Science.gov

Sample records for infrared wavelength photonic

  1. Silicon photonic crystal thermal emitter at near-infrared wavelengths.

    PubMed

    O'Regan, Bryan J; Wang, Yue; Krauss, Thomas F

    2015-08-21

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission.

  2. Towards two-dimensional complete photonic bandgap structures below infrared wavelengths

    NASA Astrophysics Data System (ADS)

    van der Lem, Han; Moroz, Alexander

    2000-09-01

    Bandgaps in two- and three-dimensional photonic crystals are hard to achieve due to the limited contrast in the dielectric permeability available with conventional dielectric materials. The situation changes for periodic arrangements of scatterers consisting of materials with a Drude-like behaviour of the dielectric function. We show for two-dimensional square and triangular lattices that such systems have in-plane complete photonic bandgaps (CPBGs) below infrared wavelengths. Of the two geometries, the optimal one for ideal Drude-like behaviour is a square lattice, whereas for Drude-like behaviour in silver, using experimental data (Palik E D 1991 Handbook of Optical Constants of Solids vol 1 (San Diego: Academic)), the optimal geometry is a triangular lattice. If the lattice spacing is tuned to a characteristic plasma wavelength, several CPBGs open in the spectrum and their relative gap width can be as large as 36.9% (9.9% in a nonabsorptive window) even if the host dielectric constant ɛh = 1. Such structures can provide CPBG structures with bandgaps down to ultraviolet wavelengths.

  3. Wavelength-tunable mid-infrared femtosecond Raman soliton generation in birefringent ZBLAN photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Sharma, Sneha; Kumar, Jitendra

    2016-03-01

    A solid core high birefringent ZrF4-BaF2-LaF3-AlF3-NaF photonic crystal fiber (PCF) with low confinement loss is proposed for the generation of Raman soliton source in the mid-infrared region. The birefringence value of the PCF reaches the magnitude of 10- 3 and confinement loss is 0.05 dB/m at 3000 nm wavelength. Numerical simulation of femtosecond Raman soliton generation based on soliton self-frequency shift in the birefringent PCF is analyzed using the coupled nonlinear Schrodinger equation and split-step Fourier method. We investigate the dependence of output pulse width, wavelength shift, and conversion efficiency of Raman soliton formation on several input parameters. A femtosecond Raman soliton source with its wavelength tunable from 1500 to 3600 nm can be obtained. It is found that the maximum conversion efficiency is 93% when the wavelength is tuned by varying the initial input chirp.

  4. Design of near-infrared single photon detector at 1550nm wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Jiali

    2016-09-01

    Technology of near-infrared single photon detection is used in quantum communication, laser ranging and weak light detection. Present single photon detectors are usually expensive and bulky. To overcome their disadvantages, a hand-held single photon detector based on InGaAs/InP avalanche photo diode (APD) is developed. A circuit program for temperature control and bias voltage is offered. The gating signal is generated and the avalanche signal is extracted by FPGA. Experiment results show that, the single photon detector yields only 8.2×10-6/ns dark count rate (DCR) when photon detection efficiency is 12%, and the maximum photon detection efficiency of 16% is obtained at temperature of -55°C.

  5. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect

    Kang, Henry Hao-Chuan

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  6. Photon path depth in tissue phantoms: a comparison of visible and near-infrared (NIR) wavelengths

    NASA Astrophysics Data System (ADS)

    Asplund, Karin M.; Schenkman, Kenneth A.; Ciesielski, Wayne A.; Arakaki, Lorilee S. L.

    2014-03-01

    Optical spectroscopy is being used increasingly in medical applications to noninvasively investigate tissues below the skin. In order to assure adequate sampling of tissues underlying the skin, photon penetration depth must be known. Photon penetration in tissues has been studied with near-infrared (NIR) light, but experimental study of visible light propagation in tissue has been limited. In this study, a micro-motion system coupled with a reflectance spectroscopy system was used to determine the penetration depth of visible-range and NIR photons (535-800 nm) in phantoms composed of Intralipid and hemoglobin. An absorbing target was placed at intervals of 0.1mm along a 15mm line perpendicular to and bisecting the line between the ends of the source and detector optical fiber bundles. Comparisons between detected light intensities at different target positions were used to determine the most probable photon path depths at 576 nm and at 760 nm. Scattering coefficients, hemoglobin concentrations, and source-detector separations were varied to evaluate their effects on the penetration depth of photons. Results from phantoms containing Intralipid only showed that the most-probable penetration depth at 576 nm was comparable to that at 760 nm. Larger sourcedetector separations resulted in deeper photon penetration depths for both spectral regions. Changes in scattering over a 4-fold range did not affect the photon path depth appreciably. In the presence of hemoglobin with a source-detector separation of 13 mm, the most probable depth of photon penetration in the visible range was greater than 2.5 mm, and was within 1 mm of the most probable depth of photon penetration in the NIR. This study demonstrates the feasibility of using the visible and NIR regions in transcutaneous reflectance spectroscopy.

  7. Doubly Resonant Photonic Antenna for Single Infrared Quantum Dot Imaging at Telecommunication Wavelengths.

    PubMed

    Xie, Zhihua; Lefier, Yannick; Suarez, Miguel Angel; Mivelle, Mathieu; Salut, Roland; Merolla, Jean-Marc; Grosjean, Thierry

    2017-03-24

    Colloidal quantum dots (CQDs) have drawn strong interest in the past for their high prospects in scientific, medical, and industrial applications. However, the full characterization of these quantum emitters is currently restricted to the visible wavelengths, and it remains a key challenge to optically probe single CQDs operating in the infrared spectral domain, which is targeted by a growing number of applications. Here, we report the first experimental detection and imaging at room temperature of single infrared CQDs operating at telecommunication wavelengths. Imaging was done with a doubly resonant bowtie nanoaperture antenna (BNA) written at the end of a fiber nanoprobe, whose resonances spectrally fit the CQD absorption and emission wavelengths. Direct near-field characterization of PbS CQDs reveal individual nanocrystals with a spatial resolution of 75 nm (λ/20) together with their intrinsic 2D dipolar free-space emission properties and exciton dynamics (blinking phenomenon). Because the doubly resonant BNA is strongly transmissive at both the CQD absorption and the emission wavelengths, we are able to perform all-fiber nanoimaging with a standard 20% efficiency InGaAs avalanche photodiode (APD). The detection efficiency is predicted to be 3000 fold larger than with a conventional circular aperture tip of the same transmission area. Double resonance BNA fiber probes thus offer the possibility of exploring extreme light-matter interaction in low band gap CQDs with current plug-and-play detection techniques, opening up new avenues in the fields of infrared light-emitting devices, photodetectors, telecommunications, bioimaging, and quantum information technology.

  8. APDs as single-photon detectors for visible and near-infrared wavelengths down to Hz rates

    NASA Astrophysics Data System (ADS)

    Jöhren, R.; Berendes, R.; Buglak, W.; Hampf, D.; Hannen, V.; Mader, J.; Nörtershäuser, W.; Sánchez, R.; Weinheimer, C.

    2012-02-01

    For the SPECTRAP experiment at GSI, Germany, detectors with single-photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2 × 2 mm2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170°C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve relative gains in excess of 2ṡ104. Custom-made low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a relative gain of 2.2ṡ104. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 230 s-1. With these settings the studied APDs are able to detect single-photons at 628 nm wavelength with a photo detection efficiency of (67±7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a light bulb as photon source. With this setup the photo detection efficiency at 1020 nm has been determined to be (13±3)%, again at a threshold of 6 mV.

  9. Hyperuniform disordered photonic bandgap materials, from microwave to infrared wavelength regime

    NASA Astrophysics Data System (ADS)

    Man, Weining

    Recently, we have introduced a new class of hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's Fourier transform to be continuous, isotropic and stealthy. Their structure factor S (k) is equal to zero for small kand exhibits a broad ring of maximum values around a characteristic wave-length range. Experimentally, an isotropic complete PBG (at all angles and for all polarizations) in an alumina-based HUD structure and single-polarized PBGs for plastic-based HUD structure have been demonstrated. Using measured and simulated transmission and phase delay information through these HUD structures, we also unfolded their band structures and reconstructed the effective dispersion relations of propagating electromagnetic modes in them. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. In the microwave regime, we have shown the creation of freeform waveguides, which can channel photons robustly along arbitrarily curved paths and around sharp bends, and be decorated with defects to produce sharply resonant structures useful for filtering and frequency splitting. Recent simulation and experimental results for waveguides and modulators based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. NSF DMR-1308084, EPSRC (UK) DTG Grant KD5050, EPSRC (UK) Strategic Equipment Grant EP/M008576/1, NSF SBIR-1345168, NSF MRI-1040444.

  10. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  11. Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber.

    PubMed

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Farrell, Gerald; Hou, Lantian

    2013-12-15

    Based on degenerate four-wave mixing (FWM), the broadband Stokes waves are efficiently generated at the mid-infrared wavelength above 2 μm, for the first time to our knowledge, by coupling the femtosecond pulses into the fundamental mode of a silica photonic crystal fiber designed and fabricated in our laboratory. Influences of the power and wavelength of pump pulses on the phase-matched frequency conversion process are discussed. When pump pulses with central wavelength of 815 nm and average power of 300 mW are used, the output power ratio of the Stokes wave generated at 2226 nm and the residual pump wave P(s)/P(res) is estimated to be 10.8:1, and the corresponding conversion efficiency η(s) and bandwidth B(s) of the Stokes wave can be up to 26% and 33 nm, respectively. The efficient and broadband Stokes waves can be used as the ultrashort pulse sources for mid-infrared photonics and spectroscopy.

  12. Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber.

    PubMed

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Li, Feng; Zhou, Xian; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Tam, Hwa Yaw; Wai, P K A

    2015-04-01

    We demonstrate experimentally an enhanced intermodal four-wave mixing (FWM) process through coupling positively chirped femtosecond pulses into the deeply normal dispersion region of the fundamental mode of an in-house fabricated photonic crystal fiber (PCF). In the intermodal phase-matching scheme, the energy of the pump waves at 800 nm in the fundamental mode is efficiently converted into the anti-Stokes waves around 553 nm and the Stokes waves within the wavelength range of 1445-1586 nm in the second-order mode. The maximum conversion efficiency of η(as) and η(s) of anti-Stokes and Stokes waves can be up to 21% and 16%, respectively. The Stokes frequency shift Ω is 5580  cm(-1). The fiber bending and intermodal walk-off effect of pulses do not have significant influence on the nonlinear optical process.

  13. trans/cis-Isomerization of fluorene-bridged azo chromophore with significant two-photon absorbability at near-infrared wavelength.

    PubMed

    Chu, Chih-Chien; Chang, Ya-Chi; Tsai, Bo-Kai; Lin, Tzu-Chau; Lin, Ja-Hon; Hsiao, Vincent K S

    2014-12-01

    Azo-containing materials have been proven to possess second-order nonlinear optical (NLO) properties, but their third-order NLO properties, which involves two-photon absorption (2PA), has rarely been reported. In this study, we demonstrate a significant 2PA behavior of the novel azo chromophore incorporated with bilateral diphenylaminofluorenes (DPAFs) as a π framework. The electron-donating DPAF moieties cause a redshifted π-π* absorption band centered at 470 nm, thus allowing efficient blue-light-induced trans-to-cis photoisomerization with a rate constant of 2.04 × 10(-1) min(-1) at the photostationary state (PSS). The open-aperture Z-scan technique that adopted a femtosecond (fs) pulse laser as excitation source shows an appreciably higher 2PA cross-section for the fluorene-derived azo chromophore than that for common azobenzene dyes at near-infrared wavelength (λex =800 nm). Furthermore, the fs 2PA response is quite uniform regardless of the molecular geometry. On the basis of the computational modeling, the intramolecular charge-transfer (ICT) process from peripheral diphenylamines to the central azo group through a fluorene π bridge is crucial to this remarkable 2PA behavior.

  14. Parametric wavelength conversion in photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Yang, Sigang; Wu, Zhaohui; Yang, Yi; Chen, Minghua; Xie, Shizhong

    2016-11-01

    Nonlinear wavelength conversion provides flexible solutions for generating wideband tunable radiation in novel wavelength band. Parametric process in photonic crystal fibers (PCFs) has attracted comprehensive interests since it can act as broadband tunable light sources in non-conventional wavelength bands. The current state-of-the-art photonic crystal fibers can provide more freedom for customizing the dispersion and nonlinearity which is critical to the nonlinear process, such as four wave mixing (FWM), compared with the traditional fibers fabricated with doping techniques. Here we demonstrate broadband parametric wavelength conversion in our homemade photonic crystal fibers. The zero dispersion wavelength (ZDW) of PCFs is critical for the requirement of phase matching condition in the parametric four wave mixing process. Firstly a procedure of the theoretical design of PCF with the ZDW at 1060 nm is proposed through our homemade simulation software. A group of PCF samples with gradually variable parameters are fabricated according to the theoretical design. The broadband parametric gain around 1060 nm band is demonstrated pumped with our homemade mode locked fiber laser in the anomalous dispersion region. Also a narrow gain band with very large wavelength detune with the pump wavelength in the normal dispersion region is realized. Wavelength conversion with a span of 194 nm is realized. Furthermore a fiber optical parametric oscillator based on the fabricated PCF is built up. A wavelength tunable range as high as 340 nm is obtained. This report demonstrates a systematic procedure to realize wide band wavelength conversion based on PCFs.

  15. Negative refraction at telecommunication wavelengths through plasmon-photon hybridization.

    PubMed

    Kalusniak, Sascha; Sadofev, Sergey; Henneberger, Fritz

    2015-11-16

    We demonstrate negative refraction at telecommunication wavelengths through plasmon-photon hybridization on a simple microcavity with metallic mirrors. Instead of using conventional metals, the plasmonic excitations are provided by a heavily doped semiconductor which enables us to tune them into resonance with the infrared photon modes of the cavity. In this way, the dispersion of the resultant hybrid cavity modes can be widely adjusted. In particular, negative dispersion and negative refraction at telecommunication wavelengths on an all-ZnO monolithical cavity are demonstrated.

  16. Wavelength multicasting in silicon photonic nanowires.

    PubMed

    Biberman, Aleksandr; Lee, Benjamin G; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2010-08-16

    We demonstrate a scalable, energy-efficient, and pragmatic method for high-bandwidth wavelength multicasting using FWM in silicon photonic nanowires. We experimentally validate up to a sixteen-way multicast of 40-Gb/s NRZ data using spectral and temporal responses, and evaluate the resulting data integrity degradation using BER measurements and power penalty performance metrics. We further examine the impact of this wavelength multicasting scalability on conversion efficiency. Finally, we experimentally evaluate up to a three-way multicast of 160-Gb/s pulsed-RZ data using spectral and temporal responses, representing the first on-chip wavelength multicasting of pulsed-RZ data.

  17. Differentiation of closely related isomers: application of data mining techniques in conjunction with variable wavelength infrared multiple photon dissociation mass spectrometry for identification of glucose-containing disaccharide ions.

    PubMed

    Stefan, Sarah E; Ehsan, Mohammad; Pearson, Wright L; Aksenov, Alexander; Boginski, Vladimir; Bendiak, Brad; Eyler, John R

    2011-11-15

    Data mining algorithms have been used to analyze the infrared multiple photon dissociation (IRMPD) patterns of gas-phase lithiated disaccharide isomers irradiated with either a line-tunable CO(2) laser or a free electron laser (FEL). The IR fragmentation patterns over the wavelength range of 9.2-10.6 μm have been shown in earlier work to correlate uniquely with the asymmetry at the anomeric carbon in each disaccharide. Application of data mining approaches for data analysis allowed unambiguous determination of the anomeric carbon configurations for each disaccharide isomer pair using fragmentation data at a single wavelength. In addition, the linkage positions were easily assigned. This combination of wavelength-selective IRMPD and data mining offers a powerful and convenient tool for differentiation of structurally closely related isomers, including those of gas-phase carbohydrate complexes.

  18. Compact fixed wavelength femtosecond oscillators for multi-photon imaging

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.; Zadoyan, R.; Baldacchini, T.; Franke, T.

    2015-03-01

    In recent years two-photon microscopy with fixed-wavelength has raised increasing interest in life-sciences: Two-photon (2P) absorption spectra of common dyes are broader than single-photon ones. Therefore, excitation of several dyes simultaneously with a single IR laser wavelength is feasible and could be seen as an advantage in 2P microscopy. We used pulsed fixed-wavelength infrared lasers with center wavelength at 1040 nm, for two-photon microscopy in a variety of biologically relevant samples, among these a mouse brain sample, a mouse artery (within the animal, acute preparation), and a preparation of mouse bladder. The 1040 nm laser proved to be efficient not only in exciting fluorescence from yellow fluorescent protein (YFP) and red fluorescent dyes, but also for second harmonic generation (SHG) signals from muscle tissue and collagen. With this work we demonstrate that economical, small-footprint fixedwavelength lasers can present an interesting alternative to tunable lasers that are commonly used in multiphoton microscopy.

  19. Progress towards photon-counting infrared arrays for interferometry

    NASA Astrophysics Data System (ADS)

    Buscher, David F.; Seneta, Eugene B.; Sun, Xiaowei; Young, John S.; Finger, Gert

    2016-08-01

    The advent of low-dark-current eAPD arrays in the near infrared ushers in the possibility for photon-counting, high quantum efficiency detectors at these wavelengths. Such detectors would revolutionise the sensitivity of interferometry because near-infrared wavelengths are at the "sweet spot" between the corrupting effects of atmospheric seeing at shorter wavelengths and thermal noise at longer wavelengths. We report on laboratory experiments with cooled Selex Saphira detectors aimed at demonstrating photon-counting performance with these devices by exploiting enhanced avalanche gain and multiple non-destructive readouts. We explain the optimum modes for employing these detectors in interferometry.

  20. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    SciTech Connect

    Kita, Tomohiro Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  1. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    NASA Astrophysics Data System (ADS)

    Kita, Tomohiro; Tang, Rui; Yamada, Hirohito

    2015-03-01

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  2. Room-temperature short-wavelength infrared Si photodetector

    PubMed Central

    Berencén, Yonder; Prucnal, Slawomir; Liu, Fang; Skorupa, Ilona; Hübner, René; Rebohle, Lars; Zhou, Shengqiang; Schneider, Harald; Helm, Manfred; Skorupa, Wolfgang

    2017-01-01

    The optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed. This fundamental shortcoming, however, can be overcome by introducing non-equilibrium deep-level dopant concentrations into Si, which results in the formation of an impurity band allowing for strong sub-band gap absorption. Here, we present steady-state room-temperature short-wavelength infrared p-n photodiodes from single-crystalline Si hyperdoped with Se concentrations as high as 9 × 1020 cm−3, which are introduced by a robust and reliable non-equilibrium processing consisting of ion implantation followed by millisecond-range flash lamp annealing. We provide a detailed description of the material properties, working principle and performance of the photodiodes as well as the main features in the studied wavelength region. This work fundamentally contributes to establish the short-wavelength infrared detection by hyperdoped Si in the forefront of the state-of-the-art of short-IR Si photonics. PMID:28262746

  3. Room-temperature short-wavelength infrared Si photodetector

    NASA Astrophysics Data System (ADS)

    Berencén, Yonder; Prucnal, Slawomir; Liu, Fang; Skorupa, Ilona; Hübner, René; Rebohle, Lars; Zhou, Shengqiang; Schneider, Harald; Helm, Manfred; Skorupa, Wolfgang

    2017-03-01

    The optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed. This fundamental shortcoming, however, can be overcome by introducing non-equilibrium deep-level dopant concentrations into Si, which results in the formation of an impurity band allowing for strong sub-band gap absorption. Here, we present steady-state room-temperature short-wavelength infrared p-n photodiodes from single-crystalline Si hyperdoped with Se concentrations as high as 9 × 1020 cm‑3, which are introduced by a robust and reliable non-equilibrium processing consisting of ion implantation followed by millisecond-range flash lamp annealing. We provide a detailed description of the material properties, working principle and performance of the photodiodes as well as the main features in the studied wavelength region. This work fundamentally contributes to establish the short-wavelength infrared detection by hyperdoped Si in the forefront of the state-of-the-art of short-IR Si photonics.

  4. Group IV mid-infrared photonics

    NASA Astrophysics Data System (ADS)

    Mashanovich, G. Z.; Nedeljkovic, M.; Soler Penades, J.; Mitchell, C. J.; Khokhar, A. Z.; Littlejohns, C. J.; Stankovic, S.; Troia, B.; Wang, Y.; Reynolds, S.; Passaro, V. M. N.; Shen, L.; Healy, N.; Peacock, A. C.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Rowe, D. J.; Wilkinson, J. S.; Cheben, P.; Ackert, J. J.; Knights, A. P.; Thomson, D. J.; Gardes, F. Y.

    2015-02-01

    In this paper we present SOI, suspended Si, and Ge-on-Si photonic platforms and devices for the mid-infrared. We demonstrate low loss strip and slot waveguides in SOI and show efficient strip-slot couplers. A Vernier configuration based on racetrack resonators in SOI has been also investigated. Mid-infrared detection using defect engineered silicon waveguides is reported at the wavelength of 2-2.5 μm. In order to extend transparency of Si waveguides, the bottom oxide cladding needs to be removed. We report a novel suspended Si design based on subwavelength structures that is more robust than previously reported suspended designs. We have fabricated record low loss Ge-on-Si waveguides, as well as several other passive devices in this platform. All optical modulation in Ge is also analyzed.

  5. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers

    PubMed Central

    Jirauschek, Christian; Huber, Robert

    2015-01-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  6. Short-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this NASA Spitzer Space Telescope image. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years from Earth.

    Because of its proximity, M81 provides astronomers with an enticing opportunity to study the anatomy of a spiral galaxy in detail. The unprecedented spatial resolution and sensitivity of Spitzer at infrared wavelengths show a clear separation between the several key constituents of the galaxy: the old stars, the interstellar dust heated by star formation activity, and the embedded sites of massive star formation. The infrared images also permit quantitative measurements of the galaxy's overall dust content, as well as the rate at which new stars are being formed.

    The infrared image was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). Winding outward from the bluish-white central bulge of the galaxy, where old stars predominate and there is little dust, the grand spiral arms are dominated by infrared emission from dust. Dust in the galaxy is bathed by ultraviolet and visible light from the surrounding stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles, composed of silicates (which are chemically similar to beach sand) and polycyclic aromatic hydrocarbons, trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.

    The infrared-bright clumpy knots within the spiral arms denote where massive stars are being born in giant H

  7. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.

    1990-01-01

    The focus of the workshop was on innovative long wavelength (lambda less than 17 microns) infrared (LWIR) detectors with the potential of meeting future NASA and DoD long-duration space application needs. Requirements are for focal plane arrays which operate near 65K using active refrigeration with mission lifetimes of five to ten years. The workshop addressed innovative concepts, new material systems, novel device physics, and current progress in relation to benchmark technology. It also provided a forum for discussion of performance characterization, producibility, reliability, and fundamental limitations of device physics. It covered the status of the incumbent HgCdTe technology, which shows encouraging progress towards LWIR arrays, and provided a snapshot of research and development in several new contender technologies.

  8. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  9. FY 2006 Infrared Photonics Final Report

    SciTech Connect

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong; Schultz, John F.

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  10. Applications of photonic crystal in wavelength multiplex visualization

    NASA Astrophysics Data System (ADS)

    Qian, Shi; Lei, Zhang

    2016-10-01

    The triple-channel photonic crystal filters are proposed designed. These devices have advantages of better filtering effect and high wavelength accuracy. In wavelength multiplex visualization, these filters can bring different wavelength of view entering into eyes so that stereo images are formed. we discuss the problem about minimization of the angle shift .The simulation shows that higher-index material and more high-index material in a basic period can decrease the angle shift.

  11. Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms.

    PubMed

    Momeni, Babak; Huang, Jiandong; Soltani, Mohammad; Askari, Murtaza; Mohammadi, Saeed; Rakhshandehroo, Mohammad; Adibi, Ali

    2006-03-20

    Here, we demonstrate a compact photonic crystal wavelength demultiplexing device based on a diffraction compensation scheme with two orders of magnitude performance improvement over the conventional superprism structures reported to date. We show that the main problems of the conventional superprism-based wavelength demultiplexing devices can be overcome by combining the superprism effect with two other main properties of photonic crystals, i.e., negative diffraction and negative refraction. Here, a 4-channel optical demultiplexer with a channel spacing of 8 nm and cross-talk level of better than -6.5 dB is experimentally demonstrated using a 4500 microm(2) photonic crystal region.

  12. Infrared spectroscopy assisted by entangled photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna V.; Lung, Shaun; Kalashnikov, Dmitry A.; Kulik, Sergei P.; Krivitsky, Leonid A.

    2016-11-01

    We describe a proof-of-concept of a method for measurement of both real (refraction) and imaginary (absorption) part of the refractive index in the infrared (IR) range by measuring an interference pattern in the visible range without the need for any spectral and spatial selection. The concept is based on nonlinear interference of entangled photons, generated via Spontaneous Parametric Down Conversion (SPDC). In our interferometer, the phase of the signal photon in the visible range depends on the phase of an entangled IR photon. When the IR photon is traveling through the media of interest, its properties can be found from the observations of the visible photon.

  13. FY 2005 Infrared Photonics Final Report

    SciTech Connect

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong; Schultz, John F.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and

  14. AFRL Nanotechnology Initiative: Hybrid Nanomaterials in Photonic Crystal Cavities for Multi-Spectral Infrared Detector Arrays

    DTIC Science & Technology

    2010-03-31

    INITIATIVE) HYBRID NANOMATERIALS IN PHOTONIC CRYSTAL CAVITIES FOR MULTI -SPECTRAL INFRARED DETECTOR ARRAYS 5b. GRANT NUMBER F A9550-06-1-0482 5c...IR) photodetector using hybrid nanornaterials in photonic crystal (PC) cavities for enhanced absorption at selected wavelengths. The simultaneous...infrared photodetection, quantum dots, photonic crystal cavities, matrix-assisted pulsed laser evaporation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  15. Aluminum infrared plasmonic perfect absorbers for wavelength selective devices

    NASA Astrophysics Data System (ADS)

    Dao, Thang Duy; Ishii, Satoshi; Chen, Kai; Yokoyama, Takahiro; Nabatame, Toshihide; Nagao, Tadaaki

    2016-09-01

    We demonstrate the development of colloidal lithography technique to fabricate large-area plasmonic perfect absorbers using Al, which is an earth abundant low-cost plasmonic material in contrast to Au and Ag. Using numerical electromagnetic simulations, we optimize the geometrical parameters of Al perfect absorbers (AlPAs) with resonances at desired wavelengths depending on the applications. The fabricated AlPAs exhibit narrowband absorptions with high efficiency up to 98 %. By tuning AlPAs parameters, the resonance of AlPAs can be tuned from the visible to the middle infrared region. The AlPAs can be applied for spectrally selective infrared devices such as selective thermal emitters, selective surface-enhanced vibrational spectroscopy (SEIRA) for molecular sensing and selective IR detectors. In this report, we demonstrate applications of AlPAs for selective thermal emitters and SEIRA. The results obtained here reveal a simple technique to fabricate scalable plasmonic perfect absorbers as well as their potential applications in optoelectronic and photonic devices.

  16. FY 2004 Infrared Photonics Final Report

    SciTech Connect

    Anheier, Norman C.; Allen, Paul J.; Keller, Paul E.; Bennett, Wendy D.; Martin, Peter M.; Johnson, Bradley R.; Sundaram, S. K.; Riley, Brian J.; Martinez, James E.; Qiao, Hong; Schultz, John F.

    2004-10-01

    Research done by the Infrared Photonics team at PNNL is focused on developing miniaturized integrated optics for the MWIR and LWIR by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin film deposition capabilities, direct-laser writing techniques, IR photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology - all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to Quantum Cascade Laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  17. Minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices: Photon recycling and the role of radiative and Shockley-Read-Hall recombination mechanisms

    SciTech Connect

    Höglund, L.; Ting, D. Z.; Soibel, A.; Fisher, A.; Khoshakhlagh, A.; Hill, C. J.; Keo, S.; Gunapala, S. D.

    2014-11-10

    The influence of radiative recombination on the minority carrier lifetime in mid-wavelength InAs/InAsSb superlattices was investigated. From the lifetime's dependence on temperature, photon recycling, and carrier concentration, it was demonstrated that radiative lifetime dominates for carrier concentrations >5 × 10{sup 14} cm{sup −3}, and Shockley-Read-Hall recombination starts to dominate the minority carrier lifetime for carrier concentrations <5 × 10{sup 14} cm{sup −3}. An observed increase of the minority carrier lifetime with increasing superlattice thickness was attributed to photon recycling, and good agreement between measured and theoretical values of the photon recycling factor was obtained.

  18. Photonic crystal slab quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Kalchmair, S.; Detz, H.; Cole, G. D.; Andrews, A. M.; Klang, P.; Nobile, M.; Gansch, R.; Ostermaier, C.; Schrenk, W.; Strasser, G.

    2011-01-01

    In this letter we present a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS). With the PCS it is possible to enhance the absorption efficiency by increasing photon lifetime in the detector active region. To understand the optical properties of the device we simulate the PCS photonic band structure, which differs significantly from a real two-dimensional photonic crystal. By fabricating a PCS-QWIP with 100x less quantum well doping, compared to a standard QWIP, we are able to see strong absorption enhancement and sharp resonance peaks up to temperatures of 170 K.

  19. Photonic crystal enhancement of auger-suppressed infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Djurić, Zoran; Jakšić, Zoran; Ehrfeld, Wolfgang; Schmidt, Andreas; Matić, Milan; Popović, Mirjana

    2001-04-01

    We examine theoretically and experimentally the possibilities to reach room-temperature background-limited operation of narrow-bandgap compound semiconductor photodetectors in (3-14) micrometer infrared wavelength range. To this purpose we consider the combination of non-equilibrium Auger suppression with photonic crystal enhancement (PCE). This means that Auger generation-recombination processes are suppressed utilizing exclusion, extraction or magnetoconcentration effects or their combination. The residual radiative recombination is removed by immersing the detector active area into a photonic crystal and using the benefits of re-absorption (photon recycling) to effectively increase the radiative lifetime. In this manner the total generation-recombination noise is strongly quenched in sufficiently defect-free device materials. It is concluded that the operation of thus enhanced photonic detectors could even approach signal fluctuation limit.

  20. Using Guide Wavelengths to Assess Far-Infrared Laser Emissions

    NASA Astrophysics Data System (ADS)

    DeShano, B.; Olivier, K.; Cain, B.; Zink, L. R.; Jackson, M.

    2014-09-01

    An optically pumped molecular laser system with a transverse excitation scheme has been used to observe 77 guide wavelengths associated with the modes of an oversized waveguide laser resonator. These guide wavelengths, spanning from 102.6 to 990.6 μm, were generated by a variety of lasing media, including methanol along with several symmetric- and asymmetric-top molecules. The guide wavelengths displayed several consistent characteristics when compared with their respective fundamental laser emissions: their wavelengths were about 0.47 % larger and their relative powers were at least a factor of ten weaker. The properties of these guide wavelengths were used to assess frequency and wavelength measurements associated with known far-infrared laser emissions. For several of these laser emissions, this prompted a reinvestigation and subsequent revision of their measured values. Five far-infrared laser frequencies were also measured for the first time.

  1. Using Guide Wavelengths to Assess Far-Infrared Laser Emissions

    NASA Astrophysics Data System (ADS)

    DeShano, B.; Olivier, K.; Cain, B.; Zink, L. R.; Jackson, M.

    2015-01-01

    An optically pumped molecular laser system with a transverse excitation scheme has been used to observe 77 guide wavelengths associated with the modes of an oversized waveguide laser resonator. These guide wavelengths, spanning from 102.6 to 990.6 μm, were generated by a variety of lasing media, including methanol along with several symmetric- and asymmetric-top molecules. The guide wavelengths displayed several consistent characteristics when compared with their respective fundamental laser emissions: their wavelengths were about 0.47 % larger and their relative powers were at least a factor of ten weaker. The properties of these guide wavelengths were used to assess frequency and wavelength measurements associated with known far-infrared laser emissions. For several of these laser emissions, this prompted a reinvestigation and subsequent revision of their measured values. Five far-infrared laser frequencies were also measured for the first time.

  2. Mid-infrared supercontinuum generation in silica photonic crystal fibers.

    PubMed

    Bi, Wanjun; Gao, Juanjuan; Li, Xia; Xiong, Liangming; Liao, Meisong

    2016-08-10

    A mid-infrared supercontinuum (SC) light source, which has important applications in many fields, has been extensively investigated in soft glass fibers. However, the poor instinct properties of soft glass fibers and the development of ultrashort pulse lasers left an opportunity for mid-infrared SC generation in silica fiber. Until now, silica fiber has been the commonly used medium for SC generation due to its outstanding properties. In this paper, mid-infrared SC generation in short silica photonic crystal fibers (PCFs) is investigated theoretically and systematically. In the case of a 1550�nm pump, the soliton self-frequency shift effect is utilized to extend the long wavelength edge of SC. Adopting a fiber that has a zero dispersion wavelength away from the pump pulse is a benefit for the suppression of blue spectral component and energy distribution in the long wavelength band. In the case of a 1950�nm pump, the generation of a red-shifted dispersive wave is an efficient way to extend the long wavelength edge of SC. Additionally, the coherence for femtosecond pulse pumping is discussed in this paper. Finally, the long wavelength edge of SC is beyond 3000�nm when a 1950�nm femtosecond pump pulse propagates in a PCF with negative dispersive slope around the pump pulse.

  3. The Universe at Infrared and Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Dwek, E.; Arendt, R. G.; Benford, D. J.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.; Staguhn, J.

    2004-01-01

    Far infrared and submillimeter surveys offer unique information on the early stages of galaxy formation and evolution, and the cosmic history of star formation and metal enrichment. This paper presents various model results that can be used in the interpretation of far-IR and submm surveys with different diameter telescopes.

  4. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs.

    PubMed

    Williamson, Ian A D; Mousavi, S Hossein; Wang, Zheng

    2016-05-04

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene's large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude.

  5. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    PubMed Central

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  6. Infrared Superconducting Single-Photon Detectors

    DTIC Science & Technology

    2012-10-05

    group realized small microstrip devices, the next iteration of which may narrow the line width to below 100 nm, entering the single-photon detection...and will explore superconducting detectors with integrated waveguide circuits and novel deposition techniques. 15. SUBJECT...world record quantum cryptography demonstrations [9] and operation of quantum waveguide circuits at telecom wavelengths [10]. Beyond the quantum

  7. Quantum photonics at telecom wavelengths based on lithium niobate waveguides

    NASA Astrophysics Data System (ADS)

    Alibart, Olivier; D'Auria, Virginia; De Micheli, Marc; Doutre, Florent; Kaiser, Florian; Labonté, Laurent; Lunghi, Tommaso; Picholle, Éric; Tanzilli, Sébastien

    2016-10-01

    Integrated optical components on lithium niobate play a major role in standard high-speed communication systems. Over the last two decades, after the birth and positioning of quantum information science, lithium niobate waveguide architectures have emerged as one of the key platforms for enabling photonics quantum technologies. Due to mature technological processes for waveguide structure integration, as well as inherent and efficient properties for nonlinear optical effects, lithium niobate devices are nowadays at the heart of many photon-pair or triplet sources, single-photon detectors, coherent wavelength-conversion interfaces, and quantum memories. Consequently, they find applications in advanced and complex quantum communication systems, where compactness, stability, efficiency, and interconnectability with other guided-wave technologies are required. In this review paper, we first introduce the material aspects of lithium niobate, and subsequently discuss all of the above mentioned quantum components, ranging from standard photon-pair sources to more complex and advanced circuits.

  8. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    DTIC Science & Technology

    2007-11-02

    MHz RADR Radar 14 , 30 GHz RS Radio Science 3.6-13 cm UVSI UV Spectrometer 500-3200 A VIMSc Visual/Infrared Mapping Spectrometer 0.4-5.2 jim 5 a...Fhumidity profIes will be derived from 3 ,-, channels selected In ilhe 6.3 jim water 44 Isn 7 vapor banid and the I jIgm windows which I’l 1652 14 W.903 are...2 fl ULIKELYTO BE ACCURACY I - 10 % OR BETTE(I 0 VALUE ASSUMED FOR TEMWERATURE SOUNOUO 14 TROPOSPHERIC EMISSION SPECTROMETER INSTRUMENT DESCRIPTION

  9. Sulfonated aluminum phthalocyanines for two-photon photodynamic cancer therapy: the effect of the excitation wavelength

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, W.; Yu, H. B.; Cheung, N. H.; Chen, J. Y.

    2014-03-01

    Sulfonated aluminum phthalocyanine (AlPcS) is a well-studied photosensitizer which has been widely used in research and in clinical applications of the photodynamic therapy of cancers. Conventionally, one-photon excitation was used, but it was unknown whether two-photon excitation of AlPcS was equally effective. In this study, the two-photon absorption cross sections of AlPcS at near infrared wavelengths were deduced from femtosecond (fs) laser-induced fluorescence. We found that the two-photon absorption cross section of AlPcS was strongly dependent on the excitation wavelength. It was about 19 GM when excited at 800 nm, but grew to 855 GM when excited at 750 nm. The 750 nm fs-laser-induced fluorescence images of AlPcS in human nasopharyngeal carcinoma cells were clearly visible while the corresponding images were very dim when excited at 800 nm. Singlet oxygen production was 13 times higher when excited at 750 nm relative to 800 nm. Our subsequent in vitro experiments showed that 750 nm two-photon excitation with an unfocused fs laser beam damaged cancer cells in a light-dose-dependent manner typical of photodynamic therapy (PDT). The killing at 750 nm was about 9-10 times more efficient than at 800 nm. These results demonstrated for the first time that AlPcS has good potential for two-photon PDT of cancers.

  10. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.

    PubMed

    Blanchard, Romain; Boriskina, Svetlana V; Genevet, Patrice; Kats, Mikhail A; Tetienne, Jean-Philippe; Yu, Nanfang; Scully, Marlan O; Dal Negro, Luca; Capasso, Federico

    2011-10-24

    We propose and demonstrate a novel photonic-plasmonic antenna capable of confining electromagnetic radiation at several mid-infrared wavelengths to a single sub-wavelength spot. The structure relies on the coupling between the localized surface plasmon resonance of a bow-tie nanoantenna with the photonic modes of surrounding multi-periodic particle arrays. Far-field measurements of the transmission through the central bow-tie demonstrate the presence of Fano-like interference effects resulting from the interaction of the bow-tie antenna with the surrounding nanoparticle arrays. The near-field of the multi-wavelength antenna is imaged using an aperture-less near-field scanning optical microscope. This antenna is relevant for the development of near-field probes for nanoimaging, spectroscopy and biosensing.

  11. Chalcogenide waveguide structure for dispersion in mid-infrared wavelength

    NASA Astrophysics Data System (ADS)

    Ashok, Nandam; Lak Lee, Yeung; Shin, WooJin

    2017-03-01

    We present a waveguide design with low dispersion in mid-infrared wavelengths. The design consists of slot-strip-slot structures horizontally, the strip structure is considered with high index and slot is considered with low index material. We show a dispersion of 0–350 ps/(km·nm) over a band width of 1375 nm, and the structure shows zero dispersions at 2512 and 3887 nm wavelength. The magnitude of dispersion can be fine-tuned by varying the waveguide parameters. Such a waveguide structure with low dispersion at mid-infrared wavelengths has a great potential for supercontinuum generation application. Apart this, we have also proposed dispersion compensation structure, the structure shows a high negative dispersion at 1510 nm wavelength. The structure should find application in the design of an integrated optic dispersion compensator for optical telecommunication and ultrafast waveguide lasers.

  12. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength

    PubMed Central

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-01-01

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology. PMID:24694515

  13. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength.

    PubMed

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-04-03

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.

  14. Sub-wavelength energy concentration with electrically generated mid-infrared surface plasmons.

    PubMed

    Bousseksou, A; Babuty, A; Tetienne, J-P; Moldovan-Doyen, I; Braive, R; Beaudoin, G; Sagnes, I; De Wilde, Y; Colombelli, R

    2012-06-18

    While freely propagating photons cannot be focused below their diffraction limit, surface-plasmon polaritons follow the metallic surface to which they are bound, and can lead to extremely sub-wavelength energy volumes. These properties are lost at long mid-infrared and THz wavelengths where metals behave as quasi-perfect conductors, but can in principle be recovered by artificially tailoring the surface-plasmon dispersion. We demonstrate - in the important mid-infrared range of the electromagnetic spectrum - the generation onto a semiconductor chip of plasmonic excitations which can travel along long distances, on bent paths, to be finally focused into a sub-wavelength volume. The demonstration of these advanced functionalities is supported by full near-field characterizations of the electromagnetic field distribution on the surface of the active plasmonic device.

  15. Super sub-wavelength patterns in photon coincidence detection.

    PubMed

    Liu, Ruifeng; Zhang, Pei; Zhou, Yu; Gao, Hong; Li, Fuli

    2014-02-17

    High-precision measurements implemented with light are desired in all fields of science. However, light acts as a wave, and the Rayleigh criterion in classical optics yields a diffraction limit that prevents obtaining a resolution smaller than the wavelength. Sub-wavelength interference has potential application in lithography because it beats the classical Rayleigh resolution limit. Here, we carefully study second-order correlation theory to establish the physics behind sub-wavelength interference in photon coincidence detection. A Young's double slit experiment with pseudo-thermal light is performed to test the second-order correlation pattern. The results show that when two point detectors are scanned in different ways, super sub-wavelength interference patterns can be obtained. We then provide a theoretical explanation for this surprising result, and demonstrate that this explanation is also suitable for the results found for entangled light. Furthermore, we discuss the limitations of these types of super sub-wavelength interference patterns in quantum lithography.

  16. Super sub-wavelength patterns in photon coincidence detection

    NASA Astrophysics Data System (ADS)

    Liu, Ruifeng; Zhang, Pei; Zhou, Yu; Gao, Hong; Li, Fuli

    2014-02-01

    High-precision measurements implemented with light are desired in all fields of science. However, light acts as a wave, and the Rayleigh criterion in classical optics yields a diffraction limit that prevents obtaining a resolution smaller than the wavelength. Sub-wavelength interference has potential application in lithography because it beats the classical Rayleigh resolution limit. Here, we carefully study second-order correlation theory to establish the physics behind sub-wavelength interference in photon coincidence detection. A Young's double slit experiment with pseudo-thermal light is performed to test the second-order correlation pattern. The results show that when two point detectors are scanned in different ways, super sub-wavelength interference patterns can be obtained. We then provide a theoretical explanation for this surprising result, and demonstrate that this explanation is also suitable for the results found for entangled light. Furthermore, we discuss the limitations of these types of super sub-wavelength interference patterns in quantum lithography.

  17. Long-wavelength photonic integrated circuits and avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  18. Stress induced long wavelength photoconductivity in doped silicon infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.

    1982-01-01

    The long wavelength cutoff of a Si:P detector was extended to 34 microns by the application of a uniaxial stress. An unstressed Si:P photoconductive detector responds to photons of up to 28 microns wavelength. By applying a uniaxial stress to a detector along the /100/ crystal axis, the response was extended to approximately 34 microns. The /100/ axis was chosen as the stress direction because theoretical calculations predicted that such a stress extends the wavelength response more than one along the /110/ axis. These theoretical calculations were based upon fits to experimental data obtained at stresses of up to approximately kbar, and indicated that the extension in wavelength response continues to increase at much larger stresses.

  19. Competitive technologies of third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2006-03-01

    Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well IR photoconductors (QWIPs) are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. However, the metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm.

  20. Competitive technologies for third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2006-05-01

    Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolor functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.

  1. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, C.G.

    A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.

  2. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, Charles G.

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  3. Characteristic wavelength of textile fiber in near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Hongnian; Jin, Shangzhong; Gan, Bin

    2006-01-01

    Near Infrared (NIR) spectroscopy in the region from 1300 to 1700nm, coupled with multivariate analytic statistical techniques, have been used to predict the chemical properties of textile fiber. Molecule absorbs electromagnetic wave with especial wavelength, which leads to bring characteristic absorption spectrum. Characteristic wavelength is the most important parameter in NIR detection. How to select characteristic wavelength is the key to NIR measure. Different mathematical methods are used to find relationship between the NIR absorption spectrum and the chemical properties of the textile fiber. We adopt stepwise multiple linear regression (SMLR) to select characteristic wavelength. As objective condition is limited, this article only refers to cotton and terylene. By computing correlation coefficient, we establish calibration equation with the smoothed absorbance data. Finally, the bias was controlled under 6%. Then, we find that NIR can be used to carry on qualitative analysis and quantitative analysis of the textile.

  4. Long-Wavelength Infrared (LWIR) Quantum Dot Infrared Photodetector (QDIP) Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Shott, C. A.

    2006-01-01

    We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of approx. 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45 deg. and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1 micrometer devices has reached approx. 1 x 10(exp 10

  5. Shifting wavelengths of ultraweak photon emissions from dying melanoma cells: their chemical enhancement and blocking are predicted by Cosic's theory of resonant recognition model for macromolecules

    NASA Astrophysics Data System (ADS)

    Dotta, Blake T.; Murugan, Nirosha J.; Karbowski, Lukasz M.; Lafrenie, Robert M.; Persinger, Michael A.

    2014-02-01

    During the first 24 h after removal from incubation, melanoma cells in culture displayed reliable increases in emissions of photons of specific wavelengths during discrete portions of this interval. Applications of specific filters revealed marked and protracted increases in infrared (950 nm) photons about 7 h after removal followed 3 h later by marked and protracted increases in near ultraviolet (370 nm) photon emissions. Specific wavelengths within the visible (400 to 800 nm) peaked 12 to 24 h later. Specific activators or inhibitors for specific wavelengths based upon Cosic's resonant recognition model elicited either enhancement or diminishment of photons at the specific wavelength as predicted. Inhibitors or activators predicted for other wavelengths, even within 10 nm, were less or not effective. There is now evidence for quantitative coupling between the wavelength of photon emissions and intrinsic cellular chemistry. The results are consistent with initial activation of signaling molecules associated with infrared followed about 3 h later by growth and protein-structural factors associated with ultraviolet. The greater-than-expected photon counts compared with raw measures through the various filters, which also function as reflective material to other photons, suggest that photons of different wavelengths might be self-stimulatory and could play a significant role in cell-to-cell communication.

  6. Shifting wavelengths of ultraweak photon emissions from dying melanoma cells: their chemical enhancement and blocking are predicted by Cosic's theory of resonant recognition model for macromolecules.

    PubMed

    Dotta, Blake T; Murugan, Nirosha J; Karbowski, Lukasz M; Lafrenie, Robert M; Persinger, Michael A

    2014-02-01

    During the first 24 h after removal from incubation, melanoma cells in culture displayed reliable increases in emissions of photons of specific wavelengths during discrete portions of this interval. Applications of specific filters revealed marked and protracted increases in infrared (950 nm) photons about 7 h after removal followed 3 h later by marked and protracted increases in near ultraviolet (370 nm) photon emissions. Specific wavelengths within the visible (400 to 800 nm) peaked 12 to 24 h later. Specific activators or inhibitors for specific wavelengths based upon Cosic's resonant recognition model elicited either enhancement or diminishment of photons at the specific wavelength as predicted. Inhibitors or activators predicted for other wavelengths, even within 10 nm, were less or not effective. There is now evidence for quantitative coupling between the wavelength of photon emissions and intrinsic cellular chemistry. The results are consistent with initial activation of signaling molecules associated with infrared followed about 3 h later by growth and protein-structural factors associated with ultraviolet. The greater-than-expected photon counts compared with raw measures through the various filters, which also function as reflective material to other photons, suggest that photons of different wavelengths might be self-stimulatory and could play a significant role in cell-to-cell communication.

  7. Backward Raman amplification in the long-wavelength infrared

    NASA Astrophysics Data System (ADS)

    Johnson, L. A.; Gordon, D. F.; Palastro, J. P.; Hafizi, B.

    2017-03-01

    The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit; however, backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 μm with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for an LWIR Raman amplifier.

  8. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    SciTech Connect

    Wahle, Markus Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.

  9. Detection Wavelength Control of Uncooled Infrared Sensors Using Two-Dimensional Lattice Plasmonic Absorbers.

    PubMed

    Takagawa, Yousuke; Ogawa, Shinpei; Kimata, Masafumi

    2015-06-10

    Wavelength-selective uncooled infrared (IR) sensors are highly promising for a wide range of applications, such as fire detection, gas analysis and biomedical analysis. We have recently developed wavelength-selective uncooled IR sensors using square lattice two-dimensional plasmonic absorbers (2-D PLAs). The PLAs consist of a periodic 2-D lattice of Au-based dimples, which allow photons to be manipulated using surface plasmon modes. In the present study, a detailed investigation into control of the detection wavelength was conducted by varying the PLA lattice structure. A comparison was made between wavelength-selective uncooled IR sensors with triangular and square PLA lattices that were fabricated using complementary metal oxide semiconductor and micromachining techniques. Selective enhancement of the responsivity could be achieved, and the detection wavelength for the triangular lattice was shorter than that for the square lattice. The results indicate that the detection wavelength is determined by the reciprocal-lattice vector for the PLAs. The ability to control the detection wavelength in this manner enables the application of such PLAs to many types of thermal IR sensors. The results obtained here represent an important step towards multi-color imaging in the IR region.

