Science.gov

Sample records for infrasonic radiations

  1. Mechanism of inverted-chirp infrasonic radiation from sprites

    NASA Astrophysics Data System (ADS)

    de Larquier, Sebastien; Pasko, Victor P.

    2010-12-01

    Farges and Blanc (2010) reported inverted-chirp infrasonic signals with high frequencies arriving before low frequencies, possibly emitted by sprite discharges and observed on the ground at close range (<100 km) from the source. In the present work a parallel version of a 2-D FDTD model of infrasound propagation in a realistic atmosphere is applied to demonstrate that the observed morphology of infrasound signals is consistent with general scaling of diameters of sprite streamers inversely proportionally to the air density. The smaller structures at lower altitudes radiate higher infrasonic frequencies that arrive first at the observational point on the ground, while the low frequency components are delayed because they originate at lower air densities at higher altitudes. The results demonstrate that strong absorption of high frequency infrasonic components at high altitudes (i.e., ˜0.2 dB/km for 8 Hz at 70 km) may also contribute to formation of inverted-chirp signals observed on the ground at close range.

  2. High Frequency Infrasonic Radiation from the 11 March 2011 Tohoku Mw 9.0 Earthquake

    NASA Astrophysics Data System (ADS)

    Walker, K. T.; Le Pichon, A.; Degroot-Hedlin, C. D.; Che, I.

    2011-12-01

    The tragic March 11 Mw 9.0 Tohoku earthquake ruptured the Wadati-Benioff zone beneath northeast Japan, generating a damaging seismic wavetrain and triggering a tsunami that devastated the nearby coastal areas. Centroid moment tensors, aftershocks, and the geometry of the trench suggest the rupture occurred on a plane roughly 400 km long by 200 km wide. Because the Earth's surface is effectively a speaker, the seismic wavetrain generated infrasonic emissions from northeast Japan that were recorded by seven infrasound arrays within 5600 km of the epicenter. Using a time progressive beamforming method and the Progressive Multi-Channel Correlation method, we detect and calculate back azimuths for the 0.3 to 3 Hz infrasonic signals at these stations. After application of predicted wind corrections, these back azimuths point to Honshu and Hokkaido, with the majority of detections illuminating a north-south elongated area near Sendai, where the USGS ShakeMap predicts the greatest intensity of surface shaking. An array near Tokyo (IS30) provides the first recording of locally generated infrasound from a very large dip-slip earthquake. At IS30 a six-minute arrival in the 0.3 to 1.5 Hz band is observed from northeast Japan spanning an 18° back azimuth range. Two shorter events originate from a source to the west, likely Mt. Fuji. Using constraints from propagation modeling, we back project the infrasonic amplitudes recorded at IS30 to a relatively localized area. The maximum amplitude of 1 Pa originates from surface shaking along the coast. This location is also just west of the epicenter and adjacent to the location of maximum P-wave radiation from back projection studies. Noise at IS30 after the mainshock limits the detection of additional signals. A more pronounced infrasonic wavetrain at IS44 (Kamchatka) illuminates the entire Honshu and Hokkaido region, especially along the east coast near Sendai. In agreement with propagation modeling predictions using global

  3. Experimental investigation into infrasonic emissions from atmospheric turbulence.

    PubMed

    Shams, Qamar A; Zuckerwar, Allan J; Burkett, Cecil G; Weistroffer, George R; Hugo, Derek R

    2013-03-01

    Clear air turbulence (CAT) is the leading cause of in-flight injuries and in severe cases can result in fatalities. The purpose of this work is to design and develop an infrasonic array network for early warning of clear air turbulence. The infrasonic system consists of an infrasonic three-microphone array, compact windscreens, and data management system. Past experimental efforts to detect acoustic emissions from CAT have been limited. An array of three infrasonic microphones, operating in the field at NASA Langley Research Center, on several occasions received signals interpreted as infrasonic emissions from CAT. Following comparison with current lidar and other past methods, the principle of operation, the experimental methods, and experimental data are presented for case studies and confirmed by pilot reports. The power spectral density of the received signals was found to fit a power law having an exponent of -6 to -7, which is found to be characteristics of infrasonic emissions from CAT, in contrast to findings of the past.

  4. Infrasonic tremor observed at Kilauea Volcano, Hawaii'i

    USGS Publications Warehouse

    Garces, M.; Harris, A.; Hetzer, C.; Johnson, J.; Rowland, S.; Marchetti, E.; Okubo, P.

    2003-01-01

    Infrasonic array data collected at Ki??lauea Volcano, Hawai'i, during November 12-21, 2002 indicate that the active vents and lava tube system near the P'u 'O??'o?? vent complex emit almost continuous infrasound in the 0.310 Hz frequency band. The spectral content of these infrasonic signals matches well that of synchronous seismic tremor. In sites protected from wind noise, significant signal to noise ratios were recorded as far as ???13 km from the crater of Pu'u 'O??'o??. The infrasonic recordings suggest that one or more tremor sources may be close to the surface. In addition, these results demonstrate that adequate site and instrument selections for infrasonic arrays are essential in order to obtain consistent and reliable infrasonic detections. ?? 2003 by the American Geophysical Union.

  5. Seismic and infrasonic source processes in volcanic fluid systems

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.

    Volcanoes exhibit a spectacular diversity in fluid oscillation processes, which lead to distinct seismic and acoustic signals in the solid earth and atmosphere. Volcano seismic waveforms contain rich information on the geometry of fluid migration, resonance effects, and transient and sustained pressure oscillations resulting from unsteady flow through subsurface cracks, fissures and conduits. Volcanic sounds contain information on shallow fluid flow, resonance in near-surface cavities, and degassing dynamics into the atmosphere. Since volcanoes have large spatial scales, the vast majority of their radiated atmospheric acoustic energy is infrasonic (<20 Hz). This dissertation presents observations from joint broadband seismic and infrasound array deployments at Mount St. Helens (MSH, Washington State, USA), Tungurahua (Ecuador), and Kilauea Volcano (Hawaii, USA), each providing data for several years. These volcanoes represent a broad spectrum of eruption styles ranging from hawaiian to plinian in nature. The catalogue of recorded infrasonic signals includes continuous broadband and harmonic tremor from persistent degassing at basaltic lava vents and tubes at Pu'u O'o (Kilauea), thousands of repetitive impulsive signals associated with seismic longperiod (0.5-5 Hz) events and the dynamics of the shallow hydrothermal system at MSH, rockfall signals from the unstable dacite dome at MSH, energetic explosion blast waves and gliding infrasonic harmonic tremor at Tungurahua volcano, and large-amplitude and long-duration broadband signals associated with jetting during vulcanian, subplinian and plinian eruptions at MSH and Tungurahua. We develop models for a selection of these infrasonic signals. For infrasonic long-period (LP) events at MSH, we investigate seismic-acoustic coupling from various buried source configurations as a means to excite infrasound waves in the atmosphere. We find that linear elastic seismic-acoustic transmission from the ground to atmosphere is

  6. Compact Infrasonic Windscreen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  7. Infrasonic Signals from the 29 June 2012 Derecho

    NASA Astrophysics Data System (ADS)

    Winslow, N.; Howard, W. B.; Pulli, J. J.; Kofford, A. S.

    2012-12-01

    Common weather events such as pressure fronts, tornados, and hurricanes generate infrasonic signals (sub-audible acoustic signals with an oscillatory frequency below 20 Hz). These signals can provide a distal (>10km) analysis of weather events because: (1) the attenuation of an infrasonic signal with distance is less than that of a similar audible signal, and (2) the propagation velocities of typical weather events are much slower than the speed of sound. The 29 June, 2012 Derecho (a widespread, long-lived, rapidly moving linear band of storms extending more than 240 miles and including wind gusts in excess of 58 mph) that stretched from Chicago, IL to Washington, DC generated infrasonic signals in addition to causing over $100 million in damage to the power systems of Virginia, West Virginia, and Maryland alone. The infrasonic (and seismic) signals from this event were recorded on the NCPA micro barometers along the northeastern edge of the current configuration of the USArray. These instruments, which sample at 40 Hz, exhibit a flat frequency response from around 0.1 Hz to above 20 Hz and show a sensitivity of 1.57 x 104 Volts/Pascal at 0.8 Hz. An analysis of the recordings observed at multiple stations identified several infrasonic signatures from the Derecho. The signal's duration was approximately 40 minutes and exhibited a large peak pressure fluctuation. A characteristic ramp up occurred before the peak pressure fluctuation, and the majority of the infrasonic energy occurred below 1 Hz. These signatures are analyzed within the context of the Derecho as an infrasonic source, and the propagation of infrasound in the atmosphere.

  8. Infrasonic troposphere-ionosphere coupling in Hawaii

    NASA Astrophysics Data System (ADS)

    Garces, M. A.

    2011-12-01

    The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.

  9. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  10. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  11. Infrasonic Emissions From A Tornado

    NASA Astrophysics Data System (ADS)

    Petrin, Christopher; Elbing, Brian

    2017-11-01

    Tornadoes cause dozens of deaths and significant damage throughout the United States every year. Tornado-producing storm systems emit infrasound (sound at frequencies below human hearing) up to 2 hours before tornadogenesis. Weak atmospheric attenuation at these frequencies allows them to be detected hundreds of miles away. Hence, passive infrasonic monitoring may be used for long-range study of tornadogenesis. This requires characterization of infrasound during the life of a tornado and from other background sources. This is being accomplished as part of the Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD-MAP) project, a multi-university collaboration focused on the development and implementation of unmanned aerial systems (UAS) and their integration with sensors for atmospheric measurement. This presentation will report findings from a fixed infrasonic microphone that has been continuously monitoring the atmosphere since September 2, 2016. Infrasound from a tornado that occurred 19 km from the microphone on May 11, 2017 will be presented as well as an overview of other infrasonic observations. This work was supported by NSF Grant 1539070.

  12. Collection of Infrasonic Sound From Sources of Military Importance

    NASA Technical Reports Server (NTRS)

    Masterman, Michael; Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Stihler, Craig; Wallace, Jack

    2008-01-01

    Extreme Endeavors is collaborating with NASA Langley Research Center (LaRC) in the development, testing and analysis of infrasonic detection system under a Space Act Agreement. Acoustic studies of atmospheric events like convective storms, shear-induced turbulence, acoustic gravity waves, microbursts, hurricanes, and clear air turbulence (CAT) over the past thirty years have established that these events are strong emitters of infrasound. Recently NASA Langley Research Center has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at locations where it was not possible previously, such as a mountain crag, inside a cave or on the battlefield. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Extreme Endeavors will present the findings from field testing using this portable infrasonic detection system. Field testing of the infrasonic detection system was partly funded by Greer Industries and support provided by the West Virginia Division of Natural Resources. The findings from this work illustrate the ability to detect structure and other information about the contents inside the caves. The presentation will describe methodology for utilizing infrasonic to locate and portray underground facilities.

  13. Do manatees utilize infrasonic communication or detection?

    NASA Astrophysics Data System (ADS)

    Gerstein, Edmund; Gerstein, Laura; Forsythe, Steve; Blue, Joseph

    2004-05-01

    Some researchers speculate Sirenians might utilize infrasonic communication like their distant elephant cousins; however, audiogram measurements and calibrated manatee vocalizations do not support this contention. A comprehensive series of hearing tests conducted with West Indian manatees yielded the first and most definitive audiogram for any Sirenian. The manatee hearing tests were also the first controlled underwater infrasonic psychometric tests with any marine mammal. Auditory thresholds were measured from 0.4 to 46 kHz, but detection thresholds of possible vibrotactile origin were measured as low as 0.015 kHz. Manatees have short hairs on their bodies that may be sensitive vibrotactile receptors capable of detecting particle displacement in the near field. To detect these signals the manatee rotated on axis, exposing the densest portion of hairs toward the projector. Manatees inhabit shallow water where particle motion detection may be more useful near the water's surface, where sound pressures are low due to the Lloyd mirror effect. With respect to intraspecific communication, no infrasonic spectra have been identified in hundreds of calibrated calls. Low source levels and propagation limits in shallow-water habitats suggest low-frequency manatee calls have limited utility over long distances and infrasonic communication is not an attribute shared with elephants.

  14. Infrasonic waves generated by supersonic auroral arcs

    NASA Astrophysics Data System (ADS)

    Pasko, Victor P.

    2012-10-01

    A finite-difference time-domain (FDTD) model of infrasound propagation in a realistic atmosphere is used to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. The Lorentz force and Joule heating are discussed in the existing literature as primary sources producing infrasound waves in the frequency range 0.1-0.01 Hz associated with the auroral electrojet. The results are consistent with original ideas of Swift (1973) and demonstrate that the synchronization of the speed of auroral arc and phase speed of the acoustic wave in the electrojet volume is an important condition for generation of magnitudes and frequency contents of infrasonic waves observable on the ground. The reported modeling also allows accurate quantitative reproduction of previously observed complex infrasonic waveforms including direct shock and reflected shockwaves, which are refracted back to the earth by the thermosphere.

  15. Infrasonic Stethoscope for Monitoring Physiological Processes

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Shams, Qamar A. (Inventor); Dimarcantonio, Albert L. (Inventor)

    2018-01-01

    An infrasonic stethoscope for monitoring physiological processes of a patient includes a microphone capable of detecting acoustic signals in the audible frequency bandwidth and in the infrasonic bandwidth (0.03 to 1000 Hertz), a body coupler attached to the body at a first opening in the microphone, a flexible tube attached to the body at a second opening in the microphone, and an earpiece attached to the flexible tube. The body coupler is capable of engagement with a patient to transmit sounds from the person, to the microphone and then to the earpiece.

  16. Infrasonic Stethoscope for Monitoring Physiological Processes

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Shams, Qamar A. (Inventor); Dimarcantonio, Albert L. (Inventor)

    2016-01-01

    An infrasonic stethoscope for monitoring physiological processes of a patient includes a microphone capable of detecting acoustic signals in the audible frequency bandwidth and in the infrasonic bandwidth (0.03 to 1000 Hertz), a body coupler attached to the body at a first opening in the microphone, a flexible tube attached to the body at a second opening in the microphone, and an earpiece attached to the flexible tube. The body coupler is capable of engagement with a patient to transmit sounds from the person, to the microphone and then to the earpiece.

  17. Infrasonic component of volcano-seismic eruption tremor

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David

    2014-03-01

    Air-ground and ground-air elastic wave coupling are key processes in the rapidly developing field of seismoacoustics and are particularly relevant for volcanoes. During a sustained explosive volcanic eruption, it is typical to record a sustained broadband signal on seismometers, termed eruption tremor. Eruption tremor is usually attributed to a subsurface seismic source process, such as the upward migration of magma and gases through the shallow conduit and vent. However, it is now known that sustained explosive volcanic eruptions also generate powerful tremor signals in the atmosphere, termed infrasonic tremor. We investigate infrasonic tremor coupling down into the ground and its contribution to the observed seismic tremor. Our methodology builds on that proposed by Ichihara et al. (2012) and involves cross-correlation, coherence, and cross-phase spectra between waveforms from nearly collocated seismic and infrasonic sensors; we apply it to datasets from Mount St. Helens, Tungurahua, and Redoubt Volcanoes.

  18. Basic Research on Seismic and Infrasonic Monitoring of the European Arctic

    DTIC Science & Technology

    2007-09-01

    detected with a high signal -to-noise ratio (SNR) on the ARCES array ; secondly they register very stable azimuth estimates on the detection lists; and...exploiting the data from the Swedish infrasound array network, which provides a useful supplement to the seismic and infrasonic arrays in Norway and NW...infrasonic phase associations. Furthermore, we plan to generate an infrasonic event bulletin using only the estimated azimuths and detection times of

  19. Characteristics of dilatational infrasonic pulses accompanying low-frequency earthquakes at Miyakejima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yoshiaki; Yamasato, Hitoshi; Shimbori, Toshiki; Sakai, Takayuki

    2014-12-01

    Since the caldera-forming eruption of Miyakejima Volcano in 2000, low-frequency (LF) earthquakes have occurred frequently beneath the caldera. Some of these LF earthquakes are accompanied by emergent infrasonic pulses that start with dilatational phases and may be accompanied by the eruption of small amounts of ash. The estimated source locations of both the LF earthquakes and the infrasonic signals are within the vent at shallow depth. Moreover, the maximum seismic amplitude roughly correlates with the maximum amplitude of the infrasonic pulses. From these observations, we hypothesized that the infrasonic waves were excited by partial subsidence within the vent associated with the LF earthquakes. To verify our hypothesis, we used the infrasonic data to estimate the volumetric change due to the partial subsidence associated with each LF earthquake. The results showed that partial subsidence in the vent can well explain the generation of infrasonic waves.

  20. Acoustic/infrasonic rocket engine signatures

    NASA Astrophysics Data System (ADS)

    Tenney, Stephen M.; Noble, John M.; Whitaker, Rodney W.; ReVelle, Douglas O.

    2003-09-01

    Infrasonics offers the potential of long-range acoustic detection of explosions, missiles and even sounds created by manufacturing plants. The atmosphere attenuates acoustic energy above 20 Hz quite rapidly, but signals below 10 Hz can propagate to long ranges. Space shuttle launches have been detected infrasonically from over 1000 km away and the Concorde airliner from over 400 km. This technology is based on microphones designed to respond to frequencies from .1 to 300 Hz that can be operated outdoors for extended periods of time with out degrading their performance. The US Army Research Laboratory and Los Alamos National Laboratory have collected acoustic and infrasonic signatures of static engine testing of two missiles. Signatures were collected of a SCUD missile engine at Huntsville, AL and a Minuteman engine at Edwards AFB. The engines were fixed vertically in a test stand during the burn. We will show the typical time waveform signals of these static tests and spectrograms for each type. High resolution, 24-bit data were collected at 512 Hz and 16-bit acoustic data at 10 kHz. Edwards data were recorded at 250 Hz and 50 Hz using a Geotech Instruments 24 bit digitizer. Ranges from the test stand varied from 1 km to 5 km. Low level and upper level meteorological data was collected to provide full details of atmospheric propagation during the engine test. Infrasonic measurements were made with the Chaparral Physics Model 2 microphone with porous garden hose attached for wind noise suppression. A B&K microphone was used for high frequency acoustic measurements. Results show primarily a broadband signal with distinct initiation and completion points. There appear to be features present in the signals that would allow identification of missile type. At 5 km the acoustic/infrasonic signal was clearly present. Detection ranges for the types of missile signatures measured will be predicted based on atmospheric modeling. As part of an experiment conducted by ARL

  1. Volcano infrasonic signals and magma degassing: First-order experimental insights and application to Stromboli

    NASA Astrophysics Data System (ADS)

    Lane, Stephen J.; James, Mike R.; Corder, Steven B.

    2013-09-01

    We demonstrate the rise and expansion of a gas slug as a fluid dynamic source mechanism for infrasonic signals generated by gas puffing and impulsive explosions at Stromboli. The fluid dynamics behind the rise, expansion and burst of gas slugs in the confines of an experimental tube can be characterised into different regimes. Passive expansion occurs for small gas masses, where negligible dynamic gas over-pressure develops during bubble ascent and, prior to burst, meniscus oscillation forms an important infrasonic source. With increasing gas mass, a transition regime emerges where dynamic gas over-pressure is significant. For larger gas masses, this regime transforms to fully explosive behaviour, where gas over-pressure dominates as an infrasonic source and bubble bursting is not a critical factor. The rate of change of excess pressure in the experimental tube was used to generate synthetic infrasonic waveforms. Qualitatively, the waveforms compare well to infrasonic waveforms measured from a range of eruptions at Stromboli. Assuming pressure continuity during flow through the vent, and applying dimensionless arguments from the first-order experiments, allows estimation of eruption metrics from infrasonic signals measured at Stromboli. Values of bubble length, gas mass and over-pressure calculated from infrasonic signals are in excellent agreement with those derived by independent means for eruptions at Stromboli, therefore providing a method of estimating eruption metrics from infrasonic measurement.

  2. Improved Bayesian Infrasonic Source Localization for regional infrasound

    DOE PAGES

    Blom, Philip S.; Marcillo, Omar; Arrowsmith, Stephen J.

    2015-10-20

    The Bayesian Infrasonic Source Localization (BISL) methodology is examined and simplified providing a generalized method of estimating the source location and time for an infrasonic event and the mathematical framework is used therein. The likelihood function describing an infrasonic detection used in BISL has been redefined to include the von Mises distribution developed in directional statistics and propagation-based, physically derived celerity-range and azimuth deviation models. Frameworks for constructing propagation-based celerity-range and azimuth deviation statistics are presented to demonstrate how stochastic propagation modelling methods can be used to improve the precision and accuracy of the posterior probability density function describing themore » source localization. Infrasonic signals recorded at a number of arrays in the western United States produced by rocket motor detonations at the Utah Test and Training Range are used to demonstrate the application of the new mathematical framework and to quantify the improvement obtained by using the stochastic propagation modelling methods. Moreover, using propagation-based priors, the spatial and temporal confidence bounds of the source decreased by more than 40 per cent in all cases and by as much as 80 per cent in one case. Further, the accuracy of the estimates remained high, keeping the ground truth within the 99 per cent confidence bounds for all cases.« less

  3. Monitoring of atmospheric nuclear explosions with infrasonic microphone arrays

    NASA Astrophysics Data System (ADS)

    Wilson, Charles R.

    2002-11-01

    A review is given of the various United States programs for the infrasonic monitoring of atmospheric nuclear explosions from their inception in 1946 to their termination in 1975. The US Atomic Energy Detection System (USAEDS) monitored all nuclear weapons tests that were conducted by the Soviet Union, France, China, and the US with arrays of sensitive microbarographs in a worldwide network of infrasonic stations. A discussion of the source mechanism for the creation and subsequent propagation around the globe of long wavelength infrasound from explosions (volcanic and nuclear) is given to show the efficacy of infrasonic monitoring for the detection of atmospheric nuclear weapons tests. The equipment that was used for infrasound detection, the design of the sensor arrays, and the data processing techniques that were used by USAEDS are all discussed.

  4. Monochromatic infrasonic tremor driven by persistent degassing and convection at Villarrica Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Marchetti, E.; Bonadonna, C.; Harris, A. J. L.; Pioli, L.; Ulivieri, G.

    2010-08-01

    Infrasonic data collected at Villarrica volcano (Chile) in March 2009 show a sustained, continuous, infrasonic oscillation (tremor) with a monochromatic low frequency content at ˜0.75 Hz. This tremor is extremely stable in time both at the summit and at a distal (˜4 km) small aperture array. Infrasonic tremor is characterized by discrete high amplitude bursts with a cyclic recurrence time of ˜40 s and is well correlated (0.93) with seismic tremor. These new data are compared with previous datasets collected in 2002 and 2004 during different levels of activity. All data show the same persistent infrasonic tremor and have the same strong correlation with seismic tremor. The stability and correlation of infrasonic and seismic tremor indicate the existence of a sustained and continuous process, which we suggest is related to the gravity-driven bubble column dynamics responsible for conduit convection.

  5. Simultaneous infrasonic, seismic, magnetic and ionospheric observations in an earthquake epicentre

    NASA Astrophysics Data System (ADS)

    Laštovička, J.; Baše, J.; Hruška, F.; Chum, J.; Šindelářová, T.; Horálek, J.; Zedník, J.; Krasnov, V.

    2010-10-01

    Various pre-seismic and co-seismic effects have been reported in the literature in the solid Earth, hydrosphere, atmosphere, electric/magnetic field and in the ionosphere. Some of the effects observed above the surface, particularly some of the pre-seismic effects, are still a matter of debate. Here we analyze the co-seismic effects of a relatively weak earthquake of 28 October 2008, which was a part of an earthquake swarm in the westernmost region of the Czech Republic. Special attention is paid to unique measurements of infrasonic phenomena. As far as we know, these have been the first infrasonic measurements during earthquake in the epicentre zone. Infrasonic oscillations (˜1-12 Hz) in the epicentre region appear to be excited essentially by the vertical seismic oscillations. The observed oscillations are real epicentral infrasound not caused by seismic shaking of the instruments or by meteorological phenomena. Seismo-infrasonic oscillations observed 155 km apart from the epicentre were excited in situ by seismic waves. No earthquake-related infrasonic effects have been observed in the ionosphere. Necessity to make vibration tests of instruments is pointed out in order to be sure that observed effects are not effects of mechanical shaking of the instrument.

  6. Exploring Venus interior structure with infrasonic techniques

    NASA Astrophysics Data System (ADS)

    Mimoun, David; Garcia, Raphael; Cadu, Alexandre; Cutts, Jim; Komjathy, Attila; Pauken, Mike; Kedar, Sharon; Jackson, Jennifer; Stevenson, Dave

    2017-04-01

    Radar images have revealed a surface of Venus that is much younger than expected, as well as a variety of enigmatic features linked to the tectonic activity. If probing the interior structure of Venus is a formidable challenge, it is still of primary importance for understanding Venus itself, its relationship to Earth and more generally the evolution of Earth-like planets. Conventional long period seismology uses very broadband seismic sensors that require to be in contact with the planetary surface, like for the Apollo missions and for the Mars Insight mission; this approach is in the short term impractical for Venus because of its extreme temperature and pressure surface conditions. Russian probes such as Venera 13-14 have only lasted a few tens of minutes, when the required duration of the seismic measurements, based on a rough estimate of the Venus tectonic activity, is at least of a few months. We propose as a possible way forward to use the very conditions at the surface of Venus to record the signal in a more suitable environment: as acoustic and infrasonic waves resulting from seismic activity are coupled much more efficiently than on Earth in the dense carbon dioxide atmosphere, a string of micro-barometers deployed on a tether by a balloon platform at Venus over the cloud layer would record this infrasonic counterpart. Such an experiment could encompass a wide range of scientific objectives, from the characterization of the infrasonic background of Venus to the ability to record, and possibly discriminate, signatures from volcanic events, storm activity, and meteor impacts. We will discuss our proposed Venus experiment, as well as the experimental validation effort that takes place on Earth to validate the idea and possibly record infrasonic seismic counterparts

  7. Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane.

    PubMed

    Stettin, Eduard; Paulat, Klaus; Schulz, Chris; Kunz, Ulrich; Mauer, Uwe Max

    2011-06-01

    We investigated whether ICP can be assessed by measuring infrasonic emissions from the tympanic membrane. An increase in ICP was induced in 22 patients with implanted ICP pressure sensors. ICP waveforms that were obtained invasively and continuously were compared with infrasonic emission waveforms. In addition, the noninvasive method was used in a control group of 14 healthy subjects. In a total of 83 measurements, the changes in ICP that were observed in response to different types of stimulation were detected in the waveforms obtained noninvasively as well as in those acquired invasively. Low ICP was associated with an initial high peak and further peaks with smaller amplitudes. High ICP was associated with a marked decrease in the number of peaks and in the difference between the amplitudes of the initial and last peaks. The assessment of infrasonic emissions, however, does not yet enable us to provide exact figures. It is conceivable that the assessment of infrasonic emissions will become suitable both as a screening tool and for the continuous monitoring of ICP in an intensive care environment.

  8. [Clinical assessment of infrasonic phonophoresis efficacy in the treatment of bacterial keratitis].

    PubMed

    Sidorenko, E I; Filatov, V V; Alimova, Iu M

    1999-01-01

    Therapeutic efficacy of infrasonic phonophoresis is studied in 30 patients with bacterial keratitis. Control group consisted of 87 patients with the same diagnosis. Clinical studies included comparative evaluation of the therapeutic efficacy of infrasonic phonophoresis and traditional local instillations of the same drugs. Before treatment, visual acuity was the same in both groups, while after regression of inflammation after treatment it was 0.13 higher in the phonophoresis group. Results of clinical studies indicate a higher efficacy of infrasonic therapy of patients with keratitis. The duration of therapy was decreased, number of bed-days decreased, and visual acuity after treatment improved.

  9. Infrasonic interferometry applied to synthetic and measured data

    NASA Astrophysics Data System (ADS)

    Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.

    2013-04-01

    The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808

  10. Infrasonic tremor wavefield of the Pu`u `Ō`ō crater complex and lava tube system, Hawaii, in April 2007

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David; GarcéS, Milton A.

    2010-12-01

    Long-lived effusive volcanism at the Pu`u `Ō`ō crater complex, Kilauea Volcano, Hawaii produces persistent infrasonic tremor that has been recorded almost continuously for months to years. Previous studies showed that this infrasonic tremor wavefield can be recorded at a range of >10 km. However, the low signal power of this tremor relative to ambient noise levels results in significant propagation effects on signal detectability at this range. In April 2007, we supplemented a broadband infrasound array at ˜12.5 km from Pu`u `Ō`ō (MENE) with a similar array at ˜2.4 km from the source (KIPU). The additional closer-range data enable further evaluation of tropospheric propagation effects and provide higher signal-to-noise ratios for studying volcanic source processes. The infrasonic tremor source appears to consist of at least two separate physical processes. We suggest that bubble cloud oscillation in a roiling magma conduit beneath the crater complex may produce a broadband component of the tremor. Low-frequency sound sourced in a shallow magma conduit may radiate infrasound efficiently into the atmosphere due to the anomalous transparency of the magma-air interface. We further propose that more sharply peaked tones with complex temporal evolution may result from oscillatory interactions of a low-velocity gas jet with solid vent boundaries in a process analogous to the hole tone or whistler nozzle. The infrasonic tremor arrives with a median azimuth of ˜67° at KIPU. Additional infrasonic signals and audible sounds originating from the extended lava tube system to the south of the crater complex (median azimuth ˜77°) coincided with turbulent degassing activity at a new lava tube skylight. Our observations indicate that acoustic studies may aid in understanding persistent continuous degassing and unsteady flow dynamics at Kilauea Volcano.

  11. [Revised maximum admissible intensity (MAI) values for infrasonic noise in work environment].

    PubMed

    Pawlaczyk-Łuszczyńska, M; Augustyńska, D; Kaczmarska-Kozłowska, A; Sliwińska-Kowalska, M; Kameduła, M

    2001-01-01

    A short review of infrasound sources is presented. The measuring methods and occupational exposure limits for infrasonic noise (infrasound) are described. The amended Polish regulations on maximum admissible intensity (MAI) values for infrasonic noise in work environment and proposals of exposure limits for workers at particular risk (i.e. pregnant women and juveniles) are discussed.

  12. Mechanism of Lightning Associated Infrasonic Pulses from Thunderclouds

    NASA Astrophysics Data System (ADS)

    Pasko, V. P.

    2008-12-01

    The infrasonic waves correspond to the region of frequencies of acoustic sound waves 0.02-10 Hz, higher than the acoustic cut-off frequency but lower than the audible frequencies [e.g., Blanc, Ann. Geophys., 3, 673, 1985]. There is a strong experimental evidence that thunderstorms represent significant sources of infrasonic wave activity spanning a broad altitude range from the troposphere and up to the thermosphere [e.g., Blanc, 1985; Few, in Handbook of Atmospheric Electrodynamics, Vol. 2, edited by H. Volland, pp. 1-31, CRC Press, 1995; Drob et al., JGR, 108, 4680, 2003]. This evidence includes electrostatic production of 0.1- 1 Hz infrasonic waves from thunderclouds [Few, 1995] and recent discovery of infrasound from lightning induced transient luminous events in the mesosphere called sprites [Liszka, J. Low Freq. Noise Vibr. Active Control, 23, 85, 2004; Farges et al., GRL, 32, L13824, 2005; Liszka and Hobara, JASTP, 68, 1179, 2006]. The understanding and classification of different infrasonic waves and their sources is of great current interest from a Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification perspective [e.g., Assink et al., GRL, 35, L15802, 2008]. It has been pointed many decades ago by C. T. R. Wilson [Phil. Trans. R. Soc. London A, 221, 73, 1920] that sudden reduction of the electric field inside a thundercloud immediately following a lightning discharge should produce an infrasound signature. Wilson [1920] noted that the pressure within a charged cloud must be less than the pressure outside, similarly to that within a charged soap bubble. In contrast to the sudden expansion of the air along the track of a lightning flash, the sudden contraction of a large volume of air must furnish a measurable rarefaction pulse [Wilson, 1920]. Many experimental and theoretical contributions followed these predictions by C. T. R. Wilson (see [Few, JGR, 90, 6175, 1985] and extensive list of references therein). Modeling investigation of related scenarios

  13. Real-time realizations of the Bayesian Infrasonic Source Localization Method

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.

    2015-12-01

    The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.

  14. Infrasonic and seismic signals from the Myanmar earthquake of November 11,2012

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zhang, Dongning; Li, Ke

    2013-04-01

    On November 11, 2012, at 01:12:38 UTC (09:12:38 Beijing Time), a strong earthquake (Mw=6.8) occurred in Myanmar. The epicenter (23.0˚N,95.9˚E,focal depth ~10 km) was near the town of Male, 52 km NNE of the city of Shwebo. The earthquake with a rupture length of 60-70 km resulted from right lateral movement on the Sagaing Fault related to collision between the Indo-Australian Plate and the Eurasian Plate. At a distance of 366 km from the epicenter, infrasonic and seismic signals were recorded by Tengchong seismo-acoustic array located in southwest of China for monitoring volcanic and earthquake activity, which consists of four MB2005 microbarometers with bandwidth 0.01-27Hz and four BBVS-60 seismometers with bandwidth 0.01667-50Hz arranged in a centered triangle with an aperture of about 1.8 km. PMCC provided by CEA/DASE applied to analyze infrasound data. Comparison of the infrasonic and seismic signals produced by this earthquake showed infrasonic signals with different arrival times and azimuths may be classified as local, epicentral and diffracted or secondary sourced infrasound, but seismic signals only include P, S and surface waves can produce local infrasound through ground-coupled air waves at the station. The PMCC results indicated that the infrasonic waves showed a consistent acoustic trace velocity of approximately 0.348 km/s from 09:30 to 09:36 (Beijing Time) and the azimuth of arrival changed with time from 227 to 217 degrees. There are mountain chains with altitude more than 1000 m in the east of the epicenter. Mountains shaking induced by earthquake acted as a speaker and radiated the infrasound that traveled to Tengchong seismo-acoustic array. It was worth noting that PMCC detected a group infrasound with trace velocity of approximately 0.339 km/s and arrival azimuth of 237 degree from 09:23:31 to 09:24 (Beijing Time). It may be inferred that the seismic surface wave induced by earthquake reach the mountains on the border between China Yunnan and

  15. Some results of recording infrasonic signals from explosions in Finland, 2009

    NASA Astrophysics Data System (ADS)

    Kulichkov, S.; Kremenetskaya, E.; Vinogradov, Yu.; Asming, V.; Popov, O.; Bush, G.; Golikova, E.; Drob, D.

    2010-05-01

    The results of recording infrasonic signals from series of explosions in Finland in 2009 are presented. The explosions were carried out by Finish militaries for destruction of outdated weapon. Explosions yield about 10 t tnt. It was performed about twenty explosions in 2009, August-September. The distance between the source and the receiver was 304 km. It was detected infrasonic waves corresponding to sound propagation along earth surface and in stratospheric and thermospheric acoustic waveguides. The significant difference in azimuths for surface, stratospheric, thermospheric arrivals of infrasound signals is obtained. These differences are due to the influence of transverse wind propagation. The theoretical calculation of the waveform of recorded infrasonic signals is produced. The calculation is done using the TDPE (Time Domain Parabolic Equation Code) method and the G2S temperature and wind profile. The temperature and wind profile are taken from balloon sounding data up to the height of 17 km. A satisfactory agreement between the results of calculations and experimental data is obtained.

  16. Seismic Observation of Infrasonic Signals

    DTIC Science & Technology

    1984-11-01

    The implication of these results is that an infra - sonic monitoring capability already exists in the current seismic network and... infra - sonic signal recorded by the microbarographs. This arrival is linearly polarized, with a near-vertical orientation of the state vector. The...TECHNICAL REPORT NO. 84-7 cn "^ SEISMIC OBSERVATION p INFRASONIC SIGNALS D < FINAL REPORT by JACK C. SWANSON and J. CRAIG WOERPEL The views and

  17. Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.

    PubMed

    Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G

    2013-10-01

    The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.

  18. Magma Vesiculation and Infrasonic Activity in Open Conduit Volcanoes

    NASA Astrophysics Data System (ADS)

    Colo', L.; Baker, D. R.; Polacci, M.; Ripepe, M.

    2007-12-01

    At persistently active basaltic volcanoes such as Stromboli, Italy degassing of the magma column can occur in "passive" and "active" conditions. Passive degassing is generally understood as a continuous, non explosive release of gas mainly from the open summit vents and subordinately from the conduit's wall or from fumaroles. In passive degassing generally gas is in equilibrium with atmospheric pressure, while in active degassing the gas approaches the surface at overpressurized conditions. During active degassing (or puffing), the magma column is interested by the bursting of small gas bubbles at the magma free surface and, as a consequence, the active degassing process generates infrasonic signals. We postulated, in this study, that the rate and the amplitude of infrasonic activity is somehow linked to the rate and the volume of the overpressured gas bubbles, which are generated in the magma column. Our hypothesis is that infrasound is controlled by the quantities of gas exsolved in the magma column and then, that a relationship between infrasound and the vesiculation process should exist. In order to achieve this goal, infrasonic records and bubble size distributions of scoria samples from normal explosive activity at Stromboli processed via X ray tomography have been compared. We observed that the cumulative distribution for both data sets follow similar power laws, indicating that both processes are controlled by a scale invariant phenomenon. However the power law is not stable but changes in different scoria clasts, reflecting when gas bubble nucleation is predominant over bubbles coalescence and viceversa. The power law also changes for the infrasonic activity from time to time, suggesting that infrasound may be controlled also by a different gas exsolution within the magma column. Changes in power law distributions are the same for infrasound and scoria indicating that they are linked to the same process acting in the magmatic system. We suggest that

  19. [The psychological effect of minesweeping infrasonic field].

