plot of two principal components (PCs) obtained by principal component analysis (PCA). It was noteworthy that the ivories of the two subspecies of African elephants were discriminated by the scores of PC 1. The loadings plot for PC 1 showed that the discrimination relies on the intensity changes in bands due to collagenous proteins and water interacting with proteins. It was found that the scores plot of PC 2 is useful to distinguish between the ivories of the two subspecies of African elephants and the other ivories. We also developed a calibration model that predicted the specific gravity of five kinds of ivories from their VIS-SW-NIR spectral data using partial least squares (PLS)-1 regression. The correlation coefficient and root mean square error of cross validation (RMSECV) of this model were 0.960 and 0.037, respectively.

  12. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy on Intact Dried Leaves of Sage (Salvia officinalis L.): Accelerated Chemotaxonomic Discrimination and Analysis of Essential Oil Composition.

    PubMed

    Gudi, Gennadi; Krähmer, Andrea; Krüger, Hans; Schulz, Hartwig

    2015-10-07

    Sage (Salvia officinalis L.) is cultivated worldwide for its aromatic leaves, which are used as herbal spice, and for phytopharmaceutical applications. Fast analytical strategies for essential oil analysis, performed directly on plant material, would reduce the delay between sampling and analytical results. This would enhance product quality by improving technical control of cultivation. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) method described here provides a reliable calibration model for quantification of essential oil components [EOCs; R(2) = 0.96; root-mean-square error of cross-validation (RMSECV) = 0.249 mL 100 g(-1) of dry matter (DM); and range = 1.115-5.280 mL 100 g(-1) of DM] and main constituents [e.g., α-thujone/β-thujone; R(2) = 0.97/0.86; RMSECV = 0.0581/0.0856 mL 100 g(-1) of DM; and range = 0.010-1.252/0.005-0.893 mL 100 g(-1) of DM] directly on dried intact leaves of sage. Except for drying, no further sample preparation is required for ATR-FTIR, and the measurement time of less than 5 min per sample contrasts with the most common alternative of hydrodistillation followed by gas chromatography analysis, which can take several hours per sample.

  13. Development of Electronic Nose and Near Infrared Spectroscopy Analysis Techniques to Monitor the Critical Time in SSF Process of Feed Protein

    PubMed Central

    Jiang, Hui; Chen, Quansheng

    2014-01-01

    In order to assure the consistency of the final product quality, a fast and effective process monitoring is a growing need in solid state fermentation (SSF) industry. This work investigated the potential of non-invasive techniques combined with the chemometrics method, to monitor time-related changes that occur during SSF process of feed protein. Four fermentation trials conducted were monitored by an electronic nose device and a near infrared spectroscopy (NIRS) spectrometer. Firstly, principal component analysis (PCA) and independent component analysis (ICA) were respectively applied to the feature extraction and information fusion. Then, the BP_AdaBoost algorithm was used to develop the fused model for monitoring of the critical time in SSF process of feed protein. Experimental results showed that the identified results of the fusion model are much better than those of the single technique model both in the training and validation sets, and the complexity of the fusion model was also less than that of the single technique model. The overall results demonstrate that it has a high potential in online monitoring of the critical moment in SSF process by use of integrating electronic nose and NIRS techniques, and data fusion from multi-technique could significantly improve the monitoring performance of SSF process. PMID:25330048

  14. Development of electronic nose and near infrared spectroscopy analysis techniques to monitor the critical time in SSF process of feed protein.

    PubMed

    Jiang, Hui; Chen, Quansheng

    2014-10-17

    In order to assure the consistency of the final product quality, a fast and effective process monitoring is a growing need in solid state fermentation (SSF) industry. This work investigated the potential of non-invasive techniques combined with the chemometrics method, to monitor time-related changes that occur during SSF process of feed protein. Four fermentation trials conducted were monitored by an electronic nose device and a near infrared spectroscopy (NIRS) spectrometer. Firstly, principal component analysis (PCA) and independent component analysis (ICA) were respectively applied to the feature extraction and information fusion. Then, the BP_AdaBoost algorithm was used to develop the fused model for monitoring of the critical time in SSF process of feed protein. Experimental results showed that the identified results of the fusion model are much better than those of the single technique model both in the training and validation sets, and the complexity of the fusion model was also less than that of the single technique model. The overall results demonstrate that it has a high potential in online monitoring of the critical moment in SSF process by use of integrating electronic nose and NIRS techniques, and data fusion from multi-technique could significantly improve the monitoring performance of SSF process.

  15. BATSE spectroscopy analysis system

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Bansal, Sandhia; Basu, Anju; Brisco, Phil; Cline, Thomas L.; Friend, Elliott; Laubenthal, Nancy; Panduranga, E. S.; Parkar, Nuru; Rust, Brad

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) Spectroscopy Analysis System (BSAS) is the software system which is the primary tool for the analysis of spectral data from BATSE. As such, Guest Investigators and the community as a whole need to know its basic properties and characteristics. Described here are the characteristics of the BATSE spectroscopy detectors and the BSAS.

  16. Ultrafast two dimensional infrared chemical exchange spectroscopy

    NASA Astrophysics Data System (ADS)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  17. Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen

    PubMed Central

    Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim

    2015-01-01

    Background Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. Methodology The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. Results The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps. PMID:25867755

  18. Use of Mid- and Near-Infrared Spectroscopy to Track Degradation of Polyactide Eating Utensils and Containers During Composting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared spectroscopy (NIRS) has been used for decades for quantitative analysis of many agricultural products including forages, grains and foods, and more recently has become a powerful tool in the analysis of pharmaceutical ingredients and products. Mid-infrared spectroscopy (MIRS) has been ...

  19. Fourier Transform Infrared Spectroscopy of Radicals

    NASA Astrophysics Data System (ADS)

    Rohrs, Henry William

    Radicals occur in many areas of chemistry as they are intermediates in reactions. They arise in combustion processes and several atmospheric phenomena and they have been located in interstellar space. In order to elucidate these areas of chemistry it is important to understand radicals. This is no easy task as these species are short -lived. This work focuses on determining the structure and bonding of these species using experimental measurements. Since it is specifically aimed at gas phase radicals, spectroscopy is the tool of choice for probing the radicals. This work developed a general technique for taking the rotation-vibration spectra of jet-cooled radicals. The work was based in the infrared since the desired structural information can be obtained in this region of the spectrum. The jet-cooling simplifies the enormous task of spectral assignment. A BOMEM FTIR was optically coupled to a supersonic expansion of radicals streaming from a homemade silicon carbide pyrolysis nozzle. This nozzle was heated to wall temperatures of 1500 K. A suitable organic precursor was entrained in an inert carrier gas, usually helium. Conditions were adjusted such that this precursor was nearly completely decomposed to produce high number densities of the radical of choice. The gas flows were adjusted such that the time for recombination and other radical destroying reactions were minimized. The first radical species observed was nitric oxide, NO, made from the pyrolysis of alkyl nitrites. Spectra with rotational temperatures from 20 K to 80 K were observed. This proved the viability of the method. It also demonstrated that fluid dynamics modeling and a separate photoionization mass spectrometry experiment would be invaluable aids in maximizing radical concentrations since the best chance of recording the spectra is when the most radicals are present.

  20. Infrared spectroscopy of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1993-01-01

    Infrared spectroscopy provides unique insights into the chemistry and dynamics of the atmospheres of Jupiter, Saturn, and Titan. In 1991 we obtained data at J, H, K, and M and made repeated observations of Titan's albedo as the satellite orbited Saturn. The J albedo is 12% +/- 3% greater than the albedo measured in 1979; the H and K albedos are the same. There was no evidence for variations at any wavelength over the eastern half of Titan's orbit. We also obtained low resolution (R=50) spectra of Titan between 3.1 and 5.1 microns. The spectra contain evidence for CO and CH3D absorptions. Spectra of Callisto and Ganymede in the 4.5 micron spectral region are featureless and give albedos of 0.08 and 0.04 respectively. If Titan's atmosphere is transparent near 5 microns, its surface albedo there is similar to Callisto's. In 1992 and 1993 we obtained further spectroscopic data of Titan with the UKIRT CGS4 spectrometer. We discovered two unexpected and unexplained spectral features in the 3-4 micron spectrum of Titan. An apparent emission feature near the 3 micron (nu sub 3) band of methane indicated temperatures higher than known to be present in Titan's upper stratosphere and may be caused by unexpected non-LTE emission. An absorption feature near 3.47 microns may be caused by absorption in solid grains or aerosols in Titan's clouds. The feature is similar but not identical to organics in the interstellar matter and in comets.

  1. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  2. Differentiation and quality estimation of Cordyceps with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Song, Ping; Sun, Su-Qin; Zhou, Qun; Feng, Shu; Tao, Jia-Xun

    2009-11-01

    Heretofore, a scientific and systemic method for differentiation and quality estimation of a well-known Chinese traditional medicine, 'Cordyceps', has not been established in modern market. In this paper, Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR) are employed to propose a method for analysis of Cordyceps. It has presented that IR spectra of real Cordyceps of different origins and counterfeits have their own macroscopic fingerprints, with discriminated shapes, positions and intensities. Their secondary derivative spectra can amplify the differences and confirm the potentially characteristic IR absorption bands 1400-1700 cm -1 to be investigated in 2D-IR. Many characteristic fingerprints are discovered in 2D-IR spectra in the range of 1400-1700 cm -1 and hetero 2D spectra of 670-780 cm -1 × 1400-1700 cm -1. The different fingerprints display different chemical constitutes. Through the three steps, different Cordyceps and their counterfeits can be discriminated effectively and their qualities distinctly display. Successful analysis of eight Cordyceps capsule products has proved the practicability of the method, which can also be applied to the quality estimation of other Chinese traditional medicines.

  3. [Studies on normal and mildewy Auricularia auricular by Fourier transform infrared spectroscopy].

    PubMed

    Shi, You-ming; Liu, Gang; Sun, Yan-lin; Wei, Sheng-xian; Yan, Cui-qiong

    2011-03-01

    In order to verify the capability of Fourier transform infrared spectroscopy in food safety, Fourier transform infrared spectroscopy (FTIR) was used to obtain the spectra of normal and mildewy auricularia auricula, The result showed the frequency of hydroxyl and aliphatic absorption band in their spectra had evident differentia, with the dispersion being 23.31 and 13.41 cm(-1) respectively. The curve-fitting analysis was used for the fold peaks of hydroxyl and amido, and it presented that the content of hydroxyl and amido had evident change. The substances in the auricularia auricula generated chemical change, and Fourier transform infrared spectroscopy could show the differentia easily. The results show that Fourier transform infrared spectroscopy can provide valuable information about the auricularia auricula. It could be used as a reference method for identification of the normal and mildewy auricularia auricula.

  4. Application of functional data analysis in classification and clustering of functional near-infrared spectroscopy signal in response to noxious stimuli.

    PubMed

    Pourshoghi, Ahmad; Zakeri, Issa; Pourrezaei, Kambiz

    2016-10-01

    We introduce the application of functional data analysis (fDA) on functional near-infrared spectroscopy (fNIRS) signals for the development of an accurate and clinically practical assessment method of pain perception. We used the cold pressor test to induce different levels of pain in healthy subjects while the fNIRS signal was recorded from the frontal regions of the brain. We applied fDA on the collected fNIRS data to convert discrete samples into continuous curves. This method enabled us to represent the curves as a linear combination of basis functions. We utilized bases coefficients as features that represent the shape of the signals (as opposed to extracting defined features from signal) and used them to train a support vector machine to classify the signals based on the level of induced pain. We achieved 94% of accuracy to classify low-pain and high-pain signals. Moreover applying hierarchical clustering on the coefficients, we found three clusters in the data which represented low-pain (one cluster) and high-pain groups (two clusters) with an accuracy of 91.2%. The center of these clusters can represent the prototype fNIRS response of that pain level.

  5. Characterizing accuracy of total hemoglobin recovery using contrast-detail analysis in 3D image-guided near infrared spectroscopy with the boundary element method

    PubMed Central

    Ghadyani, Hamid R.; Srinivasan, Subhadra; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically relevant situation of 2:1 or higher contrast between background and inclusion. Using partial 3D volume meshes to reduce the ill-posed nature of the image reconstruction, inclusions as small as 14mm could be accurately quantified with less than 15% error, for contrasts of 1.5 or higher. This suggests that 3D IG-NIRS provides quantitatively accurate results for sizes seen early in treatment cycle of patients undergoing neoadjuvant chemotherapy when the tumors are larger than 30mm. PMID:20720975

  6. Application of functional data analysis in classification and clustering of functional near-infrared spectroscopy signal in response to noxious stimuli

    NASA Astrophysics Data System (ADS)

    Pourshoghi, Ahmad; Zakeri, Issa; Pourrezaei, Kambiz

    2016-10-01

    We introduce the application of functional data analysis (fDA) on functional near-infrared spectroscopy (fNIRS) signals for the development of an accurate and clinically practical assessment method of pain perception. We used the cold pressor test to induce different levels of pain in healthy subjects while the fNIRS signal was recorded from the frontal regions of the brain. We applied fDA on the collected fNIRS data to convert discrete samples into continuous curves. This method enabled us to represent the curves as a linear combination of basis functions. We utilized bases coefficients as features that represent the shape of the signals (as opposed to extracting defined features from signal) and used them to train a support vector machine to classify the signals based on the level of induced pain. We achieved 94% of accuracy to classify low-pain and high-pain signals. Moreover applying hierarchical clustering on the coefficients, we found three clusters in the data which represented low-pain (one cluster) and high-pain groups (two clusters) with an accuracy of 91.2%. The center of these clusters can represent the prototype fNIRS response of that pain level.

  7. Rapid discrimination of the geographical origins of an oolong tea (anxi-tieguanyin) by near-infrared spectroscopy and partial least squares discriminant analysis.

    PubMed

    Yan, Si-Min; Liu, Jun-Ping; Xu, Lu; Fu, Xian-Shu; Cui, Hai-Feng; Yun, Zhen-Yu; Yu, Xiao-Ping; Ye, Zi-Hong

    2014-01-01

    This paper focuses on a rapid and nondestructive way to discriminate the geographical origin of Anxi-Tieguanyin tea by near-infrared (NIR) spectroscopy and chemometrics. 450 representative samples were collected from Anxi County, the original producing area of Tieguanyin tea, and another 120 Tieguanyin samples with similar appearance were collected from unprotected producing areas in China. All these samples were measured by NIR. The Stahel-Donoho estimates (SDE) outlyingness diagnosis was used to remove the outliers. Partial least squares discriminant analysis (PLSDA) was performed to develop a classification model and predict the authenticity of unknown objects. To improve the sensitivity and specificity of classification, the raw data was preprocessed to reduce unwanted spectral variations by standard normal variate (SNV) transformation, taking second-order derivatives (D2) spectra, and smoothing. As the best model, the sensitivity and specificity reached 0.931 and 1.000 with SNV spectra. Combination of NIR spectrometry and statistical model selection can provide an effective and rapid method to discriminate the geographical producing area of Anxi-Tieguanyin.

  8. Far-infrared spectroscopy of galaxies

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1989-01-01

    Far infrared (FIR) spectral line emission from galaxies is discussed with respect to past, present and near future observations. A review of the importance of the FIR lines as probes of the interstellar medium is presented. The various fine structure emission lines detected from the archetypal starburst galaxy M82, and the (C II) line radiation which is now observed toward a large variety of external galaxies are discussed. The improvements allowed by the advent of the Stratospheric Observatory For Infrared Astronomy (SOFIA), the Infrared Space Observatory (ISO) and the Space Infrared Telescope Facility (SIRTF) are underlined.

  9. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  10. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components.

    PubMed

    Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria

    2015-12-01

    The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.

  11. Data analysis methods for near-infrared spectroscopy of tissue: problems in determining the relative cytochrome aa3 concentration

    NASA Astrophysics Data System (ADS)

    Cope, Mark; van der Zee, Pieter; Essenpreis, Matthias; Arridge, Simon R.; Delpy, David T.

    1991-05-01

    In the brain of the adult rat, the ratio of the absorption coefficient of hemoglobin to that of the cytochromes is approximately ten and in the newborn rat brain the ratio is even higher. Additionally the absorption spectra of these compounds overlap markedly. Under these circumstances the accurate determination of cytochrome concentration is difficult. There are many possible sources of error: (i) Non linear measuring equipment. (ii) Inaccurate hemoglobin and cytochrome spectra. (iii) A wavelength dependent effective optical pathlength. (iv) An absorption coefficient dependent effective optical pathlength. (v) Oxygenation dependent changes in tissue scattering. The first two sources of error can be solved with careful instrumental and experimental design. The last three are much more problematic, but can be addressed using time resolved measurements. These are the topic of this paper. A wavelength dependence of the optical pathlength leads to a distortion of the optical spectra of the chromophores in brain tissue. A simple method of examining the wavelength dependant effects is discussed. The selection of the correct wavelength range is important in minimizing these problems. Until recently, all near infrared data processing 'algorithms' have assumed a linear Beer Lambert relationship between the measured attenuation spectra and tissue absorption coefficient. However, picosecond optical techniques have shown that at a single wavelength, the optical pathlength in the rat brain can vary by 10% implying that the Beer Lambert law is not strictly valid. A non linear correction of tissue spectra which can be based on results from time of flight measurements is described.

  12. [Study on the soil mid-infrared photoacoustic spectroscopy].