  10. Promising new wavelengths for multi-photon microscopy: thinking outside the Ti:Sapphire box

    NASA Astrophysics Data System (ADS)

    Norris, Greg; Amor, Rumelo; Dempster, John; Amos, William B.; McConnell, Gail

    2013-02-01

    Multi-photon excitation (MPE) imaging is dominated by the Ti:Sapphire laser as the source for excitation. However, it is limited when considering 3PE of common fluorophores and efficient 2PE of UV dyes which require wavelengths beyond the range of the Ti:Sapphire. Two ultra-short pulsed sources are presented as alternatives: a novel optical parametric oscillator (OPO) geometry (1400-1600nm) and the sum-frequency mixing of an OPO and Yb-doped fibre laser, providing a tunable output (626-635nm). For long wavelengths, we report three-photon laser scanning microscopy (3PLSM) using a bi-directional pumped optical parametric oscillator (OPO) with signal wavelength output at 1500 nm. This novel laser was used to overcome the high optical loss in the infrared spectral region observed in laser scanning microscopes and objective lenses that renders them otherwise difficult to use for imaging. To test our system, we performed 3PLSM auto-fluorescence imaging of live plant cells at 1500 nm, specifically Spirogyra, and compared performance with two-photon excitation (2PLSM) imaging using a femtosecond pulsed Ti:Sapphire laser at 780 nm. Analysis of cell viability based on cytoplasmic organelle streaming and structural changes of cells revealed that at similar peak powers, 2PLSM caused gross cell damage after 5 minutes but 3PLSM showed little or no interference with cell function after 15 minutes. The 1500 nm OPO was thus shown to be a practical laser source for live cell imaging. For short wavelengths, we report the use of an all-solid-state ultra-short pulsed source specifically for two-photon microscopy at wavelengths shorter than those of the conventional Ti:Sapphire laser. Our approach involved sumfrequency mixing of the output from the long-wavelength OPO described above with residual pump radiation to generate fs-pulsed output in the red spectral region. We demonstrated the performance of our ultra-short pulsed system using fluorescently labelled and autofluorescent tissue

  11. Long-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent and dusty spiral arms of the nearby galaxy Messier 81 are highlighted in these NASA Spitzer Space Telescope images. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years.

    The three-panel mosaic is a series of images obtained with the multiband imaging photometer for Spitzer. Thermal infrared emission at 24 microns (top), 70 microns (center) and 160 microns (bottom) is shown in the images. Note that the effective spatial resolution degrades as ones moves to longer wavelengths.

    At these wavelengths, Spitzer sees the dust, rather than the stars, within the disc of silicates and carbonaceous grains. It is well-mixed with gas, which is best seen at radio wavelengths, to form the essential ingredients for future star formation.

  12. Effect of graphene on plasmonic metasurfaces at infrared wavelengths

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Ueno, Masashi

    2013-11-15

    Significant enhancement of infrared transmittance by the presence of a graphene layer on a plasmonic metasurface (PLM) has been demonstrated. PLMs with different configurations were fabricated, and their transmittance with and without graphene was compared. Selective enhancement by graphene occurred at the plasmon resonance wavelength. The degree of enhancement was found to depend on the width of the gap between the periodic metal regions in the PLM. A maximum enhancement of ∼210% was achieved at a wavelength of 10 μm. The ability to achieve such a drastic increase in transmittance at the plasmon resonant wavelength is expected to lead to improvements in the performance of energy collecting devices and optical sensors.

  13. Effect of graphene on plasmonic metasurfaces at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Ueno, Masashi

    2013-11-01

    Significant enhancement of infrared transmittance by the presence of a graphene layer on a plasmonic metasurface (PLM) has been demonstrated. PLMs with different configurations were fabricated, and their transmittance with and without graphene was compared. Selective enhancement by graphene occurred at the plasmon resonance wavelength. The degree of enhancement was found to depend on the width of the gap between the periodic metal regions in the PLM. A maximum enhancement of ˜210% was achieved at a wavelength of 10 μm. The ability to achieve such a drastic increase in transmittance at the plasmon resonant wavelength is expected to lead to improvements in the performance of energy collecting devices and optical sensors.

  14. Group IV photonics for the mid infrared

    NASA Astrophysics Data System (ADS)

    Soref, Richard

    2013-02-01

    This paper outlines the challenges and benefits of applying silicon-based photonic techniques in the 2 to 5 μm midinfrared (MIR) wavelength range for chem.-bio-physical sensing, medical diagnostics, industrial process control, environmental monitoring, secure communications, Ladar, active imaging, and high-speed communications at 2 μm. Onchip passive and active components, mostly waveguided, will enable opto-electronic CMOS or BiCMOS integrated "circuits" for system-on-a-chip applications such as spectroscopy and lab-on-a-chip. Volume manufacture in a silicon foundry is expected to yield low-cost (or even disposable) chips with benefits in size-weight-power and ruggedness. This is "long-wavelength optoelectronic integration on silicon" which we call LIOS. Room temperature operation appears feasible, albeit with performance compromises at 4 to 5 μm. In addition to the electronics layer (which may include RF wireless), a 3-D LIOS chip can include several inter-communicating layers utilizing the photonic, plasmonic, photoniccrystal and opto-electro-mechanical technologies. The LIOS challenge can be met by (1) discovering new physics, (2) employing "new" IV and III-V alloys, (3) scaling-up and modifying telecom components, and (4) applying nonlinearoptical wavelength conversion in some cases. This paper presents proposals for MIR chip spectrometers employing frequency-comb and Ge blackbody sources. Active heterostructures employing Si, Ge, SiGe, GeSn and SiGeSn are key for laser diodes, photodetectors, LEDs, switches, amplifiers, and modulators that provide totally monolithic foundry integration, while numerous III-V semiconductor MIR devices within the InGaAsSb and InGaAsP families offer practical hybrid integration on Si PICs. Interband cascade and quantum cascade lasers on Ge waveguides are important in this context.

  15. Photonic crystal lasers using wavelength-scale embedded active region

    NASA Astrophysics Data System (ADS)

    Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya; Fujii, Takuro; Hasebe, Koichi; Kakitsuka, Takaaki

    2014-01-01

    Lasers with ultra-low operating energy are desired for use in chip-to-chip and on-chip optical interconnects. If we are to reduce the operating energy, we must reduce the active volume. Therefore, a photonic crystal (PhC) laser with a wavelength-scale cavity has attracted a lot of attention because a PhC provides a large Q-factor with a small volume. To improve this device's performance, we employ an embedded active region structure in which the wavelength-scale active region is buried with an InP PhC slab. This structure enables us to achieve effective confinement of both carriers and photons, and to improve the thermal resistance of the device. Thus, we have obtained a large external differential quantum efficiency of 55% and an output power of -10 dBm by optical pumping. For electrical pumping, we use a lateral p-i-n structure that employs Zn diffusion and Si ion implantation for p-type and n-type doping, respectively. We have achieved room-temperature continuous-wave operation with a threshold current of 7.8 µA and a maximum 3 dB bandwidth of 16.2 GHz. The results of an experimental bit error rate measurement with a 10 Gbit s-1 NRZ signal reveal the minimum operating energy for transferring a single bit of 5.5 fJ. These results show the potential of this laser to be used for very short reach interconnects. We also describe the optimal design of cavity quality (Q) factor in terms of achieving a large output power with a low operating energy using a calculation based on rate equations. When we assume an internal absorption loss of 20 cm-1, the optimized coupling Q-factor is 2000.

  16. Compact Broad-Band Wavelength-Agile Mid-Infrared Semiconductor Lasers for Spectroscopic Sensing

    DTIC Science & Technology

    2004-12-01

    IEEE Photon. Technol. Lett. Jan 2005). Yi Wang, Chuan Peng, HuanLin Zhang, and Han Q. Le, “Wavelength modulation imaging with tunable mid- infrared...Wen-Yen Hwang, Jae Um, Bujin Guo, Hao Lee, and Chih- Hsiang Lin, “Continuous-wave operation of a 5.2 µm quantum-cascade laser up to 210 K”, Appl. Phys...Lett. 79, 1745-1747, (2001). 2. Proceedings Yi Wang, Yang Wang, Chuan Peng, HuanLin Zhang, Anush Seetheraman, and Han Q. Le, “Concepts for Scalable

  17. Sub-wavelength nanofluidics in photonic crystal sensors.

    PubMed

    Huang, Min; Yanik, Ahmet Ali; Chang, Tsung-Yao; Altug, Hatice

    2009-12-21

    We introduce a novel sensor scheme combining nano-photonics and nano-fluidics on a single platform through the use of free-standing photonic crystals. By harnessing nano-scale openings, we theoretically and experimentally demonstrate that both fluidics and light can be manipulated at sub-wavelength scales. Compared to the conventional fluidic channels, we actively steer the convective flow through the nanohole openings for effective delivery of the analytes to the sensor surface. We apply our method to detect refractive index changes in aqueous solutions. Bulk measurements indicate that active delivery of the convective flow results in better sensitivities. The sensitivity of the sensor reaches 510 nm/RIU for resonance located around 850 nm with a line-width of approximately 10 nm in solution. Experimental results are matched very well with numerical simulations. We also show that cross-polarization measurements can be employed to further improve the detection limit by increasing the signal-to-noise ratio.

  18. Bridging visible and telecom wavelengths with a single-mode broadband photon pair source

    SciTech Connect

    Soeller, C.; Brecht, B.; Mosley, P. J.; Zang, L. Y.; Podlipensky, A.; Joly, N. Y.; Russell, P. St. J.; Silberhorn, C.

    2010-03-15

    We present a spectrally decorrelated photon pair source bridging the visible and telecom wavelength regions. Tailored design and fabrication of a solid-core photonic crystal fiber (PCF) lead to the emission of signal and idler photons into only a single spectral and spatial mode. Thus no narrowband filtering is necessary and the heralded generation of pure photon number states in ultrafast wave packets at telecom wavelengths becomes possible.

  19. Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing

    PubMed Central

    Re, Rebecca; Contini, Davide; Turola, Massimo; Spinelli, Lorenzo; Zucchelli, Lucia; Caffini, Matteo; Cubeddu, Rinaldo; Torricelli, Alessandro

    2013-01-01

    We have designed a compact dual wavelength (687 nm, 826 nm) multi-channel (16 sources, 8 detectors) medical device for muscle and brain imaging based on time domain functional near infrared spectroscopy. The system employs the wavelength space multiplexing approach to reduce wavelength cross-talk and increase signal-to-noise ratio. System performances have been tested on homogeneous and heterogeneous tissue phantoms following specifically designed protocols for photon migration instruments. Preliminary in vivo measurements have been performed to validate the instrument capability to monitor hemodynamic parameters changes in the arm muscle during arterial occlusion and in the adult head during a motor task experiment. PMID:24156079

  20. Optically guided neuronal growth at near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.; Lake, T. K.; Agate, B.; Garcés-Chávez, V.; Dholakia, K.; Gunn-Moore, F.

    2006-08-01

    Recent work has indicated the potential of light to guide the growth cones of neuronal cells using a Ti:Sapphire laser at 800 nm (Ehrlicher et al, PNAS, 2002). We have developed an optical set-up that has allowed, for the first time, the direct comparison of this process at near infrared wavelengths. A high number of growth cones were studied in order to provide a detailed statistical analysis. Actively extending growth cones of the neuroblastoma cell-line, NG108, can be guided at not only 780 nm, but also at 1064 nm. These wavelengths are an appropriate choice for guidance experiments, as wavelengths in the visible spectrum and UV are highly absorbing by cells and lead to death by phototoxicity and thermal stress. At 780 nm, 47% of actively extending growth cones were found to turn towards the focused incident light by at least 30° (n=32 growth cones). At 1064 nm, 61% of cells were successfully guided (n=31 growth cones). This suggests that the light detection mechanism within the cell is not due a single protein with a defined activity wavelength as occurs for example with the photoreceptor family of opsin proteins in the mammalian eye. We present two novel mechanisms of light induced neuronal guidance which are not related to temperature increases, or optical tweezing of the growth cone. We are also now identifying the signaling pathways that mediate this phenomenon.

  1. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    SciTech Connect

    Felle, M.; Huwer, J. Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2015-09-28

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.

  2. High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)

    2015-01-01

    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.

  3. Multiple higher-order stop gaps in infrared polymer photonic crystals.

    PubMed

    Straub, M; Ventura, M; Gu, M

    2003-07-25

    Engineering of stop gaps between higher photonic bands provides an alternative to miniaturization of photonic crystals. Femtosecond laser microfabrication of highly correlated void channel polymer microstructures results in photonic crystals with large stop gaps and a multitude of higher-order gaps in the mid- and near-infrared spectral regions. The gap wavelengths obey Bragg's law. Consistent with theory, varying the woodpile structure unit cell allows for tuning the number of higher-order gaps, and transitions from mere resonant Bragg scattering to stop band total reflection are observed.

  4. Local density of optical states of an asymmetric waveguide grating at photonic band gap resonant wavelength

    NASA Astrophysics Data System (ADS)

    Alatas, Husin; Sumaryada, Tony I.; Ahmad, Faozan

    2015-01-01

    We have investigated the characteristics of local density of optical states (LDOS) at photonic band gap resonant wavelength of an asymmetric waveguide grating based on Green's function formulation. It is found that the LDOS of the considered structure exhibits different characteristics in its localization between the upper and lower resonant wavelengths of the corresponding photonic band gap edges.

  5. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared

    NASA Astrophysics Data System (ADS)

    Franke, Daniel; Harris, Daniel K.; Chen, Ou; Bruns, Oliver T.; Carr, Jessica A.; Wilson, Mark W. B.; Bawendi, Moungi G.

    2016-11-01

    With the emergence of applications based on short-wavelength infrared light, indium arsenide quantum dots are promising candidates to address existing shortcomings of other infrared-emissive nanomaterials. However, III-V quantum dots have historically struggled to match the high-quality optical properties of II-VI quantum dots. Here we present an extensive investigation of the kinetics that govern indium arsenide nanocrystal growth. Based on these insights, we design a synthesis of large indium arsenide quantum dots with narrow emission linewidths. We further synthesize indium arsenide-based core-shell-shell nanocrystals with quantum yields up to 82% and improved photo- and long-term storage stability. We then demonstrate non-invasive through-skull fluorescence imaging of the brain vasculature of murine models, and show that our probes exhibit 2-3 orders of magnitude higher quantum yields than commonly employed infrared emitters across the entire infrared camera sensitivity range. We anticipate that these probes will not only enable new biomedical imaging applications, but also improved infrared nanocrystal-LEDs and photon-upconversion technology.

  6. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared

    PubMed Central

    Franke, Daniel; Harris, Daniel K.; Chen, Ou; Bruns, Oliver T.; Carr, Jessica A.; Wilson, Mark W. B.; Bawendi, Moungi G.

    2016-01-01

    With the emergence of applications based on short-wavelength infrared light, indium arsenide quantum dots are promising candidates to address existing shortcomings of other infrared-emissive nanomaterials. However, III–V quantum dots have historically struggled to match the high-quality optical properties of II–VI quantum dots. Here we present an extensive investigation of the kinetics that govern indium arsenide nanocrystal growth. Based on these insights, we design a synthesis of large indium arsenide quantum dots with narrow emission linewidths. We further synthesize indium arsenide-based core-shell-shell nanocrystals with quantum yields up to 82% and improved photo- and long-term storage stability. We then demonstrate non-invasive through-skull fluorescence imaging of the brain vasculature of murine models, and show that our probes exhibit 2–3 orders of magnitude higher quantum yields than commonly employed infrared emitters across the entire infrared camera sensitivity range. We anticipate that these probes will not only enable new biomedical imaging applications, but also improved infrared nanocrystal-LEDs and photon-upconversion technology. PMID:27834371

  7. Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers.

    PubMed

    Herzog, Amir; Shamir, Avishay; Ishaaya, Amiel A

    2012-01-01

    We investigate degenerate four wave mixing with nanosecond pulses in fused silica photonic crystal fibers. Phase-matching curves are calculated taking into account the material and waveguide dispersion. Experiments with a nanosecond pulsed Nd:YAG pump laser and relatively short fiber lengths show more than an octave spanning conversion to idler and signal wavelengths at 3.105 μm and 0.642 μm, respectively. Conversion efficiency depends on the fiber length and pump intensity and is limited in our experiments by damage of the fiber input facet. Our results represent a new stretch towards the limit of the silica transmission window in the mid-infrared (IR).

  8. Long wavelength infrared dual field-of-view optical system

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Yang, Chang-cheng

    2007-12-01

    For cooled 320×240 staring focal plane array (FPA), a novel long wavelength infrared dual field-of-view optical system is presented in the paper. The optical system is composed of re-imaging part and zooming part. The parameters of the system are 1.96 f/number, 100% cold shield efficiency, 180mm/60mm effective focal length (EFL) and 8-10 μm spectrum region. The optical system is analyzed from two modes of narrow field of view (NFOV) and wide field of view (WFOV). The system can be used in the temperature range from-30°Cand 60°C without significant degradation of optical performance. The final test results prove the designed performance is good..

  9. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    PubMed

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  10. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    PubMed Central

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-01-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. PMID:26597223

  11. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    NASA Astrophysics Data System (ADS)

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-11-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  12. Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Solobodan; Datskou, Irene C.

    1999-01-01

    Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

  13. Near-Infrared Photoluminescent Polymer-Carbon Nanodots with Two-Photon Fluorescence.

    PubMed

    Lu, Siyu; Sui, Laizhi; Liu, Junjun; Zhu, Shoujun; Chen, Anmin; Jin, Mingxing; Yang, Bai

    2017-02-13

    A facile, high-output strategy is developed for fabricating near-infrared-emissive polymer-carbon nanodots (PCNDs). The PCNDs emit at a wavelength of 710 nm with a QY of 26.28%, which is promising for deep biological imaging and luminescent devices. Moreover, the PCNDs possess two-photon fluorescence and. In vivo bioimaging and red light emitting diodes based on these PCNDs are demonstrated.

  14. Linkage and Anomeric Differentiation in Trisaccharides by Sequential Fragmentation and Variable-Wavelength Infrared Photodissociation

    NASA Astrophysics Data System (ADS)

    Tan, Yanglan; Polfer, Nicolas C.

    2015-02-01

    Carbohydrates and their derivatives play important roles in biological systems, but their isomeric heterogeneity also presents a considerable challenge for analytical techniques. Here, a stepwise approach using infrared multiple-photon dissociation (IRMPD) via a tunable CO2 laser (9.2-10.7 μm) was employed to characterize isomeric variants of glucose-based trisaccharides. After the deprotonated trisaccharides were trapped and fragmented to disaccharide C2 fragments in a Fourier transform ion cyclotron resonance (FTICR) cell, a further variable-wavelength infrared irradiation of the C2 ion produced wavelength-dependent dissociation patterns that are represented as heat maps. The photodissociation patterns of these C2 fragments are shown to be strikingly similar to the photodissociation patterns of disaccharides with identical glycosidic bonds. Conversely, the photodissociation patterns of different glycosidic linkages exhibit considerable differences. On the basis of these results, the linkage position and anomericity of glycosidic bonds of disaccharide units in trisaccharides can be systematically differentiated and identified, providing a promising approach to characterize the structures of isomeric oligosaccharides.

  15. Europa Composition Using Visible to Short Wavelength Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Dalton, J. B.; Green, R. O.; Hibbits, K.; McCord, T.; Murchie, S.; Piccioni, G.; Tosi, F.

    2010-10-01

    One of the major goals of the Jupiter Europa Orbiter (JEO) is to understand the chemistry of Europa's inorganic and organic materials. Europa's surface material composition is controlled by the original materials forming Europa and by their differentiation and chemical alterations. Material is probably still being transported to the surface by active processes in the interior. At the surface, the material is exposed to the effects of vacuum and temperature, irradiated by solar UV, and bombarded by material entrained in Jupiter's magnetic field. The materials on the surface and their distributions are evidence of the processes operating, both endogenic and exogenic. These processes include effects of a subsurface liquid ocean and its chemistry; the mechanisms of material emplacement from below; and photolysis and radiolysis. Visible to Short Wavelength Infrared (VSWIR) spectroscopy is a well-understood technique for mapping key inorganic, organic, and volatile compositions on remote surfaces such as Europa. Key spectral absorption features have been detected in both the icy and the non-icy Europa materials and many important constituents of the surface have been identified or proposed (e.g. hydrated salts, sulfuric acid hydrate, organics, CO2, H2O2, SO2). The determination of planetary surface composition from remote infrared spectroscopy depends upon adequate signal-to-noise, spectral resolution, and spatial scale to distinguish the diagnostic spectral features of the compounds of interest. For icy satellites, laboratory reference spectra obtained at the temperatures of the target bodies are also required. We have compared diagnostic spectral features in cryogenic laboratory spectra of hydrated salts relevant to Europa in order to optimize detection of these materials under realistic mission conditions. Effects of spectral resolution, signal to noise ratio, and areal mixtures are explored to determine the impacts on detection. This work was carried out at the Jet

  16. A promising new wavelength region for three-photon fluorescence microscopy of live cells.

    PubMed

    Norris, Greg; Amor, Rumelo; Dempster, John; Amos, William B; McConnell, Gail

    2012-06-01

    We report three-photon laser scanning microscopy (3PLSM) using a bi-directional pumped optical parametric oscillator (OPO) with signal wavelength output at λ= 1500 nm. This novel laser was used to overcome the high optical loss in the infrared spectral region observed in laser scanning microscopes and objective lenses that renders them otherwise difficult to use for imaging. To test our system, we performed 3PLSM auto-fluorescence imaging of live plant cells at λ= 1500 nm, specifically Spirogyra, and compared performance with two-photon excitation (2PLSM) imaging using a femtosecond pulsed Ti:Sapphire laser at λ= 780 nm. Analysis of cell viability based on cytoplasmic organelle streaming and structural changes of cells revealed that at similar peak powers, 2PLSM caused gross cell damage after 5 min but 3PLSM showed little or no interference with cell function after 15 min. The λ= 1500 nm OPO is thus shown to be a practical laser source for live cell imaging.

  17. Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability.

    PubMed

    Lin, Linhan; Zheng, Yuebing

    2015-05-01

    Diffractive coupling in the plasmonic nanoparticle arrays introduces the collective plasmon resonances with high scattering efficiency and narrow linewidth. However, the collective plasmon resonances can be suppressed when the arrays are supported on the solid-state substrates with different superstrates because of the different dispersion relations between the substrate and the superstrate. Herein, we develop a general concept which seeks to synergize the subnanoparticle engineering of "hot spots" with the far-field coupling behavior, for the versatile control of plasmonic-photonic couplings in an asymmetric environment. To demonstrate our concept, we choose as an example the Au nanobeaker arrays (NBAs), which are the conformally coated Au thin layers on the interior sidewalls and bottoms of nanohole arrays in SiO2 substrates. Using the finite-difference time-domain simulations, we show that engineering the plasmonic "hot spots" in the NBAs by simply controlling the depth-to-diameter aspect ratio of individual units enables multiple plasmonic-photonic couplings in an asymmetric environment. These couplings are robust with a wide range of resonance wavelengths from visible to infrared. Furthermore, the angle-dependent transmission spectra of the arrays reveal a transition from band-edge to propagating state for the orthogonal coupling and a splitting of diffraction waves in the parallel coupling. The proposed NBAs will find enhanced applications in plasmonic lasers and biosensing.

  18. Nonlinear silicon photonics from the near to mid infrared

    NASA Astrophysics Data System (ADS)

    Park, Jung Soo

    This dissertation presents experimental work investigating silicon-on-insulator (SOI) photonic waveguides for parametric nonlinear optic devices. An introduction is presented in Chapter 1, including background and motivation for exploring SOI as a platform for integrated photonics, as well as an overview of integrated nonlinear optic devices. Chapter 2 discusses on-chip slow light structures based on coupled-resonator optical waveguides (CROW), potentially useful for enhancing nonlinearities for efficient chip-scale nonlinear optics. Although slowing light is limited by fabrication tolerance-induced disorder, a fundamental phenomenon is observed: the Anderson localization of optical waves. Chapter 3 of the dissertation discusses four-wave mixing in SOI waveguides. SOI waveguide fabrication is described in detail, including achieving low fiber-to-chip coupling loss and waveguide propagation loss. Two approaches for dispersion engineering are presented: with the design of waveguide dimensions and with a thin-film cladding. Parametric wavelength conversion by degenerate (single-pump) FWM in these dispersion-engineered waveguides is demonstrated and discussed. Chapter 4 concerns FWM with two pumps, an approach that promises functionalities not possible with a single pump such as multiple sideband generation with self-seeded higher-order pumps. In addition to demonstrating the generation of up to ten sidebands with dual pumps and subsequent self-seeded higher order pumps, we characterize trade-offs in maximum conversion efficiency due to nondegenerate two-photon absorption (TPA). The work presented in Chapter 5 takes a novel approach to SOI parametric devices by exploring a new spectral range, toward the mid-infrared (mid-IR), near 2 mum and beyond. We measure FWM in silicon waveguides with a pump near 2 mum, which itself is generated by the parametric conversion of a 1300 nm seed by a 1589 nm pump in a highly-nonlinear fiber (HNLF). Fundamentally, our results show

  19. The appearance of dusty H II blisters at radio and infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Icke, V.; Gatley, I.; Israel, F. P.

    1980-01-01

    Detailed calculations for the observational appearance of nonspherical Stromgren regions at radio and infrared wavelengths are presented. The computations are made feasible by two assumptions, namely (1) no stellar photon leaves the solid angle within which it was emitted, and (2) the radiation spectrum can be represented by three delta functions corresponding to Lyman continuum, Lyman alpha, and softer radiation. These calculations are used to develop models for the H II blisters M17 A and 30 Doradus, and also first order parameters for a sample of other well-studied galactic H II regions. It is concluded that the observations are well explained by an ionizing object in a density gradient, without the need for peculiar dust properties or distribution.

  20. Integration of both dense wavelength-division multiplexing and coarse wavelength-division multiplexing demultiplexer on one photonic crystal chip

    NASA Astrophysics Data System (ADS)

    Tian, Huiping; Shen, Guansheng; Liu, Weijia; Ji, Yuefeng

    2013-07-01

    An integrated model of photonic crystal (PC) demultiplexer that can be used to combine dense wavelength-division multiplexing (DWDM) and coarse wavelength-division multiplexing (CWDM) systems is first proposed. By applying the PC demultiplexer, dense channel spacing 0.8 nm and coarse channel spacing 20 nm are obtained at the same time. The transmission can be improved to nearly 90%, and the crosstalk can be decreased to less than -18 dB by enlarging the width of the bus waveguide. The total size of the device is 21×42 μm2. Four channels on one side of the demultiplexer can achieve DWDM in the wavelength range between 1575 and 1578 nm, and the other four channels on the other side can achieve CWDM in the wavelength range between 1490 and 1565 nm, respectively. The demonstrated demultiplexer can be applied in the future CWDM and DWDM system, and the architecture costs can be significantly reduced.

  1. Dichroic polarization at mid-infrared wavelengths: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.

    2016-01-01

    A fast and general Bayesian inference framework to infer the physical properties of dichroic polarization using mid-infrared imaging- and spectro-polarimetric observations is presented. The Bayesian approach is based on a hierarchical regression and No-U-Turn Sampler method. This approach simultaneously infers the normalized Stokes parameters to find the full family of solutions that best describe the observations. In comparison with previous methods, the developed Bayesian approach allows the user to introduce a customized absorptive polarization component based on the dust composition, and the appropriate extinction curve of the object. This approach allows the user to obtain more precise estimations of the magnetic-field strength and geometry for tomographic studies, and information about the dominant polarization components of the object. Based on this model, imaging-polarimetric observations using two or three filters located in the central 9.5-10.5 μm, and the edges 8-9 μm and/or 11-13 μm, of the wavelength range are recommended to optimally disentangle the polarization mechanisms.

  2. Long-wavelength infrared hyperspectral data "mining" at Cuprite, NV

    NASA Astrophysics Data System (ADS)

    Sundberg, Robert; Adler-Golden, Steven; Conforti, Patrick

    2015-09-01

    In recent years long-wavelength infrared (LWIR) hyperspectral imagery has significantly improved in quality and become much more widely available, sparking interest in a variety of applications involving remote sensing of surface composition. This in turn has motivated the development and study of LWIR-focused algorithms for atmospheric retrieval, temperature-emissivity separation (TES) and material detection and identification. In this paper we evaluate some LWIR algorithms for atmospheric retrieval, TES, endmember-finding and rare material detection for their utility in characterizing mineral composition in SEBASS hyperspectral imagery taken near Cuprite, NV. Atmospheric correction results using the In-Scene Atmospheric Correction (ISAC) method are compared with those from the first-principles, MODTRAN©-based FLAASH-IR method. Covariance-whitened endmember-finding methods are observed to be sensitive to image artifacts. However, with clean data and all-natural terrain they can automatically locate and distinguish many minor mineral components, with especially high sensitivity to varieties of calcite. Not surprisingly, the major scene materials, including silicates, are best located using unwhitened techniques. Minerals that we identified in the data include calcite, quartz, alunite and (tentatively) kaolinite.

  3. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  4. Efficient generation of indistinguishable single photons on-demand at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Kim, Jehyung; Cai, Tao; Richardson, Christopher; Leavitt, Richard; Waks, Edo

    Highly efficient single photon sources are important building blocks for optical quantum information processing. For practical use and long-distance quantum communication, single photons should have fiber-compatible telecom wavelengths. In addition, most quantum communication applications require high degree of indistinguishability of single photons, such that they exhibit interference on a beam splitter. However, deterministic generation of indistinguishable single photons with high brightness remains a challenging problem in particular at telecom wavelengths. We demonstrate a telecom wavelength source of indistinguishable single photons using an InAs/InP quantum dot in a nanophotonic cavity. To obtain the efficient single quantum dot emission, we employ the higher order mode in L3 photonic crystal cavity that shows a nearly Gaussian transverse mode profile and results in out-coupling efficiency exceeding 46 % and unusual bright single quantum dot emission exceeding 1.5 million counts per second at a detector. We also observe Purcell enhanced spontaneous emission rate as large as 4 and high linear polarization ratio of 0.96 for the coupled dots. Using this source, we generate high purity single photons at 1.3 μm wavelength and demonstrate the indistinguishable nature of the emission using a two-photon interference measurement.

  5. Impedance match of long-wavelength electromagnetic waves incident into magnetic photonic crystals.

    PubMed

    Yang, S Y

    2007-06-11

    By utilizing an effective-medium method, the effective dielectric constant and effective magnetic permeability of magnetic photonic crystals at long-wavelength limits were calculated. We also examined the impedance ratio when a long-wavelength electromagnetic wave is incident to a magnetic photonic crystal. In this work, we focus on investigating the impact of the magnetic permeability of rods forming magnetic photonic crystals on the impedance ratio. Furthermore, we analyze the dependencies of the incident angle at impedance match on the magnetic permeability and filling factor of rods.

  6. Micropolarizing device for long wavelength infrared polarization imaging.

    SciTech Connect

    Wendt, Joel Robert; Carter, Tony Ray; Samora, Sally; Cruz-Cabrera, Alvaro Augusto; Vawter, Gregory Allen; Kemme, Shanalyn A.; Alford, Charles Fred; Boye, Robert R.; Smith, Jody Lynn

    2006-11-01

    The goal of this project is to fabricate a four-state pixelated subwavelength optical device that enables mid-wave infrared (MWIR) or long-wave infrared (LWIR) snapshot polarimetric imaging. The polarization information can help to classify imaged materials and identify objects of interest for numerous remote sensing and military applications. While traditional, sequential polarimetric imaging produces scenes with polarization information through a series of assembled images, snapshot polarimetric imaging collects the spatial distribution of all four Stokes parameters simultaneously. In this way any noise due to scene movement from one frame to the next is eliminated. We fabricated several arrays of subwavelength components for MWIR polarization imaging applications. Each pixel unit of the array consists of four elements. These elements are micropolarizers with three or four different polarizing axis orientations. The fourth element sometimes has a micro birefringent waveplate on the top of one of the micropolarizers. The linear micropolarizers were fabricated by patterning nano-scale metallic grids on a transparent substrate. A large area birefringent waveplate was fabricated by deeply etching a subwavelength structure into a dielectric substrate. The principle of making linear micropolarizers for long wavelengths is based upon strong anisotropic absorption of light in the nano-metallic grid structures. The nano-metallic grid structures are patterned with different orientations; therefore, the micropolarizers have different polarization axes. The birefringent waveplate is a deeply etched dielectric one-dimensional subwavelength grating; therefore two orthogonally polarized waves have different phase delays. Finally, in this project, we investigated the near field and diffractive effects of the subwavelength element apertures upon detection. The fabricated pixelated polarizers had a measured extinction ratios larger than 100:1 for pixel sizes in the order of 15

  7. Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared

    NASA Astrophysics Data System (ADS)

    Chernow, V. F.; Alaeian, H.; Dionne, J. A.; Greer, J. R.

    2015-09-01

    Broadly tunable photonic crystals in the near- to mid-infrared region could find use in spectroscopy, non-invasive medical diagnosis, chemical and biological sensing, and military applications, but so far have not been widely realized. We report the fabrication and characterization of three-dimensional tunable photonic crystals composed of polymer nanolattices with an octahedron unit-cell geometry. These photonic crystals exhibit a strong peak in reflection in the mid-infrared that shifts substantially and reversibly with application of compressive uniaxial strain. A strain of ˜40% results in a 2.2 μm wavelength shift in the pseudo-stop band, from 7.3 μm for the as-fabricated nanolattice to 5.1 μm when strained. We found a linear relationship between the overall compressive strain in the photonic crystal and the resulting stopband shift, with a ˜50 nm blueshift in the reflection peak position per percent increase in strain. These results suggest that architected nanolattices can serve as efficient three-dimensional mechanically tunable photonic crystals, providing a foundation for new opto-mechanical components and devices across infrared and possibly visible frequencies.

  8. Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared

    SciTech Connect

    Chernow, V. F.; Alaeian, H.; Dionne, J. A.; Greer, J. R.

    2015-09-07

    Broadly tunable photonic crystals in the near- to mid-infrared region could find use in spectroscopy, non-invasive medical diagnosis, chemical and biological sensing, and military applications, but so far have not been widely realized. We report the fabrication and characterization of three-dimensional tunable photonic crystals composed of polymer nanolattices with an octahedron unit-cell geometry. These photonic crystals exhibit a strong peak in reflection in the mid-infrared that shifts substantially and reversibly with application of compressive uniaxial strain. A strain of ∼40% results in a 2.2 μm wavelength shift in the pseudo-stop band, from 7.3 μm for the as-fabricated nanolattice to 5.1 μm when strained. We found a linear relationship between the overall compressive strain in the photonic crystal and the resulting stopband shift, with a ∼50 nm blueshift in the reflection peak position per percent increase in strain. These results suggest that architected nanolattices can serve as efficient three-dimensional mechanically tunable photonic crystals, providing a foundation for new opto-mechanical components and devices across infrared and possibly visible frequencies.

  9. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths.

    PubMed

    Matsubara, Hideki; Yoshimoto, Susumu; Saito, Hirohisa; Jianglin, Yue; Tanaka, Yoshinori; Noda, Susumu

    2008-01-25

    Shorter-wavelength surface-emitting laser sources are important for a variety of fields, including photonics, information processing, and biology. We report on the creation of a current-driven blue-violet photonic-crystal surface-emitting laser. We have developed a fabrication method, named "air holes retained over growth," in order to construct a two-dimensional gallium nitride (GaN)/air photonic-crystal structure. The resulting periodic structure has a photonic-crystal band-edge effect sufficient for the successful operation of a current-injection surface-emitting laser. This represents an important step in the development of laser sources that could be focused to a size much less than the wavelength and be integrated two-dimensionally at such short wavelengths.

  10. Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.

    PubMed

    Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming

    2017-02-01

    Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm(2). And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.

  11. Photonic band gaps of wurtzite GaN and AlN photonic crystals at short wavelengths

    NASA Astrophysics Data System (ADS)

    Melo, E. G.; Alayo, M. I.

    2015-04-01

    Group III-nitride materials such as GaN and AlN have attracted a great attention in researches on photonic devices that operate at short light wavelengths. The large band gaps of these materials turn them suitable for nanophotonic devices that operate in light ranges from visible to deep ultraviolet. The physical properties of wurtzite GaN and AlN such as their second and third order nonlinear susceptibilities, and their thermal and piezoelectric coefficients, also make them excellent candidates for integrate photonic devices with electronics, microelectromechanics, microfluidics and general sensing applications. Using a plane wave expansion method (PWE) the photonic band gap maps of 36 different two-dimensional photonic crystal lattices in wurtzite GaN and AlN were obtained and analyzed. The wavelength dependence and the effects of the material anisotropy on the position of the photonic band gaps are also discussed. The results show regions with slow group velocity at the edges of a complete photonic band gap in the M-K direction of the triangular lattices with circular, hexagonal, and rhombic air holes. Was also found a very interesting disposition of the photonic band gaps in the lattices composed of rhombic air holes.

  12. 1024 x 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 10(24) x 10(24) pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEAT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEAT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In this paper, we will discuss the performance in terms of quantum efficiency, NE(delta)T, uniformity, operability and modulation transfer functions.

  13. Metal-assisted photonic mode for ultrasmall bending with long propagation length at visible wavelengths.

    PubMed

    Yang, Chengyuan; Teo, Ee Jin; Goh, Tian; Teo, Siew Lang; Teng, Jing Hua; Bettiol, Andrew A

    2012-10-08

    In this work, we investigate the use of metal-assisted photonic guiding in a polymer-metal waveguide as an alternative approach for high density photonic integration at visible wavelengths. We demonstrate high confinement and long propagation length in sub-wavelength dimensions down to 300nm × 200nm using leakage radiation microscopy at a wavelength of 632.8 nm. Simulations using the finite element method (FEM) show that the optimum dimension that gives good confinement and propagation length is similar to that of the predicted plasmonic mode supported in the same waveguide. Under such optimum conditions, the metal-assisted photonic mode shows a five times longer propagation length and higher transmission efficiency for all 90° bending radius down to 1 μm compared to the plasmonic mode.

  14. Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points

    SciTech Connect

    Stark, S. P.; Biancalana, F.; Podlipensky, A.; St. J. Russell, P.

    2011-02-15

    In this theoretical study, we show that a simple endlessly single-mode photonic crystal fiber can be designed to yield, not just two, but three zero-dispersion wavelengths. The presence of a third dispersion zero creates a rich phase-matching topology, enabling enhanced control over the spectral locations of the four-wave-mixing and resonant-radiation bands emitted by solitons and short pulses. The greatly enhanced flexibility in the positioning of these bands has applications in wavelength conversion, supercontinuum generation, and pair-photon sources for quantum optics.

  15. A femtosecond Raman generator for long wavelength two-photon and third harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Trägârdh, J.; Schniete, J.; Parsons, M.; McConnell, G.

    2016-12-01

    We demonstrate a femtosecond single pass Raman generator based on an YVO4 crystal pumped by a high energy fiber laser at a wavelength of 1064 nm and a repetition rate of 1 MHz. The Raman generator shifts the pump wavelength to 1175 nm, in a broadband spectrum, making it suitable for multi-photon microscopy. We use the Raman generator for third harmonic generation imaging of live plant specimens as well as for two-photon fluorescence imaging of red fluorescent protein expressing HeLa cells. We demonstrate that the photo-damage to a live specimen is low.

  16. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.

    2016-01-01

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  17. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots

    PubMed Central

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.

    2016-01-01

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms. PMID:26813326

  18. All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength.

    PubMed

    Haret, Laurent-Daniel; Checoury, Xavier; Han, Zheng; Boucaud, Philippe; Combrié, Sylvain; De Rossi, Alfredo

    2010-11-08

    We demonstrate an all-silicon photodetector working at telecom wavelength. The device is a simple metal-semiconductor-metal detector fabricated on silicon-on-insulator. A two-dimensional photonic crystal nanocavity (Q=60,000) is used to increase the response that arises from the linear and two-photon absorption of silicon. The responsivity of the detector is about 20 mA/W and its bandwidth is larger than 1 GHz.

  19. Stacked silicide/silicon mid- to long-wavelength infrared detector

    DOEpatents

    Maserjian, Joseph

    1990-03-13

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  20. Doping-Spike PtSi Schottky Infrared Detectors with Extended Cutoff Wavelengths

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1994-01-01

    A technique incorporating a p+ doping spike at the silicide/Si interface to reduce the effective Schottky barrier of the silicide infrared detectors and thus extend the cutoff wavelength has been developed.

  1. Integrated photonic crystals and quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Tsui, D. C.; Choi, K. K.

    2004-03-01

    GaAs/AlGaAs based quantum well infrared photodetectors (QWIP) are becoming very reliable technologies that are widely used to detect mid-infrared light. Photonic crystals, on the other hand, are very powerful tools to manipulate light and thus are very crucial elements in future optical integration circuits. have fabricated a series of devices that incorporate QWIP and 2d photonic crystals together on a single GaAs based chip. These devices work at the 7-13 μ m range. Compared with the conventional photonic crystals designed for fiber communication, these devices have the advantage that they only require photolithography instead of e-beam lithography. The fabrication of such devices is thus far less costly and time-consuming.

  2. Methods and devices for maintaining a resonant wavelength of a photonic microresonator

    SciTech Connect

    Jones, Adam; Zortman, William A.

    2015-07-14

    A photonic microresonator incorporates a localized heater element within a section of an optical bus waveguide that is in proximity to the resonator structure. The application of an adjustable control voltage to the heater element provides a localized change in the refractive index value of the bus waveguide, compensating for temperature-induced wavelength drift and maintaining a stabilized value of the microresonator's resonant wavelength.

  3. On the Determination of the Emission Wavelength of an Infrared LED with Common Laboratory Instruments

    ERIC Educational Resources Information Center

    RayChaudhuri, Barun

    2011-01-01

    This work demonstrates an experiment on the optoelectronic properties of a p-n junction suitable for students of undergraduate physics. It investigates, from an educational point of view, the origin of the wavelength of radiation emitted by a light emitting diode (LED) and determines the emission wavelength of an infrared LED without using…

  4. Wavelength Shifting in InP based Ultra-thin Quantum Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Pool, F.; Liu, J. K.; McKelvy, M.

    1998-01-01

    We have demonstrated red-shifting of the wavelength response of a bound-to-continuum p-type ultra-thin InGaAs/Inp quantum well infrared photodetector after growth via rapid thermal annealing. Compared to the as-grown detector, the peak spectral response of the annealed detector was shifted to longer wavelength without any major degradation in responsivity characteristics.

  5. Ultra-low-power silicon photonics wavelength converter for phase-encoded telecommunication signals

    NASA Astrophysics Data System (ADS)

    Lacava, C.; Ettabib, M. A.; Cristiani, I.; Fedeli, J.-M.; Richardson, D. J.; Petropoulos, P.

    2016-03-01

    The development of compact, low power, silicon photonics CMOS compatible components for all-optical signal processing represents a key step towards the development of fully functional platforms for next generation all-optical communication networks. The wavelength conversion functionality at key nodes is highly desirable to achieve transparent interoperability and wavelength routing allowing efficient management of network resources operated with high speed, phase encoded signals. All optical wavelength conversion has already been demonstrated in Si-based devices, mainly utilizing the strong Kerr effect that silicon exhibits at telecommunication wavelengths. Unfortunately, Two Photon Absorption (TPA) and Free Carrier (FC) effects strongly limit their performance, even at moderate power levels, making them unsuitable for practical nonlinear applications. Amorphous silicon has recently emerged as a viable alternative to crystalline silicon (c-Si), showing both an enhanced Kerr as well as a reduced TPA coefficient at telecom wavelengths, with respect to its c-Si counterpart. Here we present an ultra-low power wavelength converter based on a passive, CMOS compatible, 1-mm long amorphous silicon waveguide operated at a maximum pump power level of only 70 mW. We demonstrate TPA-free Four Wave Mixing (FWM)-based wavelength conversion of Binary Phase Shift Keyed (BPSK) and Quadrature Phase Shift Keyed (QPSK) signals at 20 Gbit/s with <1 dB power penalty at BER = 10-5.

  6. Design on compatible stealth photonic crystal of nearmiddle infrared and 1.06 μm laser

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-kui; Wang, Jia-Chun; Wang, Qi-Chao

    2016-01-01

    In the near and middle infrared atmospheric window, infrared stealth material require a low absorptivity (which means a low emissivity according to Kirchhoff's law of black body), at the same time, it also requires high absorptivity so as to decrease the reflectance at military laser wavelength of 1.06μm. Under this circumstances, compatible stealth of infrared and laser is an urgent demand, but the demand is ambivalent for conventional materials. Photonic crystal (PC), as a new type of artificial periodic structure function material, can realize broadband thermal infrared stealth based on its high-reflection photon forbidden band(also called photonic band gap). The high-reflection photon forbidden band of PC can be adjusted to near and middle infrared wave band through some rational methods. When a defect was added into the periodic structure of PC, a "hole-digging" reflection spectrum, which is high absorption at military laser wavelength of 1.06μm, can be achieved, so compatible stealth of near and middle infrared and military laser wavelength of 1.06μm can be achieved too. In this paper, we selected near and middle infrared-transparent materials, Te and MgF2 , as high refractive index and low refractive index material respectively, and designed a one-dimensional one-defect-mode PC whose photon forbidden band was broadened to 1-5μm by constructing two photonic crystals into one. The optical property of the PC was calculated by Transfer matrix method(TMM) of thin-film optical theory, and the results shows that the as-designed PC has a high spectral reflectance in the near and middle infrared band, among which the reflectivity in 1.68μm 5.26μm band reached more than 90%, and the 2.48 5.07μm band even reached 99.99%. The result also shows that between the band gap of 1-5μm, there are one defect mode locating in the wavelength of 1.06μm, whose reflectance is below 0.70%, which means its spectral absorptivity is greater than 99.30%. All the above we have

  7. Extinction by Dielectric Particles at Optical and Infrared Wavelength.

    DTIC Science & Technology

    1987-08-31

    particular interest. Specific problems which were studied included determining the scattering matrix for randomly oriented spheroidal particles ...block tnember) Light scattering calculations for spheroidal particles have determined a relationship between the scattering matrix and the physical...scattering features of dielectric particles . Calculations for nonspherical particles which are larger than the wavelength of the incident beam were of

  8. Centimeter- and millimeter-wavelength matched loads based on microwave photonic crystals

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Meshchanov, V. P.; Skripal', A. V.; Popova, N. F.; Ponomarev, D. V.; Merdanov, M. K.

    2017-02-01

    Novel, small-sized broadband matched loads in the form of disordered photonic crystals containing nanometer metallic and insulating layers have been developed. It has been proposed to form insulating layers with different permittivities and low dissipation factors in both centimeter and millimeter wavelength ranges from the composites that consist of insulating matrices filled with air inclusions.

  9. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  10. Excited-state absorption of Tm3 + -doped single crystals at photon-avalanche wavelengths

    NASA Astrophysics Data System (ADS)

    Garnier, N.; Moncorgé, R.; Manaa, H.; Descroix, E.; Laporte, P.; Guyot, Y.

    1996-04-01

    Excited-state absorption (ESA) spectra calibrated in units of cross sections are reported in the case of Tm3+-doped YAG, YAP, and Y2O3 single crystals around wavelengths at which photon-avalanche absorptions were observed recently. The peak ESA cross sections are compared with those obtained theoretically by using the Judd-Ofelt approach.

  11. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  12. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    SciTech Connect

    van der Laan, J. D.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.

  13. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGES

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  14. Calibration-Free Pulse Oximetry Based on Two Wavelengths in the Infrared — A Preliminary Study

    PubMed Central

    Nitzan, Meir; Noach, Salman; Tobal, Elias; Adar, Yair; Miller, Yaacov; Shalom, Eran; Engelberg, Shlomo

    2014-01-01

    The assessment of oxygen saturation in arterial blood by pulse oximetry (SpO2) is based on the different light absorption spectra for oxygenated and deoxygenated hemoglobin and the analysis of photoplethysmographic (PPG) signals acquired at two wavelengths. Commercial pulse oximeters use two wavelengths in the red and infrared regions which have different pathlengths and the relationship between the PPG-derived parameters and oxygen saturation in arterial blood is determined by means of an empirical calibration. This calibration results in an inherent error, and pulse oximetry thus has an error of about 4%, which is too high for some clinical problems. We present calibration-free pulse oximetry for measurement of SpO2, based on PPG pulses of two nearby wavelengths in the infrared. By neglecting the difference between the path-lengths of the two nearby wavelengths, SpO2 can be derived from the PPG parameters with no need for calibration. In the current study we used three laser diodes of wavelengths 780, 785 and 808 nm, with narrow spectral line-width. SaO2 was calculated by using each pair of PPG signals selected from the three wavelengths. In measurements on healthy subjects, SpO2 values, obtained by the 780–808 nm wavelength pair were found to be in the normal range. The measurement of SpO2 by two nearby wavelengths in the infrared with narrow line-width enables the assessment of SpO2 without calibration. PMID:24763216

  15. Two-Photon-Excited Fluorescence-Encoded Infrared Spectroscopy.

    PubMed

    Mastron, Joseph N; Tokmakoff, Andrei

    2016-11-23

    We report on a method for performing ultrafast infrared (IR) vibrational spectroscopy using fluorescence detection. Vibrational dynamics on the ground electronic state driven by femtosecond mid-infrared pulses are detected by changes in fluorescence amplitude resulting from modulation of a two-photon visible transition by nuclear motion. We examine a series of coumarin dyes and study the signals as a function of solvent and excitation pulse parameters. The measured signal characterizes the relaxation of vibrational populations and coherences but yields different information than conventional IR transient absorption measurements. These differences result from the manner in which the ground-state dynamics are projected by the two-photon detection step. Extensions of this method can be adapted for a variety of increased-sensitivity IR measurements.

  16. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble.