    PubMed

    Huang, Zhi-qiang; Liang, Zhen-fu; Shi, Xiu-feng; Yu, Hao

    2003-02-01

    To investigate the effect of infrasonic field of minesweeper on psychology of minesweeper crews. An experimental ship was selected to conduct infrasonic minesweeping, a control ship of the same type was selected to operate likewise with the infrasound generator turned off, and another group of coast-servicemen was chosen as blank control. Attention-span test, digit memory test, two-digital numbers list and profile of mood states (POMS) were used to test the ship crews and coast-servicemen. There were no significant differences in psychological parameters between the two ship crews before the experiment. But the scores of two-digit figures list in ship crews were significant lower than that in coast-servicemen, (31.2 +/- 11.8, 36.4 +/- 14.5 respectively vs 45.8 +/- 13.9, P < 0.05). POMS showed that the scores of anger-hostility, fatigue-inertia, and confusion-bewilderment in both ship crew groups [(15.5 +/- 6.4, 18.3 +/- 6.8), (12.1 +/- 5.0,12.3 +/- 4.9), (11.6 +/- 4.4, 12.5 +/- 4.8), respectively] were higher than those in coast-servicemen (13.9 +/- 7.0, 7.6 +/- 4.1, 8.2 +/- 4.3, respectively, P < 0.05 or 0.01), while vigor-activity in experimental group (15.0 +/- 5.9) was lower than that in coast-servicemen (19.7 +/- 4.7). After the experiment, the scores of experimental crews in digit memory test (14.5 +/- 5.0), vigor-activity (12.2 +/- 5.8), fatigue-inertia (15.8 +/- 6.2) were significantly different from those of control crews (17.3 +/- 4.8, 16.5 +/- 4.6, 11.3 +/- 5.1). The infrasonic field from minesweeper may injure the crew's psychological health and some neurobehavioral function.

  20. Monitoring Seismo-volcanic and Infrasonic Signals at Volcanoes: Mt. Etna Case Study

    NASA Astrophysics Data System (ADS)

    Cannata, Andrea; Di Grazia, Giuseppe; Aliotta, Marco; Cassisi, Carmelo; Montalto, Placido; Patanè, Domenico

    2013-11-01

    Volcanoes generate a broad range of seismo-volcanic and infrasonic signals, whose features and variations are often closely related to volcanic activity. The study of these signals is hence very useful in the monitoring and investigation of volcano dynamics. The analysis of seismo-volcanic and infrasonic signals requires specifically developed techniques due to their unique characteristics, which are generally quite distinct compared with tectonic and volcano-tectonic earthquakes. In this work, we describe analysis methods used to detect and locate seismo-volcanic and infrasonic signals at Mt. Etna. Volcanic tremor sources are located using a method based on spatial seismic amplitude distribution, assuming propagation in a homogeneous medium. The tremor source is found by calculating the goodness of the linear regression fit ( R 2) of the log-linearized equation of the seismic amplitude decay with distance. The location method for long-period events is based on the joint computation of semblance and R 2 values, and the location method of very long-period events is based on the application of radial semblance. Infrasonic events and tremor are located by semblance-brightness- and semblance-based methods, respectively. The techniques described here can also be applied to other volcanoes and do not require particular network geometries (such as arrays) but rather simple sparse networks. Using the source locations of all the considered signals, we were able to reconstruct the shallow plumbing system (above sea level) during 2011.

  1. Infrasonic emissions from local meteorological events: A summary of data taken throughout 1984

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1986-01-01

    Records of infrasonic signals, propagating through the Earth's atmosphere in the frequency band 2 to 16 Hz, were gathered on a three microphone array at Langley Research Center throughout the year 1984. Digital processing of these records fulfilled three functions: time delay estimation, based on an adaptive filter; source location, determined from the time delay estimates; and source identification, based on spectral analysis. Meteorological support was provided by significant meteorological advisories, lightning locator plots, and daily reports from the Air Weather Service. The infrasonic data are organized into four characteristic signatures, one of which is believed to contain emissions from local meteorological sources. This class of signature prevailed only on those days when major global meteorological events appeared in or near to eastern United States. Eleven case histories are examined. Practical application of the infrasonic array in a low level wing shear alert system is discussed.

  2. Observed seismic and infrasonic signals around the Hakone volcano -Discussion based on a finite-difference calculation-

    NASA Astrophysics Data System (ADS)

    Wakamatu, S.; Kawakata, H.; Hirano, S.

    2017-12-01

    Observation and analysis of infrasonic waves are important for volcanology because they could be associated with mechanisms of volcanic tremors and earthquakes (Sakai et al., 2000). Around the Hakone volcano area, Japan, infrasonic waves had been observed many times in 2015 (Yukutake et al., 2016, JpGU). In the area, seismometers have been installed more than microphones, so that analysis of seismograms may also contribute to understanding some characteristics of the infrasonic waves. In this study, we focused on the infrasonic waves on July 1, 2015, at the area and discussed their propagation. We analyzed the vertical component of seven seismograms and two infrasound records; instruments for these data have been installed within 5 km from the vent emerged in the June 2015 eruption(HSRI, 2015). We summarized distances of the observation points from the vent and appearance of the signals in the seismograms and the microphone records in Table 1. We confirmed that, when the OWD microphone(Fig1) observed the infrasonic waves, seismometers of the OWD and the KIN surface seismic stations(Fig1) recorded pulse-like signals repeatedly while the other five buried seismometers did not. At the same time, the NNT microphone(Fig1) recorded no more than unclear signals despite the shorter distance to the vent than that of the KIN station. We found that the appearance of pulse-like signals at the KIN seismic station usually 10-11 seconds delay after the appearance at the OWD seismic station. The distance between these two stations is 3.5km, so that the signals in seismograms could represent propagation of the infrasonic waves rather than the seismic waves. If so, however, the infrasound propagation could be influenced by the topography of the area because the signals are unclear in the NNT microphone record.To validate the above interpretation, we simulated the diffraction of the infrasonic waves due to the topography. We executed a 3-D finite-difference calculation by

  3. Infrasonic detection of a near-Earth object impact over Indonesia on 8 October 2009

    NASA Astrophysics Data System (ADS)

    Silber, Elizabeth A.; Le Pichon, Alexis; Brown, Peter G.

    2011-06-01

    We present analysis of infrasonic signals produced by a large Earth-impacting fireball, believed to be among the most energetic instrumentally recorded during the last century that occurred on 8 October, 2009 over Indonesia. This extraordinary event, detected by 17 infrasonic stations of the global International Monitoring Network, generated stratospherically ducted infrasound returns at distances up to 17 500 km, the greatest range at which infrasound from a fireball has been detected since the 1908 Tunguska explosion. From these infrasonic records, we find the total source energy for this bolide as 8-67 kilotons of TNT equivalent explosive yield, with the favored best estimate near ˜50 kt. Global impact events of such energy are expected only once per decade and study of their impact effects can provide insight into the impactor threshold levels for ground damage and climate perturbations.

  4. Finite-Difference Time-Domain Modeling of Infrasonic Waves Generated by Supersonic Auroral Arcs

    NASA Astrophysics Data System (ADS)

    Pasko, V. P.

    2010-12-01

    Atmospheric infrasonic waves are acoustic waves with frequencies ranging from ˜0.02 to ˜10 Hz [e.g., Blanc, Ann. Geophys., 3, 673, 1985]. The importance of infrasound studies has been emphasized in the past ten years from the Comprehensive Nuclear-Test-Ban Treaty verification perspective [e.g., Le Pichon et al., JGR, 114, D08112, 2009]. A proper understanding of infrasound propagation in the atmosphere is required for identification and classification of different infrasonic waves and their sources [Drob et al., JGR, 108, D21, 4680, 2003]. In the present work we employ a FDTD model of infrasound propagation in a realistic atmosphere to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. We have recently applied similar modeling approaches for studies of infrasonic waves generated from thunderstorms [e.g., Few, Handbook of Atmospheric Electrodynamics, H. Volland (ed.), Vol. 2, pp.1-31, CRC Press, 1995], quantitative interpretation of infrasonic signatures from pulsating auroras [Wilson et al., GRL, 32, L14810, 2005], and studies of infrasonic waves generated by transient luminous events in the middle atmosphere termed sprites [e.g., Farges, Lightning: Principles, Instruments and Applications, H.D. Betz et al. (eds.), Ch.18, Springer, 2009]. The related results have been reported in [Pasko, JGR, 114, D08205, 2009], [de Larquier et al., GRL, 37, L06804, 2010], and [de Larquier, MS Thesis, Penn State, Aug. 2010], respectively. In the FDTD model, the altitude and frequency dependent attenuation coefficients provided by Sutherland and Bass [J. Acoust. Soc. Am., 115, 1012, 2004] are included in classical equations of acoustics in a gravitationally stratified atmosphere using a decomposition technique recently proposed by de Groot-Hedlin [J. Acoust. Soc. Am., 124, 1430, 2008]. The auroral infrasonic waves (AIW) in the frequency range 0.1-0.01 Hz associated with the supersonic motion of auroral arcs have been

  5. Exploring Venus Interior Structure by Detection of Infrasonic Waves

    NASA Astrophysics Data System (ADS)

    Mimoun, D.; Cutts, J.; Stevenson, D.; Garcia, R. F.

    2015-04-01

    Knowledge of the interior structure of Venus is currently impeded by the limited time that a seismometer can survive in the atmosphere of Venus. We propose to remotely detect quakes by infrasonic measurements at the top of the cloud layer.

  6. Exploring the interior of Venus with seismic and infrasonic techniques

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Cutts, J. A.; Pauken, M.; Komjathy, A.; Smrekar, S. E.; Kedar, S.; Mimoun, D.; Garcia, R.; Schubert, G.; Lebonnois, S.; Stevenson, D. J.; Lognonne, P. H.; Zhan, Z.; Ko, J. Y. T.; Tsai, V. C.

    2016-12-01

    The dense atmosphere of Venus, which efficiently couples seismic energy into the atmosphere as infrasonic waves, enables an alternative to conventional seismology: detection of infrasonic waves in the upper atmosphere using either high altitude balloons or orbiting spacecraft. Infrasonic techniques for probing the interior of Venus can be implemented without exposing sensors to the severe surface environments on Venus. This approach takes advantage of the fact that approximately sixty-times the energy from a seismic event on Venus is coupled into the atmosphere on Venus as would occur for a comparable event on Earth. The direct or epicentral wave propagates vertically above the event, and the indirect wave propagates through the planet as a Rayleigh wave and then couples to an infrasonic wave. Although there is abundant evidence of tectonic activity on Venus, questions remain as to whether the planet is still active and whether energy releases are seismic or aseismic. In recent years, seismologists have developed techniques for probing crustal and interior structure in parts of the Earth where there are very few quakes. We have begun an effort to determine if this is also possible for Venus. Just as seismic energy propagates more efficiently upward across the surface atmosphere interface, equally acoustic energy originating in the atmosphere will propagate downwards more effectively. Measurements from a balloon platform in the atmosphere of Venus could assess the nature and spectral content of such sources, while having the ability to identify and discriminate signatures from volcanic events, storm activity, and meteor impacts. We will discuss our ongoing assessment on the feasibility of a balloon acoustic monitoring system. In particular, we will highlight our results of the flight experiment on Earth that will focus on using barometer instruments on a tethered helium-filled balloon in the vicinity of a known seismic source generated by a seismic hammer

  7. A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks.

    PubMed

    Hedlin, Michael A H; Walker, Kristoffer T

    2013-02-13

    We discuss the use of reverse time migration (RTM) with dense seismic networks for the detection and location of sources of atmospheric infrasound. Seismometers measure the response of the Earth's surface to infrasound through acoustic-to-seismic coupling. RTM has recently been applied to data from the USArray network to create a catalogue of infrasonic sources in the western US. Specifically, several hundred sources were detected in 2007-2008, many of which were not observed by regional infrasonic arrays. The influence of the east-west stratospheric zonal winds is clearly seen in the seismic data with most detections made downwind of the source. We study this large-scale anisotropy of infrasonic propagation, using a winter and summer source in Idaho. The bandpass-filtered (1-5 Hz) seismic waveforms reveal in detail the two-dimensional spread of the infrasonic wavefield across the Earth's surface within approximately 800 km of the source. Using three-dimensional ray tracing, we find that the stratospheric winds above 30 km altitude in the ground-to-space (G2S) atmospheric model explain well the observed anisotropy pattern. We also analyse infrasound from well-constrained explosions in northern Utah with a denser IRIS PASSCAL seismic network. The standard G2S model correctly predicts the anisotropy of the stratospheric duct, but it incorrectly predicts the dimensions of the shadow zones in the downwind direction. We show that the inclusion of finer-scale structure owing to internal gravity waves infills the shadow zones and predicts the observed time durations of the signals. From the success of this method in predicting the observations, we propose that multipathing owing to fine scale, layer-cake structure is the primary mechanism governing propagation for frequencies above approximately 1 Hz and infer that stochastic approaches incorporating internal gravity waves are a useful improvement to the standard G2S model for infrasonic propagation modelling.

  8. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions.

    PubMed

    Gibbons, Steven J; Ringdal, Frode; Kvaerna, Tormod

    2007-11-01

    A database has been established of seismic and infrasonic recordings from more than 100 well-constrained surface explosions, conducted by the Finnish military to destroy old ammunition. The recorded seismic signals are essentially identical and indicate that the variation in source location and magnitude is negligible. In contrast, the infrasonic arrivals on both seismic and infrasound sensors exhibit significant variation both with regard to the number of detected phases, phase travel times, and phase amplitudes, which would be attributable to atmospheric factors. This data set provides an excellent database for studies in sound propagation, infrasound array detection, and direction estimation.

  9. Towards an accurate real-time locator of infrasonic sources

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Blom, P.; Polozov, A.; Marcillo, O.; Arrowsmith, S.; Hofstetter, A.

    2017-11-01

    Infrasonic signals propagate from an atmospheric source via media with stochastic and fast space-varying conditions. Hence, their travel time, the amplitude at sensor recordings and even manifestation in the so-called "shadow zones" are random. Therefore, the traditional least-squares technique for locating infrasonic sources is often not effective, and the problem for the best solution must be formulated in probabilistic terms. Recently, a series of papers has been published about Bayesian Infrasonic Source Localization (BISL) method based on the computation of the posterior probability density function (PPDF) of the source location, as a convolution of a priori probability distribution function (APDF) of the propagation model parameters with likelihood function (LF) of observations. The present study is devoted to the further development of BISL for higher accuracy and stability of the source location results and decreasing of computational load. We critically analyse previous algorithms and propose several new ones. First of all, we describe the general PPDF formulation and demonstrate that this relatively slow algorithm might be among the most accurate algorithms, provided the adequate APDF and LF are used. Then, we suggest using summation instead of integration in a general PPDF calculation for increased robustness, but this leads us to the 3D space-time optimization problem. Two different forms of APDF approximation are considered and applied for the PPDF calculation in our study. One of them is previously suggested, but not yet properly used is the so-called "celerity-range histograms" (CRHs). Another is the outcome from previous findings of linear mean travel time for the four first infrasonic phases in the overlapping consecutive distance ranges. This stochastic model is extended here to the regional distance of 1000 km, and the APDF introduced is the probabilistic form of the junction between this travel time model and range-dependent probability

  10. Exposure to audible and infrasonic noise by modern agricultural tractors operators.

    PubMed

    Bilski, Bartosz

    2013-03-01

    The wheeled agricultural tractor is one of the most prominent sources of noise in agriculture. This paper presents the assessment of the operator's exposure to audible and infrasonic noise in 32 selected modern wheeled agricultural tractors designed and produced by world-renowned companies in normal working conditions. The tractors have been in use for no longer than 4 years, with rated power of 51 kW to up to 228 kW (as per 97/68 EC). Audible and infrasonic noise level measurements and occupational exposure analysis to noise were performed according to ISO 9612:2009 (strategy 1 - task-based measurements). The measurements were made in different typical work conditions inside and outside of tractors cabs. The results indicated that exposure levels to noise perceived by the operators (L(ex,Te) between 62,3 and 84,7 dB-A) and can make a small risk of potential adversely effects on hearing during tasks performed inside the closed cab. It should be remarked that uncertainty interval is wider and in in some conditions can occur transgression of audible noise occupational exposure limits. The measured audible noise levels can potentially develop the non-auditory effects. Analysed tractors emit considerable infrasonic noise levels that tend to exceed the occupational exposure limits (both inside and outside the driver's cab). The levels of infrasound: 83,8-111,4 dB-G. All tractors introduced for sale should be subjected to tests in terms of infrasonic noise levels. The applicable standards for low frequency noise and its measurement methods for vehicles, including agricultural tractors, should be scientifically revised. In the last years there has been a noticeable technical progress in reduction of audible noise exposure at the tractors operators workplaces with simultaneously lack of important works for limitation of exposure to infrasound. Author discuss possible health and ergonomic consequencies of such exposure. Copyright © 2012 Elsevier Ltd and The Ergonomics

  11. Blood pressure changes in man during infrasonic exposure. An experimental study.

    PubMed

    Danielsson, A; Landström, U

    1985-01-01

    Twenty healthy male volunteers were exposed to infrasound in a pressure chamber especially designed for the experiments. The effects on blood pressure, pulse rate and serum cortisol levels of acute infrasonic stimulation were studied in a series of different experiments. Varying frequencies (6, 12, 16 Hz) and pressure levels (95, 110, 125 dB(lin)) were tested. Significantly increased diastolic and decreased systolic blood pressures were recorded without any rise in pulse rate. The increase in diastolic blood pressure reached a maximal mean of about 8 mmHg after 30 min exposure. The results suggest that acute infrasonic stimulation induces a peripheral vasoconstriction with increased blood pressure, previously shown to occur in conjunction with industrial noise. Chronic long-term exposure to environmental infrasound may be of importance for the development of essential hypertension in predisposed individuals.

  12. Longitudinal endolymph movements and endocochlear potential changes induced by stimulation at infrasonic frequencies.

    PubMed

    Salt, A N; DeMott, J E

    1999-08-01

    The inner ear is continually exposed to pressure fluctuations in the infrasonic frequency range (< 20 Hz) from external and internal body sources. The cochlea is generally regarded to be insensitive to such stimulation. The effects of stimulation at infrasonic frequencies (0.1 to 10 Hz) on endocochlear potential (EP) and endolymph movements in the guinea pig cochlea were studied. Stimuli were applied directly to the perilymph of scala tympani or scala vestibuli of the cochlea via a fluid-filled pipette. Stimuli, especially those near 1 Hz, elicited large EP changes which under some conditions exceeded 20 mV in amplitude and were equivalent to a cochlear microphonic (CM) response. Accompanying the electrical responses was a cyclical, longitudinal displacement of the endolymph. The amplitude and phase of the CM varied according to which perilymphatic scala the stimuli were applied to and whether a perforation was made in the opposing perilymphatic scala. Spontaneously occurring middle ear muscle contractions were also found to induce EP deflections and longitudinal endolymph movements comparable to those generated by perilymphatic injections. These findings suggest that cochlear fluid movements induced by pressure fluctuations at infrasonic frequencies could play a role in fluid homeostasis in the normal state and in fluid disturbances in pathological states.

  13. Infrasonic Detection of a Large Bolide over South Sulawesi, Indonesia on October 8, 2009: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Silber, E. A.; Brown, P. G.; Le Pinchon, A.

    2011-01-01

    In the morning hours of October 8, 2009, a bright object entered Earth's atmosphere over South Sulawesi, Indonesia. This bolide disintegrated above the ground, generating stratospheric infrasound returns that were detected by infrasonic stations of the global International Monitoring System (IMS) Network of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) at distances up to 17 500 km. Here we present instrumental recordings and preliminary results of this extraordinary event. Using the infrasonic period-yield relations, originally derived for atmospheric nuclear detonations, we find the most probable source energy for this bolide to be 70+/-20 kt TNT equivalent explosive yield. A unique aspect of this event is the fact that it was apparently detected by infrasound only. Global events of such magnitude are expected only once per decade and can be utilized to calibrate infrasonic location and propagation tools on a global scale, and to evaluate energy yield formula, and event timing.

  14. Robust snow avalanche detection using machine learning on infrasonic array data

    NASA Astrophysics Data System (ADS)

    Thüring, Thomas; Schoch, Marcel; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    Snow avalanches may threaten people and infrastructure in mountain areas. Automated detection of avalanche activity would be highly desirable, in particular during times of poor visibility, to improve hazard assessment, but also to monitor the effectiveness of avalanche control by explosives. In the past, a variety of remote sensing techniques and instruments for the automated detection of avalanche activity have been reported, which are based on radio waves (radar), seismic signals (geophone), optical signals (imaging sensor) or infrasonic signals (microphone). Optical imagery enables to assess avalanche activity with very high spatial resolution, however it is strongly weather dependent. Radar and geophone-based detection typically provide robust avalanche detection for all weather conditions, but are very limited in the size of the monitoring area. On the other hand, due to the long propagation distance of infrasound through air, the monitoring area of infrasonic sensors can cover a large territory using a single sensor (or an array). In addition, they are by far more cost effective than radars or optical imaging systems. Unfortunately, the reliability of infrasonic sensor systems has so far been rather low due to the strong variation of ambient noise (e.g. wind) causing a high false alarm rate. We analyzed the data collected by a low-cost infrasonic array system consisting of four sensors for the automated detection of avalanche activity at Lavin in the eastern Swiss Alps. A comparably large array aperture (~350m) allows highly accurate time delay estimations of signals which arrive at different times at the sensors, enabling precise source localization. An array of four sensors is sufficient for the time resolved source localization of signals in full 3D space, which is an excellent method to anticipate true avalanche activity. Robust avalanche detection is then achieved by using machine learning methods such as support vector machines. The system is initially

  15. Baleen whale infrasonic sounds: Natural variability and function

    NASA Astrophysics Data System (ADS)

    Clark, Christopher W.

    2004-05-01

    Blue and fin whales (Balaenoptera musculus and B. physalus) produce very intense, long, patterned sequences of infrasonic sounds. The acoustic characteristics of these sounds suggest strong selection for signals optimized for very long-range propagation in the deep ocean as first hypothesized by Payne and Webb in 1971. This hypothesis has been partially validated by very long-range detections using hydrophone arrays in deep water. Humpback songs recorded in deep water contain units in the 20-l00 Hz range, and these relatively simple song components are detectable out to many hundreds of miles. The mid-winter peak in the occurrence of 20-Hz fin whale sounds led Watkins to hypothesize a reproductive function similar to humpback (Megaptera novaeangliae) song, and by default this function has been extended to blue whale songs. More recent evidence shows that blue and fin whales produce infrasonic calls in high latitudes during the feeding season, and that singing is associated with areas of high productivity where females congregate to feed. Acoustic sampling over broad spatial and temporal scales for baleen species is revealing higher geographic and seasonal variability in the low-frequency vocal behaviors than previously reported, suggesting that present explanations for baleen whale sounds are too simplistic.

  16. Tele-infrasonic studies of hard-rock mining explosions.

    PubMed

    McKenna, Mihan H; Stump, Brian W; Hayek, Sylvia; McKenna, Jason R; Stanton, Terry R

    2007-07-01

    The Lac-du-Bonnet infrasound station, IS-10, and the Minnesota iron mines 390 km to the southeast are ideally located to assess the accuracy of atmospheric profiles needed for infrasound modeling. Infrasonic data from 2003 associated with explosions at the iron mine were analyzed for effects of explosion size and atmospheric conditions on observations with well-constrained ground truth. Noise was the determining factor for observation; high noise conditions sometimes prevented unequivocal identification of infrasound arrivals. Observed arrivals had frequencies of 0.5 to 5 Hz, with a dominant frequency of 2 Hz, and generally had durations on the order of 10 s or less. There was no correlation between explosive amount and observability. Tele-infrasonic propagation distances (greater than 250 km) produce thermospheric ray paths. Modeling is based upon MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and NRL-G2S (Naval Research Laboratory Ground to Space) datasets. The NRL-G2S dataset provided more accurate travel time predictions that the MSIS/HWM dataset. PE modeling for the NRL-G2S dataset indicates energy loss at higher frequencies (around 4 Hz). Additionally, applying the Sutherland/Bass model through the NRL-G2S realization of the atmosphere in InfraMAP results in predicted amplitudes too small to be observed.

  17. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms

    NASA Astrophysics Data System (ADS)

    Shao, Xuan-Min; Lay, Erin H.

    2016-07-01

    Thunderstorms have been observed to introduce infrasonic oscillations in the ionosphere, but it is not clear what processes or which parts of the thunderstorm generate the oscillations. In this paper, we present a new technique that uses an array of ground-based GPS total electron content (TEC) measurements to locate the source of the infrasonic oscillations and compare the source locations with thunderstorm features to understand the possible source mechanisms. The location technique utilizes instantaneous phase differences between pairs of GPS-TEC measurements and an algorithm to best fit the measured and the expected phase differences for assumed source positions and other related parameters. In this preliminary study, the infrasound waves are assumed to propagate along simple geometric raypaths from the source to the measurement locations to avoid extensive computations. The located sources are compared in time and space with thunderstorm development and lightning activity. Sources are often found near the main storm cells, but they are more likely related to the downdraft process than to the updraft process. The sources are also commonly found in the convectively quiet stratiform regions behind active cells and are in good coincidence with extensive lightning discharges and inferred high-altitude sprites discharges.

  18. Evaluation of occupational exposure to infrasonic noise in Poland.

    PubMed

    Pawlaczyk-Luszczyńska, M

    1999-01-01

    A short review of infrasound sources and effects on humans is presented. Polish standard PN-86/N-01338 and international standards ISO 7196:1995 and ISO 9612:1997 concerning the measuring techniques of infrasonic noise are described. The results of infrasonic noise measurements performed in the work environment in Poland are discussed. The study concerned the noise emitted by 124 different types of industrial machinery, appliances and means of transport. The measurements were made in typical working conditions with reference to Polish and international standards. The sound pressure levels exceeding Polish admissible values for: (a) workers' health protection were found in 5 (4.0%) cases, (b) ensuring proper conditions for performing basic functions in observational dispatcher cabins etc. in 77 (62.1%) cases; and (c) administration premises, design offices etc. in 92 (74.2%) cases. The admissible sound pressure levels for workers' health protection are in fact the permissible levels for hearing protection, however they do not correspond with the hearing threshold of infrasound the G-weighting characteristic is associated with. The hearing threshold of infrasound (G86 curve) was exceeded in 66.9% of all the industrial machinery and means of transport under study.

  19. Observation of Infrasonic/Acoustic/Seismic Waves Induced by Hypersonic Reentry of Hayabusa

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.-Y.; Ishihara, Y.; Hiramatsu, Y.; Furumoto, M.; Fujita, K.

    2012-05-01

    Observation of infrasonic/acoustic/seismic waves induced by hypersonic reentry of HAYABUSA was carried out on June 13, 2010. Results by 3-sites arrayed observation will be shown in detail by comparison with multiple-sites optical observation.

  20. Finite-difference time-domain modeling of transient infrasonic wavefields excited by volcanic explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lees, J. M.

    2011-03-01

    Numerical modeling of waveform diffractions along the rim of a volcano vent shows high correlation to observed explosion signals at Karymsky Volcano, Kamchatka, Russia. The finite difference modeling assumed a gaussian source time function and an axisymmetric geometry. A clear demonstration of the significant distortion of infrasonic wavefronts was caused by diffraction at the vent rim edge. Data collected at Karymsky in 1997 and 1998 were compared to synthetic waveforms and variations of vent geometry were determined via grid search. Karymsky exhibited a wide range of variation in infrasonic waveforms, well explained by the diffraction, and modeled as changing vent geometry. Rim diffraction of volcanic infrasound is shown to be significant and must be accounted for when interpreting source physics from acoustic observations.

  1. Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Voight, Barry

    2010-04-01

    The sudden ejection of material during an explosive eruption generates a broad spectrum of pressure oscillations, from infrasonic to gravity waves. An infrasonic array, installed at 3.5 km from the Soufriere Hills Volcano has successfully detected and located, in real-time, the infrasound generated by several pyroclastic flows (PF) estimating mean flow speeds of 30-75 m/s. On July 29 and December 3, 2008, two differential pressure transducers, co-located with the array, recorded ultra long-period (ULP) oscillations at frequencies of 0.97 and 3.5 mHz, typical of atmospheric gravity waves, associated with explosive eruptions. The observation of gravity waves in the near-field (<6 km) at frequencies as low as about 1 mHz is unprecedented during volcanic eruptions.

  2. Infrasound wave propagation over near-regional and tele-infrasonic distances

    NASA Astrophysics Data System (ADS)

    McKenna, Sara Mihan House

    2005-11-01

    Infrasound research is experiencing a renaissance due to advances in acoustic propagation calculations and a deeper understanding of the atmosphere. Uniquely combining observed data and propagation modeling, the three papers presented here quantify the effects of the atmosphere on propagation from a variety of sources at distances from less than 100 km (near-regional distances) to nearly 600 km (tele-infrasonic distances) for sources on the surface and at altitude (63 km). Paper one analyzes infrasound signals recorded at the CHNAR seismo-acoustic array. These sources are predominantly on the surface, result from human activity and occur closer than 250 km away. Propagation for these near-regional distances depends on tropospheric weather patterns and temporally varying, low-altitude ducts. To predict the observed arrivals local meteorological data is necessary; MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and NRL-G2S (Naval Research Laboratory Ground To Space) did not predict the observed arrivals. Paper two is the first time a waveform from an explosion at height has ever been reproduced; the recorded waveform was from the break-up of the space shuttle Columbia. For the tele-infrasonic normal mode modeling, MSIS/HWM and NRL-G2S yielded identical waveform results. Paper three looks at the tele-infrasonic path between an iron mine in Minnesota and an infrasound array in Manitoba, Canada. Over a four month period, the IS-10 infrasound array provided infrasound data to compare to archived blast statistics. NRL-G2S better reproduced the observed arrival travel times than MSIS/HWM; whether or not arrivals were observed depended on the noise field at the infrasound array. For any distance range or source height, accurate atmospheric parameters from the corresponding propagation paths are necessary to predict observed infrasound.

  3. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms

    DOE PAGES

    Shao, Xuan -Min; Lay, Erin Hoffmann

    2016-07-01

    Thunderstorms have been observed to introduce infrasonic oscillations in the ionosphere, but it is not clear what processes or which parts of the thunderstorm generate the oscillations. In this paper, we present a new technique that uses an array of ground-based GPS total electron content (TEC) measurements to locate the source of the infrasonic oscillations and compare the source locations with thunderstorm features to understand the possible source mechanisms. The location technique utilizes instantaneous phase differences between pairs of GPS-TEC measurements and an algorithm to best fit the measured and the expected phase differences for assumed source positions and othermore » related parameters. In this preliminary study, the infrasound waves are assumed to propagate along simple geometric raypaths from the source to the measurement locations to avoid extensive computations. The located sources are compared in time and space with thunderstorm development and lightning activity. Sources are often found near the main storm cells, but they are more likely related to the downdraft process than to the updraft process. As a result, the sources are also commonly found in the convectively quiet stratiform regions behind active cells and are in good coincidence with extensive lightning discharges and inferred high-altitude sprites discharges.« less

  4. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms

    SciTech Connect

    Shao, Xuan -Min; Lay, Erin Hoffmann

    Thunderstorms have been observed to introduce infrasonic oscillations in the ionosphere, but it is not clear what processes or which parts of the thunderstorm generate the oscillations. In this paper, we present a new technique that uses an array of ground-based GPS total electron content (TEC) measurements to locate the source of the infrasonic oscillations and compare the source locations with thunderstorm features to understand the possible source mechanisms. The location technique utilizes instantaneous phase differences between pairs of GPS-TEC measurements and an algorithm to best fit the measured and the expected phase differences for assumed source positions and othermore » related parameters. In this preliminary study, the infrasound waves are assumed to propagate along simple geometric raypaths from the source to the measurement locations to avoid extensive computations. The located sources are compared in time and space with thunderstorm development and lightning activity. Sources are often found near the main storm cells, but they are more likely related to the downdraft process than to the updraft process. As a result, the sources are also commonly found in the convectively quiet stratiform regions behind active cells and are in good coincidence with extensive lightning discharges and inferred high-altitude sprites discharges.« less

  5. Anatomy of infrasonic communication in baleen whales: Divergent mechanisms of sound generation in mysticetes and odontocetes

    NASA Astrophysics Data System (ADS)

    Reidenberg, Joy S.; Laitman, Jeffrey T.

    2004-05-01

    Cetaceans produce sounds at opposite ends of the frequency spectrum. The laryngeal role in odontocete sound production (echolocation, communication) remains unclear. Mysticete infrasonics are presumed to be laryngeal in origin, but production mechanisms are unknown. To address this, we examined postmortem larynges in 6 mysticete species (3 genera) and compared them to our odontocete collection (20 species/15 genera). Results indicate that the rostral portion of the odontocete larynx is elongated, narrow, rigid, and normally positioned intranarially. This portion of the mysticete larynx is comparatively shortened, open, pliable, and in Megaptera may be retracted from its intranarial position. Internally, mysticete vocal folds are thick, paired, and oriented horizontally, compared with the thin, usually unpaired, and vertically oriented odontocete fold. Mysticetes may generate low frequency sounds via pneumatically driven fold vibrations, which then pass to attached laryngeal sac walls, through overlying throat pleats, to water. Rorqual mysticetes may also vibrate paired corniculate flaps while regulating airflow into the nasal region. Infrasonic pulses may pass through adjacent soft palate, skull, or nasal cartilages to water. Laryngeal anatomy in mysticetes and odontocetes appears highly divergent. These morphological differences may correlate to adaptations for producing infrasonic (mysticete) or ultrasonic (odontocete) communication. [Work supported by ONR:N00014-96-1-0764, ONR:N00014-99-1-0815, and AMNHSOF.

  6. Infrasonic crackle and supersonic jet noise from the eruption of Nabro Volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Fee, David; Matoza, Robin S.; Gee, Kent L.; Neilsen, Tracianne B.; Ogden, Darcy E.

    2013-08-01

    The lowermost portion of an explosive volcanic eruption column is considered a momentum-driven jet. Understanding volcanic jets is critical for determining eruption column dynamics and mitigating volcanic hazards; however, volcanic jets are inherently difficult to observe due to their violence and opacity. Infrasound from the 2011 eruption of Nabro Volcano, Eritrea has waveform features highly similar to the "crackle" phenomenon uniquely produced by man-made supersonic jet engines and rockets and is characterized by repeated asymmetric compressions followed by weaker, gradual rarefactions. This infrasonic crackle indicates that infrasound source mechanisms in sustained volcanic eruptions are strikingly similar to jet noise sources from heated, supersonic jet engines and rockets, suggesting that volcanologists can utilize the modeling and physical understandings of man-made jets to understand volcanic jets. The unique, distinctive infrasonic crackle from Nabro highlights the use of infrasound to remotely detect and characterize hazardous eruptions and its potential to determine volcanic jet parameters.

  7. Exposure to infrasonic noise in agriculture.

    PubMed

    Bilski, Bartosz

    2017-03-21

    Although exposure to audible noise has been examined in many publications, the sources of infrasound in agriculture have not been fully examined and presented. The study presents the assessment of exposure to infrasound from many sources at workplaces in agriculture with examples of possible ergonomic and health consequences caused by such exposure. Workers'-perceived infrasonic noise levels were examined for 118 examples of moving and stationary agricultural machines (modern and old cab-type tractors, old tractors without cabins, small tractors, grinders, chargers, forage mixers, grain cleaners, conveyors, bark sorters and combine-harvesters). Measurements of infrasound were taken with the use of class 1 instruments (digital sound analyzer DSA-50 digital and acoustic calibrator). Noise level measurements were performed in accordance with PN-Z-01338:2010, PN-EN ISO 9612:2011 and ISO 9612:2009. The most intense sources of infrasound in the study were modern and old large size types agricultural machinery (tractors, chargers and combined-harvesters, and stationary forage mixers with ventilation). The G-weighted infrasound levels were significant and at many analyzed workplaces stayed within or exceeded the occupational exposure limit (LG eq, 8h = 102 dB) when the duration of exposure is longer than 22 min./8-hours working day (most noisy - modern cab-type tractors), 46 min./8 hours working day (most noisy - old type cab-tractors), 73 min./8 hours working day (most noisy - old tractors without cabins), 86 min./8-hours working day (most noisy - combine-harvesters) and 156 min./8 hours working day (most noisy - stationary forage mixers with ventilation). All measured machines generated infrasonic noise exceeded the value LG eq, Te = 86 dB (occupational exposure limit for workplaces requiring maintained mental concentration). A very important harmful factor is infrasound exposure for pregnant women and adolescents at workplaces in agriculture. Very valuable work can be

  8. Infrasonic and low-frequency insert earphone hearing threshold.

    PubMed

    Kuehler, Robert; Fedtke, Thomas; Hensel, Johannes

    2015-04-01

    Low-frequency and infrasonic pure-tone monaural hearing threshold data down to 2.5 Hz are presented. These measurements were made by means of a newly developed insert-earphone source. The source is able to generate pure-tone sound pressure levels up to 130 dB between 2 and 250 Hz with very low harmonic distortions. Behavioral hearing thresholds were determined in the frequency range from 2.5 to 125 Hz for 18 otologically normal test persons. The median hearing thresholds are comparable to values given in the literature. They are intended for stimulus calibration in subsequent brain imaging investigations.

  9. Basic Research on Seismic and Infrasonic Monitoring of the European Arctic

    DTIC Science & Technology

    2008-09-01

    characteristics as well as the inherent variability among these signals . We have used available recordings both from the Apatity infrasound array and from...experimentally attempt to generate an infrasonic event bulletin using only the estimated azimuths and detection times of infrasound phases recorded by... detection . Our studies have shown a remarkably efficient wave propagation from events near Novaya Zemlya across the Barents Sea. Significant signal

  10. Does an infrasonic acoustic shock wave resonance of the manganese 3+ loaded/copper depleted prion protein initiate the pathogenesis of TSE?