    PubMed

    Du, Chang-wen; Zhou, Jian-min; Wang, Huo-yan; Zhang, Jia-bao; Zhu, An-ning

    2008-06-01

    Infrared photoacoustic spectroscopy (PAS) is a new style to obtain data based on photoacoustic theory. Photoacoustic thoeory is based on the absorption of electromagnetic radiation by analyte molecules, and the absorbed energy is measured by detecting pressure fluctuations in the form of sound waves or shock pulses. In contrast to conventional absorption spectroscopy, PAS allows the determination of absorption coefficients over several orders of magnitude, even in very black and strongly scattering soil samples. Red soil, fulvic soil and paddy soil were collected from Fengqiu National Ecological Experimental Station, Yingtan Red Soil Experimental Station, and Changshu Ecological Experimental Station, respectively. These soil samples were used as experimental materials to characterize the Fourier transform mid-infrared photoacoustic spectra (FTIR-PAS). Compared with infrared transmittance spectra and reflectance spectra, the testing of FTIR-PAS spectra was very fast and convenient without any pr-treatment, and there were more abundant absorptions as well as appropriate absorption values in the spectra; The main soil components (kaolin, bentonite, sand and CaCO3) also showed several strong absorptions with specific characteristics in the spectra; Further more, the interference of water with the PAS spectra was significantly smaller than that with reflectance spectra. Therefore, the soil properties could be better characterized by FTIR-PAS. The principal components analysis based on the FTIR-PAS spectra indicated that there were two main principal components (PCA1, PCA2) which contained 98.17% variance of the spectra, and the two-dimensionol distribution was made by plotting these two principal components to classify the soil type, and the results indicated that this distribution could be applied to distinguish soil type, which provided new technique for soil identification as well as further quantitative analysis in soil science.

  13. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  14. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.

  15. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  16. Development of a Fourier transform infrared spectroscopy coupled to UV-Visible analysis technique for aminosides and glycopeptides quantitation in antibiotic locks.

    PubMed

    Sayet, G; Sinegre, M; Ben Reguiga, M

    2014-01-01

    Antibiotic Lock technique maintains catheters' sterility in high-risk patients with long-term parenteral nutrition. In our institution, vancomycin, teicoplanin, amikacin and gentamicin locks are prepared in the pharmaceutical department. In order to insure patient safety and to comply to regulatory requirements, antibiotic locks are submitted to qualitative and quantitative assays prior to their release. The aim of this study was to develop an alternative quantitation technique for each of these 4 antibiotics, using a Fourier transform infrared (FTIR) coupled to UV-Visible spectroscopy and to compare results to HPLC or Immunochemistry assays. Prevalidation studies permitted to assess spectroscopic conditions used for antibiotic locks quantitation: FTIR/UV combinations were used for amikacin (1091-1115cm(-1) and 208-224nm), vancomycin (1222-1240cm(-1) and 276-280nm), and teicoplanin (1226-1230cm(-1) and 278-282nm). Gentamicin was quantified with FTIR only (1045-1169cm(-1) and 2715-2850cm(-1)) due to interferences in UV domain of parabens, preservatives present in the commercial brand used to prepare locks. For all AL, the method was linear (R(2)=0.996 to 0.999), accurate, repeatable (intraday RSD%: from 2.9 to 7.1% and inter-days RSD%: 2.9 to 5.1%) and precise. Compared to the reference methods, the FTIR/UV method appeared tightly correlated (Pearson factor: 97.4 to 99.9%) and did not show significant difference in recovery determinations. We developed a new simple reliable analysis technique for antibiotics quantitation in locks using an original association of FTIR and UV analysis, allowing a short time analysis to identify and quantify the studied antibiotics.

  17. Ante mortem identification of BSE from serum using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmitt, Jürgen; Lasch, Peter; Beekes, Michael; Udelhoven, Thomas; Eiden, Michael; Fabian, Heinz; Petrich, Wolfgang H.; Naumann, Dieter

    2004-07-01

    In our former studies a diagnostic approach for the detection of transmissible spongiform encephalopaties (TSE) based on FT-IR spectroscopy in combination with artificial neural networks was described, based on a controlled animal study with terminally ill Syrian hamsters and control animals. As a consequence of the bovine spongiform encephalopathy (BSE) crisis in Europe, the development of a disgnostic ante mortem test for cattle has become a matter of great scientific importance and public interest. Since 1986 more than 180,000 clinical cases of BSE have been observed in the UK alone. Most of these cases were confirmed by post mortem examination of brain tissue. However, BSE-related risk assessment and risk-management would greatly benefit from ante mortem testing on living animals. For example, a serum-based test could allow for screening of the cattle population, thus, even a BSE eradication program would be conceivable. Here we report on a novel method for ante mortem BSE testing, which combines infrared spectroscopy of serum samples with multivariate pattern recognition analysis. A classification algorithm was trained using infrared spectra of sera from more than 800 animals from a field study (including BSE positive, healthy controls and animals suffering from viral or bacterial infections). In two validation studies sensitivities of 85% and 87% and specificities of 84% and 91% were achieved, respectively. The combination of classification algorithms increased sensitivity and specificity to 96% and 92%, respectively.

  18. Qualitative Analysis of Primers, Tracers, Igniters, Incendiaries, Boosters, and Delay Compositions on a Micro Scale by Use of Infrared Spectroscopy

    DTIC Science & Technology

    ingredients of primers, tracers, igniters, incendiaries, boosters, and delay compositions are given over the range 2.5 to 50 microns. The qualitative analysis of seven typical compositions is demonstrated.

  19. Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis.

    PubMed

    Kwon, Yong-Kook; Ahn, Myung Suk; Park, Jong Suk; Liu, Jang Ryol; In, Dong Su; Min, Byung Whan; Kim, Suk Weon

    2014-01-01

    To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.

  20. Near infrared spectroscopy of stearic acid adsorbed on montmorillonite.

    PubMed

    Lu, Longfei; Cai, Jingong; Frost, Ray L

    2010-03-01

    The adsorption of stearic acid on both sodium montmorillonites and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of stearic acid on Ca-Mt additional near infrared bands are observed at 8236 cm(-1) and is assigned to an interaction of stearic acid with the water of hydration. Upon adsorption of the stearic acid on Na-Mt, the NIR bands are now observed at 5671, 5778, 5848 and 5912 cm(-1) and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4177, 4250, 4324, 4337, 4689 and 4809 cm(-1) are attributed to CH combination bands resulting from the adsorption of the stearic acid. Stearic acid is used as a model molecule for adsorption studies. The application of near infrared spectroscopy to the study of this adsorption proved most useful.

  1. Analysis of absorption spectra of purple bacterial reaction centers in the near infrared region by higher order derivative spectroscopy.

    PubMed

    Mikhailyuk, I K; Knox, P P; Paschenko, V Z; Razjivin, A P; Lokstein, H

    2006-06-20

    Reaction centers (RCs) of purple bacteria are uniquely suited objects to study the mechanisms of the photosynthetic conversion of light energy into chemical energy. A recently introduced method of higher order derivative spectroscopy [I.K. Mikhailyuk, H. Lokstein, A.P. Razjivin, A method of spectral subband decomposition by simultaneous fitting the initial spectrum and a set of its derivatives, J. Biochem. Biophys. Methods 63 (2005) 10-23] was used to analyze the NIR absorption spectra of RC preparations from Rhodobacter (R.) sphaeroides strain 2R and Blastochloris (B.) viridis strain KH, containing bacteriochlorophyll (BChl) a and b, respectively. Q(y) bands of individual RC porphyrin components (BChls and bacteriopheophytins, BPheo) were identified. The results indicate that the upper exciton level P(y+) of the photo-active BChl dimer in RCs of R. sphaeroides has an absorption maximum of 810nm. The blue shift of a complex integral band at approximately 800nm upon oxidation of the RC is caused primarily by bleaching of P(y+), rather than by an electrochromic shift of the absorption band(s) of the monomeric BChls. Likewise, the disappearance of a band peaking at 842nm upon oxidation of RCs from B. viridis indicates that this band has to be assigned to P(y+). A blue shift of an absorption band at approximately 830nm upon oxidation of RCs of B. viridis is also essentially caused by the disappearance of P(y+), rather than by an electrochromic shift of the absorption bands of monomeric BChls. Absorption maxima of the monomeric BChls, B(B) and B(A) are at 802 and 797nm, respectively, in RCs of R. sphaeroides at room temperature. BPheo co-factors H(B) and H(A) peak at 748 and 758nm, respectively, at room temperature. For B. viridis RCs the spectral positions of H(B) and H(A) were found to be 796 and 816nm, respectively, at room temperature.

  2. Characteristic wavelength of textile fiber in near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Hongnian; Jin, Shangzhong; Gan, Bin

    2006-01-01

    Near Infrared (NIR) spectroscopy in the region from 1300 to 1700nm, coupled with multivariate analytic statistical techniques, have been used to predict the chemical properties of textile fiber. Molecule absorbs electromagnetic wave with especial wavelength, which leads to bring characteristic absorption spectrum. Characteristic wavelength is the most important parameter in NIR detection. How to select characteristic wavelength is the key to NIR measure. Different mathematical methods are used to find relationship between the NIR absorption spectrum and the chemical properties of the textile fiber. We adopt stepwise multiple linear regression (SMLR) to select characteristic wavelength. As objective condition is limited, this article only refers to cotton and terylene. By computing correlation coefficient, we establish calibration equation with the smoothed absorbance data. Finally, the bias was controlled under 6%. Then, we find that NIR can be used to carry on qualitative analysis and quantitative analysis of the textile.

  3. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I + II + III supernatant in human albumin separation

    NASA Astrophysics Data System (ADS)

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-01

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.

  4. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I+II+III supernatant in human albumin separation.

    PubMed

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-15

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp(2)), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.

  5. Identification of pure component spectra by independent component analysis in glucose prediction based on mid-infrared spectroscopy.

    PubMed

    Hahn, Sangjoon; Yoon, Gilwon

    2006-11-10

    We present a method for glucose prediction from mid-IR spectra by independent component analysis (ICA). This method is able to identify pure, or individual, absorption spectra of constituent components from the mixture spectra without a priori knowledge of the mixture. This method was tested with a two-component system consisting of an aqueous solution of both glucose and sucrose, which exhibit distinct but closely overlapped spectra. ICA combined with principal component analysis was able to identify a spectrum for each component, the correct number of components, and the concentrations of the components in the mixture. This method does not need a calibration process and is advantageous in noninvasive glucose monitoring since expensive and time-consuming clinical tests for data calibration are not required.

  6. Pyrolysis Product Evolution Characteristics of Bio-Ferment Residue Using Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Du, Y.; Jiang, X.; Ma, X.; Liu, X.; Lv, G.; Jin, Y.; Wang, F.; Chi, Y.; Yan, J.

    2015-01-01

    Bio-ferment residues (BR) are wastes produced by a biological fermentation process for the production of antibiotics. In this work, the evolution characteristics of pyrolysis products of BR were studied using TG-FTIR analysis and MS analysis. It was found that species such as H2O, NH3, CH4, carboxylic acid, aldehydes, alkanes, HCN, HNCO, CO, and CO2 were released at a temperature lower than 600°C. Above 600°C, the dominant products were H2, CO, and CO2. Scarcely any acetylene or benzene was observed. HCN and HNCO were found to evolve in a small amount, while other potential pollutants such as H2S, COS, and CS2 were hardly detected.

  7. AKARI NEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lee, Jong Chul; Lee, Myung Gyoon; Hwang, Ho Seong

    2012-09-01

    We present the AKARI near-infrared (NIR; 2.5-5 {mu}m) spectroscopic study of 36 (ultra)luminous infrared galaxies ((U)LIRGs) at z = 0.01-0.4. We measure the NIR spectral features including the strengths of 3.3 {mu}m polycyclic aromatic hydrocarbon emission and hydrogen recombination lines (Br{alpha} and Br{beta}), optical depths at 3.1 and 3.4 {mu}m, and NIR continuum slope. These spectral features are used to identify optically elusive, buried active galactic nuclei (AGNs). We find that half of the (U)LIRGs optically classified as non-Seyferts show AGN signatures in their NIR spectra. Using a combined sample of (U)LIRGs with NIR spectra in the literature, we measure the contribution of buried AGNs to the infrared luminosity from the spectral energy distribution fitting to the IRAS photometry. The contribution of these buried AGNs to the infrared luminosity is 5%-10%, smaller than the typical AGN contribution of (U)LIRGs including Seyfert galaxies (10%-40%). We show that NIR continuum slopes correlate well with WISE [3.4]-[4.6] colors, which would be useful for identifying a large number of buried AGNs using the WISE data.

  8. Infrared and Near-Infrared Spectroscopy of Acetylacetone and Hexafluoroacetylacetone.

    PubMed

    Howard, Daryl L; Kjaergaard, Henrik G; Huang, Jing; Meuwly, Markus

    2015-07-23

    The infrared and near-infrared spectra of acetylacetone, acetylacetone-d8, and hexafluoroacetylacetone are characterized from experiment and computations at different levels. In the fundamental region, the intramolecular hydrogen bonded OH-stretching transition is clearly observed as a very broad band with substantial structure and located at significantly lower frequency compared to common OH-stretching frequencies. There is no clear evidence for OH-stretching overtone transitions in the near-infrared region, which is dominated by the CH-stretching overtones of the methine and methyl CH bonds. From molecular dynamics (MD) simulations, with a potential energy surface previously validated for tunneling splittings, the infrared spectra are determined and used in assigning the experimentally measured ones. It is found that the simulated spectrum in the region associated with the proton transfer mode is exquisitely sensitive to the height of the barrier for proton transfer. Comparison of the experimental and the MD simulated spectra establishes that the barrier height is around 2.5 kcal/mol, which favorably compares with 3.2 kcal/mol obtained from high-level electronic structure calculations.

  9. Identification of uroliths by infrared spectroscopy.

    PubMed

    Manning, R A; Blaney, B J

    1986-12-01

    Wet chemical tests have deficiencies when applied to mixtures containing silica, which are common in the uroliths of some domestic animals. Consequently, the applicability of an infrared spectroscopic method was tested on 104 uroliths obtained from cattle, sheep, goats, horses, pigs, dogs, a chicken and a rabbit during diagnostic investigations. The following components were satisfactorily identified: silica, calcium oxalate, calcium carbonate, calcium phosphate, magnesium ammonium phosphate, magnesium phosphate and urates. The infrared characteristics of these compounds and their mixtures are described.

  10. Improving the linearity of infrared diffuse reflection spectroscopy data for quantitative analysis: an application in quantifying organophosphorus contamination in soil.

    PubMed

    Samuels, Alan C; Zhu, Changjiang; Williams, Barry R; Ben-David, Avishai; Miles, Ronald W; Hulet, Melissa

    2006-01-15

    Diffuse reflection data are presented for ethyl methylphosphonate in a fine Utah dirt sample as a model system for organophosphate-contaminated soil. The data revealed a chemometric artifact when the spectra were represented in Kubelka-Munk units that manifests as a linear dependence of spectral peak height on variations in the observed baseline position (i.e., the position of the observed transmission intensity where no absorption features occur in the sample spectrum). We believe that this artifact is the result of the mathematical process by which the raw data are converted into Kubelka-Munk units, and we developed a numerical strategy for compensating for the observed effect and restoring chemometric precision to the diffuse reflection data for quantitative analysis while retaining the benefits of linear calibration afforded by the Kubelka-Munk approach. We validated our Kubelka-Munk correction strategy by repeating the experiment using a simpler system--pure caffeine in potassium bromide. The numerical preprocessing includes conventional multiplicative scatter correction coupled with a baseline offset correction that facilitates the use of quantitative diffuse reflection data in the Kubelka-Munk formalism for the quantitation of contaminants in a complex soil matrix, but is also applicable to more fundamental diffuse reflection quantitative analysis experiments.

  11. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  12. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  13. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    PubMed

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination.

  14. Determination of thermally induced trans-fatty acids in soybean oil by attenuated total reflectance fourier transform infrared spectroscopy and gas chromatography analysis.

    PubMed

    Li, An; Ha, Yiming; Wang, Feng; Li, Weiming; Li, Qingpeng

    2012-10-24

    The intake of edible oil containing trans-fatty acids has deleterious effects mainly on the cardiovascular system. Thermal processes such as refining and frying cause the formation of trans-fatty acids in edible oil. This study was conducted to investigate the possible formation of trans-fatty acids because of the heat treatment of soybean oil. The types of trans-fatty acids in heated soybean oil are determined by attenuated total reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry methods. The effects of the heating temperature on the trans-fatty acids in soybean oil were evaluated using gas chromatography flame ionization detection analysis. Results show that heat treatment at 240 °C causes the formation of trans-fatty acids in soybean oil and the amount of trans-fatty acids increases with heating time. The only peak observed at 966 cm(-1) of the samples indicates the formation of nonconjugated trans isomers in the heated soybean oil. The major types of trans-fatty acids formed were trans-polyunsaturated fatty acids. Significant increases (P < 0.05) in the amounts of two trans-linoleic acids (C18:2-9c,12t and C18:2-9t,12c) and four trans-linolenic acids (C18:3-9c,12c,15t, C18:3-9t,12c,15c, and C18:3-9t,12t,15c/C18:3-9t,12c,15t) in soybean oil heated to temperatures exceeding 200 °C were compared with those of the control sample. The heating temperature and duration should be considered to reduce the formation of trans-fatty acids during thermal treatment.

  15. Empirical mode decomposition analysis of near-infrared spectroscopy muscular signals to assess the effect of physical activity in type 2 diabetic patients.

    PubMed

    Molinari, Filippo; Joy Martis, Roshan; Acharya, U Rajendra; Meiburger, Kristen M; De Luca, Riccardo; Petraroli, Giuliana; Liboni, William

    2015-04-01

    Type 2 diabetes is a metabolic disorder that may cause major problems to several physiological systems. Exercise has proven to be very effective in the prevention, management and improvement of this pathology in patients. Muscle metabolism is often studied with near-infrared spectroscopy (NIRS), a noninvasive technique that can measure changes in the concentration of oxygenated (O2Hb) and reduced hemoglobin (HHb) of tissues. These NIRS signals are highly non-stationary, non-Gaussian and nonlinear in nature. The empirical mode decomposition (EMD) is used as a nonlinear adaptive model to extract information present in the NIRS signals. NIRS signals acquired from the tibialis anterior muscle of controls and type 2 diabetic patients are processed by EMD to yield three intrinsic mode functions (IMF). The sample entropy (SE), fractal dimension (FD), and Hurst exponent (HE) are computed from these IMFs. Subjects are monitored at the beginning of the study and after one year of a physical training programme. Following the exercise programme, we observed an increase in the SE and FD and a decrease in the HE in all diabetic subjects. Our results show the influence of physical exercise program in improving muscle performance and muscle drive by the central nervous system in the patients. A multivariate analysis of variance performed at the end of the training programme also indicated that the NIRS metabolic patterns of controls and diabetic subjects are more similar than at the beginning of the study. Hence, the proposed EMD technique applied to NIRS signals may be very useful to gain a non-invasive understanding of the neuromuscular and vascular impairment in diabetic subjects.