    PubMed

    Willis, R T; Becerra, F E; Orozco, L A; Rolston, S L

    2011-07-18

    We present measurements of the polarization correlation and photon statistics of photon pairs that emerge from a laser-pumped warm rubidium vapor cell. The photon pairs occur at 780 nm and 1367 nm and are polarization entangled. We measure the autocorrelation of each of the generated fields as well as the cross-correlation function, and observe a strong violation of the two-beam Cauchy-Schwartz inequality. We evaluate the performance of the system as source of heralded single photons at a telecommunication wavelength. We measure the heralded autocorrelation and see that coincidences are suppressed by a factor of ≈ 20 from a Poissonian source at a generation rate of 1500 s(-1), a heralding efficiency of 10%, and a narrow spectral width.

  17. Volcano monitoring by short wavelength infrared satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    The use of short wavelength IR Landsat TM data for volcano monitoring is examined. By determining the pixel-integrated from the TM data, it is possible to estimate the temperature and size of hot areas which occupy less than one complete pixel. Examples of volcano monitoring with remote sensing data are discussed. It is suggested that the entire volcanic temperature range (100-1200 C) could be accomplished by decreasing the band 6 gain by just one order of magnitude so that it was sensitive to radiance from 1 to 100 mW/sq cm/sr/micron.

  18. Infrared Avionics Signal Distribution using Wavelength Division Multiplexing

    NASA Technical Reports Server (NTRS)

    Atiquzzaman, Mohammed; Sluss, Jim; Nguyen, Hung; Ngo, Duc

    2003-01-01

    Pilots in the cockpits of aircrafts currently communicate with ground stations using Radio Frequency (RF) signals. Antennas mounted outside the aircraft receive and transmit RF signals from and to the ground stations. The RF signals received at the antennas are sent to the cockpit using coaxial cables. As the number of antennas needed to provide more than one frequency band in aircrafts increases, RF distribution media (such as coaxial cable) adds to the complexity and weight of the cockpit wiring. Concomitantly, the safety and signal to noise ratio also decreases due to the use of RF signals. The University of Oklahoma is collaborating with the National Aeronautics and Space Administration to develop optical fiber based schemes to replace the coaxial cable used for RF signal distribution within an aircraft. The project aims at exploiting emerging Wavelength Division Multiplexing (WDM) techniques to reduce the weight of cabling, and increase the signal to noise ratio and reliability. This will be achieved by wavelength division multiplexing the signals from the various antennas and then demultiplexing the signals to recover the original signals at the cockpit. This paper will show that (i) RF signals can not only be wavelength multiplexed at the end of a fiber, but additional signals can be inserted into the middle of the fiber using WDM technology, and (ii) the signals can also be successfully extracted by tapping into the middle of the fiber. We are currently extending our previous laboratory prototype (which could multiplex signals only at the end of the fiber) to include additional multiplexing and demultiplexing of RF signals from the middle of the optical backbone with a view to validating the proof of concept, and carrying out measurements to determine the effectiveness of Wavelength Division Multiplexing for avionics applications. A test bed to perform measurements of several relevant parameters for various modulation schemes and frequencies (such as VHF

  19. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths.

    PubMed

    van der Laan, J D; Scrymgeour, D A; Kemme, S A; Dereniak, E L

    2015-03-20

    We find for infrared wavelengths that there are broad ranges of particle sizes and refractive indices that represent fog and rain, where circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that, for specific scene parameters, circular polarization outperforms linear polarization in maintaining the illuminating polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Initially, researchers employed polarization-discriminating schemes, often using linearly polarized active illumination, to further distinguish target signals from the background noise. More recently, researchers have investigated circular polarization as a means to separate signal from noise even more. Specifically, we quantify both linearly and circularly polarized active illumination and show here that circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave and long-wave infrared, and large particle sizes of Sahara dust around the 4 μm wavelength. Conversely, we quantify where linear polarization persists better than circular polarization for some limited particle sizes of radiation fog in the long-wave infrared, small particle sizes of Sahara dust for wavelengths of 9-10.5 μm, and large particle sizes of Sahara dust through the 8-11 μm wavelength range in the long-wave infrared.

  20. Polarization study of a supercontinuum light source for different wavelengths through a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-Garcia, J. C.; Lauterio-Cruz, J. P.; Jáuregui-Vázquez, D.; Ibarra-Escamilla, B.; Rojas-Laguna, R.; Pottiez, O.; Kuzin, E. A.

    2016-03-01

    In this work we show the changes of polarization at different wavelengths in the end of a photonic crystal fiber (PCF) by means bandpass filters in a supercontinuum light source. A linear and circular polarization was introduced in a piece of PCF, showing the changes of the polarization for each wavelength of each one of the filters from 450 to 700nm. We used a microchip laser as pumping source with wavelength of 532nm and short pulses of 650ps with repetition rate of 5kHz. We obtained a continuous spectrum in the visible spectral region, showing a comparison of the polarization state at the fiber input with respect to polarization state in the fiber output for different wavelengths by rotating the axes of the PCF.

  1. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber.

    PubMed

    Zhang, Ailing; Demokan, M S

    2005-09-15

    We demonstrate a 10 Gbit/s nonreturn-to-zero wavelength converter based on four-wave mixing in a 20 m highly nonlinear photonic crystal fiber. The tunable wavelength conversion bandwidth (3 dB) is about 100 nm. The conversion efficiency is -16 dB when the pump power is 22.5 dBm. Phase modulation was not used to suppress the stimulated Brillouin scattering; thus the linewidth of the converted wavelength remained very narrow. The eye diagrams show that there is no additional noise during wavelength conversion. The measured power penalty at a 10(-9) bit-error-rate level is about 0.7 dB.

  2. Theoretical investigation of all-metal-based mushroom plasmonic metamaterial absorbers at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Kimata, Masafumi

    2015-12-01

    High-performance wavelength-selective infrared (IR) sensors require small pixel structures, a low-thermal mass, and operation in the middle-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) regions for multicolor IR imaging. All-metal-based mushroom plasmonic metamaterial absorbers (MPMAs) were investigated theoretically and were designed to enhance the performance of wavelength-selective uncooled IR sensors. All components of the MPMAs are based on thin layers of metals such as Au without oxide insulators for increased absorption. The absorption properties of the MPMAs were investigated by rigorous coupled-wave analysis. Strong wavelength-selective absorption is realized over a wide range of MWIR and LWIR wavelengths by the plasmonic resonance of the micropatch and the narrow-gap resonance, without disturbance from the intrinsic absorption of oxide insulators. The absorption wavelength is defined mainly by the micropatch size and is longer than its period. The metal post width has less impact on the absorption properties and can maintain single-mode operation. Through-holes can be formed on the plate area to reduce the thermal mass. A small pixel size with reduced thermal mass and wideband single-mode operation can be realized using all-metal-based MPMAs.

  3. Wavelength tuning of planar photonic crystals by local processing of individual holes.

    PubMed

    Kicken, H H J E; Alkemade, P F A; van der Heijden, R W; Karouta, F; Nötzel, R; van der Drift, E; Salemink, H W M

    2009-11-23

    Tuning of the resonant wavelength of a single hole defect cavity in planar photonic crystals was demonstrated using transmission spectroscopy. Local post-production processing of single holes in a planar photonic crystal is carried out after selectively opening a masking layer by focused ion beam milling. The resonance was blue-shifted by enlargement of selected holes using local wet chemical etching and red-shifted by infiltration with liquid crystals. This method can be applied to precisely control the resonant frequency, and can also be used for mode selective tuning.

  4. Optical links for detector instrumentation: on-detector multi-wavelength silicon photonic transmitters

    NASA Astrophysics Data System (ADS)

    Karnick, D.; Skwierawski, P.; Schneider, M.; Eisenblätter, L.; Weber, M.

    2017-03-01

    We report on our recent progress in developing an optical transmission system based on wavelength division multiplexing (WDM) to enhance the read-out data rate of future particle detectors. The design and experimental results of the prototype of a monolithically integrated multi-wavelength transmitter are presented as well as temperature studies of electro-optic modulators. Furthermore, we show the successful permanent coupling of optical fibers to photonic chips, which is an essential step towards packaging of the opto-electronic components.

  5. Extension of long wavelength response by modulation doping in extrinsic germanium infrared detectors

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Farhoomand, J.; Beichman, C. A.; Watson, D. M.; Jack, M. D.

    1985-01-01

    A new concept for infrared detectors based on multilayer epitaxy and modulation doping has been investigated. This permits a high doping concentration and lower excitation energy in the photodetecting layer as is necessary for longer wavelength response, without incurring the detrimental effects of increased dark current and noise as would be the case with conventional detector designs. Germanium photodetectors using conventional materials and designs have a long wavelength cutoff in the infrared at 138 microns, which can only be extended through the inconvenient application of mechanical stress or magnetic fields. As a result of this approach which was arrived at from theoretical considerations and subsequently demonstrated experimentally, the long wavelength cutoff for germanium extrinsic detectors was extended beyond 200 microns, as determined by direct infrared optical measurements.

  6. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; Chang, Y. -C.; Shott, Craig A.

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  7. Generation of Multiple Mid Infrared Wavelengths Using PPLN and AgGaSe2

    DTIC Science & Technology

    1998-01-01

    Approved for public release; distribution is unlimited. Generation of Multiple Mid Infrared Wavelengths Using PPLN and AgGaSe2 Ti Chuang, Nigel...Martin and Ralph Burnham Fibertek, Inc. 510 Herndon Parkway, Herndon, VA 20170 ABSTRACT We report the demonstration of simultaneously generating two mid...noncritically phase matching (NCPM), to generate a wavelength at 1.54 µm. This 1.54 µm source becomes the pump for the second OPO that generates

  8. Tantalum(V) nitride inverse opals as photonic structures for visible wavelengths.

    PubMed

    Rugge, Alessandro; Park, Jin-Seong; Gordon, Roy G; Tolbert, Sarah H

    2005-03-10

    The development of materials with a complete photonic band gap at visible wavelengths is believed to have the potential to lead to new control over long-lived emissive excited states, single molecule lasers, and nearly lossless nanoscale waveguides. In this work we move toward that goal with the synthesis of an inverse opal thin film of Ta3N5 produced through atomic layer deposition. The highly regular architecture achievable by atomic layer deposition is combined with an unusually high refractive index and transparency in at least part of the visible spectrum. The result is a material that represents the closest example to date of a photonic crystal with a band gap at optical wavelengths.

  9. Post-process wavelength tuning of silicon photonic crystal slow-light waveguides.

    PubMed

    Awan, Kashif M; Schulz, Sebastian A; Liu, Dennis X; Dolgaleva, Ksenia; Upham, Jeremy; Boyd, Robert W

    2015-05-01

    Silicon photonic crystal waveguides have enabled a range of technologies, yet their fabrication continues to present challenges. Here, we report on a post-processing method that allows us to tune the operational wavelength of slow-light photonic crystal waveguides in concert with optical characterization, offsetting the effects of hole-radii and slab thickness variations. Our method consist of wet chemical surface oxidation, followed by oxide stripping. Theoretical modelling shows that the changes in optical behavior were predictable, and hence controlled tuning can be achieved by changing the number of processing cycles, where each cycle removes approximately 0.25 nm from all exposed surfaces, producing a blueshift of 1.6±0.1  nm in operating wavelength.

  10. Measurements of wavelength-dependent double photoelectron emission from single photons in VUV-sensitive photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Faham, C. H.; Gehman, V. M.; Currie, A.; Dobi, A.; Sorensen, P.; Gaitskell, R. J.

    2015-09-01

    Measurements of double photoelectron emission (DPE) probabilities as a function of wavelength are reported for Hamamatsu R8778, R8520, and R11410 VUV-sensitive photomultiplier tubes (PMTs). In DPE, a single photon strikes the PMT photocathode and produces two photoelectrons instead of a single one. It was found that the fraction of detected photons that result in DPE emission is a function of the incident photon wavelength, and manifests itself below ~250 nm. For the xenon scintillation wavelength of 175 nm, a DPE probability of 18-24% was measured depending on the tube and measurement method. This wavelength-dependent single photon response has implications for the energy calibration and photon counting of current and future liquid xenon detectors such as LUX, LZ, XENON100/1T, Panda-X and XMASS.

  11. At what wavelengths should we search for signals from extraterrestrial intelligence? (SETI/infrared communication/interstellar communication/extraterrestrial intelligence)

    NASA Technical Reports Server (NTRS)

    Townes, C. H.

    1979-01-01

    Searches for extraterrestrial intelligence concentrate on attempts to receive signals in the microwave region, the argument being given that communication occurs there at minimum broadcasted power. Such a conclusion is shown to result only under a restricted set of assumptions. If generalized types of detection are considered, in particular photon detection rather than linear detection alone, and if advantage is taken of the directivity of telescopes at short wavelengths, then somewhat less power is required for communication at infrared wavelengths than in the microwave region. Furthermore, a variety of parameters other than power alone can be chosen for optimization by an extraterrestrial civilization.

  12. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    PubMed

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  13. Wavelength-Selective One- and Two-Photon Uncaging of GABA

    PubMed Central

    2013-01-01

    We have synthesized photolabile 7-diethylamino coumarin (DEAC) derivatives of γ-aminobutyric acid (GABA). These caged neurotransmitters efficiently release GABA using linear or nonlinear excitation. We used a new DEAC-based caging chromophore that has a vinyl acrylate substituent at the 3-position that shifts the absorption maximum of DEAC to about 450 nm and thus is named “DEAC450”. DEAC450-caged GABA is photolyzed with a quantum yield of 0.39 and is highly soluble and stable in physiological buffer. We found that DEAC450-caged GABA is relatively inactive toward two-photon excitation at 720 nm, so when paired with a nitroaromatic caged glutamate that is efficiently excited at such wavelengths, we could photorelease glutamate and GABA around single spine heads on neurons in brain slices with excellent wavelength selectivity using two- and one-photon photolysis, respectively. Furthermore, we found that DEAC450-caged GABA could be effectively released using two-photon excitation at 900 nm with spatial resolution of about 3 μm. Taken together, our experiments show that the DEAC450 caging chromophore holds great promise for the development of new caged compounds that will enable wavelength-selective, two-color interrogation of neuronal signaling with excellent subcellular resolution. PMID:24304264

  14. Optimized photonic crystal design for quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Reininger, P.; Kalchmair, S.; Gansch, R.; Andrews, A. M.; Detz, H.; Zederbauer, T.; Ahn, S. I.; Schrenk, W.; Strasser, G.

    2012-06-01

    The performance of quantum well infrared photodetectors (QWIP) can be significantly enhanced combining it with a photonic crystal slab (PCS) resonator. In such a system the chosen PCS mode is designed to coincide with the absorption maximum of the photodetector by adjusting the lattice parameters. However there is a multitude of parameter sets that exhibit the same resonance frequency of the chosen PCS mode. We have investigated how the choice of the PC design can be exploited for a further enhancement of QWIPs. Several sets of lattice parameters that exhibit the chosen PCS mode at the same resonance frequency have been obtained and the finite difference time domain method was used to simulate the absorption spectra of the different PCS. A photonic crystal slab quantum well infrared photodetector with three different photonic crystal lattice designs that exhibit the same resonance frequency of the chosen PCS mode were designed, fabricated and measured. This work shows that the quality factor of a PCS-QWIP and therefore the absorption enhancement can be increased by an optimized PCS design. The improvement is a combined effect of a changed lattice constant, PC normalized radius and normalized slab thickness. An enhancement of the measured photocurrent of more than a factor of two was measured.

  15. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  16. Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kazakov, A.; Voronov, B. M.; Goltsman, G. N.

    2016-12-01

    Here, we report on successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the Local Oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth was limited by the spectral band of single-photon response pulse of the detector, which is proportional to the detector size. We observed gain bandwidth of 65 MHz and 140 MHz for 7x7 um^2 and 3x3 um^2 devices respectively. Tiny amount of the required Local Oscillator power and wide gain and noise bandwidths along with the needless of any Low Noise Amplification opens possibility for a photon counting heterodyne-born megapixel array development.

  17. Human infrared vision is triggered by two-photon chromophore isomerization.

    PubMed

    Palczewska, Grazyna; Vinberg, Frans; Stremplewski, Patrycjusz; Bircher, Martin P; Salom, David; Komar, Katarzyna; Zhang, Jianye; Cascella, Michele; Wojtkowski, Maciej; Kefalov, Vladimir J; Palczewski, Krzysztof

    2014-12-16

    Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments.

  18. Human infrared vision is triggered by two-photon chromophore isomerization

    PubMed Central

    Palczewska, Grazyna; Vinberg, Frans; Stremplewski, Patrycjusz; Bircher, Martin P.; Salom, David; Komar, Katarzyna; Zhang, Jianye; Cascella, Michele; Wojtkowski, Maciej; Kefalov, Vladimir J.; Palczewski, Krzysztof

    2014-01-01

    Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments. PMID:25453064

  19. Studies on output characteristics of stable dual-wavelength ytterbium-doped photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian

    2016-06-01

    A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.

  20. A hybrid multiplexer for wavelength/mode-division based on photonic crystals

    NASA Astrophysics Data System (ADS)

    Ji, Ke; Chen, Heming; Zhuang, Yuyang

    2016-01-01

    A hybrid multiplexer (HMUX) for wavelength/mode-division (WDM/MDM) based on photonic crystals (PCs) is proposed. The device can realize TE0 and TE1 modes multiplexing at wavelengths of 1550nm and 1570nm. According to quasi phase matching, a structure with an asymmetrical parallel waveguide (APW) was used to achieve mode conversion. The transmittance of the TE0 mode at wavelengths of 1550nm and 1570nm are 98.4% and 96.3%, the corresponding insertion loss are 0.07dB and 0.16dB respectively. The crosstalk of the TE0 mode at wavelengths of 1550nm and 1570nm are -27.66dB and -27.32dB respectively. The transmittance of the TE1 mode at wavelengths of 1550nm and 1570nm are 95.8% and 93.9%, the corresponding insertion loss are 0.19dB and 0.27dB respectively. The crosstalk of the TE1 mode at wavelengths of 1550nm and 1570nm are -38.73dB and -38.9dB respectively. The PC-based HMUX has great performance, and it will have great application potential in future ultrahigh-speed and large-capacity communication systems.

  1. High numerical aperture large-core photonic crystal fiber for a broadband infrared transmission

    NASA Astrophysics Data System (ADS)

    Pniewski, J.; Stepniewski, G.; Kasztelanic, R.; Siwicki, B.; Pierscinska, D.; Pierscinski, K.; Pysz, D.; Borzycki, K.; Stepien, R.; Bugajski, M.; Buczynski, R.

    2016-11-01

    In this paper we present a large mode area photonic crystal fiber made of the heavy metal oxide glass CS-740, dedicated for a broadband light guidance in the visible, near- and mid-infrared regions of wavelengths from 0.4 to 4.7 μm. The fiber is effectively multi-mode in the considered wavelength range. It is composed of a ring of air-holes surrounding the core, with a high linear filling factor of 0.97. The fiber was made using a standard stack-and-draw technique. Each hole has a size of approx. 2.5 × 3.0 μm and diameter of core is 80 μm. Fiber attenuation is below 3 dB/m in the 0.9-1.7 μm wavelength range, while at 4.4 μm (mid-IR) it is approx. 5 dB/cm. Bending loss at the 1.55 μm wavelength is 0.45 dB per loop of 8 mm radius. Fiber numerical aperture is 0.53 at 1.55 μm. The effective mode area of the fundamental mode is approx. 2400 μm2 in the wavelength range of 0.8-1.7 μm. We present a proof-of-concept demonstration that our large core photonic crystal fiber is able to efficiently collect light directly from a mid-IR quantum cascade laser without use of additional optics and can be used for pigtailing mid-IR sources and detectors.

  2. Low work function surface layers produced by laser ablation using short-wavelength photons

    DOEpatents

    Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.

    2000-01-01

    Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.

  3. Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen

    2016-08-01

    A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits.

  4. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths.

    PubMed

    Wang, Weibin; Yang, Hua; Tang, Pinghua; Zhao, Chujun; Gao, Jing

    2013-05-06

    Based on the generalized nonlinear Schrödinger equation, we present a numerical study of trapping of dispersive waves by solitons during supercontinuum generation in photonic crystal fibers pumped with femtosecond pulses in the anomalous dispersion region. Numerical simulation results show that the generated supercontinuum is bounded by two branches of dispersive waves, namely blue-shifted dispersive waves (B-DWs) and red-shifted dispersive waves (R-DWs). We find a novel phenomenon that not only B-DWs but also R-DWs can be trapped by solitons across the zero-dispersion wavelength when the group-velocity matching between the soliton and the dispersive wave is satisfied, which may led to the generation of new spectral components via mixing of solitons and dispersive waves. Mixing of solitons with dispersive waves has been shown to play an important role in shaping not only the edge of the supercontinuum, but also its central part around the higher zero-dispersion wavelength. Further, we show that the phenomenon of soliton trapping of dispersive waves in photonic crystal fibers with two zero-dispersion wavelengths has a very close relationship with pumping power and the interval between two zero-dispersion wavelengths. In order to clearly display the evolution of soliton trapping of dispersive waves, the spectrogram of output pulses is observed using cross-correlation frequency-resolved optical gating technique (XFROG).

  5. Near infrared single photon avalanche detector with negative feedback and self quenching

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-08-01

    We present the design and development of a negative feedback devices using the internal discrete amplifier approach used for the development of a single photon avalanche photodetector in the near infrared wavelength region. This new family of photodetectors with negative feedback, requiring no quenching mechanism using Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions, operates in the non-gated mode under a constant bias voltage. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. The measured devices have Gain > 2×105, Excess noise factor < 1.05, Rise time < 350ps, Fall time < 500ps, Dark current < 2×106 cps at room temperature, and Operating Voltage < 60V. These devices are ideal for researchers in the field of Ladar/Lidar, free space optical communication, 3D imaging, industrial and scientific instrumentation, night vision, quantum cryptography, and other military, defence and aerospace applications.

  6. [Characteristic wavelength variable optimization of near-infrared spectroscopy based on Kalman filtering].

    PubMed

    Wang, Li-Qi; Ge, Hui-Fang; Li, Gui-Bin; Yu, Dian-Yu; Hu, Li-Zhi; Jiang, Lian-Zhou

    2014-04-01

    Combining classical Kalman filter with NIR analysis technology, a new method of characteristic wavelength variable selection, namely Kalman filtering method, is presented. The principle of Kalman filter for selecting optimal wavelength variable was analyzed. The wavelength selection algorithm was designed and applied to NIR detection of soybean oil acid value. First, the PLS (partial leastsquares) models were established by using different absorption bands of oil. The 4 472-5 000 cm(-1) characteristic band of oil acid value, including 132 wavelengths, was selected preliminarily. Then the Kalman filter was used to select characteristic wavelengths further. The PLS calibration model was established using selected 22 characteristic wavelength variables, the determination coefficient R2 of prediction set and RMSEP (root mean squared error of prediction) are 0.970 8 and 0.125 4 respectively, equivalent to that of 132 wavelengths, however, the number of wavelength variables was reduced to 16.67%. This algorithm is deterministic iteration, without complex parameters setting and randomicity of variable selection, and its physical significance was well defined. The modeling using a few selected characteristic wavelength variables which affected modeling effect heavily, instead of total spectrum, can make the complexity of model decreased, meanwhile the robustness of model improved. The research offered important reference for developing special oil near infrared spectroscopy analysis instruments on next step.

  7. Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths.

    PubMed

    Tao, Wei; Bao, Hongchun; Gu, Min

    2011-05-01

    Real-time monitoring the variation of chlorophyll distributions and cellular structures in leaves during plant growth provides important information for understanding the physiological statuses of plants. Two-photon-excited autofluorescence imaging and second harmonic generation imaging of leaves can be used for monitoring the nature intrinsic fluorophores distribution and cellular structures of leaves by the use of the near-infrared region of light which has minimal light absorption by endogenous molecules and thus increases tissue penetration. However, the two-photon absorption peak of intrinsic fluorophores of a ficus benjamina leaf is 50 nm away from the second harmonic generation excitation wavelength, which cannot be effectively excited by a femtosecond laser beam with one central wavelength. This paper shows that a highly polarized supercontinuum light generated from a birefringent nonlinear photonic crystal fiber with two zero-dispersion wavelengths can effectively excite two-photon autofluorescence as well as second harmonic generation signals for simultaneously monitoring intrinsic fluorophore distributions and non-centrosymmetric structures of leaves.

  8. Massive Photons: An Infrared Regularization Scheme for Lattice QCD +QED

    NASA Astrophysics Data System (ADS)

    Endres, Michael G.; Shindler, Andrea; Tiburzi, Brian C.; Walker-Loud, André

    2016-08-01

    Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body computations with long-range Coulomb interactions.

  9. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    ERIC Educational Resources Information Center

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  10. Long-Wavelength Stacked Si(sub 1-x)/Si Heterojunction Internal Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; George, T.; Gunapala, S. D.

    1993-01-01

    Utilizing the low temperature silicon molecular beam epitaxy (MBE) growth of degenerately doped SiGe layers on Si, long wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Se layers have been fabricated and demonstrated.

  11. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Unterhuber, Angelika; Prieto, Pedro M.; Hermann, Boris; Drexler, Wolfgang; Artal, Pablo

    2005-01-01

    A compact mode-locked Ti:sapphire laser, emitting a broad spectrum of 277 nm bandwidth, centered at 790 nm, was used to measure the dependence of the aberrations of the human eye with wavelength in the near infrared region. The aberrations were systematically measured with a Hartmann-Shack wave-front sensor at the following wavelengths: 700, 730, 750, 780, 800, 850, 870 and 900 nm, in four normal subjects. During the measurements, the wavelengths were selected by using 10 nm band-pass filters. We found that monochromatic high order aberrations, beyond defocus, were nearly constant across 700 to 900 nm wavelength in the four subjects. The average chromatic difference in defocus was 0.4 diopters in the considered wavelength band. The predictions of a simple water-eye model were compared with the experimental results in the near infrared. These results have potential applications in those situations where defocus or higher order aberration correction in the near infrared is required. This is the case of many imaging techniques: scanning laser ophthalmoscope, flood illumination fundus camera, or optical coherence tomography.

  12. Long wavelength infrared camera (LWIRC): a 10 micron camera for the Keck Telescope

    SciTech Connect

    Wishnow, E.H.; Danchi, W.C.; Tuthill, P.; Wurtz, R.; Jernigan, J.G.; Arens, J.F.

    1998-05-01

    The Long Wavelength Infrared Camera (LWIRC) is a facility instrument for the Keck Observatory designed to operate at the f/25 forward Cassegrain focus of the Keck I telescope. The camera operates over the wavelength band 7-13 {micro}m using ZnSe transmissive optics. A set of filters, a circular variable filter (CVF), and a mid-infrared polarizer are available, as are three plate scales: 0.05``, 0.10``, 0.21`` per pixel. The camera focal plane array and optics are cooled using liquid helium. The system has been refurbished with a 128 x 128 pixel Si:As detector array. The electronics readout system used to clock the array is compatible with both the hardware and software of the other Keck infrared instruments NIRC and LWS. A new pre-amplifier/A-D converter has been designed and constructed which decreases greatly the system susceptibility to noise.

  13. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  14. Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser

    PubMed Central

    Trägårdh, J; Robb, G; Amor, R; Amos, WB; Dempster, J; McConnell, G

    2015-01-01

    We have studied the wavelength dependence of the two-photon excitation efficiency for a number of common UV excitable fluorescent dyes; the nuclear stains DAPI, Hoechst and SYTOX Green, chitin- and cellulose-staining dye Calcofluor White and Alexa Fluor 350, in the visible and near-infrared wavelength range (540–800 nm). For several of the dyes, we observe a substantial increase in the fluorescence emission intensity for shorter excitation wavelengths than the 680 nm which is the shortest wavelength usually available for two-photon microscopy. We also find that although the rate of photo-bleaching increases at shorter wavelengths, it is still possible to acquire many images with higher fluorescence intensity. This is particularly useful for applications where the aim is to image the structure, rather than monitoring changes in emission intensity over extended periods of time. We measure the excitation spectrum when the dyes are used to stain biological specimens to get a more accurate representation of the spectrum of the dye in a cell environment as compared to solution-based measurements. PMID:25946127

  15. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    NASA Astrophysics Data System (ADS)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  16. High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.

    2011-01-01

    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature

  17. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator.

    PubMed

    Jin, Yuwei; Cristescu, S M; Harren, Frans J M; Mandon, Julien

    2015-08-10

    We demonstrate a two-crystal mid-infrared dual-wavelength optical parametric oscillator, synchronously pumped by a high power femtosecond Yb:fiber laser. The singly-resonant ring cavity, containing two periodically poled lithium niobate crystals, is capable of generating two synchronized idler wavelengths, independently tunable over 30 THz in the 2.9 - 4.2 μm wavelength region, due to the cascaded quadratic nonlinear effect. The independent tunability of the two idlers makes the optical parametric oscillator a promising source for ultrafast pulse generation towards the THz wavelength region, based on different frequency generation. In addition, the observed frequency doubled idler within the crystal indicates the possibility to realize a broadband optical self-phase locking between pump, signal, idler and higher order generated parametric lights.

  18. Revised wavelength and spectral response calibrations for AKARI near-infrared grism spectroscopy: Cryogenic phase

    NASA Astrophysics Data System (ADS)

    Baba, Shunsuke; Nakagawa, Takao; Shirahata, Mai; Isobe, Naoki; Usui, Fumihiko; Ohyama, Youichi; Onaka, Takashi; Yano, Kenichi; Kochi, Chihiro

    2016-04-01

    We perform revised spectral calibrations for the AKARI near-infrared grism to correct quantitatively for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5-5.0 μm, with a spectral resolving power of 120 at 3.6 μm, is found to be contaminated by second-order light at wavelengths longer than 4.9 μm, which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 μm compared with the revised wavelengths at 2.5-5.0 μm. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Secondly, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with different colors. The response from the second-order light suggests leakage of the order-sorting filter below 2.5 μm. The relations between the output of the detector and the intensities of the first- and second-order light are formalized by a matrix equation that combines the two orders. The removal of the contaminating second-order light can be achieved by solving the matrix equation. The new calibration extends the available spectral coverage of the grism mode from 4.9 μm up to 5.0 μm. The revision can be used to study spectral features falling in these extended wavelengths, e.g., the carbon monoxide fundamental ro-vibrational absorption within nearby active galactic nuclei.

  19. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  20. The analysis of photon pair source at telecom wavelength based on the BBO crystal (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gajewski, Andrzej; Kolenderski, Piotr L.

    2016-10-01

    There are several problems that must be solved in order to increase the distance of quantum communication protocols based on photons as an information carriers. One of them is the dispersion, whose effects can be minimized by engineering spectral properties of transmitted photons. In particular, it is expected that positively correlated photon pairs can be very useful. We present the full characterization of a source of single photon pairs at a telecom wavelength based on type II spontaneous parametric down conversion (SPDC) process in a beta-barium borate (BBO) crystal. In the type II process, a pump photon, which is polarized extraordinarily, splits in a nonlinear medium into signal and idler photons, which are polarized perpendicularly to each other. In order for the process to be efficient a phase matching condition must be fulfilled. These conditions originate from momentum and energy conservation rules and put severe restrictions on source parameters. Seemingly, these conditions force the photon pair to be negatively correlated in their spectral domain. However, it is possible to achieve positive correlation for pulsed pumping. The experimentally available degrees of freedom of a source are the width of the pumping beam, the collected modes' widths, the length of the nonlinear crystal and the duration of the pumping pulse. In our numerical model we use the following figures of merit: the pair production rate, the efficiency of photon coupling into a single mode fiber, the spectral correlation of the coupled photon pair. The last one is defined as the Pearson correlation parameter for a joint spectral distribution. The aim here is to find the largest positive spectral correlation and the highest coupling efficiency. By resorting to the numerical model Ref. [1] we showed in Ref. [2], that by careful adjustment of the pump's and the collected modes' characteristics, one can optimize any of the source's parameters. Our numerical outcomes conform to the

  1. Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.

    2013-05-01

    In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.

  2. Beam-bending in spatially variant photonic crystals at telecommunications wavelengths

    NASA Astrophysics Data System (ADS)

    Digaum, Jennefir L.; Sharma, Rashi; Batista, Daniel; Pazos, Javier J.; Rumpf, Raymond C.; Kuebler, Stephen M.

    2016-03-01

    This work reports the fabrication of micron-scale spatially variant photonic crystals (SVPCs) and their use for steering light beams through turns with bending radius Rbend on the order of ten times the optical wavelength λ0. Devices based on conventional photonic crystals, metamaterials, plasmonics and transformation optics have all been explored for controlling light beams and steering them through tight turns. These devices offer promise for photonic interconnects, but they are based on exotic materials, including metals, that make them impractically lossy or difficult to fabricate. Waveguides can also be used to steer light using total internal reflection; however, Rbend of a waveguide must be hundreds of times λ0 to guide light efficiently, which limits their use in optical circuits. SVPCs are spatially variant 3D lattices which can be created in transparent, low-refractive-index media and used to control the propagation of light through the self-collimation effect. SVPCs were fabricated by multi-photon lithography using the commercially available photo-polymer IP-DIP. The SVPCs were structurally and optically characterized and found to be capable of bending light having λ0 = 1.55 μm through a 90-degree turn with Rbend = 10 μm. Curved waveguides with Rbend = 15 μm and 35 μm were also fabricated using IP-DIP and optically characterized. The SVPCs were able to steer the light beams through tighter turns than either waveguide and with higher efficiency.

  3. Long-term evolution of FU Orionis objects at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Ábrahám, P.; Kóspál, Á.; Csizmadia, Sz.; Kun, M.; Moór, A.; Prusti, T.

    2004-12-01

    We investigate the brightness evolution of seven FU Orionis systems in the 1-100 μm wavelength range using data from the Infrared Space Observatory (ISO). The ISO measurements were supplemented by 2MASS and MSX observations performed in the same years as the ISO mission (1995-98). The spectral energy distributions (SEDs) based on these data points were compared with earlier ones derived from the IRAS photometry as well as from ground-based observations carried out around the epoch 1983. In three cases (Z CMa, Parsamian 21, V1331 Cyg) no difference between the two epochs was seen within the measurement uncertainties. V1057 Cyg, V1515 Cyg and V1735 Cyg have become fainter at near-infrared wavelengths while V346 Nor has become slightly brighter. V1057 Cyg exhibits a similar flux change in the mid-infrared. At λ≥ 60 μm most of the sources remained constant; only V346 Nor seems to fade. Our data on the long-term evolution of V1057 Cyg agree with the model predictions of Kenyon & Hartmann (\\cite{Kenyonh91}) and Turner et al. (\\cite{Turner97}) at near- and mid-infrared wavelengths, but disagree at λ>25 μm. We discuss if this observational result at far-infrared wavelengths could be understood in the framework of the existing models. Based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries France, Germany, the Netherlands and the United Kingdom) with participation of ISAS and NASA.

  4. Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities

    NASA Astrophysics Data System (ADS)

    Kors, A.; Fuchs, K.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.

    2017-01-01

    Here we report on the fabrication and optical characterization of InP-based L3 photonic crystal (PhC) microcavities embedded with a medium density InAs/InP quantum dots (QDs) emitting at telecom wavelengths. The QDs are grown by solid source molecular beam epitaxy using a ripening technique. Micro-photoluminescence (μ-PL) measurements of PhC samples reveal sharp cavity modes with quality factors exceeding 8500. QDs emit highly linear-polarized light at telecom wavelengths with resolution-limited spectral linewidth below 50 μeV. Enhanced PL intensity of QDs in PhC is observed in comparison to the PL intensity of QDs in bulk semiconductors. The combination of excitation power-dependent and polarization-resolved μ-PL measurements reveal the existence of an exciton-biexciton system with a small fine-structure splitting.

  5. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature

    SciTech Connect

    Endo, Takumi Ishi-Hayase, Junko; Maki, Hideyuki

    2015-03-16

    We investigated the photoluminescence of individual air-suspended single-walled carbon nanotubes (SWNTs) from 6 to 300 K. Time-resolved and antibunching measurements over the telecommunication wavelength range were performed using a superconducting single-photon detector. We detected moderate temperature independent antibunching behavior over the whole temperature range studied. To investigate the exciton dynamics, which is responsible for the antibunching behavior, we measured excitation-power and temperature dependence of the photoluminescence spectra and lifetime decay curves. These measurements suggested an exciton confinement effect that is likely caused by high-dielectric amorphous carbon surrounding the SWNTs. These results indicate that SWNTs are good candidates for light sources in quantum communication technologies operating in the telecommunication wavelength range and at room temperature.

  6. Polarization maintaining highly nonlinear photonic crystal fiber with closely lying two zero dispersion wavelengths

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran

    2016-05-01

    A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.

  7. Numerical calculation of phase-matching properties in photonic crystal fibers with three and four zero-dispersion wavelengths.

    PubMed

    Zhao, Xingtao; Liu, Xiaoxu; Wang, Shutao; Wang, Wei; Han, Ying; Liu, Zhaolun; Li, Shuguang; Hou, Lantian

    2015-10-19

    Photonic crystal fibers with three and four zero-dispersion wavelengths are presented through special design of the structural parameters, in which the closing to zero and ultra-flattened dispersion can be obtained. The unique phase-matching properties of the fibers with three and four zero-dispersion wavelengths are analyzed. Variation of the phase-matching wavelengths with the pump wavelengths, pump powers, dispersion properties, and fiber structural parameters is analyzed. The presence of three and four zero-dispersion wavelengths can realize wavelength conversion of optical soliton between two anomalous dispersion regions, generate six phase-matching sidebands through four-wave mixing and create more new photon pairs, which can be used for the study of supercontinuum generation, optical switches and quantum optics.

  8. Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Maserjian, Joseph; Ksendzov, A.; Huberman, Mark L.; Terhune, R.; Krabach, T. N.

    1990-01-01

    There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity.

  9. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Poli, Federica; Coscelli, Enrico; Jørgensen, Mette M; Laurila, Marko; Lægsgaard, Jesper; Broeng, Jes

    2012-03-12

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. Light confinement is achieved by combined index and bandgap guiding, which allows for single-mode operation and gain shaping through distributed spectral filtering of amplified spontaneous emission. The fiber properties are ideal for amplification in the long wavelength regime of the Ytterbium gain spectrum above 1100 nm, and red shifting of the maximum gain to 1130 nm is demonstrated.

  10. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  11. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation.

    PubMed

    Kudlinski, A; George, A K; Knight, J C; Travers, J C; Rulkov, A B; Popov, S V; Taylor, J R

    2006-06-12

    We report the fabrication of photonic crystal fibers with a continuously-decreasing zero-dispersion wavelength along their length. These tapered fibers are designed to extend the generation of supercontinuum spectra from the visible into the ultraviolet. We report on their performance when pumped with both nanosecond and picosecond sources at 1.064 microm. The supercontinuum spectra have a spectral width (measured at the 10 dB points) extending from 0.372 microm to beyond 1.75 microm. In an optimal configuration a flat (3 dB) spectrum from 395 to 850 nm, with a minimum spectral power density of 2 mW/nm was achieved, with a total continuum output power of 3.5 W. We believe that the shortest wavelengths were generated by cascaded four-wave mixing: the continuous decrease of the zero dispersion wavelength along the fiber length enables the phase-matching condition to be satisfied for a wide range of wavelengths into the ultraviolet, while simultaneously increasing the nonlinear coefficient of the fiber.

  12. Observation of enhanced visible and infrared emissions in photonic crystal thin-film light-emitting diodes

    SciTech Connect

    Cheung, Y. F.; Li, K. H.; Hui, R. S. Y.; Choi, H. W.

    2014-08-18

    Photonic crystals, in the form of closed-packed nano-pillar arrays patterned by nanosphere lithography, have been formed on the n-faces of InGaN thin-film vertical light-emitting diodes (LEDs). Through laser lift-off of the sapphire substrate, the thin-film LEDs conduct vertically with reduced dynamic resistances, as well as reduced thermal resistances. The photonic crystal plays a role in enhancing light extraction, not only at visible wavelengths but also at infrared wavelengths boosting heat radiation at high currents, so that heat-induced effects on internal quantum efficiencies are minimized. The observations are consistent with predictions from finite-difference time-domain simulations.

  13. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode.

    PubMed

    Yan, Zhizhong; Hamel, Deny R; Heinrichs, Aimee K; Jiang, Xudong; Itzler, Mark A; Jennewein, Thomas

    2012-07-01

    It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009); X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011); M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010)], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (∼100 counts per second (CPS)), good time jitter (∼30 ps), and good DE (∼10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10(-18) W Hz(-1/2), more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free-running operation is required, and some afterpulsing

  14. Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared.

    PubMed

    Troia, Benedetto; Penades, Jordi Soler; Khokhar, Ali Z; Nedeljkovic, Milos; Alonso-Ramos, Carlos; Passaro, Vittorio M N; Mashanovich, Goran Z

    2016-02-01

    We present Vernier-effect photonic microcavities based on a germanium-on-silicon technology platform, operating around the mid-infrared wavelength of 3.8 μm. Cascaded racetrack resonators have been designed to operate in the second regime of the Vernier effect, and typical Vernier comb-like spectra have been successfully demonstrated with insertion losses of ∼5  dB, maximum extinction ratios of ∼23  dB, and loaded quality factors higher than 5000. Furthermore, an add-drop racetrack resonator designed for a Vernier device has been characterized, exhibiting average insertion losses of 1 dB, extinction ratios of up to 18 dB, and a quality factor of ∼1700.

  15. Infrared images of jupiter at 5-micrometer wavelength during the voyager 1 encounter.

    PubMed

    Terrile, R J; Capps, R W; Backman, D E; Becklin, E E; Cruikshank, D P; Beichman, C A; Brown, R H; Westphal, J A

    1979-06-01

    A coordinated program to observe Jupiter at high spatial resolution in the 5-micrometer wavelength region was undertaken to support Voyager 1 imaging and infrared radiation experiment targeting. Jupiter was observed over a 5-month period from Palomar and Mauna Kea observatories. The frequency of observations allowed the selection of interesting areas for closer Voyager examination and also provided good short-term monitoring of variations in cloud morphology. Significant global changes in the 5-micrometer distribution are seen over this time period.

  16. Infrared images of Jupiter at 5-micrometer wavelength during the Voyager 1 encounter

    NASA Technical Reports Server (NTRS)

    Terrile, R. J.; Capps, R. W.; Backman, D. E.; Becklin, E. E.; Cruikshank, D. P.; Beichman, C. A.; Brown, R. H.; Westphal, J. A.

    1979-01-01

    A coordinated program to observe Jupiter at high spatial resolution in the 5-micrometer wavelength region was undertaken to support Voyager 1 imaging and infrared radiation experiment targeting. Jupiter was observed over a 5-month period from Palomar and Mauna Kea observatories. The frequency of observations allowed the selection of interesting areas for closer Voyager examination and also provided good short-term monitoring of variations in cloud morphology. Significant global changes in the 5-micrometer distribution are seen over this time period.

  17. Photonic crystal-enhanced quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    McKerracher, I. R.; Hattori, H. T.; Fu, L.; Tan, H. H.; Jagadish, C.

    2008-08-01

    Quantum dot infrared photodetectors (QDIPs) promise improved performance over existing technologies in the form of higher temperature operation and normal-incidence detection. Variation in the size of self-assembled quantum dots leads to a broadened spectral response, which is undesirable for multi-color detection. Photonic crystal slabs can filter the transmission of normally-incident light using Fano resonances, and thus may be integrated with QDIPs to create a narrowband detector. Finite-difference time-domain simulations were used to optimize such a filter for QDIPs grown by metal-organic chemical vapor deposition. The simulations predict that the integrated detector could show up to 76% decrease in the detector linewidth, with a tunable peak location. These devices were then fabricated by standard optical lithography, however the spectral width of the integrated device was similar to that of the unfiltered QDIP. This is attributed to imperfections in the filter, so alternative fabrication methods are discussed for future processing.

  18. Short-wavelength infrared defect emission as probe for degradation effects in diode lasers

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Yue, Fangyu; Bettiati, Mauro; Elsaesser, Thomas

    2015-03-01

    The infrared emission from 980-nm single-mode high power diode lasers is analyzed in the wavelength range from 0.8 to 7.0 μm. A pronounced short-wavelength infrared (SWIR) emission band with a maximum at 1.3 μm is found to originate from defect states located within the waveguide of the devices. The SWIR intensity is verified to represent a measure of the non-equilibrium carrier concentration in the waveguide, allowing for non-destructive waveguide mapping in spatially resolved detection schemes. The potential of this approach is demonstrated by measuring spatially resolved profiles of SWIR emission and correlating them with mid-wavelength infrared thermal emission along the cavity of devices undergoing repeated catastrophic optical damage. The enhancement of SWIR emission in the damaged parts of the cavity is due to a locally enhanced carrier density in the waveguide and allows for in situ analysis of the damage patterns. Moreover, spatial resolved SWIR measurements are a promising tool for device inspecting even in low-power operation regimes.

  19. Spectroscopic technique with wide range of wavelength information improves near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Eda, Hideo; Aoki, Hiromichi; Eura, Shigeru; Ebe, Kazutoshi

    2009-02-01

    Near-infrared spectroscopy (NIRS) calculates hemoglobin parameters, such as oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) using the near-infrared light around the wavelength of 800nm. This is based on the modified-Lambert-Beer's law that changes in absorbance are proportional to changes in hemoglobin parameters. Many conventional measurement methods uses only a few wavelengths, however, in this research, basic examination of NIRS measurement was approached by acquiring wide range of wavelength information. Venous occlusion test was performed by using the blood pressure cuff around the upper arm. Pressure of 100mmHg was then applied for about 3 minutes. During the venous occlusion, the spectrum of the lower arm muscles was measured every 15 seconds, within the range of 600 to 1100nm. It was found that other wavelength bands hold information correlating to this venous occlusion task. Technique of improving the performance of NIRS measurement using the Spectroscopic Method is very important for Brain science.

  20. On the conversion of infrared radiation from fission reactor-based photon engine into parallel beam

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Levchenko, Vladislav E.; Loginov, Nicolay I.; Kukharchuk, Oleg F.; Evtodiev, Denis A.; Zrodnikov, Anatoly V.

    2002-01-01

    The efficiency of infrared radiation conversion from photon engine based on fission reactor into parallel photon beam is discussed. Two different ways of doing that are considered. One of them is to use the parabolic mirror to convert of infrared radiation into parallel photon beam. The another one is based on the use of special lattice consisting of numerous light conductors. The experimental facility and some results are described. .

  1. Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays

    PubMed Central

    Wook Shin, Hyun; Jun Lee, Sang; Gun Kim, Doo; Bae, Myung-Ho; Heo, Jaeyeong; Jin Choi, Kyoung; Jun Choi, Won; Choe, Jeong-woo; Cheol Shin, Jae

    2015-01-01

    One-dimensional crystal growth enables the epitaxial integration of III-V compound semiconductors onto a silicon (Si) substrate despite significant lattice mismatch. Here, we report a short-wavelength infrared (SWIR, 1.4–3 μm) photodetector that employs InAs nanowires (NWs) grown on Si. The wafer-scale epitaxial InAs NWs form on the Si substrate without a metal catalyst or pattern assistance; thus, the growth is free of metal-atom-induced contaminations, and is also cost-effective. InAs NW arrays with an average height of 50 μm provide excellent anti-reflective and light trapping properties over a wide wavelength range. The photodetector exhibits a peak detectivity of 1.9 × 108  cm·Hz1/2/W for the SWIR band at 77 K and operates at temperatures as high as 220 K. The SWIR photodetector on the Si platform demonstrated in this study is promising for future low-cost optical sensors and Si photonics. PMID:26035286

  2. Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength.

    PubMed

    Shcherbatenko, M; Lobanov, Y; Semenov, A; Kovalyuk, V; Korneev, A; Ozhegov, R; Kazakov, A; Voronov, B M; Goltsman, G N

    2016-12-26

    Here, we report on the successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the local oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth (also referred to as response or conversion bandwidth) was limited by the spectral band of a single-photon response pulse of the detector, which is proportional to the detector size. We observed a gain bandwidth of 65 MHz and 140 MHz for 7 × 7 µm2 and 3 × 3 µm2 devices, respectively. A tiny amount of the required local oscillator power and wide gain and noise bandwidths, along with unnecessary low noise amplification, make this technology prominent for various applications, with the possibility for future development of a photon counting heterodyne-born large-scale array.

  3. Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing.

    PubMed

    Yadav, Anju; Gupta, Asheesh

    2017-01-01

    The innumerable intricacies associated with chronic wounds have made the development of new painless, noninvasive, biophysical therapeutic interventions as the focus of current biomedical research. Red and near-infrared light-induced photobiomodulation therapy appears to emerge as a promising drug-free approach for promoting wound healing, reduction in inflammation, pain and restoration of function owing to penetration power in conjunction with their ability to positively modulate the biochemical and molecular responses. This review will describe the physical properties of red and near-infrared light and their interaction with skin and highlight their efficacy of wound repair and regeneration. Near-infrared (800-830 nm) was found to be the most effective and widely studied wavelength range followed by red (630-680 nm) and 904 nm superpulsed light exhibiting beneficial photobiomodulatory effects on impaired dermal wound healing.

  4. Switchable multi-wavelength fiber ring laser using a side-leakage photonic crystal fiber based filter

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Zou, Hui; Lu, Wenliang; Jian, Shuisheng

    2012-04-01

    A switchable multi-wavelength fiber ring laser is proposed and experimentally demonstrated with a novel side-leakage photonic crystal fiber (SLPCF) based filter incorporated into the ring cavity at room temperature. Stable multi-wavelength laser operations can be achieved due to the spatial mode beating, polarization hole burning and spectral hole burning effects. By adjusting the polarization controller appropriately, the laser can be switched among the single-, dual- and triple-wavelength lasing oscillations whose signal-to-noise ratio is up to 50 dB. In addition, the lasing wavelength can be also tuned and switched by applying the strain to the filter.