    PubMed

    Purdey, Mark

    2003-06-01

    Intensive exposures to natural and artificial sources of infrasonic acoustic shock (tectonic disturbances, supersonic aeroplanes, etc.) have been observed in ecosystems supporting mammalian populations that are blighted by clusters of traditional and new variant strains of transmissible spongiform encephalopathy (TSE). But TSEs will only emerge in those 'infrasound-rich' environments which are simultaneously influenced by eco-factors that induce a high manganese (Mn)/low copper (Cu)-zinc (Zn) ratio in brains of local mammalian populations. Since cellular prion protein (PrPc) is a cupro-protein expressed throughout the circadian mediated pathways of the body, it is proposed that PrP's Cu component performs a role in the conduction and distribution of endogenous electromagnetic energy; energy that has been transduced from incoming ultraviolet, acoustic, geomagnetic radiations. TSE pathogenesis is initiated once Mn substitutes at the vacant Cu domain on PrPc and forms a nonpathogenic, protease resistant, 'sleeping' prion. A second stage of pathogenesis comes into play once a low frequency wave of infrasonic shock metamorphoses the piezoelectric atomic structure of the Mn 3+ component of the prion, thereby 'priming' the sleeping prion into its fully fledged, pathogenic TSE isoform - where the paramagnetic status of the Mn 3+ atom is transformed into a stable ferrimagnetic lattice work, due to the strong electron-phonon coupling resulting from the dynamic 'Jahn-Teller' type distortions of the oxygen octahedra specific to the trivalent Mn species. The so called 'infectivity' of the prion is a misnomer and should be correctly defined as the contagious field inducing capacity of the ferrimagnetic Mn 3+ component of the prion; which remains pathogenic at all temperatures below the 'curie point'. A progressive domino-like 'metal to ligand to metal' ferrimagnetic corruption of the conduits of electromagnetic superexchange is initiated. The TSE diseased brain can be likened to

  11. Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: Implications for infrasonic monitoring of remote explosive volcanism

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Le Pichon, Alexis; Vergoz, Julien; Herry, Pascal; Lalande, Jean-Marie; Lee, Hee-il; Che, Il-Young; Rybin, Alexander

    2011-02-01

    Sarychev Peak (SP), located on Ostrov Matua, Kurils, erupted explosively during 11-16 June 2009. Whereas remote seismic stations did not record the eruption, we report atmospheric infrasound (acoustic wave ~ 0.01-20 Hz) observations of the eruption at seven infrasound arrays located at ranges of ~ 640-6400 km from SP. The infrasound arrays consist of stations of the International Monitoring System global infrasound network and additional stations operated by the Korea Institute of Geoscience and Mineral Resources. Signals at the three closest recording stations IS44 (643 km, Petropavlovsk-Kamchatskiy, Kamchatka Krai, Russia), IS45 (1690 km, Ussuriysk, Russia), and IS30 (1774 km, Isumi, Japan) represent a detailed record of the explosion chronology that correlates well with an eruption chronology based on satellite data (TERRA, NOAA, MTSAT). The eruption chronology inferred from infrasound data has a higher temporal resolution than that obtained with satellite data. Atmosphere-corrected infrasonic source locations determined from backazimuth cross-bearings of first-arrivals have a mean centroid ~ 15 km from the true location of SP. Scatter in source locations of up to ~ 100 km result from currently unresolved details of atmospheric propagation and source complexity. We observe systematic time-variations in trace-velocity, backazimuth deviation, and signal frequency content at IS44. Preliminary investigation of atmospheric propagation from SP to IS44 indicates that these variations can be attributed to solar tide variability in the thermosphere. It is well known that additional information about active volcanic processes can be learned by deploying infrasonic sensors with seismometers at erupting volcanoes. This study further highlights the significant potential of infrasound arrays for monitoring volcanic regions such as the Kurils that have only sparse seismic network coverage.

  12. Infrasonic signatures of a Polar Low in the Norwegian and Barents Sea on 23 27 March 1992

    NASA Astrophysics Data System (ADS)

    Børre Orbæk, Jon; Naustvik, Magnus

    1995-10-01

    This article presents an analysis of a Polar Low in the Norwegian and Barents Sea, 23 27 March 1992. The low is remote monitored from northern Norway and Svalbard by means of two Passive Broadband Infrasonic Sodars (PBIS's), estimating the directionality of the local acoustic field of atmospheric infrasound. The presented data show that the polar low apparently generates strong infrasound, and it is believed that some part of the measured pressure perturbations are generated by the intense turbulent regions of the low, as part of the aerodynamic spectrum. Due to the very low attenuation of infrasound in the atmosphere, the sound propagates to distant recording stations more than 1000km away, by successive reflections between the upper atmosphere and the sea surface. Because of the small number of synoptic stations in the area, data inputs to the numerical circulation models are few, and because the phenomena in study are mesoscale, down to one tenth the size of a frontal cyclone, conventional meteorological data may not resolve the features of interest. The infrasonic direction-of-arrival (DOA)-spectra produced by the PBIS passive acoustic remote sensing technique utilized in this work, is shown to give new information to the analysis of the weather situation. While the satellite images normally are ambiguous with respect to the dynamics and thermodynamic state of the visible cloud-clusters, the infrasonic DOA-spectra may provide valuable dynamic information of the distant polar low in near real time. It is suggested that the major part of the infrasonic signatures detected by the PBIS's come from the active regions of turbulent convection. By picking out the directions of these active intensification regions, the DOA-spectra may, as is shown in this article, indicate that several local disturbances took part in the complex polar low development.

  13. Infrasonic analysis of carotid vibration as a diagnostic method in carotid insufficiency syndrome.

    PubMed

    Anastassiades, A J; Petounis, A D

    1976-01-01

    The infrasonic part of the spectrum of the carotid artery wall vibration in the neck was obtained. Differences between the spectral content and vibrational amplitude in normal and occluded carotids were found. The application of this technique in clinical practice could be useful in the detection of the carotid insufficiency syndrome.

  14. Infrasonic monitoring of snow avalanches in the Alps

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.

    2012-04-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.

  15. Possibility of magnetospheric VLF response to atmospheric infrasonic waves

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Savina, O. N.

    2012-06-01

    In this paper, we consider a model of the influence of atmospheric infrasonic waves on VLF magnetospheric whistler wave excitation. This excitation occurs as a result of a succession of processes: a modulation of the plasma density by acoustic-gravity waves in the ionosphere, a reflection of the whistlers by ionosphere modulation, and a modification of whistler wave generation in the magnetospheric resonator. A variation of the magnetospheric resonator Q-factor has an influence on the operation of the plasma magnetospheric maser, where the active substances are radiation belt particles, and the working modes are electromagnetic whistler waves. The magnetospheric maser is an oscillating system which can be responsible for the excitation of self-oscillations. These self-oscillations are frequently characterized by alternating stages of accumulation and precipitation of energetic particles into the ionosphere during a pulse of whistler emissions. Numerical and analytical investigations of the response of self-oscillations to harmonic oscillations of the whistler reflection coefficient shows that even a small modulation rate can significantly change magnetospheric VLF emissions. Our results can explain the causes of the modulation of energetic electron fluxes and whistler wave intensity with a time scale from 10 to 150 s in the day-side magnetosphere. Such quasi-periodic VLF emissions are often observed in the sub-auroral and auroral magnetosphere and have a noticeable effect on the formation of space weather phenomena.

  16. Infrasonic wind-noise reduction by barriers and spatial filters.

    PubMed

    Hedlin, Michael A H; Raspet, Richard

    2003-09-01

    This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.

  17. A Portable Infrasonic Detection System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Lawrenson, Christopher C.; Masterman, Michael

    2008-01-01

    During last couple of years, NASA Langley has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and sufficiently thick wall to insure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The design and results of the compact system, based upon laboratory and field experiments, will be presented.

  18. Infrasonic ambient noise interferometry from correlations of microbaroms

    USGS Publications Warehouse

    Haney, M.M.

    2009-01-01

    We show that microbaroms, continuous infrasound fluctuations resulting from the interaction of the ocean with the atmosphere, have long-range correlation properties that make it possible to estimate the impulse response between two microphones from passive recordings. The processing is analogous to methods employed in the emerging field of ambient noise seismology, where the random noise source is the ocean coupling with the solid Earth (microseisms) instead of the atmosphere (microbaroms). We find that time-dependent temperature fields and temperature inversions determine the character of infrasonic impulse responses at Fourpeaked Volcano in Alaska. Applications include imaging and monitoring the gross structure of the Earth's atmospheric boundary layer. Copyright 2009 by the American Geophysical Union.

  19. Clustering and classification of infrasonic events at Mount Etna using pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Cannata, A.; Montalto, P.; Aliotta, M.; Cassisi, C.; Pulvirenti, A.; Privitera, E.; Patanè, D.

    2011-04-01

    Active volcanoes generate sonic and infrasonic signals, whose investigation provides useful information for both monitoring purposes and the study of the dynamics of explosive phenomena. At Mt. Etna volcano (Italy), a pattern recognition system based on infrasonic waveform features has been developed. First, by a parametric power spectrum method, the features describing and characterizing the infrasound events were extracted: peak frequency and quality factor. Then, together with the peak-to-peak amplitude, these features constituted a 3-D ‘feature space’; by Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) three clusters were recognized inside it. After the clustering process, by using a common location method (semblance method) and additional volcanological information concerning the intensity of the explosive activity, we were able to associate each cluster to a particular source vent and/or a kind of volcanic activity. Finally, for automatic event location, clusters were used to train a model based on Support Vector Machine, calculating optimal hyperplanes able to maximize the margins of separation among the clusters. After the training phase this system automatically allows recognizing the active vent with no location algorithm and by using only a single station.

  20. Experimental characterization of seasonal variations in infrasonic traveltimes on the Korean Peninsula with implications for infrasound event location

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Stump, Brian W.; Lee, Hee-Il

    2011-04-01

    The dependence of infrasound propagation on the season and path environment was quantified by the analysis of more than 1000 repetitive infrasonic ground-truth events at an active, open-pit mine over two years. Blast-associated infrasonic signals were analysed from two infrasound arrays (CHNAR and ULDAR) located at similar distances of 181 and 169 km, respectively, from the source but in different azimuthal directions and with different path environments. The CHNAR array is located to the NW of the source area with primarily a continental path, whereas the ULDAR is located East of the source with a path dominated by open ocean. As a result, CHNAR observations were dominated by stratospheric phases with characteristic celerities of 260-289 m s-1 and large seasonal variations in the traveltime, whereas data from ULDAR consisted primarily of tropospheric phases with larger celerities from 322 to 361 m s-1 and larger daily than seasonal variation in the traveltime. The interpretation of these observations is verified by ray tracing using atmospheric models incorporating daily weather balloon data that characterizes the shallow atmosphere for the two years of the study. Finally, experimental celerity models that included seasonal path effects were constructed from the long-term data set. These experimental celerity models were used to constrain traveltime variations in infrasonic location algorithms providing improved location estimates as illustrated with the empirical data set.

  1. [Evaluation of occupational exposure to infrasonic noise].

    PubMed

    Pawlaczyk-Luszczyńska, M

    1998-01-01

    This papers presents the results of infrasonic noise measurements performed at various workplaces in industry and transportation in Poland. The study concerned noise emitted by 124 different types of machinery, appliances and means of transport. The measurements were made under typical conditions of work and with reference to Polish norm PN-86/N-01338 and international norms ISO 7196:1995 and ISO 9612:1997. According to PN-86/N-01338, within octave bands of 8 divided by 31.5 Hz, the acoustic pressure exceeding the admissible levels for (a) workers' health protection were found in 5 (4.0%) cases; (b) proper conditions for performing basic functions in observational dispatcher cabins, etc.--in 77 (62.1%) cases; and (c) premises for administration, design offices, etc.--in 92 (74.2%) cases. The hearing threshold was exceeded in 66.9 of all the machinery under study.

  2. Effectiveness of nonporous windscreens for infrasonic measurements.

    PubMed

    Dauchez, Nicolas; Hayot, Maxime; Denis, Stéphane

    2016-06-01

    This paper deals with nonporous windscreens used for reducing noise in infrasonic measurements. A model of sound transmission using a modal approach is derived. The system is a square plate coupled with a cavity. The model agrees with finite element simulations and measurements performed on two windscreens: a cubic windscreen using a material recommended by Shams, Zuckerwar, and Sealey [J. Acoust. Soc. Am. 118, 1335-1340 (2005)] and an optimized flat windscreen made out of aluminum. Only the latter was found to couple acoustical waves below 10 Hz without any attenuation. Moreover, wind noise reduction measurements show that nonporous windscreens perform similarly as a pipe array by averaging the pressure fluctuations. These results question the assumptions of Shams et al. and Zuckerwar [J. Acoust. Soc. Am. 127, 3327-3334 (2010)] about compact nonporous windscreens design and effectiveness.

  3. Deployment of broadband seismic and infrasonic networks on Tungurahua and Cotopaxi Volcanoes, Ecuador

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Yepes, H.; Vaca, M.; Caceres, V.; Nagai, T.; Yokoe, K.; Imai, T.; Miyakawa, K.; Yamashina, T.; Arrais, S.; Vasconez, F.; Pinajota, E.; Cisneros, C.; Ramos, C.; Paredes, M.; Gomezjurado, L.; Garcia-Aristizabal, A.; Molina, I.; Ramon, P.; Segovia, M.; Palacios, P.; Enriquez, W.; Inoue, I.; Nakano, M.; Inoue, H.

    2006-12-01

    Tungurahua and Cotopaxi are andesitic active volcanoes in Ecuadorian Andes. Tungurahua continues its eruptive activity since 1999, in which explosive eruptions accompanying pyroclastic flows occurred in July- August, 2006. Cotopaxi is one of the world's highest glacier-clad active volcanoes, and its seismic activity remains high since 2001. To enhance the monitoring capability of these volcanoes, we have installed broadband seismometers (Guralp CMG-40T: 60 s-50 Hz) and infrasonic sensors (ACO TYPE7144/4144: 10 s- 100 Hz) on these volcanoes through the technical cooperation program of Japan International Cooperation Agency (JICA). Three and five stations are currently installed at Tungurahua and Cotopaxi, respectively, and additional two stations will be installed at Tungurahua. Both seismic and infrasonic waveform data at each station are digitized by a Geotech Smart24D datalogger with a sampling frequency of 50 Hz, and transmitted by a digital telemetry system using 2.4 GHz Wireless LAN to the central office in Quito. The Tungurahua's eruptive activity accompanying pyroclastic flows in July-August 2006 was monitored in real-time by the network. The observed waveforms show a wide variety of signatures in response to various eruption styles: intermittent tremor during Strombolian eruptions, five-hour-long continuous strong tremor during heightened eruptions, very-long-period (VLP) seismic signals (10-50 s) associated with pyroclastic flows, and impulsive seismic and infrasonic events of explosions. At Cotopaxi Volcano, VLP signals (2 s) accompanying long- period signals (1-2 Hz) were detected by our network. Similar events occurred in 2002, and are interpreted as gas-release process from magma in an intruded dike beneath Cotopaxi (Molina et al, submitted to JGR). The present observation of the same type of events suggests that the intruded dike is still active beneath Cotopaxi. These signals detected by our networks are highly useful to understand volcanic processes

  4. Infrasonic and seismic signals from earthquakes and explosions observed with Plostina seismo-acoustic array

    NASA Astrophysics Data System (ADS)

    Ghica, D.; Ionescu, C.

    2012-04-01

    Plostina seismo-acoustic array has been recently deployed by the National Institute for Earth Physics in the central part of Romania, near the Vrancea epicentral area. The array has a 2.5 km aperture and consists of 7 seismic sites (PLOR) and 7 collocated infrasound instruments (IPLOR). The array is being used to assess the importance of collocated seismic and acoustic sensors for the purposes of (1) seismic monitoring of the local and regional events, and (2) acoustic measurement, consisting of detection of the infrasound events (explosions, mine and quarry blasts, earthquakes, aircraft etc.). This paper focuses on characterization of infrasonic and seismic signals from the earthquakes and explosions (accidental and mining type). Two Vrancea earthquakes with magnitude above 5.0 were selected to this study: one occurred on 1st of May 2011 (MD = 5.3, h = 146 km), and the other one, on 4th October 2011 (MD = 5.2, h = 142 km). The infrasonic signals from the earthquakes have the appearance of the vertical component of seismic signals. Because the mechanism of the infrasonic wave formation is the coupling of seismic waves with the atmosphere, trace velocity values for such signals are compatible with the characteristics of the various seismic phases observed with PLOR array. The study evaluates and characterizes, as well, infrasound and seismic data recorded from the explosion caused by the military accident produced at Evangelos Florakis Naval Base, in Cyprus, on 11th July 2011. Additionally, seismo-acoustic signals presumed to be related to strong mine and quarry blasts were investigated. Ground truth of mine observations provides validation of this interpretation. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one is the automatic detector DFX-PMCC, applied for infrasound detection and characterization, while the other one, which is used for seismic data, is based on array processing techniques (beamforming and frequency

  5. Acoustic Network Localization and Interpretation of Infrasonic Pulses from Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Badillo, E.; Michnovicz, J. C.; Thomas, R. J.; Edens, H. E.; Rison, W.

    2011-12-01

    We improve on the localization accuracy of thunder sources and identify infrasonic pulses that are correlated across a network of acoustic arrays. We attribute these pulses to electrostatic charge relaxation (collapse of the electric field) and attempt to model their spatial extent and acoustic source strength. Toward this objective we have developed a single audio range (20-15,000 Hz) acoustic array and a 4-station network of broadband (0.01-500 Hz) microphone arrays with aperture of ~45 m. The network has an aperture of 1700 m and was installed during the summers of 2009-2011 in the Magdalena mountains of New Mexico, an area that is subject to frequent lightning activity. We are exploring a new technique based on inverse theory that integrates information from the audio range and the network of broadband acoustic arrays to locate thunder sources more accurately than can be achieved with a single array. We evaluate the performance of the technique by comparing the location of thunder sources with RF sources located by the lightning mapping array (LMA) of Langmuir Laboratory at New Mexico Tech. We will show results of this technique for lightning flashes that occurred in the vicinity of our network of acoustic arrays and over the LMA. We will use acoustic network detection of infrasonic pulses together with LMA data and electric field measurements to estimate the spatial distribution of the charge (within the cloud) that is used to produce a lightning flash, and will try to quantify volumetric charges (charge magnitude) within clouds.

  6. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.

    PubMed

    Salt, Alec N; Lichtenhan, Jeffery T; Gill, Ruth M; Hartsock, Jared J

    2013-03-01

    Responses of the ear to low-frequency and infrasonic sounds have not been extensively studied. Understanding how the ear responds to low frequencies is increasingly important as environmental infrasounds are becoming more pervasive from sources such as wind turbines. This study shows endolymphatic potentials in the third cochlear turn from acoustic infrasound (5 Hz) are larger than from tones in the audible range (e.g., 50 and 500 Hz), in some cases with peak-to-peak amplitude greater than 20 mV. These large potentials were suppressed by higher-frequency tones and were rapidly abolished by perilymphatic injection of KCl at the cochlear apex, demonstrating their third-turn origins. Endolymphatic iso-potentials from 5 to 500 Hz were enhanced relative to perilymphatic potentials as frequency was lowered. Probe and infrasonic bias tones were used to study the origin of the enhanced potentials. Potentials were best explained as a saturating response summed with a sinusoidal voltage (Vo), that was phase delayed by an average of 60° relative to the biasing effects of the infrasound. Vo is thought to arise indirectly from hair cell activity, such as from strial potential changes caused by sustained current changes through the hair cells in each half cycle of the infrasound.

  7. Infrasonic and Ultrasonic Hearing Evolved after the Emergence of Modern Whales.

    PubMed

    Mourlam, Mickaël J; Orliac, Maeva J

    2017-06-19

    Mysticeti (baleen whales) and Odontoceti (toothed whales) today greatly differ in their hearing abilities: Mysticeti are presumed to be sensitive to infrasonic noises [1-3], whereas Odontoceti are sensitive to ultrasonic sounds [4-6]. Two competing hypotheses exist regarding the attainment of hearing abilities in modern whales: ancestral low-frequency sensitivity [7-13] or ancestral high-frequency sensitivity [14, 15]. The significance of these evolutionary scenarios is limited by the undersampling of both early-diverging cetaceans (archaeocetes) and terrestrial hoofed relatives of cetaceans (non-cetacean artiodactyls). Here, we document for the first time the bony labyrinth, the hollow cavity housing the hearing organ, of two species of protocetid whales from Lutetian deposits (ca. 46-43 Ma) of Kpogamé, Togo. These archaeocete cetaceans, which are transitional between terrestrial and aquatic forms, prove to be a key for determining the hearing abilities of early whales. We propose a new evolutionary picture for the early stages of this history, based on qualitative and quantitative studies of the cochlear morphology of an unparalleled sample of extant and extinct land artiodactyls and cetaceans. Contrary to the hypothesis that archaeocetes have been more sensitive to high-frequency sounds than their terrestrial ancestors [15], we demonstrate that early cetaceans presented a cochlear functional pattern close to that of their terrestrial relatives, and that specialization for infrasonic or ultrasonic hearing in Mysticeti or Odontoceti, respectively, instead only occurred in fully aquatic whales, after the emergence of Neoceti (Mysticeti+Odontoceti). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Electronic stethoscope with frequency shaping and infrasonic recording capabilities.

    PubMed

    Gordon, E S; Lagerwerff, J M

    1976-03-01

    A small electronic stethoscope with variable frequency response characteristics has been developed for aerospace and research applications. The system includes a specially designed piezoelectric pickup and amplifier with an overall frequency response from 0.7 to 5,000 HZ (-3 dB points) and selective bass and treble boost or cut of up to 15 dB. A steep slope, high pass filter can be switched in for ordinary clinical auscultation without overload distortion from strong infrasonic signal inputs. A commercial stethoscope-type headset, selected for best overall response, is used which can adequately handle up to 100 mW of audio power delivered from the amplifier. The active components of the amplifier consist of only four opamp-type integrated circuits.

  9. Audible and infrasonic noise levels in the cabins of modern agricultural tractors--does the risk of adverse, exposure-dependent effects still exist?

    PubMed

    Bilski, Bartosz

    2013-06-01

    The agricultural tractor is one of the most commonly used vehicles on farms and one of the most prominent sources of noise. This article presents an exemplary assessment of the audible and infrasonic noise levels in the cabins of selected modern wheeled agricultural tractors. Operator-perceived audible and infrasonic noise levels in the cabins were examined for 20 types of modern tractors during typical conditions of work. The tractors had been in use for no longer than 3 years, with rated power between 96 kW and 227 kW, designed and produced by world-renowned companies. Noise level measurements were performed in accordance with PN-EN ISO 9612:2011 (ISO 9612:2009). Audible noise levels (A-weighted) ranged from 62.1 to 87.4 dB-A (average: 68.2 to 83.8 dB-A) for different work tasks. The factors influencing noise levels include performed tasks, soil, weather conditions and the skills of individual drivers. In spectrum analysis, the highest noise levels occurred at frequencies 250 Hz, 1 and 2 kHz. Infrasound noise levels (G-weighted) ranged from 87.3 to 111.3 dB-G. The driver-experienced exposure to infrasound was found to increase significantly when the vehicle was in motion. Average audible noise levels have no potential to adversely affect the hearing organ during tasks performed inside the closed cabins of the analysed modern agricultural tractors. Due to the relatively low audible noise levels inside the cabins of modern agricultural tractors, non-auditory effects are the only adverse symptoms that can develop. Modern agricultural tractors emit considerable infrasonic noise levels. All tractors introduced into the market should be subjected to tests with regard to infrasonic noise levels.

  10. Infrasonic Observations of Explosions and Degassing at Kilauea Summit

    NASA Astrophysics Data System (ADS)

    Fee, D.; Garces, M.

    2008-12-01

    After 25 years of quiescence, eruptive activity returned to Kilauea Caldera with an explosion in Halema'uma'u crater on March 19th 2008. The explosion is presumed to be the clearing of a clogged vent. Along with the 3/19 explosion, at least 5 more gas-driven explosions have occurred and were clearly recorded at a 4-element infrasound array 7 km away. Acoustic energy estimates for these explosions yield energies between ~ 0.2-3 × 107 J. Infrasonic VLP energy is present for some of the explosions, but not all. The relatively long explosion durations (>20 seconds) and frequency content are consistent with a transient pressure pulse followed by the reverberation of a shallow gas chamber or conduit. Persistent degassing from Halema'uma'u followed the initial explosion. The harmonic infrasonic tremor produced by the degassing is the most energetic to date at Kilauea, with the cumulative tremor acoustic energy at ~107-108 Joules/hour. The complex tremor spectra show numerous peaks, with the dominant peak between 0.3-0.6 Hz and a smaller amplitude peak around 1-3 Hz. The peak frequency of the harmonic tremor has changed over time, which could be related to a change in the gas-filled chamber dimensions or temperature. Further analysis of the tremor spectra may help constrain dimensions. Consistent with our previous observations at Kilauea from Pu'u 'O'o, Fissure D, and lava skylights, the excitation of a gas within a confined volume appears to be the acoustic (and possibly seismic) source. For the tremor, we propose a mechanism where persistent degassing excites the gas volume into resonance. The explosions signals are consistent with a slug of gas reaching the free surface and exciting the conduit as well. Correlation of the infrasound signals with seismic tremor, LP and VLP signals suggest an open system connecting the atmosphere to the seismic excitation process at depth. Results will also be presented in relation to the recent observation of a visible lava lake within

  11. Infrasonic Monitoring Network on the Big Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Thelen, Weston; Garces, Milton; Cooper, Jennifer; Badger, Nickles; Perttu, Anna; Williams, Brian

    2013-04-01

    The USGS Hawaiian Volcano Observatory (HVO) with the participation of the University of Hawaii Infrasound Lab (ISLA) installed three new permanent infrasound arrays on the south half of the Island of Hawaii. Together with three existing permanent arrays maintained by ISLA, the current infrasound network around Kīlauea and Mauna Loa volcanoes is one of the most advanced of any volcano in the world. Open-vent volcanoes such as Kīlauea are particularly good infrasound emitters as lava spattering and unsteady gas release is common. The network was designed with two main goals in mind: 1) to monitor and study the infrasound sources associated with the ongoing Pu`u `Ō`ō and Halema'u'mau eruption, and 2) to detect in near real-time new eruptions at Mauna Loa or Kīlauea volcanoes. Each HVO array consists of 4 sensors, which form an equilateral triangle ~100 m on a side surrounding a central sensor. Three other permanent arrays maintained by ISLA (I59US, MENE, KHLU) have been operational since 2000, 2006, and 2009, respectively, and consist of a combination of Chaparral 25 and 50 sensors. Each infrasound instrument within the HVO arrays is built around an low- cost AllSensor MEMS sensor, which has higher noise characteristics than a Chaparral 25, but similar frequency response. ISLA also operates stations on Maui and Kauai that provide --statewide coverage. Since the full network has been established, we have recorded several infrasound signals including infrasonic tremor from Halema`uma`u, collapses from the craters of Halema`uma`u and Pu`u `Ō`ō, and other natural and anthropogenic infrasound from diverse sources on- island, offshore, and aloft. Future developments will include real-time detection, location, and identification of infrasonic signals for eruption notification. We hope to increase public awareness of volcanic infrasound by posting real-time locations on an interactive display, similar to how seismicity is currently reported. MENE data is presently

  12. Infrasonic acoustic waves generated by fast air heating in sprite cores

    NASA Astrophysics Data System (ADS)

    Silva, Caitano L.; Pasko, Victor P.

    2014-03-01

    Acceleration, expansion, and branching of sprite streamers can lead to concentration of high electrical currents in regions of space, that are observed in the form of bright sprite cores. Driven by this electrical current, a series of chemical processes take place in the sprite plasma. Excitation, followed by quenching of excited electronic states leads to energy transfer from charged to neutral species. The consequence is heating and expansion of air leading to emission of infrasonic acoustic waves. Results indicate that ≳0.01 Pa pressure perturbations on the ground, observed in association with sprites, can only be produced by exceptionally strong currents in sprite cores, exceeding 2 kA.

  13. Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic 'map' cues.

    PubMed

    Hagstrum, Jonathan T

    2013-02-15

    Results from an acoustic ray-tracing program using daily meteorological profiles are presented to explain 'release-site biases' for homing pigeons at three experimental sites in upstate New York where W. T. Keeton and his co-workers at Cornell University conducted extensive releases between 1968 and 1987 in their investigations of the avian navigational 'map'. The sites are the Jersey Hill and Castor Hill fire towers, and another near Weedsport, where control pigeons from the Cornell loft vanished in random directions, in directions consistently >50 deg clockwise and in directions ∼15 deg clockwise from the homeward bearing, respectively. Because Cornell pigeons were disoriented at Jersey Hill whereas birds from other lofts were not, it is inferred that Jersey Hill lies within an acoustic 'shadow' zone relative to infrasonic signals originating from the Cornell loft's vicinity. Such signals could arise from ground-to-air coupling of near-continuous microseisms, or from scattering of direct microbaroms off terrain features, both of which are initially generated by wave-wave interactions in the deep ocean. HARPA runs show that little or no infrasound from the loft area arrived at Jersey Hill on days when Cornell pigeons were disoriented there, and that homeward infrasonic signals could have arrived at all three sites from directions consistent with pigeon departure bearings, especially on days when these bearings were unusual. The general stability of release-site biases might be due to influences of terrain on transmission of the homeward signals under prevailing weather patterns, whereas short-term changes in biases might be caused by rapid shifts in atmospheric conditions.

  14. Sounds of earthquakes in West Bohemia: analysis of sonic and infrasonic records

    NASA Astrophysics Data System (ADS)

    Fischer, Tomáš; Vilhelm, Jan; Kuna, Václav; Chum, Jaroslav; Horálek, Josef

    2013-04-01

    Earthquake sounds are usually observed during the occurrence of small earthquakes. The observations of audible manifestations of earthquakes date back to the ancient age and have been recently analyzed in more detail based both on macroseismic observations and audio recordings. In most cases the earthquake sounds resemble low-frequency underground thundering that is generated by seismic-acoustic conversion of P and SV waves at the earth surface. This is also supported by the fact that earthquake sounds usually precede shaking caused by S-waves. The less frequent are explosion-type sounds whose origin remains unclear. We analyze the observations of sounds associating the occurrence of earthquake swarms in the area of West Bohemia/Vogtland, Central Europe. Macroseismic data include 250 reports of sounds with 90% thundering and 10% of explosions. Additional data consist of sonic and infrasonic records acquired by microphones and microbarographs at seismic stations in the area. All the sonic and infrasonic records correspond to sounds of the thunder type; no explosions were recorded. Comparison of these records enabled to determine the seismic wave - air pressure transfer function. The measurements using a 3D microphone array confirm that in the epicentral area the sonic wave is propagating subvertically. We also compared the coda of seismograms and sonic records. It turned out that additional to seismo-acoustic coupling, a later acoustic wave of thunder type arrives at the observation site whose arrival time corresponds to sonic propagation from the epicenter. We analyse the possible generation mechanisms of this type of sonic wave.

  15. Assessment of atmospheric models for tele-infrasonic propagation

    NASA Astrophysics Data System (ADS)

    McKenna, Mihan; Hayek, Sylvia

    2005-04-01

    Iron mines in Minnesota are ideally located to assess the accuracy of available atmospheric profiles used in infrasound modeling. These mines are located approximately 400 km away to the southeast (142) of the Lac-Du-Bonnet infrasound station, IS-10. Infrasound data from June 1999 to March 2004 was analyzed to assess the effects of explosion size and atmospheric conditions on observations. IS-10 recorded a suite of events from this time period resulting in well constrained ground truth. This ground truth allows for the comparison of ray trace and PE (Parabolic Equation) modeling to the observed arrivals. The tele-infrasonic distance (greater than 250 km) produces ray paths that turn in the upper atmosphere, the thermosphere, at approximately 120 km to 140 km. Modeling based upon MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and the NOGAPS (Navy Operational Global Atmospheric Prediction System) and NRL-GS2 (Naval Research Laboratory Ground to Space) augmented profiles are used to interpret the observed arrivals.

  16. Cross-beam coherence of infrasonic signals at local and regional ranges.

    PubMed

    Alberts, W C Kirkpatrick; Tenney, Stephen M

    2017-11-01

    Signals collected by infrasound arrays require continuous analysis by skilled personnel or by automatic algorithms in order to extract useable information. Typical pieces of information gained by analysis of infrasonic signals collected by multiple sensor arrays are arrival time, line of bearing, amplitude, and duration. These can all be used, often with significant accuracy, to locate sources. A very important part of this chain is associating collected signals across multiple arrays. Here, a pairwise, cross-beam coherence method of signal association is described that allows rapid signal association for high signal-to-noise ratio events captured by multiple infrasound arrays at ranges exceeding 150 km. Methods, test cases, and results are described.

  17. Compact nonporous windscreen for infrasonic measurements

    NASA Astrophysics Data System (ADS)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sealey, Bradley S.

    2005-09-01

    Infrasonic windscreens, designed for service at frequencies below 20 Hz, were fabricated from a variety of materials having a low acoustic impedance, and tested against four specifications (the first three in a small wind tunnel): (1) wind-generated noise reduction (``insertion loss'') at a free-stream wind speed of 9.3 m/s, (2) transmission of low-frequency sound from a known source (subwoofer), (3) spectrum of sound generated from trailing vortices (aeolian tones), and (4) water absorption (to determine suitability for all-weather service). The operating principle is based on the high penetrating capability of infrasound through solid barriers. Windscreen materials included three woods (pine, cedar, and balsa), closed-cell polyurethane foam, and Space Shuttle tile material. The windscreen inside diameter ranged from 0.0254 to 0.1016 m (1 to 4 in.), and wall thickness from 0.003175 to 0.01905 m (18 to 34 in.). A windscreen made of closed-cell polyurethane foam revealed a wind noise reduction of 10-20 dB from 0.7 to 25 Hz, transmission coefficient near unity from 10 to 20 Hz, and spectral peaks beyond 20 Hz due to vortex-generated sound. Following a description of past methods, the principle of operation, and the experimental method, experimental data are presented for a variety of windscreens.

  18. Performance Assessment of Multi-Array Processing with Ground Truth for Infrasonic, Seismic and Seismo-Acoustic Events

    DTIC Science & Technology

    2012-07-03

    of white noise vectors with square sumable coefficients and components with finite fourth order moments (Shumway et al., 1999). Here, the infrasonic...center in a star -like configuration for reducing the background noise from wind activity along the boundary layer. Sensor data is recorded by 24-bit...the PMCC Algorithm In Figure 19, under the assumption that the source (red star ) is far from the arrays, PMCC starts coherence processing using

  19. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    infrasonic array at the Newport News-Williamsburg International Airport early in the year 2013. A pattern of pressure burst, high-coherence intervals, and diminishing-coherence intervals was observed for all takeoff and landing events without exception. The results of a phased microphone vs. linear infrasonic array comparison will be presented.

  20. A theoretical relation between the celerity and trace velocity of infrasonic phases.

    PubMed

    Lonzaga, Joel B

    2015-09-01

    This paper presents a relationship between the celerity and trace velocity of infrasound signals propagating in a stratified, windy atmosphere. Despite their importance, known celerity values have only been determined empirically. An infrasonic phase (I-phase) diagram is developed which is useful in identifying different I-phases. Such an I-phase diagram allows for the prediction of the range of values of the celerity and trace velocity for each I-phase. The phase diagram can easily be extended to underwater acoustic and acoustic-gravity waves. An I-phase diagram is compared with data obtained from a ground-truth event where qualitative agreement is obtained.

  1. Tracking in Real-Time Pyroclastic Flows at Soufriere Hills Volcano, Montserrat, by infrasonic array.

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; de Angelis, S.; Lacanna, G.; Poggi, P.; Williams, C.

    2008-12-01

    Active volcanoes produce infrasonic airwaves, which provide valuable insight into the eruption dynamics and the level of volcanic activity. On open conduit volcanoes, infrasound can be used to monitor the gas overpressure in the magma and the degassing rate of active volcanic vents. On volcanoes characterized by dome growth, infrasound can also be generated by non-explosive sources related to dome collapses and pyroclastic flows. In March 2008, the Department of Earth Science (DST) of Firenze (Italy) in cooperation with Montserrat Volcano Observatory (MVO) has installed a small-aperture infrasonic array at a distance of ~3000 m from the dome of the Soufriere Hill Volcano (SHV). The array has an aperture of 200 m and a "star" geometry, with 3 satellite stations at 100 m distance from the receiving central station. Each element of the array is linked to the receiver station by fiber optics cable, and the signal is acquired with a resolution of 16 bits at a rate of 50 samples/sec. The data collected by the array are sent via a radio modem link to the MVO offices, on Montserrat, where they are archived and processed in real-time. Real-time location of infrasonic events are obtained and displayed on computer monitors for use in monitoring of volcanic activity. After a period of very low levels of activity, starting from the end of May 2008, SHV has produced several small explosions without any short-term precursory sign. Some of these events have generated ash plumes reaching up to a few thousands of meters above the sea level, and were accompanied by moderate-to-large size pyroclastic flows that descended the western flanks of the volcanic edifice. The array was able to detect and locate in real-time the clear infrasound associated both with the explosions and the pyroclastic flows. In the latter case, the array estimated the speed and the direction of the flux revealing the presence of several pulses within the same flow. The variable azimuth of the signal during the

  2. Theory of compact nonporous windscreens for infrasonic measurements.

    PubMed

    Zuckerwar, Allan J

    2010-06-01

    The principle of the compact nonporous windscreen is based on the great penetrability of infrasound through matter. The windscreen performance is characterized by the ratio of the sound pressure at an interior microphone, located in the center of a windscreen, to the incident sound pressure in the free field. The frequency dependence of this pressure ratio is derived as a function of the windscreen material and geometric properties. Four different windscreen geometries are considered: a subsurface, box-shaped windscreen, a cylindrical windscreen of infinite length, a cylindrical windscreen of finite length, and a spherical windscreen. Results are presented for windscreens made of closed-cell polyurethane foam and for typical dimensions of each of the above geometries. The cylindrical windscreen of finite length, featuring evanescent radial modes, behaves as a unity-gain, low-pass filter, cutting off sharply at the end of the infrasonic range. The remaining geometries reveal a pass band that extends well into the audio range, terminated by a pronounced peak beyond which the response plummets rapidly.