  16. Classification of test agent-specific effects in the Syrian hamster embryo assay (pH 6.7) using infrared spectroscopy with computational analysis.

    PubMed

    Ahmadzai, Abdullah A; Trevisan, Júlio; Pang, Weiyi; Patel, Imran I; Fullwood, Nigel J; Bruce, Shannon W; Pant, Kamala; Carmichael, Paul L; Scott, Andrew D; Martin, Francis L

    2012-05-01

    The Syrian hamster embryo (SHE) cell transformation assay (pH 6.7) has utility in the assessment of potential chemical carcinogenicity (both genotoxic and non-genotoxic mechanisms of action). The assay uses morphological transformation as an end point and has a reported sensitivity of 87%, specificity of 83% and overall concordance of 85% with in vivo rodent bioassay data. However, the scoring of morphologically transformed SHE cells is subjective. We treated SHE cells grown on low-E reflective slides with benzo[a]pyrene, 3-methylcholanthrene, anthracene, N-nitroso-N-methylnitroguanidine, ortho-toluidine HCl, 2,4-diaminotoluene or D-mannitol for 7 days before fixation with methanol. Identified colonies were interrogated by acquiring a minimum of five infrared (IR) spectra per colony using attenuated total reflection Fourier-transform IR spectroscopy. Individual IR spectra were acquired over a spatial area of approximately 250 × 250 μm. Resultant data were analysed using Fisher's linear discriminant analysis and feature histogram algorithms to extract classifying biomarkers of test agent-specific effects or transformation in SHE cells. Clustering of spectral points suggested co-segregation or discrimination of test agent categories based on mechanism of action. Towards transformation, unifying alterations were associated with alterations in the Amide I and Amide II peaks; these were consistently major classifying biomarkers for transformed versus non-transformed SHE cells. Our approach highlights a novel method towards objectively screening and classifying SHE cells, be it to ascertain test agent treatment based on mechanism of action or transformation.

  17. Use of Fourier-transform infrared spectroscopy to quantify immunoglobulin G concentration and an analysis of the effect of signalment on levels in canine serum.

    PubMed

    Seigneur, A; Hou, S; Shaw, R A; McClure, Jt; Gelens, H; Riley, C B

    2015-01-15

    Deficiency in immunoglobulin G (IgG) is associated with an increased susceptibility to infections in humans and animals, and changes in IgG levels occur in many disease states. In companion animals, failure of transfer of passive immunity is uncommonly diagnosed but mortality rates in puppies are high and more than 30% of these deaths are secondary to septicemia. Currently, radial immunodiffusion (RID) and enzyme-linked immunosorbent assays are the most commonly used methods for quantitative measurement of IgG in dogs. In this study, a Fourier-transform infrared spectroscopy (FTIR) assay for canine serum IgG was developed and compared to the RID assay as the reference standard. Basic signalment data and health status of the dogs were also analyzed to determine if they correlated with serum IgG concentrations based on RID results. Serum samples were collected from 207 dogs during routine hematological evaluation, and IgG concentrations determined by RID. The FTIR assay was developed using partial least squares regression analysis and its performance evaluated using RID assay as the reference test. The concordance correlation coefficient was 0.91 for the calibration model data set and 0.85 for the prediction set. A Bland-Altman plot showed a mean difference of -89 mg/dL and no systematic bias. The modified mean coefficient of variation (CV) for RID was 6.67%, and for FTIR was 18.76%. The mean serum IgG concentration using RID was 1943 ± 880 mg/dL based on the 193 dogs with complete signalment and health data. When age class, gender, breed size and disease status were analyzed by multivariable ANOVA, dogs < 2 years of age (p = 0.0004) and those classified as diseased (p = 0.03) were found to have significantly lower IgG concentrations than older and healthy dogs, respectively.

  18. Analysis and identification of two similar traditional Chinese medicines by using a three-stage infrared spectroscopy: Ligusticum chuanxiong, Angelica sinensis and their different extracts

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Wang, Jingjuan; Zhang, Guijun; Rong, Lixin; Wu, Haozhong; Sun, Suqin; Guo, Yizhen; Yang, Yanfang; Lu, Lina; Qu, Lei

    2016-11-01

    Rhizoma Chuanxiong (CX) and Radix Angelica sinensis (DG) are very important Traditional Chinese Medicine (TCM) and usually used in clinic. They both are from the Umbelliferae family, and have almost similar chemical constituents with each other. It is complicated, time-consuming and laborious to discriminate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, to find a fast, applicable and effective identification method for two herbs is urged in quality research of TCM. In this paper, by using a three-stage infrared spectroscopy (Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2D-IR)), we analyzed and discriminated CX, DG and their different extracts (aqueous extract, alcoholic extract and petroleum ether extract). In FT-IR, all the CX and DG samples' spectra seemed similar, but they had their own unique macroscopic fingerprints to identify. Through comparing with the spectra of sucrose and the similarity calculation, we found the content of sucrose in DG raw materials was higher than in CX raw materials. The significant differences in alcoholic extract appeared that in CX alcoholic extract, the peaks at 1743 cm-1 was obviously stronger than the peak at same position in DG alcoholic extract. Besides in petroleum ether extract, we concluded CX contained much more ligustilide than DG by the similarity calculation. With the function of SD-IR, some tiny differences were amplified and overlapped peaks were also unfolded in FT-IR. In the range of 1100-1175 cm-1, there were six peaks in the SD-IR spectra of DG and the intensity, shape and location of those six peaks were similar to that of sucrose, while only two peaks could be observed in that of CX and those two peaks were totally different from sucrose in shape and relative intensity. This result was consistent with that of the

  19. Textured and smooth breast implants: is there a difference in the chemical structure of silicone?: an analysis with fourier transformation infrared and attenuated total reflectance spectroscopy.

    PubMed

    Persichetti, Paolo; Tenna, Stefania; Delfino, Sergio; Abbruzzese, Franca; Trombetta, Marcella; Scuderi, Nicolò

    2009-10-01

    Scientific controversy concerning silicone and its biocompatibility has been ongoing for the last 10 years. This study on textured and smooth silicone breast implant shells using fourier transformation infrared spectroscopy associated with attenuated total reflectance cells aimed to identify eventual chemical modifications of silicone induced by texturization. The surfaces of 8 new implants produced by 2 well-known manufactures have been taken into consideration. A sample 1 cm2 has been harvested from the anterior and posterior sides of textured and smooth shells. Infrared spectra were then recorded, evaluated, and compared with the reference spectrum of pure silicone. Potentially reactive groups, known as silanols, were identified, in all shells, intensity increasing in textured implants (P < 0.05), whereas no silanols were detected in the spectrum of pure silicone. These results suggest that polar groups, present in manipulated silicone might influence capsula formation.

  20. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2003-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our emphasis has been on star formation in external, bright IR galaxies, but other areas of research have included young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry, because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spectroscopic data sets. The program has the following goals: 1) Refine the data analysis of IS0 observations to obtain deeper and better SNR results on selected sources. The IS0 data itself underwent pipeline 10 reductions in early 2001, and the more 'hands-on data reduction packages' have been released. The IS0 Fabry-Perot database is particularly sensitive to noise and can have slight calibration errors, and improvements are anticipated. We plan to build on these deep analysis tools and contribute to their development. Model the atomic and molecular line shapes, in particular the OH lines, using revised montecarlo techniques developed by the Submillimeter Wave Astronomy Satellite (SWAS) team at the Center for Astrophysics. 2) 3) Use newly acquired space-based SIRTF or SOFIA spectroscopic data as they become available, and contribute to these observing programs as appropriate. 4) Attend scientific meetings and workshops. 5) E&PO activities, especially as related to infrared astrophysics and

  1. Optimization of diffuse reflectance infrared spectroscopy accessories

    SciTech Connect

    Hirschfeld, T.

    1986-11-01

    The value of diffuse reflectance as an infrared or near-infrared spectroscopic sampling procedure has been limited by the low efficiency of accessories designed for it. In terms of signal-to-noise ratio, these average 2-6% for integrating spheres and 10-12% for various ellipsoidal mirror arrangements. Much better performances, up to 37% efficiency, can be obtained by optimizing a concentric confocal ellipsoidal mirror arrangement by using a very large central opening in the amular collector mirror, and adapting the throughput of the detector to the geometry of the collected beam.

  2. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  3. Aquaphotomics: Near Infrared Spectroscopy and Water States in Biological Systems.

    PubMed

    Tsenkova, Roumiana; Kovacs, Zoltan; Kubota, Yosuke

    2015-01-01

    Aquaphotomics is a new discipline that provides a framework for understanding changes in water molecular system presented as a water spectral pattern, to mirror the rest of the solution and to give a holistic description related to system functionality. One of its main purposes is to identify water bands as main coordinates of future absorbance patterns to be used as a system biomarker. This chapter presents the Aquaphotomics methodology and illustrates a way to identify specific water bands using temperature change and addition of solutions of different ionic strength as perturbations. Rapid and precise measurement of low concentration solutes has been given as a strong evidence of the vast information that "the water spectral pattern as molecular mirror" approach provides. Few applications using near infrared spectroscopy and multivariate analysis as main tools of Aquaphotomics have been presented.

  4. Wavelet minimum description length detrending for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Eun; Tak, Sungho; Jung, Jinwook; Jang, Jaeduck; Jeong, Yong; Ye, Jong Chul

    2009-05-01

    Near-infrared spectroscopy (NIRS) can be employed to investigate brain activities associated with regional changes of the oxy- and deoxyhemoglobin concentration by measuring the absorption of near-infrared light through the intact skull. NIRS is regarded as a promising neuroimaging modality thanks to its excellent temporal resolution and flexibility for routine monitoring. Recently, the general linear model (GLM), which is a standard method for functional MRI (fMRI) analysis, has been employed for quantitative analysis of NIRS data. However, the GLM often fails in NIRS when there exists an unknown global trend due to breathing, cardiac, vasomotion, or other experimental errors. We propose a wavelet minimum description length (Wavelet-MDL) detrending algorithm to overcome this problem. Specifically, the wavelet transform is applied to decompose NIRS measurements into global trends, hemodynamic signals, and uncorrelated noise components at distinct scales. The minimum description length (MDL) principle plays an important role in preventing over- or underfitting and facilitates optimal model order selection for the global trend estimate. Experimental results demonstrate that the new detrending algorithm outperforms the conventional approaches.

  5. Two-dimensional heterospectral correlation analysis of the redox-induced conformational transition in cytochrome c using surface-enhanced Raman and infrared absorption spectroscopies on a two-layer gold surface.

    PubMed

    Zou, Changji; Larisika, Melanie; Nagy, Gabor; Srajer, Johannes; Oostenbrink, Chris; Chen, Xiaodong; Knoll, Wolfgang; Liedberg, Bo; Nowak, Christoph

    2013-08-22

    The heme protein cytochrome c adsorbed to a two-layer gold surface modified with a self-assembled monolayer of 2-mercaptoethanol was analyzed using a two-dimensional (2D) heterospectral correlation analysis that combined surface-enhanced infrared absorption spectroscopy (SEIRAS) and surface-enhanced Raman spectroscopy (SERS). Stepwise increasing electric potentials were applied to alter the redox state of the protein and to induce conformational changes within the protein backbone. We demonstrate herein that 2D heterospectral correlation analysis is a particularly suitable and useful technique for the study of heme-containing proteins as the two spectroscopies address different portions of the protein. Thus, by correlating SERS and SEIRAS data in a 2D plot, we can obtain a deeper understanding of the conformational changes occurring at the redox center and in the supporting protein backbone during the electron transfer process. The correlation analyses are complemented by molecular dynamics calculations to explore the intramolecular interactions.

  6. Improved source of infrared radiation for spectroscopy

    NASA Technical Reports Server (NTRS)

    Burkhard, D. G.; Rao, K. N.

    1971-01-01

    Radiation from a crimped V-groove in the electrically heated metallic element of a high-resolution infrared spectrometer is more intense than that from plane areas adjacent to the element. Radiation from the vee and the flat was compared by alternately focusing on the entrance slit of a spectrograph.

  7. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-07-15

    Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich chemical implicated in the pet and human food recalls and in the global food safety scares involving milk products. Due to the serious health concerns associated with melamine consumption and the extensive scope of affected products, rapid and sensitive methods to detect melamine's presence are essential. We propose the use of spectroscopy data-produced by near-infrared (near-IR/NIR) and mid-infrared (mid-IR/MIR) spectroscopies, in particular-for melamine detection in complex dairy matrixes. None of the up-to-date reported IR-based methods for melamine detection has unambiguously shown its wide applicability to different dairy products as well as limit of detection (LOD) below 1 ppm on independent sample set. It was found that infrared spectroscopy is an effective tool to detect melamine in dairy products, such as infant formula, milk powder, or liquid milk. ALOD below 1 ppm (0.76±0.11 ppm) can be reached if a correct spectrum preprocessing (pretreatment) technique and a correct multivariate (MDA) algorithm-partial least squares regression (PLS), polynomial PLS (Poly-PLS), artificial neural network (ANN), support vector regression (SVR), or least squares support vector machine (LS-SVM)-are used for spectrum analysis. The relationship between MIR/NIR spectrum of milk products and melamine content is nonlinear. Thus, nonlinear regression methods are needed to correctly predict the triazine-derivative content of milk products. It can be concluded that mid- and near-infrared spectroscopy can be regarded as a quick, sensitive, robust, and low-cost method for liquid milk, infant formula, and milk powder analysis.

  8. Routine detection of hyperketonemia in dairy cows using Fourier transform infrared spectroscopy analysis of β-hydroxybutyrate and acetone in milk in combination with test-day information.

    PubMed

    van der Drift, S G A; Jorritsma, R; Schonewille, J T; Knijn, H M; Stegeman, J A

    2012-09-01

    The objective of this study was to assess the quality of a diagnostic model for the detection of hyperketonemia in early lactation dairy cows at test days. This diagnostic model comprised acetone and β-hydroxybutyrate (BHBA) concentrations in milk, as determined by Fourier transform infrared (FTIR) spectroscopy, in addition to other available test-day information. Plasma BHBA concentration was determined at a regular test day in 1,678 cows between 5 and 60 d in milk, originating from 118 randomly selected farms in the Netherlands. The observed prevalence of hyperketonemia (defined as plasma BHBA ≥1,200 µmol/L) was 11.2%. The value of FTIR predictions of milk acetone and milk BHBA concentrations as single tests for hyperketonemia were found limited, given the relatively large number of false positive test-day results. Therefore, a multivariate logistic regression model with a random herd effect was constructed, using parity, season, milk fat-to-protein ratio, and FTIR predictions of milk acetone and milk BHBA as predictive variables. This diagnostic model had 82.4% sensitivity and 83.8% specificity at the optimal cutoff value (defined as maximum sum of sensitivity and specificity) for the detection of hyperketonemia at test days. Increasing the cutoff value of the model to obtain a specificity of 95% increased the predicted value of a positive test result to 56.5%. Confirmation of test-positive samples with wet chemistry analysis of milk acetone or milk BHBA concentrations (serial testing) improved the diagnostic performance of the test procedure. The presented model was considered not suitable for individual detection of cows with ketosis due to the length of the test-day interval and the low positive predictive values of the investigated test procedures. The diagnostic model is, in our opinion, valuable for herd-level monitoring of hyperketonemia, especially when the model is combined with wet chemistry analysis of milk acetone or milk BHBA concentrations. By

  9. Use of Near-Infrared Spectroscopy in Early Determination of Irreversible Hemorrhagic Shock

    DTIC Science & Technology

    2004-09-01

    infrared light. Unlike “pulse-oximetry,” NIR spectroscopy measures not only arterial, but...carotid artery. 2.2 Near- infrared spectroscopic methodology/ measurements : Near- infrared spectroscopy probes (Hutchinson Technology, Inc... Measurements 3rd resuscitation bolus (resus 3) 4th resuscitation bolus (resus 4) Measurements Measurements Use of Near- Infrared Spectroscopy

  10. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  11. [Application of wavelet transform to infrared analysis].

    PubMed

    Li, Dan-ting; Zhang, Chang-jiang; Wang, Jin; Cheng, Cun-gui

    2006-11-01

    In the present article the FTIR spectra of the xylems of Smilax glabra Roxb. and its three kinds of counterfeits were obtained by Fourier transform infrared spectroscopy (FTIR) with OMNI-sampler directly, fast and accurately. By adopting wavelet transform analytical method the samples were studied in detail. The results showed that wavelet transform could remove the noises and condense variable, and have the advantages of fast operating speed, high degree of accuracy, and no noise disposal. It will have a good application prospect in infrared spectroscopic analysis.

  12. To See the World in a Grain of Sand: Recognizing the Origin of Sand Specimens by Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Multivariate Exploratory Data Analysis

    ERIC Educational Resources Information Center

    Pezzolo, Alessandra De Lorenzi

    2011-01-01

    The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…

  13. Titan's Propane from Cassini Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Flaud, J.-M.; Bezard, B.; Teanby, N. A.; Irwin, P. G. J.; Ansty, T. M.; Coustenis, A.; Flasar, F. M.