  5. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  6. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Hairong; Salo, Daniel; Kim, David M.; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y.

    2016-12-01

    Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte-Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent.

  7. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays

    NASA Astrophysics Data System (ADS)

    Chu, Hong-Son; How Gan, Choon

    2013-06-01

    An active plasmonic switch based on single- and few-layer doped graphene ribbon array operating in the mid-infrared spectrum is investigated with theoretical and numerical calculations. It is shown that significant resonance wavelength shifts and modulation depths can be achieved with a slight variation of the doping concentration of the graphene ribbon. The few-layer graphene ribbon array device outperforms the single-layer one in terms of the achievable modulation depth. Our simulations reveal that, by modulating the Fermi-energy level between 0.2 eV and 0.25 eV, a four-layer graphene ribbon array device can achieve a modulation depth and resonance wavelength shift of ˜13 dB and 0.94 μm, respectively, compared to ˜2.8 dB and 1.85 μm for a single-layer device. Additionally, simple fitting models to predict the modulation depth and the resonance wavelength shift are proposed. These prospects pave the way towards ultrafast active graphene-based plasmonic devices for infrared and THz applications.

  8. Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths.

    PubMed

    Romero-García, Sebastian; Merget, Florian; Zhong, Frank; Finkelstein, Hod; Witzens, Jeremy

    2013-06-17

    Silicon nitride is demonstrated as a high performance and cost-effective solution for dense integrated photonic circuits in the visible spectrum. Experimental results for nanophotonic waveguides fabricated in a standard CMOS pilot line with losses below 0.71dB/cm in an aqueous environment and 0.51dB/cm with silicon dioxide cladding are reported. Design and characterization of waveguide bends, grating couplers and multimode interference couplers (MMI) at a wavelength of 660 nm are presented. The index contrast of this technology enables high integration densities with insertion losses below 0.05 dB per 90° bend for radii as small as 35 µm. By a proper design of the buried oxide layer thickness, grating couplers with efficiencies above 38% for the TE polarization have been obtained.

  9. Method of single expression: an exact solution for wavelength scale 1D photonic structure computer modeling

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Hovik V.; Knyazyan, Tamara M.

    2003-12-01

    The principles of the method of single expression (MSE) for boundary problems solution in classical electrodynamics are presented. In the MSE the solution of the Helmholtz's equation is presented in the special form of a single expression describing resultant amplitude and phase distributions in the medium. This form of solution presenation permits to pass over the restrictions of the superposition principle and to solve both linear and nonlinear problems with ths same ease. In the MSE the Helmholtz's equation is reformulated to the set of first order differential equations and the boundary problem is solved numerically. No approximations are implied either in Helmholtz's equation or in boundary conditions. Using the MSE steady-state boundary problems are modeled for wavelength scale multilayer and modulated 1D photonic structures including amplification and nonuniformity evoked by intense electromagnetic field.

  10. Comptonization of X-rays by low-temperature electrons. [photon wavelength redistribution in cosmic sources

    NASA Technical Reports Server (NTRS)

    Illarionov, A.; Kallman, T.; Mccray, R.; Ross, R.

    1979-01-01

    A method is described for calculating the spectrum that results from the Compton scattering of a monochromatic source of X-rays by low-temperature electrons, both for initial-value relaxation problems and for steady-state spatial diffusion problems. The method gives an exact solution of the inital-value problem for evolution of the spectrum in an infinite homogeneous medium if Klein-Nishina corrections to the Thomson cross section are neglected. This, together with approximate solutions for problems in which Klein-Nishina corrections are significant and/or spatial diffusion occurs, shows spectral structure near the original photon wavelength that may be used to infer physical conditions in cosmic X-ray sources. Explicit results, shown for examples of time relaxation in an infinite medium and spatial diffusion through a uniform sphere, are compared with results obtained by Monte Carlo calculations and by solving the appropriate Fokker-Planck equation.

  11. Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications

    NASA Astrophysics Data System (ADS)

    Qi, Dong; Wang, Xian; Cheng, Yongzhi; Gong, Rongzhou; Li, Bowen

    2016-12-01

    One-dimensional photonic crystals (1DPCs) based on ZnS/Ge for compatible stealth of infrared and visible were firstly proposed theoretically and investigated experimentally. Owing to the equal inclination interference, the designed 1DPCs structure can be fabricated with a certain color corresponding to the different responded wavelength. In addition, the average emissivity of the proposed structure can reach as low as 0.054 at infrared atmosphere window of 3-5 μm. The as-prepared structure indicates that it is feasible for 1DPC to achieve infrared-visible compatible stealth.

  12. THE SPECTRAL ENERGY DISTRIBUTION OF THE CARINA NEBULA FROM FAR-INFRARED TO RADIO WAVELENGTHS

    SciTech Connect

    Salatino, M.; De Bernardis, P.; Masi, S.; Polenta, G.

    2012-03-20

    Multi-wavelength observations are necessary for understanding the physical properties of astrophysical sources. In this paper, we use observations in the far-infrared to radio range to derive the spectral energy distribution (SED) of the Carina nebula. To do this, we carefully subtract the irregularly varying diffuse emission from the Galactic plane, which can be of the order of 10% of the nebula flux at these wavelengths. We find that the far-infrared SED can be modeled as emission from a dust population with a single temperature T{sub d} = (34.5{sup +2.0}{sub -1.8}) K and with a spectral index of emissivity {alpha} = -1.37{sup +0.09}{sub -0.08}. We also find a total infrared luminosity of the nebula of (7.4{sup +2.5}{sub -1.4}) Multiplication-Sign 10{sup 6} L{sub Sun} and, assuming a single temperature of the dust, a mass of the dust of (9500{sup +4600}{sub -3500}) M{sub Sun }.

  13. Analysis of the resolution-bandwidth-noise trade-off in wavelength-based photonic analog-to-digital converters.

    PubMed

    Stigwall, Johan; Galt, Sheila

    2006-06-20

    The performance of wavelength-based photonic analog-to-digital converters (ADCs) is theoretically analyzed in terms of resolution and bandwidth as well as of noise tolerance. The analysis applies to any photonic ADC in which the analog input signal is converted into the wavelength of an optical carrier, but special emphasis is put on the spectrometerlike setup in which the wavelength is mapped to a spatial spot position. The binary output signals are then retrieved by an array of fan-out diffractive optical elements that redirect the beam onto the correct detectors. In particular, the case when the input signal controls the wavelength directly such that it will chirp in frequency during each sampling pulse or interval is studied. This chirping obviously broadens the spot on the diffractive optical element array; the effect of this broadening on noise tolerance and comparator accuracy is analytically analyzed, and accurate numerical calculations of the probability of error are presented.

  14. Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging

    PubMed Central

    Bianchini, Paolo; Harke, Benjamin; Galiani, Silvia; Vicidomini, Giuseppe; Diaspro, Alberto

    2012-01-01

    We developed a new class of two-photon excitation–stimulated emission depletion (2PE-STED) optical microscope. In this work, we show the opportunity to perform superresolved fluorescence imaging, exciting and stimulating the emission of a fluorophore by means of a single wavelength. We show that a widely used red-emitting fluorophore, ATTO647N, can be two-photon excited at a wavelength allowing both 2PE and STED using the very same laser source. This fact opens the possibility to perform 2PE microscopy at four to five times STED-improved resolution, while exploiting the intrinsic advantages of nonlinear excitation. PMID:22493221

  15. Two-color two-photon excited fluorescence of indole: determination of wavelength-dependent molecular parameters.

    PubMed

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz; Shternin, Peter S; Smolin, Andrey G; Vasyutinskii, Oleg S

    2015-01-14

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states (1)La and (1)Lb and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τf, and rotation correlation time τrot have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that (1)Lb-(1)La inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the (1)La state at all excitation wavelengths but in the 287-289 nm area which contained an absorption hump of the (1)Lb state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τf and the rotation correlation time τrot showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τf = 3.83 ± 0.14 ns and τrot = 0.74 ± 0.06 ns.

  16. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    NASA Astrophysics Data System (ADS)

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz; Shternin, Peter S.; Smolin, Andrey G.; Vasyutinskii, Oleg S.

    2015-01-01

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states 1La and 1Lb and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τf, and rotation correlation time τrot have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that 1Lb-1La inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the 1La state at all excitation wavelengths but in the 287-289 nm area which contained an absorption hump of the 1Lb state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τf and the rotation correlation time τrot showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τf = 3.83 ± 0.14 ns and τrot = 0.74 ± 0.06 ns.

  17. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    SciTech Connect

    Barabanenkov, M. Yu. Vyatkin, A. F.; Volkov, V. T.; Gruzintsev, A. N.; Il’in, A. I.; Trofimov, O. V.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  18. GeSn/SiGeSn photonic devices for mid-infrared applications: experiments and calculations

    NASA Astrophysics Data System (ADS)

    Han, Genquan; Zhang, Qingfang; Liu, Yan; Zhang, Chunfu; Hao, Yue

    2016-11-01

    In this work, a fully strained GeSn photodetector with Sn atom percent of 8% is fabricated on Ge buffer on Si(001) substrate. The wavelength λ of light signals with obvious optical response for Ge0.92Sn0.08 photodetector is extended to 2 μm. The impacts of compressive strain introduced during the epitaxial growth of GeSn on Ge/Si are studied by simulation. Besides, the tensile strain engineering of GeSn photonic devices is also investigated. Lattice-matched GeSn/SiGeSn double heterostructure light emitting diodes (LEDs) with Si3N4 tensile liner stressor are designed to promote the further mid-infrared applications of GeSn photonic devices. With the releasing of the residual stress in Si3N4 liner, a large biaxial tensile strain is induced in GeSn active layer. Under biaxial tensile strain, the spontaneous emission rate rsp and internal quantum efficiency ηIQE for GeSn/SiGeSn LED are significantly improved.

  19. Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet

    PubMed Central

    Yang, Seungmoo; Taflove, Allen; Backman, Vadim

    2011-01-01

    We report what we believe is the first experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet. A specially designed sample stage consisting of a multilayered sandwich of glass, solid polydimethylsiloxane (PDMS), and liquid PDMS, permitted the precise positioning of a gold nanoparticle of diameter between 50 and 100 nm within the nanojet emitted by a 4.4 μm diameter BaTiO3 microsphere embedded within the PDMS. We determined that, when the gold nanoparticle is optimally positioned within the nanojet, the backscattering of the microsphere can greatly increase: for example, by 3:1 (200%) for the 50 nm gold nanoparticle. The increased backscattering is strongly dependent upon the illumination wavelength and the numerical aperture of the imaging system, and occurs for nonresonant illuminations of the isolated microsphere. Low objective numerical apertures of approximately 0.075 yield the maximum observed increases in backscattering. The measured data agree well with numerical calculations incorporating Mie-based theory and Fourier optics. PMID:21503021

  20. Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet.

    PubMed

    Yang, Seungmoo; Taflove, Allen; Backman, Vadim

    2011-04-11

    We report what we believe is the first experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet. A specially designed sample stage consisting of a multilayered sandwich of glass, solid polydimethylsiloxane (PDMS), and liquid PDMS, permitted the precise positioning of a gold nanoparticle of diameter between 50 and 100 nm within the nanojet emitted by a 4.4 μm diameter BaTiO(3) microsphere embedded within the PDMS. We determined that, when the gold nanoparticle is optimally positioned within the nanojet, the backscattering of the microsphere can greatly increase: for example, by 3:1 (200%) for the 50 nm gold nanoparticle. The increased backscattering is strongly dependent upon the illumination wavelength and the numerical aperture of the imaging system, and occurs for nonresonant illuminations of the isolated microsphere. Low objective numerical apertures of approximately 0.075 yield the maximum observed increases in backscattering. The measured data agree well with numerical calculations incorporating Mie-based theory and Fourier optics.

  1. These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnostic of physical phenomena The 7.85-micron image in the upper left shows stratospheric temperatures which are elevated in the region of the A fragment impact (to the left of bottom). Temperatures deeper in the atmosphere near 150-mbar are shown by the 17.2-micron image in the upper right. There is a small elevation of temperatures at this depth, indicated by the arrow, and confirmed by other measurements near this wavelength. This indicates that the influence of the impact of fragment A on the troposphere has been minimal. The two images in the bottom row show no readily apparent perturbation of the ammmonia condensate cloud field near 600 mbar, as diagnosed by 8.57-micron radiation, and deeper cloud layers which are diagnosed by 5-micron radiation.

  2. Laser Welding of Copper Using Multi Mode Fiber Lasers at Near Infrared Wavelength

    NASA Astrophysics Data System (ADS)

    Liebl, S.; Wiedenmann, R.; Ganser, A.; Schmitz, P.; Zaeh, M. F.

    Due to the increasing electrification of automotive drives and the expansion of decentralized renewable energygeneration, the consumption of copper for the fabrication of electrical components such as electric motors or conducting paths increases. To jointhese components, laser welding is more frequently used since it represents a flexible and fully automatable joining process. Because of the high thermal conductivity, the low absorption coefficient forinfrared wavelength of common laser beam sources and the resulting limited process efficiency, welding of copper alloys represents a major challenge for laser assisted processes. In this paper, experimental investigationsare presented to identify arising process limits during laser welding of pure copper materials with multi-mode fiber lasers at near infrared wavelength depending on the applied laser power and welding velocity. In addition, a potential stabilization of the welding process by shielding gas support was examined. Further investigations were focused on the influence of shielding gas on the molten pool geometry.

  3. Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolu; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2014-01-01

    Raman amplification based on stimulated Stokes Raman scattering (SSRS) and wavelength conversion based on coherent anti-Stokes Raman scattering (CARS) are theoretically investigated in silicon-on-sapphire (SOS) waveguides in the mid-infrared (IR) region. When the linear phase mismatch Δk is close to zero, the Stokes gain and conversion efficiency drop down quickly due to the effect of parametric gain suppression when the Stokes-pump input ratio is sufficiently large. The Stokes gain increases with the increase of Δk, whereas efficient wavelength conversion needs appropriate Δk under different pump intensities. The conversion efficiency at exact linear phase matching (Δk = 0) is smaller than that at optimal linear phase mismatch by a factor of about 28 dB when the pump intensity is 2 GW cm-2.

  4. Extended short wavelength infrared HgCdTe detectors on silicon substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.

  5. Infrared transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hinkley, E. D.; Menzies, R. T.

    1979-01-01

    Infrared transmission at the 3.39 micron helium-neon laser wavelength has been measured in a tetrachloroethylene-filled fused-quartz fiber. The loss measurements were taken for three different settings of laser light intensity using a series of neutral density filters. The average value of transmission loss at this wavelength was found to be 56 dB/km.

  6. Announcement - Scientific Importance of High Angular Resolution at Infrared and Optical Wavelengths - ESO Conference

    NASA Astrophysics Data System (ADS)

    1981-03-01

    The European Southern Observatory is organizing an international conference on the subject "SCIENTIFIC IMPORTANCE OF HIGH ANGULAR RESOLUTION AT INFRARED AND OPTICAL WAVELENGTHS", to be held in the ESO building at Garching bei München during the period of 24-27 March 1981. The purpose of this conference is to discuss, on the one hand, the systems in use or under construction and possible future developments to achieve high angular resolution and, on the other hand, to discuss the areas of astrophysics which, in the next decades, will most benefit from observations at high angular resolution.

  7. Solar limb theoretical tomography at millimeter, sub-millimeter, and infrared wavelengths

    NASA Astrophysics Data System (ADS)

    De la Luz, Victor; Gonzalez-Esparza, J. A.; Corona-Romero, P.; Mejia-Ambriz, J.

    2016-11-01

    Semi-empirical models of the solar Chromosphere show, in their emission spectrum, tomography property at millimeter, sub-millimeter, and infrared wavelengths for the center of the solar disk. In this work, we studied this property in the solar limb using our numerical code PakalMPI, focusing in the region where the solar atmosphere becomes optically thick. Individual contribution of Bremsstrahlung and H- opacities was take into account in the radiative transfer process. We found that the tomography property remains in all the spectrum region under study at limb altitudes. For frequencies between 2 GHz and 5 THz the contribution of Bremsstrahlung is the dominant process above the solar limb.

  8. Optical nanoantennas as on-chip spectrometer: Discriminating the wavelength of infrared light

    NASA Astrophysics Data System (ADS)

    Lin, Zhongjin; Lin, Jie

    2015-08-01

    Based on the size-dependent resonant property of optical nanoantennas, we propose and theoretically verify that the optical detector element, which is composed of three different-size dipole nanoantennas (these antennas arrayed in the same plane look like a Yagi-Uda antenna), can discriminate the wavelength of the detected infrared light. As it behaves like a spectrometer that just needs to be laid on a micro-chip, we can refer to it as on-chip spectrometer. Such optical detector element also can be well extended to the visible-light region, and especially it can capture colour information by itself without Bayer filter.

  9. Novel Infrared Phototransistors for Atmospheric CO2 Profiling at 2 Micron Wavelength

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Singh, Upendra N.; Ismail, Syed

    2004-01-01

    Two-micron detectors are critical for atmospheric carbon dioxide profiling using the lidar technique. The characterization results of a novel infrared AlGaAsSb/ InGaAsSb phototransistor are reported. Emitter dark current variation with the collector-emitter voltage at different temperatures is acquired to examine the gain mechanism. Spectral response measurements resulted in responsivity as high as 2650 A/W at 2.05 m wavelength. Bias voltage and temperature effects on the device responsivity are presented. The detectivity of this device is compared to InGaAs and HgCdTe devices.

  10. Novel Infrared Phototransistors for Atmospheric CO2 Profiling at 2 microns Wavelength

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Singh, Upendra N.; Ismail, Syed

    2004-01-01

    Two-micron detectors are critical for atmospheric carbon dioxide profiling using the lidar technique. The characterization results of a novel infrared AlGaAsSb/ InGaAsSb phototransistor are reported. Emitter dark current variation with the collector-emitter voltage at different temperatures is acquired to examine the gain mechanism. Spectral response measurements resulted in responsivity as high as 2650 A/W at 2.05 microns wavelength. Bias voltage and temperature effects on the device responsivity are presented. The detectivity of this device is compared to InGaAs and HgCdTe devices.

  11. Space-exposure effects on optical-baffle coatings at far-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Blue, M. D.; Perkowitz, S.

    1992-01-01

    Reflectance of six optical-black coatings was remeasured over the near-infrared to the far-infrared region after nearly six years in space aboard the Long Duration Exposure Facility satellite. Measurements were made at room temperature and at cryogenic temperatures. The most notable effect was a general decrease in reflectance for typical samples at all wavelengths. Analysis indicates that this decrease is caused by an increase in absorption resulting from an increase in the imaginary part of the index of refraction, and not by a change in thickness, or increased surface roughness giving rise to increased scattering. These results suggest that such optical-baffle materials will provide enhanced performance as a result of aging in the space environment.

  12. Emissivity measurements on historic building materials using dual-wavelength infrared thermography

    NASA Astrophysics Data System (ADS)

    Moropoulou, Antonia; Avdelidis, Nicolas P.

    2001-03-01

    The most reliable method to obtain correct emissivity values for the infrared thermographic systems and applications is to determine the emissivity of the targets to be tested. Although this approach is not possible during in situ applications, samples of the targets can be collected and measured, as in this work, in the laboratory. In the present work, the emissivity values of selected historic building materials were measured at a variety of temperatures, in the 3-5.4 micrometers and 8-12 micrometers regions of the infrared spectrum. Porous stones from the Mediterranean area and marbles, used as historic building materials, were investigated. The examined materials presented different emissivity values, caused by their surface state and microstructure. In addition, the effect of temperature and wavelength on the emissivity values of such historic building materials was also considered.

  13. [Study of near infrared spectral preprocessing and wavelength selection methods for endometrial cancer tissue].

    PubMed

    Zhao, Li-Ting; Xiang, Yu-Hong; Dai, Yin-Mei; Zhang, Zhuo-Yong

    2010-04-01

    Near infrared spectroscopy was applied to measure the tissue slice of endometrial tissues for collecting the spectra. A total of 154 spectra were obtained from 154 samples. The number of normal, hyperplasia, and malignant samples was 36, 60, and 58, respectively. Original near infrared spectra are composed of many variables, for example, interference information including instrument errors and physical effects such as particle size and light scatter. In order to reduce these influences, original spectra data should be performed with different spectral preprocessing methods to compress variables and extract useful information. So the methods of spectral preprocessing and wavelength selection have played an important role in near infrared spectroscopy technique. In the present paper the raw spectra were processed using various preprocessing methods including first derivative, multiplication scatter correction, Savitzky-Golay first derivative algorithm, standard normal variate, smoothing, and moving-window median. Standard deviation was used to select the optimal spectral region of 4 000-6 000 cm(-1). Then principal component analysis was used for classification. Principal component analysis results showed that three types of samples could be discriminated completely and the accuracy almost achieved 100%. This study demonstrated that near infrared spectroscopy technology and chemometrics method could be a fast, efficient, and novel means to diagnose cancer. The proposed methods would be a promising and significant diagnosis technique of early stage cancer.

  14. Bandwidth control of wavelength-selective uncooled infrared sensors using two-dimensional plasmonic absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Kimata, Masafumi

    2016-05-01

    Although standard uncooled infrared (IR) sensors can be used to record information such as the shape, position, and average radiant intensity of objects, these devices cannot capture color (that is, wavelength) data. Achieving wavelength selectivity would pave the way for the development of advanced uncooled IR sensors capable of providing color information as well as multi-color image sensors that would have significant advantages in applications such as fire detection, gas analysis, hazardous material recognition, and biological analysis. We have previously demonstrated an uncooled IR sensor incorporating a two-dimensional plasmonic absorber (2D PLA) that exhibits wavelength selectivity over a wide range in the mid- and long-IR regions. This PLA has a 2D Au-based periodic array of dimples, in which surface plasmon modes are induced and wavelength-selective absorption occurs. However, the dependence of the absorption bandwidth on certain structural parameters has yet to be clarified. The bandwidth of such devices is a vital factor when considering the practical application of these sensors to tasks such as gas detection. In the present study, control of the bandwidth was theoretically investigated using a rigorous coupled wave analysis approach. It is demonstrated that the dimple sidewall structure has a significant impact on the bandwidth and can be used to control both narrow- and broadband absorption. Increasing the sidewall slope was found to decrease the bandwidth due to suppression of cavity-mode resonance in the depth direction of the dimples. These results will contribute to the development of high-resolution, wavelength-selective uncooled IR sensors.

  15. Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Snure, Michael; Leedy, Kevin D.; Look, David C.; Eyink, Kurt; Tiwari, Ashutosh

    2012-09-01

    This work investigates properties of surface plasmons on doped metal oxides in the 2-20 μm wavelength regime. By varying the stoichiometry in pulse laser deposited Ga and Al doped ZnO, the plasmonic properties can be controlled via a fluctuating free carrier concentration. This deterministic approach may enable one to develop the most appropriate stoichometry of ZnAlO and ZnGaO in regards to specific plasmonic applications for particular IR wavelengths. Presented are theoretical and experimental investigations pertaining to ZnAlO and ZnGaO as surface plasmon host materials. Samples are fabricated via pulsed laser deposition and characterized by infrared ellipsometry and Hall-effect measurements. Complex permittivity spectra are presented, as well as plasmon properties such as the field propagation lengths and penetration depths, in the infrared range of interest. Drude considerations are utilized to determine how the optical properties may change with doping. Finite element simulations verify these plasmonic properties. These materials not only offer potential use as IR plasmon hosts for sensor applications, but also offer new integrated device possibilities due to stoichiometric control of electrical and optical properties.

  16. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics.

    PubMed

    Zhuang, Q D; Alradhi, H; Jin, Z M; Chen, X R; Shao, J; Chen, X; Sanchez, Ana M; Cao, Y C; Liu, J Y; Yates, P; Durose, K; Jin, C J

    2017-03-10

    InAsSb nanowires (NWs) with a high Sb content have potential in the fabrication of advanced silicon-based optoelectronics such as infrared photondetectors/emitters and highly sensitive phototransistors, as well as in the generation of renewable electricity. However, producing optically efficient InAsSb NWs with a high Sb content remains a challenge, and optical emission is limited to 4.0 μm due to the quality of the nanowires. Here, we report, for the first time, the success of high-quality and optically efficient InAsSb NWs enabling silicon-based optoelectronics operating in entirely mid-wavelength infrared. Pure zinc-blende InAsSb NWs were realized with efficient photoluminescence emission. We obtained room-temperature photoluminescence emission in InAs NWs and successfully extended the emission wavelength in InAsSb NWs to 5.1 μm. The realization of this optically efficient InAsSb NW material paves the way to realizing next-generation devices, combining advances in III-V semiconductors and silicon.

  17. Photoelectronic studies of an asymmetric step quantum-well middle wavelength infrared detector

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Gang; Chen, Zhibin

    2001-10-01

    Photoelectronic characteristics of the fabricated InxGa1-xAs/AlyGa1- yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength (3 to approximately 5 micrometers ) infrared detectors are studied. The components display photovoltaic-type photocurrent response as well as the bias- controlled modulation of the peak wavelength of the main response, which is ascribed to the Stark shifts of the intersubband transitions from the local ground states to the extended first excited states in the quantum wells, at the 3 to approximately 5.3 micrometers infrared atmospheric transmission window. The blackbody detectivity (Dbb*) of the detectors reaches to about 1.0 X 1010 cm(DOT)Hz1/2/W at 77 K under bias of +/- 7 V. By expanding the electron wave function in terms of normalized plane wave basis withn the framwork of the effective-mass envelope-function theory, the linear Stark effects of the intersubband tansitions between the ground and first excited states in the asymmetric step well are calculated. The obtained results agree well with the corresponding experimental measurements.

  18. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhuang, Q. D.; Alradhi, H.; Jin, Z. M.; Chen, X. R.; Shao, J.; Chen, X.; Sanchez, Ana M.; Cao, Y. C.; Liu, J. Y.; Yates, P.; Durose, K.; Jin, C. J.

    2017-03-01

    InAsSb nanowires (NWs) with a high Sb content have potential in the fabrication of advanced silicon-based optoelectronics such as infrared photondetectors/emitters and highly sensitive phototransistors, as well as in the generation of renewable electricity. However, producing optically efficient InAsSb NWs with a high Sb content remains a challenge, and optical emission is limited to 4.0 μm due to the quality of the nanowires. Here, we report, for the first time, the success of high-quality and optically efficient InAsSb NWs enabling silicon-based optoelectronics operating in entirely mid-wavelength infrared. Pure zinc-blende InAsSb NWs were realized with efficient photoluminescence emission. We obtained room-temperature photoluminescence emission in InAs NWs and successfully extended the emission wavelength in InAsSb NWs to 5.1 μm. The realization of this optically efficient InAsSb NW material paves the way to realizing next-generation devices, combining advances in III-V semiconductors and silicon.

  19. The development of InGaAs short wavelength infrared focal plane arrays with high performance

    NASA Astrophysics Data System (ADS)

    Li, Xue; Gong, Haimei; Fang, Jiaxiong; shao, Xiumei; Tang, Hengjing; Huang, Songlei; Li, Tao; Huang, Zhangcheng

    2017-01-01

    High performance, various specifications InGaAs focal plane arrays(FPAs) were studied in Shanghai Institute of Technical Physics (SITP). On the one hand, the typical linear 256 × 1, 512 × 1 and 1024 × 1 FPAs were obtained for response wavelengths from 0.9 μm to 1.7 μm. The typical 320 × 256 FPAs and special sizes 512 × 128, 512 × 256 FPAs for the near infrared multi-spectral imaging were studied. The performance of InGaAs FPAs from 0.9 μm to 1.7 μm has improved enormously. The average peak detectivity, the response non-uniformity and non-operable pixel of the FPAs are superior to 3 × 1012 cm Hz1/2/W, 5% and 1% at the room temperature. On the other hand, the development of the extended InGaAs FPAs was also focused in SITP. The dark current of InGaAs detectors with the response wavelength from 1.0 μm to 2.5 μm decreases to about 10 nA/cm2 at 200 K. The dark current mechanisms for extended InGaAs detectors were studied by P/A photodiodes. The special sizes 512 × 256 FPAs has been fabricated since 2011. The average peak detectivity, the response non-uniformity and non-operable pixel of the FPAs are superior to 5 × 1011 cm Hz1/2/W, 8% and 2% at 200 K. In order to verify the performance of FPAs, the short wavelength infrared lens was used to form optical imaging system. The buildings, water, trees are sharply imaged by 320 × 256 FPAs with 0.9-1.7 μm wavelength and 512 × 1 FPAs with 0.9-2.5 μm wavelength at about hundreds of meters distance as target at daylight.

  20. Hot spot generation in energetic materials created by long-wavelength infrared radiation

    SciTech Connect

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.; Dlott, Dana D.

    2014-02-10

    Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub 2} laser operating in the 28-30 THz range. Hot spot generation was studied using relatively low intensity (∼100 W cm{sup −2}), long-duration (450 ms) LWIR pulses. The hot spots could be produced repeatedly in individual RDX crystals, to investigate the fundamental mechanisms of hot spot generation by LWIR, since the peak hot-spot temperatures were kept to ∼30 K above ambient. Hot spots were generated preferentially beneath RDX crystal planes making oblique angles with the LWIR beam. Surprisingly, hot spots were more prominent when the LWIR wavelength was tuned to be weakly absorbed (absorption depth ∼30 μm) than when the LWIR wavelength was strongly absorbed (absorption depth ∼5 μm). This unexpected effect was explained using a model that accounts for LWIR refraction and RDX thermal conduction. The weakly absorbed LWIR is slightly focused underneath the oblique crystal planes, and it penetrates the RDX crystals more deeply, increasing the likelihood of irradiating RDX defect inclusions that are able to strongly absorb or internally focus the LWIR beam.

  1. Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism.

    PubMed

    Sun, Xiwen

    2007-09-01

    A novel class of wavelength-selective coupling photonic crystal fiber (PCF) that operates by a hybrid light-guiding mechanism has been proposed. Different from the traditional PCF coupler operating principle, this fiber coupler shares properties of both the total internal reflection index-guided and the photonic bandgap mechanism. This coupler allows highly accurate control of the filtering wavelength; both bandstop and bandpass filters can be easily implemented. The spectral transmission results demonstrate that the bandpass characteristic of the coupler is very narrow and free of sidelobes. Moreover, the operating wavelength and the coupling length can be continuously tuned by changing the refractive index of the filling material. This research gives a physical insight into the propagation mechanism in the PCF coupler and is crucial for future applications of the proposed device.

  2. Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application

    NASA Astrophysics Data System (ADS)

    Chhipa, Mayur Kumar; Radhouene, Massoudi; Robinson, Savarimuthu; Suthar, Bhuvneshwer

    2017-01-01

    We study the two-dimensional photonic crystal (PC) square lattice structure to design a channel drop filter. The channel drop filter (CDF) is designed using a PC ring resonator structure because of its better response. The variation in the shape of scatterer rods causes the shift in resonant wavelength and also shows an improvement in quality factor as well as dropping efficiency. The dropping efficiency is improved from 92.7% to 99.5% for a particular wavelength at 1531 nm, which is especially used in telecommunication. The designed CDF structure is useful for coarse wavelength division multiplexer. The size of the device is very small, so these devices can play an important role in optical communication networks and photonic integrated circuits.

  3. Limiting dark current mechanisms in antimony-based superlattice infrared detectors for the long-wavelength infrared regime

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Lemke, Florian; Schmitz, Johannes; Wauro, Matthias; Walther, Martin

    2015-06-01

    A detailed understanding of limiting dark current mechanisms in InAs/GaSb type-II superlattice (T2SL) infrared detectors is key to improve the electrooptical performance of these devices. We present a six-component dark current analysis which, for the first time, takes account of sidewall-related dark current contributions in mesa-etched T2SL photodiodes. In a wide temperature range from 30K to 130K, the paper compares limiting mechanisms in two homojunction T2SL photodiode wafers for the long-wavelength infrared regime. While the two epi wafers were fabricated with nominally the same frontside process they were grown on different molecular beam epitaxy systems. In the available literature a limitation by Shockley-Read-Hall processes in the space charge region giving rise to generation-recombination (GR) dark current is the prevailing verdict on the bulk dark current mechanism in T2SL homojunction photodiodes around 77K. In contrast, we find that investigated photodiode wafers are instead limited by the diffusion mechanism and the ohmic shunt component, respectively. Furthermore, our in-depth analysis of the various dark current components has led to an interesting observation on the temperature dependence of the shunt resistance in T2SL homojunction photodiodes. Our results indicate that the GR and the shunt mechanism share the same dependence on bandgap and temperature, i.e., a proportionality to exp(-Eg/2kT).

  4. Digital lock-in detection system based on single photon counting for near-infrared functional brain imaging

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Guo, Hui; Liu, Ming; Yi, Xi; Wu, Linhui; Zhao, Huijuan; Gao, Feng

    2013-03-01

    Near infrared (NIR) diffuse optical imaging (DOI) are increasingly used to detect hemodynamic changes in the cerebral cortex induced by brain activity. For the sake of capturing the dynamic changes in real-time imaging applications, such as brain imaging, digital lock-in detection technique could be applied. Using particular modulation and sampling constraints and averaging filters, one can achieve optimal noise reduction and discrimination between sources in different modulation frequencies. In this paper, we designed and developed a compact dual-wavelength continuous wave DOI system based on the single photon counting digital lock-in detection technique. According to the frequency division multiplexing light source coding technique, sine waves with different frequencies are generated so as to amplitude-modulate two laser sources with different wavelengths. The diffuse light is detected by photomultiplier tubes (PMTs) and the data is collected by the detection channels simultaneously. A digital lock-in detection circuit for photon counting measurement module and a DDS (Direct Digital Synthesizer) signal generation module were separately implemented in two FPGA development platforms. To validate the feasibility and functionality of the developed system, a series of experimental tests were performed. Preliminary results show that the system could be used to reconstruct the absorption coefficient and could separate the response of the dual wavelength sources which were modulated by sine signals of different frequencies effectively. In addition, several imaging experiments were performed on the semi-infinite solid phantom to find the "best imaging position" for a given source-detector placement.

  5. Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results

    NASA Technical Reports Server (NTRS)

    Clark, Beth Ellen; Shepard, M.; Bus, S. J.; Vilas, F.; Rivkin, A. S.; Lim, L.; Lederer, S.; Jarvis, K.; Shah, S.; McConnochie, T.

    2004-01-01

    The August 2003 apparition of asteroid 2100 Ra-Shalom brought together a collaboration of observers with the goal of obtaining rotationally resolved multiwavelength spectra at each of 5 facilities: infrared spectra at the NASA Infrared Telescope Facility (Clark and Shepard), radar images at Arecibo (Shepard and Clark), thermal infrared spectra at Palomar (Lim, McConnochie and Bell), visible spectra at McDonald Observatory (Vilas, Lederer and Jarvis), and visible lightcurves at Ondrojev Observatory (Pravec). The radar data was to be used to develop a high spatial resolution physical model to be used in conjunction with spectral data to investigate compositional and textural properties on the near surface of Ra Shalom as a function of rotation phase. This was the first coordinated multi-wavelength investigation of any Aten asteroid. There are many reasons to study near-Earth asteroid (NEA) 2100 Ra-Shalom: 1) It has a controversial classification (is it a C- or K-type object)? 2) There would be interesting dynamical ramifications if Ra-Shalom is a K-type because most K-types come from the Eos family and there are no known dynamical pathways from Eos to the Aten population. 3) The best available spectra obtained previously may indicate a heterogeneous surface (most asteroids appear to be fairly homogeneous). 4) Ra-Shalom thermal observations obtained previously indicated a lack of regolith, minimizing the worry of space weathering effects in the spectra. 5) Radar observations obtained previously hinted at interesting surface structures. 6) Ra-Shalom is one of the largest Aten objects. And 7) Ra-Shalom is on a short list of proposed NEAs for spacecraft encounters and possible sample returns. Preliminary results from the visible, infrared, and thermal spectroscopy measurements will be presented here.

  6. Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator.

    PubMed

    Fujiwara, Mikio; Wakabayashi, Ryota; Sasaki, Masahide; Takeoka, Masahiro

    2017-02-20

    We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 μm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.

  7. Simple approach to three-color two-photon microscopy by a fiber-optic wavelength convertor

    PubMed Central

    Li, Kuen-Che; Huang, Lynn L. H.; Liang, Jhih-Hao; Chan, Ming-Che

    2016-01-01

    A simple approach to multi-color two-photon microscopy of the red, green, and blue fluorescent indicators was reported based on an ultra-compact 1.03-μm femtosecond laser and a nonlinear fiber. Inside the nonlinear fiber, the 1.03-μm laser pulses were simultaneously blue-shifted to 0.6~0.8 μm and red-shifted to 1.2~1.4 μm region by the Cherenkov radiation and fiber Raman gain effects. The wavelength-shifted 0.6~0.8 μm and 1.2~1.4 μm radiations were co-propagated with the residual non-converted 1.03-μm pulses inside the same nonlinear fiber to form a fiber-output three-color femtosecond source. The application of the multi-wavelength sources on multi-color two-photon fluorescence microscopy were also demonstrated. Overall, due to simple system configuration, convenient wavelength conversion, easy wavelength tunability within the entire 0.7~1.35 μm bio-penetration window and less requirement for high power and bulky light sources, the simple approach to multi-color two-photon microscopy could be widely applicable as an easily implemented and excellent research tool for future biomedical and possibly even clinical applications. PMID:27896017

  8. Simple approach to three-color two-photon microscopy by a fiber-optic wavelength convertor.

    PubMed

    Li, Kuen-Che; Huang, Lynn L H; Liang, Jhih-Hao; Chan, Ming-Che

    2016-11-01

    A simple approach to multi-color two-photon microscopy of the red, green, and blue fluorescent indicators was reported based on an ultra-compact 1.03-μm femtosecond laser and a nonlinear fiber. Inside the nonlinear fiber, the 1.03-μm laser pulses were simultaneously blue-shifted to 0.6~0.8 μm and red-shifted to 1.2~1.4 μm region by the Cherenkov radiation and fiber Raman gain effects. The wavelength-shifted 0.6~0.8 μm and 1.2~1.4 μm radiations were co-propagated with the residual non-converted 1.03-μm pulses inside the same nonlinear fiber to form a fiber-output three-color femtosecond source. The application of the multi-wavelength sources on multi-color two-photon fluorescence microscopy were also demonstrated. Overall, due to simple system configuration, convenient wavelength conversion, easy wavelength tunability within the entire 0.7~1.35 μm bio-penetration window and less requirement for high power and bulky light sources, the simple approach to multi-color two-photon microscopy could be widely applicable as an easily implemented and excellent research tool for future biomedical and possibly even clinical applications.

  9. High-gain and low-excess noise near-infrared single-photon avalanche detector arrays

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2010-04-01

    We have designed and developed a new family of photodetectors and arrays with Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions. These devices surpass many limitations of the Single Photon Avalanche Photodetectors such as ultra low excess noise factor, very high gain, lower reset time (< 200 ns). These devices are very simple to operate in the non-gated mode under a constant dc bias voltage. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. This unique feature of self quenching and self-recovery makes it simple to less complex readout integrated circuit to realize large format detector arrays. In this paper, we present the discrete amplification design approach used for the development of self reset, high gain photodetector arrays in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. These devices are ideal for researchers in the field of spectroscopy, industrial and scientific instrumentation, Ladar, quantum cryptography, night vision and other military, defense and aerospace applications.

  10. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    SciTech Connect

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz; Shternin, Peter S. Vasyutinskii, Oleg S.; Smolin, Andrey G.

    2015-01-14

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states {sup 1}L{sub a} and {sup 1}L{sub b} and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τ{sub f}, and rotation correlation time τ{sub rot} have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that {sup 1}L{sub b}–{sup 1}L{sub a} inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the {sup 1}L{sub a} state at all excitation wavelengths but in the 287–289 nm area which contained an absorption hump of the {sup 1}L{sub b} state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τ{sub f} and the rotation correlation time τ{sub rot} showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τ{sub f} = 3.83 ± 0.14 ns and τ{sub rot} = 0.74 ± 0.06 ns.

  11. Note: Three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water

    NASA Astrophysics Data System (ADS)

    Bhutta, M. Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  12. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Casella, Piergiorgio; Marsh, Tom; Gandhi, Poshak; Fender, Rob; Littlefair, Stuart; Eikenberry, Steve; Garner, Alan; Stelter, Deno; Dhillon, Vik; Mooley, Kunal

    2016-07-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  13. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Dallilar, Yigit; Garner, Alan; Deno Stelter, R.; Gandhi, Poshak; Dhillon, Vik; Littlefair, Stuart; Marsh, Thomas; Fender, Rob P.; Mooley, Kunal

    2016-04-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  14. Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.

  15. InTlSb for long-wavelength infrared photodetectors and arrays

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    The heteorepitaxial narrow-gap semiconductors on Si or GaAs substrates offer the possibility of monolithic integration of detectors and readout circuits in the infrared focal plane arrays (IRFPA's). This structure can avoid the problems of a complicated etch-thinning process and indium bump displace in the hybrid case. This structure permits the production of a large-area FPA's with high reliability and low cost. The purpose of this project is to develop III-V IRFPA on InSb, GaAs, Si substrates, special detectors made from In(1-x)Tl(x)Sb material system. The devices are of potential in the long wavelength (8-14 micrometers), particularly in the application of thermal imaging, as MCT materials suffer from poor composition uniform over large areas and thermal stability. As a preliminary step towards InTlSb photovoltaic detectors, it is necessary to establish a reliable procedure to fabricate InSb photovoltaic detectors.

  16. Wavelength-independent anti-interference coating for the far-infrared

    NASA Technical Reports Server (NTRS)

    Mcknight, S. W.; Stewart, K. P.; Drew, H. D.; Moorjani, K.

    1987-01-01

    The transmission and reflection of radiation at an interface between two dielectrics with a thin conducting film is analyzed under conditions appropriate to the far-infrared. When the transmission is from a more dense to a less dense optical medium it is demonstrated that the reflectivity can be made arbitrarily small for a wide range of wavelengths by selecting the appropriate sheet resistance for the conducting film. This property can be exploited to produce a coating that drastically reduces the interference fringes in a flat plane-parallel dielectric substrate or window. The condition depends only on the film resistance which can be monitored precisely during deposition. This effect is demonstrated by evaporating films of nichrome on silicon substrates, which reduce the interference fringe contrast to less than 1 percent transmittance from 10-100/cm. Near the antiinterference condition the fringe contrast is shown to be a sensitive probe of the film conductivity.

  17. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    NASA Astrophysics Data System (ADS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Kinge, Sachin; Sargent, Edward H.

    2015-10-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10-2 A W-1 and a shot-derived specific detectivity of 3 × 109 Jones at 1530 nm wavelength.

  18. Note: three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water.

    PubMed

    Bhutta, M Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  19. Cooling of isolated anthracene cations probed with photons of different wavelengths in the Mini-Ring

    NASA Astrophysics Data System (ADS)

    Ji, M.; Bernard, J.; Chen, L.; Brédy, R.; Ortéga, C.; Joblin, C.; Cassimi, A.; Martin, S.

    2017-01-01

    We report on a direct measurement of the Internal Energy Distribution (IED) shift rate of an initially hot polycyclic aromatic hydrocarbon (PAH) molecular ensemble, anthracene cations (C14H10 +) . The ions were produced in an electron cyclotron resonance (ECR) ion source and stored in an electrostatic ion storage ring, the Mini-Ring. Laser pulses of two wavelengths were sent successively to merge the stored ion bunch at different storage times to enhance the neutral fragment yield due to fast laser induced dissociation. Using this technique, we have been able to determine directly the energy shift rate of the IED, without involving any theoretical simulation or any assumption on dissociation rates, cooling rates, or the initial IED. Theoretical energy shift rates have been estimated from the evolution of simulated IEDs by taking into account the effects of the unimolecular dissociation and two radiative decay mechanisms: the Poincaré fluorescence and the infrared vibrational emission. The comparison between the experimental results and the model provides new evidence of the important role of the Poincaré fluorescence in the overall cooling process of anthracene cations. Although in the short time range the commonly accepted intuition says that the cooling would result mostly from the dissociation of the hottest ions (depletion cooling), we demonstrate that the Poincaré fluorescence is the dominant contribution (about 85%) to the net cooling effect.

  20. Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional Nanoantenna-Coupled Tunnel Diode

    NASA Astrophysics Data System (ADS)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.

    2016-12-01

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

  1. The Chromospheric Solar Limb Brightening at Radio, Millimeter, Sub-millimeter, and Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    De la Luz, V.

    2016-07-01

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H-. In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H-, and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from Hα observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  2. Multi-Wavelength Near Infrared Observations of Marum and Yasur Volcanoes, Vanuatu

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Radebaugh, Jani; Lopes, Rosaly M.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2014-11-01

    To help understand and test models of thermal emission from planetary volcanoes, we obtained in May 2014 a variety of near-infrared observations of the very active Marum lava lake on Ambrym, Vanuatu, as well as the Strombolian activity at Yasur on Tanna. Our observations include high resolution images and movies made with standard and modified cameras and camcorders. In addition, to test the planetary emission models, which typically rely on multi-wavelength observations, we developed a small inexpensive prototype imager named "Kerby", which consists of three simultaneously active near-infrared cameras operating at 0.860, 0.775, and 0.675 microns, as well as a fourth visible wavelength RGB camera. This prototype is based on the Raspberry Pi and Pi-NoIR cameras. It can record full high definition video, and is light enough to be carried by backpack and run from batteries. To date we have concentrated on the analysis of the Marum data. During our observations of the 40 m diameter lava lake, convection was so vigorous that areas of thin crust formed only intermittently and persisted for tens of seconds to a few minutes at most. The convection pattern primarily consisted of two upwelling centers located about 8 m in from the margins on opposite sides of the lake. Horizontal velocities away from the upwelling centers were approximately 4 m/s. A hot bright margin roughly 0.4 m wide frequently formed around parts of the lake perimeter. We are in the process of establishing the absolute photometry calibration to obtain temperatures, temperature distributions, and magma cooling rates.

  3. Broadband three-photon near-infrared quantum cutting in Tm{sup 3+} singly doped YVO{sub 4}

    SciTech Connect

    Wang, Y. Z.; Yu, D. C.; Lin, H. H.; Ye, S.; Peng, M. Y.; Zhang, Q. Y.

    2013-11-28

    An efficient three-photon near-infrared (NIR) quantum cutting (QC) is reported in Tm{sup 3+} singly doped YVO{sub 4} polycrystalline phosphors, where an optimized content of Tm{sup 3+} is determined to be 1.0 mol. %. Upon the absorption of a visible photon around 473 nm, three NIR photons emitting at 1180, 1479, and 1800 nm can be obtained efficiently by the sequential three-step radiative transitions of Tm{sup 3+}. The underlying mechanisms are analyzed in terms of the steady and dynamic fluorescence spectra measurements. Internal quantum yield is calculated to be 161.8% as a theoretical value when luminescence quenching due to defect species can be overcome. In addition, the broadband ultraviolet (UV)-excited [VO{sub 4}]{sup 3−} can strongly sensitize the {sup 1}G{sub 4} level of Tm{sup 3+} in the wavelength range likely from 250 to 360 nm, greatly increasing the UV photo-response and NIR fluorescent intensity of Tm{sup 3+}. The further development of this broadband three-photon NIR QC material would explore the new route to improve the photo-response of novel photoelectronic devices, particularly in 250–360 nm.

  4. Long-wavelength PtSi infrared detectors fabricated by incorporating a p(+) doping spike grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; George, T.; Jones, E. W.; Fathauer, R. W.; Maserjian, J.

    1993-01-01

    By incorporating a 1-nm-thick p(+) doping spike at the PtSi/Si interface, we have successfully demonstrated extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime for the first time. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p(+) doping spike and the Schottky image force. The p(+) doping spikes were grown by molecular beam epitaxy at 450 C, using elemental boron as the dopant source, with doping concentrations ranging from 5 x 10 exp 19 to 2 x 10 exp 20/cu cm. Transmission electron microscopy indicated good crystalline quality of the doping spikes. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p(+) spikes. Thermionic emission dark current characteristics were observed and photoresponses in the LWIR regime were demonstrated.

  5. Short-wavelength interband cascade infrared photodetectors operating above room temperature

    DOE PAGES

    Lotfi, Hossein; Li, Lu; Lei, Lin; ...

    2016-01-13

    High temperature operation (250–340 K) of short-wavelength interband cascade infrared photodetectors (ICIPs) with InAs/GaSb/Al0.2In0.8Sb/GaSb superlattice absorbers has been demonstrated with a 50% cutoff wavelength of 2.9 μm at 300 K. Two ICIP structures, one with two and the other with three stages, were designed and grown to explore this multiple-stage architecture. At λ = 2.1 μm, the two- and three-stage ICIPs had Johnson-noise-limited detectivities of 5.1 × 109 and 5.8 ×109 cm Hz1/2/W, respectively, at 300 K. The better device performance of the three-stage ICIP over the two-stage ICIP confirmed the advantage of more stages for this cascade architecture. Furthermore,more » an Arrhenius activation energy of 450 meV is extracted for the bulk resistance-area product, which indicates the dominance of the diffusion current at these high temperatures.« less

  6. Short-wavelength interband cascade infrared photodetectors operating above room temperature

    SciTech Connect

    Lotfi, Hossein; Li, Lu; Lei, Lin; Jiang, Yuchao; Yang, Rui Q.; Klem, John F.; Johnson, Matthew B.