  3. Nonlinear aspects of infrasonic pressure transfer into the perilymph.

    PubMed

    Krukowski, B; Carlborg, B; Densert, O

    1980-06-01

    The perilymphatic pressure was studied in response to various low frequency pressure changes in the ear canal. The pressure transfer was analysed and found to be nonlinear in many aspects. The pressure response was found to contain two time constants representing the inner ear pressure regulating mechanisms. The time constants showed an asymmetry in response to positive and negative going inputs--the effects to some extent proportional to input levels. Further nonlinearities were found when infrasonic sine waves were applied to the ear. Harmonic distortion and modulation appeared. When short bursts of infrasound were introduced a clear d.c. shift was observed as a consequence of an asymmetry in the response to positive and negative going pressure inputs. A temporary change in mean perilymphatic pressure was thus achieved and continued throughout the duration of the signal. At very low frequencies a distinct phase shift was detected in the sine waves. This appeared as a phase lead, breaking the continuity of the output sine wave.

  4. Infrasonic Observations of Ground Shaking along the 2010 Mw 7.2 El Mayor Rupture

    NASA Astrophysics Data System (ADS)

    Degroot-Hedlin, C. D.; Walker, K.

    2010-12-01

    The Mw 7.2 El Mayor earthquake in northeast Baja California generated seismic waves that were felt for up to 90 seconds throughout southern California and northern Baja. The locations of the epicenter, aftershocks, and surface rupture suggest that the rupture was not focused at one specific location, but initiated near El Mayor, Mexico and extended northwest for roughly 120 km through the U.S. border. We analyze infrasound and seismic data recorded by three arrays and show that the surface shaking in the vicinity of the rupture also generated infrasound that was detected at least 200 km away to the north and west of the epicentral region, despite stratospheric winds from the west that only favor eastward propagation. Frequency domain beamforming of infrasound array signals recorded by an array near San Diego (MRIAR) shows a time progression of signal back azimuth that spans the entire rupture length. Ray trace modeling using 4-D atmospheric velocity models suggests that the observed infrasound signals refracted in the thermosphere. The signals have frequencies from 1 to 12 Hz, which is rather high given the level of thermospheric attenuation predicted by traditional models. A secondary infrasound wavetrain that arrived at MRIAR before the epicentral infrasound appears to have originated from an infrasonic radiator south of the array that was excited by the passing surface waves.

  5. Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic ‘map’ cues

    USGS Publications Warehouse

    Hagstrum, Jonathan T.

    2013-01-01

    Results from an acoustic ray-tracing program using daily meteorological profiles are presented to explain ‘release-site biases’ for homing pigeons at three experimental sites in upstate New York where W. T. Keeton and his co-workers at Cornell University conducted extensive releases between 1968 and 1987 in their investigations of the avian navigational ‘map’. The sites are the Jersey Hill and Castor Hill fire towers, and another near Weedsport, where control pigeons from the Cornell loft vanished in random directions, in directions consistently >50 deg clockwise and in directions ∼15 deg clockwise from the homeward bearing, respectively. Because Cornell pigeons were disoriented at Jersey Hill whereas birds from other lofts were not, it is inferred that Jersey Hill lies within an acoustic ‘shadow’ zone relative to infrasonic signals originating from the Cornell loft’s vicinity. Such signals could arise from ground-to-air coupling of near-continuous microseisms, or from scattering of direct microbaroms off terrain features, both of which are initially generated by wave–wave interactions in the deep ocean. HARPA runs show that little or no infrasound from the loft area arrived at Jersey Hill on days when Cornell pigeons were disoriented there, and that homeward infrasonic signals could have arrived at all three sites from directions consistent with pigeon departure bearings, especially on days when these bearings were unusual. The general stability of release-site biases might be due to influences of terrain on transmission of the homeward signals under prevailing weather patterns, whereas short-term changes in biases might be caused by rapid shifts in atmospheric conditions.

  6. Infrasonic waves in the ionosphere generated by a weak earthquake

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.; Chum, J.

    2011-08-01

    A computer code has been developed to simulate the generation of infrasonic waves (frequencies considered ≤80 Hz) by a weak earthquake (magnitude ˜3.6), their propagation through the atmosphere and their effects in the ionosphere. We provide estimates of the perturbations in the ionosphere at the height (˜160 km) where waves at the sounding frequency (3.59 MHz) of a continuous Doppler radar reflect. We have found that the pressure perturbation is 5.79×10-7 Pa (0.26% of the ambient value), the temperature perturbation is 0.088 K (0.015% of the ambient value) and the electron density perturbation is 2×108 m-3 (0.12% of the ambient value). The characteristic perturbation is found to be a bipolar pulse lasting ˜25 s, and the maximum Doppler shift is found to be ˜0.08 Hz, which is too small to be detected by the Doppler radar at the time of the earthquake.

  7. Modeling and observations of an elevated, moving infrasonic source: Eigenray methods.

    PubMed

    Blom, Philip; Waxler, Roger

    2017-04-01

    The acoustic ray tracing relations are extended by the inclusion of auxiliary parameters describing variations in the spatial ray coordinates and eikonal vector due to changes in the initial conditions. Computation of these parameters allows one to define the geometric spreading factor along individual ray paths and assists in identification of caustic surfaces so that phase shifts can be easily identified. A method is developed leveraging the auxiliary parameters to identify propagation paths connecting specific source-receiver geometries, termed eigenrays. The newly introduced method is found to be highly efficient in cases where propagation is non-planar due to horizontal variations in the propagation medium or the presence of cross winds. The eigenray method is utilized in analysis of infrasonic signals produced by a multi-stage sounding rocket launch with promising results for applications of tracking aeroacoustic sources in the atmosphere and specifically to analysis of motor performance during dynamic tests.

  8. Infrasonic wind noise under a deciduous tree canopy.

    PubMed

    Webster, Jeremy; Raspet, Richard

    2015-05-01

    In a recent paper, the infrasonic wind noise measured at the floor of a pine forest was predicted from the measured wind velocity spectrum and profile within and above the trees [Raspet and Webster, J. Acoust. Soc. Am. 137, 651-659 (2015)]. This research studies the measured and predicted wind noise under a deciduous forest with and without leaves. A calculation of the turbulence-shear interaction pressures above the canopy predicts the low frequency peak in the wind noise spectrum. The calculated turbulence-turbulence interaction pressure due to the turbulence field near the ground predicts the measured wind noise spectrum in the higher frequency region. The low frequency peak displays little dependence on whether the trees have leaves or not. The high frequency contribution with leaves is approximately an order of magnitude smaller than the contribution without leaves. Wind noise levels with leaves are very similar to the wind noise levels in the pine forest. The calculated turbulence-shear contribution from the wind within the canopy is shown to be negligible in comparison to the turbulence-turbulence contribution in both cases. In addition, the effect of taller forests and smaller roughness lengths than those of the test forest on the turbulence-shear interaction is simulated based on measured meteorological parameters.

  9. Wind fence enclosures for infrasonic wind noise reduction.

    PubMed

    Abbott, JohnPaul; Raspet, Richard; Webster, Jeremy

    2015-03-01

    A large porous wind fence enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01 and 10 Hz to develop a technology that is simple and cost effective and improves upon the limitations of spatial filter arrays for detecting nuclear explosions, wind turbine infrasound, and other sources of infrasound. Wind noise is reduced by minimizing the sum of the wind noise generated by the turbulence and velocity gradients inside the fence and by the area-averaging the decorrelated pressure fluctuations generated at the surface of the fence. The effects of varying the enclosure porosity, top condition, bottom gap, height, and diameter and adding a secondary windscreen were investigated. The wind fence enclosure achieved best reductions when the surface porosity was between 40% and 55% and was supplemented by a secondary windscreen. The most effective wind fence enclosure tested in this study achieved wind noise reductions of 20-27 dB over the 2-4 Hz frequency band, a minimum of 5 dB noise reduction for frequencies from 0.1 to 20 Hz, constant 3-6 dB noise reduction for frequencies with turbulence wavelengths larger than the fence, and sufficient wind noise reduction at high wind speeds (3-6 m/s) to detect microbaroms.

  10. Hearing at low and infrasonic frequencies.

    PubMed

    Møller, H; Pedersen, C S

    2004-01-01

    The human perception of sound at frequencies below 200 Hz is reviewed. Knowledge about our perception of this frequency range is important, since much of the sound we are exposed to in our everyday environment contains significant energy in this range. Sound at 20-200 Hz is called low-frequency sound, while for sound below 20 Hz the term infrasound is used. The hearing becomes gradually less sensitive for decreasing frequency, but despite the general understanding that infrasound is inaudible, humans can perceive infrasound, if the level is sufficiently high. The ear is the primary organ for sensing infrasound, but at levels somewhat above the hearing threshold it is possible to feel vibrations in various parts of the body. The threshold of hearing is standardized for frequencies down to 20 Hz, but there is a reasonably good agreement between investigations below this frequency. It is not only the sensitivity but also the perceived character of a sound that changes with decreasing frequency. Pure tones become gradually less continuous, the tonal sensation ceases around 20 Hz, and below 10 Hz it is possible to perceive the single cycles of the sound. A sensation of pressure at the eardrums also occurs. The dynamic range of the auditory system decreases with decreasing frequency. This compression can be seen in the equal-loudness-level contours, and it implies that a slight increase in level can change the perceived loudness from barely audible to loud. Combined with the natural spread in thresholds, it may have the effect that a sound, which is inaudible to some people, may be loud to others. Some investigations give evidence of persons with an extraordinary sensitivity in the low and infrasonic frequency range, but further research is needed in order to confirm and explain this phenomenon.

  11. An apparatus for sequentially combining microvolumes of reagents by infrasonic mixing.

    PubMed

    Camien, M N; Warner, R C

    1984-05-01

    A method employing high-speed infrasonic mixing for obtaining timed samples for following the progress of a moderately rapid chemical reaction is described. Drops of 10 to 50 microliter each of two reagents are mixed to initiate the reaction, followed, after a measured time interval, by mixing with a drop of a third reagent to quench the reaction. The method was developed for measuring the rate of denaturation of covalently closed, circular DNA in NaOH at several temperatures. For this purpose the timed samples were analyzed by analytical ultracentrifugation. The apparatus was tested by determination of the rate of hydrolysis of 2,4-dinitrophenyl acetate in an alkaline buffer. The important characteristics of the method are (i) it requires very small volumes of sample and reagents; (ii) the components of the reaction mixture are pre-equilibrated and mixed with no transfer outside the prescribed constant temperature environment; (iii) the mixing is very rapid; and (iv) satisfactorily precise measurements of relatively short time intervals (approximately 2 sec minimum) between sequential mixings of the components are readily obtainable.

  12. Involvement of connexin43 in the infrasonic noise-induced glutamate release by cultured astrocytes.

    PubMed

    Jiang, Shan; Wang, Yong-Qiang; Xu, Cheng-Feng; Li, Ya-Na; Guo, Rong; Li, Ling

    2014-05-01

    Infrasonic noise/infrasound is a type of environmental noise that threatens public health as a nonspecific biological stressor. Glutamate-related excitotoxicity is thought to be responsible for infrasound-induced impairment of learning and memory. In addition to neurons, astrocytes are also capable of releasing glutamate. In the present study, to identify the effect of infrasound on astroglial glutamate release, cultured astrocytes were exposed to infrasound at 16 Hz, 130 dB for different times. We found that infrasound exposure caused a significant increase in glutamate levels in the extracellular fluid. Moreover, blocking the connexin43 (Cx43) hemichannel or gap junction, decreasing the probability of Cx43 being open or inhibiting of Cx43 expression blocked this increase. The results suggest that glutamate release by Cx43 hemichannels/gap junctions is involved in the response of cultured astrocytes to infrasound.

  13. Involvement of microglial cells in infrasonic noise-induced stress via upregulated expression of corticotrophin releasing hormone type 1 receptor.

    PubMed

    Du, F; Yin, L; Shi, M; Cheng, H; Xu, X; Liu, Z; Zhang, G; Wu, Z; Feng, G; Zhao, G

    2010-05-19

    Infrasound is a kind of environmental noise and threatens the public health as a nonspecific biological stressor. Upregulated expression of corticotrophin releasing hormone (CRH) and its receptor CRH-R1 in the neurons of hypothalamic paraventricular nucleus (PVN) was reported to be responsible for infrasonic noise-induced stress and injuries. Recent studies revealed that CRH-R1 is expressed in activated microglial cells, lending support to the hypothesis that microglial cells may be also responsible for infrasonic noise-induced stress. In this work, we exposed Sprague-Dawley rats and in vitro cultured microglial cells to infrasound with a main frequency of 16 Hz and a sound pressure level of 130 dB for 2 h, and examined the changes in the expression of CRH-R1 at different time points after infrasound exposure by immunohistochemistry and semi-quantitative RT-PCR. We found that infrasound exposure resulted in a significant activation of microglia cells and upregulated their expression of CRH-R1 in the PVN in vivo. Upregulated expression of CRH-R1 can be blocked by antalarmin, a selective CRH-R1 antagonist. Our in vitro data further revealed that in the absence of neurons, infrasound can directly induce microglial activation and upregulate their CRH-R1 expression. These findings suggest that in addition to the PVN neurons, microglial cells are the effector cells for infrasound as well, and involve in the infrasound-induced stress through upregulated expression of CRH-R1. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Atmospheric Propagation Modeling Indicates Homing Pigeons use Loft-Specific Infrasonic 'Map' Cues

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; Baker, L. M.; Spritzer, J. M.; McKenna, M. H.

    2011-12-01

    Pigeons (Columba livia) released at distant sites commonly depart in directions significantly off the actual homeward bearing. Such site-dependent deviations, or biases, for birds from a given loft are generally stable over time, but can also change from hour to hour, day to day, and year to year. At some release sites, birds consistently vanish in random directions and have longer flight times and lower return rates. Release sites characterized by frequent disorientation are not uncommon for pigeon lofts in both Europe and the USA. One such site is the Jersey Hill fire tower in upstate New York located ~120 km W of the Cornell loft in Ithaca. Cornell birds released at Jersey Hill between 1968 and 1987 almost always vanished randomly, although birds from other lofts had little difficulty orienting there. The results for one day, however, stand out: on August 13, 1969, Cornell birds released at Jersey Hill vanished consistently to the NE (r = 0.921; n=7) and returned home after normal flight times. Cornell pigeons released the next day again showed 'normal' behavior for the site and departed randomly. If, in fact, the birds are using acoustic cues to navigate, the long-term acoustic 'dead' zone we propose for Jersey Hill, due to prevailing atmospheric conditions, indicates that the cues are coming from a single, relatively restricted area, most likely surrounding the home loft. We have modeled the transmission of infrasonic waves, presumably coupled to the atmosphere from ocean-generated microseisms (0.14 Hz), between the Cornell loft and a number of release sites using HARPA (Hamiltonian Acoustic Ray-tracing Program for the Atmosphere) and rawinsonde data collected near Albany and Buffalo, NY. The HARPA modeling shows that acoustic signals from the Cornell loft reached Jersey Hill only on a few release days with unusual atmospheric conditions, including August 13, and were launched at angles less than ~2° above horizontal, most likely from steep-sided terrain in

  15. Use of a porous material description of forests in infrasonic propagation algorithms.

    PubMed

    Swearingen, Michelle E; White, Michael J; Ketcham, Stephen A; McKenna, Mihan H

    2013-10-01

    Infrasound can propagate very long distances and remain at measurable levels. As a result infrasound sensing is used for remote monitoring in many applications. At local ranges, on the order of 10 km, the influence of the presence or absence of forests on the propagation of infrasonic signals is considered. Because the wavelengths of interest are much larger than the scale of individual components, the forest is modeled as a porous material. This approximation is developed starting with the relaxation model of porous materials. This representation is then incorporated into a Crank-Nicholson method parabolic equation solver to determine the relative impacts of the physical parameters of a forest (trunk size and basal area), the presence of gaps/trees in otherwise continuous forest/open terrain, and the effects of meteorology coupled with the porous layer. Finally, the simulations are compared to experimental data from a 10.9 kg blast propagated 14.5 km. Comparison to the experimental data shows that appropriate inclusion of a forest layer along the propagation path provides a closer fit to the data than solely changing the ground type across the frequency range from 1 to 30 Hz.

  16. Transmission of infrasonic pressure waves from cerebrospinal to intralabyrinthine fluids through the human cochlear aqueduct: Non-invasive measurements with otoacoustic emissions.

    PubMed

    Traboulsi, Raghida; Avan, Paul

    2007-11-01

    The cochlear aqueduct connecting intralabyrinthine and cerebrospinal fluids (CSF) acts as a low-pass filter that should be able to transmit infrasonic pressure waves from CSF to cochlea. Recent experiments have shown that otoacoustic emissions generated at 1kHz respond to pressure-related stapes impedance changes with a change in phase relative to the generator tones, and provide a non-invasive means of assessing intracochlear pressure changes. In order to characterize the transmission to the cochlea of CSF pressure waves due to respiration, the distortion-product otoacoustic emissions (DPOAE) of 12 subjects were continuously monitored around 1kHz at a rate of 6.25epochs/s, and their phase relative to the stimulus tones was extracted. The subjects breathed normally, in different postures, while thoracic movements were recorded so as to monitor respiration. A correlate of respiration was found in the time variation of DPOAE phase, with an estimated mean amplitude of 10 degrees , i.e. 60mm water, suggesting little attenuation across the aqueduct. Its phase lag relative to thoracic movements varied between 0 degrees and -270 degrees . When fed into a two-compartment model of CSF and labyrinthine spaces, these results suggest that respiration rate at rest is just above the resonance frequency of the CSF compartment, and just below the corner frequency of the cochlear-aqueduct low-pass filter, in line with previous estimates from temporal bone and intracranial measurements. The fact that infrasonic CSF waves can be monitored through the cochlea opens diagnostic possibilities in neurology.

  17. Detection of Acoustic/Infrasonic/Seismic Waves Generated by Hypersonic Re-Entry of the HAYABUSA Capsule and Fragmented Parts of the Spacecraft

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masa-Yuki; Ishihara, Yoshiaki; Hiramatsu, Yoshihiro; Kitamura, Kazuki; Ueda, Masayoshi; Shiba, Yasuo; Furumoto, Muneyoshi; Fujita, Kazuhisa

    2011-10-01

    Acoustic/infrasonic/seismic waves were observed during the re-entry of the Japanese asteroid explorer ``HAYABUSA'' at 6 ground sites in Woomera, Australia, on 2010 June 13. Overpressure values of infrasound waves were detected at 3 ground sites in a range from 1.3 Pa, 1.0 Pa, and 0.7 Pa with each distance of 36.9 km, 54.9 km, and 67.8 km, respectively, apart from the SRC trajectory. Seismic waveforms through air-to-ground coupling processes were also detected at 6 sites, showing a one-to-one correspondence to infrasound waves at all simultaneous observation sites. Audible sound up to 1 kHz was recorded at one site with a distance of 67.8 km. The mother spacecraft was fragmented from 75 km down to 38 km with a few explosive enhancements of emissions. A persistent train of HAYABUSA re-entry was confirmed at an altitude range of between 92 km down to 82 km for about 3 minutes. Light curves of 136 fragmented parts of the spacecraft were analyzed in detail based on video observations taken at multiple ground sites, being classified into three types of fragmentations, i.e., melting, explosive, and re-fragmented types. In a comparison between infrasonic waves and video-image analyses, regarding the generation of sonic-boom type shock waves by hypersonically moving artificial meteors, both the sample return capsule and fragmented parts of the mother spacecraft, at an altitude of 40 ± 1 km were confirmed with a one-to-one correspondence with each other.

  18. Behavioural responses to infrasonic particle acceleration in cuttlefish.

    PubMed

    Wilson, Maria; Haga, Jens Ådne Rekkedal; Karlsen, Hans Erik

    2018-01-11

    Attacks by aquatic predators generate frontal water disturbances characterised by low-frequency gradients in pressure and particle motion. Low-frequency hearing is highly developed in cephalopods. Thus, we examined behavioural responses in juvenile cuttlefish to infrasonic accelerations mimicking main aspects of the hydrodynamic signals created by predators. In the experimental set-up, animals and their surrounding water moved as a unit to minimise lateral line activation and to allow examination of the contribution by the inner ear. Behavioural responses were tested in light versus darkness and after food deprivation following a 'simulated' hunting opportunity. At low acceleration levels, colour change threshold at 3, 5 and 9 Hz was 0.028, 0.038 and 0.035 m s -2 , respectively. At higher stimulus levels, jet-propulsed escape responses thresholds in daylight were 0.043, 0.065 and 0.069 m s -2 at 3, 5 and 9 Hz, respectively, and not significantly different from the corresponding darkness thresholds of 0.043, 0.071 and 0.064 m s -2 In a simulated hunting mode, escape thresholds were significantly higher at 3 Hz (0.118 m s -2 ) but not at 9 Hz (0.134 m s -2 ). Escape responses were directional, and overall followed the direction of the initial particle acceleration, with mean escape angles from 313 to 33 deg for all three experiments. Thus, in the wild, particle acceleration might cause escape responses directed away from striking predators but towards suction-feeding predators. We suggest that cuttlefish jet-propulsed escape behaviour has evolved to be elicited by the early hydrodynamic disturbances generated during predator encounters, and that the inner ear plays an essential role in the acoustic escape responses. © 2018. Published by The Company of Biologists Ltd.

  19. Infrasound and the avian navigational map

    USGS Publications Warehouse

    Hagstrum, J.T.

    2001-01-01

    Birds can accurately navigate over hundreds to thousands of kilometres, and use celestial and magnetic compass senses to orient their flight. How birds determine their location in order to select the correct homeward bearing (map sense) remains controversial, and has been attributed to their olfactory or magnetic senses. Pigeons can hear infrasound down to 0??05 Hz, and an acoustic avian map is proposed consisting of infrasonic cues radiated from steep-sided topographic features. The source of these infrasonic signals is microseisms continuously generated by interfering oceanic waves. Atmospheric processes affecting the infrasonic map cues can explain perplexing experimental results from pigeon releases. Moreover, four recent disrupted pigeon races in Europe and the north-eastern USA intersected infrasonic shock waves from the Concorde supersonic transport. Having an acoustic map might also allow clock-shifted birds to test their homeward progress and select between their magnetic and solar compasses.

  20. Evaluation of rosette infrasonic noise-reducing spatial filters.

    PubMed

    Hedlin, Michael A H; Alcoverro, Benoit; D'Spain, Gerald

    2003-10-01

    This paper presents results from recent tests of rosette infrasonic noise-reducing spatial filters at the Pinon Flat Observatory in southern California. Data from 18- and 70-m aperture rosette filters and a reference port are used to gauge the reduction in atmospheric wind-generated noise levels provided by the filters and to examine the effect of these spatial filters on spatially coherent acoustic signals in the 0.02- to 10-Hz band. At wind speeds up to 5.5 m/s, the 18-m rosette filter reduces wind noise levels above 0.2 Hz by 15 to 20 dB. Under the same conditions, the 70-m rosette filter provides noise reduction of up to 15 to 20 dB between 0.02 and 0.7 Hz. Standing wave resonance inside the 70-m filter degrades the reception of acoustic signals above 0.7 Hz. The fundamental mode of the resonance, 15 dB above background, is centered at 2.65-Hz and the first odd harmonic is observed at 7.95 Hz in data from the large filter. Analytical simulations accurately reproduce the noise reduction and resonance observed in the 70-m filter at all wind speeds above 1.25 m/s. Resonance theory indicates that internal reflections that give rise to the resonance observed in the passband are occurring at the summing manifolds, and not at the inlets. Rosette filters are designed for acoustic arrivals with infinite phase velocity. The plane-wave response of the 70-m rosette filter has a strong dependence on frequency above 3.5 Hz at grazing angles of less than 15 degrees from the horizontal. At grazing angles, complete cancellation of the signal occurs at 5 Hz. Theoretical predictions of the phase and amplitude response of 18- and 70-m rosette filters, that take into account internal resonance and time delays between the inlets, compare favorably with observations derived from a cross-spectral analysis of signals from the explosion of a large bolide.

  1. Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde.

    PubMed

    Le, Pichon Alexis; Garcés, Milton; Blanc, Elisabeth; Barthélémy, Maud; Drob, Doug P

    2002-01-01

    Infrasonic signals generated by daily supersonic Concorde flights between North America and Europe have been consistently recorded by an array of microbarographs in France. These signals are used to investigate the effects of atmospheric variability on long-range sound propagation. Statistical analysis of wave parameters shows seasonal and daily variations associated with changes in the wind structure of the atmosphere. The measurements are compared to the predictions obtained by tracing rays through realistic atmospheric models. Theoretical ray paths allow a consistent interpretation of the observed wave parameters. Variations in the reflection level, travel time, azimuth deviation and propagation range are explained by the source and propagation models. The angular deviation of a ray's azimuth direction, due to the seasonal and diurnal fluctuations of the transverse wind component, is found to be approximately 5 degrees from the initial launch direction. One application of the seasonal and diurnal variations of the observed phase parameters is the use of ground measurements to estimate fluctuations in the wind velocity at the reflection heights. The simulations point out that care must be taken when ascribing a phase velocity to a turning height. Ray path simulations which allow the correct computation of reflection heights are essential for accurate phase identifications.

  2. Acoustic analysis of shock production by very high-altitude meteors—I: infrasonic observations, dynamics and luminosity

    NASA Astrophysics Data System (ADS)

    Brown, P. G.; Edwards, W. N.; Revelle, D. O.; Spurny, P.

    2007-04-01

    Four very high-velocity and high-altitude meteors (a Leonid, two Perseids and a high-speed sporadic fireball) have been unambiguously detected at the ground both optically using precision all-sky cameras and acoustically via infrasound and seismic signals. Infrasound arriving from altitudes of over 100 km is not very common, but has been previously observed for re-entering spacecraft. This, however, is the first reported detection of such high-altitude infrasound unambiguously from meteors to our knowledge. These fragile meteoroids were found to generate acoustic waves at source heights ranging from 80 to 110 km, with most acoustic energy being generated near the lowest heights. Time residuals between observed acoustic onset and model predictions based on ray-tracing points along the photographically determined trajectories indicate that the upper winds given by the UK meteorological office (UKMO) model systematically produce lower residuals for first arrivals than those from the Naval Research Laboratory Horizontal Wind Model (HWM). Average source energies for three of the four events from acoustic data alone are found to be in the range of 2×108-9 J. One event, EN010803, had unusually favorable geometry for acoustic detection at the ground and therefore has the smallest photometric source energy (10-5 kt; 6×107 J) of any meteor detected infrasonically. When compared to the total optical radiation recorded by film, the results for the three events produce equivalent integral panchromatic luminous efficiencies of 3 7%, within a factor of two of the values proposed by Ceplecha and McCrosky [1976. Fireball end heights—a diagnostic for the structure of meteoric material. Journal of Geophysical Research 81, 6257 6275] for the velocity range (55 70 km s-1) appropriate to our events. Application of these findings to meteor showers in general suggest that the Geminid shower should be the most prolific producer of infrasound detectable meteors at the ground of all the

  3. Atmospheric sound propagation

    NASA Technical Reports Server (NTRS)

    Cook, R. K.

    1969-01-01

    The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.

  4. Seismic and infrasonic signals associated with an unusual collapse event at the Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Green, D. N.; Neuberg, J.

    2005-04-01

    In March 2004, during a period of no magma extrusion at Soufrière Hills volcano, Montserrat, an explosive event occurred with little precursory activity. Recorded broadband seismic signals ranged from an ultra-long-period signal with a dominant period of 120 s to impulsive, short-duration events containing frequencies up to 30 Hz. Synthetic displacement functions were fit to the long-period data after application of the seismometer response. These indicate a shallow collapse of the volcanic edifice occurred, initiated ~300 m below the surface, lasting ~100 s. Infrasonic tremor and pulses were also recorded in the 1-20 Hz range. The high-frequency seismicity and infrasound are interpreted as the subsequent collapse of a gravitationally unstable buttress of remnant dome material which impacted upon the edifice surface. This unique dataset demonstrates the benefits of deploying multi-parameter stations equipped with broadband instruments.

  5. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2015-09-01

    Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ˜1-4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth's surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability of TEC signatures and their dependence on the geometry of wave velocity field perturbations relative to the ambient geomagnetic field. Asymmetries of responses poleward and equatorward from the wave sources indicate that electron perturbations are enhanced on the equatorward side while field aligned currents are driven principally on the poleward side, due to alignments of acoustic wave velocities parallel and perpendicular to field lines, respectively. Acoustic-wave-driven TEC perturbations are shown to have periods of ˜3-4 min, which are consistent with the fraction of the spectrum that remains following strong dissipation throughout the thermosphere. Furthermore, thermospheric acoustic waves couple with ion sound waves throughout the F region and topside ionosphere, driving plasma disturbances with similar periods and faster phase speeds. The associated magnetic perturbations of the simulated waves are calculated to be observable and may provide new observational insight in addition to that provided by GPS TEC measurements.

  6. Infrasound and the avian navigational map.

    PubMed

    Hagstrum, J T

    2000-04-01

    Birds can navigate accurately over hundreds to thousands of kilometres, and this ability of homing pigeons is the basis for a worldwide sport. Compass senses orient avian flight, but how birds determine their location in order to select the correct homeward bearing (map sense) remains a mystery. Also mysterious are rare disruptions of pigeon races in which most birds are substantially delayed and large numbers are lost. Here, it is shown that in four recent pigeon races in Europe and the northeastern USA the birds encountered infrasonic (low-frequency acoustic) shock waves from the Concorde supersonic transport. An acoustic avian map is proposed that consists of infrasonic cues radiated from steep-sided topographic features; the source of these signals is microseisms continuously generated by interfering oceanic waves. Atmospheric processes affecting these infrasonic map cues can explain perplexing experimental results from pigeon releases.

  7. Long-times series of infrasonic records at open-vents volcanoes (Yasur volcano, Vanuatu, 2003-2014): the remarkable temporal stability of magma viscosity

    NASA Astrophysics Data System (ADS)

    Vergniolle, S.; Souty, V.; Zielinski, C.; Bani, P.; LE Pichon, A.; Lardy, M.; Millier, P.; Herry, P.; Todman, S.; Garaebiti, E.

    2017-12-01

    Open-vents volcanoes, often presenting series of Strombolian explosions of various intensity, are responding, although with a delay, to any changes in the degassing pattern, providing a quasi-direct route to processes at depth. Open-vents volcanoes display a persistent volcanic activity, although of variable intensity. Long-times series at open-vents volcanoes could therefore be key measurements to unravel physical processes at the origin of Strombolian explosions and be crucial for monitoring. Continuous infrasonic records can be used to estimate the gas volume expelled at the vent during explosions (bursting of a long slug). The gas volume of each explosion is deduced from a series of two successive integrations of acoustic pressure (monopole). Here we analysed more than 4 years of infrasonic records at Yasur volcano (Vanuatu), spanning between 2003 and 2014 and organised into 8 main quasi-continuous periods. The relationship between the gas volume of each explosion and its associated maximum positive acoustic pressure, a proxy for the inner gas overpressure at bursting, shows a remarkably stable trend over the 8 periods. Two main trends exists, one which covers the full range of acoustic pressures (called « strong explosions ») and the second which represents explosions with a large gas volume and mild acoustic pressure. The class of « strong explosions » clearly follows the model of Del Bello et al. (2012), which shows that the inner gas overpressure at bursting, here empirically measured by the maximum acoustic pressure, is proportional to the gas volume. Constrains on magma viscosity and conduit radius, are deduced from this trend and from the gas volume at the transition passive-active degassing. The remarkable stability of this trend over time suggests that 1) the magma viscosity is stable at the depth where gas overpressure is produced within the slug and 2) any potential changes in magma viscosity occur very close to the top of the magma column.

  8. An Optimal Parameterization Framework for Infrasonic Tomography of the Stratospheric Winds Using Non-Local Sources

    DOE PAGES

    Blom, Philip Stephen; Marcillo, Omar Eduardo

    2016-12-05

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. Inmore » order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.« less

  9. Infrasonic array observations at I53US of the 2006 Augustine Volcano eruptions

    USGS Publications Warehouse

    Wilson, C.R.; Olson, J.V.; Szuberla, Curt A.L.; McNutt, Steve; Tytgat, Guy; Drob, Douglas P.

    2006-01-01

    The recent January 2006 Augustine eruptions, from the 11th to the 28th, have produced a series of 12 infrasonic signals that were observed at the I53US array at UAF. the eruption times for the signals were provided by the Alaska Volcanic Observatory at UAF using seismic sensors and a Chaparral microphone that are installed on Augustine Island. The bearing and distance of Augustine from I53US are, respectively, 207.8 degrees and 675 km. The analysis of the signals is done with a least-squares detector/estimator that calculates, from the 28 different sensor-pairs in the array, the mean of the cross-correlation maxima (MCCM), the horizontal trace-velocity and the azimuth of arrival of the signal using a sliding-window of 2000 data points. The data were bandpass filtered from 0.03 to 0.10 Hz. The data are digitized at a rate of 20 Hz. The average values of the signal parameters for all 12 Augustine signals are as follows: MCCM=0.85 (std 0.14), Trace-velocity=0.346 (std 0.016) km/sec, Azimuth=209 (std 2) deg. The celerity for each signal was calculated using the range 675 km and the individual travel times to I53US. The average celerity for all ten eruption signals was 0.27 (std 0.02) km/sec. Ray tracing studies, using mean values of the wind speed and temperature profiles (along the path) from NRL, have shown that there was propagation to I53US by both stratospheric and thermospheric ray paths from the volcano.

  10. Infrasonic harmonic tremor and degassing bursts from Halema'uma'u Crater, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Fee, David; Garcés, Milton; Patrick, Matt; Chouet, Bernard; Dawson, Phil; Swanson, Donald A.

    2010-01-01

    The formation, evolution, collapse, and subsequent resurrection of a vent within Halema'uma'u Crater, Kilauea Volcano, produced energetic and varied degassing signals recorded by a nearby infrasound array between 2008 and early 2009. After 25 years of quiescence, a vent-clearing explosive burst on 19 March 2008 produced a clear, complex acoustic signal. Near-continuous harmonic infrasonic tremor followed this burst until 4 December 2008, when a period of decreased degassing occurred. The tremor spectra suggest volume oscillation and reverberation of a shallow gas-filled cavity beneath the vent. The dominant tremor peak can be sustained through Helmholtz oscillations of the cavity, while the secondary tremor peak and overtones are interpreted assuming acoustic resonance. The dominant tremor frequency matches the oscillation frequency of the gas emanating from the vent observed by video. Tremor spectra and power are also correlated with cavity geometry and dynamics, with the cavity depth estimated at ~219 m and volume ~3 x 106 m3 in November 2008. Over 21 varied degassing bursts were observed with extended burst durations and frequency content consistent with a transient release of gas exciting the cavity into resonance. Correlation of infrasound with seismicity suggests an open system connecting the atmosphere to the seismic excitation process at depth. Numerous degassing bursts produced very long period (0.03-0.1 Hz) infrasound, the first recorded at Kilauea, indicative of long-duration atmospheric accelerations. Kilauea infrasound appears controlled by the exsolution of gas from the magma, and the interaction of this gas with the conduits and cavities confining it.

  11. On using the Multiple Signal Classification algorithm to study microbaroms

    NASA Astrophysics Data System (ADS)

    Marcillo, O. E.; Blom, P. S.; Euler, G. G.

    2016-12-01

    Multiple Signal Classification (MUSIC) (Schmidt, 1986) is a well-known high-resolution algorithm used in array processing for parameter estimation. We report on the application of MUSIC to infrasonic array data in a study of the structure of microbaroms. Microbaroms can be globally observed and display energy centered around 0.2 Hz. Microbaroms are an infrasonic signal generated by the non-linear interaction of ocean surface waves that radiate into the ocean and atmosphere as well as the solid earth in the form of microseisms. Microbaroms sources are dynamic and, in many cases, distributed in space and moving in time. We assume that the microbarom energy detected by an infrasonic array is the result of multiple sources (with different back-azimuths) in the same bandwidth and apply the MUSIC algorithm accordingly to recover the back-azimuth and trace velocity of the individual components. Preliminary results show that the multiple component assumption in MUSIC allows one to resolve the fine structure in the microbarom band that can be related to multiple ocean surface phenomena.

  12. The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters.

    PubMed

    Hedlin, Michael A H; Alcoverro, Benoit

    2005-04-01

    Rosette spatial filters are used at International Monitoring System infrasound array sites to reduce noise due to atmospheric turbulence. A rosette filter consists of several clusters, or rosettes, of low-impedance inlets. Acoustic energy entering each rosette of inlets is summed, acoustically, at a secondary summing manifold. Acoustic energy from the secondary manifolds are summed acoustically at a primary summing manifold before entering the microbarometer. Although rosette filters have been found to be effective at reducing infrasonic noise across a broad frequency band, resonance inside the filters reduces the effectiveness of the filters at high frequencies. This paper presents theoretical and observational evidence that the resonance inside these filters that is seen below 10 Hz is due to reflections occuring at impedance discontinuities at the primary and secondary summing manifolds. Resonance involving reflections at the inlets amplifies noise levels at frequencies above 10 Hz. This paper further reports results from theoretical and observational tests of impedance matching capillaries for removing the resonance problem. Almost total removal of resonant energy below 5 Hz was found by placing impedance matching capillaries adjacent to the secondary summing manifolds in the pipes leading to the primary summing manifold and the microbarometer. Theory and recorded data indicate that capillaries with resistance equal to the characteristic impedance of the pipe connecting the secondary and primary summing manifolds suppresses resonance but does not degrade the reception of acoustic signals. Capillaries at the inlets can be used to remove resonant energy at higher frequencies but are found to be less effective due to the high frequency of this energy outside the frequency band of interest.