    2009-04-01

    Propane gas (C3H8) was first detected in the atmosphere of Titan by the Voyager 1 IRIS spectrometer, during the 1980 encounter (Maguire et al., 1981), and remains the heaviest saturated hydrocarbon (alkane) found there to date. Although the identification was based on the detection of several bands (including 748, 922, 1054, 1158 cm-1), only the ν26 band at 748 cm-1 has been subsequently modeled to retrieve the abundance, due to the unique availability of its line parameters in the GEISA database (Husson et al. 1992). Subsequent measurements from the ground (Roe et al., 2003) and Earth-orbit (ISO - Coustenis et al. 2003) have also focused on this one band, deriving an abundance of ~0.5 ppm, although it remains compromised by coincidence with the R-branch of the much stronger acetylene (C2H2) gas. The Composite Infrared Spectrometer (CIRS) instrument carried on-board the Cassini spacecraft in Saturn orbit has now been observing Titan during more than 50 flybys over 5 years, and offers a fresh perspective on the prevalence of propane. With much improved spectral and spatial resolution and sensitivity over IRIS, CIRS is also able to perform repeated limb sounding (viewing through the atmosphere above the surface) to increase signal-to-noise still further. Modeling and removal of the emissions of other gases now shows clearly for the first time a multitude of propane bands: including the four seen by IRIS and at least four others (869, 1338, 1376, 1472 cm-1). In addition, a new line atlas for three bands of propane at shorter wavelengths (1300-1500 cm-1) has now been compiled, based on the work of Flaud et al. (2001). With this, we now have the potential to model these weaker bands, and to check the measurements made by CIRS using the 748 cm-1 band alone. Preliminary analysis has shown that the retrievals are very sensitive to the spectral baseline (haze model) assumed, and that existing lab tholin spectral properties (Khare et al. 1984) do not well match the opacity

  14. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  15. Near-infrared spectroscopy: a methodology-focused review.

    PubMed

    Pellicer, Adelina; Bravo, María del Carmen

    2011-02-01

    Near infrared spectroscopy (NIRS) is a light-based technology used to monitor tissue oxygen status. Refinements to the method since it was first described have extended its applicability to different research and clinical settings due to its non-invasiveness, instrument portability and ease of use. Classic NIRS recordings, based in the Beer-Lambert law, can be used for the trend monitoring of changes in tissue perfusion-oxygenation parting from an arbitrary zero point. However, in order to derive intermittently quantitative values in absolute terms, certain manoeuvres must be performed. More recently, the evolution of the technique has led to the development of instruments that provide an absolute value of regional hemoglobin saturation in a continuous manner. This review will focus on the physical principles of tissue spectroscopy including a brief description of the different operating principles that are currently in use or under development. The theoretical details, experimental procedures and data analysis involved in the measurements of physiological variables using NIRS will be described. The future beyond the scope of NIRS and potential lines of research will also be discussed.

  16. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  17. Infrared spectroscopy assisted by entangled photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna V.; Lung, Shaun; Kalashnikov, Dmitry A.; Kulik, Sergei P.; Krivitsky, Leonid A.

    2016-11-01

    We describe a proof-of-concept of a method for measurement of both real (refraction) and imaginary (absorption) part of the refractive index in the infrared (IR) range by measuring an interference pattern in the visible range without the need for any spectral and spatial selection. The concept is based on nonlinear interference of entangled photons, generated via Spontaneous Parametric Down Conversion (SPDC). In our interferometer, the phase of the signal photon in the visible range depends on the phase of an entangled IR photon. When the IR photon is traveling through the media of interest, its properties can be found from the observations of the visible photon.

  18. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  19. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  20. Predicting cotton stelometer fiber strength by fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strength of cotton fibers is one of several important end-use characteristics. In routine programs, it has been mostly assessed by automation-oriented high volume instrument (HVI) system. An alternative method for cotton strength is near infrared (NIR) spectroscopy. Although previous NIR models ...

  1. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    PubMed Central

    2015-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  2. WW domain folding complexity revealed by infrared spectroscopy.

    PubMed

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  3. Principles, performance, and applications of spectral reconstitution (SR) in quantitative analysis of oils by Fourier transform infrared spectroscopy (FT-IR).

    PubMed

    García-González, Diego L; Sedman, Jacqueline; van de Voort, Frederik R

    2013-04-01

    Spectral reconstitution (SR) is a dilution technique developed to facilitate the rapid, automated, and quantitative analysis of viscous oil samples by Fourier transform infrared spectroscopy (FT-IR). This technique involves determining the dilution factor through measurement of an absorption band of a suitable spectral marker added to the diluent, and then spectrally removing the diluent from the sample and multiplying the resulting spectrum to compensate for the effect of dilution on the band intensities. The facsimile spectrum of the neat oil thus obtained can then be qualitatively or quantitatively analyzed for the parameter(s) of interest. The quantitative performance of the SR technique was examined with two transition-metal carbonyl complexes as spectral markers, chromium hexacarbonyl and methylcyclopentadienyl manganese tricarbonyl. The estimation of the volume fraction (VF) of the diluent in a model system, consisting of canola oil diluted to various extents with odorless mineral spirits, served as the basis for assessment of these markers. The relationship between the VF estimates and the true volume fraction (VF(t)) was found to be strongly dependent on the dilution ratio and also depended, to a lesser extent, on the spectral resolution. These dependences are attributable to the effect of changes in matrix polarity on the bandwidth of the ν(CO) marker bands. Excellent VF(t) estimates were obtained by making a polarity correction devised with a variance-spectrum-delineated correction equation. In the absence of such a correction, SR was shown to introduce only a minor and constant bias, provided that polarity differences among all the diluted samples analyzed were minimal. This bias can be built into the calibration of a quantitative FT-IR analytical method by subjecting appropriate calibration standards to the same SR procedure as the samples to be analyzed. The primary purpose of the SR technique is to simplify preparation of diluted samples such that

  4. Vigilance Task-Related Change in Brain Functional Connectivity as Revealed by Wavelet Phase Coherence Analysis of Near-Infrared Spectroscopy Signals.

    PubMed

    Wang, Wei; Wang, Bitian; Bu, Lingguo; Xu, Liwei; Li, Zengyong; Fan, Yubo

    2016-01-01

    This study aims to assess the vigilance task-related change in connectivity in healthy adults using wavelet phase coherence (WPCO) analysis of near-infrared spectroscopy signals (NIRS). NIRS is a non-invasive neuroimaging technique for assessing brain activity. Continuous recordings of the NIRS signals were obtained from the prefrontal cortex (PFC) and sensorimotor cortical areas of 20 young healthy adults (24.9 ± 3.3 years) during a 10-min resting state and a 20-min vigilance task state. The vigilance task was used to simulate driving mental load by judging three random numbers (i.e., whether odd numbers). The task was divided into two sessions: the first 10 min (Task t1) and the second 10 min (Task t2). The WPCO of six channel pairs were calculated in five frequency intervals: 0.6-2 Hz (I), 0.145-0.6 Hz (II), 0.052-0.145 Hz (III), 0.021-0.052 Hz (IV), and 0.0095-0.021 Hz (V). The significant WPCO formed global connectivity (GC) maps in intervals I and II and functional connectivity (FC) maps in intervals III to V. Results show that the GC levels in interval I and FC levels in interval III were significantly lower in the Task t2 than in the resting state (p < 0.05), particularly between the left PFC and bilateral sensorimotor regions. Also, the reaction time (RT) shows an increase in Task t2 compared with that in Task t1. However, no significant difference in WPCO was found between Task t1 and resting state. The results showed that the change in FC at the range of 0.6-2 Hz was not attributed to the vigilance task per se, but the interaction effect of vigilance task and time factors. The findings suggest that the decreased attention level might be partly attributed to the reduced GC levels between the left prefrontal region and sensorimotor area. The present results provide a new insight into the vigilance task-related brain activity.

  5. Vigilance Task-Related Change in Brain Functional Connectivity as Revealed by Wavelet Phase Coherence Analysis of Near-Infrared Spectroscopy Signals

    PubMed Central

    Wang, Wei; Wang, Bitian; Bu, Lingguo; Xu, Liwei; Li, Zengyong; Fan, Yubo

    2016-01-01

    This study aims to assess the vigilance task-related change in connectivity in healthy adults using wavelet phase coherence (WPCO) analysis of near-infrared spectroscopy signals (NIRS). NIRS is a non-invasive neuroimaging technique for assessing brain activity. Continuous recordings of the NIRS signals were obtained from the prefrontal cortex (PFC) and sensorimotor cortical areas of 20 young healthy adults (24.9 ± 3.3 years) during a 10-min resting state and a 20-min vigilance task state. The vigilance task was used to simulate driving mental load by judging three random numbers (i.e., whether odd numbers). The task was divided into two sessions: the first 10 min (Task t1) and the second 10 min (Task t2). The WPCO of six channel pairs were calculated in five frequency intervals: 0.6–2 Hz (I), 0.145–0.6 Hz (II), 0.052–0.145 Hz (III), 0.021–0.052 Hz (IV), and 0.0095–0.021 Hz (V). The significant WPCO formed global connectivity (GC) maps in intervals I and II and functional connectivity (FC) maps in intervals III to V. Results show that the GC levels in interval I and FC levels in interval III were significantly lower in the Task t2 than in the resting state (p < 0.05), particularly between the left PFC and bilateral sensorimotor regions. Also, the reaction time (RT) shows an increase in Task t2 compared with that in Task t1. However, no significant difference in WPCO was found between Task t1 and resting state. The results showed that the change in FC at the range of 0.6–2 Hz was not attributed to the vigilance task per se, but the interaction effect of vigilance task and time factors. The findings suggest that the decreased attention level might be partly attributed to the reduced GC levels between the left prefrontal region and sensorimotor area. The present results provide a new insight into the vigilance task-related brain activity. PMID:27547182

  6. Computing protein infrared spectroscopy with quantum chemistry.

    PubMed

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  7. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  8. Infrared spectroscopy of exoplanets: observational constraints.

    PubMed

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations.

  9. Infrared spectroscopy of simulated Martian surface materials

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Sagan, C.

    1978-01-01

    Mineralogy inferred from the Viking X-ray fluorescence spectrometry (XRFS) is compared with mineralogy indicated by spectral data. The comparison is done by taking laboratory spectra of Viking analog minerals. Both XRFS and infrared data are consistent with clays as the dominant SiO2 containing minerals on Mars. The X-ray fluorescence data might also be consistent with the dominance of certain mafic SiO2 igneous minerals, but the spectral data are probably inconsistent with such materials. Sulfates, inferred by XRFS, are consistent with the spectral data. Inferences following Mariner 9 that high-SiO2 minerals were important on Mars may have been biased by the presence of sulfates. Calcium carbonate, in the quantities indirectly suggested by XRFS are inconsistent with the spectral data, but smaller quantities of CaCO3 are consistent, as are large quantities of other carbonates.

  10. Infrared Spectroscopy of Extra-solar Planets

    NASA Astrophysics Data System (ADS)

    Wiedemann, G.

    Giant extra-solar planets with short orbital periods may be detected directly via the infrared line spectra emitted by their heated atmospheres. Ground-based measurements of the planetary lines at ~10-4 of the stellar flux are possible if one exploits the large-amplitude Doppler modulation caused by the orbital velocity, whereby the period and phase are known for stars with established reflex motions. A measured radial velocity amplitude of the planet yields directly the star/planet mass ratio and the inclination angle of the orbital plane. A search for methane in the IR 3.3 μm spectrum of τ Boo has been carried out at the NASA IRTF. The Southern Saturn-type planet of HD 75289 has been observed over a six week period by the VLT (2.3 μm CO) and future CO and CH4 observations are scheduled.

  11. Infrared spectroscopy of exoplanets: observational constraints

    PubMed Central

    Encrenaz, Thérèse

    2014-01-01

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  12. Airborne infrared spectroscopy of 1994 western wildfires

    NASA Astrophysics Data System (ADS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07 cm-1 resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  13. Stratospheric sounding by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kunde, V. G.; Mumma, M. J.; Kostiuk, T.; Buhl, D.; Frerking, M. A.

    1978-01-01

    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution. The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of O3, CO2, CH4 and N2O are given.

  14. Mass loss from red giants - Infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.

  15. Bird sexing by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Steiner, Gerald; Bartels, Thomas; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund

    2010-02-01

    Birds are traditionally classified as male or female based on their anatomy and plumage color as judged by the human eye. Knowledge of a bird's gender is important for the veterinary practitioner, the owner and the breeder. The accurate gender determination is essential for proper pairing of birds, and knowing the gender of a bird will allow the veterinarian to rule in or out gender-specific diseases. Several biochemical methods of gender determination have been developed for avian species where otherwise the gender of the birds cannot be determined by their physical appearances or characteristics. In this contribution, we demonstrate that FT-IR spectroscopy is a suitable tool for a quick and objective determination of the bird's gender. The method is based on differences in chromosome size. Male birds have two Z chromosomes and female birds have a W-chromosome and a Z-chromosome. Each Z-chromosome has approx. 75.000.000 bps whereas the W-chromosome has approx. 260.00 bps. This difference can be detected by FT-IR spectroscopy. Spectra were recorded from germ cells obtained from the feather pulp of chicks as well as from the germinal disk of fertilized but non-bred eggs. Significant changes between cells of male and female birds occur in the region of phosphate vibrations around 1080 and 1120 cm-1.

  16. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    PubMed

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications.

  17. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  18. Stress degradation studies of nelfinavir mesylate by Fourier transform infrared spectroscopy.

    PubMed

    Singh, Parul; Mehrotra, Ranjana; Bakhshi, A K

    2010-11-02

    Nelfinavir mesylate is the first nonpeptidic protease inhibitor available in pediatric formulation. In the present paper the stability of nelfinavir mesylate under different stress conditions is evaluated using Fourier transform infrared spectroscopy. The drug is subjected to thermal degradation, photodegradation, acid hydrolysis, base hydrolysis and oxidation as per ICH guidelines. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC) are carried out to support the implementation of infrared spectroscopy for the stability studies of nelfinavir mesylate. Significant changes are observed in the IR spectra collected after exposing the drug to thermal radiations, acid and base hydrolysis and oxidative degradation. No change is observed in the spectra of the drug after exposing it to sunlight indicating the good photostability of nelfinavir mesylate. The results of infrared spectroscopy agree well with that of other complementary techniques as DSC, TGA, XRD and HPLC.

  19. Kinetic analysis of reactions of Si-based epoxy resins by near-infrared spectroscopy, 13C NMR and soft-hard modelling.

    PubMed

    Garrido, Mariano; Larrechi, Maria Soledad; Rius, F Xavier; Mercado, Luis Adolfo; Galià, Marina

    2007-02-05

    Soft- and hard-modelling strategy was applied to near-infrared spectroscopy data obtained from monitoring the reaction between glycidyloxydimethylphenyl silane, a silicon-based epoxy monomer, and aniline. On the basis of the pure soft-modelling approach and previous chemical knowledge, a kinetic model for the reaction was proposed. Then, multivariate curve resolution-alternating least squares optimization was carried out under a hard constraint, that compels the concentration profiles to fulfil the proposed kinetic model at each iteration of the optimization process. In this way, the concentration profiles of each species and the corresponding kinetic rate constants of the reaction, unpublished until now, were obtained. The results obtained were contrasted with 13C NMR. The joint interval test of slope and intercept for detecting bias was not significant (alpha=5%).

  20. Rapid Identification and Classification of Listeria spp. and Serotype Assignment of Listeria monocytogenes Using Fourier Transform-Infrared Spectroscopy and Artificial Neural Network Analysis

    PubMed Central

    Romanolo, K. F.; Gorski, L.; Wang, S.; Lauzon, C. R.

    2015-01-01

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains of Listeria spp. to give a biochemical fingerprint from which identification of unknown samples were made. This technology was able to accurately distinguish the Listeria species with 99.03% accuracy. Eleven serotypes of Listeria monocytogenes including 1/2a, 1/2b, and 4b were identified with 96.58% accuracy. In addition, motile and non-motile forms of Listeria were used to create a more robust model for identification. FT-IR coupled with NeuroDeveloper™ appear to be a more accurate and economic choice for rapid identification of pathogenic Listeria spp. than current methods. PMID:26600423

  1. Communication: Evidence of structural phase transitions in silicalite-1 by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ballandras, Anthony; Weber, Guy; Paulin, Christian; Bellat, Jean-Pierre; Rotger, Maud

    2013-09-01

    The adsorption of trichloroethylene, perchloroethylene, and p-xylene on a MFI (Mobile-FIve) zeolite is studied using in situ FTIR spectroscopy at 298 K. Spectra of self-supported zeolites in contact with increasing pressures of pure gas were recorded at equilibrium in the mid-infrared domain. Analysis of the evolution of the shape and location of vibrational bands of the zeolite as a function of the amount adsorbed allowed the observation of structural modifications of the adsorbent for the first time by infrared spectroscopy.

  2. Infrared Spectroscopy of Black Hole Candidates

    NASA Technical Reports Server (NTRS)

    Colgan, Sean W.; Cotera, A. S.; Maloney, P. R.; Hollenbach, D. J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    ISO LWS and SWS observations of the approx. solar mass black hole candidates 1E1740.7-2942 and GRS1758-258 are presented. For 1E1740.7-2942, it has been suggested that the luminosity is provided in whole or part by Bondi-Hoyle accretion from a surrounding black hole (Bally & Leventhal 1991, Nat, 353,234). Maloney et al. (1997, ApJ482, L41) have predicted that detectable far-infrared line emission from [0I] (63 microns), [CII] (158 microns), [SiII] (35 microns) and other lines will arise from black holes which are embedded in molecular clouds. No strong line emission associated with either 1E1740.7-2942 or GRS1758-258 was detected, implying either that 1) these sources are not embedded in dense molecular clouds, or 2) that their average X-ray luminosity over the past 100 years is significantly lower than its current value. The measured upper limits to the line fluxes are compared with the models of Maloney et al.to constrain the properties of the ISM in the vicinity of these X-ray sources.