    2016-01-13

    High temperature operation (250–340 K) of short-wavelength interband cascade infrared photodetectors (ICIPs) with InAs/GaSb/Al0.2In0.8Sb/GaSb superlattice absorbers has been demonstrated with a 50% cutoff wavelength of 2.9 μm at 300 K. Two ICIP structures, one with two and the other with three stages, were designed and grown to explore this multiple-stage architecture. At λ = 2.1 μm, the two- and three-stage ICIPs had Johnson-noise-limited detectivities of 5.1 × 109 and 5.8 ×109 cm Hz1/2/W, respectively, at 300 K. The better device performance of the three-stage ICIP over the two-stage ICIP confirmed the advantage of more stages for this cascade architecture. Furthermore, an Arrhenius activation energy of 450 meV is extracted for the bulk resistance-area product, which indicates the dominance of the diffusion current at these high temperatures.

  7. Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Rajakarunanayake, Yasantha; Mcgill, Tom C.

    1990-01-01

    Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength infrared radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice detectors is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice detectors, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.

  8. Multi-wavelength mid-infrared micro-spectral imaging using semiconductor lasers.

    PubMed

    Guo, B; Wang, Y; Peng, C; Luo, G P; Le, H Q

    2003-07-01

    Infrared (IR, 3-12-microm) microscopic spectral imaging is an important analytical technique. Many current instruments employ thermal IR light sources, which suffer the problem of low brightness and high noise. This paper evaluates the system engineering merit in using semiconductor lasers, which offer orders-of-magnitude-higher power, brightness, and lower noise. A microscopic spectral imaging system using semiconductor lasers (quantum cascade) as illuminators, and focal plane array detectors demonstrated a high signal-to-noise ratio (> 20 dB) at video frame rate for a large illuminated area. The comparative advantages of laser vs. thermal light source are analyzed and demonstrated. Microscopic spectral imaging with fixed-wavelength and tunable lasers of 4.6-, 5.1-, 6-, and 9.3-microm wavelength was applied to a number of representative samples that consist of biological tissues (plant and animal), solid material (a stack of laminated polymers), and liquid chemical (benzene). Transmission spectral images with approximately 30-dB dynamic range were obtained with clear evidence of spectral features for different samples. The potential of more advanced systems with a wide coverage of spectral bands is discussed.

  9. A reference-wavelength-based method for improved analysis of near-infrared spectroscopy.

    PubMed

    Chen, Yun; Chen, Wenliang; Shi, Zhenzhi; Yang, Yue; Xu, Kexin

    2009-05-01

    Near-infrared (NIR) spectroscopy has been widely used in many industrial applications. It also has tremendous potential for trace element detection and noninvasive human physiological measurements. In NIR spectroscopy, however, the measurement precision is often dependent on temperature, measurement position, and sample status. In order to improve measurement precision, a method using spectral information at a reference wavelength is developed in this paper. Based on the displacement effect between solvent and solute molecules in a solution, the signal at the reference wavelength is used as an internal reference to correct the spectrum of the sample under test. As an example, the spectra of glucose aqueous solutions under different temperatures are measured, and our method for eliminating the temperature disturbance is evaluated. The experimental results obtained show that the relative error of glucose concentration prediction is 330% per degree before the spectrum correction. After the correction, the relative error is reduced to 5.12%, and the error is no longer dependent on temperature. As the displacement effect can be found commonly in various solutions, the method described in this work may be used to improve the accuracy of spectral analysis of many other solutions.

  10. SOA-based fiber ring laser with seed of DFB wavelength scanning for relative humidity measurement using an air-guided photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Mohd Noor, M. Y.; Khalili, N.; Peng, G. D.

    2013-08-01

    We propose a novel ring laser for non-hygroscopic coating relative humidity (RH) fiber sensor by means of infrared absorption spectroscopy. A semiconductor optical amplifier (SOA)-based fiber ring laser is used in this scheme. No tunable optical filter is required for the ring laser scheme as wavelength scanning is introduced in the ring using a distributed feedback (DFB) laser. An air-guided photonic crystal fiber (AGPCF) is included in the ring cavity that acts as a sensing head. The detection of gas humidity inside the air holes of AGPCF is determined by DFB wavelength scanning around 1368.59 nm water vapor absorption peak with SOA as a gain medium in the ring. We have experimentally implemented the wavelength scanning of SOA-based fiber ring laser scheme with an AGPCF sensing head of 5 cm and a small gap between single mode fiber and AGPCF to allow air diffusion in and out of the air holes inside the AGPCF. The sensitivity of the sensor is increased from 2.47 to 10.93 mV/1% RH over the range from 0 to 90% RH when the non-lasing mode (single-pass absorption spectroscopy) of the sensor is changed into the lasing mode (multi-pass absorption spectroscopy).

  11. Experimental investigation on supercontinuum generation by single, dual, and triple wavelength pumping in a silica photonic crystal fiber.

    PubMed

    Gao, Weiqing; Xu, Qiang; Li, Xue; Zhang, Wei; Hu, Jigang; Li, Yuan; Chen, Xiangdong; Yuan, Zijun; Liao, Meisong; Cheng, Tonglei; Xue, Xiaojie; Suzuki, Takenobu; Ohishi, Yasutake

    2016-11-20

    We investigate the supercontinuum (SC) generation in an 1 cm long silica photonic crystal fiber (PCF) pumped by the pulse sources with single, dual, and triple wavelengths, respectively. The silica PCF has two zero-dispersion wavelengths at 900 and 2620 nm, respectively. When pumped by a single wavelength, the SC spectral range covers about 1000 nm. When pumped by dual and triple wavelengths, the SC spectral range covers wider than 2000 nm. Both the SC spectral range and the flatness are improved obviously when pumped by triple wavelengths. The maximum SC spectral range is obtained when the silica PCF is pumped by the triple wavelengths at 800, 1450, and 1785 nm. The SC spectral range covers 2810 nm from 350 to 3160 nm wider than three octaves. The 10 dB bandwidth covers 2280 nm from 450 to 2730 nm wider than two octaves. This is the first investigation on comparison of the SCs generated by different pump wavelengths up to three experimentally. The generated SC spectra have covered the full transmission window of silica fiber.

  12. DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD.

    PubMed

    Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V

    2007-08-06

    We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.

  13. Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength.

    PubMed

    Tsujimoto, Yoshiaki; Sugiura, Yukihiro; Ando, Makoto; Katsuse, Daisuke; Ikuta, Rikizo; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2015-05-18

    We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780 nm and 1551 nm by spontaneous parametric down-conversion and distributed the two photons at 1551 nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 ± 0.07 which clearly shows the recovery of entanglement.

  14. Parameterization of Photon Tunneling with Application to Ice Cloud Optical Properties at Terrestrial Wavelengths

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2006-12-01

    Sometimes deep physical insights can be gained through the comparison of two theories of light scattering. Comparing van de Hulst's anomalous diffraction approximation (ADA) with Mie theory yielded insights on the behavior of the photon tunneling process that resulted in the modified anomalous diffraction approximation (MADA). (Tunneling is the process by which radiation just beyond a particle's physical cross-section may undergo large angle diffraction or absorption, contributing up to 40% of the absorption when wavelength and particle size are comparable.) Although this provided a means of parameterizing the tunneling process in terms of the real index of refraction and size parameter, it did not predict the efficiency of the tunneling process, where an efficiency of 100% is predicted for spheres by Mie theory. This tunneling efficiency, Tf, depends on particle shape and ranges from 0 to 1.0, with 1.0 corresponding to spheres. Similarly, by comparing absorption efficiencies predicted by the Finite Difference Time Domain Method (FDTD) with efficiencies predicted by MADA, Tf was determined for nine different ice particle shapes, including aggregates. This comparison confirmed that Tf is a strong function of ice crystal shape, including the aspect ratio when applicable. Tf was lowest (< 0.36) for aggregates and plates, and largest (> 0.9) for quasi- spherical shapes. A parameterization of Tf was developed in terms of (1) ice particle shape and (2) mean particle size regarding the large mode (D > 70 mm) of the ice particle size distribution. For the small mode, Tf is only a function of ice particle shape. When this Tf parameterization is used in MADA, absorption and extinction efficiency differences between MADA and FDTD are within 14% over the terrestrial wavelength range 3-100 mm for all size distributions and most crystal shapes likely to be found in cirrus clouds. Using hyperspectral radiances, it is demonstrated that Tf can be retrieved from ice clouds. Since Tf

  15. Mid-infrared quantum dot emitters utilizing planar photonic crystal technology.

    SciTech Connect

    Subramania,Ganapathi Subramanian; Lyo, Sungkwun Kenneth; Cederberg, Jeffrey George; Passmore, Brandon Scott; El-Kady, Ihab Fathy; Shaner, Eric Arthur

    2008-09-01

    The three-dimensional confinement inherent in InAs self-assembled quantum dots (SAQDs) yields vastly different optical properties compared to one-dimensionally confined quantum well systems. Intersubband transitions in quantum dots can emit light normal to the growth surface, whereas transitions in quantum wells emit only parallel to the surface. This is a key difference that can be exploited to create a variety of quantum dot devices that have no quantum well analog. Two significant problems limit the utilization of the beneficial features of SAQDs as mid-infrared emitters. One is the lack of understanding concerning how to electrically inject carriers into electronic states that allow optical transitions to occur efficiently. Engineering of an injector stage leading into the dot can provide current injection into an upper dot state; however, to increase the likelihood of an optical transition, the lower dot states must be emptied faster than upper states are occupied. The second issue is that SAQDs have significant inhomogeneous broadening due to the random size distribution. While this may not be a problem in the long term, this issue can be circumvented by using planar photonic crystal or plasmonic approaches to provide wavelength selectivity or other useful functionality.

  16. Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator.

    PubMed

    Herz, Josephine; Siffrin, Volker; Hauser, Anja E; Brandt, Alexander U; Leuenberger, Tina; Radbruch, Helena; Zipp, Frauke; Niesner, Raluca A

    2010-02-17

    Chronic inflammation in various organs, such as the brain, implies that different subpopulations of immune cells interact with the cells of the target organ. To monitor this cellular communication both morphologically and functionally, the ability to visualize more than two colors in deep tissue is indispensable. Here, we demonstrate the pronounced power of optical parametric oscillator (OPO)-based two-photon laser scanning microscopy for dynamic intravital imaging in hardly accessible organs of the central nervous and of the immune system, with particular relevance for long-term investigations of pathological mechanisms (e.g., chronic neuroinflammation) necessitating the use of fluorescent proteins. Expanding the wavelength excitation farther to the infrared overcomes the current limitations of standard Titanium:Sapphire laser excitation, leading to 1), simultaneous imaging of fluorophores with largely different excitation and emission spectra (e.g., GFP-derivatives and RFP-derivatives); and 2), higher penetration depths in tissue (up to 80%) at higher resolution and with reduced photobleaching and phototoxicity. This tool opens up new opportunities for deep-tissue imaging and will have a tremendous impact on the choice of protein fluorophores for intravital applications in bioscience and biomedicine, as we demonstrate in this work.

  17. High operation temperature mid-wavelength interband cascade infrared photodetectors grown on InAs substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Chen, Jianxin; Xu, Zhicheng; He, Li

    2016-05-01

    In recent years, interband cascade detectors (ICIP) based on typer-II superlattice have shown great performance potential at high operation temperature. In this paper, we report our studies on mid-infrared interband cascade photodetectors first grown on InAs substrate. We examined the photo-generated carriers' transport in ICIP structures by comparing three detectors grown on InAs substrate. The 2-stages ICIP device has demonstrated a high quantum efficiency around 20% at room temperature. The dark current density of the 2-stages ICIP device at -0.05V is as low as 1 nA at 80K, 1 mA at 150K, which is comparable to the state of art PIN superlattice photodetectors with similar cutoff wavelength. The Johnson-noise limited D* reaches 1.64×1014cm.Hz1/2/W at 3.65 μm and 80K, and 4.1×1010cm.Hz1/2/W at 3.8 μm and 200K. The 300 K background limited infrared performance (BLIP) operation temperature is estimated to be over 140 K.

  18. This image combines data from the DIRBE obtained at infrared wavelengths of 100, 140 and 240 Aum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image combines data from the DIRBE obtained at infrared wavelengths of 100, 140 and 240 Aum - the longest wavelengths measured by this instrument. The sky brightness at these wavelengths is represented respectively by blue, green, and red colors in the image. This image shows where there is more material (appears brighter) and where this material is coldest (appears redder). The plane of the Milky Way Galaxy lies horizontally across the middle of the image with the Galactic center at the center. Most of the infrared radiation seen in this image originates from cold dust (approximately 20 K, or 20 degrees Centigrade above absolute zero) located in clouds of gas and dust between the stars in the Milky Way Galaxy. The wispy-looking dust features are called 'infrared cirrus.' The region of the Orion Nebula with active star formation - approximately 1,500 light years distance from the Sun - appears on the right of the image below the plane of the Milky Way. Neighboring galaxies, the Large and Small Magellanic Clouds, appear as faint 'blobs' below and slightly to the right of the Galactic center. Much of the picture appears to be the same color, indicating that there is not a large variation in the dust temperature. Because the brightness of the Solar System and Galaxy tends to decrease with increasing wavelength, these long wavelength DIRBE measurements are particularly valuable for searching for the cosmic infrared background.

  19. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators.

    PubMed

    Chu, Tao; Fujioka, Nobuhide; Ishizaka, Masashige

    2009-08-03

    A wavelength tunable laser with an SOA and external double micro-ring resonator, which is fabricated with silicon photonic-wire waveguides, is demonstrated. To date, it is the first wavelength tunable laser fabricated with silicon photonic technology. The device is ultra compact, and its external resonator footprint is 700 x 450 microm, which is about 1/25 that of conventional tunable lasers fabricated with SiON waveguides. The silicon resonator shows a wide tuning range covering the C or L bands for DWDM optical communication. We obtained a maximum tuning span of 38 nm at a tuning power consumption of 26 mW, which is about 1/8 that of SiON-type resonators.

  20. Single photon transport by a moving atom through sub-wavelength hole

    NASA Astrophysics Data System (ADS)

    Afanasiev, A. E.; Melentiev, P. N.; Kuzin, A. A.; Kalatskiy, A. Yu.; Balykin, V. I.

    2016-12-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe's model; 2) extra ordinary transmission because of surface-plasmon excitation.

  1. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    PubMed Central

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E

    2017-01-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes. PMID:28294155

  2. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E.

    2017-03-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes.

  3. Software-defined control-plane for wavelength selective unicast and multicast of optical data in a silicon photonic platform.

    PubMed

    Gazman, Alexander; Browning, Colm; Bahadori, Meisam; Zhu, Ziyi; Samadi, Payman; Rumley, Sébastien; Vujicic, Vidak; Barry, Liam P; Bergman, Keren

    2017-01-09

    We demonstrate a programmable control-plane based on field programmable gate array (FPGA) with a power-efficient algorithm for optical unicast, multicast, and broadcast functionalities in a silicon photonic platform. The platform includes a silicon photonic 1×8 microring array chip which in conjunction with a fast tunable laser over the C-band is capable of delivering software controlled wavelength selective functionality on top of spatial switching. We characterize the thermo-optic response of microring resonators and extract key parameters necessary for the development of the control-plane. The performance of the proposed architecture is tested with 10 Gb/s on-off keying (OOK) optical data and error-free operation is verified for various wavelength and spatial switching scenarios. Lastly, we evaluate electrical power and energy consumption required to reconfigure the silicon photonic device for all possible wavelength operations and output ports combinations and show that unicast, multicast of two, three, four, five, six, seven, and broadcast functions are achieved with energy overheads of 0.02, 0.07, 0.18, 0.49, 0.76, 1.01, 1.3, and 1.55 pJ/bit, respectively.

  4. Photonic crystal wave guide for non-cryogenic cooled carbon nanotube based middle wave infrared sensors

    NASA Astrophysics Data System (ADS)

    Fung, Carmen Kar Man; Xi, Ning; Lou, Jianyong; Lai, King Wai Chiu; Chen, Hongzhi

    2010-10-01

    We report high sensitivity carbon nanotube (CNT) based middle wave infrared (MWIR) sensors with a two-dimensional photonic crystal waveguide. MWIR sensors are of great importance in a variety of current military applications including ballistic missile defense, surveillance and target detection. Unlike other existing MWIR sensing materials, CNTs exhibit low noise level and can be used as new nano sensing materials for MWIR detection where cryogenic cooling is not required. However, the quantum efficiency of the CNT based infrared sensor is still limited by the small sensing area and low incoming electric field. Here, a photonic nanostructure is used as a resonant cavity for boosting the electric field intensity at the position of the CNT sensing element. A two-dimensional photonic crystal with periodic holes in a polymer thin film is fabricated and a resonant cavity is formed by removing holes from the array of the photonic crystal. Based on the design of the photonic crystal topologies, we theoretically study the electric field distribution to predict the resonant behavior of the structure. Numerical simulations reveal the field is enhanced and almost fully confined to the defect region of the photonic crystal. To verify the electric field enhancement effect, experiments are also performed to measure the photocurrent response of the sensor with and without the photonic crystal resonant cavity. Experimental results show that the photocurrent increases ~3 times after adding the photonic crystal resonant cavity.

  5. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit.

  6. Compact Mach-Zehnder interferometer based on photonic crystal fiber and its application in switchable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-08-01

    The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  7. Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths.

    PubMed

    Zhang, Hua; Yu, Song; Zhang, Jie; Gu, Wanyi

    2007-02-05

    The effect of initial frequency chirp is investigated numerically to obtain efficient supercontinuum radiation in photonic crystal fibers (PCFs) with two closely spaced zero-dispersion wavelengths. The positive chirps, instead of zero or negative chirps, are recommended because self phase modulation and four-wave mixing can be facilitated by employing positive chirps. In contrast with the complicated and irregular spectrum generated by negative-chirped pulse, the spectrums generated by positive-chirped pulses are wider and much more regular. Moreover, the saturated length of the PCF, corresponding to the maximal spectrum width, can be shortened greatly and the efficiency of frequency conversion is also improved because of initial positive chirps. Nearly all the energy between the zero-dispersion wavelengths can be transferred to the normal dispersion region from the region within the two zero-dispersion wavelengths provided that the initial positive chirp is large enough.

  8. Long-Wavelength 256X256 GaAs/AIGaAs Quantum Well Infrared Photodetector (QWIP) Palm-Size Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Liu, J.; Luong, E.; McKelvey, M.; Mumolo, J.; Rafol, S.; Shott, C.; Stetson, N.

    1999-01-01

    In this paper, we discuss the development of this very sensitive long-wavelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array (FPA) and its performance in terms of quantum efficiency, NET, MRDT, uniformity, and operability.

  9. Photon sorting in the near field using subwavelength cavity arrays in the near-infrared

    SciTech Connect

    Mandel, Isroel M. Lansey, Eli; Gollub, Jonah N.; Sarantos, Chris H.; Akhmechet, Roman; Golovin, Andrii B.; Crouse, David T.

    2013-12-16

    A frequency selective metasurface capable of sorting photons in the near-infrared spectral range is designed, fabricated, and characterized. The metasurface, a periodic array of dielectric cylindrical cavities in a gold film, localizes and transmits light of two spectral frequency bands into spatially separated cavities, resulting in near-field light splitting. The design and fabrication methodologies of the metasurface are discussed. The transmittance and photon sorting properties of the designed structure is simulated numerically and the measured transmission is presented.

  10. Measurement of the spectral signature of small carbon clusters at near and far infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Tarter, J.; Saykally, R.

    1991-01-01

    A significant percentage of the carbon inventory of the circumstellar and interstellar media may be in the form of large refractory molecules (or small grains) referred to as carbon clusters. At the small end, uneven numbers of carbon atoms seem to be preferred, whereas above 12 atoms, clusters containing an even number of carbon atoms appear to be preferred in laboratory chemistry. In the lab, the cluster C-60 appears to be a particularly stable form and has been nicknamed Bucky Balls because of its resemblance to a soccer ball and to geodesic domes designed by Buckminster Fuller. In order to investigate the prevalence of these clusters, and their relationship to the polycyclic aromatic hydrocarbons (PAHs) that have become the newest focus of IR astronomy, it is necessary to determine the spectroscopic characteristics of these clusters at near and far infrared wavelengths. Described here is the construction of a near to far IR laser magnetic resonance spectrometer that has been built at the University of California Berkeley in order to detect and characterize these spectra. The equipment produces carbon clusters by laser evaporation of a graphitic target. The clusters are then cooled in a supersonic expansion beam in order to simulate conditions in the interstellar medium (ISM). The expansion beam feeds into the spectrometer chamber and permits concentrations of clusters sufficiently high as to permit ultra-high resolution spectroscopy at near and far IR wavelengths. The first successful demonstration of this apparatus occurred last year when the laboratory studies permitted the observational detection of C-5 in the stellar outflow surrounding IRC+10216 in the near-IR. Current efforts focus on reducing the temperature of the supersonic expansion beam that transport the C clusters evaporated from a graphite target into the spectrometer down to temperatures as low as 1 K.

  11. Design of a mid-wavelength infrared dual field of view zoom system

    NASA Astrophysics Data System (ADS)

    Duan, Jing; Li, Gang; Jiang, Kai; Liu, Kai; Yan, Peipei; Shan, Qiusha

    2016-10-01

    In order to effectively improve the target detection and recognition ability of IR imagers, based on a 320×256 cooled staring focal plane array(FPA) detector, pixel size 30μm×30μm, a mid-wavelength infrared dual field of view zoom system was designed. In this paper, the working wavelength is 3μm~5μm, the temperature range is -40°C +50°C, this system can realize 200mm and 400mm dual focal length, the F-number is 2, the full field of view of short focal length is 3.44° and long focal length is 1.72° respectively, satisfy 100% cold shield efficiency. A re-imaging refractive system was adopted in this designed optical system consists of main optics and projection components. First of all, the structural selection and the initial parameter calculation were introduced in detail. Secondly, on the basis of variety of the distance and temperature, a focusing lens was presented in this system to adjust to produce a clear image. Last but not the least, to improve image quality and environment adaptability, the analysis of temperature change and narcissus effect were described particularly. The design results prove that at the spatial frequency of 17 lp/mm, the MTF of the optical system is greater than 0.5(the axis MTF of the optical is greater than 0.6), the system can offer a high resolution and excellent images in whole range of the focal length, and it has the advantages of good adaptability, compact structure, high optical transmission and small size.

  12. Electro- and thermo-optic effects on multi-wavelength Solc filters based on chi(2) nonlinear quasi-periodic photonic crystals.

    PubMed

    Kee, Chul-Sik; Lee, Yeong Lak; Lee, Jongmin

    2008-04-28

    We investigate electro- and thermo-optic effects on multi-wavelength Solc filters based on chi(2) nonlinear quasi-periodic photonic crystals. The multi-wavelength Solc filters are composed of two building blocks A and B, in which each containing a pair of antiparallel poled domains, arranged as a Fibonacci sequence. The transmittances at filtering wavelengths can be modulated from 0 to 100% by applying an external voltage but the filtering wave-lengths are unchanged. The filtering wavelengths can be tuned by varying temperature. As temperature decreases, the filtering wavelengths increase (approximately -0.45 nm/degrees C).

  13. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  14. Design of the First Infrared Beamline at the Siam Photon Laboratory

    SciTech Connect

    Pattanasiriwisawa, W.; Songsiriritthigul, P.; Dumas, P.

    2010-06-23

    This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

  15. Tunable and switchable multi-wavelength fiber laser based on semiconductor optical amplifier and twin-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Han, Jihee; Chung, Youngjoo

    2012-02-01

    Multi-wavelength fiber lasers have attracted a lot of interest, recently, because of their potential applications in wavelength-division-multiplexing (WDM) systems, optical fiber sensing, and fiber-optics instruments, due to their numerous advantages such as multiple wavelength operation, low cost, and compatibility with the fiber optic systems. Semiconductor optical amplifier (SOA)-based multi-wavelength fiber lasers exhibit stable operation because of the SOA has the property of primarily inhomogeneous broadening and thus can support simultaneous oscillation of multiple lasing wavelengths. In this letter, we propose and experimentally demonstrate a switchable multi-wavelength fiber laser employing a semiconductor optical amplifier and twin-core photonic crystal fiber (TC-PCF) based in-line interferometer comb filter. The fabricated two cores are not symmetric due to the associated fiber fabrication process such as nonuniform heat gradient in furnace and asymmetric microstructure expansion during the gas pressurization which results in different silica strut thickness and core size. The induced asymmetry between two cores considerably alters the linear power transfer, by seriously reducing it. These nominal twin cores form effective two optical paths and associated effective refractive index difference. The in-fiber comb filter is effectively constructed by splicing a section of TC-PCF between two single mode fibers (SMFs). The proposed laser can be designed to operate in stable multi-wavelength lasing states by adjusting the states of the polarization controller (PC). The lasing modes are switched by varying the state of PC and the change is reversible. In addition, we demonstrate a tunable multi-wavelength fiber laser operation by applying temperature changes to TC-PCF in the multi-channel filter.

  16. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?

    PubMed Central

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern effecting civilians and military personnel. Research has yielded a better understanding of the pathophysiology of TBI, but effective treatments have not been forthcoming. Near-infrared light (NIR) has shown promise in animal models of both TBI and stroke. Yet, it remains unclear if sufficient photonic energy can be delivered to the human brain to yield a beneficial effect. This paper reviews the pathophysiology of TBI and elaborates the physiological effects of NIR in the context of this pathophysiology. Pertinent aspects of the physical properties of NIR, particularly in regards to its interactions with tissue, provide the background for understanding this critical issue of light penetration through tissue. Our recent tissue studies demonstrate no penetration of low level NIR energy through 2 mm of skin or 3 cm of skull and brain. However, at 10–15 W, 0.45%–2.90% of 810 nm light penetrated 3 cm of tissue. A 15 W 810 nm device (continuous or non-pulsed) NIR delivered 2.9% of the surface power density. Pulsing at 10 Hz reduced the dose of light delivered to the surface by 50%, but 2.4% of the surface energy reached the depth of 3 cm. Approximately 1.22% of the energy of 980 nm light at 10–15 W penetrated to 3 cm. These data are reviewed in the context of the literature on low-power NIR penetration, wherein less than half of 1% of the surface energy could reach a depth of 1 cm. NIR in the power range of 10–15 W at 810 and 980 nm can provide fluence within the range shown to be biologically beneficial at 3 cm depth. A companion paper reviews the clinical data on the treatment of patients with chronic TBI in the context of the current literature. PMID:26346298

  17. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  18. Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging

    PubMed Central

    Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.

    2014-01-01

    Fourier transform infrared (FT-IR) imaging spectrometers are almost universally used to record microspectroscopic imaging data in the mid-infrared (mid-IR) spectral region. While the commercial standard, interferometry necessitates collection of large spectral regions, requires a large data handling overhead for microscopic imaging and is slow. Here we demonstrate an approach for mid-IR spectroscopic imaging at selected discrete wavelengths using narrowband resonant filtering of a broadband thermal source, enabled by high-performance guided-mode Fano resonances in one-layer, large-area mid-IR photonic crystals on a glass substrate. The microresonant devices enable discrete frequency IR (DF-IR), in which a limited number of wavelengths that are of interest are recorded using a mechanically robust instrument. This considerably simplifies instrumentation as well as overhead of data acquisition, storage and analysis for large format imaging with array detectors. To demonstrate the approach, we perform DF-IR spectral imaging of a polymer USAF resolution target and human tissue in the C−H stretching region (2600−3300 cm−1). DF-IR spectroscopy and imaging can be generalized to other IR spectral regions and can serve as an analytical tool for environmental and biomedical applications. PMID:25089433

  19. All-optical modulation in Mid-Wavelength Infrared using porous Si membranes

    PubMed Central

    Park, Sung Jin; Zakar, Ammar; Zerova, Vera L.; Chekulaev, Dimitri; Canham, Leigh T.; Kaplan, Andre

    2016-01-01

    We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications. PMID:27440224

  20. Recent progress in MOCVD growth for thermoelectrically cooled HgCdTe medium wavelength infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Gawron, W.; Martyniuk, P.; Kębłowski, A.; Kolwas, K.; Stępień, D.; Piotrowski, J.; Madejczyk, P.; Pędzińska, M.; Rogalski, A.

    2016-04-01

    The authors report on advanced metalorganic chemical vapour deposition (MOCVD) of Hg1-xCdxTe (HgCdTe) structures for high operating temperature, medium wavelength infrared (MWIR) detector application. MOCVD technology with wide range of composition and donor/acceptor doping and without post grown annealing was proved to be an excellent tool for HgCdTe heterostructure epitaxial growth used for uncooled photodetector design. The interdiffused multilayer process (IMP) technique was applied for the HgCdTe deposition. HgCdTe epilayers were grown at 350 °C with Hg source kept at 210 °C. The II/VI mole ratio was assumed in the range from 1.5 to 3 during CdTe/HgTe cycles of the IMP process. The MWIR detectors grown by MOCVD exhibit detectivity ∼7.3 × 1011 Jones at λPEAK = 3.5 μm and T = 230 K being determined by background limited photodetector (BLIP) condition.

  1. Infrared-induced conformer interconversion processes for allylamine in argon matrices: Wavelength dependence on the kinetics

    NASA Astrophysics Data System (ADS)

    Schriver, A.; Racine, S.; Schriver, L.

    1985-12-01

    Infrared photoisomerization of allylamine trapped in solid argon is studied by irradiation either at specific wavelengths emitted by a CO 2 laser in coincidence with bands of the three conformers (S + G +, ST and CT) or in several mid- or near-IR domains using broad band filters. Upon irradiation with broad band filters the CT → ST process is mainly observed whatever the frequency domain, with only a slight intensity increase of the S + G + bands. Upon irradiation with CO 2 lines in coincidence with CT bands the conversion CT → ST is observed; the reverse process is evidenced by irradiation at ST frequencies. Irradiation at S + G + frequency shows no effect on the conformational equilibrium. Kinetic rate constants are measured and normalized to constant light power absorbed by the sample. They are compared with those calculated by the RRKM theory of first-order processes, assuming the same torsional barrier around the CC bond as in the gas phase. The good agreement between experimental and calculated values suggests the absence of vibrational selectivity in this photoisomerization process.

  2. All-optical modulation in Mid-Wavelength Infrared using porous Si membranes.

    PubMed

    Park, Sung Jin; Zakar, Ammar; Zerova, Vera L; Chekulaev, Dimitri; Canham, Leigh T; Kaplan, Andre

    2016-07-21

    We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm(2)). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications.

  3. All-optical modulation in Mid-Wavelength Infrared using porous Si membranes

    NASA Astrophysics Data System (ADS)

    Park, Sung Jin; Zakar, Ammar; Zerova, Vera L.; Chekulaev, Dimitri; Canham, Leigh T.; Kaplan, Andre

    2016-07-01

    We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications.

  4. Multi-wavelength thermal-infrared imaging of SL9 impact phenomena.

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Käufl, H. U.; Kostiuk, T.; Bjoraker, G. L.; Romani, P. N.; Wiedemann, G.; Mosser, B.; Sauvage, M.

    Jupiter was imaged in the thermal-infrared (λ ≍ 10 μm) on 15 - 18 and 22 - 31 July 1994 (UT). The site of fragment A impact showed substantial emission at λ ≍ 10 μm shortly after impact and a light curve was measured for 40 minutes post-impact. Strong emission was observed from the fragment H impact, including a "precursor" brightening observed 56 seconds after impact, well before the nominal impact longitude rotated into view on Jupiter's disc. The precursor event is interpreted as the debris front ("plume") from the explosive fireball phase of the impact, arriving at an altitude visible past the limb. Straightforward geometry (neglecting refraction) indicates that the impact H plume reached an altitude of at least ≍450 km above the tropopause (≍100 mbar), with a vertical speed of order 8 km/s. The main peak of the lightcurve for both impacts is interpreted as arising from the re-entry of plume ejecta into the upper atmosphere. The A and H lightcurves differ in the post-peak phase. Wavelength-dependent emission from the impact sites as of several hours post-impact differs between the filters and between the two impacts and is inconsistent with gray-body thermal emission.

  5. Exploring the transition to planetary nebula using high-resolution techniques at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Wendolyn Blanco Cárdenas, Mónica

    2015-08-01

    A planetary nebula (PN) is the ionised envelope surrounding a white dwarf, the final fate of low- and intermediate-mass stars. This stellar phase is also important for its contribution to the interstellar medium, when PNe drive out s-process elements, molecules as well as different dust species, the building blocks of life. One of the most discussed topics in the PNe research field is their huge variety of morphologies and how the more complex forms are sculpted. The theoretical models predict the existence of collimating agents such as disks (steady and/or rotating), jets, and binary systems to sculpt these perplexing morphologies. However, the observations able to detect these shaping engines are often quite difficult to accomplish. Furthermore, the transition to PN hides the clues of these process, that is, when the AGB, post-AGBs, proto-PN, and the circumstellar environments of young PNe are compact and embeded in dust. In this work, we present our results implementing observational techniques and different analysis to inspect and resolve these structures by means of high-resolution imaging, high- and low-resolution spectroscopy at infrared wavelengths and using two VLT instruments: CRIRES (near-IR) and VISIR (mid-IR).

  6. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    SciTech Connect

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-10-12

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO{sub 2} layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10{sup −2} A W{sup −1} and a shot-derived specific detectivity of 3 × 10{sup 9} Jones at 1530 nm wavelength.

  7. Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics

    NASA Astrophysics Data System (ADS)

    Law, Stephanie; Podolskiy, Viktor; Wasserman, Daniel

    2013-04-01

    Surface plasmon polaritons and their localized counterparts, surface plasmons, are widely used at visible and near-infrared (near-IR) frequencies to confine, enhance, and manipulate light on the subwavelength scale. At these frequencies, surface plasmons serve as enabling mechanisms for future on-chip communications architectures, high-performance sensors, and high-resolution imaging and lithography systems. Successful implementation of plasmonics-inspired solutions at longer wavelengths, in the mid-infrared (mid-IR) frequency range, would benefit a number of highly important technologies in health- and defense-related fields that include trace-gas detection, heat-signature sensing, mimicking, and cloaking, and source and detector development. However, the body of knowledge of visible/near-IR frequency plasmonics cannot be easily transferred to the mid-IR due to the fundamentally different material response of metals in these two frequency ranges. Therefore, mid-IR plasmonic architectures for subwavelength light manipulation require both new materials and new geometries. In this work we attempt to provide a comprehensive review of recent approaches to realize nano-scale plasmonic devices and structures operating at mid-IR wavelengths. We first discuss the motivation for the development of the field of mid-IR plasmonics and the fundamental differences between plasmonics in the mid-IR and at shorter wavelengths. We then discuss early plasmonics work in the mid-IR using traditional plasmonic metals, illuminating both the impressive results of this work, as well as the challenges arising from the very different behavior of metals in the mid-IR, when compared to shorter wavelengths. Finally, we discuss the potential of new classes of mid-IR plasmonic materials, capable of mimicking the behavior of traditional metals at shorter wavelengths, and allowing for true subwavelength, and ultimately, nano-scale confinement at long wavelengths.

  8. Photon counting performance measurements of transfer electron InGaAsP photocathode hybrid photomultiplier tubes at 1064 nm wavelength

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Krainak, Michael A.; Hasselbrack, William B.; La Rue, Ross A.

    2007-05-01

    We report the test results of a hybrid photomultiplier tube (HPMT) with a transfer electron (TE) InGaAsP photocathode and GaAs Schottky avalanche photodiode (APD) anode. Unlike Geiger mode InGaAsP APDs, these HPMTs (also known as intensified photodiode (IPD), vacuum APD, or hybrid photodetector) operate in linear mode without the need for quenching and gating. Their greatest advantages are wide dynamic range, high speed, large photosensitive area, and potential for photon counting and analog detection dual mode operation. The photon detection efficiency we measured was 25% at 1064 nm wavelength with a dark count rate of 60,000/s at -22 degrees Celsius. The output pulse width in response to a single photon detection is about 0.9 ns. The maximum count rate was 90 Mcts/s and was limited solely by the speed of the discriminator used in the measurement (10 ns dead time). The spectral response of these devices extended from 900 to 1300 nm. We also measured the HPMT response to 60 ps laser pulses. The average output pulse amplitude increased monotonically with the input pulse energy, which suggested that we can resolve photon number in an incident pulse. The jitter of the HPMT output was found to be about 0.5 ns standard deviation and depended on bias voltage applied to the TE photocathode. To our knowledge, these HPMTs are the most sensitive non gating photon detectors at 1064 nm wavelength, and they will have many applications in laser altimeters, atmospheric lidars, and free space laser communication systems.

  9. High quality factor and high sensitivity chalcogenide 1D photonic crystal microbridge cavity for mid-infrared sensing

    NASA Astrophysics Data System (ADS)

    Xu, Peipeng; Yu, Zenghui; Shen, Xiang; Dai, Shixun

    2017-01-01

    We present and theoretically investigate a mid-infrared (mid-IR) optical sensor based on a Ge11.5As24Se64.5 one-dimensional photonic crystal microbridge cavity (PhC-MC). Optimizing the structure of the PhC-MC strongly confines the resonant mode field to the air region, thereby greatly enhancing the overlap and interaction of the light field and target analytes. A high calculated sensitivity (2280 nm per refractive index unit) is achieved with a resonant wavelength of 4132 nm. The figure of merit of the device for sensing is extremely high (929,750) because of the high quality factor and sensitivity of the cavity. The sensing part of the cavity is also small (50×3 μm2). The proposed PhC-MC can be an ideal platform for on-chip integrated mid-IR optical sensing.

  10. Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring.

    PubMed

    Muneeb, M; Ruocco, A; Malik, A; Pathak, S; Ryckeboer, E; Sanchez, D; Cerutti, L; Rodriguez, J B; Tournié, E; Bogaerts, W; Smit, M K; Roelkens, G

    2014-11-03

    This paper demonstrates a very compact wavelength meter for on-chip laser monitoring in the shortwave infrared wavelength range based on an optimized arrayed waveguide grating (AWG) filter with an integrated photodiode array. The AWG response is designed to obtain large nearest neighbor crosstalk (i.e. large overlap) between output channels, which allows accurately measuring the wavelength of a laser under test using the centroid detection technique. The passive AWG is fabricated on a 220 nm silicon-on-insulator (SOI) platform and is combined with GaInAsSb-based photodiodes. The photodiodes are heterogeneously integrated on the output grating couplers of the AWG using DVS-BCB adhesive bonding. The complete device with AWG and detectors has a footprint of only 2 mm(2) while the measured accuracy and resolution of the detected wavelength is better than 20pm.

  11. Wavelength-tunable sources of entangled photons interfaced with atomic vapours

    PubMed Central

    Trotta, Rinaldo; Martín-Sánchez, Javier; Wildmann, Johannes S.; Piredda, Giovanni; Reindl, Marcus; Schimpf, Christian; Zallo, Eugenio; Stroj, Sandra; Edlinger, Johannes; Rastelli, Armando

    2016-01-01

    The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled photons. A single semiconductor quantum dot is one of the most attractive, as it can generate indistinguishable entangled photons deterministically and is compatible with current photonic-integration technologies. However, the lack of control over the energy of the entangled photons is hampering the exploitation of dissimilar quantum dots in protocols requiring the teleportation of quantum entanglement over remote locations. Here we introduce quantum dot-based sources of polarization-entangled photons whose energy can be tuned via three-directional strain engineering without degrading the degree of entanglement of the photon pairs. As a test-bench for quantum communication, we interface quantum dots with clouds of atomic vapours, and we demonstrate slow-entangled photons from a single quantum emitter. These results pave the way towards the implementation of hybrid quantum networks where entanglement is distributed among distant parties using optoelectronic devices. PMID:26815609

  12. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range.

    PubMed

    Winden, A; Mikulics, M; Grützmacher, D; Hardtdegen, H

    2013-10-11

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range.

  13. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  14. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  15. Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Sun, Xiaoli; Hasselbrack, William; Wu, Stewart; Waczynski, Augustyn; Miko, Laddawan

    2007-01-01

    We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application.

  16. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  17. Phase memory across two single-photon interferometers including wavelength conversion

    NASA Astrophysics Data System (ADS)

    Heuer, A.; Raabe, S.; Menzel, R.

    2014-10-01

    Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal generates two single photons (signal and idler) with random phases. Thus, no first-order interference between them occurs. However, coherence can be induced in a cascaded setup of two crystals if, e.g., the idler modes of both crystals are aligned to be indistinguishable. Due to the effect of phase memory it is found that the first-order interference of the signal beams can be controlled by the phase delay between the pump beams. Even for pump photon delays much larger than the coherence length of the SPDC photons, the visibility is above 90%. The high visibilities reported here prove an almost perfect phase memory effect across the two interferometers for the pump and the signal photon modes.

  18. Continuous-wave mid-infrared photonic crystal light emitters at room temperature

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Shi, Zhisheng

    2017-01-01

    Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.

  19. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    PubMed

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  20. Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber.

    PubMed

    Yang, Taotao; Shu, Chester; Lin, Chinlon

    2005-07-11

    We have developed a depolarization technique to achieve polarization-insensitive wavelength conversion using four-wave mixing in an optical fiber. A maximum conversion efficiency of -11.79 dB was achieved over a 3 dB bandwidth of 26 nm in a 100-m-long dispersion-flattened photonic crystal fiber. The polarization-dependent conversion efficiency was less than 0.38 dB and the measured power penalty for a 10 Gbit/s NRZ signal was 1.9 dB. The relation between the conversion efficiency and the degree of polarization of the pump was also formulated.

  1. Multichannel intensified photodiode for near infrared single photon detection

    NASA Astrophysics Data System (ADS)

    Aebi, Verle W.; Sykora, Derek F.; Jurkovic, Michael J.; Costello, Kenneth A.

    2011-05-01

    An overview of the Intensified Photodiode (IPD) is presented with an emphasis on IPDs optimized for use in the 950nm to 1350nm spectral range for single photon detection applications. The theory of operation of the IPD, two different electron optics designs, and device performance for a multichannel, 4x4 pixel array, low jitter IPD optimized for operation at 1060nm are presented in this paper. Key results include greater than 15% quantum efficiency, large active area, and less than 550ps impulse response.

  2. Simulation of oceanic whitecaps and their reflectance characteristics in the short wavelength infrared.

    PubMed

    Schwenger, Frédéric; Repasi, Endre

    2017-02-20

    The knowledge of the spatial energy (or power) distribution of light beams reflected at the dynamic sea surface is of great practical interest in maritime environments. For the estimation of the light energy reflected into a specific spatial direction a lot of parameters need to be taken into account. Both whitecap coverage and its optical properties have a large impact upon the calculated value. In published literature, for applications considering vertical light propagation paths, such as bathymetric lidar, the reflectance of sea surface and whitecaps are approximated by constant values. For near-horizontal light propagation paths the optical properties of the sea surface and the whitecaps must be considered in greater detail. The calculated light energy reflected into a specific direction varies statistically and depends largely on the dynamics of the wavy sea surface and the dynamics of whitecaps. A 3D simulation of the dynamic sea surface populated with whitecaps is presented. The simulation considers the evolution of whitecaps depending on wind speed and fetch. The radiance calculation of the maritime scene (open sea/clear sky) populated with whitecaps is done in the short wavelength infrared spectral band. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of a light beam at the sea surface in the absence of whitecaps is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For whitecaps, a specific BRDF is used by taking into account their shadowing function. To ensure the credibility of the simulation, the whitecap coverage is determined from simulated image sequences for different wind speeds and compared to whitecap coverage functions from literature. The impact of whitecaps on the radiation balance for bistatic configuration of light source and receiver is calculated for a different incident (zenith/azimuth angles) of the light beam and

  3. Spectral Behavior of Hematite at Visible/Near Infrared and Midinfrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Lane, Melissa D.; Christensen, Philip R.

    1999-01-01

    The oxide mineral hematite alpha-Fe2O3) is present on Mars as evidenced by spectroscopy using visible/near infrared (VNIR) and midinfrared (MIR) wavelengths. The physical nature of this surficial hematite varies from fine-grained, crystalline red hematite (red-Hm) in certain martian bright regions, to coarser-grained, crystalline gray hematite (gray-Hm) in the Sinus Meridiani equatorial site discovered in the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. The VNIR spectra require that the red hematite is present in amounts subordinate to a second ferric pigment, which accounts for the general shape and position of the martian ferric absorption edge. By analogy with palagonitic tephra and synthetic samples, the pigment is a nanophase ferric oxide, possibly nanophase hematite (np-Hm). The purpose of this abstract is to document the physicospectral properties of hematite in the VNIR (0.35 to 2.2 microns) and MIR (5 to 25 microns) with respect to the terms "nanophase" and "crystalline", "red" and "gray", and "fine-grained" and "coarse-grained". We will show that different "types" of hematite (no-, red-, and gray-Hm) have different spectral responses in the VNIR and MIR regions and that these differences are important for inferring the types of hematite and their relative proportions from remotely sensed spectra of Mars. Because hematite is an alteration product that forms through many different geologic processes, determination of the type of hematite provides important clues about the style and diversity of martian weathering processes.

  4. Spectral Behavior of Hematite at Visible/Near Infrared and Midinfrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Morris, R. V.; Christensen, P. R.

    1999-01-01

    The oxide mineral hematite alpha-Fe2O3) is present on Mars as evidenced by spectroscopy using visible/near infrared (VNIR) and midinfrared (MIR) wavelengths. The physical nature of this surficial hematite varies from fine-grained, crystalline red hematite (red-Hm) in certain martian bright regions, to coarser-grained, crystalline gray hematite (gray-Hm) in the Sinus Meridiani equatorial site discovered in the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. The VNIR spectra require that the red hematite is present in amounts subordinate to a second ferric pigment, which accounts for the general shape and position of the martian ferric absorption edge. By analogy with palagonitic tephra and synthetic samples, the pigment is a nanophase ferric oxide, possibly nanophase hematite (np-Hm). The purpose of this abstract is to document the physicospectral properties of hematite in the VNIR (0.35 to 2.2 mm) and MIR (5 to 25 mm) with respect to the terms "nanophase" and "crystalline", "red" and "gray", and "fine-grained" and "coarse-grained". We will show that different "types" of hematite (np-, red-, and gray-Hm) have different spectral responses in the VNIR and MIR regions and that these differences are important for inferring the types of hematite and their relative proportions from remotely sensed spectra of Mars. Because hematite is an alteration product that forms through many different geologic processes, determination of the type of hematite provides important clues about the style and diversity of martian weathering processes. Additional information is contained in the original extended abstract.

  5. Spectrally-isolated violet to blue wavelength generation by cascaded degenerate four-wave mixing in a photonic crystal fiber.

    PubMed

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Wang, Liang; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Tam, Hwa Yaw; Wai, P K A

    2016-06-01

    Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively.

  6. Long-Wavelength Infrared Sensing by Cytochrome C Protein Thin Film Deposited by the Spin Coating Method

    PubMed Central

    Lai, Bo-Yu; Chu, Chung-Hao; Su, Guo-Dung John

    2013-01-01

    High infrared absorption, large temperature coefficient of resistance (TCR) and small 1/f noise are preferred characteristics for sensing materials used in bolometers. In this paper, we discuss a cytochrome c protein as a potential sensing material for long-wavelength bolometers. We simulated and experimentally proved high infrared absorption of cytochrome c in the wavelength between 8 μm and 14 μm. Cytochrome c thin films were deposited on a hydrophilic surface using the spin coating method. The resistance variation with temperature is measured and we show that the TCR of cytochrome c thin films is consistently higher than 20%. The measured values of 1/f noise were as low as 2.33 × 10−13 V2/Hz at 60 Hz. Finally, we test the reliability of cytochrome c by measuring the resistance changes over time under varying conditions. We found that cytochrome c thin films deteriorated significantly without appropriate packaging. PMID:24264331

  7. Long-wavelength infrared sensing by cytochrome C protein thin film deposited by the spin coating method.

    PubMed

    Lai, Bo-Yu; Chu, Chung-Hao; Su, Guo-Dung John

    2013-11-20

    High infrared absorption, large temperature coefficient of resistance (TCR) and small 1/f noise are preferred characteristics for sensing materials used in bolometers. In this paper, we discuss a cytochrome c protein as a potential sensing material for long-wavelength bolometers. We simulated and experimentally proved high infrared absorption of cytochrome c in the wavelength between 8 μm and 14 μm. Cytochrome c thin films were deposited on a hydrophilic surface using the spin coating method. The resistance variation with temperature is measured and we show that the TCR of cytochrome c thin films is consistently higher than 20%. The measured values of 1/f noise were as low as 2.33 × 10⁻¹³ V²/Hz at 60 Hz. Finally, we test the reliability of cytochrome c by measuring the resistance changes over time under varying conditions. We found that cytochrome c thin films deteriorated significantly without appropriate packaging.

  8. Simultaneous seeing measurement through the Subaru Telescope in the visible and near-infrared bands for the wavelength dependence evaluation

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Terada, Hiroshi; Hayano, Yutaka; Watanabe, Makoto; Hattori, Masayuki; Minowa, Yosuke

    2016-08-01

    Stellar images have been obtained under natural seeing at visible and near-infrared wavelengths simultaneously through the Subaru Telescope at Mauna Kea. The image quality is evaluated by the full-width at the half-maximum (FWHM) of the stellar images. The observed ratio of FWHM in the V-band to the K-band is 1.54 ± 0.17 on average. The ratio shows tendency to decrease toward bad seeing as expected from the outer scale influence, though the number of the samples is still limited. The ratio is important for simulations to evaluate the performance of a ground-layer adaptive optics system at near-infrared wavelengths based on optical seeing statistics. The observed optical seeing is also compared with outside seeing to estimate the dome seeing of the Subaru Telescope.

  9. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  10. Polymer-based Photonic Crystal Cavity Sensor for Optical Detection in the Visible Wavelength Region.