  13. Seasonal variations of infrasonic arrivals from long-term ground truth observations in Nevada and implication for event location

    NASA Astrophysics Data System (ADS)

    Negraru, Petru; Golden, Paul

    2017-04-01

    Long-term ground truth observations were collected at two infrasound arrays in Nevada to investigate how seasonal atmospheric variations affect the detection, traveltime and signal characteristics (azimuth, trace velocity, frequency content and amplitudes) of infrasonic arrivals at regional distances. The arrays were located in different azimuthal directions from a munition disposal facility in Nevada. FNIAR, located 154 km north of the source has a high detection rate throughout the year. Over 90 per cent of the detonations have traveltimes indicative of stratospheric arrivals, while tropospheric waveguides are observed from only 27 per cent of the detonations. The second array, DNIAR, located 293 km southeast of the source exhibits strong seasonal variations with high stratospheric detection rates in winter and the virtual absence of stratospheric arrivals in summer. Tropospheric waveguides and thermospheric arrivals are also observed for DNIAR. Modeling through the Naval Research Laboratory Ground to Space atmospheric sound speeds leads to mixed results: FNIAR arrivals are usually not predicted to be present at all (either stratospheric or tropospheric), while DNIAR arrivals are usually correctly predicted, but summer arrivals show a consistent traveltime bias. In the end, we show the possible improvement in location using empirically calibrated traveltime and azimuth observations. Using the Bayesian Infrasound Source Localization we show that we can decrease the area enclosed by the 90 per cent credibility contours by a factor of 2.5.

  14. The spatial coherence structure of infrasonic waves: analysis of data from International Monitoring System arrays

    NASA Astrophysics Data System (ADS)

    Green, David N.

    2015-04-01

    The spatial coherence structure of 30 infrasound array detections, with source-to-receiver ranges of 25-6500 km, has been measured within the 0.25-1 Hz passband. The data were recorded at International Monitoring System (IMS) microbarograph arrays with apertures of between 1 and 4 km. Such array detections are of interest for Comprehensive Nuclear-Test-Ban Treaty monitoring. The majority of array detections (e.g. 80 per cent of recordings in the third-octave passband centred on 0.63 Hz) exhibit spatial coherence loss anisotropy that is consistent with previous lower frequency atmospheric acoustic studies; coherence loss is more rapid perpendicular to the acoustic propagation direction than parallel to it. The thirty array detections display significant interdetection variation in the magnitude of spatial coherence loss. The measurements can be explained by the simultaneous arrival of wave fronts at the recording array with angular beamwidths of between 0.4 and 7° and velocity bandwidths of between 2 and 40 m s-1. There is a statistically significant positive correlation between source-to-receiver range and the magnitude of coherence loss. Acoustic multipathing generated by interactions with fine-scale wind and temperature gradients along stratospheric propagation paths is qualitatively consistent with the observations. In addition, the study indicates that to isolate coherence loss generated by propagation effects, analysis of signals exhibiting high signal-to-noise ratios (SNR) is required (SNR2 > 11 in this study). The rapid temporal variations in infrasonic noise observed in recordings at IMS arrays indicates that correcting measured coherence values for the effect of noise, using pre-signal estimates of noise power, is ineffective.

  15. Infrasonic noise induces axonal degeneration of cultured neurons via a Ca²⁺ influx pathway.

    PubMed

    Cheng, Haoran; Wang, Bing; Tang, Chi; Feng, Guodong; Zhang, Chen; Li, Ling; Lin, Tian; Du, Fang; Duan, Hong; Shi, Ming; Zhao, Gang

    2012-07-20

    Infrasound is a kind of environmental noise. It can evoke biological resonance in organismic tissues including the central nervous system (CNS), causing displacement and distortion of cellular architectures. Several studies have revealed that certain intensity infrasound can impair normal functions of the brain, but the underlying mechanisms still remain largely unknown. Growing evidence has demonstrated that axonal degeneration is responsible for a variety of CNS dysfunctions. To explore whether neuronal axons are affected under infrasonic insults, we exposed cultured hippocampal neurons to infrasound with a frequency of 16 Hz and a pressure level of 130 dB for 1h, and examined the morphological and molecular changes of neuronal axons by immunocytochemistry and Western blotting, respectively. Our results showed that infrasound exposure significantly resulted in axonal degeneration of cultured hippocampal neurons, which was relatively independent of neuronal cell death. This infrasound-induced axonal degeneration can be significantly blocked by Ca²⁺ chelator EGTA and Rho kinase inhibitor Fasudil, but not by proteasome inhibitor MG132. Moreover, calcium imaging and RhoA activation assays revealed a great enhancement of Ca²⁺ influx within axons and RhoA activation after infrasound exposure, respectively. Depletion of Ca²⁺ by EGTA markedly inhibited this Ca²⁺ influx and attenuated RhoA activation as well. Thus, our findings revealed that axonal degeneration may be one of the important mechanisms underlying infrasound-induced CNS impairment, and Ca²⁺ influx pathway is likely implicated in the process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. The rotary subwoofer: a controllable infrasound source.

    PubMed

    Park, Joseph; Garcés, Milton; Thigpen, Bruce

    2009-04-01

    The rotary subwoofer is a novel acoustic transducer capable of projecting infrasonic signals at high sound pressure levels. The projector produces higher acoustic particle velocities than conventional transducers which translate into higher radiated sound pressure levels. This paper characterizes measured performance of a rotary subwoofer and presents a model to predict sound pressure levels.

  17. Optical Fiber Sensors for Infrasonic Wind Noise Reduction and Earth Strain Measurement

    NASA Astrophysics Data System (ADS)

    DeWolf, Scott

    Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. This work presents the development and results from four new systems: one in atmospheric acoustics and three in Earth strain. Turbulent pressure fluctuations (wind noise) are a significant limiting factor in low-frequency atmospheric acoustic measurements. The Optical Fiber Infrasound Sensor (OFIS) provides an alternative to traditional infrasonic wind noise reduction (WNR) techniques by providing an instantaneous average over a large spatial extent. This study shows that linear OFISs ranging in length from 30 to 270 m provide a WNR of up to 30 dB in winds up to 5 m/s, in good agreement with a new analytical model. Arrays of optical fiber strainmeters were deployed to measure sediment compaction at two sites in Bangladesh. One array at Jamalganj (in the north) consists of 20, 40, 60, and 100 m long strainmeters, while the second near Khulna (in the south) also includes lengths of 80 and 300 m. Two years of weekly measurements show a clear seasonal signal and subsidence at both sites that is in reasonable agreement with collocated GPS receivers. A new 250-meter, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the prototyping, design, and deployment at the Pinon Flat Observatory (PFO) are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 epsilon/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio of 0.26. Two prototype horizontal strainmeters were also developed to explore the use of similar interferometric optical fiber

  18. Stromal Vascular Fraction from Lipoaspirate Infranatant: Comparison Between Suction-Assisted Liposuction and Nutational Infrasonic Liposuction.

    PubMed

    Bowen, Robert E

    2016-06-01

    Lipoaspirate has shown great promise as a source of progenitor cells for use in regenerative medicine. The stromal vascular fraction (SVF) can be isolated from lipoaspirate using enzyme digestion and centrifugation, but this approach may be limited by the labor-intensive nature of the technique as well as ambiguities in current governmental regulations. An alternative approach to obtain SVF from lipoaspirate was studied. Paired (collected from contralateral regions) lipoaspirate specimens were acquired from 30 consenting patients (age 24-62; 22 females, 8 males) by suction-assisted liposuction (SAL) and nutational infrasonic liposuction (NIL). The infranatant from 50 ml of adipose tissue (LAF) was centrifuged at 400g × 5 min and the resultant pellet was collected with a pipette. Time = 15-20 min. The respective SVFs cell populations were counted using an optical fluorescent cell counter (Nexcelom A2000) and the fluorescent stains-acridine orange (AO) and propidium iodide (PI). The number of nucleated, live cells from SAL infranatant was 97,345 ± 23,435 per ml of adipose tissue and from NIL infranatant was 335,621 ± 81,274 per ml of adipose tissue. The p value is <0.00001, n = 30. Regenerative cells can be isolated from the lipoaspirate infranatant from either SAL or NIL, although in lower quantities than from enzyme digestion. NIL acquisition yielded 3.5× the number of cells over that acquired from SAL. The time, skill, and cost of producing SVF from infranatant is less than using enzyme digestion, which potentially make these regenerative therapies accessible to more physicians and patients. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  19. Study of atmospheric gravity waves and infrasonic sources using the USArray Transportable Array pressure data

    NASA Astrophysics Data System (ADS)

    Hedlin, Michael; de Groot-Hedlin, Catherine; Hoffmann, Lars; Alexander, M. Joan; Stephan, Claudia

    2016-04-01

    The upgrade of the USArray Transportable Array (TA) with microbarometers and infrasound microphones has created an opportunity for a broad range of new studies of atmospheric sources and the large- and small-scale atmospheric structure through which signals from these events propagate. These studies are akin to early studies of seismic events and the Earth's interior structure that were made possible by the first seismic networks. In one early study with the new dataset we use the method of de Groot-Hedlin and Hedlin (2015) to recast the TA as a massive collection of 3-element arrays to detect and locate large infrasonic events. Over 2,000 events have been detected in 2013. The events cluster in highly active regions on land and offshore. Stratospherically ducted signals from some of these events have been recorded more than 2,000 km from the source and clearly show dispersion due to propagation through atmospheric gravity waves. Modeling of these signals has been used to test statistical models of atmospheric gravity waves. The network is also useful for making direct observations of gravity waves. We are currently studying TA and satellite observations of gravity waves from singular events to better understand how the waves near ground level relate to those observed aloft. We are also studying the long-term statistics of these waves from the beginning of 2010 through 2014. Early work using data bandpass filtered from 1-6 hr shows that both the TA and satellite data reveal highly active source regions, such as near the Great Lakes. de Groot-Hedlin and Hedlin, 2015, A method for detecting and locating geophysical events using clusters of arrays, Geophysical Journal International, v203, p960-971, doi: 10.1093/gji/ggv345.

  20. Setting up infrasonic propagation simulation using the latest real-time atmospheric specifications at the IDC

    NASA Astrophysics Data System (ADS)

    Brachet, N.; Mialle, P.; Brown, D.; Coyne, J.; Drob, D.; Virieux, J.; Garcés, M.

    2009-04-01

    The International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty (CTBTO) Preparatory Commission in Vienna is pursuing its automatic processing effort for the return of infrasound data processing into operations in 2009. Concurrently, work is also underway to further improve this process by enhancing the modeling of the infrasound propagation in the atmosphere and then by labeling the phases in order to improve the event categorization and location. In 2008, the IDC acquired WASP-3D Sph (Windy Atmospheric Sonic Propagation) (Virieux et al., 2004) a 3-D ray-tracing based long range propagation software that accounts for the heterogeneity of the atmosphere. Once adapted to the IDC environment, WASP-3 Sph has been used to improve the understanding of infrasound wave propagation and has been compared with the 1-D ray tracing Taupc software (Garcés and Drob, 2007) at the IDC. In addition to performing the infrasound propagation simulation, different atmospheric models are available at the IDC, either real-time: ECMWF (European Centre for Middle-range Weather Forecast), or empiric: HWM93 (Horizontal Wind Model) and HWM07 (Drob, 2008), used in their initial format or interpolated into G2S (Ground to Space) model. The IDC infrasound reference database is used for testing, comparing and validating the various propagation software and atmospheric specifications. Moreover all the performed simulations are giving feedback on the quality of the infrasound reference events and provide useful information to improve their location by refining infrasonic wave propagation characteristics. The results of this study are presented for a selection of reference events and they will help the IDC designing and defining short and mid-term enhancements of the infrasound automatic and interactive processing to take into account the spatial and temporal heterogeneities of the atmosphere.

  1. Antarctic atmospheric infrasound. Final technical report, 1 July 1981-30 September 1984

    SciTech Connect

    Wilson, C.R.; McKibben, B.N.

    1986-11-01

    In order to monitor atmospheric infrasonic waves in the passband from 0.1 to 0.01 Hz a digital infrasonic detection system was installed in Antarctica on the Ross Ice shelf near McMurdo Station on McMurdo Sound. An array of seven infrasonic microphones subtending an area of about 35 sg km was operated in Windless Bight. The analog microphone data were telemetered to McMurdo station where the infrasonic date were digitized and subjected to on-line real-time analysis to detect traveling infrasonic waves with periods from 10 to 100 seconds. During the period of operation of the Antartic infrasonic observatory, hundreds of infrasonicmore » signals were detected in association with many natural sources such as the aurora australis, marine storm sea-air interactions, volcanic eruptions, mountain generated lee-wave effects, large meteors and auroral electrojet supersonic motions.« less

  2. Multidirectional seismo-acoustic wavefield of strombolian explosions at Yasur, Vanuatu using a broadband seismo-acoustic network, infrasound arrays, and infrasonic sensors on tethered balloons

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Jolly, A. D.; Fee, D.; Johnson, R.; Kilgour, G.; Christenson, B. W.; Garaebiti, E.; Iezzi, A. M.; Austin, A.; Kennedy, B.; Fitzgerald, R.; Key, N.

    2016-12-01

    Seismo-acoustic wavefields at volcanoes contain rich information on shallow magma transport and subaerial eruption processes. Acoustic wavefields from eruptions are predicted to be directional, but sampling this wavefield directivity is challenging because infrasound sensors are usually deployed on the ground surface. We attempt to overcome this observational limitation using a novel deployment of infrasound sensors on tethered balloons in tandem with a suite of dense ground-based seismo-acoustic, geochemical, and eruption imaging instrumentation. We present preliminary results from a field experiment at Yasur Volcano, Vanuatu from July 26th to August 4th 2016. Our observations include data from a temporary network of 11 broadband seismometers, 6 single infrasonic microphones, 7 small-aperture 3-element infrasound arrays, 2 infrasound sensor packages on tethered balloons, an FTIR, a FLIR, 2 scanning Flyspecs, and various visual imaging data. An introduction to the dataset and preliminary analysis of the 3D seismo-acoustic wavefield and source process will be presented. This unprecedented dataset should provide a unique window into processes operating in the shallow magma plumbing system and their relation to subaerial eruption dynamics.

  3. Infrasound: Connecting the Solid Earth, Oceans, and Atmosphere

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A. H.; Walker, K.; Drob, D. P.; de Groot-Hedlin, C. D.

    2012-05-01

    The recently reinvigorated field of infrasonics is poised to provide insight into atmospheric structure and the physics of large atmospheric phenomena, just as seismology has shed considerable light on the workings and structure of Earth's solid interior. Although a natural tool to monitor the atmosphere and shallow Earth for nuclear explosions, it is becoming increasingly apparent that infrasound also provides another means to monitor a suite of natural hazards. The frequent observation of geophysical sources—such as the unsteady sea surface, volcanoes, and earthquakes—that radiate energy both up into the atmosphere and down into the liquid or solid Earth and transmission of energy across Earth's boundaries reminds us that Earth is an interconnected system. This review details the rich history of the unheard sound in the atmosphere and the role that infrasonics plays in helping us understand the Earth system.

  4. Nonordinary excitation of hydroacoustic resonance in the hydroturbine circuit of the sayano-shushenskaya hydroelectric power plant

    NASA Astrophysics Data System (ADS)

    Karavosov, R. K.; Prozorov, A. G.

    2011-05-01

    Three cases of excitation of resonance oscillations in a circuit with an incompressible medium and a hydrodynamic source of narrow-band acoustic radiation are compared. It is asserted that the Francis turbine can transmit and reflect infrasonic disturbances. It is supposed that an array of immobile coaxial cylinders below the impeller will prevent hydroacoustic self-excitation in flow inside the water conduit.

  5. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Xiao, Z.; Zhang, D. H.

    2012-02-01

    In this paper, evidence of quake-excited infrasonic waves is provided first by a multi-instrument observation of Japan's Tohoku earthquake. The observations of co-seismic infrasonic waves are as follows: 1, effects of surface oscillations are observed by local infrasonic detector, and it seems these effects are due to surface oscillation-excited infrasonic waves instead of direct influence of seismic vibration on the detector; 2, these local excited infrasonic waves propagate upwards and correspond to ionospheric disturbances observed by Doppler shift measurements and GPS/TEC; 3, interactions between electron density variation and currents in the ionosphere caused by infrasonic waves manifest as disturbances in the geomagnetic field observed via surface magnetogram; 4, within 4 hours after this strong earthquake, disturbances in the ionosphere related to arrivals of Rayleigh waves were observed by Doppler shift sounding three times over. Two of the arrivals were from epicenter along the minor arc of the great circle (with the second arrival due to a Rayleigh wave propagating completely around the planet) and the other one from the opposite direction. All of these seismo-ionospheric effects observed by HF Doppler shift appear after local arrivals of surface Rayleigh waves, with a time delay of 8-10 min. This is the time required for infrasonic wave to propagate upwards to the ionosphere.

  6. Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths

    NASA Astrophysics Data System (ADS)

    Green, David N.; Vergoz, Julien; Gibson, Robert; Le Pichon, Alexis; Ceranna, Lars

    2011-05-01

    Infrasound propagation paths through the atmosphere are controlled by the temporally and spatially varying sound speed and wind speed amplitudes. Because of the complexity of atmospheric acoustic propagation it is often difficult to reconcile observed infrasonic arrivals with the sound speed profiles predicted by meteorological specifications. This paper provides analyses of unexpected arrivals recorded in Europe and north Africa from two series of accidental munitions dump explosions, recorded at ranges greater than 1000 km: two explosions at Gerdec, Albania, on 2008 March 15 and four explosions at Chelopechene, Bulgaria, on 2008 July 3. The recorded signal characteristics include multiple pulsed arrivals, celerities between 0.24 and 0.34 km s-1 and some signal frequency content above 1 Hz. Often such characteristics are associated with waves that have propagated within a ground-to-stratosphere waveguide, although the observed celerities extend both above and below the conventional range for stratospheric arrivals. However, state-of-the-art meteorological specifications indicate that either weak, or no, ground-to-stratosphere waveguides are present along the source-to-receiver paths. By incorporating realistic gravity-wave induced horizontal velocity fluctuations into time-domain Parabolic Equation models the pulsed nature of the signals is simulated, and arrival times are predicted to within 30 s of the observed values (<1 per cent of the source-to-receiver transit time). Modelling amplitudes is highly dependent upon estimates of the unknown acoustic source strength (or equivalent chemical explosive yield). Current empirical explosive yield relationships, derived from infrasonic amplitude measurements from point-source chemical explosions, suggest that the equivalent chemical yield of the largest Gerdec explosion was of the order of 1 kt and the largest Chelopechene explosion was of the order of 100 t. When incorporating these assumed yields, the Parabolic

  7. Freely Drifting Swallow Float Array: August 1990 NATIVE 1 Experiment (First Deployment)

    DTIC Science & Technology

    1991-02-01

    jump around record 1520, indicating that the apparent increase in float 2’s hydrophone sensitivity occurred only at the lower infra - sonic ...and d) the infrasonic acoustic data. The infrasonic data include the RMS levels of the pressure and the three components of parti- cle velocity for all...active intensity spectra. A description of the Swallow float infrasonic data acquisition system, along with calibration curves, is given in Appendix 1

  8. Sub-Surface Windscreen for Outdoor Measurement of Infrasound

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Shams, Qamar A. (Inventor)

    2014-01-01

    A windscreen is configured for measuring outdoor infrasonic sound. The windscreen includes a container and a microphone. The container defines a chamber. The microphone is disposed in the chamber and can be operatively supported by the floor. The microphone is configured for detecting infrasonic sound. The container is advantageously formed from material that exhibits an acoustic impedance of between 0 and approximately 3150 times the acoustic impedance of air. A reflector plate may be disposed in the container. The reflector plate operatively can support the microphone and provides a doubling effect of infrasonic pressure at the microphone.

  9. [Changes in immunobiological reactivity under the combined action of microwave, infrasonic and gamma irradiation].

    PubMed

    Grigor'ev, Iu G; Batanov, G V; Stepanov, V S

    1983-01-01

    In experiments on rats and rabbits a study was made of the combined effect of 9.3 gHz and 0.1 gHz (200 and 1530 muW/cm2, respectively), infrasound (8 Hz, 115 db), and gamma-radiation (cumulative dose of 5.5 Gy) on cell and humoral immunity, and on autoimmune processes. It was shown that preirradiation with microwaves increased the resistance of the organism to gamma-radiation, and microwaves combined with infrasound enhanced the biological effect of gamma-radiation.

  10. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    infrasonic radiation, our multiparametric dataset also allowed us to investigate other acoustic processes relevant for explosive eruptions, including shock-wave generation and audible sound radiation, and to link them to the starting conditions and evolution of the blasts.

  11. Analyzing the continuous volcanic tremors detected during the 2015 phreatic eruption of the Hakone volcano

    NASA Astrophysics Data System (ADS)

    Yukutake, Yohei; Honda, Ryou; Harada, Masatake; Doke, Ryosuke; Saito, Tatsuhiko; Ueno, Tomotake; Sakai, Shin'ichi; Morita, Yuichi

    2017-12-01

    In the present study, we analyze the seismic signals from a continuous volcanic tremor that occurred during a small phreatic eruption of the Hakone volcano, in the Owakudani geothermal region of central Japan, on June 29, 2015. The signals were detected for 2 days, from June 29 to July 1, at stations near the vents. The frequency component of the volcanic tremors showed a broad peak within 1-6 Hz. The characteristics of the frequency component did not vary with time and were independent of the amplitude of the tremor. The largest amplitude was observed at the end of the tremor activity, 2 days after the onset of the eruption. We estimated the location of the source using a cross-correlation analysis of waveform envelopes. The locations of volcanic tremors are determined near the vents of eruption and the surface, with the area of the upper extent of an open crack estimated using changes in the tilt. The duration-amplitude distribution of the volcanic tremor was consistent with the exponential scaling law rather than the power law, suggesting a scale-bound source process. This result suggests that the volcanic tremor originated from a similar physical process occurring practically in the same place. The increment of the tremor amplitude was coincident with the occurrence of impulsive infrasonic waves and vent formations. High-amplitude seismic phases were observed prior to the infrasonic onsets. The time difference between the seismic and infrasonic onsets can be explained assuming a common source located at the vent. This result suggests that both seismic and infrasonic waves are generated when a gas slug bursts at that location. The frequency components of the seismic phases observed just before the infrasonic onset were generally consistent with those of the tremor signals without infrasonic waves. The burst of a gas slug at the surface vent may be a reasonable model for the generation mechanism of the volcanic tremor and the occurrence of impulsive infrasonic

  12. On meteor-generated infrasound. [propagation characteristics during entry into earth atmosphere

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1976-01-01

    The characteristics of generation and propagation of infrasonic pressure waves excited during meteor entry into the earth's atmosphere are studied. Existing line source blast wave theory is applied to infrasonic airwave data from four bright fire-balls. It is shown that the strong shock behavior of the blast wave is confined to a cylinderical region with a radius proportional to the product of the meteor Mach number and its diameter. A description of the wave form far from the source is provided. Infrasonic data reported elsewhere are analyzed. All the results should be considered as preliminary, and additional work is under way to refine the estimates obtained.

  13. Observation of a Rayleigh Wave Induced by Infrasonic Elephant Vocalizations: a Possible Communication Mode?

    NASA Astrophysics Data System (ADS)

    Gunther, R.; O'Connell-Rodwell, C. E.; Klemperer, S.; Rodwell, T. C.; Haines, S.; Goldman, M.; Evans, J. R.

    2003-12-01

    experiments, the amplitudes of both the elephant-coupled Rayleigh wave and the elephant-driven airwave had decayed to almost ambient noise levels at the end of our 168-m-long recording spread. This was most likely due to the high ambient-noise levels during our experiment. Free-ranging African elephants have been shown to respond to low-frequency calls of other elephants at ranges of 2 km with an ideal outer limit of 10 km. Because a surface wave decays at only 1/r, we speculate that wild elephants may detect the Rayleigh waves of other elephants via bone conduction or somatosensory reception or both, and hence may communicate at greater distances than possible using infrasonic calls transmitted through the atmosphere.

  14. Modeling the refraction of microbaroms by the winds of a large maritime storm.

    PubMed

    Blom, Philip; Waxler, Roger

    2017-12-01

    Continuous infrasonic signals produced by the ocean surface interacting with the atmosphere, termed microbaroms, are known to be generated by a number of phenomena including large maritime storms. Storm generated microbaroms exhibit axial asymmetry when observed at locations far from the storm due to the source location being offset from the storm center. Because of this offset, a portion of the microbarom energy will radiate towards the storm center and interact with the winds in the region. Detailed here are predictions for the propagation of microbaroms through an axisymmetric, three-dimensional model storm. Geometric propagation methods have been utilized and the predicted horizontal refraction is found to produce signals that appear to emanate from a virtual source near the storm center when observed far from the storm. This virtual source near the storm center is expected to be observed only from a limited arc around the storm system with increased extent associated with more intense wind fields. This result implies that identifying the extent of the arc observing signal from the virtual source could provide a means to estimate the wind structure using infrasonic observations far from the storm system.

  15. Using the acoustic-pulse conservation law in estimating the energy of surface acoustic sources by remote sounding

    NASA Astrophysics Data System (ADS)

    Kulichkov, S. N.; Popov, O. Ye.; Mishenin, A. A.; Chunchuzov, I. P.; Chkhetiani, O. G.; Tsybulskaya, N. D.

    2017-11-01

    The atmospheric effect on the characteristics of infrasonic signals from explosions has been studied. New methods have been proposed to remotely estimate the energy of explosions using the data of infrasonic wave registration. One method is based on the law of conservation of acoustic pulse I, which is equal to the product of the wave profile area S/2 of the studied infrasonic signal and the distance to the source E I [kt] = 1.38 × 10-10 (I [kg/s])1.482. The second method is based on the relationship between the explosion energy and the dominant period T of the recorded signal, ET [kt] =1.02 × ( T [s]2/σ)3/2, where σ is a dimensionless distance used for determining the degree of manifestation of nonlinear effects in the propagation of sound along ray trajectories. When compared to the conventional E W (Whitaker's) relation, the advantage of the EI relation is that it can be used for pulsed sources located at an arbitrary height over the land surface and having an arbitrary form of the initial-pulse profile and for any type of infrasonic arrivals. A distinctive feature of the expression for E T is that the atmospheric effect on the characteristics of recorded infrasonic signals is explicitly taken into account. These methods have been tested using infrasonic data recorded at a distance of 322 km from the sources (30 explosions caused by a fire that occurred at the Pugachevo armory in Udmurtia on June 2, 2011). For the same explosion, empirical relations have been found between energy values obtained by different methods: E I = 1.107 × E W , E T = 2.201 × E I .

  16. Infrasound observation of the apparent North Korean nuclear test of 25 May 2009

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Kim, Tae Sung; Jeon, Jeong-Soo; Lee, Hee-Il

    2009-11-01

    On 25 May 2009, a seismic event (mb 4.6) was recorded from a source in northeastern North Korea, close to the location of a previous seismic event on 9 October 2006. Both events have been declared to be nuclear tests by North Korea. For the more recent test, five seismo-acoustic arrays in South Korea recorded epicentral infrasonic signals. The signals are characterized by amplitudes from 0.16 to 0.35 microbar and dominant frequencies between 0.8 and 4.3 Hz. Celerities determined for the arrivals suggest that most of the infrasonic energy travelled as a stratospheric phase. Based on observed stratospheric amplitudes, the epicentral infrasonic energy was estimated to be equivalent to that expected from 3.0 tons of high explosives detonated on the surface. We conclude that this small energy estimate is due to the atmospheric coupling from the strong surface ground motion rather than the direct transfer of explosion energy to the air. This relatively small infrasonic to seismic energy ratio could be used to distinguish the event from a common surface explosion.

  17. Comment on "silent research vessels are not quiet" [J. Acoust. Soc. Am. 121, EL145-EL150].

    PubMed

    Sand, Olav; Karlsen, Hans Erik; Knudsen, Frank R

    2008-04-01

    The recent paper by Ona et al. [J. Acoust. Soc. Am. 121, EL145-EL150] compared avoidance reactions by herring (Clupea harengus) to a traditional and a "silent" research vessel. Surprisingly, the latter evoked the strongest avoidance, leading to the conclusion that "candidate stimuli for vessel avoidance remain obscure." In this Comment, it is emphasized that the otolith organs in fish are linear acceleration detectors with extreme sensitivity to infrasonic particle acceleration. Near-field particle motions generated by a moving hull are mainly in the infrasonic range, and infrasound is particularly potent in evoking directional avoidance responses in several species of fish. The stimuli initiating vessel avoidance may thus include infrasonic particle acceleration.

  18. Modeling the failure of magmatic foams with application to Stromboli volcano, Italy

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Cedrick; Brun, Francesco; Mancini, Lucia; Fife, Julie L.; Baker, Don R.

    2014-10-01

    The failure of magmatic foams has been implicated as a fundamental process in eruptions occurring at open-conduit, basaltic volcanoes. In order to investigate the failure of magmatic foams we applied the fiber bundle model using global load sharing. The strengths of the fibers for the model were taken from bubble wall widths measured in four computer-simulated foams of low-porosity and from one very low-porosity and two high-porosity foams produced in the laboratory by heating hydrated basaltic glasses to 1200 °C. The relative strength of an individual fiber in the model was calculated from the square of a bubble wall's average width and absolute strengths of the foams were calculated based upon the correlation of the strength of one modeled foam with experimental data. The fiber bundle model is shown to successfully reproduce measured tensile strengths of porous volcanic rocks studied by other researchers and confirms previous findings of the primary importance of foam porosity, as well as the secondary importance of structural details that affect the number and size of bubble walls and permeability. Because of the success of the fiber bundle model in reproducing experimental foam failure, its results are compared to infrasonic measurements associated with bubbles at Stromboli (Italy) and demonstrate that within uncertainty the power-law exponents of the infrasonic energies and of the fiber bundle model energies are in agreement; both show a crossover from an exponent of 5/2 associated with the bursting of small bubbles in the infrasonic measurements to an exponent of 3/2 for normal Strombolian eruptions associated with infrasonic signals from meter-scale bubbles. The infrasonic signals for major explosions and a paroxysmal eruption at Stromboli fall near the extrapolation of the power law defined by the low-amplitude, bubble bursting events and are interpreted to reflect the bursting of multitudes of small bubbles, rather than a few large bubbles. The

  19. Acoustic and infrasonic measurements of thunder during the HyMeX SOP1 campaign in 2012 and comparison with new modeling results

    NASA Astrophysics Data System (ADS)

    Lacroix, Arthur; Farges, Thomas; Marchiano, Regis; Coulouvrat, François

    2017-04-01

    Thunder is composed of complex acoustic waves with a rich infrasonic and audible frequency spectrum. This complexity depends both on the source and the propagation of the wave to the observer. However there is no mutual agreement on the link between the observed spectral content and the generation mechanisms. The objective of this study is to provide new experimental results and their comparison to theoretical investigations. An acoustic station was deployed in Fall 2012 during the first Special Operation Period of the HyMeX project in South of France. This station was composed of 4 microphones arranged in a triangle of 50-m side with one of them at the center and 4 microbarometers arranged in a triangle of 500-m side with one of them co-localized with the central microphone (Defer et al., 2015). During more than 2 months, about ten thunderstorms occurred over the station producing many cloud-to-ground and intracloud flashes. Several thousands of acoustic signals and electromagnetic detections from research and operational lightning location networks were recorded. Our database contains a sufficient number of flashes close to the source (< 1km) to minimize propagation effects and to focus on the source effects. The 3D reconstruction of the acoustical sources using the acoustic signals (from 1 to 40 Hz) shows that these signals are mainly localized inside the lightning channel joining the cloud to the ground and produced during the return stroke phase of the flashes (Gallin et al., 2016). These observations are compatible with a source mechanism due to the thermal expansion associated to the sudden heating of the air in the lightning channel. An original model inspired by Few's string pearl theory (Few, 1969) has been developed. It shows that the tortuous channel geometry explains at least partly the low frequency content of observed thunder spectrum.

  20. Proposed Construction of Boulder Seismic Station Monitoring Sites, Boulder, Wyoming. Environmental Assessment

    DTIC Science & Technology

    2009-02-01

    power battery box and controllers, WiFi radio, network switch, vault seismometers, infrasonic digitizers, and excess cabling. In addition to the...installed around the boreholes. Immediately upon completion, each site will be cleared of all unused equipment, debris, materials, and trash . All...controllers, WiFi radio, network switch, vault seismometers, infrasonic digitizers, and excess cabling. In addition to the permanent infrastructure listed

  1. Aviation Medicine Translations: Annotated Bibliography of Recently Translated Material. IX

    DTIC Science & Technology

    1976-04-01

    crossings as well as studies of hypoxia, visual illusions, lighting of instrument dials, noise effects, toxicology, physiological effects of infrasonic ...Borredon, P., and J. Nathie. Physiological reactions of human sub- jects exposed to infrasonic vibrations ---------------------------- 2 Bremond, J...physiologviques (le sujets hiuiiains scrilbedl in aviation contexts, which include a exposks a des infra -sons. (Physiological reac(- sud oflltvttosinteinc Ssei f

  2. The acoustic field in the ionosphere caused by an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.

    2005-07-01

    The problem of describing the generation and propagation of an infrasonic wave emitted by a finite extended source in the inhomogeneous absorbing atmosphere is the focus of this paper. It is of interest since the role of infrasonic waves in the energy balance of the upper atmosphere remains largely unknown. We present an algorithm, which allows adaptation of a point source model for calculating the infrasonic field from an underground nuclear explosion at ionospheric altitudes. Our calculations appear to agree remarkably well with HF Doppler sounding data measured for underground nuclear explosions at the Semipalatinsk Test Site. We show that the temperature and ionospheric electron density perturbation caused by an acoustic wave from underground nuclear explosion can reach 10% of background levels.

  3. Infrasonic Monitoring,

    DTIC Science & Technology

    1995-08-14

    seismic network. At large range, infrasound signals are oscillatory acoustic signals detected as small pressure variations about the ambient value... Infrasound Review and Background Infrasound signals are regular acoustic signals in that they are longitudinal pressure waves albeit at rather low frequency...energy is concentrated at higher frequency than that for higher yield sources. Infrasound can be generated by natural and manmade processes; moreover

  4. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, C. H.; Sun, Y. Y.; Chen, C. H.; Tsai, H. F.; Yen, H. Y.; Chum, J.; Lastovicka, J.; Yang, Q. S.; Chen, W. S.; Wen, S.

    2016-02-01

    In this paper, concurrent/colocated measurements of seismometers, infrasonic systems, magnetometers, HF-CW (high frequency-continuous wave) Doppler sounding systems, and GPS receivers are employed to detect disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake. No time delay between colocated infrasonic (i.e., super long acoustic) waves and seismic waves indicates that the triggered acoustic and/or gravity waves in the atmosphere (or seismo-traveling atmospheric disturbances, STADs) near the Earth's surface can be immediately activated by vertical ground motions. The circle method is used to find the origin and compute the observed horizontal traveling speed of the triggered infrasonic waves. The speed of about 3.3 km/s computed from the arrival time versus the epicentral distance suggests that the infrasonic waves (i.e., STADs) are mainly induced by the Rayleigh waves. The agreements in the travel time at various heights between the observation and theoretical calculation suggest that the STADs triggered by the vertical motion of ground surface caused by the Tohoku earthquake traveled vertically from the ground to the ionosphere with speed of the sound in the atmosphere over Taiwan.

  5. Infrasound Observation of the Apparent North Korean Nuclear Test of 25 May 2009

    NASA Astrophysics Data System (ADS)

    Jeon, J.; Che, I.; Kim, T.; Lee, H.

    2009-12-01

    On 25 May 2009, a seismic event (mb 4.6) was recorded from a source in northeastern North Korea, close to the location of a previous seismic event on 9 October 2006. Both events have been declared to be nuclear tests. Five seismo-acoustic arrays in South Korea recorded epicentral infrasonic signals for the more recent test following the strong seismic waves from the explosion. This study describes the characteristics of the nuclear test-generated infrasound signals observed at infrasound arrays located from 304 to 528 km from the source. The signals were characterized by stratospheric returns with amplitudes from 0.16 to 0.35 microbar and dominant frequencies between 1.0 and 4.3 Hz. Celerities determined for the arrivals suggest that most of the infrasonic energy travelled as a stratospheric phase. The inferred infrasonic location was offset about 15.7 km from the reference seismic location. On the basis of observed amplitudes of the stratospheric phases and corrections based on prevailing winds, the epicentral infrasonic energy was estimated to be equivalent to that expected from about 2.2 ton surface detonation of conventional explosives. We conclude that this small energy estimate is related to the partitioning of the contained explosive energy resulting from the interaction of strong ground motion at the surface with the atmosphere rather than the direct transfer of explosion energy to the air. This relatively small energy ratio between the infrasonic energy and the seismic energy could be used to distinguish the event from a common surface explosion.

  6. Regional Small-Event Identification Using Networks and Arrays of Seismic and Acoustic Sensors

    DTIC Science & Technology

    2006-04-01

    ground displacement and excite infra - sonic waves in the atmosphere (Blanc, 1989) near-surface explosions are much more efficient sources of...valuable advice on the portable infrasonic deployment at MNTA. Several of the images in this report are attributable to David Anderson at Southern...populations. This study has focused on seismic observations from mining explosions. There is increasing evidence that infrasonic observations may help in

  7. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    PubMed

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca²⁺]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons.