  3. Fresh Soil Sensing using Visible and Near Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maleki, M. R.

    2009-04-01

    Fast, precise and affordable soil analytical techniques are needed for the determination of soil fertility of each zone of a field in site specific land management. The objective of this poster is to demonstrate how nutrients can be estimated from fresh soil using visible (VIS) and near infrared (NIR) spectroscopy method. This could be carried out by summarizing the methodology to develop a calibration model for soil phosphorus with the VIS-NIR spectroscopy method. Obviously, it can be simply extended for other nutrients with the same methodology. A large samples set should be collected from different fields with a wide range of soil type and texture. The samples in this set should be represented a wide range of moisture content and soil nutrient which is desired to be calibrated by the spectroscopy technique. Immediately after sampling, the samples should be kept in a cold room (± 1 °C) until the time of the spectral measurement and the chemical analysis. The samples should be taken from the cold room one hour before the spectral measurement to ensure that the samples were at room temperature and no condensation occurs on the optical instruments. Each soil sample was thoroughly mixed and debris such as plant material and stones were removed. The soil sample was divided into three parts, one part for spectral measurement, another part for chemical analysis and the rest was archived. The part for chemical analysis should be examined for their soil nutrients. A small amount of soil (about 30 g) should be placed in a small plastic petridish (e.g. 7.5 mm depth and 30 mm diameter). The soil in the petridish should be first pressed and then carefully levelled in order to obtain a smooth surface for a maximum light reflectance. Soil samples should be put under the spectrophotometer. Three reflectance spectra should be measured on each soil specimen by rotating the plastic cups over 120°. Having finished measuring, the reflectance data should be put against the chemical

  4. Near-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statistics

    NASA Astrophysics Data System (ADS)

    Duarte, Janaína; Pacheco, Marcos T. T.; Villaverde, Antonio Balbin; Machado, Rosangela Z.; Zângaro, Renato A.; Silveira, Landulfo

    2010-07-01

    Toxoplasmosis is an important zoonosis in public health because domestic cats are the main agents responsible for the transmission of this disease in Brazil. We investigate a method for diagnosing toxoplasmosis based on Raman spectroscopy. Dispersive near-infrared Raman spectra are used to quantify anti-Toxoplasma gondii (IgG) antibodies in blood sera from domestic cats. An 830-nm laser is used for sample excitation, and a dispersive spectrometer is used to detect the Raman scattering. A serological test is performed in all serum samples by the enzyme-linked immunosorbent assay (ELISA) for validation. Raman spectra are taken from 59 blood serum samples and a quantification model is implemented based on partial least squares (PLS) to quantify the sample's serology by Raman spectra compared to the results provided by the ELISA test. Based on the serological values provided by the Raman/PLS model, diagnostic parameters such as sensitivity, specificity, accuracy, positive prediction values, and negative prediction values are calculated to discriminate negative from positive samples, obtaining 100, 80, 90, 83.3, and 100%, respectively. Raman spectroscopy, associated with the PLS, is promising as a serological assay for toxoplasmosis, enabling fast and sensitive diagnosis.

  5. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  6. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  7. Near Infrared Laser Spectroscopy of Scandium Monobromide

    NASA Astrophysics Data System (ADS)

    Xia, Ye; Cheung, A. S.-C.; Liao, Zhenwu; Yang, Mei; Chan, Man-Chor

    2012-06-01

    High resolution laser spectrum of scandium monobromide (ScBr) between 787 and 845 nm has been investigated using the technique of laser vaporization/reaction with free jet expansion and laser induced fluorescence spectroscopy. ScBr was produced by reacting laser vaporized Sc atoms with ethyl bromide (C2H5Br). Spectra of six vibrational bands of both Sc79Br and Sc81Br isotopomers of the C1 Σ+ - X1 Σ+ transition and seven vibrational bands of the e3 Δ - a3 Δ transition were obtained and analyzed. Least-squares fit of the measured line positions for the singlet transitions yielded accurate molecular constants for the v = 0 - 3 levels of the C1 Σ+ state and the v = 0 - 2 levels of the X1 Σ+ state. Similar least-squares fit for the triplet transitions yielded molecular constants for the v = 0 - 2 levels of both e3 Δ and a3 Δ states. The equilibrium bond length, r_0, of the a3 Δ state has been determined to be 2.4789 Å. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged

  8. Infrared Transit Spectroscopy of HD 209458b

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Deming, D.; Goukenleuque, C.; Matthews, K.; Richardson, L. J.; Steyert, D.; Wiedemann, G.; Zeehandelaar, D.

    We measure spectra during transits of planet HD 209458b in front of its star to determine its composition and temperature. Transits should modulate the stellar spectrum because tangent rays of different wavelengths become extinct at different levels in the extrasolar planet atmosphere, changing the occulting area. S/N calculations show that ground-based spectroscopy can measure or place useful limits on the atmospheric abundances of water, methane, and carbon monoxide. Carbon forms predominantly methane below 1400 K and carbon monoxide if hotter. Since the equilibrium temperature is about 1400 K, detecting methane and/or carbon monoxide would constrain atmospheric temperatures. We have observed on 12 transit and 4 non-transit nights from Palomar, Keck, VLT, and IRTF. The expected modulation of the stellar spectrum is model-dependent. Since the effect is subtle compared to the noise in the data, we correlate model vs. observed spectra and average the correlations to test whether the data support a given model. We are developing a tangent-geometry radiative-transfer model to predict the spectrum of a given planetary model, and we are measuring water, methane, and carbon monoxide in the laboratory at 1300 K, with pressure-broadening by molecular hydrogen, to make our model spectra realistic at these elevated temperatures. We solicit participation by those who wish to test their planetary models.

  9. Coherent sources for mid-infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Honzátko, Pavel; Baravets, Yauhen; Mondal, Shyamal; Peterka, Pavel; Todorov, Filip

    2016-12-01

    Mid-infrared laser absorption spectroscopy (LAS) is useful for molecular trace gas concentration measurements in gas mixtures. While the gas chromatography-mass spectrometry is still the gold standard in gas analysis, LAS offers several advantages. It takes tens of minutes for a gas mixture to be separated in the capillary column precluding gas chromatography from real-time control of industrial processes, while LAS can measure the concentration of gas species in seconds. LAS can be used in a wide range of applications such as gas quality screening for regulation, metering and custody transfer,1 purging gas pipes to avoid explosions,1 monitoring combustion processes,2 detection and quantification of gas leaks,3 by-products monitoring to provide feedback for the real-time control of processes in petrochemical industry,4 real-time control of inductively coupled plasma etch reactors,5, 6 and medical diagnostics by means of time-resolved volatile organic compound (VOC) analysis in exhaled breath.7 Apart from the concentration, it also permits us to determine the temperature, pressure, velocity and mass flux of the gas under observation. The selectivity and sensitivity of LAS is linked to a very high spectral resolution given by the linewidth of single-frequency lasers. Measurements are performed at reduced pressure where the collisional and Doppler broadenings are balanced. The sensitivity can be increased to ppb and sometimes to ppt ranges by increasing the interaction length in multi-pass gas cells or resonators and also by adopting modulation techniques.8

  10. Thermal infrared spectroscopy on feldspars — Successes, limitations and their implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Hecker, Christoph; der Meijde, Mark van; van der Meer, Freek D.

    2010-11-01

    Minerals of the feldspar group are the most common on earth. Feldspars are economically important in two ways: either as industrial minerals or as a vector-to-ore for mineral deposits. In order to use feldspars for classifying rock compositions or metasomatic conditions during rock alteration events, there is a need for analytical methods to identify and classify feldspars. Traditionally, feldspar composition and structure have been investigated using methods such as optical microscopy, electron microprobe analysis (EMPA), cathodoluminescence and X-ray diffraction (XRD) analysis. In this paper infrared techniques (0.7-25 μm)) are reviewed in detail and investigated in how far some of the traditional analytical methods can be replaced by infrared spectroscopy. Successes as well as limitations of infrared approaches are highlighted and existing work is scrutinized in terms of its applicability to remote sensing techniques. Even though numerous studies on mid-infrared (MIR) spectroscopy of feldspars exist, their results often cannot be directly related to remote sensing applications. Examples are the effects of feldspar twinning, exsolution textures and structural state on infrared spectra. The applicability of the results to emission remote sensing requires further research. It has been shown that linear unmixing of laboratory infrared spectra of rocks works fairly well. Detection limits for feldspar are around 5% and plagioclase composition can be determined within error margins of ± 4% anorthite component. Infrared spectroscopy can, however, not detect compositional zonation or different generations of feldspars. Infrared spectra represent the current average plagioclase and average alkali feldspar composition in the sample. With several new airborne instruments under development, it is opportune to focus upcoming research efforts on developing standardized processing techniques and spectral feldspar indices for thermal infrared imagery. Commercially interesting

  11. [Investigation of fibrous cultural materials by infrared spectroscopy].

    PubMed

    Luo, Xi-yun; Du, Yi-ping; Shen, Mei-hua; Zhang, Wen-qing; Zhou, Xin-guang; Fang, Shu-ying; Zhang, Xuan

    2015-01-01

    in cellulose. Moreover, in order to explore direct and simple method to identify different materials with similar spectrum,. the principal component analysis (PCA) was applied to separate cotton and linen, mulberry silk and tussah silk, as well as five paper fibers. To eliminate and reduce the spectral scattering caused by sample uneven surface roughness, the multiplicative scatter correction (MSC) has been applied based on total spectral data. The result showed that the score plot using the first two principal components can effectively categorize both group textiles of cotton and linen, as well as mulberry silk and tussah silk, and they have similar chemical structure. For five paper fibers, the PCA was applied in different spectral range (918-550, 1 280-918, 1 700-1 280 and 3 800-2 800 cm-1), and the best result appeared in the range from 3 800 to 2 800 cm-1, in which the five paper fibers can be well categorized. This research showed that infrared spectroscopy combined with principal component analysis has great potential advantage on identifying fibrous materials with similar structure.

  12. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    PubMed

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  13. Synchrotron-based far-infrared spectroscopy of nickel tungstate

    NASA Astrophysics Data System (ADS)

    Kalinko, A.; Kuzmin, A.; Roy, P.; Evarestov, R. A.

    2016-07-01

    Monoclinic antiferromagnetic NiWO4 was studied by far-infrared (30-600 cm-1) absorption spectroscopy in the temperature range of 5-300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO4 and ZnWO4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO4 and CoWO4 below their Neel temperatures down to 5 K.

  14. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Miranda, D. A.; Cristiano, K. L.; Gutiérrez, J. C.

    2013-11-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated.

  15. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  16. Isotope effects in liquid water by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2002-03-01

    The light and heavy liquid water (H2O-D2O) mixtures in the 0-1 molar fraction were studied in the mid-infrared by Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy. Five principal factors were retrieved by factor analysis (FA). When D2O is mixed with H2O, the HDO formed because of the hopping nature of the proton (H or D) results in three types of molecules in equilibrium. Because of the nearest-neighbor interactions, the three molecules give rise to nine species. Some of the species evolve concomitantly with other species giving the five principal factors observed. We present the spectra of these factors with their abundances. The calculated probability of the species present at different molar fractions which when the concomitant species are combined gives the observed abundances. To appreciate clearly the difference between the principal spectra, a Gaussian simulation of the bands was made. Because of the numerous components that make up the stretch bands, they are not very sensitive to changes in composition of the solutions; nevertheless, they do indicate the presence of new entities other than the pure species. The deformation bands, more sensitive to such changes than the stretch bands, clearly indicate the presence of the three types of molecules as well as of intermediate species. These bands are sensitive to the two hydrogen bonds on the oxygen atom that a reference molecule makes with its nearest-neighbors, but not to the hydrogen bonds that the nearest-neighbors make with the next nearest neighbors.

  17. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    PubMed

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  18. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  19. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    PubMed

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  20. Infrared Spectroscopy as a Versatile Analytical Tool for the Quantitative Determination of Antioxidants in Agricultural Products, Foods and Plants

    PubMed Central

    Cozzolino, Daniel

    2015-01-01

    Spectroscopic methods provide with very useful qualitative and quantitative information about the biochemistry and chemistry of antioxidants. Near infrared (NIR) and mid infrared (MIR) spectroscopy are considered as powerful, fast, accurate and non-destructive analytical tools that can be considered as a replacement of traditional chemical analysis. In recent years, several reports can be found in the literature demonstrating the usefulness of these methods in the analysis of antioxidants in different organic matrices. This article reviews recent applications of infrared (NIR and MIR) spectroscopy in the analysis of antioxidant compounds in a wide range of samples such as agricultural products, foods and plants. PMID:26783838

  1. Environmental Affects on Surfactin Studied Using Multidimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nite, Jacob; Krummel, Amber

    2014-03-01

    Surfactin, a cyclic lipopeptide produced by Bacillus subtilis, is a pore forming toxin that has been studied in the literature extensively. It is known to exist in two different conformations, S1 and S2, which are thought to relate to surfactin's pore forming ability. The vibrational characteristics of surfactin have been studied using linear infrared spectroscopy as well as two-dimensional infrared spectroscopy in different environments. The environments probed were specifically chosen to mimic surfactin in an aqueous environment as well as a lipid membrane environment. The vibrational spectra were interpreted using transitional dipole coupling to relate the coupling evident in the data to the structural conformers obtained from NMR data. These measurements have been used to link the structural characteristics of surfactin to different solvent environments to gain insight into surfactin's pore forming ability mechanisms. Colorado State University. Maciel Fellowship.

  2. Bundled-Optode Method in Functional Near-Infrared Spectroscopy

    PubMed Central

    Nguyen, Hoang-Dung; Hong, Keum-Shik; Shin, Yong-Il

    2016-01-01

    In this paper, a theory for detection of the absolute concentrations of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) from hemodynamic responses using a bundled-optode configuration in functional near-infrared spectroscopy (fNIRS) is proposed. The proposed method is then applied to the identification of two fingers (i.e., little and thumb) during their flexion and extension. This experiment involves a continuous-wave-type dual-wavelength (760 and 830 nm) fNIRS and five healthy male subjects. The active brain locations of two finger movements are identified based on the analysis of the t- and p-values of the averaged HbOs, which are quite distinctive. Our experimental results, furthermore, revealed that the hemodynamic responses of two-finger movements are different: The mean, peak, and time-to-peak of little finger movements are higher than those of thumb movements. It is noteworthy that the developed method can be extended to 3-dimensional fNIRS imaging. PMID:27788178

  3. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  4. [Near infrared spectroscopy study on water content in turbine oil].

    PubMed

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  5. Spectroscopy of Metamaterials from Infrared to Optical Frequencies

    DTIC Science & Technology

    2006-03-01

    negative permeability,” Phys. Rev. Lett. 94, 37402 (2005). 14. F . Wooten , Optical Properties of Solids (Academic, 1972). 15. For example, see M. Born...for materials with differ- ent symmetry properties of the constitutive relations. The terms and are called the magneto- optical permittivi- ties...Spectroscopy of metamaterials from infrared to optical frequencies Willie J. Padilla Materials Science and Technology Division, Center for Integrated

  6. Infrared Spectroscopy Study of the SP-250 Epoxy Resin System.

    DTIC Science & Technology

    1984-07-01

    It necessary and identify by block nambo,) Epoxy resins Dicyandiamide 4 Curing agents Infrared spectroscopy Monuron 20. ABSTRACT (Crntimse on revse...investigation, the mixtures containing Monuron were cured at 130 0 C and those con- sisting of dicyandiamide and having "no Monuron" were hardened at 2000...uncured specimens were meas- ured from 4000 cm- 1 to 400 cm- I . DISCUSSION AND RESULTS The accelerated cure of dicyandiamide (Dicy)-containing epoxy resins

  7. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    PubMed

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-05

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  8. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  9. Elucidation of intermediates and mechanisms in heterogeneous catalysis using infrared spectroscopy.

    PubMed

    Savara, Aditya; Weitz, Eric

    2014-01-01

    Infrared spectroscopy has a long history as a tool for the identification of chemical compounds. More recently, various implementations of infrared spectroscopy have been successfully applied to studies of heterogeneous catalytic reactions with the objective of identifying intermediates and determining catalytic reaction mechanisms. We discuss selective applications of these techniques with a focus on several heterogeneous catalytic reactions, including hydrogenation, deNOx, water-gas shift, and reverse-water-gas shift. The utility of using isotopic substitutions and other techniques in tandem with infrared spectroscopy is discussed. We comment on the modes of implementation and the advantages and disadvantages of the various infrared techniques. We also note future trends and the role of computational calculations in such studies. The infrared techniques considered are transmission Fourier transform infrared spectroscopy, infrared reflection-absorption spectroscopy, polarization-modulation infrared reflection-absorption spectroscopy, sum-frequency generation, diffuse reflectance infrared Fourier transform spectroscopy, attenuated total reflectance, infrared emission spectroscopy, photoacoustic infrared spectroscopy, and surface-enhanced infrared absorption spectroscopy.

  10. Evaluation of infrared-reflection absorption spectroscopy measurement and locally weighted partial least-squares for rapid analysis of residual drug substances in cleaning processes.

    PubMed

    Nakagawa, Hiroshi; Tajima, Takahiro; Kano, Manabu; Kim, Sanghong; Hasebe, Shinji; Suzuki, Tatsuya; Nakagami, Hiroaki

    2012-04-17

    The usefulness of infrared-reflection absorption spectroscopy (IR-RAS) for the rapid measurement of residual drug substances without sampling was evaluated. In order to realize the highly accurate rapid measurement, locally weighted partial least-squares (LW-PLS) with a new weighting technique was developed. LW-PLS is an adaptive method that builds a calibration model on demand by using a database whenever prediction is required. By adding more weight to samples closer to a query, LW-PLS can achieve higher prediction accuracy than PLS. In this study, a new weighting technique is proposed to further improve the prediction accuracy of LW-PLS. The root-mean-square error of prediction (RMSEP) of the IR-RAS spectra analyzed by LW-PLS with the new weighting technique was compared with that analyzed by PLS and locally weighted regression (LWR). The RMSEP of LW-PLS with the proposed weighting technique was about 36% and 14% smaller than that of PLS and LWR, respectively, when ibuprofen was a residual drug substance. Similarly, LW-PLS with the weighting technique was about 39% and 24% better than PLS and LWR in RMSEP, respectively, when magnesium stearate was a residual excipient. The combination of IR-RAS and LW-PLS with the proposed weighting technique is a very useful rapid measurement technique of the residual drug substances.