    PubMed

    Maeno, Kenichi; Aki, Shoma; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-01-01

    In this study, a polymer-based two-dimensional photonic crystal (PhC) cavity for visible-light-based optical-sensing applications was designed and fabricated for the first time. The PhC cavity configuration was designed to operate at 650 nm, and fabricated with a polymer (resist) on a silicon substrate using electron-beam lithography. For investigating sensing applications based on shifting of condition exhibiting a photonic bandgap (PBG), the polymer monolayer deposition (layer-by-layer method) was monitored as the light-intensity change at the cavity position. Consequently, the monolayer-level detection of polyions was achieved.

  11. Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics

    NASA Astrophysics Data System (ADS)

    Lentine, Anthony L.; DeRose, Christopher T.

    2016-02-01

    Small silicon photonics micro-resonator modulators and filters hold the promise for multi-terabit per-second interconnects at energy consumptions well below 1 pJ/bit. To date, no products exist and little known commercial development is occurring using this technology. Why? In this talk, we review the many challenges that remain to be overcome in bringing this technology from the research labs to the field where they can overcome important commercial, industrial, and national security limitations of existing photonic technologies.

  12. Very high-gain and low-excess noise near-infrared single-photon avalanche detector: an NIR solid state photomultiplier

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-05-01

    A new family of photodetectors with a Discrete Amplification (DA) mechanism allows the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions and offers an alternative to conventional photomultiplier tubes and Geiger mode avalanche photodetectors. These photodetectors can operate in linear detection mode with gain-bandwidth product in excess of 4X1014 and in photon counting mode with count rates up to 108 counts/sec. Potential benefits of this technology over conventional avalanche photodetectors include ultra low excess noise factor, very high gain, and lower reset time (<< 1 μs). In the photon counting mode, the devices can be operated in the non-gated mode under a constant dc bias. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. We present the discrete amplification design approach used for the development of a solid state photomultiplier in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state photodetectors in the near infrared wavelength range. The measured devices have the following performance characteristics: gain > 2X105, excess noise factor < 1.05, rise time < 350ps, fall time < 500ps, dark current < 2X106 cps, operating voltage < 60V. These devices are ideal for researchers in the field of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defence and aerospace applications.

  13. Biperiodic nanostructured waveguides for wavelength-selectivity of hybrid photonic devices.

    PubMed

    Talneau, A; Pommarède, X; Itawi, A; Pantzas, K; Lupu, A; Benisty, H

    2015-11-15

    A biperiodic nanostructuration consisting of a super-periodicity added to a nanohole lattice of subwavelength pitch is demonstrated to provide both modal confinement and wavelength selectivity within a hybrid III-V on a silicon waveguide. The wavelength-selective behavior stems from finely tuned larger holes. Such biperiodic hybrid waveguides have been fabricated by oxide-free bonding III-V material on silicon and display well-defined stop bands. Such nanostructured waveguides offer the versatility for designing advanced optical functions within hybrid devices. Moreover, keeping the silicon waveguide surface planar, such nanostructured waveguides are compatible with electrical operation across the oxide-free hybrid interface.

  14. Long-Wavelength Stacked SiGe/Si Heterojunction Internal Photoemission Infrared Detectors Using Multiple SiGe/Si Layers

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; Gunapala, S. D.

    1994-01-01

    Utilizing low temperature silicon molecular beam epitaxy (MBE) growth, long-wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Si layers have been fabricated and demonstrated. Using an elemental boron source, high doping concentrations (approximately equal to 4 x 10(sup 20) cm(sup -3)) has been achieved and high crystalline quality multiple Si(sub 0.7)Ge(sub 0.3)/Si layers have been obtained. The detector structure consists of several periods of degenerately boron doped (approximately equal to 4 x 10(sup 20) cm(sup -3)) thin (less than or equal to 50 u Si(sub 0.7)Ge(sub 0.3) layers and undoped thick (approximately equal to 300u Si layers. The multiple p(sup +) - Si(sub 0.7)Ge(sub 0.3)/undoped-Si layers show strong infrared absorption in the long-wavelength regime mainly through free carrier absorption. The stacked Si(sub 0.7)Ge(sub 0.3)/Si HIP detectors with p = 4 x 10(sup 20) cm(sup -3) exhibit strong photoresponse at wavelengths ranging from 2 to 20 (micro)m with quantum efficiencies of about 4% and 1.5% at 10 and 15 (micro)m wavelengths, respectively. The detectors show near ideal thermionic-emission limited dark current characteristics.

  15. A Fabry-Perot interferometer-based long-wavelength infrared spectrometer utilizing a novel PDMS patterning technique

    NASA Astrophysics Data System (ADS)

    Geon Jung, Dong; Kim, Ho Won; Baek, Sun Min; Bang, Soon Jae; Kong, Seong Ho

    2015-06-01

    We report a Fabry-Perot interferometer (FPI)-based infrared (IR) spectrometer designed for long-wavelength infrared (LWIR) region. To fabricate the proposed FPI-based LWIR spectrometer, we developed a novel poly(dimethylsiloxane) (PDMS) patterning technique by combining photolithography and dry etching. The proposed PDMS patterning technique has advantages such as clear shape of PDMS pattern and no damage to the silicon (Si) substrate. Especially, the final height of PDMS pattern is easily adjusted by controlling the thickness of spin-coated photoresist. The proposed FPI-based IR spectrometer, which is composed of upper and lower substrate were fabricated separately utilizing newly proposed PDMS patterning technique. Experimental results show that maximum transmittance of filtered wavelength component by the proposed FPI-based IR spectrometer lies at the wavelength of 16 µm. The proposed IR spectrometer can detect a specific wavelength at LWIR region by controlling the air etalon gap that is adjusted by utilizing the proposed PDMS patterning technique.

  16. Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting

    NASA Astrophysics Data System (ADS)

    Buller, Gerald S.; Harkins, Ross D.; McCarthy, Aongus; Hiskett, Philip A.; MacKinnon, Gordon R.; Smith, George R.; Sung, Raymond; Wallace, Andrew M.; Lamb, Robert A.; Ridley, Kevin D.; Rarity, John G.

    2005-08-01

    This article describes a time-of-flight sensor based on multiple pulsed laser sources which utilizes time-correlated single-photon counting. The sensor has demonstrated good performance at ranges of up to 17 km in daylight conditions. Analysis techniques were developed to examine the returns from targets containing more than one scattering surface.

  17. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide

    NASA Astrophysics Data System (ADS)

    Arahira, Shin; Namekata, Naoto; Kishimoto, Tadashi; Yaegashi, Hiroki; Inoue, Shuichiro

    2011-08-01

    We report the generation of high-purity correlated photon-pairs and polarization entanglement in a 1.5 μm telecommunication wavelength-band using cascaded χ(2):χ(2) processes, second-harmonic generation (SHG) and the following spontaneous parametric down conversion (SPDC), in a periodically poled LiNbO3 (PPLN) ridge-waveguide device. By using a PPLN module with 600%/W of the SHG efficiency, we have achieved a coincidence-to-accidental ratio (CAR) higher than 4000 at 7.45x10-5 of the mean number of the photon-pair per pulse. We also demonstrated that the maximum reach of the CAR was truly dark-count-limited by the single-photon detectors used here. This indicates that the fake (noise) photons were negligibly small in this system, even though the photon-pairs, the Raman noise photons, and the pump photons were in the same wavelength band. Polarization entangled photon pairs were also generated by constructing a Sagnac-loop-type interferometer which included the PPLN module and an optical phase-difference compensator to observe maximum entanglement. We achieved two-photon interference visibilities of 99.6% in the H/V basis and 98.7% in the diagonal basis. The peak coincidence count rate was approximately 50 counts per second at 10-3 of the mean number of the photon-pair per pulse.

  18. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities

    SciTech Connect

    Zou, Yi E-mail: swapnajit.chakravarty@omegaoptics.com Chen, Ray T. E-mail: swapnajit.chakravarty@omegaoptics.com; Chakravarty, Swapnajit E-mail: swapnajit.chakravarty@omegaoptics.com

    2015-08-24

    We experimentally demonstrate a photonic crystal (PC) microcavity side coupled to a W1.05 photonic crystal waveguide fabricated in silicon-on-sapphire working in mid-IR regime at 3.43 μm. Using a fixed wavelength laser source, propagation characteristics of PC waveguides without microcavity are characterized as a function of lattice constant to determine the light line position, stop gap, and guided mode transmission behavior. The resonance of an L21 PC microcavity coupled to the W1.05 PCW in the guided mode transmission region is then measured by thermal tuning of the cavity resonance across the source wavelength. Resonance quality factor ∼3500 is measured from the temperature dependency curve.

  19. SiGe/Si heterojunction internal photoemission long-wavelength infrared detectors fabricated by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon; Ksendzov, A.; Dejewski, Suzan M.; Jones, Eric W.; Fathauer, Robert W.; Krabach, Timothy N.; Maserjian, Joseph

    1991-01-01

    A new SiGe/Si heterojunction internal photoemission (HIP) long-wavelength infrared (LWIR) detector has been fabricated by molecular beam epitaxy (MBE). The detection mechanism of the SiGe/Si HIP detector is infrared absorption in the degenerately doped p+-SiGe layer followed by internal photoemission of photoexcited holes over a heterojunction barrier. By adjusting the Ge concentration in the SiGe layer, and, consequently, the valence band offset between SiGe and Si, the cutoff wavelength of SiGe HIP detectors can be extended into the LWIR (8-17-micron) regime. Detectors were fabricated by growing p+-SiGe layers using MBE on patterned p-type Si substrates. The SiGe layers were boron-doped, with concentrations ranging from 10 to the 19th/cu cm to 4 x 10 to the 20th/cu cm. Infrared absorption of 5-25 percent in a 30-nm-thick p+-SiGe layer was measured in the 3-20-micron range using a Fourier transform infrared spectrometer. Quantum efficiencies of 3-5 percent have been obtained from test devices in the 8-12-micron range.

  20. Development of an interatmospheric window wavelength (5-9 μm) infrared thermography with an advanced image processing technique

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Komiyama, Tatsuhito; Sakagami, Takahide; Kubo, Shiro

    2006-04-01

    Recently, deterioration of concrete structures before their design life has become a serious social problem in Japan. Nondestructive inspection techniques are required, for detecting defects and damages in concrete structures, such as subsurface void or delamination. As one of these techniques, the thermographic NDT can be applied as an effective NDT technique to inspect large area of the objective structure from distant place. In addition, it does not require any chemicals and application of physical excitation for inspection. However, the thermographic NDT has a shortcoming that the measurement results are affected by the reflection of atmospheric radiation due to the sunlight, sky or surrounding materials. Since most of the buildings in Japan are covered with luster materials with low emissivity, such as tile or mortal, infrared reflection on the surface is difficult to be neglected. To reduce the influence of these reflection noises, the infrared thermography with detectable wavelength from 5 to 8 μm, which coincides with absorption range of moisture, is utilized. In this research, a new infrared thermography with 5 to 8 μm wavelength range by applying a band pass filter and an uncooled microbolometer infrared array detector. Further, a new signal to noise (S/N) ratio improvement technique has been developed in order to compensate a deterioration of sensitivity due to the band pass filter.

  1. Photonic approach to the selective inactivation of viruses with a near-infrared ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Fu, Q.; Lindsay, S. M.; Kibler, K.; Jacobs, B.; Wu, T. C.; Li, Zhe; Yan, Hao; Cope, Stephanie; Vaiana, Sara; Kiang, Juliann G.

    2010-02-01

    We report a photonic approach for selective inactivation of viruses with a near-infrared ultrashort pulsed (USP) laser. We demonstrate that this method can selectively inactivate viral particles ranging from nonpathogenic viruses such as M13 bacteriophage, tobacco mosaic virus (TMV) to pathogenic viruses like human papillomavirus (HPV) and human immunodeficiency virus (HIV). At the same time sensitive materials like human Jurkat T cells, human red blood cells, and mouse dendritic cells remain unharmed. Our photonic approach could be used for the disinfection of viral pathogens in blood products and for the treatment of blood-borne viral diseases in the clinic.

  2. Wavelength dependence of photon-induced photoacoustic streaming technique for root canal irrigation

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Zadravec, Jure; Gregorčič, Peter; Lukač, Matjaž; Jezeršek, Matija

    2016-07-01

    Laser-enhanced irrigation of complex root canals appears to be a very promising technique to improve the outcome of root canal treatment. This applies, in particular, if the technique can be effective at very low laser energies in irrigating not only the main canal but also the small lateral canals. This is important in order to avoid potential undesirable effects at higher laser energies such as temperature increase, dentin ablation, or extrusion of irrigating solution beyond the apical foramen. An improved understanding of the role of laser parameters, such as laser wavelength and pulse duration, in irrigation of lateral canals is therefore desired in order to optimize treatment efficacy. The influence of laser wavelength and pulse duration on cavitation phenomena was studied using shadow photography and a method of measuring fluid flow in lateral canals based on tracking of movements of small air bubbles naturally forming in liquid as a result of laser agitation. A simulated model of a root canal including a narrow lateral canal designed to represent typical root canal morphology was used for the water flow measurements. The following three laser wavelengths with relatively high absorption in water were studied: Er:YAG (2.94 μm), Er,Cr:YSGG (2.73 μm), and Nd:YAP (1.34 μm). Among the three wavelengths studied, the Er:YAG laser wavelength was found to be the most effective in formation of cavitation bubbles and in generating fluid motions within narrow lateral canals. A comparison between the shadow photography and fluid motion data indicates that it is the bubble's radius and not the bubble's volume that predominantly influences the fluid motion within lateral canals. Based on the results of our study, it appears that effective minimally invasive laser-assisted irrigation can be performed with low Er:YAG laser pulse energies below 10 mJ.

  3. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    DOEpatents

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  4. Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber.

    PubMed

    Ahmad, H; Soltanian, M R K; Pua, C H; Alimadad, M; Harun, S W

    2014-06-01

    A Q-switched dual-wavelength fiber laser with narrow channel spacing is proposed and demonstrated. The fiber laser is built around a 3 m long erbium doped fiber as the gain medium and a 10 cm long photonic crystal fiber (PCF) as the element used to generate the dual-wavelength output. The PCF has a solid core approximately 4.37 μm in diameter and is surrounded by microscopic air-holes with a diameter of about 5.06 μm each as well as a zero-dispersion wavelength of about 980 nm. A graphene oxide based saturable absorber is used to generate the desired pulsed output. At the maximum pump power of 72 mW the laser is capable of generating pulses with a repetition rate and pulse-width of 31.0 kHz and 7.0 μs, respectively, as well as an average output power and pulse energy of 0.086 mW and 2.8 nJ, respectively. The proposed fiber laser has substantial potential for use in applications that require longer duration pulsed outputs such as in range finding and terahertz radiation generation.

  5. Generation of stable and narrow spacing dual-wavelength ytterbium-doped fiber laser using a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ahmad, Harith; Aizi Mat Salim, Muhammad; Soltanian, Mohammad Reza K.; Razalli Azzuhri, Saaidal; Wadi Harun, Sulaiman; Yasin, Moh.

    2016-05-01

    We demonstrate the design and operation of novel narrow spacing and stable dual-wavelength fiber laser (DWFL). A 70-cm ytterbium-doped fiber has been chosen as the gain medium in a ring cavity arrangement. Our design includes a short length photonic crystal fiber, acting as a dual-wavelength stabilizer based on its birefringence coefficient and nonlinear behavior and tunable band pass filter (TBPF) to achieve narrow spacing spectrum lasing. Our laser output is considered to be highly stable, with power fluctuation less than 0.8 dB over a period of 15 min. The flexibility and tunability of TBPF, together with polarization controller enable the spacing tuning of the DWFL from 0.03 nm up to 0.07 nm for 1040 nm region, and 0.10 nm up to 0.40 nm for 1060 nm region. The tunable wavelength spacing shows the flexibility of the DWFL in addition to stable and reliable properties of fiber laser in 1-μm region.

  6. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing.

    PubMed

    Chen, Yu; Lin, Hongtao; Hu, Juejun; Li, Mo

    2014-07-22

    Besides being the foundational material for microelectronics, crystalline silicon has long been used for the production of infrared lenses and mirrors. More recently, silicon has become the key material to achieve large-scale integration of photonic devices for on-chip optical interconnect and signal processing. For optics, silicon has significant advantages: it offers a very high refractive index and is highly transparent in the spectral range from 1.2 to 8 μm. To fully exploit silicon’s superior performance in a remarkably broad range and to enable new optoelectronic functionalities, here we describe a general method to integrate silicon photonic devices on arbitrary foreign substrates. In particular, we apply the technique to integrate silicon microring resonators on mid-infrared compatible substrates for operation in the mid-infrared. These high-performance mid-infrared optical resonators are utilized to demonstrate, for the first time, on-chip cavity-enhanced mid-infrared spectroscopic analysis of organic chemicals with a limit of detection of less than 0.1 ng.

  7. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  8. INFRARED SPECTRUM OF POTASSIUM-CATIONIZED TRIETHYLPHOSPHATE GENERATED USING TANDEM MASS SPECTROMETRY AND INFRARED MULTIPLE PHOTON DISSOCIATION

    SciTech Connect

    Gary S. Groenewold; Christopher M. Leavitt; Ryan P. Dain; Jos Oomens; Jeff Steill; van Stipdonk, Michael J.

    2009-09-01

    Tandem mass spectrometry and wavelength selective infrared photodissociation was used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K+. Prominent absorptions were observed in the region of 900 to 1300 cm-1 that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+g(d), 6-311+g(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which in turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.

  9. Infrared spectrum of potassium-cationized triethylphosphate generated using tandem mass spectrometry and infrared multiple photon dissociation.

    PubMed

    Groenewold, Gary S; Leavitt, Christopher M; Dain, Ryan P; Oomens, Jos; Steill, Jeffrey D; van Stipdonk, Michael J

    2009-09-01

    Tandem mass spectrometry and wavelength-selective infrared photodissociation were used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K(+). Prominent absorptions were observed in the region of 900 to 1300 cm(-1) that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+G(d), 6-311+G(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which in turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.

  10. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Rosenberg, Jessie; Shenoi, Rajeev V.; Krishna, Sanjay; Painter, Oskar

    2010-02-01

    We design a polarization-sensitive resonator for use in midinfrared photodetectors, utilizing a photonic crystal cavity and a single or double-metal plasmonic waveguide to achieve enhanced detector efficiency due to superior optical confinement within the active region. As the cavity is highly frequency and polarization-sensitive, this resonator structure could be used in chip-based infrared spectrometers and cameras that can distinguish among different materials and temperatures to a high degree of precision.

  11. Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines

    SciTech Connect

    Blanco-Redondo, Andrea E-mail: r.hillenbrand@nanogune.eu; Garcia-Adeva, Angel; Zubia, Joseba

    2014-01-06

    We propose and theoretically study a hybrid structure consisting of a photonic crystal waveguide (PhC-wg) and a two-wire metallic transmission line (TL), engineered for efficient transfer of mid-infrared (mid-IR) light between them. An efficiency of 32% is obtained for the coupling from the transverse magnetic (TM) photonic mode to the symmetric mode of the TL, with a predicted intensity enhancement factor of 53 at the transmission line surface. The strong coupling is explained by the small phase velocity mismatch and sufficient spatial overlapping between the modes. This hybrid structure could find applications in highly integrated mid-IR photonic-plasmonic devices for biological and gas sensing, among others.

  12. Fulfilling the pedestrian protection directive using a long-wavelength infrared camera designed to meet both performance and cost targets

    NASA Astrophysics Data System (ADS)

    Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Junique, Stéphane; Savage, Susan; Vieider, Christian; Andersson, Jan Y.; Franks, John; Van Nylen, Jan; Vercammen, Hans; Kvisterøy, Terje; Niklaus, Frank; Stemme, Göran

    2006-04-01

    Pedestrian fatalities are around 15% of the traffic fatalities in Europe. A proposed EU regulation requires the automotive industry to develop technologies that will substantially decrease the risk for Vulnerable Road Users when hit by a vehicle. Automatic Brake Assist systems, activated by a suitable sensor, will reduce the speed of the vehicle before the impact, independent of any driver interaction. Long Wavelength Infrared technology is an ideal candidate for such sensors, but requires a significant cost reduction. The target necessary for automotive serial applications are well below the cost of systems available today. Uncooled bolometer arrays are the most mature technology for Long Wave Infrared with low-cost potential. Analyses show that sensor size and production yield along with vacuum packaging and the optical components are the main cost drivers. A project has been started to design a new Long Wave Infrared system with a ten times cost reduction potential, optimized for the pedestrian protection requirement. It will take advantage of the progress in Micro Electro-Mechanical Systems and Long Wave Infrared optics to keep the cost down. Deployable and pre-impact braking systems can become effective alternatives to passive impact protection systems solutions fulfilling the EU pedestrian protection regulation. Low-cost Long Wave Infrared sensors will be an important enabler to make such systems cost competitive, allowing high market penetration.

  13. A new design methodology of obtaining wide band high gain broadband parametric source for infrared wavelength applications

    NASA Astrophysics Data System (ADS)

    Maji, Partha Sona; Roy Chaudhuri, Partha

    2016-03-01

    In this article, we have presented a new design methodology of obtaining wide band parametric sources based on highly nonlinear chalcogenide material of As2S3. The dispersion profile of the photonic crystal fiber (PCF) has been engineered wisely by reducing the diameter of the second air-hole ring to have a favorable higher order dispersion parameter. The parametric gain dependence upon fiber length, pump power, and different pumping wavelengths has been investigated in detail. Based upon the nonlinear four wave mixing phenomenon, we are able to achieve a wideband parametric amplifier with peak gain of 29 dB with FWHM of ≈2000 nm around the IR wavelength by proper tailoring of the dispersion profile of the PCF with a continuous wave Erbium (Er3+)-doped ZBLAN fiber laser emitting at 2.8 μm as the pump source with an average power of 5 W. The new design methodology will unleash a new dimension to the chalcogenide material based investigation for wavelength translation around IR wavelength band.

  14. Strong transmittance above the light line in mid-infrared two-dimensional photonic crystals

    SciTech Connect

    Kraeh, Christian; Martinez-Hurtado, J. L.; Zeitlmair, Martin; Finley, Jonathan J.; Popescu, Alexandru; Hedler, Harry

    2015-06-14

    The mid-infrared region of the electromagnetic spectrum between 3 and 8 μm hosts absorption lines of gases relevant for chemical and biological sensing. 2D photonic crystal structures capable of guiding light in this region of the spectrum have been widely studied, and their implementation into miniaturized sensors has been proposed. However, light guiding in conventional 2D photonic crystals is usually restricted to a frequency range below the light line, which is the dispersion relation of light in the media surrounding the structures. These structures rely on total internal reflection for confinement of the light in z-direction normal to the lattice plane. In this work, 2D mid-infrared photonic crystals consisting of microtube arrays that mitigate these limitations have been developed. Due to their high aspect ratios of ∼1:30, they are perceived as semi-infinite in the z-direction. Light transmission experiments in the 5–8 μm range reveal attenuations as low as 0.27 dB/100 μm, surpassing the limitations for light guiding above the light line in conventional 2D photonic crystals. Fair agreement is obtained between these experiments, 2D band structure and transmission simulations.

  15. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  16. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    SciTech Connect

    Hurtado, Antonio; Javaloyes, Julien

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  17. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  18. Three-photon near-infrared quantum cutting in Tm{sup 3+}-doped transparent oxyfluoride glass ceramics

    SciTech Connect

    Yu, D. C.; Zhang, J. P.; Chen, Q. J.; Zhang, W. J.; Yang, Z. M.; Zhang, Q. Y.

    2012-10-22

    Efficient three-step sequential three-photon near-infrared (NIR) quantum cutting in Tm{sup 3+}-doped transparent oxyfluoride glass ceramics has been demonstrated, where an absorbed blue photon could be cut into three NIR photons at 1190, 1460, and 1800 nm with quantum yield greater than unity. On the basis of static and dynamic photoemission, monitored excitation, and time-resolved fluorescence spectra, we investigate in detail the underlying optoelectronic mechanism. Further development of an efficient triply-cutting material might open up a path towards ultra-efficient photonic devices, which enables more photons emitted than absorbed in the excitation process.

  19. Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths.

    PubMed

    Sévigny, Benoit; Vanvincq, Olivier; Valentin, Constance; Chen, Na; Quiquempois, Yves; Bouwmans, Géraud

    2013-12-16

    The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation.

  20. Some observations on hyperuniform disordered photonic bandgap materials, from microwave scale study to infrared scale study

    NASA Astrophysics Data System (ADS)

    Tsitrin, Sam; Nahal, Geev; Florescu, Marian; Man, Weining; San Francisco State University Team; University of Surrey Team

    2015-03-01

    A novel class of disordered photonic materials, hyperuniform disordered solids (HUDS), attracted more attention. Recently they have been experimentally proven to provide complete photonic band gap (PBG) when made with Alumina or Si; as well as single-polarization PBG when made with plastic with refract index of 1.6. These PBGs were shown to be real energy gaps with zero density of photonic states, instead of mobility gaps of low transmission due to scattering, etc. Using cm-scale samples and microwave experiments, we reveal the nature of photonic modes existing in these disordered materials by analyzing phase delay and mapping field distribution profile inside them. We also show how to extend the proof-of-concept microwave studies of these materials to proof-of-scale studies for real applications, by designing and fabricating these disordered photonic materials at submicron-scale with functional devices for 1.55 micron wavelength. The intrinsic isotropy of the disordered structure is an inherent advantage associated with the absence of limitations of orientational order, which is shown to provide valuable freedom in defect architecture design impossible in periodical structures. NSF Award DMR-1308084, the University of Surrey's FRSF and Santander awards.

  1. Differentiation of Rubidiated Methyl-d-Glycoside Stereoisomers by Infrared Multiple-Photon Dissociation Spectroscopy in the O-H and C-H Stretching Regions.

    PubMed

    Pearson, Wright L; Contreras, Cesar; Powell, David; Berden, Giel; Oomens, Jos; Bendiak, Brad; Eyler, John R

    2015-10-15

    Four isomeric sugar methylglycosides (α- and β-d-gluco- and galactopyranosides) were evaluated as rubidium cation coordination adducts in the gas phase using variable-wavelength multiple-photon dissociation in the range from 2750 to 3750 cm(-1). The adducts dissociated following photon absorption to yield neutral sugars and the rubidium cation, resulting in infrared "action" spectra. Well-resolved hydroxyl stretching bands clearly differentiate stereoisomers that vary solely in their asymmetry at single carbons. Density functional theory calculations of the lowest-energy gas-phase complexes indicate that rubidium coordinates with lone pairs of oxygen atoms as either bi- or tridentate complexes and that more than one positional coordination isomer could adequately account for most of the O-H stretch frequencies observed for each methylglycoside.

  2. Photocurrent spectrum study of a quantum dot single-photon detector based on resonant tunneling effect with near-infrared response

    SciTech Connect

    Weng, Q. C.; An, Z. H. E-mail: luwei@mail.sitp.ac.cn; Xiong, D. Y.; Zhu, Z. Q.; Zhang, B.; Chen, P. P.; Li, T. X.; Lu, W. E-mail: luwei@mail.sitp.ac.cn

    2014-07-21

    We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).

  3. pH Measurement Using Dual-Wavelength Fluorescent Ratio by Two-Photon Excitation for Mitochondrial Activity

    NASA Astrophysics Data System (ADS)

    Kanazashi, Yasuaki; Li, Yongbo; Onojima, Takumi; Iwami, Kentaro; Ohta, Yoshihiro; Umeda, Norihiro

    2012-11-01

    A mitochondrion has a pH gradient between the two sides of its inner membrane in order to produce adenosine triphosphate (ATP). Because ATP depletion causes numerous diseases, the measurement of the pH value around the mitochondrion is expected to clarify the mechanism of these diseases. In this study, a dual-wavelength pH-sensitive dye was excited by two-photon absorption initiated using a femtosecond pulse laser. In addition, fluorescence from the dye was directly collected from the fluorescent point using the collection-mode probe of a scanning near-field optical microscope. By this proposed method, a pH calibration curve was obtained from the fluorescent intensity ratio of the dye solution, and temporal pH variations with 0.1 s time resolution following the addition of acid were observed. Moreover, mitochondrial activity on the basis of the pH changes was successfully observed in three different mitochondrial densities.

  4. [Research on wavelength variates selection methods for determination of oil yield in oil shales using near-infrared spectroscopy].

    PubMed

    Zhao, Zhen-Ying; Lin, Jun; Zhang, Fu-Dong; Li, Jun

    2014-11-01

    The wavelength selection is an important step in the spectra modeling analysis. In the present paper, three wavelength selection methods, including correlation coefficient (CC), moving window partial least squares (MWPLS) and uninformative variables elimination (UVE), were studied for the determination of oil yield in oil shale using near-infrared (NIR) diffuse reflection spectroscopy. The above methods were used to eliminate the redundant and irrelevant variables in spectral data for enhancing the analytic efficiency and predictive ability of calibration model. The effects of thresholds of CC, window width of MWPLS and noise matrix of UVE were studied. Partial least squares regression was used to build prediction model for predicting oil yield in oil shale, and the performance of PLS models constructed with and without the using of wavelength selection methods were compared. The results show that any of the three methods can simplify the calibration model and improve the performance of model. By using UVE, the total number of wavelength variables of spectral data, the RMSECV of calibration model and the RMSEP of prediction model were decreased by 22.8%, 9.3% and 4.5%, respectively.

  5. Review of Calculations of Extinction for Visible and Infrared Wavelengths in Rain

    DTIC Science & Technology

    1983-08-01

    0060O =9 I 1 bF’ Week -Many theoretical and experimental investigations have been done to determine the influence of rain on visible and infrared...of visible and infrared radiation by rain are shown. Basic equations and experimental data from these studies were used to derive the extinction...infinite series in *. Many theoretical and experimental investigations have been made to determine the influence of rain and certain other meteorological

  6. Development of Short Wavelength Infrared Array Detectors for Space Astronomy Application

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1997-01-01

    The Smithsonian Astrophysical Observatory (SAO) and its team - the University of Arizona (UA), the University of Rochester (UR), Santa Barbara Research Center (SBRC), Ames Research Center (ARC), and Goddard Space Flight Center (GSFC) - are carrying out a research program with the goal of developing and optimizing infrared arrays in the 2-27 micron range for space infrared astronomy. This report summarizes research results for the entire grant period 1 January 1992 through 30 June 1996.

  7. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades.

    PubMed

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  8. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings

    NASA Astrophysics Data System (ADS)

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-05-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency.

  9. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades

    NASA Astrophysics Data System (ADS)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  10. Low cost photonic comb for sub-m/s wavelength calibration

    NASA Astrophysics Data System (ADS)

    Betters, Christopher H.; Hermouet, Maxime; Blanc, Thomas; Colless, James I.; Bland-Hawthorn, Joss; Kos, Janez; Leon-Saval, Sergio

    2016-07-01

    A fundamental limitation of precision radial velocity measurements is the accuracy and stability of the calibration source. Here we present a low-cost alternative to more complex laser metrology based systems that utilises a single-mode fibre Fabry-Perot etalon. There are three key elements on this photonic comb: i) an optical fibre etalon with thermo-electric coolers; ii) a Rubidium Saturation Absorption Spectroscopy (SAS) setup; and iii) an optical fibre switch system for simultaneous laser locking of the etalon. We simultaneously measure the Rubidium D2 transitions around 780.2 nm and the closest etalon line. A PID loop controls the etalon temperate to maintain the position of its peak with an RMS error of <10cm/s for 10 minute integration intervals in continous operation. The optical fibre switch system allows for a time multiplexed coupling of the etalon to a spectrograph and SAS system.

  11. Practical approach for a rod-connected diamond photonic crystal operating at optical wavelengths

    NASA Astrophysics Data System (ADS)

    Aoki, Kanna

    2009-11-01

    Production of a rod-connected diamond (RCD) photonic crystal structure in a semiconductor material is proposed. Periodic shifting of only one building block can create a complicated three-dimensional network, with a RCD structure exhibiting a full bandgap as wide as 0.20 on a gap/midgap (Δω /ωM) basis. A point defect cavity in the structure sustains single-mode resonance throughout the operative range because of its low symmetry. The resonant mode's highest quality factor (Q-factor) was calculated as 1.5×104 for a crystal of 11.5ax×4.25ay×12az for ai (i =x,y,z) representing three axes' period lengths.

  12. a Self-Consistent Analysis of Far-Infrared and Submillimeter Wavelength Metal-Grating Free Electron Lasers.

    NASA Astrophysics Data System (ADS)

    Xu, Yansun

    A theoretical exploration of the characteristics and operational requirements of far-infrared and sub-millimeter wavelength Metal-Grating Free-Electron-Lasers is presented. In the device an open planar type of quasi-optical resonator is loaded with a strip of rectangular metal-grating, and driven by a moderate energy electron beam. The basic tuning features and energy storage capacity of the resonator are described by the dispersion relation of the periodic slow -wave structure. To give a complete description of electron and wave dynamics in the laser oscillator, a set of self -consistent equations are derived through the use of the Lorentz force equation and the Maxwell's equations. Small signal gain and output efficiency of the device are developed from the self-consistent model. The nonlinear saturation is examined with a strong-field technique which is based upon a simple nonlinear ordinary differential equation of Duffing type. A detailed evaluation of the start-current, optimum interaction length and output efficiency of the laser oscillator at far-infrared and sub-millimeter wavelength region, indicates that the operations at wavelengths from 1mm to 100mum could be optimized at the output efficiencies around 1% with the use of an 100keV to 1MeV electron beam of current densities from 10 to 100(A/cm{^2}) and a 10 to 20cm long grating section. A theory of klystron type Metal-Grating Free Electron Lasers is also developed. Results of the proof-of-principle tests in the lower-millimeter wavelength region show that the klystron type devices generate more coherent radiations with start-current below 0.5A, and output power and efficiency up to 600watts and 2% at about 35GHz.

  13. A self-consistent analysis of far-infrared and submillimeter wavelength metal-grating free electron lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yansun

    A theoretical exploration of the characteristics and operational requirements of far-infrared and sub-millimeter wavelength metal-grating free-electron lasers is presented. In the device an open planar type of quasi-optical resonator is loaded with a strip of rectangular metal-grating, and driven by a moderate energy electron beam. The basic tuning features and energy storage capacity of the resonator are described by the dispersion relation of the periodic slow-wave structure. To give a complete description of electron and wave dynamics in the laser oscillator, a set of self-consistent equations are derived through the use of the Lorentz force equation and the Maxwell's equations. Small signal gain and output efficiency of the device are developed from the self-consistent model. The nonlinear saturation is examined with a strong-field technique which is based upon a simple nonlinear ordinary differential equation of Duffing type. A detailed evaluation of the start-current, optimum interaction length, and output efficiency of the laser oscillator at far-infrared and sub-millimeter wavelength region, indicates that the operations at wavelengths from 1 mm to 100 microns could be optimized at the output efficiencies around 1 percent with the use of a 100 keV to 1 MeV electron beam of current densities from 10 to 100(A/sq cm) and a 10 to 20 cm long grating section. A theory of klystron type metal-grating free electron lasers is also developed. Results of the proof-of-principle tests in the lower-millimeter wavelength region show that the klystron type devices generate more coherent radiations with start-current below 0.5A, output power and efficiency up to 600 watts, and 2 percent at about 35 GHz.

  14. Measurements of partial cross sections and photoelectron angular distributions for the photodetachment of Fe- and Cu- at visible photon wavelengths

    NASA Astrophysics Data System (ADS)

    Covington, A. M.; Duvvuri, Srividya S.; Emmons, E. D.; Kraus, R. G.; Williams, W. W.; Thompson, J. S.; Calabrese, D.; Carpenter, D. L.; Collier, R. D.; Kvale, T. J.; Davis, V. T.

    2007-02-01

    Photodetachment cross sections and the angular distributions of photoelectrons produced by the single-photon detachment of the transition metal negative ions Fe- and Cu- have been measured at four discrete photon wavelengths ranging from 457.9 to 647.1nm (2.71-1.92eV) using a crossed-beams laser photodetachment electron spectrometry (LPES) apparatus. Photodetachment cross sections were determined by comparing the photoelectron yields from the photodetachment of Fe- to those of Cu- and C- , which have known absolute photodetachment cross sections. Using the measured photodetachment cross sections, radiative electron attachment cross sections were calculated using the principle of detailed balance. Angular distributions were determined by measurements of laboratory frame, angle-, and energy-resolved photoelectrons as a function of the angle between the linear laser polarization vector and the momentum vector of the collected photoelectrons. Values of the asymmetry parameter have been determined by nonlinear least-squares fits to these angular distributions. The measured asymmetry parameters are compared to predictions of photodetachment models including Cooper and Zare’s dipole approximation theory [J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968)], and the angular momentum transfer theory developed by Fano and Dill [Phys. Rev. A 6, 185 (1972)].

  15. Temperature-dependent spontaneous emission of PbS quantum dots inside photonic nanostructures at telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Birowosuto, Muhammad Danang; Takiguchi, Masato; Olivier, Aurelien; Tobing, Landobasa Y.; Kuramochi, Eiichi; Yokoo, Atsushi; Hong, Wang; Notomi, Masaya

    2017-01-01

    Spontaneous emission of PbS quantum dots (QDs) in different photonic nanostructures has been studied. We use the temperature-dependent exciton photoluminescence and the classic dipole near interface models to understand the spontaneous emission control at various temperatures. Then, we demonstrate that the enhancement and the inhibition of PbS QDs due to the local density of states (LDOS) inside nanostructures are more efficient at temperature as low as 77 K than the inhibition at 300 K. Largest emission rate enhancement at 77 K of 1.67 ± 0.10 and inhibition factors at 100 K of 2.27 ± 0.15 are reported for the gold (Au) planar mirror and silicon (Si) two-dimensional photonic crystal bandgap, respectively. We attribute those enhancement and inhibition to the large quantum yields Qe at low temperatures, which is much larger than that at 300 K. These results are relevant for application and optimization of PbS QDs in nanophotonics at telecommunication wavelength.

  16. 640x486 Long-wavelength Dualband GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Liu, J.; Rafol, S.; Luong, E.; Mumolo, J.; Tran, N.

    1999-01-01

    An optimized long-wavelength/very long-wavelength two-color Quantum Well Infrared Photodetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE).

  17. Accurate wavelength calibration in the near-infrared for multielement analysis without the need for reference spectra

    SciTech Connect

    Asimellis, George; Giannoudakos, Aggelos; Kompitsas, Michael

    2006-12-10

    A new technique has been developed for an instant, precise, and accurate wavelength calibration over a wide pixel array for simultaneous, multielement spectral analysis based on an inverse numerical solution to the grating dispersion function.This technique is applicable to multielement analytical applications such as laser-induced breakdown spectroscopy (LIBS), particularly when using high-density gratings in the upper visible and in the near-infrared, where nonmetallic elements are detected.This application overcomes the need to use reference spectra for each window of observation and is tested on a commercially available LIBS instrument.

  18. OPTICAL PROPERTIES OF IRON SILICATES IN THE INFRARED TO MILLIMETER AS A FUNCTION OF WAVELENGTH AND TEMPERATURE

    SciTech Connect

    Richey, C. R.; Kinzer, R. E.; Cataldo, G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinehart, S. A.

    2013-06-10

    The Optical Properties of Astronomical Silicates with Infrared Techniques program utilizes multiple instruments to provide spectral data over a wide range of temperatures and wavelengths. Experimental methods include Vector Network Analyzer and Fourier transform spectroscopy transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5 to 300 K, across the infrared and millimeter portion of the spectrum (from 2.5 to 10,000 {mu}m or 4000 to 1 cm{sup -1}).

  19. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Kinzer, R. E.; Cataldo, G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinehart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program utilizes multiple instruments to provide spectral data over a wide range of temperature and wavelengths. Experimental methods include Vector Network Analyzer (VNA) and Fourier Transform Spectroscopy (FTS) transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5-300 K, across the infrared and millimeter portion of the spectrum (from 2.5-10,000 m or 4,000-1 cm(exp-1).

  20. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Kinzer, R. E.; Cataldo, R. E. G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinehart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program utilizes multiple instruments to provide spectral data over a wide range of temperature and wavelengths. Experimental methods include Vector Network Analyzer (VNA) and Fourier Transform Spectroscopy (FTS) transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5-300 K, across the infrared and millimeter portion of the spectrum (from 2.5-10,000 µm or 4,000-1 cm(exp -1).

  1. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Kinzer, R. E.; Cataldo, G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinhart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques program utilizes multiple instruments to provide spectral data over a wide range of temperatures and wavelengths. Experimental methods include Vector Network Analyzer and Fourier transform spectroscopy transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5 to 300 K, across the infrared and millimeter portion of the spectrum (from 2.5 to 10,000/micron or 4000 to 1/cm).

  2. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    PubMed Central

    2012-01-01

    Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a graphical user interface

  3. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Soltanian, M. R. K.; Alimadad, M.; Harun, S. W.

    2014-10-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW.

  4. Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength

    NASA Astrophysics Data System (ADS)

    Sen, Shuvo; Chowdhury, Sawrab; Ahmed, Kawsar; Asaduzzaman, Sayed

    2017-03-01

    In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 µm to 1.8 µm. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.

  5. Long wavelength mid-infrared from mixing two colors from a fiber amplifier

    NASA Astrophysics Data System (ADS)

    Bian, Siyuan; Loranger, Sébastien; Kashyap, Raman; Strickland, Donna

    2015-05-01

    At Waterloo, we are developing a high power, short pulse, two-color, Yb:fiber amplifier system to generate the long wavelength (<15μm) side of the molecular fingerprint spectral region, by difference frequency mixing the two colors. This spectral region is important for trace gas detection of explosives. As an example, it has been shown that the strong spectroscopic signatures of a peroxide-based explosive triacetone triperoxide (TATP) occur between 15 and 20 μm. To date, we have achieved a tuning range from 16 to 20 μm with a maximum average power of 1.7 mW. On the short wavelength side, the two colors would need to be pulled further apart, which requires a higher power seed to beat the amplified spontaneous emission that appears at the gain peak of the amplifiers between the two seed colors. On the long wavelength side, we are limited to 20 μm by the transparency region of the nonlinear crystals. We would like to find new nonlinear materials that have transparency from 1 to 30μm. If we could generate wavelengths from 15 to 30 μm with sufficient power, we could extend the spectral region to also cover 8 to 15μm by frequency doubling the longer wavelengths. We are currently working on replacing bulk optics in the system with fiber based optical elements to select the wavelengths as well as stretch and recompress the pulses in order to make the system compact and stable.

  6. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  7. Properties of the upper tropospheres of Uranus and Neptune derived from observations at visible to near-infrared wavelengths

    SciTech Connect

    Bergstralh, J.T.; Baines, K.H.

    1984-10-01

    Photons at wavelengths between 0.3 and 4.5 microns penetrate the atmospheres of Uranus and Neptune to pressures between about 0.01 bar and 10 bars. This pressure range brackets the radiative convective boundary in both atmospheres and is therefore designated upper troposphere. Physical processes which govern the transfer of radiation in Uranus's and Neptune's atmospheres at these wavelengths include Rayleigh/Raman scattering by hydrogen, scattering and broadband absorption by suspended aerosol particles and absorption in discrete bands and lines by methane and hydrogen. Consequently, tropospheric properties constrained by observations at these wavelengths include optical properties and distribution of aerosol particles, methane/hydrogen ratio, and ortho/para hydrogen ratio. Recent observations of Uranus and Neptune in this spectral range, are reviewed and compared with predictions based on models of the atmospheric structures. Significant results for Uranus include the presence of an opaque lower boundary to the visible atmosphere very near the level corresponding to 2 bars pressure, and consequently a methane/hydrogen ratio no less than 3 percent.

  8. Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging.

    PubMed

    Adjili, Salim; Favier, Arnaud; Fargier, Guillaume; Thomas, Audrey; Massin, Julien; Monier, Karine; Favard, Cyril; Vanbelle, Christophe; Bruneau, Sylvia; Peyriéras, Nadine; Andraud, Chantal; Muriaux, Delphine; Charreyre, Marie-Thérèse

    2015-04-01

    Exogenous probes with far-red or near-infrared (NIR) two-photon absorption and fluorescence emission are highly desirable for deep tissue imaging while limiting autofluorescence. However, molecular probes exhibiting such properties are often hydrophobic. As an attractive alternative, we synthesized water-soluble polymer probes carrying multiple far-red fluorophores and demonstrated here their potential for live cell and zebrafish embryo imaging. First, at concentrations up to 10 μm, these polymer probes were not cytotoxic. They could efficiently label living HeLa cells, T lymphocytes and neurons at an optimal concentration of 0.5 μm. Moreover, they exhibited a high resistance to photobleaching in usual microscopy conditions. In addition, these polymer probes could be successfully used for in toto labeling and in vivo two-photon microscopy imaging of developing zebrafish embryos, with remarkable properties in terms of biocompatibility, internalization, diffusion, stability and wavelength emission range. The near-infrared two-photon absorption peak at 910 nm is particularly interesting since it does not excite the zebrafish endogenous fluorescence and is likely to enable long-term time-lapse imaging with limited photodamage.

  9. Far-infrared and submillimeter-wavelength observations of star-forming dense cores. I. Spectra

    SciTech Connect

    Ladd, E.F.; Adams, F.C.; Fuller, G.A.; Casey, S.; Davidson, J.A. Yerkes Observatory, Williams Bay, WI NASA, Ames Research Center, Moffett Field, CA )

    1991-01-01

    Far-infrared and submillimeter photometry of 10 low-mass star formation regions containing embedded IRAS sources is presented. These new observations define the peak of the spectral energy distributions of these objects and provide more precise estimates of their bolometric luminosities. Two new sources, L1527 and L483, are among the reddest known low-mass objects, with spectral energy distribution peaks at 100-200 microns and extremely steep IRAS slopes. These cold sources have spectra which are similar to blackbodies of 30-40 K but have significant excess emission on the Wien side. Models of the spectral energy distributions using a spherically symmetric core structure indicate that these sources have visual extinctions greater than 1000 mag. However, models with these large extinctions predict too little near-infrared emission. A nonspherically symmetric distribution of circumstellar material may play a role in the generation of the extra near-infrared emission. 64 refs.

  10. The Relation Between the Radial Temperature Profile in the Chromosphere and the Solar Spectrum at Centimeter, Millimeter, Submillimeter, and Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    De la Luz, V.; Chavez, M.; Bertone, E.; Gimenez de Castro, G.

    2014-08-01

    Solar observations from millimeter to ultraviolet wavelengths show that there is a temperature minimum between photosphere and chromosphere. Analyses based on semi-empirical models locate this point at about 500 km above the photosphere. The consistency of these models has been tested by means of millimeter to infrared observations. We show that variations of the theoretical radial temperature profile near the temperature minimum impact the brightness temperature at centimeter, submillimeter, and infrared wavelengths, but the millimeter wavelength emission remains unchanged. We found a region between 500 and 1000 km above the photosphere that remains hidden to observations at the frequencies that we studied here.

  11. Detection of Infrared Photons Using the Electronic Stress in Metal-Semiconductor Interfaces

    SciTech Connect

    Datskos, P.G.; Datskou, I.; Egert, C.M.; Rjic, S.

    1999-04-05

    It is well known that the work function of metals decreases when they are placed in a nonpolar liquid. A similar decrease occurs when the metal is placed into contact with a semiconductor forming a Schottky barrier. We report on a new method for detecting photons using the stress caused by photo-electrons emitted from a metal film surface in contact with a semiconductor microstructure. The photoelectrons diffuse into the microstructure and produce an electronic stress. The photon detection results from the measurement of the photo-induced bending of the microstructure. Internal photoemission has been used in the past to detect photons, however, in those cases the detection was accomplished by measuring the current due to photoelectrons and not due to electronic stress. Small changes in position (displacement) of microstructures are routinely measured in atomic force microscopy (AFM) where atomic imaging of surfaces relies on the measurement of small changes (< l0{sup -9} m) in the bending of microcantilevers. In the present work we studied the photon response of Si microcantilevers coated with a thin film of Pt. The Si microcantilevers were 500 nm thick and had a 30 nm layer of Pt. Photons with sufficient energies produce electrons from the platinum-silicon interface which diffuse into the Si and produce an electronic stress. Since the excess charge carriers cause the Si microcantilever to contract in length but not the Pt layer, the bimaterial microcantilever bends. In our present studies we used the optical detection technique to measure the photometric response of Pt-Si microcantilevers as a function of photon energy. The charge carriers responsible for the photo-induced stress in Si, were produced via internal photoemission using a diode laser with wavelength {lambda} = 1550 nm.

  12. Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals

    NASA Astrophysics Data System (ADS)

    Kohl, Matthias; Nolte, Christian; Heekeren, Hauke R.; Horst, Susanne; Scholz, Udo; Obrig, Hellmuth; Villringer, Arno

    1998-06-01

    For the calculation of changes in oxyhaemoglobin, deoxyhaemoglobin and the redox state of cytochrome-c-oxidase from attenuation data via a modified Beer-Lambert equation the wavelength dependence of the differential pathlength factor (DPF) has to be taken into account. The DPF, i.e. the ratio of the mean optical pathlength and the physical light source-detector separation at each wavelength, determines the crosstalk between the different concentrations and is therefore essential for a sensitive detection of chromophore changes. Here a simple method is suggested to estimate the wavelength dependence of the DPF from pulse-induced attenuation changes measured on the head of adult humans. The essence is that the DPF is the ratio of the attenuation changes over absorption coefficient changes, and that the spectral form of the pulse correlated absorption coefficient change can be assumed to be proportional to the extinction coefficient of blood. Indicators for the validity of the DPF derived for wavelengths between 700 and 970 nm are the stability of the calculated haemoglobin and cytochrome signals with variations of the wavelength range included for their calculation and its overall agreement with the data available from the literature.