  8. Gravity and Acoustic Waves Applied to the Dynamics and Kinematics of the Atmosphere.

    DTIC Science & Technology

    1980-12-01

    following areas is presented: 1) Use of Infrasound as an Atmospheric Probe: Infrasonic signals from natural and artifi- cial sources were used as a passive...Probe After identifying the atmospheric factors controlling the propagation of infrasound we inverted the procedure to use infrasonic signals from...background infra - sound in the lower thermosphere could have a strong influence on the heating of this region. Our observations of wind speeds agree well

  9. Source localization of non-stationary acoustic data using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Stoughton, Jack; Edmonson, William

    2005-04-01

    An improvement in temporal locality of the generalized cross-correlation (GCC) for angle of arrival (AOA) estimation can be achieved by employing 2-D cross-correlation of infrasonic sensor data transformed to its time-frequency (TF) representation. Intermediate to the AOA evaluation is the time delay between pairs of sensors. The signal class of interest includes far field sources which are partially coherent across the array, nonstationary, and wideband. In addition, signals can occur as multiple short bursts, for which TF representations may be more appropriate for time delay estimation. The GCC tends to smooth out such temporal energy bursts. Simulation and experimental results will demonstrate the improvement in using a TF-based GCC, using the Cohen class, over the classic GCC method. Comparative demonstration of the methods will be performed on data captured on an infrasonic sensor array located at NASA Langley Research Center (LaRC). The infrasonic data sources include Delta IV and Space Shuttle launches from Kennedy Space Center which belong to the stated signal class. Of interest is to apply this method to the AOA estimation of atmospheric turbulence. [Work supported by NASA LaRC Creativity and Innovation project: Infrasonic Detection of Clear Air Turbulence and Severe Storms.

  10. A Bayesian framework for infrasound location

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.; Arrowsmith, Stephen J.; Anderson, Dale N.

    2010-04-01

    We develop a framework for location of infrasound events using backazimuth and infrasonic arrival times from multiple arrays. Bayesian infrasonic source location (BISL) developed here estimates event location and associated credibility regions. BISL accounts for unknown source-to-array path or phase by formulating infrasonic group velocity as random. Differences between observed and predicted source-to-array traveltimes are partitioned into two additive Gaussian sources, measurement error and model error, the second of which accounts for the unknown influence of wind and temperature on path. By applying the technique to both synthetic tests and ground-truth events, we highlight the complementary nature of back azimuths and arrival times for estimating well-constrained event locations. BISL is an extension to methods developed earlier by Arrowsmith et al. that provided simple bounds on location using a grid-search technique.

  11. Seismic and acoustic recordings of an unusually large rockfall at Mount St. Helens, Washington

    USGS Publications Warehouse

    Moran, Seth C.; Matoza, R.S.; Garces, M.A.; Hedlin, M.A.H.; Bowers, D.; Scott, William E.; Sherrod, David R.; Vallance, James W.

    2008-01-01

    On 29 May 2006 a large rockfall off the Mount St. Helens lava dome produced an atmospheric plume that was reported by airplane pilots to have risen to 6,000 m above sea level and interpreted to be a result of an explosive event. However, subsequent field reconnaissance found no evidence of a ballistic field, indicating that there was no explosive component. The rockfall produced complex seismic and infrasonic signals, with the latter recorded at sites 0.6 and 13.4 km from the source. An unusual, very long-period (50 s) infrasonic signal was recorded, a signal we model as the result of air displacement. Two high-frequency infrasonic signals are inferred to result from the initial contact of a rock slab with the ground and from interaction of displaced air with a depression at the base of the active lava dome.

  12. New Principles in Weapons.

    DTIC Science & Technology

    1980-10-10

    mishaps. The oscillation frequency of infra - sonic waves is lower than 16 times per second and they are in- audible. In the air, their disseminating speed...chemistry methods to injure living targets. For example, the production of immense ultrasonic waves or infrasonic waves can cause headaches, vomiting...human body. Foreign statements, based on research and experiments carried out over a long period of time, report that the use of infrasonic wave weapons

  13. European Scientific Notes. Volume 33, Number 5,

    DTIC Science & Technology

    1979-05-31

    Towers I and III will also have six anemometers. Turbulence meas- urements will be carried out with three- dimensional sonic anemometers, a bivane and a...project management sions, and atmospheric infrasonic waves. of S. Ullaland of the Univ. of Bergen The auroral x-ray fluxes are measured in Norway. The...omnidirectional x-ray fluxes and electric fields, VLF emissions, and electric fields contains one uncol- and atmospheric infrasonic waves. limated x-ray

  14. VLF Source Localization with a Freely Drifting Sensor Array

    DTIC Science & Technology

    1992-09-01

    Simultaneous Measurement of Infra - sonic Acoustic Particle Velocity and Acoustic Pressure in the Ocean by F-ely Drifting Swallow Floats," IEEEJ. Ocean. Eng., vol...Pacific. Marine Physical Laboratory’s set of nine freely drifting, infrasonic sensors, capable of recording ocean ambient noise in the 1- to 25-Hz range...Terms. 15. Number of Pages, Swallow float, matched-field processing, infrasonic sensor, vlf source localization 153 16. Price Code. 17. Seorlity

  15. Trip Report - June 1989 Swallow Float Deployment with RUM

    DTIC Science & Technology

    1990-12-01

    Float 1. with its external geophone package resting on the sediment, and float 3, equipped with an infra - sonic hydrophone and tethered to the bottom...an external, triaxial geophone package resting on the ocean bottom and the other equippd with an infrasonic hydrophone and bottom-tethered by a 0.5... infrasonic hydrophone and bottom-tethered by a 0.5-meter line, are presented in this report Introduction An experiment designed to compare the ambient sound

  16. Versatile Experimental Kevlar Array Hydrophones: USRD Type H78

    DTIC Science & Technology

    1979-04-05

    the design of a small deop-submergence noise-measuring hydropl,one for the infra - sonic and low-audio frequency range, three hydrophone...llenriquez and L.-E. Ivey, -Standard Ilydrophone for the Infrasonic and Audio- F.-equency Range at H~ydrostatic Pressure to 10,000 psig," J. A cous. qoc. Am...Piezoelectric Ceramic Ilydrophone for Infrasonic and Audio Frequencies IJSRD Type 1148," NRL Report 7260, 15 Mar. 1971. 9. S.W. Meeks and R.W. Timme, "Effects

  17. Effects of laser interaction with living human tissues

    NASA Astrophysics Data System (ADS)

    Molchanova, O. E.; Protasov, E. A.; Protasov, D. E.; Smirnova, A. V.

    2016-09-01

    With the help of a highly sensitive laser device with the wavelength λ = 0.808 pm, which is optimal for deep penetration of the radiation into biological tissues, the effects associated with the appearance of uncontrolled human infrasonic vibrations of different frequencies were investigated. It was established that the observed fluctuations are associated with the vascular system which is characterized by its own respiratory movements, occurring synchronously with the movements of the respiratory muscles, the operation of the heart muscle, and the effect of compression ischemia. The effect of “enlightenment” of a tissue is observed with stopping of blood flow in vessels by applying a tourniquet on the wrist.

  18. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning

    NASA Astrophysics Data System (ADS)

    Ulivieri, Giacomo; Ripepe, Maurizio; Marchetti, Emanuele

    2013-06-01

    present the analysis of ~4 million infrasonic signals which include 39 episodes of lava fountains recorded at 5.5 km from the active vents. We show that each eruptive episode is characterized by a distinctive trend in the amplitude, waveform, and frequency content of the acoustic signals, reflecting different explosive levels. Lava fountain starts with an ~93 min long violent phase of acoustic transients at ~1.25 Hz repeating every 2-5 s. Infrasound suddenly evolves into a persistent low-frequency quasi-monochromatic pressure oscillation at ~0.4 Hz. We interpret this shift as induced by the transition from the slug (discrete Strombolian) to churn flow (sustained lava fountain) regime that is reflecting an increase in the gas discharge rate. We calculate that infrasonic transition can occur at a gas superficial velocity of ≤76 m/s and it can be used to define infrasonic-based thresholds for an efficient early warning system.

  19. VLF Source Localization with a Freely Drifting Acoustic Sensor Array

    DTIC Science & Technology

    1992-09-01

    A,’. vol. 89, no. 3, pp. 1134-1158, March 1991. D’Spain, G. L., W. S. Hodgkiss, and G. L. Edmonds, "The Simultaneous Measurement of Infra - sonic ...RESULTS Marine Physical Laboratory’s set of nine freely drifting, infrasonic sensors, capable of record- ing ocean ambient noise in the I- to 25-Hz range...provide thc ship’s thrust, are a well-known contributor to the infrasonic sound field [Ross, 1976; D’Spain et. al., 1991]. The Swallow float deployment

  20. Nocturnal "humming" vocalizations: adding a piece to the puzzle of giraffe vocal communication.

    PubMed

    Baotic, Anton; Sicks, Florian; Stoeger, Angela S

    2015-09-09

    Recent research reveals that giraffes (Giraffa camelopardalis sp.) exhibit a socially structured, fission-fusion system. In other species possessing this kind of society, information exchange is important and vocal communication is usually well developed. But is this true for giraffes? Giraffes are known to produce sounds, but there is no evidence that they use vocalizations for communication. Reports on giraffe vocalizations are mainly anecdotal and the missing acoustic descriptions make it difficult to establish a call nomenclature. Despite inconclusive evidence to date, it is widely assumed that giraffes produce infrasonic vocalizations similar to elephants. In order to initiate a more detailed investigation of the vocal communication in giraffes, we collected data of captive individuals during day and night. We particularly focussed on detecting tonal, infrasonic or sustained vocalizations. We collected over 947 h of audio material in three European zoos and quantified the spectral and temporal components of acoustic signals to obtain an accurate set of acoustic parameters. Besides the known burst, snorts and grunts, we detected harmonic, sustained and frequency-modulated "humming" vocalizations during night recordings. None of the recorded vocalizations were within the infrasonic range. These results show that giraffes do produce vocalizations, which, based on their acoustic structure, might have the potential to function as communicative signals to convey information about the physical and motivational attributes of the caller. The data further reveal that the assumption of infrasonic communication in giraffes needs to be considered with caution and requires further investigations in future studies.

  1. The case for infrasound as the long-range map cue in avian navigation

    USGS Publications Warehouse

    Hagstrum, J.T.

    2007-01-01

    Of the various 'map' and 'compass' components of Kramer's avian navigational model, the long-range map component is the least well understood. In this paper atmospheric infrasounds are proposed as the elusive longrange cues constituting the avian navigational map. Although infrasounds were considered a viable candidate for the avian map in the 1970s, and pigeons in the laboratory were found to detect sounds at surprisingly low frequencies (0.05 Hz), other tests appeared to support either of the currently favored olfactory or magnetic maps. Neither of these hypotheses, however, is able to explain the full set of observations, and the field has been at an impasse for several decades. To begin, brief descriptions of infrasonic waves and their passage through the atmosphere are given, followed by accounts of previously unexplained release results. These examples include 'release-site biases' which are deviations of departing pigeons from the homeward bearing, an annual variation in homing performance observed only in Europe, difficulties orienting over lakes and above temperature inversions, and the mysterious disruption of several pigeon races. All of these irregularities can be consistently explained by the deflection or masking of infrasonic cues by atmospheric conditions or by other infrasonic sources (microbaroms, sonic booms), respectively. A source of continuous geographic infrasound generated by atmosphere-coupled microseisms is also proposed. In conclusion, several suggestions are made toward resolving some of the conflicting experimental data with the pigeons' possible use of infrasonic cues.

  2. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    NASA Astrophysics Data System (ADS)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with

  3. Infrasound from the 2007 fissure eruptions of Kīlauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Fee, David; Garces, Milton; Orr, Tim; Poland, Mike

    2011-03-01

    Varied acoustic signals were recorded at Kīlauea Volcano in mid-2007, coincident with dramatic changes in the volcano's activity. Prior to this time period, Pu'u 'Ō'ō crater produced near-continuous infrasonic tremor and was the primary source of degassing and lava effusion at Kīlauea. Collapse and draining of Pu'u 'Ō'ō crater in mid-June produced impulsive infrasonic signals and fluctuations in infrasonic tremor. Fissure eruptions on 19 June and 21 July were clearly located spatially and temporally using infrasound arrays. The 19 June eruption from a fissure approximately mid-way between Kīlauea's summit and Pu'u 'Ō'ō produced infrasound for ˜30 minutes—the only observed geophysical signal associated with the fissure opening. The infrasound signal from the 21 July eruption just east of Pu'u 'Ō'ō shows a clear azimuthal progression over time, indicative of fissure propagation over 12.9 hours. The total fissure propagation rate is relatively slow at 164 m/hr, although the fissure system ruptured discontinuously. Individual fissure rupture times are estimated using the acoustic data combined with visual observations.

  4. Infrasound from the 2007 fissure eruptions of Kīlauea Volcano, Hawai'i

    USGS Publications Warehouse

    Fee, D.; Garces, M.; Orr, T.; Poland, M.

    2011-01-01

    Varied acoustic signals were recorded at Kīlauea Volcano in mid-2007, coincident with dramatic changes in the volcano's activity. Prior to this time period, Pu'u 'Ō'ō crater produced near-continuous infrasonic tremor and was the primary source of degassing and lava effusion at Kīlauea. Collapse and draining of Pu'u 'Ō'ō crater in mid-June produced impulsive infrasonic signals and fluctuations in infrasonic tremor. Fissure eruptions on 19 June and 21 July were clearly located spatially and temporally using infrasound arrays. The 19 June eruption from a fissure approximately mid-way between Kīlauea's summit and Pu'u 'O'o produced infrasound for ~30 minutes-the only observed geophysical signal associated with the fissure opening. The infrasound signal from the 21 July eruption just east of Pu'u 'Ō'ō shows a clear azimuthal progression over time, indicative of fissure propagation over 12.9 hours. The total fissure propagation rate is relatively slow at 164 m/hr, although the fissure system ruptured discontinuously. Individual fissure rupture times are estimated using the acoustic data combined with visual observations.

  5. Auroral Infrasound Observed at I53US at Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Olson, J. V.

    2003-12-01

    In this presentation we will describe two different types of auroral infrasound recently observed at Fairbanks, Alaska in the pass band from 0.015 to 0.10 Hz. Infrasound signals associated with auroral activity (AIW) have been observed in Fairbanks over the past 30 years with infrasonic microphone arrays. The installation of the new CTBT/IMS infrasonic array, I53US, at Fairbanks has resulted in a greatly increased quality of the infrasonic data with which to study natural sources of infrasound. In the historical data at Fairbanks all the auroral infrasonic waves (AIW) detected were found to be the result of bow waves that are generated by supersonic motion of auroral arcs that contain strong electrojet currents. This infrasound is highly anisotropic, moving in the same direction as that of the auroral arc. AIW bow waves observed in 2003 at I53US will be described. Recently at I53US we have observed many events of very high trace velocity that are comprised of continuous, highly coherent wave trains. These waves occur in the morning hours at times of strong auroral activity. This new type of very high trace velocity AIW appears to be associated with pulsating auroral displays. Pulsating auroras occur predominantly after magnetic midnight (10:00 UT at Fairbanks). They are a usual part of the recovery phase of auroral substorms and are produced by energetic electrons precipitating into the atmosphere. Given proper dark, cloudless sky conditions during the AIW events, bright pulsating auroral forms were sometimes visible overhead.

  6. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  7. Volcanic eruptions, lightning, and a waterfall: Differentiating the menagerie of infrasound in the Ecuadorian jungle

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey B.; Lees, Jonathan M.; Yepes, Hugo

    2006-03-01

    In northeastern Ecuador, near Reventador Volcano, the airwaves are filled with infrasound. Here we identify the locations and characterize three distinct sources of local infrasound, including two types of infrasonic sources, which are not commonly discussed in the literature. The first of these novel sources is an intense and continuous radiator with a fixed location corresponding to San Rafael Waterfall. The signal from the river exhibits a tremor-like envelope that is well correlated across the 3-element infrasound network. Beyond the river, we also observe and map spatially variable sources corresponding to thunder. These transient signals have impulsive onsets, but are not well correlated across the network and are attributable to spatially-distributed source regions. Finally, we identify plentiful infrasound corresponding to Reventador's volcanic vent that is associated with unrest. This study demonstrates the utility of dispersed infrasound networks for distinguishing variable sources and improving interpretation of mechanisms of infrasound radiators.

  8. The implications of gas slug ascent in a stratified magma for acoustic and ground deformation source mechanisms in Strombolian eruptions

    NASA Astrophysics Data System (ADS)

    Capponi, Antonio; Lane, Stephen J.; James, Mike R.

    2017-06-01

    The interpretation of geophysical measurements at active volcanoes is vital for hazard assessment and for understanding fundamental processes such as magma degassing. For Strombolian activity, interpretations are currently underpinned by first-order fluid dynamic models which give relatively straightforward relationships between geophysical signals and gas and magma flow. However, recent petrological and high-speed video evidence has indicated the importance of rheological stratification within the conduit and, here, we show that under these conditions, the straightforward relationships break down. Using laboratory analogue experiments to represent a rheologically-stratified conduit we characterise the distinct variations in the shear stress exerted on the upper sections of the flow tube and in the gas pressures measured above the liquid surface, during different degassing flow configurations. These signals, generated by varying styles of gas ascent, expansion and burst, can reflect field infrasonic measurements and ground motion proximal to a vent. The shear stress signals exhibit timescales and trends in qualitative agreement with the near-vent inflation-deflation cycles identified at Stromboli. Therefore, shear stress along the uppermost conduit may represent a plausible source of near-vent tilt, and conduit shear contributions should be considered in the interpretation of ground deformation, which is usually attributed to pressure sources only. The same range of flow processes can produce different experimental infrasonic waveforms, even for similar masses of gas escape. The experimental data resembled infrasonic waveforms acquired from different vents at Stromboli associated with different eruptive styles. Accurate interpretation of near-vent ground deformation, infrasonic signal and eruptive style therefore requires detailed understanding of: a) spatiotemporal magma rheology in the shallow conduit, and b) shallow conduit geometry, as well as bubble

  9. Releases of surgically deafened homing pigeons indicate that aural cues play a significant role in their navigational system.

    PubMed

    Hagstrum, Jonathan T; Manley, Geoffrey A

    2015-10-01

    Experienced homing pigeons with extirpated cochleae and lagenae were released from six sites in upstate New York and western Pennsylvania on 17 days between 1973 and 1975 by William T. Keeton and his co-workers at Cornell University. The previously unpublished data indicate that departure directions of the operated birds were significantly different from those of sham-operated control birds (314 total), indicating that aural cues play an important part in the pigeon's navigational system. Moreover, propagation modeling of infrasonic waves using meteorological data for the release days supports the possibility that control birds used infrasonic signals to determine their homeward direction. Local acoustic 'shadow' zones, therefore, could have caused initial disorientation of control birds at release sites where they were normally well oriented. Experimental birds plausibly employed an alternate 'route-reversal' strategy to return home perhaps using their ocular-based magnetic compass. We suggest, based on Keeton's results from another site of long-term disorientation, that experienced pigeons depend predominantly on infrasonic cues for initial orientation, and that surgical removal of their aural sense compelled them to switch to a secondary navigational strategy.

  10. Infrasonic Influence of Volcanos

    NASA Astrophysics Data System (ADS)

    Hosman, Ashley

    2014-03-01

    My presentation will consist of a poster on the use of ring laser interferometers to detect infrasound. The research was performed during the summer of 2013 and it focused on the finding infrasound emissions created by volcanic activity. I will explain how a ring laser works and discuss how I analyze the collected data using Fast Fourier Transforms. Due to the extreme distances over which infrasound can travel, I will also stress the need to compare the detected responses to specific volcanic eruptions. Finally, I will purpose practical applications of my research. One of the more promising applications is to use ring lasers to detect volcanic activity in remote areas such as parts of the Aleutian Islands. There is considerable air traffic over the Aleutian Islands. Volcanic plumes are a significant aviation hazard and can damage jet engines to the extent that they will no longer operate. Thank you to the NSF ans NASA foundations for providing funding for this reseach.

  11. Infrasonic induced ground motions

    NASA Astrophysics Data System (ADS)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body wave refraction and Rayleigh wave dispersion data. Theoretical standard high-frequency and air-coupled Rayleigh wave dispersion calculated by the inferred site structure match the observed dispersion curves. Our study suggests that natural or controlled air-borne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.

  12. Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.

    2013-12-01

    We explore a joined analysis of seismic and infrasonic signals for improvement in automatic monitoring of small local/regional events, such as construction and quarry blasts, military chemical explosions, sonic booms, etc. using collocated seismic and infrasonic networks recently build in Israel (ISIN) in the frame of the project sponsored by the Bi-national USA-Israel Science Foundation (BSF). The general target is to create an automatic system, which will provide detection, location and identification of explosions in real-time or close-to-real time manner. At the moment the network comprises 15 stations hosting a microphone and seismometer (or accelerometer), operated by the Geophysical Institute of Israel (GII), plus two infrasonic arrays, operated by the National Data Center, Soreq: IOB in the South (Negev desert) and IMA in the North of Israel (Upper Galilee),collocated with the IMS seismic array MMAI. The study utilizes a ground-truth data-base of numerous Rotem phosphate quarry blasts, a number of controlled explosions for demolition of outdated ammunitions and experimental surface explosions for a structure protection research, at the Sayarim Military Range. A special event, comprising four military explosions in a neighboring country, that provided both strong seismic (up to 400 km) and infrasound waves (up to 300 km), is also analyzed. For all of these events the ground-truth coordinates and/or the results of seismic location by the Israel Seismic Network (ISN) have been provided. For automatic event detection and phase picking we tested the new recursive picker, based on Statistically optimal detector. The results were compared to the manual picks. Several location techniques have been tested using the ground-truth event recordings and the preliminary results obtained have been compared to the ground-truth locations: 1) a number of events have been located as intersection of azimuths estimated using the wide-band F-K analysis technique applied to the

  13. In search of discernible infrasound emitted by numerically simulated tornadoes

    NASA Astrophysics Data System (ADS)

    Schecter, David A.

    2012-09-01

    The comprehensive observational study of Bedard (2005) provisionally found that the infrasound of a tornado is discernible from the infrasound of generic cloud processes in a convective storm. This paper discusses an attempt to corroborate the reported observations of distinct tornado infrasound with numerical simulations. Specifically, this paper investigates the infrasound of an ordinary tornado in a numerical experiment with the Regional Atmospheric Modeling System, customized to simulate acoustic phenomena. The simulation has no explicit parameterization of microphysical cloud processes, but creates an unsteady tornado of moderate strength by constant thermal forcing in a rotational environment. Despite strong fluctuations in the lower corner flow and upper outflow regions, a surprisingly low level of infrasound is radiated by the vortex. Infrasonic pressure waves in the 0.1 Hz frequency regime are less intense than those which could be generated by core-scale vortex Rossby (VR) waves of modest amplitude in similar vortices. Higher frequency infrasound is at least an order of magnitude weaker than expected based on infrasonic observations of tornadic thunderstorms. Suppression of VR waves (and their infrasound) is explained by the gradual decay of axial vorticity with increasing radius from the center of the vortex core. Such non-Rankine wind-structure is known to enable the rapid damping of VR waves by inviscid mechanisms, including resonant wave-mean flow interaction and "spiral wind-up" of vorticity. Insignificant levels of higher frequency infrasound may be due to oversimplifications in the computational setup, such as the neglect of thermal fluctuations caused by phase transitions of moisture in vigorous cloud turbulence.

  14. Sub-Surface Windscreen for the Measurement of Outdoor Infrasound

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Burkett, Cecil G., Jr.; Comeaux, Toby; Zuckerwar, Allan J.; Weistroffer, George R.

    2008-01-01

    A windscreen has been developed that features two advantages favorable for the measurement of outdoor infrasound. First, the sub-surface location, with the top of the windscreen flush with the ground surface, minimizes the mean velocity of the impinging wind. Secondly, the windscreen material (closed cell polyurethane foam) has a sufficiently low acoustic impedance (222 times that of air) and wall thickness (0.0127 m) to provide a transmission coefficient of nearly unity over the infrasonic frequency range (0-20 Hz). The windscreen, a tightly-sealed box having internal dimensions of 0.3048 x 0.3048 x 0.3556 m, contains a microphone, preamplifier, and a cable feed thru to an external power supply. Provisions are made for rain drainage and seismic isolation. A three-element array, configured as an equilateral triangle with 30.48 m spacing and operating continuously in the field, periodically receives highly coherent signals attributed to emissions from atmospheric turbulence. The time delays between infrasonic signals received at the microphones permit determination of the bearing and elevation of the sources, which correlate well with locations of pilot reports (PIREPS) within a 320 km radius about the array. The test results are interpreted to yield spectral information on infrasonic emissions from clear air turbulence.

  15. Atmospheric Rawinsonde and Pigeon Release Data Implicate Infrasound as the Long- Range Map Cue in Avian Navigation

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.

    2007-12-01

    Pigeons ( Columba livia) and other birds released from distant familiar and unfamiliar sites generally head in the homeward (loft) direction, but often vanish from view or radio contact consistently off the exact homeward bearing. At some sites the deviation can be a significant and stable amount, while at other sites birds can appear to become completely lost and depart in random directions. These deviations or biases can change from hour to hour, day to day, and year to year, but have not, over the last ~50 years of intensive research, been related to any atmospheric factor. They are, however, still considered to reflect significant irregularities in the pigeons' "map" function. Celestial and geomagnetic "compasses" have been shown to orient avian flight, but how pigeons determine their location in order to select the correct homeward bearing remains controversial. At present the debate is primarily between workers advocating an olfactory "map" and those advocating variations in the direction and intensity of the geomagnetic field as map functions. Alternatively, infrasonic cues can travel 1000s of km in the atmosphere with little attenuation, and can be detected in the laboratory by pigeons at frequencies down to 0.05 Hz. Although infrasound has been considered as a navigational tool for homing and migratory birds, little supporting evidence of its use has been found. Infrasonic ray paths in the atmosphere are controlled primarily by temperature and secondarily by wind. Assuming birds use infrasonic cues, atmospheric conditions could cause the perplexing changes (both geographic and temporal) observed in the mean vanishing bearings (MVBs) of pigeons released from experimental sites. To test for correlations between MVBs and tropospheric conditions, release data collected by the late W.T. Keeton between 1968 and 1980 from around the Cornell University lofts in upstate NY are compared to rawinsonde data from stations near Buffalo and Albany. For example, birds

  16. Characterization of Atmospheric Infrasound for Improved Weather Monitoring

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2016-11-01

    Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP) is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. A primary objective for this project is to create and demonstrate UAS capabilities needed to support UAS operating in extreme conditions, such as a tornado producing storm system. These storm systems emit infrasound (acoustic signals below human hearing, <20 Hz) up to 2 hours before tornadogenesis. Due to an acoustic ceiling and weak atmospheric absorption, infrasound can be detected from distances in excess of 300 miles. Thus infrasound could be used for long-range, passive monitoring and detection of tornadogenesis as well as directing UAS resources to high-decision-value-information. To achieve this the infrasonic signals with and without severe storms must be understood. This presentation will report findings from the first CLOUD MAP field demonstration, which acquired infrasonic signals while simultaneously sampling the atmosphere with UAS. Infrasonic spectra will be shown from a typical calm day, a continuous source (pulsed gas-combustion torch), singular events, and UAS flights as well as localization results from a controlled source and multiple microphones. This work was supported by NSF Grant 1539070: CLOUD MAP - Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics.

  17. The source of infrasound associated with long-period events at mount St. Helens

    USGS Publications Warehouse

    Matoza, R.S.; Garces, M.A.; Chouet, B.A.; D'Auria, L.; Hedlin, M.A.H.; De Groot-Hedlin, C.; Waite, G.P.

    2009-01-01

    During the early stages of the 2004-2008 Mount St. Helens eruption, the source process that produced a sustained sequence of repetitive long-period (LP) seismic events also produced impulsive broadband infrasonic signals in the atmosphere. To assess whether the signals could be generated simply by seismic-acoustic coupling from the shallow LP events, we perform finite difference simulation of the seismo-acoustic wavefield using a single numerical scheme for the elastic ground and atmosphere. The effects of topography, velocity structure, wind, and source configuration are considered. The simulations show that a shallow source buried in a homogeneous elastic solid produces a complex wave train in the atmosphere consisting of P/SV and Rayleigh wave energy converted locally along the propagation path, and acoustic energy originating from , the source epicenter. Although the horizontal acoustic velocity of the latter is consistent with our data, the modeled amplitude ratios of pressure to vertical seismic velocity are too low in comparison with observations, and the characteristic differences in seismic and acoustic waveforms and spectra cannot be reproduced from a common point source. The observations therefore require a more complex source process in which the infrasonic signals are a record of only the broadband pressure excitation mechanism of the seismic LP events. The observations and numerical results can be explained by a model involving the repeated rapid pressure loss from a hydrothermal crack by venting into a shallow layer of loosely consolidated, highly permeable material. Heating by magmatic activity causes pressure to rise, periodically reaching the pressure threshold for rupture of the "valve" sealing the crack. Sudden opening of the valve generates the broadband infrasonic signal and simultaneously triggers the collapse of the crack, initiating resonance of the remaining fluid. Subtle waveform and amplitude variability of the infrasonic signals as

  18. Infrasound as a Geophysical Probe Using Earth as a Venus Analog

    NASA Astrophysics Data System (ADS)

    Komjathy, Attila; Cutts, James; Pauken, Michael; Kedar, Sharon; Smrekar, Suzanne

    2016-10-01

    JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude ~3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise.In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere.We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.

  19. Infrasound as a Geophysical Probe Using Earth as a Venus Analog

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Cutts, J. A.; Pauken, M.; Kedar, S.; Smrekar, S. E.; Hall, J. R.

    2016-12-01

    JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude 3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise. In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere. We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.

  20. Radiation transport calculations for cosmic radiation.

    PubMed

    Endo, A; Sato, T

    2012-01-01

    The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110. Copyright © 2012. Published by Elsevier Ltd.

  1. Practical operational implementation of Teton Pass avalanche monitoring infrasound system.

    DOT National Transportation Integrated Search

    2008-12-01

    Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...

  2. [Experimental study of infrasonic phonophoresis].

    PubMed

    Filatov, V V

    2001-01-01

    A new method of drug administration, infrared phonophoresis, was experimentally studied. The method has no analogs in the world. The study was carried out on 20 Chinchilla rabbits. Water applications impregnated with equal volumes of the radiopharmaceutical (RP) were placed into the conjunctival cavities of both eyes. The right eye was control and the left was treated by infrasound (experiment). The information was recorded in live animals after removal of the application and thorough washing of the conjunctival cavity immediately, 30 min, and 1 h after infrasound phonophoresis session. Radioactivity measurements at all terms indicate its stable increase in the experimental eye and a progressive decrease in the control eye. Hence, infrasound promoted long accumulation of the RP in the eye at anterior route of the drug delivery without preliminary injection of the drug into ocular vessels.

  3. Infrasonic Effect of Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Pushin, V. F.; Chernogor, L. F.

    2013-06-01

    The relevance of this study is due to the need to understand, physical effects associated with rare phenomenon, solar eclipse. Until recently, the features of internal gravity wave generation, have been studied in the 10 -100 min period range, while in this, study an attempt is made to confirm the fact of generation, and estimate the general parameters of infrasound oscillations, associated with solar eclipses in the 1-10 min period range. The observations were made with the HF Doppler radar at vertical, incidence. The data were subjected to spectral analysis and, band-pass filtering. The solar eclipses that had occurred over, Kharkiv city (Ukraine) within 1999-2011 are determined to be, associated with Doppler shift of frequency oscillations in the, infrasound frequency band ( 5-8 min period range) and with, amplitude of 20 -100 mHz. The corresponding amplitude, of electron density oscillations was approximately equal to, 0.1- 0.5 %.

  4. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  5. Radiation Protection

    MedlinePlus

    ... Offices Regional Offices Labs and Research Centers Radiation Protection Contact Us Share Dose Calculator Use the Radiation ... the Office of Air and Radiation (OAR) Radiation Protection Radiation Sources and Doses Calculate Your Radiation Dose ...

  6. Radiation Therapy: Professions in Radiation Therapy

    MedlinePlus

    ... and typically one to two years of clinical physics training. They are certified by the American Board of Radiology or the American Board of Medical Physics . Radiation Therapist Radiation therapists work with radiation oncologists. ...

  7. The acoustic field of a point source in a uniform boundary layer over an impedance plane

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.; Willshire, W. L., Jr.

    1986-01-01

    The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.

  8. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    SciTech Connect

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activitymore » data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.« less

  9. Management of ionizing radiation injuries and illnesses, part 1: physics, radiation protection, and radiation instrumentation.

    PubMed

    Christensen, Doran M; Jenkins, Mark S; Sugarman, Stephen L; Glassman, Erik S

    2014-03-01

    Ionizing radiation injuries and illnesses are exceedingly rare; therefore, most physicians have never managed such conditions. When confronted with a possible radiation injury or illness, most physicians must seek specialty consultation. Protection of responders, health care workers, and patients is an absolute priority for the delivery of medical care. Management of ionizing radiation injuries and illnesses, as well as radiation protection, requires a basic understanding of physics. Also, to provide a greater measure of safety when working with radioactive materials, instrumentation for detection and identification of radiation is needed. Because any health care professional could face a radiation emergency, it is imperative that all institutions have emergency response plans in place before an incident occurs. The present article is an introduction to basic physics, ionizing radiation, radiation protection, and radiation instrumentation, and it provides a basis for management of the consequences of a radiologic or nuclear incident.

  10. Directional radiation detectors

    DOEpatents

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  11. Atmospheric Infrasound during a Large Wildfire

    NASA Astrophysics Data System (ADS)

    Vance, Alexis; Elbing, Brian

    2017-11-01

    Numerous natural and manmade sources generate infrasound, including tornado producing storms, human heart, hurricanes, and volcanoes. Infrasound is currently being studied as part of Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP), which is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. To support this effort a fixed infrasonic microphone located in Stillwater, Oklahoma has been monitoring atmospheric emissions since September of 2016. While severe storm systems is the primary focus of this work, the system also captures a wide range of infrasonic sources from distances in excess of 300 miles due to an acoustic ceiling and weak atmospheric absorption. The current presentation will focus on atmospheric infrasound observations during a large wildfire on the Kansas-Oklahoma border that occurred between March 6-22, 2017. This work was supported by NSF Grant 1539070.

  12. Volcanic Thunder From Explosive Eruptions at Bogoslof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Haney, Matthew M.; Van Eaton, Alexa R.; Lyons, John J.; Kramer, Rebecca L.; Fee, David; Iezzi, Alexandra M.

    2018-04-01

    Lightning often occurs during ash-producing eruptive activity, and its detection is now being used in volcano monitoring for rapid alerts. We report on infrasonic and sonic recordings of the related, but previously undocumented, phenomenon of volcanic thunder. We observe volcanic thunder during the waning stages of two explosive eruptions at Bogoslof volcano, Alaska, on a microphone array located 60 km away. Thunder signals arrive from a different direction than coeruptive infrasound generated at the vent following an eruption on 10 June 2017, consistent with locations from lightning networks. For the 8 March 2017 eruption, arrival times and amplitudes of high-frequency thunder signals correlate well with the timing and strength of lightning detections. In both cases, the thunder is associated with lightning that continues after significant eruptive activity has ended. Infrasonic and sonic observations of volcanic thunder offer a new avenue for studying electrification processes in volcanic plumes.

  13. Pelvic radiation - discharge

    MedlinePlus

    Radiation of the pelvis - discharge; Cancer treatment - pelvic radiation; Prostate cancer - pelvic radiation; Ovarian cancer - pelvic radiation; Cervical cancer - pelvic radiation; Uterine cancer - pelvic radiation; Rectal cancer - ...

  14. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  15. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.

    PubMed

    Dörr, Harald; Meineke, Viktor

    2011-11-25

    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  16. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOEpatents

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  17. Brain radiation - discharge

    MedlinePlus

    Radiation - brain - discharge; Cancer - brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  18. Radiation Protection

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    Radiation protection is a very important aspect for the application of particle detectors in many different fields, like high energy physics, medicine, materials science, oil and mineral exploration, and arts, to name a few. The knowledge of radiation units, the experience with shielding, and information on biological effects of radiation are vital for scientists handling radioactive sources or operating accelerators or X-ray equipment. This article describes the modern radiation units and their conversions to older units which are still in use in many countries. Typical radiation sources and detectors used in the field of radiation protection are presented. The legal regulations in nearly all countries follow closely the recommendations of the International Commission on Radiological Protection (ICRP). Tables and diagrams with relevant information on the handling of radiation sources provide useful data for the researcher working in this field.

  19. Methods for Detecting Low-Frequency Signals in the Presence of Strong Winds

    DTIC Science & Technology

    1990-05-01

    34Two-Hydrophone Method of Eliminating the Effects of Nonacoustic Noise Interference in Measurements of Infra - sonic Ambient Noise Levels," J... Infrasonic Gradient Micro- phones and Windscreens," J. Acoustical Soc. Am., Vol 44 (November 1968), pp 1428-36. 9. M. Strasberg, "Dimensional Analysis of

  20. Plume radiation

    NASA Astrophysics Data System (ADS)

    Dirscherl, R.

    1993-06-01

    The electromagnetic radiation originating from the exhaust plume of tactical missile motors is of outstanding importance for military system designers. Both missile- and countermeasure engineer rely on the knowledge of plume radiation properties, be it for guidance/interference control or for passive detection of adversary missiles. To allow access to plume radiation properties, they are characterized with respect to the radiation producing mechanisms like afterburning, its chemical constituents, and reactions as well as particle radiation. A classification of plume spectral emissivity regions is given due to the constraints imposed by available sensor technology and atmospheric propagation windows. Additionally assessment methods are presented that allow a common and general grouping of rocket motor properties into various categories. These methods describe state of the art experimental evaluation techniques as well as calculation codes that are most commonly used by developers of NATO countries. Dominant aspects influencing plume radiation are discussed and a standardized test technique is proposed for the assessment of plume radiation properties that include prediction procedures. These recommendations on terminology and assessment methods should be common to all employers of plume radiation. Special emphasis is put on the omnipresent need for self-protection by the passive detection of plume radiation in the ultraviolet (UV) and infrared (IR) spectral band.