  11. Near-infrared spectroscopy analysis of seed coats of common beans ( Phaseolus vulgaris L.): a potential tool for breeding and quality evaluation.

    PubMed

    Plans, Marçal; Simó, Joan; Casañas, Francesc; Sabaté, José

    2012-01-25

    Near-infrared spectroscopy (NIRS) is a well-established technique for determining the components of foods. Sample preparation for NIRS is easy, making it suitable for breeding and/or quality evaluation, for which a large number of samples should be analyzed. We aimed to assess the feasibility of NIRS to estimate parameters that seem to influence consumers' perception of the seed coat of common beans: dietary fiber (DF), uronic acids (UA), ashes, calcium, and magnesium. We used reference methods to analyze ground seed coats of 90 common bean samples with a wide range of genetic variability and cultivated at many locations. We registered the NIR spectra on intact beans and ground seed coat samples. We derived partial least-squares (PLS) regression equations from a set of calibration samples and tested their predictive power in an external validation set. For intact beans, only RER values for ashes and calcium are good enough for very rough screening. For ground seed coat samples, the RPD and RER values for ashes (3.49 and 14.09, respectively) and calcium (3.57 and 12.70, respectively) are good enough for screening. RPD and RER values for DF (2.60 and 9.15, respectively) and RER values for magnesium (6.57) also enable rough screening. A poorer correlation was achieved for UA. We conclude that NIRS can help in common bean breeding research and quality evaluation.

  12. Application of infrared reflection and Raman spectroscopy for quantitative determination of fat in potato chips

    NASA Astrophysics Data System (ADS)

    Mazurek, Sylwester; Szostak, Roman; Kita, Agnieszka

    2016-12-01

    Potato chips are important products in the snack industry. The most significant parameter monitored during their quality control process is fat content. The Soxhlet method, which is applied for this purpose, is time consuming and expensive. We demonstrate that both infrared and Raman spectroscopy can effectively replace the extraction method. Raman, mid-infrared (MIR) and near-infrared (NIR) spectra of the homogenised laboratory-prepared chips were recorded. On the basis of obtained spectra, partial least squares (PLS) calibration models were constructed. They were characterised by the values of relative standard errors of prediction (RSEP) in the 1.0-1.9% range for both calibration and validation data sets. Using the developed models, six commercial products were successfully quantified with recovery in the 98.5-102.3% range against the AOAC extraction method. The proposed method for fat quantification in potato chips based on Raman spectroscopy can be easily adopted for on-line product analysis.

  13. Application of infrared spectroscopy and pyrolysis gas chromatography for characterisation of adhesive tapes

    NASA Astrophysics Data System (ADS)

    Zięba-Palus, Janina; Nowińska, Sabina; Kowalski, Rafał

    2016-12-01

    Infrared spectroscopy and pyrolysis GC/MS were applied in the comparative analysis of adhesive tapes. By providing information about the polymer composition, it was possible to classify both backings and adhesives of tapes into defined chemical classes. It was found that samples of the same type (of backings and adhesives) and similar infrared spectra can in most cases be effectively differentiated using Py-GC/MS, sometimes based only on the presence of peaks of very low intensity originating from minor components. The results obtained enabled us to draw the conclusion that Py-GC/MS appears to be a valuable analytical technique for examining tapes, which is complementary to infrared spectroscopy. Identification of pyrolysis products enables discrimination of samples. Both methods also provide crucial information that is useful for identification of adhesive tapes found at the crime scene.

  14. Synchrotron-based rotationally resolved high-resolution FTIR spectroscopy of azulene and the unidentified infrared bands of astronomy.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Quack, Martin

    2013-10-07

    Chasing the unidentified IR bands: The first rotationally resolved high-resolution infrared spectrum of azulene is reported using synchrotron Fourier transform infrared spectroscopy including a rovibrational analysis of the out-of-plane fundamental ν44. Comparison of azulene, naphthalene, indole, and biphenyl infrared bands leads to coincidences with UIR bands at 12.8 μm with naphthalene and at 13.55 and 14.6 μm with biphenyl bands, but excluding azulene as a strong absorber.

  15. Evaluation of different grades of ginseng using Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Ginseng is one of the most widely used herbal medicines which have many kinds of pharmaceutical values. The discrimination of grades of ginseng includes the cultivation types and the growth years herein. To evaluate the different grades of ginseng, the fibrous roots and rhizome roots of ginseng were analyzed by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy in this paper. The fibrous root and rhizome root of ginseng have different content of starch, calcium oxalate and other components. For the fibrous roots of ginseng, mountain cultivation ginseng (MCG), garden cultivation ginseng (GCG) and transplanted cultivation ginseng (TCG) have clear difference in the infrared spectra and second derivative spectra in the range of 1800-400 cm -1, and clearer difference was observed in the range of 1045-1160 and 1410-1730 cm -1 in 2D synchronous correlation spectra. Three kinds of ginseng can be clustered very well by using SIMCA analysis on the basis of PCA as well. For the rhizome roots, the content of calcium oxalate and starch change with growth years in the IR spectra, and some useful procedure can be obtained by the analysis of 2D IR synchronous spectra in the range of 1050-1415 cm -1. Also, ginsengs cultivated in different growth years were clustered perfectly by using SIMCA analysis. The results suggested that different grades of ginseng can be well recognized using the mid-infrared spectroscopy assisted by 2D IR correlation spectroscopy, which provide the macro-fingerprint characteristics of ginseng in different parts and supplied a rapid, effective approach for the evaluation of the quality of ginseng.

  16. Reflectance spectroscopy for soil analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last three decades or more, researchers have estimated soil properties using visible and near infrared (VNIR) diffuse reflectance spectroscopy (DRS), with varying results. This presentation reviews the history and state-of –the art of VNIR-DRS, including relative estimation accuracy for var...

  17. [Infrared spectral analysis for calcined borax].

    PubMed

    Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao

    2011-08-01

    To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.

  18. PREFACE: 3rd International Workshop on Infrared Plasma Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davies, P. B.; Röpcke, Jürgen; Hempel, Frank

    2009-07-01

    This volume containsd a selection of papers from the third Infrared Plasma Spectroscopy (IPS) Workshop held in Greifswald, Germany in July 2008. Although not all the contributions have been written up in time for the deadline for this volume, nevertheless the 12 contributions presented here give a fair representation of the conference topics. The conference comprised four different types of contribution. Firstly, four invited lectures focussed on the prime areas of interest. Secondly, eight shorter contributed talks, grouped as closely as possible with the appropriate invited lecture. These contributed talks covered topics in both pure and applied infrared plasma spectroscopy. A feature of the two previous IPS conferences has been a contribution from commercial organisations namely those involved in manufacturing devices, detectors and spectrometers. This group of participants formed the third part of the conference programme and gave five oral presentations covering topics like QCL and detector/detection developments and novel spectrometer designs. The fourth contributing group comprised 27 poster presentations. It should be mentioned that some of the latter were poster versions of contributed talks. The conference was remarkable for the wide spread of topics covered in a relatively small meeting, consisting of 44 participants. The participants were made up of 34 scientists from within Europe and 4 from the rest of the world. It is interesting to reflect on changes that have occurred since the previous meeting just a year earlier. Two clear developments which have occurred are the emergence of Quantum Cascade Lasers (QCL) and their use in Cavity Ring Down (CRD) spectroscopy. A major shift from cw lead salt diode lasers to cw and pulsed QCL in both pure and applied projects now seems to be well under way. The topics covered in the earlier conferences focussed more on applying infrared spectroscopy to plasma monitoring and control. When choosing the topics to cover

  19. Infrared polarization spectroscopy of CO 2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Alwahabi, Z. T.; Li, Z. S.; Zetterberg, J.; Aldén, M.

    2004-04-01

    Polarisation spectroscopy (PS) was used to probe CO 2 gas concentration in a CO 2/N 2 binary mixture at atmospheric pressure and ambient temperature. The CO 2 molecules were probed by a direct laser excitation to an overtone and combination vibrational state. The tuneable narrow linewidth infrared laser radiation at 2 μm was obtained by Raman shifting of the output from a single-longitudinal-mode pulsed alexandrite laser-system to the second Stokes component in a H 2 gas cell. Infrared polarisation spectroscopy (IRPS) and time-resolved infrared laser-induced fluorescence (IRLIF) spectra were collected. A linear dependence of the IRPS signal on the CO 2 mole fraction has been found. This indicates that the IRPS signal is only weakly affected by the molecular collisions and that the inter- and intra- molecular energy transfer processes do not strongly influence the molecular alignment at the time scale of the measurements. Thus IRPS holds great potential for quantitative instantaneous gas concentration diagnostics in general. This is especially important for molecules which do not posses an accessible optical transition such as CO, CO 2 and N 2O. In addition, an accurate experimental method to measure the extinction ratio of the IR polarisers employed in this study has been developed and applied. With its obvious merits as simplicity, easy alignment and high accuracy, the method can be generalized to all spectral regions, different polarisers and high extinction ratios.

  20. Composition of Polar Stratospheric Clouds from Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tolbert, M. A.; Anthony, S. E.; Disselkamp, R.; Toon, O. B.; Condon, Estelle P. (Technical Monitor)

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO3/H2O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H2SO4/HNO3/H2O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO3/H2O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric clouds formation.

  1. Plant species discrimination using emissive thermal infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Rock, Gilles; Gerhards, Max; Schlerf, Martin; Hecker, Christoph; Udelhoven, Thomas

    2016-12-01

    Discrimination of plant species in the optical reflective domain is somewhat limited by the similarity of their reflectance spectra. Spectral characteristics in the visible to shortwave infrared (VSWIR) consist of combination bands and overtones of primary absorption bands, situated in the Thermal Infrared (TIR) region and therefore resulting in broad spectral features. TIR spectroscopy is assumed to have a large potential for providing complementary information to VSWIR spectroscopy. So far, in the TIR, plants were often considered featureless. Recently and following advances in sensor technology, plant species were discriminated based on specific emissivity signatures by Ullah et al. (2012) using directional-hemispherical reflectance (DHR) measurements in the laboratory. Here we examine if an accurate discrimination of plant species is equally possible using emissive thermal infrared imaging spectroscopy, an explicit spatial technique that is faster and more flexible than non-imaging measurements. Hyperspectral thermal infrared images were acquired in the 7.8⿿11.56 μm range at 40 nm spectral resolution (@10 μm) using a TIR imaging spectrometer (Telops HyperCam-LW) on seven plants each, of eight different species. The images were radiometrically calibrated and subjected to temperature and emissivity separation using a spectral smoothness approach. First, retrieved emissivity spectra were compared to laboratory reference spectra and then subjected to species discrimination using a random forest classifier. Second, classification results obtained with emissivity spectra were compared to those obtained with VSWIR reflectance spectra that had been acquired from the same leaf samples. In general, the mean emissivity spectra measured by the TIR imaging spectrometer showed very good agreement with the reference spectra (average Nash-Sutcliffe-Efficiency Index = 0.64). In species discrimination, the resulting accuracies for emissivity spectra are highly dependent on

  2. Dry film preparation from whole blood, plasma and serum for quantitative infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bittner, A.; Heise, H. M.

    1998-06-01

    The potential of infrared spectroscopy in the analysis of biotic fluids for the determination of important clinical parameters such as glucose and other blood substrates has been investigated. For this purpose dried films from whole blood, blood plasma and serum were prepared on diffusely reflecting gold-coated substrates from sandpaper of different grades. This enabled measurements in the mid and near infrared spectral ranges by using special diffuse reflectance accessories. The removal of water leads to a considerable enrichment of the fluid constituents. Due to the reduced sample complexity a considerable gain in spectral information is obtained. This is especially valid for measurements in the near infrared where the problems associated with variability in the spectra of aqueous samples due to several parameters, i.e., temperature, electrolyte content etc., are well known. Additionally, mid infrared studies were carried out into the stability of dried samples.

  3. Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics.

    PubMed

    Dong, D; Zheng, W; Jiao, L; Lang, Y; Zhao, X

    2016-03-01

    Different brands of Chinese vinegar are similar in appearance, color and aroma, making their discrimination difficult. The compositions and concentrations of the volatiles released from different vinegars vary by raw material and brewing process and thus offer a means to discriminate vinegars. In this study, we enhanced the detection sensitivity of the infrared spectrometer by extending its optical path. We measured the infrared spectra of the volatiles from 5 brands of Chinese vinegar and observed the spectral characteristics corresponding to alcohols, esters, acids, furfural, etc. Different brands of Chinese vinegar had obviously different infrared spectra and could be classified through chemometrics analysis. Furthermore, we established classification models and demonstrated their effectiveness for classifying different brands of vinegar. This study demonstrates that long-optical-path infrared spectroscopy has the ability to discriminate Chinese vinegars with the advantages that it is fast and non-destructive and eliminates the need for sampling.

  4. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2004-01-01

    Last year we submitted and had accepted a paper entitled "The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068," by Spinoglio, L., Malkan, M., Smith. HA, Gonzalez-Alfonso, E., and Fischer, J. This analysis was based on the SWAS Monte Carlo code modeling of the OH lines in galaxies observed by ISO. Since that meeting last spring considerable effort has been put into improving the Monte Carlo code. A group of European astronomers, including Prof. Eduardo Gonzalez-Alfonso, had been performing Monte Carlo modeling of other molecules seen in ISO galaxies. We used portions of this grant to bring Prof. Gonzalez-Alfonso to Cambridge for an intensive working visit. A second major paper on the ISO IR spectroscopy of galaxies, "The Far Infrared Spectrum of Arp 220," Gonzalez-Alfonso, E., Smith. H., Fischer, J., and Cernicharo, J., is in press. Spitzer science development was the major component of this past year;s research. This program supported the development of five Early Release Objects for Spitzer observations on which Dr. Smith was Principal Investigator or Co-Investigator, and another five proposals for GO time. The early release program is designed to rapidly present to the public and the scientific community some exciting results from Spitzer in the first months of its operation. The Spitzer instrument and science teams submitted proposals for ERO objects, and a competitive selection process narrowed these down to a small group with exciting science and realistic observational parameters. This grant supported Dr. Smith's participation in the ERO process, including developing science goals, identifying key objects for observation, and developing the detailed AOR (observing formulae) to be use by the instruments for mapping, integrating, etc.). During this year Dr. Smith worked on writing up and publishing these early results. The attached bibliography includes six of Dr. Smith's articles. During this past year Dr. Smith also led or

  5. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  6. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis

    NASA Astrophysics Data System (ADS)

    Habibi, Neda

    2015-02-01

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33 nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the Nsbnd CH3 functional group about 2850 cm-1 is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field.

  7. Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Martens, Wayde N.; Wain, Daria L.; Hales, Matt C.

    2008-10-01

    Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440 cm -1 is assigned to the ν CO 32- antisymmetric stretching vibration. An additional band is resolved at 1335 cm -1. An intense sharp Raman band at 1092 cm -1 is assigned to the CO 32- symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442 cm -1 shifting to lower wavenumbers with thermal treatment. A band observed at 870 cm -1 with a band of lesser intensity at 842 cm -1 shifts to higher wavenumbers upon thermal treatment and is observed at 865 cm -1 at 400 °C and is assigned to the CO 32-ν mode. No ν bending modes are observed in the Raman spectra for smithsonite. The band at 746 cm -1 shifts to 743 cm -1 at 400 °C and is attributed to the CO 32-ν in phase bending modes. Two infrared bands at 744 and around 729 cm -1 are assigned to the ν in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO 6 octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991 cm -1 in both the IE and infrared spectra are attributed to combination bands.

  8. Fourier transform infrared spectroscopy approach for measurements of photoluminescence and electroluminescence in mid-infrared.

    PubMed

    Zhang, Y G; Gu, Y; Wang, K; Fang, X; Li, A Z; Liu, K H

    2012-05-01

    An improved Fourier transform infrared spectroscopy approach adapting to photoluminescence and electroluminescence measurements in mid-infrared has been developed, in which diode-pumped solid-state excitation lasers were adopted for photoluminescence excitation. In this approach, three different Fourier transform infrared modes of rapid scan, double modulation, and step scan were software switchable without changing the hardware or connections. The advantages and limitations of each mode were analyzed in detail. Using this approach a group of III-V and II-VI samples from near-infrared extending to mid-infrared with photoluminescence intensities in a wider range have been characterized at room temperature to demonstrate the validity and overall performances of the system. The weaker electroluminescence of quantum cascade lasers in mid-infrared band was also surveyed at different resolutions. Results show that for samples with relatively strong photoluminescence or electroluminescence out off the background, rapid scan mode is the most preferable. For weaker photoluminescence or electroluminescence overlapped with background, double modulation is the most effective mode. To get a better signal noise ratio when weaker photoluminescence or electroluminescence signal has been observed in double modulation mode, switching to step scan mode should be an advisable option despite the long data acquiring time and limited resolution.

  9. Comparative study of Fourier transform infrared spectroscopy in transmission, attenuated total reflection, and total reflection modes for the analysis of plastics in the cultural heritage field.

    PubMed

    Picollo, Marcello; Bartolozzi, Giovanni; Cucci, Costanza; Galeotti, Monica; Marchiafava, Veronica; Pizzo, Benedetto

    2014-01-01

    This study was completed within the framework of two research projects dealing with the conservation of contemporary artworks. The first is the Seventh Framework Project (FP7) of the European Union, Preservation of Plastic ARTefacts in Museum Collections (POPART), spanning years 2008-2012, and the second is the Italian project funded by the Tuscan Region, Preventive Conservation of Contemporary Art (Conservazione Preventiva dell'Arte Contemporanea (COPAC)), spanning 2011-2013. Both of these programs pointed out the great importance of having noninvasive and portable analytical techniques that can be used to investigate and characterize modern and contemporary artworks, especially those consisting of synthetic polymers. Indeed, despite the extensive presence of plastics in museum collections, there is still a lack of analytical tools for identifying, characterizing, and setting up adequate conservation strategies for these materials. In this work, the potentials of in situ and noninvasive Fourier transform infrared (FT-IR) spectroscopy, implemented by means of portable devices that operate in reflection mode, are investigated with a view to applying the results in large-scale surveys of plastic objects in museums. To this end, an essential prerequisite are the reliability of spectral data acquired in situ and the availability of spectral databases acquired from reference materials. A collection of polymeric samples, which are available commercially as ResinKit, was analyzed to create a reference spectral archive. All the spectra were recorded using three FT-IR configurations: transmission (trans), attenuated total reflection (ATR), and total reflection (TR). A comparative evaluation of the data acquired using the three instrumental configurations is presented, together with an evaluation of the similarity percentages and a discussion of the critical cases.