  13. [Study on the application of ridge regression to near-infrared spectroscopy quantitative analysis and optimum wavelength selection].

    PubMed

    Zhang, Man; Liu, Xu-Hua; He, Xiong-Kui; Zhang, Lu-Da; Zhao, Long-Lian; Li, Jun-Hui

    2010-05-01

    In the present paper, taking 66 wheat samples for testing materials, ridge regression technology in near-infrared (NIR) spectroscopy quantitative analysis was researched. The NIR-ridge regression model for determination of protein content was established by NIR spectral data of 44 wheat samples to predict the protein content of the other 22 samples. The average relative error was 0.015 18 between the predictive results and Kjeldahl's values (chemical analysis values). And the predictive results were compared with those values derived through partial least squares (PLS) method, showing that ridge regression method was deserved to be chosen for NIR spectroscopy quantitative analysis. Furthermore, in order to reduce the disturbance to predictive capacity of the quantitative analysis model resulting from irrelevant information, one effective way is to screen the wavelength information. In order to select the spectral information with more content information and stronger relativity with the composition or the nature of the samples to improve the model's predictive accuracy, ridge regression was used to select wavelength information in this paper. The NIR-ridge regression model was established with the spectral information at 4 wavelength points, which were selected from 1 297 wavelength points, to predict the protein content of the 22 samples. The average relative error was 0.013 7 and the correlation coefficient reached 0.981 7 between the predictive results and Kjeldahl's values. The results showed that ridge regression was able to screen the essential wavelength information from a large amount of spectral information. It not only can simplify the model and effectively reduce the disturbance resulting from collinearity information, but also has practical significance for designing special NIR analysis instrument for analyzing specific component in some special samples.

  14. Spectral components at visual and infrared wavelengths in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stein, W. A.; Tokunaga, A. T.; Rudy, R. J.

    1984-01-01

    Aperture-dependent infrared photometry of active galactic nuclei are presented which illustrate the importance of eliminating starlight of the galaxy in order to obtain the intrinsic spectral distribution of the active nuclei. Separate components of emission are required to explain the infrared emission with a spectral index of alpha approx = 2 and the typical visual-ultraviolet continuum with alpha approx = 0.3 (where F(nu) varies as nu(sup-alpha). Present evidence does not allow unique determination of the appropriate mechanisms, but the characteristics of each are discussed.

  15. The solid state photomultiplier: Status of photon counting beyond the near-infrared

    NASA Technical Reports Server (NTRS)

    Hays, K. M.; Laviolette, R. A.; Stapelbroek, M. G.; Petroff, M. D.

    1989-01-01

    Rockwell International's Solid State Photomultiplier (SSPM) is an impurity-band avalanche device which can count individual photons with wavelengths between 0.4 and 28 micrometers. Its response to a photon is a pulse of between 10(exp 4) and 10(exp 5) conduction electrons, making it an important device for use in phenomenology. The characteristics of the SSPM make it a potentially important device for use in astronomical applications. Contract NAS2-12400 was initiated in June 1986 to conduct modeling and characterization studies of the SSPM to provide a basis for assessing its use in astronomical systems. Some SSPM models and results of measurements which characterize the group of SSPMs recently fabricated on this contract are discussed.

  16. Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.

    2009-11-01

    Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  17. Intersubband transitions in nonpolar GaN/Al(Ga)N heterostructures in the short- and mid-wavelength infrared regions

    SciTech Connect

    Lim, C. B.; Beeler, M.; Ajay, A.; Lähnemann, J.; Bellet-Amalric, E.; Monroy, E.; Bougerol, C.

    2015-07-07

    This paper assesses nonpolar m- and a-plane GaN/Al(Ga)N multi-quantum-wells grown on bulk GaN for intersubband optoelectronics in the short- and mid-wavelength infrared ranges. The characterization results are compared to those for reference samples grown on the polar c-plane, and are verified by self-consistent Schrödinger-Poisson calculations. The best results in terms of mosaicity, surface roughness, photoluminescence linewidth and intensity, as well as intersubband absorption are obtained from m-plane structures, which display room-temperature intersubband absorption in the range from 1.5 to 2.9 μm. Based on these results, a series of m-plane GaN/AlGaN multi-quantum-wells were designed to determine the accessible spectral range in the mid-infrared. These samples exhibit tunable room-temperature intersubband absorption from 4.0 to 5.8 μm, the long-wavelength limit being set by the absorption associated with the second order of the Reststrahlen band in the GaN substrates.

  18. Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long-wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Maserjian, J.

    1990-01-01

    The feasibility of a novel p(+)-Si(1-x)Ge(x)-p-Si heterojunction internal photoemission (HIP) IR detector is demonstrated. A degenerately doped p(x)-Si(1-x)Ge(x) layer is required for strong IR absorption to generate photoexcited holes. The Si(1-x)Ge(x) layers are grown by molecular beam epitaxy, with boron concentrations up to 10 to the 20th/cu cm achieved by using an HBO2 source. Photoresponse at wavelengths ranging from 2 to 10 microns has been obtained with quantum efficiencies above 1 percent. The tailorable cutoff wavelength of the HIP detector has been demonstrated by varying the Ge composition ratio in the Si(1-x)Ge(x) layers.

  19. Optical properties of solid and liquid sulfur at visible and infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Sasson, R.; Wright, R.; Arakawa, E. T.; Khare, B. N.; Sagan, C.

    1985-12-01

    Knowledge of the optical constants of elemental sulfur has potential applications to Venus, Jupiter, Io, Amalthea, and the Earth. The real part, n, of the index of refraction of liquid sulfur (at 133°C) and of solid orthorhombic sulfur (at 25°C) for the wavelength range 0.4 - 2.0 μm were measured ellipsometrically. The imaginary part, k, of the refractive index of liquid sulfur was obtained by transmittance measurements at the same temperature and wavelength range. The reflectance of semi-infinite slabs of solid and liquid sulfur is calculated using the measured n and k values. The authors confirm that sulfur melts on Io would be classified as "black" by the Voyager imaging system.

  20. Skin damage thresholds with continuous-wave laser exposures at the infrared wavelength of 1319 nm

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Harbert, Corey A.; Noojin, Gary D.; Noojin, Isaac D.; Schuster, Kurt J.; Shingledecker, Aurora D.; Stolarski, David J.; Kumru, Semih S.

    2011-03-01

    ABSTRACT Damage thresholds (ED50) for skin using Yucatan mini-pig (Sus scrofa domestica) have been determined at the operational wavelength of 1319 nm with beam diameters of 0.61 cm and 0.96 cm. Exposure durations of 0.25, 1.0, 2.5 and 10 seconds were used to determine trends in damage threshold with respect to exposure time and beam diameter at this moderately-high penetrating wavelength. A relatively narrow range of total radiant exposure from 37.4 J/cm2 to 62.3 J/cm2 average was observed for threshold damage with laser parameters encompassing a factor of two in beam area and a factor of forty in exposure duration.

  1. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  2. Emission from dust in visual reflection nebulae at infrared and submillimeter wavelengths

    SciTech Connect

    Casey, S.C. Yerkes Observatory, Williams Bay, WI )

    1991-04-01

    Far-IR and submillimeter images of five bright visual reflection nebulae, IC 446, NGC2247, NGC 2245, NGC 7023, and CED 201 are presented and used with composite IR spectra to derive parameters such as the fraction of nebulae emission attributed to molecule-sized grains, the range of nebulae grain albedos, gas densities, and gas cloud geometries. The results show that 30-45 percent of the nebulae emission lies at wavelengths of less than 30 microns. The variation in IR luminosity may be related to variations in nebulae gas density and less than optimal gas cloud geometries rather than to anomalous grain albedos. Relative extinction efficincies of roughly 1000-5000 are inferred for stellar photospheres with effective wavelengths of roughly 0.25-0.5 micron. The resultant mass-extinction coefficient is roughly 10-50 sq cm/g. 79 refs.

  3. MEMS infrared approaches to detector based on nonlinear oscillation and wavelength selective emitter using surface plasmon polariton

    NASA Astrophysics Data System (ADS)

    Sasaki, Minoru; Kumagai, Shinya

    2014-03-01

    The suspended MEMS structure is suitable for reducing the energy loss due to the thermal conduction. There is the possibility that IR photon energy can be well-controlled to generate some physical effects. A new method bases on the nonlinear oscillation for the detector. The thin film torsional spring exhibits a large hard spring effect when the deflection occurs in the out-of-plane direction of the film. When IR is absorbed, the resonator bends due to the thermal expansion. The torsional spring becomes harder increasing the resonant frequency. The frequency measurement is suited for the precise sensing. The device response is measured using the laser (wavelength of 650nm). The resonant frequency is 88-94kHz. Q factor is about 1600 in vacuum (1Pa). The sensitivity is -0.144[kHz/(kW/m2)]. As for the emitter, nondispersive IR gas sensor is considered. The molecules have their intrinsic absorptions. CO2 absorbs the wavelength 4.2- 4.3μm. The major incandescent light bulbs have the broad spectrum emitting IR which is not used for gas sensing. The wavelength selectivity at the gas bandwidth will improve the efficiency. A new principle uses the microheater placed facing to the grating. SPP is excited carrying IR energy on the grating surface. IR emission is the reverse process of excitation occurring at the output end. The emission spectra show SPP related peak having the width of 190nm. When the input power increases from 0.3 to 1.9W, the peak at wavelength of 3.5μm becomes clearer.

  4. Method for measuring thermal properties using a long-wavelength infrared thermal image

    DOEpatents

    Walker, Charles L.; Costin, Laurence S.; Smith, Jody L.; Moya, Mary M.; Mercier, Jeffrey A.

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  5. Transillumination of subcutaneous adipose tissues using near-infrared hyperspectral imaging in the 1100-1800 nm wavelength range

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Kitayabu, A.; Kobayashi, Y.; Honda, N.; Awazu, K.

    2011-02-01

    Hyperspectral imaging (HSI) is a chemical imaging modality with spectroscopic information. This technique was often used in agricultural or pharmaceutical industries. But there have been a few reports for clinical medical applications. In near-infrared (NIR) wavelength region, the significant absorption peaks are often observed by the overtone of midinfrared molecular vibration. In addition, NIR light has a high penetration because of low scattering and less absorption by water or protein. In this study, we constructed the NIR-HSI system and the high-contrast subcutaneous adipose tissue imaging was conducted in-vitro. In the absorption spectra which are obtained by our NIR-HSI system, the characteristic absorption bands were observed around 1200 nm and 1700 nm. In the processed images using these wavelength bands, subcutaneous adipose tissue was observed through a skin. In a hyperspectral image by another processing using all wavelengths, a high-contrast image of subcutaneous adipose tissue is also obtained. NIR-HSI system is a powerful diagnostic technique for adipose tissues distribution and their morphological change on/inside a tissue.

  6. Near-infrared spectroscopy with Spectroscopic technique with wide range of wavelength information detects tissue oxygenation level clearly

    NASA Astrophysics Data System (ADS)

    Eda, Hideo; Aoki, Hiromichi; Eura, Shigeru; Ebe, Kazutoshi

    2010-02-01

    Near-infrared spectroscopy (NIRS) is based on the modified-Lambert-Beer's law that changes in absorbance are proportional to changes in hemoglobin parameters. Majority of the conventional measurement methods uses only two or three wavelengths. In this research, basic examination of NIRS measurement was approached by acquiring wide range of wavelength information. Arterial occlusion task was performed by using the blood pressure cuff around the upper arm. Pressure of 200mmHg was then applied for about 3 minutes. During the arterial occlusion, the spectrum of the lower arm muscles was measured every 15 seconds, within the range of 600 to 1100nm. The secondary derivative spectrum was calculated from the measured spectrum. Arterial occlusion is a task which changes the oxygenation level of the tissue. The change can be regarded as the change of the spectrum form, not as the change of the baseline. Furthermore, it was found that other wavelength bands hold information correlating to this arterial occlusion task.

  7. Wavelength-tunable visible to near-infrared photoluminescence of carbon dots: the role of quantum confinement and surface states

    NASA Astrophysics Data System (ADS)

    Ghamsari, Morteza Sasani; Bidzard, Ashkan Momeni; Han, Wooje; Park, Hyung-Ho

    2016-04-01

    Carbon quantum dots (C-QDs) with different size distributions and surface characteristics can exhibit good emission properties in the visible and near-infrared (NIR) regions, which can be applicable in optoelectronic devices as well as biomedical applications. Optical properties of colloidal C-QDs in distilled water at different concentrations produced using a method of alkali-assisted surfactant-free oxidation of cellulose acetate is presented. The structural and optical properties of colloidal C-QDs at different concentrations were investigated, with the aim of clarifying the main mechanisms of photoluminescence emissions. We observed a wide range of tunable visible to NIR emissions with good stability from the C-QD colloids at different applied excitation wavelengths. The colloids show dual emissions with maxima at ˜420 and 775 nm (blue and NIR emissions) when excited at the wavelength range near the energy gaps of the C-QDs. Moreover, by increasing the excitation wavelength, tunable visible emissions at the spectral range of 475 to 550 nm are observed. A detailed analysis of the results shows that the blue and NIR luminescence of colloidal C-QDs originate from the oxide-related surface effects whereas quantum confinement is the responsible mechanism for tunable visible emissions of the C-QD colloid.

  8. Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden

    PubMed Central

    Eames, Matthew E.; Wang, Jia; Pogue, Brian W.; Dehghani, Hamid

    2013-01-01

    Multispectral near-infrared (NIR) tomographic imaging has the potential to provide information about molecules absorbing light in tissue, as well as subcellular structures scattering light, based on transmission measurements. However, the choice of possible wavelengths used is crucial for the accurate separation of these parameters, as well as for diminishing crosstalk between the contributing chromophores. While multispectral systems are often restricted by the wavelengths of laser diodes available, continuous-wave broadband systems exist that have the advantage of providing broadband NIR spectroscopy data, albeit without the benefit of the temporal data. In this work, the use of large spectral NIR datasets is analyzed, and an objective function to find optimal spectral ranges (windows) is examined. The optimally identified wavelength bands derived from this method are tested using both simulations and experimental data. It is found that the proposed method achieves images as qualitatively accurate as using the full spectrum, but improves crosstalk between parameters. Additionally, the judicious use of these spectral windows reduces the amount of data needed for full spectral tomographic imaging by 50%, therefore increasing computation time dramatically. PMID:19021417

  9. A Wavelength Optimization Study on Visible and Infrared Propagation Systems in Coastal Environments

    NASA Technical Reports Server (NTRS)

    Reid, J. S.; Tsay, Si-Chee; Moision, W. K.; Gasso, S.; Cook, J. R.; Westphal, D. L.; Paulus, R. A.; Bucholtz, A.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Electro-optical (EO) systems employed for communications, surveillance and weapons systems are commonly assessed in the North American and European continents. However, the atmospheric propagation environment in these regions is often dissimilar to most other parts of the world. In particular, atmospheric dust, industrial pollution, and smoke frequently reduce visibility to less than 5 km in Asia and South America significantly hampering EO system performance. Because atmospheric aerosol species vary considerably in size and chemistry, optimal wavelengths for EO systems vary from region to region. In this paper we examine the extinction effects from aerosol particles and water vapor on a regional basis. Theoretical studies are coupled with visibility and satellite climatologies to make an assessment for the coastal regions of the world. While longer wavelengths permit higher transmission by particles in regions significantly hampered by fine mode particles (such as industrial pollution and smoke), this advantage is commonly offset by high extinction values from water vapor. This offsetting effect is particularly strong in industrial and developing countries in the tropics and sub-tropics such as Southeast Asia and South America. Conversely, the advantage of low water vapor concentrations in longer wavelengths is offset by high mass-extinction efficiencies of atmospheric dust in this portion of the spectrum.

  10. Infrared spectroscopy of hydrated alkali metal cations: Evidence of multiple photon absorption

    NASA Astrophysics Data System (ADS)

    Beck, Jordan P.; Lisy, James M.

    2011-07-01

    Infrared predissociation spectra of M+(H2O)4-7, where M = alkali metal, are presented. Hydrogen bonding O-H stretching features are strongly dependent on which fragmentation channel is monitored. Spectra recorded by monitoring the loss of multiple waters show a preference for one absorption feature in the hydrogen-bonded region centered at ˜3430-3500 cm-1, which is assigned to linear-type hydrogen bonded OH stretches. Cyclic- and bent-type hydrogen bonded OH stretches have diminished photodissociation cross sections in the multiple ligand loss channels. Evidence from Rice-Ramsperger-Kassel-Marcus-evaporative ensemble calculations and laser fluence dependence experiments indicates that the multiple water loss channels are primarily the result of multiple photon absorption which we propose could be due to multiple, independent oscillators within a cluster ion each absorbing a photon during a single, 10 ns laser pulse.

  11. A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Mi, Xueting; Wei, Jing; Wang, Jian; Tian, Xinpeng; Yu, Huiyong; Gan, Ping

    2017-02-01

    To realize highly precise and automatic cloud detection from multi-sensors, this paper proposes a cloud detection algorithm-generating (CDAG) method for remote sensing data from visible to short-wave infrared (SWIR) bands. Hyperspectral remote sensing data with high spatial resolution were collected and used as a pixel dataset of cloudy and clear skies. In this paper, multi-temporal AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data with 224 bands at visible to SWIR wavelengths and a 20 m spatial resolution were used for the dataset. Based on the pixel dataset, pixels of different types of clouds and land cover were distinguished artificially and used for the simulation of multispectral sensors. Cloud detection algorithms for the multispectral remote sensing sensors were then generated based on the spectral differences between the cloudy and clear-sky pixels distinguished previously. The possibility of assigning a pixel as cloudy was calculated based on the reliability of each method. Landsat 8 OLI (Operational Land Imager), MODIS (Moderate Resolution Imaging Spectroradiometer) Terra and Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer) were used for the cloud detection test with the CDAG method, and the results from each sensor were compared with the corresponding artificial results, demonstrating an accurate detection rate of more than 85%.

  12. Massive Photons: An Infrared Regularization Scheme for Lattice QCD+QED.

    PubMed

    Endres, Michael G; Shindler, Andrea; Tiburzi, Brian C; Walker-Loud, André

    2016-08-12

    Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body computations with long-range Coulomb interactions.

  13. Tritium removal from contaminated water via infrared laser multiple-photon dissociation

    SciTech Connect

    Maienschein, J.L.; Magnotta, F.; Herman, I.P.; Aldridge, F.T.; Hsiao, P.

    1983-01-01

    Isotope separation by means of infrared-laser multiple-photon dissociation offers an efficient way to recover tritium from contaminated light or heavy water found in fission and fusion reactors. For tritium recovery from heavy water, chemical exchange of tritium into deuterated chloroform is followed by selective laser dissociation of tritiated chloroform and removal of the tritiated photoproduct, TCl. The single-step separation factor is at least 2700 and is probably greater than 5000. Here we present a description of the tritium recovery process, along with recent accomplishments in photochemical studies and engineering analysis of a recovery system.

  14. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    PubMed Central

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2–6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate. PMID:27629800

  15. Infrared Arrays

    NASA Astrophysics Data System (ADS)

    McLean, I.; Murdin, P.

    2000-11-01

    Infrared arrays are small electronic imaging devices subdivided into a grid or `array' of picture elements, or pixels, each of which is made of a material sensitive to photons (ELECTROMAGNETIC RADIATION) with wavelengths much longer than normal visible light. Typical dimensions of currently available devices are about 27-36 mm square, and formats now range from 2048×2048 pixels for the near-infra...

  16. High power broadband mid-infrared supercontinuum fiber laser using a novel chalcogenide AsSe2 photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Diouf, Mbaye; Ben Salem, Amine; Cherif, Rim; Wague, Ahmadou; Zghal, Mourad

    2016-05-01

    A high power supercontinuum (SC) based on a new type of chalcogenide AsSe2 material for broadband mid-infrared light source is numerically reported. Ultra-broadband coherent mid-IR SC generation with more than 3 octave-spanning from 1.7 to 14 μm in a novel design of chalcogenide AsSe2 photonic crystal fiber (PCF) is demonstrated. To the best of our knowledge and aiming to properly model the nonlinear propagation, an accurate fit of the Raman response function and the corresponding Raman gain of the novel AsSe2 chalcogenide glass are proposed numerically for the first time. The obtained SC is generated by pumping at 3.9 μm in the anomalous dispersion regime in only 8 mm long fiber. Our study shows that the initially generated SC from 150 fs pulse duration with 8.8 kW peak power exhibits high power proportion of more than 80% for wavelengths beyond 3 μm which is very promising for designing high power SC fiber laser sources in the mid-IR atmospheric windows and the molecular fingerprint region.

  17. The Galactic Centre at infrared wavelengths: towards the highest spatial resolution

    NASA Astrophysics Data System (ADS)

    Clénet, Yann; Rouan, Daniel; Léna, Pierre; Gendron, Eric; Lacombe, François

    2007-01-01

    We now know that our Galaxy harbors at its centre a supermassive 3.6×10M black hole. This result came after more than 2 decades of infrared studies of the Galactic Centre and important instrumental developments in infrared detectors and in high spatial resolution techniques. Adaptive optics, which allows diffraction-limited infrared observations and enhanced sensitivity, was actually the major breakthrough in this respect. We introduce in the first section of this article what was our knowledge of the Galactic Centre before the advent of adaptive optics. In the second section, after a reminder of the first adaptive optics observations of this region, we highlight the specificities of Galactic Centre adaptive optics observations. In the third and fourth sections, we present the major results obtained from adaptive optics observations of the Galactic Centre: the case of the supermassive black hole and the paradox of youth. In the fifth section, we introduce two main future facilities that will provide even higher spatial resolutions, Gravity—a second generation VLTI instrument—and Extremely Large Telescopes, and the improvements that we expect with these new instruments in our knowledge of the Galactic Centre region. We conclude in the last section. To cite this article: Y. Clénet et al., C. R. Physique 8 (2007).

  18. Infrared behavior and gauge artifacts in de Sitter spacetime: the photon field.

    PubMed

    Youssef, A

    2011-07-08

    We study the infrared (long-distance) behavior of the free photon field in de Sitter spacetime. Using a two-parameter family of gauge-fixing terms, we show that the infrared (IR) behavior of the two-point function is highly gauge-dependent and ranges from vanishing to growing. This situation is in disagreement with its counterpart in flat spacetime, where the two-point function vanishes in the IR region for any choice of the gauge-fixing parameters. A criterion to isolate the physical part of the two-point function is given and is shown to lead to a well-behaved two-point function in the IR region.

  19. Design and analysis of equiangular spiral photonic crystal fiber for mid-infrared supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Saini, T. S.; Baili, A.; Kumar, A.; Cherif, R.; Zghal, M.; Sinha, R. K.

    2015-11-01

    A design of equiangular spiral photonic crystal fiber (PCF) in As2Se3 chalcogenide glass is reported for mid-infrared supercontinuum generation. Supercontinuum covering the 1.2-15 μm molecular fingerprint region is achieved using only 8 mm long designed PCF pumped with 50 fs laser pulses of 500 W peak power. The structural parameters have been tailored for all-normal dispersion characteristic. Proposed structure has high nonlinearity (γ = 12474 W-1 km-1) at 3.5 μm with very low and flat dispersion -2.9 [ps/(nm × km)]. Supercontinuum with such broadening and high coherence degree is applicable for mid-infrared spectroscopy, gas sensing, early cancer diagnostics and free space communication.

  20. Enhanced backscattering for infrared detection using photonic crystal based flat lens.

    PubMed

    Oden, Jonathan; Hofman, Maxence; Mélique, Xavier; Lippens, Didier; Vanbésien, Olivier

    2012-08-10

    An n=-1 flat lens based on photonic crystal semiconductor technology is evaluated for infrared detection purposes. The idea consists in exploiting the backscattered waves of an incident plane wave impinging on a target placed in the focal region of a flat lens. It is shown that subwavelength detection of micronic dielectric targets can be obtained at 1.55 μm using the double focus of reflected waves induced by negative refraction. Complex relations among the intrinsic nature, the shape and size of the target, and detection efficiency are interpreted in terms of target eigenmode excitation. Reflectivity is modulated by the intrinsic mode nature, transverse, circular, or longitudinal, with an enhancement of the detection sensitivity in the case of whispering-gallery modes. It is believed that such a study paves the way to the definition of original noninvasive infrared sensors.

  1. Interband cascade laser sources in the mid-infrared for green photonics

    NASA Astrophysics Data System (ADS)

    Koeth, J.; von Edlinger, M.; Scheuermann, J.; Becker, S.; Nähle, L.; Fischer, M.; Weih, R.; Kamp, M.; Höfling, S.

    2016-03-01

    Tunable Laser Absorption Spectroscopy (TLAS) has proven to be a versatile tool for gas sensing applications with significant advantages compared to other techniques. These advantages include real time measurement, standoff detection and ruggedness of the sensor. Especially the Mid-Infrared (MIR) wavelength region from 3 to 6 microns is of great interest for industrial process control and the reduction of pollutants. In this contribution we present novel ICL devices developed to address the crucial air pollutant sulfur dioxide SO2 at its transition around 4 μm. In general, interband cascade lasers (ICLs) have evolved into important laser sources for the MIR spectral range. Compared to quantum cascade lasers, they offer significant advantages with respect to threshold power density as well as overall power consumption. In contrast to conventional diode lasers, ICLs are able to cover the entire MIR wavelength range of interest. For application in TLAS, single-mode devices are required. In this work application-grade distributed feedback (DFB) ICL devices for addressing SO2 at the wavelength range around 4 μm are presented. A lateral metal grating, defined by electron beam lithography, is used to achieve DFB operation and hence spectrally single-mode emission. Continuous wave laser operation with threshold power consumption below 100 mW at room temperature, side mode suppression ratio of > 30 dB and wavelength tuning range up to 28 nm are demonstrated.

  2. Wavelength-modulation detection of acetylene with a near-infrared external-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Oh, Daniel B.; Hovde, David Christian

    1995-10-01

    An external-cavity diode laser operating at 1500 nm was used to record the combination band of acetylene (C2H2). By combination of wavelength-modulation spectroscopy with a noise-canceler detection circuit, a minimum detectable absorbance of 4.8 \\times 10 -4 with a 300-ms time constant was achieved, although this result was limited by etalon fringes. When combined with this detection technique, continuous, widely tunable output from an external-cavity laser is ideally suited for high-resolution absorption spectroscopy with excellent sensitivity.

  3. Atmospheric transparency over Antarctica from the mid-infrared to centimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Bally, John

    1990-01-01

    Estimates of total water vapor column density obtained from both in situ sampling and radiometric measurement of sky brightness near 1 mm are presented, in conjunction with an estimation code for estimating the range of useful wavelengths from the Antarctic Plateau. Attention is given to graphs for atmospheric absorption up to 20,000 GHz under the best Antarctic conditions (assuming 50 microns of H2O), which are encountered a few percent of the time during the Austral winter, in the highest altitude sites.

  4. Cavity Lifetime Phase-Shift Method for Sensitive Reflectance Measurements at Mid-infrared Wavelengths

    DTIC Science & Technology

    2007-11-02

    Reflectance Measurement Midinfrared Wavelength Spatial Resolution...H 4J « ■u CO c o S <u o n o >4-l 3 o 13 w Co r; (U 0) > n 60 •H tu III. RESULTS Demonstration of a reflectance measurement was...u o 1-1 VJ a) p. 3 u o u u CO o >> c > a; rt 0) CO ß9P ’J19NV 3SVHd 60 •H 17 V. CONCLUSIONS A high- reflectance measurement

  5. Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared

    NASA Astrophysics Data System (ADS)

    Vico Triviño, Noelia; Minkov, Momchil; Urbinati, Giulia; Galli, Matteo; Carlin, Jean-François; Butté, Raphaël; Savona, Vincenzo; Grandjean, Nicolas

    2014-12-01

    Photonic crystal point-defect cavities were fabricated in a GaN free-standing photonic crystal slab. The cavities are based on the popular L3 design, which was optimized using an automated process based on a genetic algorithm, in order to maximize the quality factor. Optical characterization of several individual cavity replicas resulted in an average unloaded quality factor Q = 16 900 at the resonant wavelength λ˜1.3 μm , with a maximal measured Q value of 22 500. The statistics of both the quality factor and the resonant wavelength are well explained by first-principles simulations including fabrication disorder and background optical absorption.

  6. Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths.

    PubMed

    Garcia, C; Coello, V; Han, Z; Radko, I P; Bozhevolnyi, S I

    2012-03-26

    We report on the fabrication and characterization of straight dielectric-loaded surface plasmon polaritons waveguides doped with lead-sulfide quantum dots as a near infra-red gain medium. A loss compensation of ~33% (an optical gain of ~143 cm⁻¹) was observed in the guided mode. The mode propagation, coupling efficiency and stimulated emission were characterized using leakage radiation microscopy. The guided mode signature was separated using spatial filters in the Fourier plane of the microscope for quantitative measurements of stimulated emission.

  7. The sharpest view of the local AGN population at mid-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian F.; Gandhi, Poshak; Smette, Alain; Duschl, Wolfgang J.

    2014-07-01

    We present the largest mid-infrared (MIR) atlas of active galactic nuclei at sub-arcsec spatial scales containing 253 objects with a median redshift of 0.016. It comprises all available ground-based high-angular resolution MIR observations performed to date with 8-meter class telescopes and includes 895 photometric measurements. All types of AGN are present in the atlas, which also includes 80 per cent of the 9-month BAT AGN sample. Therefore, this atlas and its subsamples are very well-suited for AGN unification studies. A first application of the atlas is the extension of the MIR-X-ray luminosity correlation for AGN.

  8. A multi-wavelength classification method for polar stratospheric cloud types using infrared limb spectra

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Höpfner, Michael; Griessbach, Sabine; Müller, Rolf; Pitts, Michael C.; Orr, Andrew M. W.; Riese, Martin

    2016-08-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on board the ESA Envisat satellite operated from July 2002 until April 2012. The infrared limb emission measurements represent a unique dataset of daytime and night-time observations of polar stratospheric clouds (PSCs) up to both poles. Cloud detection sensitivity is comparable to space-borne lidars, and it is possible to classify different cloud types from the spectral measurements in different atmospheric windows regions. Here we present a new infrared PSC classification scheme based on the combination of a well-established two-colour ratio method and multiple 2-D brightness temperature difference probability density functions. The method is a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption. The method has been tested in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions, geometries, and composition. The Bayesian classifier distinguishes between solid particles of ice and nitric acid trihydrate (NAT), as well as liquid droplets of super-cooled ternary solution (STS). The classification results are compared to coincident measurements from the space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument over the temporal overlap of both satellite missions (June 2006-March 2012). Both datasets show a good agreement for the specific PSC classes, although the viewing geometries and the vertical and horizontal resolution are quite different. Discrepancies are observed between the CALIOP and the MIPAS ice class. The Bayesian classifier for MIPAS identifies substantially more ice clouds in the Southern Hemisphere polar vortex than CALIOP. This disagreement is attributed in part to the difference in the sensitivity on mixed-type clouds. Ice seems to dominate the spectral behaviour in the limb infrared spectra and may cause an overestimation in ice occurrence

  9. Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm.

    PubMed

    Clay, G Omar; Schaffer, Chris B; Kleinfeld, David

    2007-01-14

    Porphyrin molecules have a highly conjugated cyclic structure and are theorized to have unusually large two-photon absorptivities (sigmaTPA), i.e., sigmaTPA approximately 10(2) GM. The authors tested this claim. Ultrafast two-photon absorption (TPA) spectroscopy was performed on solutions of hemoglobin, which contains a naturally occurring metaloporphyrin. They used a pump-probe technique to directly detect the change in transmission induced by TPA over the wavelength range of lambda0=780-880 nm. As controls, they measured the TPA of the dyes rhodamine 6G and B; their measurements both verify and extend previously reported values. In new results, hemoglobin was found to have a peak two-photon absorptivity of sigmaTPA approximately 150 GM at lambda0=825 nm, near a resonance of the Soret band. This value supports theoretical expectations. They also found a significant difference in the TPA of carboxyhemoglobin versus oxyhemoglobin, e.g., sigmaTPA=61 GM versus sigmaTPA=18 GM, respectively, at lambda0=850 nm, which shows that the ligand affects the electronic states involved in TPA.

  10. Improving Brush Polymer Infrared One-Dimensional Photonic Crystals via Linear Polymer Additives

    SciTech Connect

    Macfarlane, Robert J.; Kim, Bongkeun; Lee, Byeongdu; Weitekamp, Raymond A.; Bates, Christopher M.; Lee, Siu Fung; Chang, Alice B.; Delaney, Kris T.; Fredrickson, Glen H.; Atwater, Harry A.; Grubbs, Robert H.

    2014-12-17

    Brush block copolymers (BBCPs) enable the rapid fabrication of self-assembled one-dimensional photonic crystals with photonic band gaps that are tunable in the UV-vis-IR, where the peak wavelength of reflection scales with the molecular weight of the BBCPs. Due to the difficulty in synthesizing very large BBCPs, the fidelity of the assembled lamellar nanostructures drastically erodes as the domains become large enough to reflect IR light, severely limiting their performance as optical filters. To overcome this challenge, short linear homopolymers are used to swell the arrays to ~180% of the initial domain spacing, allowing for photonic band gaps up to~1410 nm without significant opacity in the visible, demonstrating improved ordering of the arrays. Additionally, blending BBCPs with random copolymers enables functional groups to be incorporated into the BBCP array without attaching them directly to the BBCPs. The addition of short linear polymers to the BBCP arrays thus offers a facile means of improving the self-assembly and optical properties of these materials, as well as adding a route to achieving films with greater functionality and tailorability, without the need to develop or optimize the processing conditions for each new brush polymer synthesized.

  11. Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers.

    PubMed

    Yao, Yuhong; Knox, Wayne H

    2013-11-04

    We report a novel scheme of generating broadly tunable femtosecond mid-IR pulses based on difference frequency mixing the outputs from dual photonic crystal fibers (PCF). With a 1.3 W, 1035 nm, 300 fs and 40 MHz Yb fiber chirped pulse amplifier as the laser source, a PCF with single zero dispersion wavelength (ZDW) at the laser wavelength is employed to spectrally broaden a portion of the laser pulses. Facilitated by self-phase modulation, its output spectrum possesses two dominant outermost peaks that can be extended to 970 nm and 1092 nm. A different PCF with two closely spaced ZDWs around the laser wavelength is used to generate the intense Stokes pulses between 1240 - 1260 nm. Frequency mixing the dual PCFs outputs in an AgGaS(2) crystal results in mid-IR pulses broadly tunable from 4.2 μm to 9 μm with a maximum average power of 640 µW at 4.5 μm, corresponding to 16 pJ of pulse energy.

  12. Resonant Infrared Multiple Photon Dissociation Spectroscopy of Anionic Nucleotide Monophosphate Clusters.

    PubMed

    Ligare, Marshall R; Rijs, Anouk M; Berden, Giel; Kabeláč, Martin; Nachtigallova, Dana; Oomens, Jos; de Vries, Mattanjah S

    2015-06-25

    We report mid-infrared spectra and potential energy surfaces of four anionic, 2'-deoxynucleotide-5'-monophosphates (dNMPs) and the ionic DNA pairs [dGMP-dCMP-H](1-), [dAMP-dTMP-H](1-) with a total charge of the complex equal to -1. We recorded IR action spectra by resonant IR multiple-photon dissociation (IRMPD) using the FELIX free electron laser. The potential energy surface study employed an on-the-fly molecular dynamics quenching method (MD/Q), using a semiempirical AM1 method, followed by an optimization of the most stable structures using density functional theory. By employing infrared multiple-photon dissociation (IRMPD) spectroscopy in combination with high-level computational methods, we aim at a better understanding of the hydrogen bonding competition between the phosphate moieties and the nucleobases. We find that, unlike in multimer double stranded DNA structures, the hydrogen bonds in these isolated nucleotide pairs are predominantly formed between the phosphate groups. This intermolecular interaction appears to exceed the stabilization energy resulting from base pairing and directs the overall cluster structure and alignment.

  13. Molecular beam epitaxy growth of peak wavelength-controlled InGaAs/AlGaAs quantum wells for 4.3-μm mid-wavelength infrared detection.

    PubMed

    Shi, Zhenwu; Wang, Lu; Zhen, Honglou; Wang, Wenxin; Chen, Hong

    2013-07-03

    InGaAs/AlGaAs multiple quantum wells used for 4.3 μm mid-wavelength infrared quantum well infrared detectors were grown by molecular beam epitaxy. In composition loss was observed and quantitatively studied by high-resolution X-ray diffraction technology. By this In composition loss effect, the energy band engineering on the photo-response wavelength is not easily achieved. A thin AlGaAs barrier grown at low temperature is used to suppress the In atom desorption, and this growth process was verified to be able to adjust the photo-response wavelength as designed by energy band engineering in the photocurrent spectrum.

  14. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm

    NASA Astrophysics Data System (ADS)

    Kettler, Jan; Paul, Matthias; Olbrich, Fabian; Zeuner, Katharina; Jetter, Michael; Michler, Peter

    2016-03-01

    InAs quantum dots grown on a GaAs substrate have been one of the most successful semiconductor material systems to demonstrate single-photon-based quantum optical phenomena. In this context, we present the feasibility to extend the low-temperature photoluminescence emission range of In(Ga)As/GaAs quantum dots grown by metal-organic vapor-phase epitaxy from the typical window between 880 and 960 nm to wavelengths above 1.3 μm. A low quantum dot density can be obtained throughout this range, enabling the demonstration of single- and cascaded photon emission. We further analyze polarization-resolved micro-photoluminescence from a large number of individual quantum dots with respect to anisotropy and size of the underlying fine-structure splittings in the emission spectra. For samples with elevated emission wavelengths, we observe an increasing tendency of the emitted photons to be polarized along the main crystal axes.

  15. Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes

    NASA Astrophysics Data System (ADS)

    Yuan, Jin-Hui; Sang, Xin-Zhu; Yu, Chong-Xiu; Xin, Xiang-Jun; Shen, Xiang-Wei; Zhang, Jin-Long; Zhou, Gui-Yao; Li, Shu-Guang; Hou, Lan-Tian

    2011-05-01

    By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.

  16. Gas-phase infrared multiple photon dissociation spectroscopy of isolated SF6- and SF5- anions.

    PubMed

    Steill, Jeffrey D; Oomens, Jos; Eyler, John R; Compton, Robert N

    2008-12-28

    Resonantly enhanced multiple photon dissociation of gas-phase SF(6) (-) and SF(5) (-) is studied using tunable infrared light from the FELIX free electron laser. The photodissociation spectrum of the sulfur hexafluoride anion, producing SF(5) (-), is recorded over the spectral range of 250-1650 cm(-1). The infrared multiple photon dissociation cross section exhibits a strong, broad resonance enhancement at 675 cm(-1) in agreement with the calculated value of nu(3), one of the two IR-active fundamental vibrational modes predicted for the O(h)-symmetry ion. Much weaker absorption features are observed in the spectral region of 300-450 cm(-1) as well as at 580 cm(-1) that are not easily assigned to the other IR-active fundamental of SF(6) (-) since these resonances are observed at a much higher energy than the calculated values for the IR-active nu(4) mode. The potential role of binary combination bands is considered. Photodissociation from the sulfur pentafluoride anion produced only F(-), but photodetachment was also observed through SF(6) associative electron capture. The IR multiple photon dissociation spectrum of SF(5) (-) shows multiple resonances within the region of 400-900 cm(-1) and agreement with calculations is clear, including the observation of three fundamental frequencies: nu(1) at 780 cm(-1), nu(7) at 595 cm(-1), and nu(8) at 450 cm(-1). Comparisons of the measured frequencies with ab initio and density functional theory calculations confirm an SF(5) (-) anion of C(4v) symmetry. Similar comparisons for SF(6) (-) are not inconsistent with an anion of O(h) symmetry.

  17. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics

    NASA Astrophysics Data System (ADS)

    Li, Wei; Anantha, P.; Bao, Shuyu; Lee, Kwang Hong; Guo, Xin; Hu, Ting; Zhang, Lin; Wang, Hong; Soref, Richard; Tan, Chuan Seng

    2016-12-01

    A germanium-based platform with a large core-clad index contrast, germanium-on-silicon nitride waveguide, is demonstrated at mid-infrared wavelength. Simulations are performed to verify the feasibility of this structure. This structure is realized by first bonding a silicon-nitride-deposited germanium-on-silicon donor wafer onto a silicon substrate wafer, followed by the layer transfer approach to obtain germanium-on-silicon nitride structure, which is scalable to all wafer sizes. The misfit dislocations which initially form along the interface between germanium/silicon can be removed by chemical mechanical polishing after layer transfer process resulting in a high-quality germanium layer. At the mid-infrared wavelength of 3.8 μm, the germanium-on-silicon nitride waveguide has a propagation loss of 3.35 ± 0.5 dB/cm and a bend loss of 0.14 ± 0.01 dB/bend for a radius of 5 μm for the transverse-electric mode.

  18. Development of long wavelength semiconductor diode lasers near 28 microns for use in infrared heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Linden, K. J.

    1984-01-01

    The development of tunable diode lasers operating in the 28 micrometers spectral region for use in infrared heterodyne spectrometers is reported. A process capable of yielding lasers emitting 500 micron W of multimode power, 112 micron W in a true single mode and true single mode operation at laser currents of up to 35% above threshold was developed. Results were obtained from narrow mesastripe (20 micrometer wide) short cavity (120 micrometer length) laser configurations. Six stripe geometry lasers, with a variety of cavity widths and lengths were delivered. The techniques to fabricate such devices was obtained and the long term reliability of such lasers by reproducible electrical and optical output characteristics fabrication from lasers are demonstrated.

  19. A near-infrared methane detection system using a 1.654 μm wavelength-modulated diode laser

    NASA Astrophysics Data System (ADS)

    Fu, Yang; Liu, Hui-fang; Sui, Yue; Li, Bin; Ye, Wei-lin; Zheng, Chuan-tao; Wang, Yi-ding

    2016-03-01

    By adopting a distributed feedback laser (DFBL) centered at 1.654 μm, a near-infrared (NIR) methane (CH4) detection system based on tunable diode laser absorption spectroscopy (TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of -0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection ( LoD) is decided to be 2.952×10-5 with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10-5 m. Compared with our previously reported NIR CH4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.

  20. Wavelength dependence of linear polarization in the visible and near infrared domain for large levitating grains (PROGRA2 instruments)

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Hadamcik, E.; Couté, B.; Jeannot, M.; Levasseur-Regourd, A. C.

    2014-10-01

    Remote sensing measurements of light scattered by dust in solar system objects can provide clues on their physical properties. Databases obtained in the laboratory with numerous samples are necessary to interpret these measurements. We present here first studies of the wavelength dependence of the linear polarization between 545 nm and 1.5 μm, using the imaging polarimeters PROGRA2 for large levitating compact grains (PROGRA2-VIS in the visible domain, and the new instrument PROGRA2-IR in the near infrared). The measurements are conducted in microgravity conditions during parabolic flights for glass beads, quartz, sands, silicon carbides, anthracite, and lunar and Martian simulants. Comparison between measurements on glass beads and Mie calculations with glass spheres provides an assessment of the quality of the instruments. The dependence of the polarization on the wavelength is related to the complex refractive index of the particles, i.e. to their composition and to the size of the grains. More laboratory measurements will be necessary, in particular with smaller grains in aggregates, to better reproduce the remote sensing observations of solar system bodies.

  1. Fabrication of short-wavelength infrared dual-band-pass filter based on combination of Fabry-Perot filters.

    PubMed

    Cai, Yuan; Zhou, Sheng; Ma, Xiaofeng; Liu, Dingquan

    2016-11-20

    Dual-band-pass filters are key optical components in dual-spectral detection applications; it is imperative to fabricate them in a relatively simple way for practical use. In this paper, a dual-band-pass filter working in short-wavelength infrared is developed by the combination of two Fabry-Perot (F-P) filters, each having a transparent band. These two filters are designed separately, and deposited at different sides of a substrate. The total layers' number of the dual-band-pass filter is limited to 34; these layers are monitored by the method of direct transmittance level cut monitoring with a single monitor wavelength. The percent of optical extrema monitoring strategy is adopted in the deposition. The spectra of the F-P filters and the dual-band-pass filter are tested. The shorter pass-band's average transmittance is above 84%, the longer one is above 88%, and four of the pass-bands' edge steepness values are 1.4%,2.8%,1.9%, and 1.7%.

  2. Growth optimization studies to develop InAs/GaInSb superlattice materials for very long wavelength infrared detection

    NASA Astrophysics Data System (ADS)

    Haugan, H. J.; Brown, G. J.; Mahalingam, K.; Grazulis, L.

    2015-05-01

    In order to develop ternary antimonide-based superlattice (SL) materials for very long wavelength infrared (VLWIR) detection, systematic growth optimization studies were performed to produce high quality ternary materials. For the studies, a SL structure of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb was selected to create a very narrow band gap. Results indicate that an epitaxial process developed can produce a precisely controlled band gap around 50 meV, but the material quality of grown SL layers is particularly sensitive to growth defects formed during the growth process. Since Group III antisites and strain-induced dislocations are the dominant structural defects responsible for the low radiative efficiencies, our optimization strategies to eliminate these defects have focused on stabilizing III/V incorporation during surface reconstruction by manipulating the growth surface temperature and balancing the residual strain of the SLs by adjusting the As/Sb flux ratio. The optimized ternary SL materials exhibited an overall strong photoresponse over a wide wavelength range up to ∼15 μm that is important for developing VLWIR detectors. A quantitative analysis of the lattice strain, performed at the atomic scale by aberration corrected transmission electron microscopy, provided valuable information about the strain distribution at the interfaces that was important for optimizing the strain balancing process during SL layer growth.

  3. First-Light Galaxies or Intrahalo Stars: Multi-Wavelength Measurements of the Infrared Background Anisotropies

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha

    The research program described in this proposal can be broadly described as data analysis, measurement, and interpretation of the spatial fluctuations of the unresolved cosmic IR background. We will focus primarily on the background at optical and near-IR wavelengths as probed by Hubble and Spitzer. As absolute background intensity measurements are challenging, the focus is on the spatial fluctuations similar to the anisotropiesof the cosmic microwave background (CMB). Measurements of the unresolved Spitzer fluctuations by two independent teams on multiple fields agree within the measurement errors. However, there are now two interpretations on the origin of the unresolved IRAC fluctuations. One involves a population of faint sources at very high redshifts (z > 6) during the epoch of reionization. The second interpretation involves the integrated emission from intrahalo light associated with diffuse stars in the outskirts of z of 1 to 3 dark matter halos of galaxies. We now propose to further test these two interpretations with a new set of measurements at shorter IR and optical wavelengths with HST/ACS and WFC3 overlapping with deep IRAC surveys. A multi-wavelength study from 0.5 to 4.5 micron will allow us to independently determine the relative contribution of intrahalo light and z > 8 faint galaxies to the unresolved IR fluctuations. We will also place strong limits on the surface density of faint sources at z > 8. Such a limit will be useful for planning deep surveys with JWST. Moving to the recent wide IRAC fields with the warm mission, we propose to study fluctuations at tens of degree angular scales. At such large angular scales IRAC fluctuations should trace diffuse Galactic light (DGL), ISM dust-scattered starlight in our Galaxy. We will measure the amplitude and slope of the DGL power spectrum and compare them to measurements of the Galactic dust power spectrum from IRAS and Planck and study if the large degree-scale fluctuations seen in CIBER can be

  4. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    DTIC Science & Technology

    2012-01-01

    REALIZING A MID-INFRARED OPTICALLY PUMPED MOLECULAR GAS LASER INSIDE HOLLOW-CORE PHOTONIC CRYSTAL FIBER by ANDREW MICHAEL JONES... Laser Inside Hollow-Core Photonic Crystal Fiber 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...optical fibers . These novel lasers are appealing for a variety of applications including frequency metrology in the midinfrared,free-space

  5. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    NASA Astrophysics Data System (ADS)

    Le Jeannic, Hanna; Verma, Varun B.; Cavaillès, Adrien; Marsili, Francesco; Shaw, Matthew D.; Huang, Kun; Morin, Olivier; Nam, Sae Woo; Laurat, Julien

    2016-11-01

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6\\times10^4$ photons/(s$\\cdot$mW$\\cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  6. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared.

    PubMed

    Le Jeannic, Hanna; Verma, Varun B; Cavaillès, Adrien; Marsili, Francesco; Shaw, Matthew D; Huang, Kun; Morin, Olivier; Nam, Sae Woo; Laurat, Julien

    2016-11-15

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous tungsten silicide and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric downconversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6×104 photons/(s·mW·MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  7. Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator.

    PubMed

    Hegenbarth, Robin; Steinmann, Andy; Sarkisov, Sergey; Giessen, Harald

    2012-09-01

    We demonstrate the generation of mid-infrared radiation using a femtosecond dual-signal-wavelength optical parametric oscillator and difference frequency generation in an extracavity gallium selenide or silver gallium diselenide crystal. This system generates up to 4.3 mW of average mid-infrared power. Its spectra can be tuned to between 10.5 μm and 16.5 μm wavelength (952  cm(-1)-606  cm(-1)) with more than 50  cm(-1) spectral bandwidth. We demonstrate that the power and spectra of this system are temporally very stable.