  1. Seasonal changes in atmospheric noise levels and the annual variation in pigeon homing performance

    USGS Publications Warehouse

    Hagstrum, Jonathan T.; McIsaac, Hugh P.; Drob, Douglas P.

    2016-01-01

    Repeated releases of experienced homing pigeons from single sites were conducted between 1972 and 1974 near Cornell University in upstate New York and between 1982 and 1983 near the University of Pittsburgh in western Pennsylvania, USA. No annual variation in homing performance was observed at these sites in eastern North America, in contrast to results from a number of similar experiments in Europe. Assuming pigeons home using low-frequency infrasonic signals (~0.1–0.3 Hz), as has been previously proposed, the annual and geographic variability in homing performance within the northern hemisphere might be explained, to a first order, by seasonal changes in low-frequency atmospheric background noise levels related to storm activity in the North Atlantic Ocean, and by acoustic waveguides formed between the surface and seasonally reversing stratospheric winds. In addition, increased dispersion among departure bearings of test birds on some North American release days was possibly caused by infrasonic noise from severe weather events during tornado and Atlantic hurricane seasons.

  2. Seismoacoustic Coupled Signals From Earthquakes in Central Italy: Epicentral and Secondary Sources of Infrasound

    NASA Astrophysics Data System (ADS)

    Shani-Kadmiel, Shahar; Assink, Jelle D.; Smets, Pieter S. M.; Evers, Läslo G.

    2018-01-01

    In this study we analyze infrasound signals from three earthquakes in central Italy. The Mw 6.0 Amatrice, Mw 5.9 Visso, and Mw 6.5 Norcia earthquakes generated significant epicentral ground motions that couple to the atmosphere and produce infrasonic waves. Epicentral seismic and infrasonic signals are detected at I26DE; however, a third type of signal, which arrives after the seismic wave train and before the epicentral infrasound signal, is also detected. This peculiar signal propagates across the array at acoustic wave speeds, but the celerity associated with it is 3 times the speed of sound. Atmosphere-independent backprojections and full 3-D ray tracing using atmospheric conditions of the European Centre for Medium-Range Weather Forecasts are used to demonstrate that this apparently fast-arriving infrasound signal originates from ground motions more than 400 km away from the epicenter. The location of the secondary infrasound patch coincides with the closest bounce point to I26DE as depicted by ray tracing backprojections.

  3. Seasonal changes in atmospheric noise levels and the annual variation in pigeon homing performance.

    PubMed

    Hagstrum, Jonathan T; McIsaac, Hugh P; Drob, Douglas P

    2016-06-01

    Repeated releases of experienced homing pigeons from single sites were conducted between 1972 and 1974 near Cornell University in upstate New York and between 1982 and 1983 near the University of Pittsburgh in western Pennsylvania, USA. No annual variation in homing performance was observed at these sites in eastern North America, in contrast to results from a number of similar experiments in Europe. Assuming pigeons home using low-frequency infrasonic signals (~0.1-0.3 Hz), as has been previously proposed, the annual and geographic variability in homing performance within the northern hemisphere might be explained, to a first order, by seasonal changes in low-frequency atmospheric background noise levels related to storm activity in the North Atlantic Ocean, and by acoustic waveguides formed between the surface and seasonally reversing stratospheric winds. In addition, increased dispersion among departure bearings of test birds on some North American release days was possibly caused by infrasonic noise from severe weather events during tornado and Atlantic hurricane seasons.

  4. Statistical analysis of infrasound signatures in airglow observations: Indications for acoustic resonance

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Schmidt, Carsten; Bittner, Michael

    2013-02-01

    The detection of infrasonic signals in temperature time series of the mesopause altitude region (at about 80-100 km) is performed at the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) using GRIPS instrumentation (GRound-based Infrared P-branch Spectrometers). Mesopause temperature values with a temporal resolution of up to 10 s are derived from the observation of nocturnal airglow emissions and permit the identification of signals within the long-period infrasound range.Spectral intensities of wave signatures with periods between 2.5 and 10 min are estimated applying the wavelet analysis technique to one minute mean temperature values. Selected events as well as the statistical distribution of 40 months of observation are presented and discussed with respect to resonant modes of the atmosphere. The mechanism of acoustic resonance generated by strong infrasonic sources is a potential explanation of distinct features with periods between 3 and 5 min observed in the dataset.

  5. Seismicity and infrasound associated with explosions at Mount St. Helens, 2004-2005: Chapter 6 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.

  6. A Framework for Real-Time Collection, Analysis, and Classification of Ubiquitous Infrasound Data

    NASA Astrophysics Data System (ADS)

    Christe, A.; Garces, M. A.; Magana-Zook, S. A.; Schnurr, J. M.

    2015-12-01

    Traditional infrasound arrays are generally expensive to install and maintain. There are ~10^3 infrasound channels on Earth today. The amount of data currently provided by legacy architectures can be processed on a modest server. However, the growing availability of low-cost, ubiquitous, and dense infrasonic sensor networks presents a substantial increase in the volume, velocity, and variety of data flow. Initial data from a prototype ubiquitous global infrasound network is already pushing the boundaries of traditional research server and communication systems, in particular when serving data products over heterogeneous, international network topologies. We present a scalable, cloud-based approach for capturing and analyzing large amounts of dense infrasonic data (>10^6 channels). We utilize Akka actors with WebSockets to maintain data connections with infrasound sensors. Apache Spark provides streaming, batch, machine learning, and graph processing libraries which will permit signature classification, cross-correlation, and other analytics in near real time. This new framework and approach provide significant advantages in scalability and cost.

  7. Method of enhancing radiation response of radiation detection materials

    DOEpatents

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  8. Radiation dosimetry and biophysical models of space radiation effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry

    2003-01-01

    Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.

  9. Seismic Methods of Infrasonic Signal Detection

    DTIC Science & Technology

    1982-09-30

    11 Alaid (Kurile Is.): Plume on satellite i agery ......................................................... 11 Kilauea ( Hawaii ): Small...historic eruption ... 6-7 Kilauea ( Hawaii ): Small fissure eruption in summit caldera ................. 7-8 Galunggung (Indonesia): Explosions and...4 June. El Chich6n Volcano (continued) TABLE 1 LOCATION AND DATE LAYER ALTITUDE IN KM BACKSCATTER (peak in parentheses) Mauna Loa, Hawaii 20.5-22

  10. Ionizing Radiation: The issue of radiation quality

    NASA Astrophysics Data System (ADS)

    Prise, Kevin; Schettino, Giuseppe

    Types of Ionising radiations are differentiated from each other by fundamental characteristics of their energy deposition patterns when they interact with biological materials. At the level of the DNA these non-random patterns drive differences in the yields and distributions of DNA damage patterns and specifically the production of clustered damage or complex lesions. The complex radiation fields found in space bring significant challenges for developing a mechanistic understanding of radiation effects from the perspective of radiation quality as these consist of a diverse range of particle and energy types unique to the space environment. Linear energy transfer, energy deposited per unit track length in units of keV per micron, has long been used as a comparator for different types of radiation but has limitations in that it is an average value. Difference in primary core ionizations relative to secondary delta ray ranges vary significantly with particle mass and energy leading to complex interrelationships with damage production at the cellular level. At the cellular level a greater mechanistic understanding is necessary, linking energy deposition patterns to DNA damage patterns and cellular response, to build appropriate biophysical models that are predictive for different radiation qualities and mixed field exposures. Defined studies using monoenergetic beams delivered under controlled conditions are building quantitative data sets of both initial and long term changes in cells as a basis for a great mechanistic understanding of radiation quality effects of relevance to not only space exposures but clinical application of ion-beams.

  11. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups

  12. Perception of low dose radiation risks among radiation researchers in Korea.

    PubMed

    Seong, Ki Moon; Kwon, TaeWoo; Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert's risk evaluation of radiation exposure strongly influences the public's risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts' radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual's opinions have often exacerbated the public's confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years' research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public's risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure.

  13. Perception of low dose radiation risks among radiation researchers in Korea

    PubMed Central

    Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert’s risk evaluation of radiation exposure strongly influences the public’s risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts’ radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual’s opinions have often exacerbated the public’s confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years’ research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public’s risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure. PMID:28166286

  14. Acute radiation syndrome and chronic radiation syndrome.

    PubMed

    Grammaticos, Philip; Giannoula, Evanthia; Fountos, George P

    2013-01-01

    Acute radiation syndrome (ARS) or sickness or poisoning or toxicity is induced after a whole body exposure of men to high doses of radiation between 1-12Gy. First symptoms are from the gastrointestinal system, which together with bone marrow are the most sensitive parts of our body. Chronic radiation syndrome (CRS) may be induced by smaller than 1Gy radiation doses or after a mild form of ARS. Prophylaxis and treatment suggestions are described. In cases of ARS, a large part of the exposed population after proper medical care may survive, while without medical care this part of the population will be lost. Prophylaxis may also save another part of the population.

  15. Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations

    NASA Astrophysics Data System (ADS)

    Matsui, Toshi; Zhang, Sara Q.; Lang, Stephen E.; Tao, Wei-Kuo; Ichoku, Charles; Peters-Lidard, Christa D.

    2018-03-01

    In this study, the impact of different configurations of the Goddard radiation scheme on convection-permitting simulations (CPSs) of the West African monsoon (WAM) is investigated using the NASA-Unified WRF (NU-WRF). These CPSs had 3 km grid spacing to explicitly simulate the evolution of mesoscale convective systems (MCSs) and their interaction with radiative processes across the WAM domain and were able to reproduce realistic precipitation and energy budget fields when compared with satellite data, although low clouds were overestimated. Sensitivity experiments reveal that (1) lowering the radiation update frequency (i.e., longer radiation update time) increases precipitation and cloudiness over the WAM region by enhancing the monsoon circulation, (2) deactivation of precipitation radiative forcing suppresses cloudiness over the WAM region, and (3) aggregating radiation columns reduces low clouds over ocean and tropical West Africa. The changes in radiation configuration immediately modulate the radiative heating and low clouds over ocean. On the 2nd day of the simulations, patterns of latitudinal air temperature profiles were already similar to the patterns of monthly composites for all radiation sensitivity experiments. Low cloud maintenance within the WAM system is tightly connected with radiation processes; thus, proper coupling between microphysics and radiation processes must be established for each modeling framework.

  16. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I [Dublin, CA

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  17. Risk Factors: Radiation

    Cancer.gov

    Radiation of certain wavelengths, called ionizing radiation, has enough energy to damage DNA and cause cancer. Ionizing radiation includes radon, x-rays, gamma rays, and other forms of high-energy radiation.

  18. Acute Radiation Syndrome

    MedlinePlus

    ... on Specific Types of Emergencies Acute Radiation Syndrome (ARS): A Fact Sheet for the Public Language: English ( ... radiation dose. People exposed to radiation will get ARS only if: The radiation dose was high The ...

  19. Radiation safety.

    PubMed

    Skinner, Sarah

    2013-06-01

    Diagnostic radiology procedures, such as computed tomography (CT) and X-ray, are an increasing source of ionising radiation exposure to our community. Exposure to ionising radiation is associated with increased risk of malignancy, proportional to the level of exposure. Every diagnostic test using ionising radiation needs to be justified by clinical need. General practitioners need a working knowledge of radiation safety so they can adequately inform their patients of the risks and benefits of diagnostic imaging procedures.

  20. Imaging the atmosphere using volcanic infrasound recorded on a dense local sensor network

    NASA Astrophysics Data System (ADS)

    Marcillo, O. E.; Johnson, J. B.; Johnson, R.

    2010-12-01

    We deployed a 47-node infrasound sensor network around Kilauea’s Halemaumau Vent to image the atmospheric conditions of the near-surface. This active vent is a persistent radiator of energetic infrasound enabling us to probe atmospheric winds and temperatures. This research builds upon a previous experiment that recorded infrasound on a three-node network, to determine relative phase delay and invert for atmospheric wind. The technique developed for this previous analysis assumed the intrinsic sound speed and was able to track the evolution of the average wind field in a large area (around 10 km2) and was largely insensitive to local meteorological effects, caused by topography and vegetation. The results of this previous experiment showed the potential of this technique for atmospheric studies and called for a following experiment with a denser sensor network over a larger area. During the summer 2010, we returned to Kilauea and deployed a 47-sensor network in three different configurations around Kilauea summit and down the volcano’s flanks. Persistent infrasonic tremor was ‘loud’ with excess pressures up to 10 Pa (when scaled to 1 km) and periods of high acoustic emissions that lasted from hours to days. The instrumentation for this experiment was composed of single-channel RefTek RT125A Texan digitizers and InfraNMT infrasound sensors. The Texan digitizers provide high-resolution 24-bit analog to digital conversion and can operate continuously for approximately five days with two D-cell batteries. The InfraNMT sensor is based on a piezo-electric transducer and was developed at the Infrasound Laboratory at New Mexico Tech. This sensor features low power (< 3 mA at 9 V) and flat response between 0.02 to 50 Hz. Three different network topologies were tested during this two-week experiment. For the first and second topologies, the sensors were deployed along established roads on two almost perpendicular sensor lines centered at the Halema’uma’u crater

  1. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    ERIC Educational Resources Information Center

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  2. Communication skills training for radiation therapists: preparing patients for radiation therapy.

    PubMed

    Halkett, Georgia; O'Connor, Moira; Aranda, Sanchia; Jefford, Michael; Merchant, Susan; York, Debra; Miller, Lisa; Schofield, Penelope

    2016-12-01

    Patients sometimes present for radiation therapy with high levels of anxiety. Communication skills training may assist radiation therapists to conduct more effective consultations with patients prior to treatment planning and treatment commencement. The overall aim of our research is to examine the effectiveness of a preparatory programme 'RT Prepare' delivered by radiation therapists to reduce patient psychological distress. The purpose of this manuscript was to describe the communication skills workshops developed for radiation therapists and evaluate participants' feedback. Radiation therapists were invited to participate in two communication skills workshops run on the same day: (1) Consultation skills in radiation therapy and (2) Eliciting and responding to patients' emotional cues. Evaluation forms were completed. Radiation therapists' consultations with patients were then audio-recorded and evaluated prior to providing a follow-up workshop with participants. Nine full day workshops were held. Sixty radiation therapists participated. Positive feedback was received for both workshops with 88% or more participants agreeing or strongly agreeing with all the statements about the different components of the two workshops. Radiation therapists highlighted participating in role play with an actor, discussing issues; receiving feedback; acquiring new skills and knowledge; watching others role play and practicing with checklist were their favourite aspects of the initial workshop. The follow-up workshops provided radiation therapists with feedback on how they identified and addressed patients' psychological concerns; time spent with patients during consultations and the importance of finding private space for consultations. Communication skills training consisting of preparing patients for radiation therapy and eliciting and responding to emotional cues with follow-up workshops has the potential to improve radiation therapists' interactions with patients undergoing

  3. Radiation Exposure

    MedlinePlus

    Radiation is energy that travels in the form of waves or high-speed particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a ...

  4. Wireless radiation sensor

    SciTech Connect

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  5. Radiation and People

    ERIC Educational Resources Information Center

    Freilich, Florence G.

    1970-01-01

    Describes the development of radiation as a tool of medicine. Includes topics on history of radiation, electromagnetic spectrum, X-ray tubes, high energy machines, radioactive sources, artificial radioactivity, radioactive scanning, units, present radiation background, and effect of radiation on living tissue. (DS)

  6. The Fukushima radiation accident: consequences for radiation accident medical management.

    PubMed

    Meineke, Viktor; Dörr, Harald

    2012-08-01

    The March 2011 radiation accident in Fukushima, Japan, is a textbook example of a radiation accident of global significance. In view of the global dimensions of the accident, it is important to consider the lessons learned. In this context, emphasis must be placed on consequences for planning appropriate medical management for radiation accidents including, for example, estimates of necessary human and material resources. The specific characteristics of the radiation accident in Fukushima are thematically divided into five groups: the exceptional environmental influences on the Fukushima radiation accident, particular circumstances of the accident, differences in risk perception, changed psychosocial factors in the age of the Internet and globalization, and the ignorance of the effects of ionizing radiation both among the general public and health care professionals. Conclusions like the need for reviewing international communication, interfacing, and interface definitions will be drawn from the Fukushima radiation accident.

  7. Sound radiation quantities arising from a resilient circular radiator.

    PubMed

    Aarts, Ronald M; Janssen, Augustus J E M

    2009-10-01

    Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction force on the radiator, and the total radiated power arising from a harmonically excited, resilient, flat, circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are either Stenzel functions (1-(sigma/a)2)n, with sigma the radial coordinate on the radiator, or linear combinations of Zernike functions Pn(2(sigma/a)2-1), with Pn the Legendre polynomial of degree n. Both sets of functions give rise, via King's integral for the pressure, to integrals for the quantities of interest involving the product of two Bessel functions. These integrals have a power series expansion and allow an expression in terms of Bessel functions of the first kind and Struve functions. Consequently, many of the results in [M. Greenspan, J. Acoust. Soc. Am. 65, 608-621 (1979)] are generalized and treated in a unified manner. A foreseen application is for loudspeakers. The relation between the radiated power in the near-field on one hand and in the far field on the other is highlighted.

  8. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  9. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  10. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    SciTech Connect

    Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less

  11. American Society for Radiation Oncology (ASTRO) Survey of Radiation Biology Educators in U.S. and Canadian Radiation Oncology Residency Programs

    SciTech Connect

    Rosenstein, Barry S., E-mail: barry.rosenstein@mssm.ed; Department of Radiation Oncology, New York University School of Medicine, New York, NY; Held, Kathryn D.

    2009-11-01

    Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educatorsmore » whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.« less

  12. Infrasound and seismic array analysis of snow avalanches: results from the 2015-2017 experiment in Dischma valley above Davos, Switzerland

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; van Herwijnen, Alec; Ripepe, Maurizio

    2017-04-01

    While flowing downhill a snow avalanche radiates seismic and infrasonic waves being coupled both with the ground and the atmosphere. Infrasound waves are mostly generated by the powder cloud of the avalanche, while seismic waves are mostly generated by the dense flowing snow mass on the ground, resulting in different energy partitioning between seismic and infrasound for different kinds of avalanches. This results into a general uncertainty on the efficiency of seismic and infrasound monitoring, in terms of the size and source-to-receiver distance of detectable events. Nevertheless, both seismic and infrasound have been used as monitoring systems for the remote detection of snow avalanches, being the reliable detection of snow avalanches of crucial importance to better understand triggering mechanisms, identify possible precursors, or improve avalanche forecasting. We present infrasonic and seismic array data collected during the winters of 2015- 2016 and 2016-2017 in the Dischma valley above Davos, Switzerland, where a five element infrasound array and a 7 element seismic array had been deployed at short distance from each other and with several avalanche paths nearby. Avalanche observation in the area is performed through automatic cameras providing additional information on the location, type (dry or wet), size and occurrence time of the avalanches released. The use of arrays instead of single sensors allows increasing the signal-to-noise ratio and identifying events in terms of back-azimuth and apparent velocity of the wave-field, thus providing indication on the source position of the recorded signal. For selected snow avalanches captured with automatic cameras, we therefore perform seismic and infrasound array processing to constrain the avalanche path and dynamics and investigate the partitioning of seismic and infrasound energy for the different portions of the avalanche path. Moreover we compare results of seismic and infrasound array processing for the

  13. Toxic properties of specific radiation determinant molecules, derived from radiated species

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey

    Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a

  14. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Cerebrovascular Acute Radiation Syndrome (CvARS) is an extremely severe in-jury of Central Nervous System (CNS) and Peripheral Nervous System (PNS). CvARS can be induced by the high doses of neutron, heavy ions, or gamma radiation. The Syndrome clinical picture depends on a type, timing, and the doses of radiation. Four grades of the CvARS were defined: mild, moderate, severe, and extremely severe. Also, four stages of CvARS were developed: prodromal, latent, manifest, outcome -death. Duration of stages depends on the types, doses, and time of radiation. The CvARS clinical symptoms are: respiratory distress, hypotension, cerebral edema, severe disorder of cerebral blood microcirculation, and acute motor weakness. The radiation toxins, Cerebro-Vascular Radiation Neurotoxins (SvARSn), determine development of the acute radiation syndrome. Mechanism of action of the toxins: Though pathogenesis of radiation injury of CNS remains unknown, our concept describes the Cv ARS as a result of Neurotoxicity and Excitotoxicity, cell death through apoptotic necrosis. Neurotoxicity occurs after the high doses radiation exposure, formation of radiation neuro-toxins, possible bioradicals, or group of specific enzymes. Intracerebral hemorrhage can be a consequence of the damage of endothelial cells caused by radiation and the radiation tox-ins. Disruption of blood-brain barrier (BBB)and blood-cerebrospinal fluid barrier (BCFB)is possibly the most significant effect of microcirculation disorder and metabolic insufficiency. NMDA-receptors excitotoxic injury mediated by cerebral ischemia and cerebral hypoxia. Dam-age of the pyramidal cells in layers 3 and 5 and Purkinje cell layer the cerebral cortex , damage of pyramidal cells in the hippocampus occur as a result of cerebral ischemia and intracerebral bleeding. Methods: Radiation Toxins of CV ARS are defined as glycoproteins with the molec-ular weight of RT toxins ranges from 200-250 kDa and with high enzymatic activity

  15. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correctmore » description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to

  16. Slope effects on shortwave radiation components and net radiation

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Hays, Cynthia J.; Mesarch, Mark A.

    1992-01-01

    The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions.' The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1978-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Analysis since our last report has focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989.

  17. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  18. Radiation protection and instrumentation

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  19. Radiation detection system

    DOEpatents

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  20. PERSONAL RADIATION MONITOR

    DOEpatents

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  1. Radiation enteritis and radiation scoliosis

    SciTech Connect

    Shah, M.; Eng, K.; Engler, G.L.

    1980-09-01

    Any patient with radiation scoliosis should be suspected of having a visceral lesion as well. Chronic radiation enteritis may be manifested by intestinal obstruction, fistulas, perforation, and hemorrhage. Intestinal obstruction is the most common complication, and must be differentiated from postoperative cast or from spinal-traction syndrome. Obstruction that does not respond promptly to conservative measures must be treated surgically. Irradiated bowel is ischemic, and necrosis with spontaneous perforation can only be avoided with early diagnosis and surgical intervention.

  2. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    SciTech Connect

    Orton, C; Borras, C; Carlson, D

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protectionmore » will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples

  3. Cloud Radiative Effect to Downward Longwave Radiation in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Hayasaka, T.

    2014-12-01

    Downward longwave radiation is important factor to affect climate change. In polar regions, estimation of the radiative effect of cloud on the downward longwave radiation has large uncertainty. Relatively large cloud effect to the radiation occurs there due to low temperature, small amount of water vapor, and strong inversion layer. The cloud effect is, however, not evaluated sufficiently because the long term polar night and high surface albedo make satellite retrieval difficult. The intent of the present study is to quantify cloud radiative effect for downward longwave radiation in the polar regions by in-situ observation and radiative transfer calculation. The observation sites in this study are Ny-Ålesund (NYA), Syowa (SYO), and South Pole (SPO). These stations belong to the Baseline Surface Radiation Network. The period of data analysis is from 2003 to 2012. The effect of cloud on the downward longwave radiation is evaluated by subtraction of calculated downward longwave radiation under clear-sky condition from observed value under all-sky condition. Radiative transfer model was used for the evaluation of clear sky radiation with vertical temperature and humidity profile obtained by radiosonde observations. Calculated result shows good correlation with observation under clear-sky condition. The RMSE is +0.83±5.0. The cloud effect varied from -10 - +110 W/m2 (-10 - +40 %). Cloud effect increased with increasing of cloud fraction and decreasing of cloud base height and precipitable water. In SYO negative effects were sometimes obtained. The negative cloud effect emerged under dry and temperature inversion condition lower than 2 km. One of reasons of negative effect is considered to be existence of cloud at temperature inversion altitude. When the cloud effect is smaller than -5 W/m2 (standard deviation between calculation and observation), 50 % of them have a condition with cloud base height estimated by micro pulse lidar lower than 2 km.

  4. The discrimination of man-made explosions from earthquakes using seismo-acoustic analysis in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Jeon, Jeong-Soo

    2010-05-01

    Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be

  5. [Radiation safety of exploitation of radiation sources at the civil aviation airlines].

    PubMed

    Afanas'ev, R V; Zuev, V G; Berezin, G I; Sereda, V N; Zasiad'ko, A K

    2004-01-01

    Radiation risks from isotope-containing equipment, and ionizing and unused X-ray radiation sources are characterized and relevant normative documents with safety requirements to radiation sources installation, radiation safety of aircraft servicing and repair, hand luggage control and heavy luggage registration, personal protection items, system of radiation monitoring at airlines and aircraft works, and liability for breach of performance guidelines are cited.

  6. Medical students' knowledge of ionizing radiation and radiation protection.

    PubMed

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  7. RADIATION WAVE DETECTION

    DOEpatents

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  8. Travel for the 2004 American Statistical Association Biannual Radiation Meeting: "Radiation in Realistic Environments: Interactions Between Radiation and Other Factors

    SciTech Connect

    Brenner, David J.

    The 16th ASA Conference on Radiation and Health, held June 27-30, 2004 in Beaver Creek, CO, offered a unique forum for discussing research related to the effects of radiation exposures on human health in a multidisciplinary setting. The Conference furnishes investigators in health related disciplines the opportunity to learn about new quantitative approaches to their problems and furnishes statisticians the opportunity to learn about new applications for their discipline. The Conference was attended by about 60 scientists including statisticians, epidemiologists, biologists and physicists interested in radiation research. For the first time, ten recipients of Young Investigator Awards participated in themore » conference. The Conference began with a debate on the question: “Do radiation doses below 1 cGy increase cancer risks?” The keynote speaker was Dr. Martin Lavin, who gave a banquet presentation on the timely topic “How important is ATM?” The focus of the 2004 Conference on Radiation and Health was Radiation in Realistic Environments: Interactions Between Radiation and Other Risk Modifiers. The sessions of the conference included: Radiation, Smoking, and Lung Cancer Interactions of Radiation with Genetic Factors: ATM Radiation, Genetics, and Epigenetics Radiotherapeutic Interactions The Conference on Radiation and Health is held bi-annually, and participants are looking forward to the 17th conference to be held in 2006.« less

  9. Readout and Data Acquisition for a Liquid Radiator Radiation Exposure Test

    NASA Astrophysics Data System (ADS)

    Lantz, Chad

    2017-09-01

    The ATLAS Zero Degree Calorimeter (ZDC) prototype is a tungsten-sampling, oil/quartz radiating calorimeter placed on each side of the interaction point. The ZDC is used in heavy ion runs for centrality measurements. The UIUC group develops a ZDC that is significantly more radiation hard than the currently employed detector. The current ZDC uses scintillating quartz rods placed directly in the beamline whose optical transmission is known to degrade as a function of radiation dosage. Our prototype uses organic wavelength shifters (WLS) dissolved in oil in two stages to take Cherenkov light produced in the oil by the particle shower and guide it to a photodetector. This design allows the quartz rods be located away from the beam center to experience a lower radiation dose, and the oil containing WLS can be replaced periodically to negate radiation damage. Quantum dots are studied as a more radiation hard alternative to WLS. This increase in radiation hardness will allow ATLAS to operate the ZDC after the luminosity upgrades planned for the LHC. A test setup has been developed for the study of radiation hardness of liquid Cherenkov radiators and wavelength shifters. The setup will be described in this presentation with a focus on the readout electronics and data acquisition.

  10. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin

    2015-02-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  11. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  12. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  13. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  14. Multiplate Radiation Shields: Investigating Radiational Heating Errors

    NASA Astrophysics Data System (ADS)

    Richardson, Scott James

    1995-01-01

    Multiplate radiation shield errors are examined using the following techniques: (1) analytic heat transfer analysis, (2) optical ray tracing, (3) numerical fluid flow modeling, (4) laboratory testing, (5) wind tunnel testing, and (6) field testing. Guidelines for reducing radiational heating errors are given that are based on knowledge of the temperature sensor to be used, with the shield being chosen to match the sensor design. Small, reflective sensors that are exposed directly to the air stream (not inside a filter as is the case for many temperature and relative humidity probes) should be housed in a shield that provides ample mechanical and rain protection while impeding the air flow as little as possible; protection from radiation sources is of secondary importance. If a sensor does not meet the above criteria (i.e., is large or absorbing), then a standard Gill shield performs reasonably well. A new class of shields, called part-time aspirated multiplate radiation shields, are introduced. This type of shield consists of a multiplate design usually operated in a passive manner but equipped with a fan-forced aspiration capability to be used when necessary (e.g., low wind speed). The fans used here are 12 V DC that can be operated with a small dedicated solar panel. This feature allows the fan to operate when global solar radiation is high, which is when the largest radiational heating errors usually occur. A prototype shield was constructed and field tested and an example is given in which radiational heating errors were reduced from 2 ^circC to 1.2 ^circC. The fan was run continuously to investigate night-time low wind speed errors and the prototype shield reduced errors from 1.6 ^ circC to 0.3 ^circC. Part-time aspirated shields are an inexpensive alternative to fully aspirated shields and represent a good compromise between cost, power consumption, reliability (because they should be no worse than a standard multiplate shield if the fan fails), and accuracy

  15. Hawking radiation

    NASA Astrophysics Data System (ADS)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  16. Radiation Engineering for Designers

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2015-01-01

    This tutorial provides an overview of the natural space radiation environment, an introduction to radiation effect types, an overview of EEE parts selection, scrubbing, and radiation mitigation, and an introduction to radiation testing.

  17. Novel reference radiation fields for pulsed photon radiation installed at PTB.

    PubMed

    Klammer, J; Roth, J; Hupe, O

    2012-09-01

    Currently, ∼70 % of the occupationally exposed persons in Germany are working in pulsed radiation fields, mainly in the medical sector. It has been known for a few years that active electronic dosemeters exhibit considerable deficits or can even fail completely in pulsed fields. Type test requirements for dosemeters exist only for continuous radiation. Owing to the need of a reference field for pulsed photon radiation and accordingly to the upcoming type test requirements for dosemeters in pulsed radiation, the Physikalisch-Technische Bundesanstalt has developed a novel X-ray reference field for pulsed photon radiation in cooperation with a manufacturer. This reference field, geared to the main applications in the field of medicine, has been well characterised and is now available for research and type testing of dosemeters in pulsed photon radiation.

  18. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  19. Probing the atmosphere with infrasound

    NASA Technical Reports Server (NTRS)

    Posmentier, E. S.; Donn, W. L.

    1969-01-01

    Recent studies are reported which have contributed to the knowledge of atmospheric structure and have established the practicality of infrasonic techniques for probing the atmosphere to heights of 120 km or more. Observations of a few types of infrasound are reviewed, and the theories used to account for the infrasound propagation and the deduced atmospheric structures are discussed.

  20. Advancement of Techniques for Modeling the Effects of Atmospheric Gravity-Wave-Induced Inhomogeneities on Infrasound Propagation

    DTIC Science & Technology

    2010-09-01

    ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound

  1. Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-01-01

    We present radiation-hydrodynamic simulations of radiatively-driven gas shells launched by bright active galactic nuclei (AGN) in isolated dark matter haloes. Our goals are (1) to investigate the ability of AGN radiation pressure on dust to launch galactic outflows and (2) to constrain the efficiency of infrared (IR) multiscattering in boosting outflow acceleration. Our simulations are performed with the radiation-hydrodynamic code RAMSES-RT and include both single- and multiscattered radiation pressure from an AGN, radiative cooling and self-gravity. Since outflowing shells always eventually become transparent to the incident radiation field, outflows that sweep up all intervening gas are likely to remain gravitationally bound to their halo even at high AGN luminosities. The expansion of outflowing shells is well described by simple analytic models as long as the shells are mildly optically thick to IR radiation. In this case, an enhancement in the acceleration of shells through IR multiscattering occurs as predicted, i.e. a force \\dot{P} ≈ τ_IR L/c is exerted on the gas. For high optical depths τIR ≳ 50, however, momentum transfer between outflowing optically thick gas and IR radiation is rapidly suppressed, even if the radiation is efficiently confined. At high τIR, the characteristic flow time becomes shorter than the required trapping time of IR radiation such that the momentum flux \\dot{P} ≪ τ_IR L/c. We argue that while unlikely to unbind massive galactic gaseous haloes, AGN radiation pressure on dust could play an important role in regulating star formation and black hole accretion in the nuclei of massive compact galaxies at high redshift.

  2. Radiation Basics

    MedlinePlus

    ... EPA’s mission in radiation protection is to protect human health and the environment from the ionizing radiation that comes from human use of radioactive elements. Other agencies regulate the ...

  3. Radiation Brain Drain? The Impact of Demographic Change on U.S. Radiation Protection.

    PubMed

    Hricak, Hedvig; Dauer, Lawrence T

    2017-02-01

    The use of radiation has a substantial beneficial impact, particularly in the areas of medicine, energy production, basic science research, and industrial applications. Radiation protection knowledge and experience are required for acquiring and implementing scientific knowledge to protect workers, members of the public, and the environment from potential harmful effects of ionizing radiation while facilitating the beneficial use and development of radiation-based technologies. However, demographic changes are negatively impacting U.S. radiation protection and response capabilities. The number of radiation professionals continues to decrease even as the demand for such professionals is growing. These concerns are most pronounced in the medical, energy, research, and security arenas. Though the United States has been the world leader in radiation protection and radiation sciences for many years, the country has no strategic plan to ensure the maintenance of expertise in radiobiology, radiation physics, and radiation protection. Solving this problem will require a significant increase in federal and state funding as well as formal partnerships and initiatives among academia, professional societies, government, and the private sector.

  4. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  5. Spacecraft radiator systems

    NASA Technical Reports Server (NTRS)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  6. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  7. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  8. Cell Radiation Experiment System

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  9. Radiation From Solar Activity | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  10. Radiation area monitor device and method

    SciTech Connect

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated aboutmore » the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  11. RADIATION HAZARD

    SciTech Connect

    Savenko, I.A.; Pisarenko, N.F.; Shavrin, P.I.

    1961-01-01

    Analysis of data obtained by Sputnik V (August 19, 1961) at about 320 km made it possible to delineate the position of the radiation belts and to estimate the amount of radiation hazard present. Scintillation counter data show that the radiation in the belts is anisotropic and that the energy flux under a layer of matter of 2 x 10/sup -3/ g cm/sup -2/ is 10/sup 10/ ev cm/sup -2/ sec/sup -1/. The mean energy released per quantum in the scintillation counter crystal is computed at 2.0 x 10/sup 5/ ev and the intensity of electrons in the outer beltmore » at 5 x 10/sup 4/ particles cm/sup -2/ sec/sup -1/. The radiation dosage absorbed inside Sputnik V was determined by dividing the amount of energy liberated in the sodium iodide crystal of the scinitillation counter by the weight of the crystal (36.4 g) without the need of a detailed examination of the composition and spectrum of the radiation. A dosage value of 7 mrad/24 hr was obtained; in terms of the RBE (relative biological effect) of the cosmic charged particles this amounted to 5O mrem/24 hr. This dosage is considered relatively safe for astronauts during flights along trajectories similar to that of Sputnik V when the sun is quiet. Solar flares, however, could bring about an increase in radiation. Owing to latitude and longitude effects and the specifi distribution of radiation at this height, the dosage per orbit ranged from 0.35 to 0.70 mrad. (OTS)« less

  12. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  13. The Integrated Radiation Mapper Assistant

    SciTech Connect

    Carlton, R.E.; Tripp, L.R.

    1995-03-01

    The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout themore » room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.« less

  14. Radiation protection aspects of the cosmic radiation exposure of aircraft crew.

    PubMed

    Bartlett, D T

    2004-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe.

  15. Radiation sickness

    MedlinePlus

    ... Radiation therapy References Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ... Exposure Read more NIH MedlinePlus Magazine Read more Health Topics A-Z Read more A.D.A. ...

  16. [Remote radiation planning support system].

    PubMed

    Atsumi, Kazushige; Nakamura, Katsumasa; Yoshidome, Satoshi; Shioyama, Yoshiyuki; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Shinoto, Makoto; Asai, Kaori; Sakamoto, Katsumi; Hirakawa, Masakazu; Honda, Hiroshi

    2012-08-01

    We constructed a remote radiation planning support system between Kyushu University Hospital (KUH) in Fukuoka and Kyushu University Beppu Hospital (KBH) in Oita. Between two institutions, radiology information system for radiotherapy division (RT-RIS) and radiation planning system (RTPS) were connected by virtual private network (VPN). This system enables the radiation oncologists at KUH to perform radiotherapy planning for the patients at KBH. The detail of the remote radiation planning support system in our institutions is as follows: The radiation oncologist at KBH performs radiotherapy planning and the data of the patients are sent anonymously to the radiation oncologists at KUH. The radiation oncologists at KUH receive the patient's data, access to RTPS at KBH, verify or change the radiation planning at KBH: Radiation therapy is performed at KBH according to the confirmed plan by the radiation oncologists at KUH. Our remote radiation planning system is useful for providing radiation therapy with safety and accuracy.

  17. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  18. Radiation and health*

    PubMed Central

    Lindell, B.

    1987-01-01

    Radiation has been a source of fascination and concern ever since Wilhelm Konrad Röntgen discovered X-rays on 8 November 1895. Over the years, health workers as well as the public have been concerned about medical uses of X-rays, the presence of radon in buildings, radioactive waste from nuclear power stations, fallout from nuclear test explosions, radioactive consumer products, microwave ovens, and many other sources of radiation. Most recently, the tragic accident at the Chernobyl nuclear power station in the USSR, and the subsequent contamination over most of Europe, has again wakened interest and concern and also reminded us about a number of misconceptions about radiation. This article describes the essentials about radiation (especially ionizing radiation) and its health effects. PMID:3496982

  19. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  20. A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux.