  10. In situ analysis of lipid oxidation in oilseed-based food products using near-infrared spectroscopy and chemometrics: The sunflower kernel paste (tahini) example.

    PubMed

    Mureșan, Vlad; Danthine, Sabine; Mureșan, Andruța Elena; Racolța, Emil; Blecker, Christophe; Muste, Sevastița; Socaciu, Carmen; Baeten, Vincent

    2016-08-01

    A new near-infrared (NIR) spectroscopic method was developed for the analytical measurement of lipid oxidation in sunflower kernel paste (tahini), which was chosen as an example of a complex oilseed-based food product. The NIR spectra of sunflower tahini were acquired for the extracted fat phase (EFP) and for the intact sunflower tahini (IST) samples during controlled storage. The best peroxide value (PV) calibration models were considered suitable for quality control (ratio of performance of deviation [RPD]>5). The best PV partial least squares (PLS) model result for EFP (RPD 6.36) was obtained when using standard normal variate (SNV) and the Savitzky-Golay first derivative in the 1140-1184nm, 1388-1440nm and 2026-2194nm regions. In the case of IST spectra, the best PV models (RPD 5.23) were obtained when either multiple scattering correction (MSC) or SNV were followed by the Savitzky-Golay second derivative for the 1148-1180nm and 2064-2132nm regions. There were poor correlations between the NIR-predicted values and the reference data of the p-anisidine value (pAV) for both EFP and IST. Overall, the results obtained showed that NIR spectroscopy is an appropriate analytical tool for monitoring sunflower paste PV in situ. Due to the nonexistence of the extraction step, it demonstrates a unique and substantial advantage over presently known methods. Based on these results it is strongly recommended that, when using NIR PLS models to assess lipid oxidation in situ in similar oilseed-based food products (e.g., sesame tahini, hazelnut and cocoa liquor used for chocolate production, peanut butter, hazelnut, almond, pistachio spreads), suitable calibration sets containing samples of different particle sizes and stored at different temperatures be selected.

  11. Infrared Analysis of Geological Materials.

    ERIC Educational Resources Information Center

    Brown, Alan; Clark, E. Roy

    1980-01-01

    Describes the infrared analysis of geological specimens which can form the basis of a laboratory exercise, allowing some minerals to be identified by "fingerprint" technique. Students can gain insight into the concept of symmetry and environment around an atom. (Author/SA)

  12. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    PubMed

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  13. Infrared Heterodyne Spectroscopy and its Unique Application to Planetary Studies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodore

    2009-01-01

    Since the early 1970's the infrared heterodyne technique has evolved into a powerful tool for the study of molecular constituents, temperatures, and dynamics in planetary atmospheres. Its extremely high spectral resolution (Lambda/(Delta)Lambda/>10(exp 6)) and highly accurate frequency measurement (to 1 part in 10(exp 8)) enabled the detection of nonthermal/natural lasing phenomena on Mars and Venus; direct measurements of winds on Venus, Mars, and Titan; study of mid-infrared aurorae on Jupiter; direct measurement of species abundances on Mars (ozone, isotopic CO2), hydrocarbons on Jupiter, Saturn., Neptune, and Titan, and stratospheric composition in the Earth's stratosphere (O3, CIO, N2O, CO2 ....). Fully resolved emission and absorption line shapes measured by this method enabled the unambiguous retrieval of molecular abundances and local temperatures and thermal structure in regions not probed by other techniques. The mesosphere of Mars and thermosphere of Venus are uniquely probed by infrared heterodyne spectroscopy. Results of these studies tested and constrained photochemical and dynamical theoretical models describing the phenomena measured. The infrared heterodyne technique will be described. Highlights in its evolution to today's instrumentation and resultant discoveries will be presented, including work at Goddard Space Flight Center and the University of Koln. Resultant work will include studies supporting NASA and ESA space missions and collaborations between instrumental and theoretical groups.

  14. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  15. Evaluation of Phalaenopsis flowering quality using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Suming; Chuang, Yung-Kun; Tsai, Chao-Yin; Chang, Yao-Chien A.; Yang, I.-Chang; Chang, Yung-Huei; Tai, Chu-Chun; Hou, Jiunn-Yan

    2013-05-01

    Carbohydrate contents have been demonstrated as indicators for flowering quality of Phalaenopsis plants. In this study, near infrared reflectance (NIR) spectroscopy was employed for quantitative analysis of carbohydrate contents like fructose, glucose, sucrose, and starch in Phalaenopsis. The modified partial least squares regression (MPLSR) method was adopted for spectra analyses of 176 grown plant samples (88 shoots and 88 roots), over the full wavelength range (FWR, 400 to 2498 nm). For fructose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.210% DW, SEV = 0.324% DW) in the wavelength ranges of 1400-1600, 1800-2000, and 2200-2300 nm. For glucose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.975, SEC = 0.196% DW, SEV = 0.264% DW) in the wavelength range of 1400-1600, 1800-2000, and 2100-2400 nm. For sucrose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.237% DW, SEV = 0.322% DW) in the wavelength range of 1300-1400, 1500-1800, 2000-2100, and 2200-2300 nm. For starch concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.873, SEC = 0.697% DW, SEV = 0.774% DW) in the wavelength ranges of 500-700, 1200-1300, 1700-1800, and 2200-2300 nm. This study successfully developed the calibration models for inspecting concentrations of carbohydrates to predict the flowering quality in different cultivation environments of Phalaenopsis. The specific wavelengths can be used to predict the quality of Phalaenopsis flowers and thus to adjust cultivation managements.

  16. Infrared Spectroscopy of Halogenated Species for Atmospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2014-06-01

    Fluorine- and chlorine-containing molecules in the atmosphere are very strong greenhouse gases, meaning that even small amounts of these gases contribute significantly to the radiative forcing of climate. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are regulated by the 1987 Montreal Protocol because they deplete the ozone layer. Hydrofluorocarbons (HFCs), which do not deplete the ozone layer and are not regulated by the Montreal Protocol, have been introduced as replacements for CFCs and HCFCs. HFCs have global-warming potentials many times greater than carbon dioxide, and are increasing in the atmosphere at a very fast rate. Various satellite instruments monitor many of these molecules by detecting infrared radiation that has passed through the Earth's atmosphere. However, the quantification of their atmospheric abundances crucially requires accurate quantitative infrared spectroscopy. This talk will focus on new and improved laboratory spectroscopic measurements for a number of important halogenated species.

  17. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    SciTech Connect

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-12

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  18. Two-Photon-Excited Fluorescence-Encoded Infrared Spectroscopy.

    PubMed

    Mastron, Joseph N; Tokmakoff, Andrei

    2016-11-23

    We report on a method for performing ultrafast infrared (IR) vibrational spectroscopy using fluorescence detection. Vibrational dynamics on the ground electronic state driven by femtosecond mid-infrared pulses are detected by changes in fluorescence amplitude resulting from modulation of a two-photon visible transition by nuclear motion. We examine a series of coumarin dyes and study the signals as a function of solvent and excitation pulse parameters. The measured signal characterizes the relaxation of vibrational populations and coherences but yields different information than conventional IR transient absorption measurements. These differences result from the manner in which the ground-state dynamics are projected by the two-photon detection step. Extensions of this method can be adapted for a variety of increased-sensitivity IR measurements.

  19. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-01

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA's "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. The coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  20. Nanostructured diamond layers enhance the infrared spectroscopy of biomolecules.

    PubMed

    Kozak, Halyna; Babchenko, Oleg; Artemenko, Anna; Ukraintsev, Egor; Remes, Zdenek; Rezek, Bohuslav; Kromka, Alexander

    2014-03-04

    We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.

  1. Cloud identification in atmospheric trace molecule spectroscopy infrared occultation measurements.

    PubMed

    Kahn, Brian H; Eldering, Annmarie; Irion, Fredrick W; Mills, Franklin P; Sen, Bhaswar; Gunson, Michael R

    2002-05-20

    High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed.

  2. [Identification of gastrodia elata blume by Fourier transform infrared spectroscopy].

    PubMed

    Liu, Gang; Dong, Qin; Yu, Fan; Liu, Jian-hong; Sun, Shi-zhong

    2004-03-01

    In this paper, a method of rapid and undamaged identification of wild and cultivated Gastrodia elata Blume, and one of its fakes by Fourier transform infrared spectroscopy (FTIR) is reported. The results show that Gastrodia elata Blume and its fake have different characteristic infrared spectra, by which Gastrodia elata Blume can be identified from its fake. Wild winter, wild spring, and cultivated Gastrodia elata Blume can be discriminated by FTIR, according to the differences of their spectral peaks and absorbance ratios. By the differences of absorbance ratios of several peaks, different grade of Gastrodia elata Blume may be classified. FTIR has proved to be a rapid, simple and nondestructive method for the identification of Gastrodia elata Blume.

  3. Prediction of fatty acids content in pig adipose tissue by near infrared spectroscopy: at-line versus in-situ analysis.

    PubMed

    Zamora-Rojas, E; Garrido-Varo, A; De Pedro-Sanz, E; Guerrero-Ginel, J E; Pérez-Marín, D

    2013-11-01

    A handheld micro-electro-mechanical system (MEMS) based spectrometer working in the near infrared region (NIR) (1600-2400nm) was evaluated for in-situ and non-destructive prediction of main fatty acids in Iberian pig (IP) carcasses. 110 IP carcasses were measured. Performance of the instrument was compared with at-line high-resolution NIRS monochromators working in two analysis modes: melted fat samples (transflectance cups) and intact adipose tissues (interactance fiber optic). Standard Error of Prediction (SEP) values obtained on the MEMS-NIRS device were: 0.68% (stearic), 1.30% (oleic), 0.55% (linoleic) and 1% (palmitic), explaining a variability of 83%, 84%, 81% and 78%, respectively. As expected, this represented a loss of predictive capability in comparison to at-line models, even with the same spectral characteristics as on the handheld device. However, the estimated total errors were at the same level for gas chromatography and NIRS analysis. This indicates that the MEMS-NIRS in-situ analysis of each individual carcass provides a cost-effective and real-time quality control system with suitable accuracy.

  4. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing.

  5. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    SciTech Connect

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-12-10

    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  6. Investigation of Membrane Peptides by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanco, Emily Ann; Zanni, Martin T.

    2009-06-01

    Two-dimensional infrared spectroscopy (2D IR) is a useful tool for studying the structure of membrane peptides. Isotope labeling individual amino acids with 13C=18O decouples the isotope labeled amide I from the other amide I modes in the peptide. Work has been done on both the M2 ion channel and ovispirin antimicrobial peptide, studying the diagonal linewidths of the isotope labeled amide I. The diagonal linewidth of the isotope labeled amide I gives information about the local environment of that residue, which in turn gives structural information about the membrane peptide.

  7. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    PubMed

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-05

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  8. Fourier transform infrared spectroscopy as a surface science technique

    NASA Astrophysics Data System (ADS)

    Celio, Hugo; Trenary, Michael

    1998-06-01

    A central goal of modern surface science is to obtain atomic and molecular level information about the structural and chemical properties of solid surfaces. For many, if not most, problems in surface science it is necessary to work under ultra high vacuum (UHV) conditions to obtain meaningful and reproducible results. A wide array of highly specialized and hence expensive UHV surface sensitive techniques have been developed to probe the gas-solid interface. Most of these techniques rely on the finite penetration depth of charge particles to achieve surface sensitivity. In contrast, surface sensitivity can also be achieved with reflection absorption infrared spectroscopy using unmodified low-cost commercial FTIR spectrometers. In this paper we show how a variety of problems in surface chemistry can be effectively addressed with FTIR spectroscopy.

  9. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  10. Background-Limited Infrared-Submillimeter Spectroscopy (BLISS)

    NASA Technical Reports Server (NTRS)

    Bradford, Charles Matt

    2004-01-01

    The bulk of the cosmic far-infrared background light will soon be resolved into its individual sources with Spitzer, Astro-F, Herschel, and submm/mm ground-based cameras. The sources will be dusty galaxies at z approximately equal to 1-4. Their physical conditions and processes in these galaxies are directly probed with moderate-resolution spectroscopy from 20 micrometers to 1 mm. Currently large cold telescopes are being combined with sensitive direct detectors, offering the potential for mid-far-IR spectroscopy at the background limit (BLISS). The capability will allow routine observations of even modest high-redshift galaxies in a variety of lines. The BLISS instrument's capabilities are described in this presentation.

  11. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  12. Investigating the thermodynamics of UNCG tetraloops using infrared spectroscopy.

    PubMed

    Stancik, Aaron L; Brauns, Eric B

    2013-10-31

    Using infrared (IR) absorption spectroscopy, we have explored the folding thermodynamics of the UNCG class of RNA hairpin tetraloops (N = U, A, C, or G). Without the need to introduce non-native probes, IR spectroscopy makes it possible to distinguish specific structural elements such as base pairing versus base stacking or loop versus stem motions. Our results show that different structural components exhibit different thermodynamics. Specifically, we have found that tetraloop melting proceeds in a thermally sequential fashion, where base pairing in the stem is disrupted before (i.e., at a lower temperature) base stacking along the entire chain. In addition, for N = A, our data argue that the structure immediately surrounding adenine is particularly stable and melts at a higher temperature than either base-pairing or base-stacking interactions. Taken together, these results suggest that hairpin loop formation is not a simple two-state process, even in the equilibrium limit.

  13. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    SciTech Connect

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens E-mail: bredenbeck@biophysik.uni-frankfurt.de

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  14. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Frogel, Jay (Technical Monitor); Smith, Howard A.

    2004-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our empha- sis has been on star formation in external, bright IR galaxies, but other areas of research have in- cluded young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spec- troscopic data sets. Three papers are included:The Infrared Lines of OH: Diagnostics of Molecular Cloud Conditions in Infrared Bright Galaxies; The Far-Infrared Spectrum of Arp 220; andThe Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068.

  15. Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy.

    PubMed

    Oberreuter, Helene; Charzinski, Joachim; Scherer, Siegfried

    2002-05-01

    The intraspecific diversity of 31 strains of Brevibacterium linens, 27 strains of Corynebacterium glutamicum and 29 strains of Rhodococcus erythropolis was determined by partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. As a prerequisite for the analyses, 27 strains derived from culture collections which had carried invalid or wrong species designations were reclassified in accordance with polyphasic taxonomical data. FT-IR spectroscopy proved to be a rapid and reliable method for screening for similar isolates and for identifying these actinomycetes at the species level. Two main conclusions emerged from the analyses. (1) Comparison of intraspecific 16S rDNA similarities suggested that R. erythropolis strains have a very low diversity, B. linens displays high diversity and C. glutamicum occupies an intermediate position. (2) No correlation of FT-IR spectral similarity and 16S rDNA sequence similarity below the species level (i.e. between strains of one species) was observed. Therefore, diversification of 16S rDNA sequences and microevolutionary change of the cellular components detected by FT-IR spectroscopy appear to be de-coupled.

  16. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).

    PubMed

    Blum, Marc-Michael; John, Harald

    2012-01-01

    Vibrational spectroscopy has a long history as an important spectroscopic method in chemical and pharmaceutical analysis. Instrumentation for infrared (IR) spectroscopy was revolutionized by the introduction of Fourier Transform Infrared (FTIR) spectrometers. In addition, easier sampling combined with better sample-to-sample reproducibility and user-to-user spectral variation became available with attenuated total reflectance (ATR) probes and their application for in situ IR spectroscopy. These innovations allow many new applications in chemical and pharmaceutical analysis, such as the use of IR spectroscopy in Process Analytical Chemistry (PAC), the quantitation of drugs in complex matrix formulations, the analysis of protein binding and function and in combination with IR microscopy to the emergence of IR imaging technologies. The use of ATR-FTIR instruments in forensics and first response to 'white powder' incidents is also discussed. A short overview is given in this perspective article with the aim to renew and intensify interest in IR spectroscopy.

  17. Chalcogenide glass fibers used for in situ infrared spectroscopy in biology and medicine

    NASA Astrophysics Data System (ADS)

    Keirsse, Julie; Bureau, Bruno; Boussard-Pledel, Catherine; Leroyer, P.; Ropert, M.; Dupont, Virginie; Anne, Marie L.; Ribault, C.; Sire, Olivier; Loreal, Olivier; Adam, Jean Luc

    2004-09-01

    Chalcogenide glass optical fibers possess very low optical losses in the middle infrared range from 2 to 12 mm. They were used to implement remote infrared spectroscopy, known as Fiber Evanescent Wave Spectroscopy (FEWS). Due to their hydrophobic behavior, such sensor is especially suitable for application in biology and medicine where water is a nuisance to detect relevant information. Moreover, the design of the sensor using tapered fibers enables to improve the signal to noise ratio. Then, once coupled with unsupervised analysis technique such as Principle Component Analysis (PCA), it has been shown that this tool is efficient to differentiate between obese and control mice by recording their serum FEWS spectra. The same method has been carried out to detect in situ the both phenotypes of a bacterial culture.