  8. NEAR-INFRARED AND MILLIMETER-WAVELENGTH OBSERVATIONS OF Mol 160: A MASSIVE YOUNG PROTOSTELLAR CORE

    SciTech Connect

    Wolf-Chase, Grace; Smutko, Michael; Sherman, Reid; Harper, Doyal A.; Medford, Michael

    2012-02-01

    We have discovered two compact sources of shocked H{sub 2} 2.12 {mu}m emission coincident with Mol 160 (IRAS 23385+6053), a massive star-forming core thought to be a precursor to an ultracompact H II region. The 2.12 {mu}m sources lie within 2'' (0.05 pc) of a millimeter-wavelength continuum peak where the column density is {>=}10{sup 24} cm{sup -2}. We estimate that the ratio of molecular hydrogen luminosity to bolometric luminosity is >0.2%, indicating a high ratio of mechanical to radiant luminosity. CS J = 2{yields}1 and HCO{sup +} J = 1{yields}0 observations with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) indicate that the protostellar molecular core has a peculiar velocity of {approx}2 km s{sup -1} with respect to its parent molecular cloud. We also observed 95 GHz CH{sub 3}OH J = 8{yields}7 Class I maser emission from several locations within the core. Comparison with previous observations of 44 GHz CH{sub 3}OH maser emission shows that the maser sources have a high mean ratio of 95 GHz to 44 GHz intensity. Our observations strengthen the case that Mol 160 (IRAS 23385+6053) is a rapidly accreting massive protostellar system in a very early phase of its evolution.

  9. Switchable dual-wavelength erbium-doped fiber laser based on the photonic crystal fiber loop mirror and chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng

    2010-03-01

    The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.

  10. Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber.

    PubMed

    Chow, K K; Kikuchi, K; Nagashima, T; Hasegawa, T; Ohara, S; Sugimoto, N

    2007-11-12

    We demonstrate widely tunable wavelength conversion based on four-wave mixing using a dispersion-shifted bismuth-oxide photonic crystal fiber (Bi-PCF). A 1-meter-long Bi-PCF is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero (NRZ) signal. A 3- dB working range of the converted signal over 35 nm is obtained with around 1-dB power penalty in the bit-error-rate measurements.

  11. High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire

    PubMed Central

    2013-01-01

    Single-crystal indium antimony (InSb) nanowire was fabricated into middle-infrared photodetectors based on a metal–semiconductor-metal (M-S-M) structure. The InSb nanowires were synthesized using an electrochemical method at room temperature. The characteristics of the FET reveal an electron concentration of 3.6 × 1017 cm−3 and an electron mobility of 215.25 cm2 V−1 s−1. The photodetectors exhibit good photoconductive performance, excellent stability, reproducibility, superior responsivity (8.4 × 104 A W−1), and quantum efficiency (1.96 × 106%). These superior properties are attributed to the high surface-to-volume ratio and single-crystal 1D nanostructure of photodetectors that significantly reduce the scattering, trapping, and the transit time between the electrodes during the transport process. Furthermore, the M-S-M structure can effectively enhance space charge effect by the formation of the Schottky contacts, which significantly assists with the electron injection and photocurrent gain. PMID:23866944

  12. Long-Wavelength 640 x 484 GaAs/Al(x)Ga(1-x)As Quantum Well Infrared Photodetector Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hong, W.; Sundaram, M.; Carralejo, R.; Shott, C. A.; Maker, P. D.; Miller, R. E.

    1997-01-01

    A 9 micrometers cutoff 640 x 484 hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated. Excellent imagery, with a noise equivalent differential temperature (NE.deltaT) of 43 mK has been achieved. In this paper, we discuss the development of this very sensitive long wavelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array (FPA) and its performance in quantum efficiency, NE.deltaT, uniformity, and operability.

  13. Long-Wavelength Infrared Surface Plasmons on Ga-Doped ZnO Films Excited via 2D Hole Arrays for Extraordinary Optical Transmission (Preprint)

    DTIC Science & Technology

    2013-10-01

    wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical...facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical structure size such as period. Pulse laser deposited...plasmonics, infrared, EOT, doped zinc oxides. 1. INTRODUCTION Surface plasmon polaritons (SPPs) are a means of real-time, label-free biosensing

  14. Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+

    NASA Astrophysics Data System (ADS)

    Yu, D. C.; Ye, S.; Peng, M. Y.; Zhang, Q. Y.; Wondraczek, L.

    2012-05-01

    We report on sequential three-step three-photon near-infrared (NIR) quantum splitting in Tm3+-doped β-NaYF4, where an incident blue photon around 470 nm is split into three NIR photons (1165, 1466, and 1800 nm). The underlying mechanism is analyzed by means of static and dynamic photoemission spectroscopy. Here, an experimental total quantum yield of ˜32% is obtained. When quenching due to residual hydroxyl groups and other defect species can be overcome, numerical analyses indicate a theoretical maximum quantum yield of 158%, suggesting application in efficient spectral converters.

  15. Is there a protocol in experimental skin wounds in rats using low-level diode laser therapy (LLDLT) combining or not red and infrared wavelengths? Systematic review.

    PubMed

    de Lima, Fernando José Camello; de Oliveira Neto, Olavo Barbosa; Barbosa, Fabiano Timbó; do Nascimento Galvão, Ailton Mota; Ramos, Fernando Wagner Silva; de Lima, Christiane Calheiros Farias; de Sousa Rodrigues, Célio Fernando

    2016-05-01

    A systematic review addressing experiments with healing of skin wounds in rats using LLDLT with different active means seeking to identify a pattern in adjustments such as laser wavelength, power and fluency and analysing wound healing parameters, such as wound area, presence of fibroblasts, angiogenesis, leukocyte infiltration, epithelial coverage and antibacterial effect. It was perceived that a protocol does not exist in view of the wide variation in the use of power (9 to 500 mW) and fluency (1 to 60 J/cm2); however, between the different wavelengths, the highlight was the combined use of red and infrared wavelengths showing better results than when used alone.

  16. The Unexpectedly Bright Comet C/2012 F6 (Lemmon) Unveiled at Near-infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Paganini, Lucas; DiSanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; Keane, Jacqueline V.; Gibb, Erika L.; Boehnhardt, Hermann; Meech, Karen J.

    2014-01-01

    We acquired near-infrared spectra of the Oort cloud comet C/2012 F6 (Lemmon) at three different heliocentric distances (R h) during the comet's 2013 perihelion passage, providing a comprehensive measure of the outgassing behavior of parent volatiles and cosmogonic indicators. Our observations were performed pre-perihelion at R h = 1.2 AU with CRIRES (on 2013 February 2 and 4), and post-perihelion at R h = 0.75 AU with CSHELL (on March 31 and April 1) and R h = 1.74 AU with NIRSPEC (on June 20). We detected 10 volatile species (H2O, OH* prompt emission, C2H6, CH3OH, H2CO, HCN, CO, CH4, NH3, and NH2), and obtained upper limits for two others (C2H2 and HDO). One-dimensional spatial profiles displayed different distributions for some volatiles, confirming either the existence of polar and apolar ices, or of chemically distinct active vents in the nucleus. The ortho-para ratio for water was 3.31 ± 0.33 (weighted mean of CRIRES and NIRSPEC results), implying a spin temperature >37 K at the 95% confidence limit. Our (3σ) upper limit for HDO corresponds to D/H < 2.45 × 10-3 (i.e., <16 Vienna Standard Mean Ocean Water, VSMOW). At R h = 1.2 AU (CRIRES), the production rate for water was Q(H2O) = 1.9 ± 0.1 × 1029 s-1 and its rotational temperature was T rot ~ 69 K. At R h = 0.75 AU (CSHELL), we measured Q(H2O) = 4.6 ± 0.6 × 1029 s-1 and T rot = 80 K on March 31, and 6.6 ± 0.9 × 1029 s-1 and T rot = 100 K on April 1. At R h = 1.74 AU (NIRSPEC), we obtained Q(H2O) = 1.1 ± 0.1 × 1029 s-1 and T rot ~ 50 K. The measured volatile abundance ratios classify comet C/2012 F6 as rather depleted in C2H6 and CH3OH, while HCN, CH4, and CO displayed abundances close to their median values found among comets. H2CO was the only volatile showing a relative enhancement. The relative paucity of C2H6 and CH3OH (with respect to H2O) suggests formation within warm regions of the nebula. However, the normal abundance of HCN and hypervolatiles CH4 and CO, and the enhancement of H2CO, may

  17. Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtong; Lou, Shuqin; Su, Wei; Wang, Xin

    2016-01-01

    We propose an As2Se3-based highly nonlinear photonic quasi-crystal fiber with dual zero-dispersion wavelengths (ZDWs). Using a full-vector finite element method, the proposed fiber is optimized to obtain high nonlinear coefficient, low confinement loss and two zero-dispersion points by optimizing the structure parameters. Numerical results demonstrate that the proposed photonic quasi-crystal fiber (PQF) has dual ZDWs and the nonlinear coefficient up to 2600 W-1 km-1 within the wavelength range from 2 to 5.5 μm. Due to the introduction of the large air holes in the third ring of the proposed fiber, the ability of confining the fundamental mode field can be improved effectively and thus the low confinement loss can be obtained. The proposed PQF with high nonlinearity and dual ZDWs will have a number of potential applications in four-wave mixing, super-continuum generation, and higher-order dispersion effects.

  18. Numerical simulation of coherent visible-to-near-infrared supercontinuum generation in the CHCl3-filled photonic crystal fiber with 1.06 μm pump pulses

    NASA Astrophysics Data System (ADS)

    Wang, Chun-can; Li, Wei-min; Li, Na; Wang, Wen-quan

    2017-02-01

    The hollow-core photonic crystal fiber (PCF) is filled by highly nonlinear liquid chloroform (CHCl3) in the center core. The CHCl3-filled PCF with an appropriate geometric parameters exhibits a normal dispersion profile in the visible-to-near-infrared (NIR) region, where the values of group velocity dispersion (GVD) in the vicinity of 1060-nm pump wavelength can be tuned in the range from -20 to -50 ps/nm/km. Furthermore, the nonlinear parameters at wavelengths <1100 nm are higher than 0.7 W-1 m-1, which can lead to a significant enhancement of the spectral broadening, especially on the blue side. The numerical results show that, when 100-fs pulses centered at 1060 nm are launched in the 0.01 m-long fiber (47 kW peak power), the generated supercontinuum (SC) spectra with high degree of coherence can cover near 2 octaves spanning from 340 to 1360 nm at -20 dB level. The spectral variations are < 5 dB in the wavelength range of 365-1315 nm.

  19. THE IMPLICATIONS OF M DWARF FLARES ON THE DETECTION AND CHARACTERIZATION OF EXOPLANETS AT INFRARED WAVELENGTHS

    SciTech Connect

    Tofflemire, Benjamin M.; Wisniewski, John P.; Kowalski, Adam F.; Schmidt, Sarah J.; Kundurthy, Praveen; Hilton, Eric J.; Hawley, Suzanne L.; Holtzman, Jon A. E-mail: jwisnie@u.washington.edu

    2012-01-15

    We present the results of an observational campaign which obtained high-cadence, high-precision, simultaneous optical and IR photometric observations of three M dwarf flare stars for 47 hr. The campaign was designed to characterize the behavior of energetic flare events, which routinely occur on M dwarfs, at IR wavelengths to millimagnitude precision, and quantify to what extent such events might influence current and future efforts to detect and characterize extrasolar planets surrounding these stars. We detected and characterized four highly energetic optical flares having U-band total energies of {approx}7.8 Multiplication-Sign 10{sup 30} to {approx}1.3 Multiplication-Sign 10{sup 32} erg, and found no corresponding response in the J, H, or Ks bandpasses at the precision of our data. For active dM3e stars, we find that a {approx}1.3 Multiplication-Sign 10{sup 32} erg U-band flare ({Delta}U{sub max} {approx} 1.5 mag) will induce <8.3 (J), <8.5 (H), and <11.7 (Ks) mmag of a response. A flare of this energy or greater should occur less than once per 18 hr. For active dM4.5e stars, we find that a {approx}5.1 Multiplication-Sign 10{sup 31} erg U-band flare ({Delta}U{sub max} {approx} 1.6 mag) will induce <7.8 (J), <8.8 (H), and <5.1 (Ks) mmag of a response. A flare of this energy or greater should occur less than once per 10 hr. No evidence of stellar variability not associated with discrete flare events was observed at the level of {approx}3.9 mmag over 1 hr timescales and at the level of {approx}5.6 mmag over 7.5 hr timescales. We therefore demonstrate that most M dwarf stellar activity and flares will not influence IR detection and characterization studies of M dwarf exoplanets above the level of {approx}5-11 mmag, depending on the filter and spectral type. We speculate that the most energetic megaflares on M dwarfs, which occur at rates of once per month, are likely to be easily detected in IR observations with sensitivity of tens of millimagnitudes. We also

  20. Analysis and compensation of dispersion-induced bit loss in a photonic A/D converter using time-wavelength interweaved sampling clock.

    PubMed

    Li, Ming; Wu, Guiling; Guo, Pan; Li, Xinwan; Chen, Jianping

    2009-09-28

    In this paper, the timing jitter induced by the fiber dispersion in photonic A/D converters using time-wavelength interweaved sampling clocks generated by optical time-division-multiplexing (OTDM) with fiber delay lines is analyzed and effective bit loss is calculated. A compensation method is proposed to decrease the dispersion-induced jitter. Simulations are performed and the results show the validity of the proposed compensation method. An experimental demonstration is carried out to verify the theoretical expression derived.

  1. Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes

    PubMed Central

    Asplund, M. C.; Zanni, M. T.; Hochstrasser, R. M.

    2000-01-01

    Two-dimensional infrared spectra of peptides are introduced that are the direct analogues of two- and three-pulse multiple quantum NMR. Phase matching and heterodyning are used to isolate the phase and amplitudes of the electric fields of vibrational photon echoes as a function of multiple pulse delays. Structural information is made available on the time scale of a few picoseconds. Line narrowed spectra of acyl-proline-NH2 and cross peaks implying the coupling between its amide-I modes are obtained, as are the phases of the various contributions to the signals. Solvent-sensitive structural differences are seen for the dipeptide. The methods show great promise to measure structure changes in biology on a wide range of time scales. PMID:10890905

  2. Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Schartner, S.; Kalchmair, S.; Andrews, A. M.; Klang, P.; Schrenk, W.; Strasser, G.

    2009-06-01

    Photonic crystal (PC) devices require high fabrication accuracy for on demand positioning of resonances. We describe post-fabrication fine-tuning of a PC quantum well infrared photodetector (QWIP) by sidewall-deposition of silicon nitride. The PC resonance was shifted over a bandwidth of 43 cm-1. From photoresponse measurements we calculated a tuning coefficient of ∂ν/∂dSiN=-0.06 cm-1/nm. The QWIP responsivity did not suffer from nitride absorption while the PC resonance increased by a factor of 1.6. This shows that post-fabrication tuning by dielectric deposition with, e.g., silicon nitride is a feasible method to achieve precise implementations of PC devices.

  3. Enhancing extraction efficiency of mid-infrared fluorescence in chalcogenide glass via photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Peiqing; Ma, Beijiao; Dai, Shixun; Zhang, Wei; Nie, Qiuhua

    2016-04-01

    The use of rare earth-doped chalcogenide glass is an attractive method to develop mid-infrared sources. In this work, Er3+-doped chalcogenide glass is prepared, and photonic crystal (PC) pattern is designed to improve the extraction efficiency of light emission from the sample surface. The finite difference time domain simulation shows that the light extraction efficiency from the sample surface can be 1.62 times stronger than that from the sample without PC structure by introducing a simple two-dimensional (2D) PC structure into glass samples. This improvement was the result of the efficient light diffraction on the surface because of the integrated 2D PC. Results in this work offer a potential in developing midinfrared light sources.

  4. The Unexpectedly Bright Comet C-2012 F6 (Lemmon) Unveiled at Near-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Paganini, Lucas; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; Keane, Jacqueline V.; Gibb, Erika L.; Boehnhardt, Hermann; Meech, Karen J.

    2013-01-01

    We acquired near-infrared spectra of the Oort cloud comet C/2012 F6 (Lemmon) at three different heliocentric distances (R h) during the comet's 2013 perihelion passage, providing a comprehensive measure of the outgassing behavior of parent volatiles and cosmogonic indicators. Our observations were performed pre-perihelion at R h = 1.2 AU with CRIRES (on 2013 February 2 and 4), and post-perihelion at R h = 0.75 AU with CSHELL (on March 31 and April 1) and R h = 1.74 AU with NIRSPEC (on June 20). We detected 10 volatile species (H2O, OH* prompt emission, C2H6, CH3OH, H2CO, HCN, CO, CH4, NH3, and NH2), and obtained upper limits for two others (C2H2 and HDO). One-dimensional spatial profiles displayed different distributions for some volatiles, confirming either the existence of polar and apolar ices, or of chemically distinct active vents in the nucleus. The ortho-para ratio for water was 3.31 +/- 0.33 (weighted mean of CRIRES and NIRSPEC results), implying a spin temperature >37 K at the 95% confidence limit. Our (3s) upper limit for HDO corresponds to D/H < 2.45 × 10-3 (i.e., <16 Vienna Standard Mean Ocean Water, VSMOW). At R h = 1.2 AU (CRIRES), the production rate for water was Q(H2O) = 1.9 +/- 0.1 × 1029 s-1 and its rotational temperature was T rot 69 K. At R h = 0.75 AU (CSHELL), we measured Q(H2O) = 4.6 +/- 0.6 × 1029 s-1 and T rot = 80 K on March 31, and 6.6 +/- 0.9 × 1029 s-1 and T rot = 100 K on April 1. At R h = 1.74 AU (NIRSPEC), we obtained Q(H2O) = 1.1 +/- 0.1 × 1029 s-1 and T rot 50 K. The measured volatile abundance ratios classify comet C/2012 F6 as rather depleted in C2H6 and CH3OH, while HCN, CH4, and CO displayed abundances close to their median values found among comets. H2CO was the only volatile showing a relative enhancement. The relative paucity of C2H6 and CH3OH (with respect to H2O) suggests formation within warm regions of the nebula. However, the normal abundance of HCN and hypervolatiles CH4 and CO, and the enhancement of H2CO, may

  5. The unexpectedly bright comet C/2012 F6 (Lemmon) unveiled at near-infrared wavelengths

    SciTech Connect

    Paganini, Lucas; DiSanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; Keane, Jacqueline V.; Meech, Karen J.; Gibb, Erika L.; Boehnhardt, Hermann

    2014-01-01

    We acquired near-infrared spectra of the Oort cloud comet C/2012 F6 (Lemmon) at three different heliocentric distances (R {sub h}) during the comet's 2013 perihelion passage, providing a comprehensive measure of the outgassing behavior of parent volatiles and cosmogonic indicators. Our observations were performed pre-perihelion at R {sub h} = 1.2 AU with CRIRES (on 2013 February 2 and 4), and post-perihelion at R {sub h} = 0.75 AU with CSHELL (on March 31 and April 1) and R {sub h} = 1.74 AU with NIRSPEC (on June 20). We detected 10 volatile species (H{sub 2}O, OH* prompt emission, C{sub 2}H{sub 6}, CH{sub 3}OH, H{sub 2}CO, HCN, CO, CH{sub 4}, NH{sub 3}, and NH{sub 2}), and obtained upper limits for two others (C{sub 2}H{sub 2} and HDO). One-dimensional spatial profiles displayed different distributions for some volatiles, confirming either the existence of polar and apolar ices, or of chemically distinct active vents in the nucleus. The ortho-para ratio for water was 3.31 ± 0.33 (weighted mean of CRIRES and NIRSPEC results), implying a spin temperature >37 K at the 95% confidence limit. Our (3σ) upper limit for HDO corresponds to D/H < 2.45 × 10{sup –3} (i.e., <16 Vienna Standard Mean Ocean Water, VSMOW). At R {sub h} = 1.2 AU (CRIRES), the production rate for water was Q(H{sub 2}O) = 1.9 ± 0.1 × 10{sup 29} s{sup –1} and its rotational temperature was T {sub rot} ∼ 69 K. At R {sub h} = 0.75 AU (CSHELL), we measured Q(H{sub 2}O) = 4.6 ± 0.6 × 10{sup 29} s{sup –1} and T {sub rot} = 80 K on March 31, and 6.6 ± 0.9 × 10{sup 29} s{sup –1} and T {sub rot} = 100 K on April 1. At R {sub h} = 1.74 AU (NIRSPEC), we obtained Q(H{sub 2}O) = 1.1 ± 0.1 × 10{sup 29} s{sup –1} and T {sub rot} ∼ 50 K. The measured volatile abundance ratios classify comet C/2012 F6 as rather depleted in C{sub 2}H{sub 6} and CH{sub 3}OH, while HCN, CH{sub 4}, and CO displayed abundances close to their median values found among comets. H{sub 2}CO was the only volatile showing

  6. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy.

    PubMed

    Chen, Qian; Wang, Chao; Zhan, Zhixiong; He, Weiwei; Cheng, Zhenping; Li, Youyong; Liu, Zhuang

    2014-09-01

    Development of theranostic agent for imaging-guided photothermal therapy has been of great interest in the field of nanomedicine. However, if fluorescent imaging and photothermal ablation are conducted with the same wavelength of light, the requirements of the agent's quantum yield (QY) for imaging and therapy are controversial. In this work, our synthesized near-infrared dye, IR825, is bound with human serum albumin (HSA), forming a HSA-IR825 complex with greatly enhanced fluorescence under 600 nm excitation by as much as 100 folds compared to that of free IR825, together with a rather high absorbance but low fluorescence QY at 808 nm. Since high QY that is required for fluorescence imaging would result in reduced photothermal conversion efficiency, the unique optical behavior of HSA-IR825 enables imaging and photothermal therapy at separated wavelengths both with optimized performances. We thus use HSA-IR825 for imaging-guided photothermal therapy in an animal tumor model. As revealed by in vivo fluorescence imaging, HSA-IR825 upon intravenous injection shows high tumor uptake likely owing to the enhanced permeability and retention effect, together with low levels of retentions in other organs. While HSA is an abundant protein in human serum, IR825 is able to be excreted by renal excretion as evidenced by high-performance liquid chromatography (HPLC). In vivo tumor treatment experiment is finally carried out with HSA-IR825, achieving 100% of tumor ablation in mice using a rather low dose of IR825. Our work presents a safe, simple, yet imageable photothermal nanoprobe, promising for future clinical translation in cancer treatment.

  7. Near-Infrared Spectroscopy Using a Supercontinuum Laser: Application to Long Wavelength Transmission Spectra of Barley Endosperm and Oil.

    PubMed

    Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling

    2016-07-01

    The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS).

  8. Two-Photon Optical Storage in Photorefractive Polymers in the Near-Infrared Spectral Range

    NASA Astrophysics Data System (ADS)

    Day, Daniel; Gu, Min; Smallridge, Andrew

    We report the use of a polymer-based photorefractive material for three-dimensional bit optical data storage using near-infrared illumination. The research was conducted using photorefractive materials that were fabricated in two polymer matrices: poly(N-vinylcarbazole) (PVK) and poly(Methyl Methacrylate) (PMMA). The recording samples also consisted of the following compounds in various proportions: 2,5-dimethyl-4-(p-nitrophenylazo)anisole (DMNPAA), 2,4,7-trinitro-9-fluorenone (TNF) and N-ethylcarbazole (ECZ). Two-photon excitation was used as the recording mechanism to achieve rewritable bit data storage in a photorefractive polymer. As a result of two-photon excitation, the quadratic dependence of the excitation on the incident intensity produces an excitation volume that is confined to the focal region in both the transverse and axial directions. The use of ultrashort pulsed lasers, while effective, is not a practical solution for an optical data storage system. This research demonstrates the ability to produce three-dimensional rewritable bit data storage using continuous-wave illumination. Using this technology it has been possible to achieve a density of 88 Gbits/cm3, which in the future could be increased to 3.5 Tbits/cm3.

  9. Photonic approach to the selective inactivation of viruses with a near-infrared subpicosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Tsen, Kong-Thon; Tsen, Shaw-Wei D.; Fu, Q.; Lindsay, Stuart M.; Kibler, Karen; Jacobs, Bert; Wu, T.-C.; Karanam, B.; Jagu, S.; Roden, Richard B. S.; Hung, Chien-Fu; Sankey, Otto F.; Ramakrishna, B.; Kiang, Juliann G.

    2009-11-01

    We report a photonic approach for selective inactivation of viruses with a near-infrared subpicosecond laser. We demonstrate that this method can selectively inactivate viral particles ranging from nonpathogenic viruses such as the M13 bacteriophage and the tobacco mosaic virus to pathogenic viruses such as the human papillomavirus and the human immunodeficiency virus (HIV). At the same time, sensitive materials such as human Jurkat T cells, human red blood cells, and mouse dendritic cells remain unharmed. The laser technology targets the global mechanical properties of the viral protein shell, making it relatively insensitive to the local genetic mutation in the target viruses. As a result, the approach can inactivate both the wild and mutated strains of viruses. This intriguing advantage is particularly important in the treatment of diseases involving rapidly mutating viral species such as HIV. Our photonic approach could be used for the disinfection of viral pathogens in blood products and for the treatment of blood-borne viral diseases in the clinic.

  10. Infrared Multiple Photon Dissociation Spectroscopy of a Gas-Phase Oxo-Molybdenum Complex with 1,2-Dithiolene Ligands

    PubMed Central

    2015-01-01

    Electrospray ionization (ESI) in the negative ion mode was used to create anionic, gas-phase oxo-molybdenum complexes with dithiolene ligands. By varying ESI and ion transfer conditions, both doubly and singly charged forms of the complex, with identical formulas, could be observed. Collision-induced dissociation (CID) of the dianion generated exclusively the monoanion, while fragmentation of the monoanion involved decomposition of the dithiolene ligands. The intrinsic structure of the monoanion and the dianion were determined by using wavelength-selective infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory calculations. The IRMPD spectrum for the dianion exhibits absorptions that can be assigned to (ligand) C=C, C–S, C—C≡N, and Mo=O stretches. Comparison of the IRMPD spectrum to spectra predicted for various possible conformations allows assignment of a pseudo square pyramidal structure with C2v symmetry, equatorial coordination of MoO2+ by the S atoms of the dithiolene ligands, and a singlet spin state. A single absorption was observed for the oxidized complex. When the same scaling factor employed for the dianion is used for the oxidized version, theoretical spectra suggest that the absorption is the Mo=O stretch for a distorted square pyramidal structure and doublet spin state. A predicted change in conformation upon oxidation of the dianion is consistent with a proposed bonding scheme for the bent-metallocene dithiolene compounds [Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc.1976, 98, 1729−1742], where a large folding of the dithiolene moiety along the S···S vector is dependent on the occupancy of the in-plane metal d-orbital. PMID:24988369

  11. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  12. Massive photons: An infrared regularization scheme for lattice QCD+QED

    DOE PAGES

    Endres, Michael G.; Shindler, Andrea; Tiburzi, Brian C.; ...

    2016-08-10

    The commonly adopted approach for including electromagnetic interactions in lattice QCD simulations relies on using finite volume as the infrared regularization for QED. The long-range nature of the electromagnetic interaction, however, implies that physical quantities are susceptible to power-law finite volume corrections, which must be removed by performing costly simulations at multiple lattice volumes, followed by an extrapolation to the infinite volume limit. In this work, we introduce a photon mass as an alternative means for gaining control over infrared effects associated with electromagnetic interactions. We present findings for hadron mass shifts due to electromagnetic interactions (i.e., for the proton,more » neutron, charged and neutral kaon) and corresponding mass splittings, and compare the results with those obtained from conventional QCD+QED calculations. Results are reported for numerical studies of three flavor electroquenched QCD using ensembles corresponding to 800 MeV pions, ensuring that the only appreciable volume corrections arise from QED effects. The calculations are performed with three lattice volumes with spatial extents ranging from 3.4 - 6.7 fm. As a result, we find that for equal computing time (not including the generation of the lattice configurations), the electromagnetic mass shifts can be extracted from computations on a single (our smallest) lattice volume with comparable or better precision than the conventional approach.« less

  13. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    SciTech Connect

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold; Jeffrey D. Steill; Jos Oomens; Michael J. van Stipdonk

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.

  14. Mid-infrared (MIR) photonics: MIR passive and active fiberoptics chemical and biomedical, sensing and imaging

    NASA Astrophysics Data System (ADS)

    Seddon, Angela B.

    2016-10-01

    The case for new, portable, real-time mid-infrared (MIR) molecular sensing and imaging is discussed. We set a record in demonstrating extreme broad-band supercontinuum (SC) generated light 1.4-13.3 μm in a specially engineered, step-index MIR optical fiber of high numerical aperture. This was the first experimental demonstration truly to reveal the potential of MIR fibers to emit across the MIR molecular "fingerprint spectral region" and a key first step towards bright, portable, broadband MIR sources for chemical and biomedical, molecular sensing and imaging in real-time. Potential applications are in the healthcare, security, energy, environmental monitoring, chemical-processing, manufacturing and the agriculture sectors. MIR narrow-line fiber lasers are now required to pump the fiber MIR-SC for a compact all-fiber solution. Rare-earth-ion (RE-) doped MIR fiber lasers are not yet demonstrated >=4 μm wavelength. We have fabricated small-core RE-fiber with photoluminescence across 3.5-6 μm, and long excited-state lifetimes. MIR-RE-fiber lasers are also applicable as discrete MIR fiber sensors in their own right, for applications including: ship-to-ship free-space communications, aircraft counter-measures, coherent MIR imaging, MIR-optical coherent tomography, laser-cutting/ patterning of soft materials and new wavelengths for fiber laser medical surgery.

  15. High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources

    SciTech Connect

    Aboussouan, Pierre; Alibart, Olivier; Ostrowsky, Daniel B.; Baldi, Pascal; Tanzilli, Sebastien

    2010-02-15

    We report on a two-photon interference experiment in a quantum relay configuration using two picosecond regime periodically poled lithium niobate (PPLN) waveguide based sources emitting paired photons at 1550 nm. The results show that the picosecond regime associated with a guided-wave scheme should have important repercussions for quantum relay implementations in real conditions, essential for improving both the working distance and the efficiency of quantum cryptography and networking systems. In contrast to already reported regimes, namely, femtosecond and CW, it allows achieving a 99% net visibility two-photon interference while maintaining a high effective photon pair rate using only standard telecom components and detectors.

  16. A fiber laser pumped dual-wavelength mid-infrared laser based on optical parametric oscillation and intracavity difference frequency generation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Shang, Yaping; Li, Xiao; Shen, Meili; Xu, Xiaojun

    2017-02-01

    We report a dual-wavelength mid-infrared laser based on intracavity difference frequency generation (DFG) in an MgO-doped periodically poled LiNbO3, which was pumped by a dual-wavelength fiber MOPA consisting of two parts: a dual-wavelength seed and a power amplifier. The maximum pump power was 74.1 W and the wavelengths were 1060 nm and 1090 nm. The wavelengths of the mid-infrared output were 3.1 µm and 3.4 µm under maximum pump power with a total idler power of 6.57 W. The corresponding pump-to-idler slope efficiency reached 12%. The contrast for the peak intensity of the emissions for the two idlers was 0.6. A power preamplifier was added in a further experiment to enhance the contrast. The idler output reached 4.45 W under the maximum pump power of 70 W, which was lower than before. However, the contrast for the idler emission peak intensity was increased to 1.18. The signal wave generated in the experiment only had a single wavelength around 1.6 µm, indicating that two kinds of nonlinear processes occurred in the experiment, namely optical parametric oscillation and intracavity DFG.

  17. Observation of two-photon photoemission from cesium telluride photocathodes excited by a near-infrared laser

    NASA Astrophysics Data System (ADS)

    Panuganti, H.; Piot, P.

    2017-02-01

    We explore the nonlinear photoemission in cesium telluride (Cs2Te) photocathodes where an ultrashort (˜100 fs full width at half max) 800-nm infrared laser is used as the drive-laser in lieu of the typical ˜266-nm ultraviolet laser. An important figure of merit for photocathodes, the quantum efficiency, we define here for nonlinear photoemission processes in order to compare with linear photoemission. The charge against drive-laser (infrared) energy is studied for different laser energy and intensity values and cross-compared with previously performed similar studies on copper [P. Musumeci et al., Phys. Rev. Lett. 104, 084801 (2010)], a metallic photocathode. We particularly observe two-photon photoemission in Cs2Te using the infrared laser in contrast to the anticipated three-photon process as observed for metallic photocathodes.

  18. Wavelet-based decomposition of high resolution surface plasmon microscopy V(Z) curves at visible and near infrared wavelengths.

    PubMed

    Boyer-Provera, E; Rossi, A; Oriol, L; Dumontet, C; Plesa, A; Berguiga, L; Elezgaray, J; Arneodo, A; Argoul, F

    2013-03-25

    Surface plasmon resonance is conventionally conducted in the visible range and, during the past decades, it has proved its efficiency in probing molecular scale interactions. Here we elaborate on the first implementation of a high resolution surface plasmon microscope that operates at near infrared (IR) wavelength for the specific purpose of living matter imaging. We analyze the characteristic angular and spatial frequencies of plasmon resonance in visible and near IR lights and how these combined quantities contribute to the V(Z) response of a scanning surface plasmon microscope (SSPM). Using a space-frequency wavelet decomposition, we show that the V(Z) response of the SSPM for red (632.8 nm) and near IR (1550 nm) lights includes the frequential response of plasmon resonance together with additional parasitic frequencies induced by the objective pupil. Because the objective lens pupil profile is often unknown, this space-frequency decomposition turns out to be very useful to decipher the characteristic frequencies of the experimental V(Z) curves. Comparing the visible and near IR light responses of the SSPM, we show that our objective lens, primarily designed for visible light microscopy, is still operating very efficiently in near IR light. Actually, despite their loss in resolution, the SSPM images obtained with near IR light remain contrasted for a wider range of defocus values from negative to positive Z values. We illustrate our theoretical modeling with a preliminary experimental application to blood cell imaging.

  19. A fast and high-sensitive dual-wavelength diffuse optical tomography system using digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Chen, Weiting; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2014-09-01

    We presented a novel dual-wavelength diffuse optical imaging system which can perform 2-D or 3-D imaging fast and high-sensitively for monitoring the dynamic change of optical parameters. A newly proposed lock-in photon-counting detection method was adopted for week optical signal collection, which brought in excellent property as well as simplified geometry. Fundamental principles of the lock-in photon-counting detection were elaborately demonstrated, and the feasibility was strictly verified by the linearity experiment. Systemic performance of the prototype set up was experimentally accessed, including stray light rejection and inherent interference. Results showed that the system possessed superior anti-interference capability (under 0.58% in darkroom) compared with traditional photon-counting detection, and the crosstalk between two wavelengths was lower than 2.28%. For comprehensive assessment, 2-D phantom experiments towards relatively large dimension model (diameter of 4cm) were conducted. Different absorption targets were imaged to investigate detection sensitivity. Reconstruction image under all conditions was exciting, with a desirable SNR. Study on image quality v.s. integration time put forward a new method for accessing higher SNR with the sacrifice of measuring speed. In summary, the newly developed system showed great potential in promoting detection sensitivity as well as measuring speed. This will make substantial progress in dynamically tracking the blood concentration distribution in many clinical areas, such as small animal disease modeling, human brain activity research and thick tissues (for example, breast) diagnosis.

  20. Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths.

    PubMed

    Labelle, A J; Bonifazi, M; Tian, Y; Wong, C; Hoogland, S; Favraud, G; Walters, G; Sutherland, B; Liu, M; Li, Jun; Zhang, Xixiang; Kelley, S O; Sargent, E H; Fratalocchi, A

    2017-02-15

    The engineering of broadband absorbers to harvest white light in thin-film semiconductors is a major challenge in developing renewable materials for energy harvesting. Many solution-processed materials with high manufacturability and low cost, such as semiconductor quantum dots, require the use of film structures with thicknesses on the order of 1 μm to absorb incoming photons completely. The electron transport lengths in these media, however, are 1 order of magnitude smaller than this length, hampering further progress with this platform. Herein, we show that, by engineering suitably disordered nanoplasmonic structures, we have created a new class of dispersionless epsilon-near-zero composite materials that efficiently harness white light. Our nanostructures localize light in the dielectric region outside the epsilon-near-zero material with characteristic lengths of 10-100 nm, resulting in an efficient system for harvesting broadband light when a thin absorptive film is deposited on top of the structure. By using a combination of theory and experiments, we demonstrate that ultrathin layers down to 50 nm of colloidal quantum dots deposited atop the epsilon-near-zero material show an increase in broadband absorption ranging from 200% to 500% compared to a planar structure of the same colloidal quantum-dot-absorber average thickness. When the epsilon-near-zero nanostructures were used in an energy-harvesting module, we observed a spectrally averaged 170% broadband increase in the external quantum efficiency of the device, measured at wavelengths between 400 and 1200 nm. Atomic force microscopy and photoluminescence excitation measurements demonstrate that the properties of these epsilon-near-zero structures apply to general metals and could be used to enhance the near-field absorption of semiconductor structures more widely. We have developed an inexpensive electrochemical deposition process that enables scaled-up production of this nanomaterial for large

  1. Mid-infrared passively switched pulsed dual wavelength Ho(3+)-doped fluoride fiber laser at 3 μm and 2 μm.

    PubMed

    Li, Jianfeng; Luo, Hongyu; Wang, Lele; Liu, Yong; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turistsyn, Sergei K

    2015-06-04

    Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho(3+)-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.

  2. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    NASA Astrophysics Data System (ADS)

    Schmidt, Barnet Michael

    gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.

  3. Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared

    SciTech Connect

    Vico Triviño, Noelia; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas; Minkov, Momchil Savona, Vincenzo; Urbinati, Giulia; Galli, Matteo

    2014-12-08

    Photonic crystal point-defect cavities were fabricated in a GaN free-standing photonic crystal slab. The cavities are based on the popular L3 design, which was optimized using an automated process based on a genetic algorithm, in order to maximize the quality factor. Optical characterization of several individual cavity replicas resulted in an average unloaded quality factor Q = 16 900 at the resonant wavelength λ∼1.3 μm, with a maximal measured Q value of 22 500. The statistics of both the quality factor and the resonant wavelength are well explained by first-principles simulations including fabrication disorder and background optical absorption.

  4. Polarization effects in two-photon nonresonant ionization of argon with extreme-ultraviolet and infrared femtosecond pulses

    SciTech Connect

    O'Keeffe, P.; Lopez-Martens, R.; Mauritsson, J.; Johansson, A.; L'Huillier, A.; Veniard, V.; Taieeb, R.; Maquet, A.; Meyer, M.

    2004-05-01

    We report the results of experimental and theoretical investigations of the two-color, two-photon ionization of Ar atoms, using femtosecond pulses of infrared laser radiation in combination with its extreme-ultraviolet harmonics. It is shown that the intensities of the photoelectron lines resulting from the absorption of photons from both fields strongly depend both on the respective phases of the fields and on atomic quantities such as the asymmetry parameter. These phases, which are notoriously difficult to measure, can be estimated by changing the polarization state of the laser radiation.

  5. Near-Infrared Single-Photon-Counting Detectors for Laser Instrument Applications at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Xiaoli, Sun; Abshire, James B.

    2005-01-01

    We discuss single-photon-counting detectors requirements for NASA remote sensing and communications systems. We present experimental measurements on several different near-infrared single-photon-counting detectors including InGaAs/InP and InGaAs/InAlAs avalanche photodiodes (APD), an InGaAsP photocathode hybrid photomultiplier (PMT) and an InGaAs photomultiplier. We present the experimental performance of prototype instruments for laser ranging, communication, and trace-gas detection that use these detectors.

  6. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.

    PubMed

    Strangman, Gary E; Zhang, Quan; Li, Zhi

    2014-01-15

    Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors.

  7. Impact of MBE deposition conditions on InAs/GaInSb superlattices for very long wavelength infrared detection

    NASA Astrophysics Data System (ADS)

    Brown, G. J.; Haugan, H. J.; Mahalingam, K.; Grazulis, L.; Elhamri, S.

    2015-01-01

    The objective of this work is to establish molecular beam epitaxy (MBE) growth processes that can produce high quality InAs/GaInSb superlattice (SL) materials specifically tailored for very long wavelength infrared (VLWIR) detection. To accomplish this goal, several series of MBE growth optimization studies, using a SL structure of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, were performed to refine the MBE growth process and optimize growth parameters. Experimental results demonstrated that our "slow" MBE growth process can consistently produce an energy gap near 50 meV. This is an important factor in narrow band gap SLs. However, there are other growth factors that also impact the electrical and optical properties of the SL materials. The SL layers are particularly sensitive to the anion incorporation condition formed during the surface reconstruction process. Since antisite defects are potentially responsible for the inherent residual carrier concentrations and short carrier lifetimes, the optimization of anion incorporation conditions, by manipulating anion fluxes, anion species, and deposition temperature, was systematically studied. Optimization results are reported in the context of comparative studies on the influence of the growth temperature on the crystal structural quality and surface roughness performed under a designed set of deposition conditions. The optimized SL samples produced an overall strong photoresponse signal with a relatively sharp band edge that is essential for developing VLWIR detectors. A quantitative analysis of the lattice strain, performed at the atomic scale by aberration corrected transmission electron microscopy, provided valuable information about the strain distribution at the GaInSb-on-InAs interface and in the InAs layers, which was important for optimizing the anion conditions.

  8. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    SciTech Connect

    Gopal, Vishnu E-mail: wdhu@mail.sitp.ac.cn; Qiu, WeiCheng; Hu, Weida E-mail: wdhu@mail.sitp.ac.cn

    2014-11-14

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I{sub excess} = I{sub r0} + K{sub 1} exp (K{sub 2} V), where I{sub r0}, K{sub 1}, and K{sub 2} are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.

  9. Effect of surface fields on the dynamic resistance of planar HgCdTe mid-wavelength infrared photodiodes

    SciTech Connect

    He, Kai; Wang, Xi; Zhang, Peng; Chen, Yi-Yu; Zhou, Song-Min; Xie, Xiao-Hui; Lin, Chun Ye, Zhen-Hua; Wang, Jian-Xin; Zhang, Qin-Yao; Li, Yang

    2015-05-28

    This work investigates the effect of surface fields on the dynamic resistance of a planar HgCdTe mid-wavelength infrared photodiode from both theoretical and experimental aspects, considering a gated n-on-p diode with the surface potential of its p-region modulated. Theoretical models of the surface leakage current are developed, where the surface tunnelling current in the case of accumulation is expressed by modifying the formulation of bulk tunnelling currents, and the surface channel current for strong inversion is simulated with a transmission line method. Experimental data from the fabricated devices show a flat-band voltage of V{sub FB}=−5.7 V by capacitance-voltage measurement, and then the physical parameters for bulk properties are determined from the resistance-voltage characteristics of the diode working at a flat-band gate voltage. With proper values of the modeling parameters such as surface trap density and channel electron mobility, the theoretical R{sub 0}A product and corresponding dark current calculated from the proposed model as functions of the gate voltage V{sub g} demonstrate good consistency with the measured values. The R{sub 0}A product remarkably degenerates when V{sub g} is far below or above V{sub FB} because of the surface tunnelling current or channel current, respectively; and it attains the maximum value of 5.7×10{sup 7} Ω · cm{sup 2} around the transition between surface depletion and weak inversion when V{sub g}≈−4 V, which might result from reduced generation-recombination current.

  10. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-03-20

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  11. (abstract) Applications of Long-wavelength 256x256 GaAs/Al&subx;Ga&sub1-x;As Quantum Well Infrared Photodetector Hand-held Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Sundaram, M.; Hong, W.; Shott, C. A.; Hoelter, T.; Laband, S.; James, J. B.

    1997-01-01

    A 9 (micro)m 256x256 hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated. Excellent imagery, with a noise equivalent differential temperature (NE(gamma)) of 26 mK has been achieved. In this presentation, we discuss the development of this very sensitive long wavelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array, its performance in quantum efficience, NA(gamma), minimum resolvable temperature (MRTD), uniformity, operability, and its applications.

  12. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots.

    PubMed

    Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan

    2016-12-01

    Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g (2)(0) < 0.5 which demonstrates a pure single-photon emission.

  13. Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation.

    PubMed

    Pineda-Vadillo, Pablo; Lynch, Michael; Charlton, Christy; Donegan, John F; Weldon, Vincent

    2009-12-07

    In this paper the application of Wavelength Modulation (WM) techniques to non-resonant saturation spectroscopy in acetylene-filled Hollow-Core Photonic Bandgap Fibres (HC-PBFs) and modulation-free Laser Diode (LD) frequency stabilisation is investigated. In the first part WM techniques are applied to non-resonant pump-probe saturation of acetylene overtone rotational transitions in a HC-PBF. A high-power DFB chip-on-carrier mounted LD is used in conjunction with a tuneable External Cavity Laser (ECL) and the main saturation parameters are characterized. In the second part a novel feedback system to stabilize the DFB emission wavelength based on the WM saturation results is implemented. Modulation-free locking of the DFB laser frequency to the narrow linewidth saturation feature is achieved for both constant and variable LD temperatures.

  14. Peltier-Cooled and Actively Quenched Operation of InGaAs/InP Avalanche Photodiodes as Photon Counters at a 1.55-mum Wavelength.

    PubMed

    Prochazka, I

    2001-11-20

    The performance of commercially available InGaAs/InP avalanche photodiodes as single-photon detectors at a 1.55-mum wavelength has been investigated. A new active quenching and gating circuit, tailored for operation of these diodes at temperatures in the range from room temperature to -60 degrees C and achievable by means of thermoelectrical cooling, has been developed. Careful tuning of the diodes' operating conditions resulted in a significant reduction of afterpulsing effects; it permitted operation of the detectors with high repetition rates. A noise-equivalent power of 7 x 10(-16) W/Hz(1/2) was obtained at a 1.55-mum wavelength.

  15. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    NASA Astrophysics Data System (ADS)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  16. Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics.

    PubMed

    Ramirez, Joan Manel; Vakarin, Vladyslav; Gilles, Clement; Frigerio, Jacopo; Ballabio, Andrea; Chaisakul, Papichaya; Roux, Xavier Le; Alonso-Ramos, Carlos; Maisons, Gregory; Vivien, Laurent; Carras, Mathieu; Isella, Giovanni; Marris-Morini, Delphine

    2017-01-01

    We demonstrate low-loss Ge-rich Si0.2Ge0.8 waveguides on Si1-xGex (x from 0 to 0.79) graded substrates operating in the mid-infrared wavelength range at λ=4.6  μm. Propagation losses as low as (1.5±0.5)dB/cm and (2±0.5)dB/cm were measured for the quasi-TE and quasi-TM polarizations, respectively. A total coupling loss (input/output) of only 10 dB was found for waveguide widths larger than 7 μm due to a good fiber-waveguide mode matching. Near-field optical mode profiles measured at the output waveguide facet allowed us to inspect the optical mode and precisely measure the modal effective area of each waveguide providing a good correlation between experiments and simulations. These results put forward the potential of low-index-contrast Si1-xGex waveguides with high Ge concentration as fundamental blocks for mid-infrared photonic integrated circuits.

  17. Generation of visible wavelength by the phase-matching four-wave mixing in an Yb-doped V-shape photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Li, Lixiao; Yuan, Jinhui; Sang, Xinzhu; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu; Han, Ying; Xia, Changming; Zhou, Guiyao; Wei, Shuai; Wang, Chao; Yang, Jianju; Wang, Shuang; Cheng, Xu; Hou, Lantian

    2015-07-01

    In this paper, an Ytterbium-doped V-shape photonic crystal fiber (Yb-VPCF) with low dispersion and high nonlinearity is designed and fabricated in our laboratory. Through coupling femtosecond pulses into the fundamental mode of Yb-VPCF, the tunable anti-Stokes signals at the visible wavelength are efficiently generated based on the phase-matching four-wave mixing. When the pump wavelength is changed from 810, to 820, and to 830 nm and the input average power is increased from 0.4, to 0.5, and to 0.6 W, respectively, the anti-Stokes signals are generated within the wavelength range of 562-477 nm. The wavelength-tunable range is over 100 nm, and the maximum power ratio of anti-Stokes signal at 477 nm and the residual pump at 830 nm can be up to 23.9:1. The anti-Stokes signals generated can be used as the ultrashort pulse sources for ultrafast optoelectronics and spectroscopy.

  18. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  19. 3D near-infrared imaging based on a single-photon avalanche diode array sensor

    NASA Astrophysics Data System (ADS)

    Mata Pavia, Juan; Wolf, Martin; Charbon, Edoardo

    2012-10-01

    Near-infrared light can be used to determine the optical properties (absorption and scattering) of human tissue. Optical tomography uses this principle to image the internal structure of parts of the body by measuring the light that is scattered in the tissue. An imager for optical tomography was designed based on a detector with 128x128 single photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contactless setup has been conceived. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new setup generated an high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take advantage of it. Simulations show that the potential resolution of the new setup would be much higher than previous designs. Measurements have been performed showing its potential. Images derived from the measurements showed that it is possible to reach a resolution of at least 5mm.

  20. Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting.

    PubMed

    Zhang, Jianming; Huang, Yue; Jin, Lei; Rosei, Federico; Vetrone, Fiorenzo; Claverie, Jerome P

    2017-03-08

    We report the two-step synthesis of a core@shell nanohybrid material for visible-to-near-infrared (NIR) photocatalysis. The core is constituted of NaGdF4:Er(3+), Yb(3+) upconverting nanoparticles (UCNPs). A bismuth ferrite (BFO) shell is assembled around the UCNPs via a hydrothermal process. The photocatalytic degradation assays of methylene orange and 4-chlorophenol reveal that these core@shell nanostructures possess remarkably enhanced reaction activity under visible and NIR irradiation, compared to the BFO powder alone and the BFO-UCNP mixture. Photo-charge scavenger tests and fluorescent assays indicate that hydroxyl radicals play a pivotal role in the photodegradation mechanism. The enhanced photoactivity of the core@shell structure is attributed to the NIR radiation which is converted into visible light by UCNPs, and which is then captured by BFO via a nonradiative luminescence resonance energy transfer process. Therefore, this core@shell architecture optimizes solar energy use by efficiently harvesting visible and NIR photons.