  18. Gastric cancer differentiation using Fourier transform near-infrared spectroscopy with unsupervised pattern recognition

    NASA Astrophysics Data System (ADS)

    Yi, Wei-song; Cui, Dian-sheng; Li, Zhi; Wu, Lan-lan; Shen, Ai-guo; Hu, Ji-ming

    2013-01-01

    The manuscript has investigated the application of near-infrared (NIR) spectroscopy for differentiation gastric cancer. The 90 spectra from cancerous and normal tissues were collected from a total of 30 surgical specimens using Fourier transform near-infrared spectroscopy (FT-NIR) equipped with a fiber-optic probe. Major spectral differences were observed in the CH-stretching second overtone (9000-7000 cm-1), CH-stretching first overtone (6000-5200 cm-1), and CH-stretching combination (4500-4000 cm-1) regions. By use of unsupervised pattern recognition, such as principal component analysis (PCA) and cluster analysis (CA), all spectra were classified into cancerous and normal tissue groups with accuracy up to 81.1%. The sensitivity and specificity was 100% and 68.2%, respectively. These present results indicate that CH-stretching first, combination band and second overtone regions can serve as diagnostic markers for gastric cancer.

  19. [Producing area identification of Letinus edodes using mid-infrared spectroscopy].

    PubMed

    Zhu, Zhe-Yan; Zhang, Chu; Liu, Fei; Kong, Wen-Wen; He, Yong

    2014-03-01

    In the present study, Mid-infrared spectroscopy was used to identify the producing area of Letinus edodes, and relevance vector machine (RVM) was put forward to build classification models as a novel classification technique, and they obtained good performances. The head and the tail of the acquired mid-infrared spectra with the absolute noise were cut off, and the remaining spectra in the range of 3,581-689 cm(-1) (full spectra) of Letinus edodes were preprocessed by multiplicative scatter correction (MSC). Five classification techniques, including partial least Squares-discriminant analysis (PLS-DA), soft independent modeling of class analogy (SIMCA), K-nearest neighbor algorithm (KNN), support vector machine (SVM) and RVM, were applied to build classification models based on the preprocessed full spectra. All classification models obtained classification accuracy over 80%, KNN, SVM and RVM models based on full spectra obtained similar and good performances with classification accuracy over 90% in both the calibration set and the prediction set. The weighted regression coefficients (Bw) were used to select effective wave numbers of mid-infrared spectra and 6 effective wave numbers in total were selected on the basis of the weighted regression coefficients of PLS-DA model based on full spectra. PLS-DA, KNN, SVM and RVM models were built using these effective wave numbers. Compared with the classification models based on full spectra, PLS-DA models based on effective wave numbers obtained relatively worse results with classification accuracy less than 80%, and KNN, SVM and RVM obtained similar results in both calibration set and prediction set with classification accuracy over 90%. RVM performed well with classification rate over 90% based on full spectra and effective wave numbers. The overall results indicated that producing area of Letinus edodes could be identified by mid-infrared spectroscopy, while wave number selection and the RVM algorithm could be

  20. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  1. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study

    SciTech Connect

    Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; Mifflin, Amanda L.; Hess, Wayne P.; Wang, Hongfei; Cramer, Christopher J.; Govind, Niranjan

    2016-03-03

    Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical iden- tication of hydrocarbons and in vibrational sum-frequency generation (SFG) spec- *troscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a chal- lenge from a theoretical viewpoint. In this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effects in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes chal- lenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show signicant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.

  2. Metabolomics of Ulva lactuca Linnaeus (Chlorophyta) exposed to oil fuels: Fourier transform infrared spectroscopy and multivariate analysis as tools for metabolic fingerprint.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Costa, Christopher; Oliveira, Eva Regina de; Bauer, Claudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2017-01-30

    Fossil fuels, e.g. gasoline and diesel oil, account for substantial share of the pollution that affects marine ecosystems. Environmental metabolomics is an emerging field that may help unravel the effect of these xenobiotics on seaweeds and provide methodologies for biomonitoring coastal ecosystems. In the present study, FTIR and multivariate analysis were used to discriminate metabolic profiles of Ulva lactuca after in vitro exposure to diesel oil and gasoline, in combinations of concentrations (0.001%, 0.01%, 0.1%, and 1.0% - v/v) and times of exposure (30min, 1h, 12h, and 24h). PCA and HCA performed on entire mid-infrared spectral window were able to discriminate diesel oil-exposed thalli from the gasoline-exposed ones. HCA performed on spectral window related to the protein absorbance (1700-1500cm(-1)) enabled the best discrimination between gasoline-exposed samples regarding the time of exposure, and between diesel oil-exposed samples according to the concentration. The results indicate that the combination of FTIR with multivariate analysis is a simple and efficient methodology for metabolic profiling with potential use for biomonitoring strategies.

  3. Infrared spectroscopy of aqueous ionic salt solutions at low concentrations

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Gessinger, Véronique; van Driessche, Caroline; Larouche, Pascal; Chapados, Camille

    2007-05-01

    The analysis by infrared spectroscopy of aqueous solutions of the binary inorganic salts NaI and NaCl and the ternary salts CaCl2 and BaCl2 at concentrations from 1000to2mM was carried out to complement a previous study done at higher concentrations on nine binary salts (alkali halides) and one ternary salt (MgCl2) [J.-J. Max and C. Chapados, J. Chem. Phys. 115, 2664 (2001)]. These salts are completely ionized in aqueous solutions, forming monoatomic species that do not absorb IR but that perturb the surrounding water, modifying its spectrum. The factor analysis of the spectra revealed that all these salt solutions were composed of two water types: pure water and salt solvated water. The authors obtained pure salt solvated water spectra for all the salts using an extrapolation technique. The water types obtained are constant for the binary and ternary salts down to 2mM. For the binary salts, we determine that 5.0 and 4.0 water molecules are solvated to the Na +-Cl- and Na+-I- ion pairs, respectively. These numbers are the same as that obtained at higher concentrations. For the new ternary salts, we find that 6.0 and 8.0 water molecules are solvated to Ca++-(Cl-)2 and Ba++-(Cl-)2 ion pairs, respectively. These numbers are higher than the four water molecules solvated to Mg++-(Cl-)2 ion pairs determined previously, but show a progression that follows their atomic numbers. These results constitute new experimental results on "simple" systems whose molecular organization is still a matter of debate. The IR method that probes the system at the molecular level is a method different than the macroscopic ones that give the activity coefficients. The IR gives direct observation at the molecular level of the strong ion-water interactions that are often neglected and its water structure not considered in macroscopic methods. The present results and their analysis together with those obtained by other methods will facilitate the determination of the organization of these

  4. Determination of plant silicon content with near infrared reflectance spectroscopy

    PubMed Central

    Smis, Adriaan; Ancin Murguzur, Francisco Javier; Struyf, Eric; Soininen, Eeva M.; Herranz Jusdado, Juan G.; Meire, Patrick; Bråthen, Kari Anne

    2014-01-01

    Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R2 = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R2 = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R2 = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  5. Identification of Trueperella pyogenes Isolated from Bovine Mastitis by Fourier Transform Infrared Spectroscopy

    PubMed Central

    Nagib, Samy; Rau, Jörg; Sammra, Osama; Lämmler, Christoph; Schlez, Karen; Zschöck, Michael; Prenger-Berninghoff, Ellen; Klein, Guenter; Abdulmawjood, Amir

    2014-01-01

    The present study was designed to investigate the potential of Fourier transform infrared (FT-IR) spectroscopy to identify Trueperella (T.) pyogenes isolated from bovine clinical mastitis. FT-IR spectroscopy was applied to 57 isolates obtained from 55 cows in a period from 2009 to 2012. Prior to FT-IR spectroscopy these isolates were identified by phenotypic and genotypic properties, also including the determination of seven potential virulence factor encoding genes. The FT-IR analysis revealed a reliable identification of all 57 isolates as T. pyogenes and a clear separation of this species from the other species of genus Trueperella and from species of genus Arcanobacterium and Actinomyces. The results showed that all 57 isolates were assigned to the correct species indicating that FT-IR spectroscopy could also be efficiently used for identification of this bacterial pathogen. PMID:25133407

  6. Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    NASA Astrophysics Data System (ADS)

    Jaén, Juan A.; Navarro, César

    2009-07-01

    Fourier transform infrared spectroscopy and Mössbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Mössbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  7. Infrared and Raman spectroscopy and DFT calculations of DL amino acids: Valine and lysine hydrochloride

    NASA Astrophysics Data System (ADS)

    Paiva, F. M.; Batista, J. C.; Rêgo, F. S. C.; Lima, J. A.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; de Menezes, A. S.; Nogueira, C. E. S.

    2017-01-01

    Single crystals of DL-valine and DL-lysine hydrochloride were grown by slow evaporation method and the crystallographic structure were confirmed by X-ray diffraction experiment and Rietveld method. These two crystals have been studied by Raman spectroscopy in the 25-3600 cm-1 spectral range and by infrared spectroscopy through the interval 375-4000 cm-1 at room temperature. Experimental and theoretical vibrational spectra were compared and a complete analysis of the modes was done in terms of the Potential Energy Distribution (PED).

  8. Taking advantage of hyperspectral imaging classification of urinary stones against conventional infrared spectroscopy.

    PubMed

    Blanco, Francisco; Lumbreras, Felipe; Serrat, Joan; Siener, Roswitha; Serranti, Silvia; Bonifazi, Giuseppe; López-Mesas, Montserrat; Valiente, Manuel

    2014-12-01

    The analysis of urinary stones is mandatory for the best management of the disease after the stone passage in order to prevent further stone episodes. Thus the use of an appropriate methodology for an individualized stone analysis becomes a key factor for giving the patient the most suitable treatment. A recently developed hyperspectral imaging methodology, based on pixel-to-pixel analysis of near-infrared spectral images, is compared to the reference technique in stone analysis, infrared (IR) spectroscopy. The developed classification model yields >90% correct classification rate when compared to IR and is able to precisely locate stone components within the structure of the stone with a 15 µm resolution. Due to the little sample pretreatment, low analysis time, good performance of the model, and the automation of the measurements, they become analyst independent; this methodology can be considered to become a routine analysis for clinical laboratories.

  9. Use of in situ Fourier transform infrared spectroscopy to study freezing and drying of cells.

    PubMed

    Wolkers, Willem F; Oldenhof, Harriëtte

    2015-01-01

    An infrared spectrum gives information about characteristic molecular vibrations of specific groups in molecules. Fourier transform infrared spectroscopy can be applied to study lipids and proteins in cells or tissues. Spectra can be collected during cooling, heating, or dehydration of a sample using a temperature-controlled sample holder or a sample holder for controlled dehydration. In the current chapter, acquisition and analysis of infrared spectra during cooling, warming, or dehydration is described. Spectra analysis involving assessment of specific band positions, areas, or ratios is described. Special emphasis is given on studying membrane phase behavior and protein denaturation in cells or tissues. In addition, methods are presented to determine the water-to-ice phase change during freezing, dehydration kinetics, and the glass transition temperature of amorphous systems.

  10. Near-infrared spectroscopy as a tool for driving research.

    PubMed

    Liu, Tao; Pelowski, Matthew; Pang, Changle; Zhou, Yuanji; Cai, Jianfeng

    2016-03-01

    Driving a motor vehicle requires various cognitive functions to process surrounding information, to guide appropriate actions, and especially to respond to or integrate with numerous contextual and perceptual hindrances or risks. It is, thus, imperative to examine driving performance and road safety from a perspective of cognitive neuroscience, which considers both the behaviour and the functioning of the brain. However, because of technical limitations of current brain imaging approaches, studies have primarily adopted driving games or simulators to present participants with simulated driving environments that may have less ecological validity. Near-infrared spectroscopy (NIRS) is a relatively new, non-invasive brain-imaging technique allowing measurement of brain activations in more realistic settings, even within real motor vehicles. This study reviews current NIRS driving research and explores NIRS' potential as a new tool to examine driving behaviour, along with various risk factors in natural situations, promoting our understanding about neural mechanisms of driving safety. Practitioner Summary: Driving a vehicle is dependent on a range of neurocognitive processing abilities. Near-infrared spectroscopy (NIRS) is a non-invasive brain-imaging technique allowing measurement of brain activation even in on-road studies within real motor vehicles. This study reviews current NIRS driving research and explores the potential of NIRS as a new tool to examine driving behaviour.

  11. INFRARED SPECTROSCOPY OF INTERMEDIATE-MASS YOUNG STELLAR OBJECTS

    SciTech Connect

    Pitann, Jan; Bouwman, Jeroen; Krause, Oliver; Henning, Thomas; Hennemann, Martin

    2011-12-10

    In this paper, we present Spitzer Infrared Spectrograph spectroscopy for 14 intermediate-mass young stellar objects (YSOs). We use Spitzer spectroscopy to investigate the physical properties of these sources and their environments. Our sample can be divided into two types of objects: young isolated, embedded objects with spectra that are dominated by ice and silicate absorption bands, and more evolved objects that are dominated by extended emission from polycyclic aromatic hydrocarbons (PAHs) and pure H{sub 2} rotational lines. We are able to constrain the illuminating FUV fields by classifying the PAH bands below 9 {mu}m. For most of the sources we are able to detect several atomic fine structure lines. In particular, the [Ne II] line appearing in two regions could originate from unresolved photodissociation regions or J-shocks. We relate the identified spectral features to observations obtained from NIR through submillimeter imaging. The spatial extent of several H{sub 2} and PAH bands is matched with morphologies identified in previous Infrared Array Camera observations. This also allows us to distinguish between the different H{sub 2} excitation mechanisms. In addition, we calculate the optical extinction from the silicate bands and use this to constrain the spectral energy distribution fit, allowing us to estimate the masses of these YSOs.

  12. Understanding ion association states and molecular dynamics using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Masser, Hanqing

    A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO

  13. Applications of remote fiber optic spectroscopy using infrared fibers and Fourier transform infrared (FTIR) spectroscopy to environmental monitoring

    NASA Astrophysics Data System (ADS)

    Druy, Mark A.; Glatkowski, Paul J.; Bolduc, Roy A.; Stevenson, William A.; Thomas, Thomas C.

    1994-10-01

    This manuscript summarizes the effort to demonstrate the feasibility of developing a field-portable Fourier Transform Infrared (FTIR) instrument that can perform a quick and accurate chemical analysis of unknown waste materials at Air Force bases without removing a sample for analysis. We report that devices containing a tapered infrared fiber optic sensor can remotely detect and quantify the range of liquid hazardous waste typically found at Air Force bases. Partial Least Squares (PLS) calibration equations were formulated and shown to accurately predict the concentration of components in a mixture with an error or +/- 0.05% volume.

  14. Determination of melamine of milk based on two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ren-jie; Liu, Rong; Xu, Kexin

    2012-03-01

    The adulteration of milk with harmful substances is a threat to public health and beyond question a serious crime. In order to develop a rapid, cost-effective, high-throughput analysis method for detecting of adulterants in milk, the discriminative analysis of melamine is established in milk based on the two-dimensional (2D) correlation infrared spectroscopy in present paper. Pure milk samples and adulterated milk samples with different content of melamine were prepared. Then the Fourier Transform Infrared spectra of all samples were measured at room temperature. The characteristics of pure milk and adulterated milk were studied by one-dimensional spectra. The 2D NIR and 2D IR correlation spectroscopy were calculated under the perturbation of adulteration concentration. In the range from 1400 to 1800 cm-1, two strong autopeaks were aroused by melamine in milk at 1464 cm-1 and 1560 cm-1 in synchronous spectrum. At the same time, the 1560 cm-1 band does not share cross peak with the 1464 cm-1 band, which further confirm that the two bands have the same origin. Also in the range from 4200 to 4800 cm-1, the autopeak was shown at 4648 cm-1 in synchronous spectrum of melamine in milk. 2D NIR-IR hetero-spectral correlation analysis confirmed that the bands at 1464, 1560 and 4648 cm-1 had the same origin. The results demonstrated that the adulterant can be discriminated correctly by 2D correlation infrared spectroscopy.

  15. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    PubMed

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  16. Investigating lignin key features in maize lignocelluloses using infrared spectroscopy.

    PubMed

    Chazal, Richard; Robert, Paul; Durand, Sylvie; Devaux, Marie-Françoise; Saulnier, Luc; Lapierre, Catherine; Guillon, Fabienne

    2014-01-01

    Lignins and their cross-linking to hemicelluloses detrimentally affect the cellulose-to-ethanol conversion of grass lignocelluloses. Screening appropriate grass cell walls and their compositional changes during the various steps of the process calls for a high-throughput analytical technique. Such a performance can be fulfilled by Fourier transform mid-infrared (FT-MIR) spectroscopy. In the present paper, a set of maize cell walls from mature stems were selected, including brown midrib samples. Lignin fractions were isolated by mild acidolysis to obtain a set of purified maize lignin standards. The lignin content and the percentage of lignin-derived p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) thioacidolysis monomers were determined. In addition, the composition of cell wall polysaccharides, as well as the amount of ester-linked p-coumaric (CA) and ferulic (FA) acids, was measured by wet chemistry. Partial least square (PLS) analyses were applied to infrared and chemical data of cell walls. The resulting models showed a good predictive ability with regard to the lignin content, to the frequency of S (or G) thioacidolysis monomers, and to the level of ester-linked CA of maize cell walls. The loading plots and regression coefficients revealed relevant infrared absorption bands.

  17. Photoacoustic infrared spectroscopy of Syncrude post-extraction oil sand

    NASA Astrophysics Data System (ADS)

    Michaelian, Kirk H.; Hall, Robert H.; Kenny, Kimberly I.

    2006-06-01

    Rapid- and step-scan photoacoustic (PA) infrared spectra of three fractions of a Syncrude post-extraction oil sand were analyzed in detail in this work. The rapid-scan spectra showed that the samples were comprised primarily of kaolinite, quartz, silica, siderite, and residual hydrocarbons, and that the proportions of these constituents were different for each fraction. Depth profiling of the three post-extraction oil sands was accomplished using both rapid- and step-scan PA infrared spectroscopy. The results confirmed that kaolinite is more abundant in the near-surface region, whereas quartz and hydrocarbons are concentrated at greater depths. The modulation frequency dependence of th