    PubMed

    Wu, Wei; Liu, Yangang

    2010-05-12

    A new one-dimensional radiative equilibrium model is built to analytically evaluate the vertical profile of the Earth's atmospheric radiation entropy flux under the assumption that atmospheric longwave radiation emission behaves as a greybody and shortwave radiation as a diluted blackbody. Results show that both the atmospheric shortwave and net longwave radiation entropy fluxes increase with altitude, and the latter is about one order in magnitude greater than the former. The vertical profile of the atmospheric net radiation entropy flux follows approximately that of the atmospheric net longwave radiation entropy flux. Sensitivity study further reveals that a 'darker' atmosphere with a larger overall atmospheric longwave optical depth exhibits a smaller net radiation entropy flux at all altitudes, suggesting an intrinsic connection between the atmospheric net radiation entropy flux and the overall atmospheric longwave optical depth. These results indicate that the overall strength of the atmospheric irreversible processes at all altitudes as determined by the corresponding atmospheric net entropy flux is closely related to the amount of greenhouse gases in the atmosphere.

  1. Radiation Protection in Canada

    PubMed Central

    Williams, N.

    1965-01-01

    The main emphasis of a provincial radiation protection program is on ionizing radiation produced by machines, although assistance is given to the Federal Radiation Protection Division in its program relating to radioactive substances. The basis for the Saskatchewan program of radiation protection is the Radiological Health Act 1961. An important provision of the Act is annual registration of radiation equipment. The design of the registration form encourages a “do-it-yourself” radiation and electrical safety inspection. Installations are inspected every two years by a radiation health officer. Two hundred and twenty-one deficiencies were found during inspection of 224 items of radiation equipment, the commonest being failure to use personal film badges. Insufficient filtration of the beam, inadequate limitation of the beam, and unnecessary exposure of operators were other common faults. Physicians have a responsibility to weigh the potential advantages against the hazards when requesting radiographic or fluoroscopic procedures. PMID:14282164

  2. Infrasonic observations of large-scale HE events

    NASA Technical Reports Server (NTRS)

    Whitaker, Rodney W.; Mutschlecner, J. Paul; Davidson, Masha B.; Noel, Susan D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, the authors work between 0.1 Hz to 10 Hz; however, much of the work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. For the purposes of this discussion, the authors concentrate on their measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because their equipment is well suited for mobile deployments, they can easily establish temporary observing sites for special events. The measurements are from the permanent sites, as well as from various temporary sites. A few observations that are typical of the full data set are given.

  3. Explosive Infrasonic Events: Sensor Comparison Experiment (SCE)

    SciTech Connect

    Schnurr, J. M.; Garces, M.; Rodgers, A. J.

    SCE (sensor comparison experiment) 1 through 4 consists of a series of four controlled above-ground explosions designed to provide new data for overpressure propagation. Infrasound data were collected by LLNL iPhones and other sensors. Origin times, locations HOB, and yields are not being released at this time and are therefore not included in this report. This preliminary report will be updated as access to additional data changes, or instrument responses are determined.

  4. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    PubMed

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  5. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    PubMed Central

    Greenberger, Joel S.; Clump, David; Kagan, Valerian; Bayir, Hülya; Lazo, John S.; Wipf, Peter; Li, Song; Gao, Xiang; Epperly, Michael W.

    2011-01-01

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development. PMID:22655254

  6. Potential theory of radiation

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang

    1989-01-01

    A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.

  7. Angular radiation models for earth-atmosphere system. Volume 2: Longwave radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Green, R. N.; Smith, G. L.; Wielicki, B. A.; Walker, I. J.; Taylor, V. R.; Stowe, L. L.

    1989-01-01

    The longwave angular radiation models that are required for analysis of satellite measurements of Earth radiation, such as those from the Earth Radiation Budget Experiment (ERBE) are presented. The models contain limb-darkening characteristics and mean fluxes. Limb-darkening characteristics are the longwave anisotropic factor and the standard deviation of the longwave radiance. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) data set is described. Tabulated values and computer-generated plots are included for the limb-darkening and mean-flux models.

  8. Power-line harmonic radiation - Can it significantly affect the earth's radiation belts

    NASA Technical Reports Server (NTRS)

    Thorne, R. M.; Tsurutani, B. T.

    1979-01-01

    It has been suggested that harmonic radiation from the earth's 50- and 60-hertz power transmission lines might significantly influence the distribution of electrons in the radiation belts. On the basis of observations presented here, it seems advisable to accept such a hypothesis with caution. New evidence suggests that power-line radiation does not play any major role in the nonadiabatic dynamics of radiation belt electrons.

  9. Optical imaging of radiation-induced metabolic changes in radiation-sensitive and resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Alhallak, Kinan; Jenkins, Samir V.; Lee, David E.; Greene, Nicholas P.; Quinn, Kyle P.; Griffin, Robert J.; Dings, Ruud P. M.; Rajaram, Narasimhan

    2017-06-01

    Radiation resistance remains a significant problem for cancer patients, especially due to the time required to definitively determine treatment outcome. For fractionated radiation therapy, nearly 7 to 8 weeks can elapse before a tumor is deemed to be radiation-resistant. We used the optical redox ratio of FAD/(FAD+NADH) to identify early metabolic changes in radiation-resistant lung cancer cells. These radiation-resistant human A549 lung cancer cells were developed by exposing the parental A549 cells to repeated doses of radiation (2 Gy). Although there were no significant differences in the optical redox ratio between the parental and resistant cell lines prior to radiation, there was a significant decrease in the optical redox ratio of the radiation-resistant cells 24 h after a single radiation exposure (p=0.01). This change in the redox ratio was indicative of increased catabolism of glucose in the resistant cells after radiation and was associated with significantly greater protein content of hypoxia-inducible factor 1 (HIF-1α), a key promoter of glycolytic metabolism. Our results demonstrate that the optical redox ratio could provide a rapid method of determining radiation resistance status based on early metabolic changes in cancer cells.

  10. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome.

    PubMed

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures.

  11. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome

    PubMed Central

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures. PMID:26135043

  12. Radiation research society 1952-2002. Physics as an element of radiation research.

    PubMed

    Inokuti, Mitio; Seltzer, Stephen M

    2002-07-01

    Since its inception in 1954, Radiation Research has published an estimated total of about 8700 scientific articles up to August 2001, about 520, or roughly 6%, of which are primarily related to physics. This average of about 11 articles per year indicates steadily continuing contributions by physicists, though there are appreciable fluctuations from year to year. These works of physicists concern radiation sources, dosimetry, instrumentation for measurements of radiation effects, fundamentals of radiation physics, mechanisms of radiation actions, and applications. In this review, we have selected some notable accomplishments for discussion and present an outlook for the future.

  13. (Mis)Understanding Radiation

    SciTech Connect

    Schreiber, Stephen Bruce

    2016-02-10

    This set of slides discusses radiation and fears concerning it at a non-technical level. Included are some misconceptions and practical consequences resulting from these. The concept of radiation hormesis is explained. The author concludes that a number of significant societal benefits are being foregone because of overly cautious concerns about low-level radiation.

  14. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules.

    PubMed

    Pannkuk, Evan L; Fornace, Albert J; Laiakis, Evagelia C

    2017-10-01

    Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.

  15. Radiation area monitor device and method

    SciTech Connect

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor having a directional radiation sensing capability; a rotation mechanism operable for selectively rotating the radiation sensor such that the directional radiation sensing capability selectively sweeps an area of interest; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the directional radiation sensing capability selectively sweeps the area of interest. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor; and amore » second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  16. Solar radiation measurement project

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.

    1981-01-01

    The Xavier solar radiation measurement project and station are described. Measurements of the total solar radiation on a horizontal surface from an Eppley pyranometer were collected into computer data files. Total radiation in watt hours was converted from ten minute intervals to hourly intervals. Graphs of this total radiation data are included. A computer program in Fortran was written to calculate the total extraterrestrial radiation on a horizontal surface for each day of the month. Educational and social benefits of the project are cited.

  17. Ionizing radiation

    NASA Technical Reports Server (NTRS)

    Tobias, C. A.; Grigoryev, Y. G.

    1975-01-01

    The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.

  18. Radiation Therapy

    MedlinePlus

    ... cancer patients receive it. The radiation may be external, from special machines, or internal, from radioactive substances that a doctor places inside your body. The type of radiation therapy you receive depends on many factors, including The type of cancer The size of ...

  19. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    PubMed

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  20. Radiation Damage Workshop

    NASA Technical Reports Server (NTRS)

    Stella, P. M.

    1984-01-01

    The availability of data regarding the radiation behavior of GaAs and silicon solar cells is discussed as well as efforts to provide sufficient information. Other materials are considered too immature for reasonable radiation evaluation. The lack of concern over the possible catastrophic radiation degradation in cascade cells is a potentially serious problem. Lithium counterdoping shows potential for removing damage in irradiated P-type material, although initial efficiencies are not comparable to current state of the art. The possibility of refining the lithium doping method to maintain high initial efficiencies and combining it with radiation tolerant structures such as thin BSF cells or vertical junction cells could provide a substantial improvement in EOL efficiencies. Laser annealing of junctions, either those formed ion implantation or diffusion, may not only improve initial cell performance but might also reduce the radiation degradation rate.

  1. Fading Hawking radiation

    NASA Astrophysics Data System (ADS)

    Sakalli, Izzet; Halilsoy, Mustafa; Pasaoglu, Hale

    2012-07-01

    In this study, we explore a particular type Hawking radiation which ends with zero temperature and entropy. The appropriate black holes for this purpose are the linear dilaton black holes. In addition to the black hole choice, a recent formalism in which the Parikh-Wilczek's tunneling formalism amalgamated with quantum corrections to all orders in ħ is considered. The adjustment of the coefficients of the quantum corrections plays a crucial role on this particular Hawking radiation. The obtained tunneling rate indicates that the radiation is not pure thermal anymore, and hence correlations of outgoing quanta are capable of carrying away information encoded within them. Finally, we show in detail that when the linear dilaton black hole completely evaporates through such a particular radiation, entropy of the radiation becomes identical with the entropy of the black hole, which corresponds to "no information loss".

  2. The Need for Non-Lethal Weapons in Major Combat Operations

    DTIC Science & Technology

    2008-04-23

    and sent out a shock wave similar to a sonic boom that in theory could have downed a B-17 bomber. Its effects 4 were disabling, rather than...malodorants and toxic incapacitating agents) Mechanical technologies (including nets and barriers) Acoustic technologies (such as infra - and...oxide AUDIBLE INFRASONIC ULTRASONIC BARRIERS Caltrops Tire spikes and strips ENTANGLEMENTS Portable vehicle arresting barrier Running

  3. A Surveillance and Targeting System for an Unmanned Ground Vehicle

    DTIC Science & Technology

    1990-08-01

    CHARACTERISTICS - SELECTABLE INFRASONIC AND ULTRASONIC FREQUENCY SHIFTING CAPABILITY - SUPER-BINAURAL CONFIGURATION ANGLE AND PICKUP SEPARATION GREATER THAN...HUMAN HEAD - VARIABLE GAIN WITH CLIPPING - INTEGRATABLE INTO TOV OPERATOR HELMET - CONTROL INTERFACE: VOLUME UP/DOWN, SONIC ON/OFF, ULTRA ON/OFF... INFRA ON/OFF, BOOST HI/MED/OFF ----- UGV/TOV ----- ---- AUVS/DAYTON ---- LASER SAFETY IMPLICATIONS IMPLICATIONS FOR DESIGN: - POWER UP SEQUENCE - ABORT

  4. Detection of Nuclear Explosions Using Infrasound Techniques

    DTIC Science & Technology

    2007-12-01

    signal correlation between array elements in these arrays can seriously limit the reliable detection of infrasound generated ...goals of this investigation are to identify problems with the detection of explosion- generated infrasonic signals at stations in the global infrasound ...restricted to a thermospheric waveguide. The second part is focused on the limitations imposed on array detection of explosion- generated infrasound

  5. Seismo-Acoustic Generation by Earthquakes and Explosions and Near-Regional Propagation

    DTIC Science & Technology

    2009-09-30

    earthquakes generate infrasound . Three infrasonic arrays in Utah (BGU, EPU, and NOQ), one in Nevada (NVIAR), and one in Wyoming (PDIAR) recorded...Katz, and C. Hayward (2009b). The F-detector Revisited: An Improved Strategy for Signal Detection at Seismic and Infrasound Arrays , Bull. Seism. Soc...sources. RESEARCH ACCOMPLISHED Infrasound Observations of the Wells Earthquake Most studies documenting earthquake - generated infrasound are based

  6. Research Plans for Improving Understanding of Effects of Very Low-Frequency Noise of Heavy Lift Rotorcraft

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Horonieff, Richard D.; Schmitz, Fredric H.

    2010-01-01

    This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads.

  7. Principals Of Radiation Toxicology: Important Aspects.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    “All things are poison, and nothing is without poison; only the dose permits something not to be poisonous.” Paracelsus Key Words: Radiation Toxins (RT), Radiation Toxicants (RTc), Radiation Poisons (RP), Radiation Exposure (RE), Radiation Toxicology is the science about radiation poisons. [D.Popov et al. 2012,J.Zhou et al. 2007,] Radiation Toxins is a specific proteins with high enzymatic activity produced by living irradiated mammals. [D.Popov et al. 2012,] Radiation Toxicants is a substances that produce radiomimetics effects, adverse biological effects which specific for radiation. [D.Popov et al. 2012,] Radiation Toxic agent is specific proteins that can produce pathological biological effects specific for physical form of radiation.[D.Popov et al. 1990,2012,V. Maliev 2007] Different Toxic Substances isolated from cells or from blood or lymph circulation. [Kudriashov I. et al. 1970, D.Popov et al. 1990,2012,V. Maliev et al. 2007,] Radiation Toxins may affects many organs or specific organ, tissue, specific group of cells. [Kudriashov I. et al. 1970, D.Popov et al. 1990,2012,V. Maliev et al. 2007] For example: Radiation Toxins could induce collective toxic clinical states to include: systemic inflammatory response syndrome (SIRS),toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [T. Azizova et al. 2005, Konchalovsky et al., 2005, D. Popov et al 2012] However, Radiation Toxins could induce specific injury of organs or tissue and induce Acute Radiation Syndromes such as Acute Radiation Cerebrovascular Syndrome, Acute Radiation Cardiovascular Syndrome, Acute Radiation Hematopoietic Syndrome, Acute Radiation GastroIntestinal Syndrome. [ D.Popov et al. 1990, 2012, V. Maliev et al. 2007] Radiation Toxins correlates with Radiation Exposure and the dose-response relationship is a fundamental and essential concept in classic Toxicology and Radiation Toxicology.[ D.Popov et al

  8. Radiation receiver

    DOEpatents

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  9. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Carter, J. R., Jr.; Tada, H. Y.

    1973-01-01

    A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

  10. Palliative care and palliative radiation therapy education in radiation oncology: A survey of US radiation oncology program directors.

    PubMed

    Wei, Randy L; Colbert, Lauren E; Jones, Joshua; Racsa, Margarita; Kane, Gabrielle; Lutz, Steve; Vapiwala, Neha; Dharmarajan, Kavita V

    The purpose of this study was to assess the state of palliative and supportive care (PSC) and palliative radiation therapy (RT) educational curricula in radiation oncology residency programs in the United States. We surveyed 87 program directors of radiation oncology residency programs in the United States between September 2015 and November 2015. An electronic survey on PSC and palliative RT education during residency was sent to all program directors. The survey consisted of questions on (1) perceived relevance of PSC and palliative RT to radiation oncology training, (2) formal didactic sessions on domains of PSC and palliative RT, (3) effective teaching formats for PSC and palliative RT education, and (4) perceived barriers for integrating PSC and palliative RT into the residency curriculum. A total of 57 responses (63%) was received. Most program directors agreed or strongly agreed that PSC (93%) and palliative radiation therapy (99%) are important competencies for radiation oncology residents and fellows; however, only 67% of residency programs had formal educational activities in principles and practice of PSC. Most programs had 1 or more hours of formal didactics on management of pain (67%), management of neuropathic pain (65%), and management of nausea and vomiting (63%); however, only 35%, 33%, and 30% had dedicated lectures on initial management of fatigue, assessing role of spirituality, and discussing advance care directives, respectively. Last, 85% of programs reported having a formal curriculum on palliative RT. Programs were most likely to have education on palliative radiation to brain, bone, and spine, but less likely on visceral, or skin, metastasis. Residency program directors believe that PSC and palliative RT are important competencies for their trainees and support increasing education in these 2 educational domains. Many residency programs have structured curricula on PSC and palliative radiation education, but room for improvement exists in

  11. Evaluation of a radiation survey training video developed from a real-time video radiation detection system.

    PubMed

    Wang, Wei-Hsung; McGlothlin, James D; Smith, Deborah J; Matthews, Kenneth L

    2006-02-01

    This project incorporates radiation survey training into a real-time video radiation detection system, thus providing a practical perspective for the radiation worker on efficient performance of radiation surveys. Regular surveys to evaluate radiation levels are necessary not only to recognize potential radiological hazards but also to keep the radiation exposure as low as reasonably achievable. By developing and implementing an instructional learning system using a real-time radiation survey training video showing specific categorization of work elements, radiation workers trained with this system demonstrated better radiation survey practice.

  12. Radiation dosimeter

    DOEpatents

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  13. Radiation dosimeter

    DOEpatents

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  14. RF radiation from lightning

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1978-01-01

    Radiation from lightning in the RF band from 3-300 MHz were monitored. Radiation in this frequency range is of interest as a potential vehicle for monitoring severe storms and for studying the lightning itself. Simultaneous measurements were made of RF radiation and fast and slow field changes. Continuous analogue recordings with a system having 300 kHz of bandwidth were made together with digital records of selected events (principally return strokes) at greater temporal resolution. The data reveal patterns in the RF radiation for the entire flash which are characteristic of flash type and independent of the frequency of observation. Individual events within the flash also have characteristic RF patterns. Strong radiation occurs during the first return strokes, but delayed about 20 micron sec with respect to the begining of the return stroke; whereas, RF radiation from subsequent return strokes tends to be associated with cloud processes preceding the flash with comparatively little radiation occurring during the return stroke itself.

  15. Radiation Monitoring Equipment Dosimeter Experiment

    NASA Technical Reports Server (NTRS)

    Hardy, Kenneth A.; Golightly, Michael J.; Quam, William

    1992-01-01

    Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.

  16. Flexible radiator system

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1982-01-01

    The soft tube radiator subsystem is described including applicable system requirements, the design and limitations of the subsystem components, and the panel manufacturing method. The soft tube radiator subsystem is applicable to payloads requiring 1 to 12 kW of heat rejection for orbital lifetimes per mission of 30 days or less. The flexible radiator stowage volume required is about 60% and the system weight is about 40% of an equivalent heat rejection rigid panel. The cost should also be considerably less. The flexible radiator is particularly suited to shuttle orbiter sortie payloads and also whose mission lengths do not exceed the 30 day design life.

  17. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  18. Pregnancy and Radiation Exposure

    MedlinePlus

    ... pregnant women. Ionizing radiation is the kind of electromagnetic radiation produced by x-ray machines, radioactive isotopes ( ... The reproductive risk of nonionizing radiation, which includes electromagnetic fields emitted from computers, microwave communication systems, microwave ...

  19. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  20. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  1. Radiation receiver

    DOEpatents

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  2. Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine

    NASA Astrophysics Data System (ADS)

    Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.

  3. Radiation Exposure and Pregnancy

    MedlinePlus

    Fact Sheet Adopted: June 2010 Updated: June 2017 Health Physics Society Specialists in Radiation Safety Radiation Exposure and ... radiation and pregnancy can be found on the Health Physics Society " Ask the Experts" Web site. she should ...

  4. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  5. Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; Stowe, L. L.

    1988-01-01

    Presented are shortwave angular radiation models which are required for analysis of satellite measurements of Earth radiation, such as those fro the Earth Radiation Budget Experiment (ERBE). The models consist of both bidirectional and directional parameters. The bidirectional parameters are anisotropic function, standard deviation of mean radiance, and shortwave-longwave radiance correlation coefficient. The directional parameters are mean albedo as a function of Sun zenith angle and mean albedo normalized to overhead Sun. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) and Geostationary Operational Environmental Satellite (GOES) data sets is described. Tabulated values and computer-generated plots are included for the bidirectional and directional modes.

  6. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  7. Radiation health research, 1986 - 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection of 225 abstracts of radiation research sponsored by NASA during the period 1986 through 1990 is reported. Each abstract was categorized within one of four discipline areas: physics, biology, risk assessment, and microgravity. Topic areas within each discipline were assigned as follows: Physics - atomic physics, nuclear science, space radiation, radiation transport and shielding, and instrumentation; Biology - molecular biology, cellular radiation biology, tissue, organs and organisms, radioprotectants, and plants; Risk assessment - radiation health and epidemiology, space flight radiation health physics, inter- and intraspecies extrapolation, and radiation limits and standards; and Microgravity. When applicable subareas were assigned for selected topic areas. Keywords and author indices are provided.

  8. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and

  9. Analysis of Radiation Impact on White Mice through Radiation Dose Mapping in Medical Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Sutikno, Madnasri; Susilo; Arya Wijayanti, Riza

    2016-08-01

    A study about X-ray radiation impact on the white mice through radiation dose mapping in Medical Physic Laboratory is already done. The purpose of this research is to determine the minimum distance of radiologist to X-ray instrument through treatment on the white mice. The radiation exposure doses are measured on the some points in the distance from radiation source between 30 cm up to 80 with interval of 30 cm. The impact of radiation exposure on the white mice and the effects of radiation measurement in different directions are investigated. It is founded that minimum distance of radiation worker to radiation source is 180 cm and X-ray has decreased leukocyte number and haemoglobin and has increased thrombocyte number in the blood of white mice.

  10. Utilization of SRNL-developed radiation-resistant polymer in high radiation environments

    SciTech Connect

    Skibo, A.

    The radiation-resistant polymer developed by the Savannah River National Laboratory is adaptable for multiple applications to enhance polymer endurance and effectiveness in radiation environments. SRNL offers to collaborate with TEPCO in evaluation, testing, and utilization of SRNL’s radiation-resistant polymer in the D&D of the Fukushima Daiichi NPS. Refinement of the scope and associated costs will be conducted in consultation with TECPO.

  11. Radiation safety among cardiology fellows.

    PubMed

    Kim, Candice; Vasaiwala, Samip; Haque, Faizul; Pratap, Kiran; Vidovich, Mladen I

    2010-07-01

    Cardiology fellows can be exposed to high radiation levels during procedures. Proper radiation training and implementation of safety procedures is of critical importance in lowering physician health risks associated with radiation exposure. Participants were cardiology fellows in the United States (n = 2,545) who were contacted by e-mail to complete an anonymous survey regarding the knowledge and practice of radiation protection during catheterization laboratory procedures. An on-line survey engine, SurveyMonkey, was used to distribute and collect the results of the 10-question survey. The response rate was 10.5%. Of the 267 respondents, 82% had undergone formal radiation safety training. Only 58% of the fellows were aware of their hospital's pregnancy radiation policy and 60% knew how to contact the hospital's radiation safety officer. Although 52% of the fellows always wore a dosimeter, 81% did not know their level of radiation exposure in the previous year and only 74% of fellows knew the safe levels of radiation exposure. The fellows who had received formal training were more likely to be aware of their pregnancy policy, to know the contact information of their radiation safety officer, to be aware of the safe levels of radiation exposure, to use dosimeters and RadPad consistently, and to know their own level of radiation exposure in the previous year. In conclusion, cardiology fellows have not been adequately educated about radiation safety. A concerted effort directed at physician safety in the workplace from the regulatory committees overseeing cardiology fellowships should be encouraged. Published by Elsevier Inc.

  12. Radiation Therapy for Cancer

    Cancer.gov

    Radiation therapy is a type of cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Learn about the types of radiation, why side effects happen, which ones you might have, and more.

  13. Antiradiation Antitoxin IgG : Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: High doses of radiation induce apoptotic necrosis of radio-sensitive cells. Mild doses of radiation induce apoptosis or controlled programmed death of radio-sensitive cells with-out development of inflammation and formation of Radiation Toxins. Cell apoptotic necrosis initiates Radiation Toxins (RT)formation. Radiation Toxins play an important role as a trig-ger mechanism for inflammation development and cell lysis. If an immunotherapy approach to treatment of the acute radiation syndromes (ARS) were to be developed, a consideration could be given to neutralization of radiation toxins (Specific Radiation Determinants-SRD) by specific antiradiation antibodies. Therapeutic neutralization effects of the blocking anti-radiation antibodies on the circulated RT had been studied. Radiation Toxins were isolated from the central lymph of irradiated animals with Cerebrovascular(Cv ARS),Cardiovascular (Cr ARS),Gastrointestinal(Gi ARS) and Haemopoietic (Hp ARS) forms of ARS. To accomplish this objective, irradiated animals were injected with a preparation of anti-radiation immunoglobulin G (IgG) obtained from hyperimmune donors. Radiation-induced toxins that we call Specific Radiation Determinants (SRD) possess toxic (neurotoxic, haemotoxic) characteristics as well as specific antigenic properties. Depending on direct physiochemical radiation damage, they can induce development of many of the pathological processes associated with ARS. We have tested several specific hyperimmune IgG preparations against these radiation toxins and ob-served that their toxic properties were neutralized by the specific antiradiation IgGs. Material and Methods: A scheme of experiments was following: 1.Isolation of radiation toxins (RT) from the central lymph of irradiated animals with different form of ARS. 2.Transformation of a toxic form of the RT to a toxoid form of the RT. 3.Immunization of radiation naive animals. Four groups of rabbits were inoculated with a toxoid form of SRD

  14. Study of stratospheric-ionospheric coupling during thunderstorms and tornadoes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1977-01-01

    A continuous-wave-spectrum high-frequency Doppler sounder array with three transmitters at each of three sites was used to observe the dynamics of the coupling of energy between the stratosphere and the ionosphere. During times of severe weather activity wavelike disturbances have been detected on ground-based ionospheric sounding records as perturbations in electron densities. Infrasonic waves with wave periods of 3-7 min and with horizontal phase velocities of 600-800 m/s were observed when there was thunderstorm activity; gravity waves with wave periods of 10-15 min and horizontal phase velocities of 100-200 m/s were detected when there was tornado activity. Both triangulations from the cross correlation functions of the Doppler records based on an assumption of no background wind shear and ray-tracing computations including an assumed background wind shear indicate that the waves originated in the vicinity of the thunderstorms and tornadoes. A comparison of the wavelengths of the infrasonic and gravity waves observed at ionospheric heights and those in cloud-top pictures from satellites show that they are all of the order of 100-300 km.

  15. The experimental research on response characteristics of coal samples under the uniaxial loading process

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Wei, Jian-Ping; Wen, Zhi-Hui; Wang, Yun-Gang; Jia, Lin-Xing

    2017-11-01

    In order to study the response characteristics of infrasound in coal samples under the uniaxial loading process, coal samples were collected from GengCun mine. Coal rock stress loading device, acoustic emission tested system and infrasound tested system were used to test the infrasonic signal and acoustic emission signal under uniaxial loading process. The tested results were analyzed by the methods of wavelet filter, threshold denoise, time-frequency analysis and so on. The results showed that in the loading process, the change of the infrasonic wave displayed the characteristics of stage, and it could be divided into three stages: initial stage with a certain amount infrasound events, middle stage with few infrasound events, and late stage gradual decrease. It had a good consistency with changing characteristics of acoustic emission. At the same time, the frequency of infrasound was very low. It can propagate over a very long distance with little attenuation, and the characteristics of the infrasound before the destruction of the coal samples were obvious. A method of using the infrasound characteristics to predict the destruction of coal samples was proposed. This is of great significance to guide the prediction of geological hazards in coal mines.

  16. Solar radiation in Iceland

    NASA Astrophysics Data System (ADS)

    Ólafsson, Haraldur; Cataldi, Maxime; Zehouf, Hafsa; Pálmason, Bolli

    2014-05-01

    Short wave radiation has been observed at several locations in Iceland in recent years. The observations reveal that there is large spatial variability in the incoming radiation. There are indications of a coast-to-inland gradient and there is much greater radiation at central-inland locations than further west as well in the far east. The results are in line with Markús Á. Einarsson's reports where estimation of radiation was based on manned cloud observations shortly after the middle of the 20th century. Values of radiation retrieved from the operational simulations of the European Centre for Medium-range Weather Forecasts (ECMWF) compare in general well with the observations.

  17. Nuclear radiation analysis

    NASA Technical Reports Server (NTRS)

    Knies, R. J.; Byrn, N. R.; Smith, H. T.

    1972-01-01

    A study program of radiation shielding against the deleterious effects of nuclear radiation on man and equipment is reported. The methods used to analyze the radiation environment from bremsstrahlung photons are discussed along with the methods employed by transport code users. The theory and numerical methods used to solve transport of neutrons and gammas are described, and the neutron and cosmic fluxes that would be present on the gamma-ray telescope were analyzed.

  18. Radiation resistence of microorganisms from radiation sterilization processing environments

    NASA Astrophysics Data System (ADS)

    Sabovljev, Svetlana A.; Žunić, Zora S.

    The radiation resistance of microorganisms was examined on the samples of dust collected from the radiation sterilization processing environments including assembly, storage, and sterilization plant areas. The isolation of radiation resistant strains was performed by irradiation with screening doses ranging from 10 to 35 kGy and test pieces containing 10 6 to 10 8 CFU in dried serum-broth, representing 100 to 5000 colonies of primary cultures of microorganisms from 7 different sites. In an examination of 16900 colonies of aerobic microorganisms from 3 hygienically controlled production sites and 4 uncontrolled ones, 30 strains of bacteria were isolated. Of those 15 were classified as genus Bacillus, 9 as Micrococcus and 6 as Sarcina. All of the 15 strains of Gram positive sporeforming aerobic rods exhibited an exponential decrease in the surviving fraction as a function of dose, indicating that the inactivation of spores of aerobic rods is a consequence of a single energy deposition into the target. All strains were found to be moderately resistant to radiation with D-6 values (dose required to reduce survival to 6 log cycles) between 18 and 26 kGy. All of the isolated Gram positive cocci showed inactivation curves having a shoulder, indicating that different processes are involved in the inactivation of these cells, e.g. accumulation of sublethal lesions, or final repair capacity of potential lethal lesions. Moderate radiation resistance was observed in 13 strains with D-6 values between 16 to 30 kGy. Two slow-growing, red pigmented strains tentatively classified as genus Micrococcus isolated from uncontrolled sites (human dwellings) were exceptionally resistant with D-6 more than 45 kGy. For hygienically controlled sites, Gram positive spereforming rods composed two thirds of the resistant microflora, while Gram positive cocci comprised one third. For hygienically uncontrolled sites this ratio was reversed. An assumption is made that one isolated strain has grown

  19. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  20. The radiation balance of the earth-atmosphere system from Nimbus 3 radiation measurements

    NASA Technical Reports Server (NTRS)

    Raschke, E.; Vonderhaar, T. H.; Pasternak, M.; Bandeen, W. R.

    1973-01-01

    The radiation balance of the earth-atmosphere system and its components was computed from global measurements of radiation reflected and emitted from the earth to space. These measurements were made from the meteorological satellite Nimbus 3 during the periods from April 16 to August 15, 1969; October 3 to 17, 1969; and January 21 to February 3, 1970. Primarily the method of evaluation, its inherent assumptions, and possible error sources were discussed. Results are presented by various methods: (1) global, hemispherical, and zonal averages obtained from measurements in all semimonthly periods and (2) global maps of the absorbed solar radiation, the albedo, the outgoing longwave radiation, and the radiation balance obtained from measurements during semimonthly periods in each season (May 1 to 15, July 16 to 31, and October 3 to 17, 1969, and January 21 to February 3, 1970). Annual global averages of the albedo and of the outgoing longwave radiation were determined. These values balance to within 1 percent the annual global energy input by solar radiation that was computed for a solar constant.

  1. Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Kwon, Junhyun; Shin, Chansun

    2014-01-01

    The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.

  2. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides.

    PubMed

    Sickafus, Kurt E; Grimes, Robin W; Valdez, James A; Cleave, Antony; Tang, Ming; Ishimaru, Manabu; Corish, Siobhan M; Stanek, Christopher R; Uberuaga, Blas P

    2007-03-01

    Ceramics destined for use in hostile environments such as nuclear reactors or waste immobilization must be highly durable and especially resistant to radiation damage effects. In particular, they must not be prone to amorphization or swelling. Few ceramics meet these criteria and much work has been devoted in recent years to identifying radiation-tolerant ceramics and the characteristics that promote radiation tolerance. Here, we examine trends in radiation damage behaviour for families of compounds related by crystal structure. Specifically, we consider oxides with structures related to the fluorite crystal structure. We demonstrate that improved amorphization resistance characteristics are to be found in compounds that have a natural tendency to accommodate lattice disorder.

  3. RADIATION INTEGRATOR

    DOEpatents

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  4. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  5. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  6. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  7. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    PubMed

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  8. Radiation Risk From Medical Imaging

    PubMed Central

    Lin, Eugene C.

    2010-01-01

    This review provides a practical overview of the excess cancer risks related to radiation from medical imaging. Primary care physicians should have a basic understanding of these risks. Because of recent attention to this issue, patients are more likely to express concerns over radiation risk. In addition, physicians can play a role in reducing radiation risk to their patients by considering these risks when making imaging referrals. This review provides a brief overview of the evidence pertaining to low-level radiation and excess cancer risks and addresses the radiation doses and risks from common medical imaging studies. Specific subsets of patients may be at greater risk from radiation exposure, and radiation risk should be considered carefully in these patients. Recent technical innovations have contributed to lowering the radiation dose from computed tomography, and the referring physician should be aware of these innovations in making imaging referrals. PMID:21123642

  9. Space radiation studies

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.

  10. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  11. Estimating shortwave solar radiation using net radiation and meteorological measurements

    USDA-ARS?s Scientific Manuscript database

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  12. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  13. Beneficial uses of radiation

    SciTech Connect

    Fox, M.R.

    1991-10-01

    An overall decline in technical literacy within the American public has come at a time when technological advances are accelerating in the United States and around the world. This had led to a large communication gulf between the general public and the technologists. Nowhere is this more evident then with the topic of radiation. Regrettably, too few people know about sources of radiation, the pervasiveness, amounts, and variabilities, and do not have a true understanding of the environment in which we live. Nor do many people know that radiation has been used in beneficial ways for decades around the world.more » While the general public does not know of the scientific applications to which radiation has been deployed, it nevertheless had benefited tremendously from these efforts. Thanks to the well know properties of radiation, scientific ingenuity has found many uses of radiation in chemical and agricultural research, biomedical research, in the diagnoses and treatment of hundreds of types of diseases, in industrial applications, food irradiation, and many others. This paper provides a sample of the types of uses to which radiation has been used to help advance the betterment of humankind.« less

  14. Space Radiation and the Brain

    NASA Astrophysics Data System (ADS)

    Hampson, R. E.

    Solar and cosmic radiation pose a number of physiological challenges to human spaceflight outside the protective region of Earth's magnetosphere. Aside from well-described effects of radiation on the blood-forming tissues of the hematopoietic system, there is increasing evidence of direct effects of radiation on the brain as evidenced by studies showing longitudinal decline in memory and cognitive function following radiation specifically directed at brain tissue. These indications strengthen the need to more fully research effects of radiation - particular those components associated with solar wind and galactic cosmic radiation - on the nervous system of mammals from rodents to humans.

  15. Propagation of sound through the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Badavi, F.; Meredith, R. W.; Becher, J.

    1982-01-01

    The infrasonic signatures generated by the main blade slap rate of a helicoper were used in an effort to detect infrasound generated by clear air turbulence. The artificially produced infrasound and the response of the data acquisition system used are analyzed. Flight procedures used by the pilot are described and the helicopter flight information is tabulated. Graphs show the relative frequency amplitudes obtained at various microphone locations.

  16. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  17. Radiation: Behavioral Implications in Space

    DTIC Science & Technology

    1988-01-01

    central nervous system (CNS). Thus, because of the uncertainties bout proton and HZE radiation, the CNS and behavioral effects of these radiations should...central nervous system or with an indirect measure of emesis (conditioned taste aversion) may occur as low as 0.1 -0.25 Gy. 305 (3) Radiation effects ...paper: (1) space radiations are more effective at disrupting behavior; (2) task demands can aggravate the radiation-disruption; (3) efforts to mitigate

  18. Foundations of radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mihalas, D.; Mihalas, B. W.

    This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.

  19. The biological effect of prolonged radiation and ways of selecting new anti-radiation drugs effective in this kind of radiation injury

    NASA Technical Reports Server (NTRS)

    Rogozkin, V. D.; Chertkov, K. S.; Nikolov, I.

    1974-01-01

    The basic characteristics of prolonged radiation - increased tolerance of radiation injury - are attributed to cellular kinetics; as dose rate is reduced, the population rate is not disturbed, particularly that of stem cells which makes it possible for the organism to tolerate higher radiation loads. It is concluded that this effect makes approved radio protectors, whose effect contains an established cytostatic component, unsuitable for prolonged radiation. It is better to correct the stem pool formation process by either accelerating the proliferation of cells or limiting the effect of stimuli causing cells to lose colony forming properties.

  20. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life.

  1. Frequency-independent radiation modes of interior sound radiation: An analytical study

    NASA Astrophysics Data System (ADS)

    Hesse, C.; Vivar Perez, J. M.; Sinapius, M.

    2017-03-01

    Global active control methods of sound radiation into acoustic cavities necessitate the formulation of the interior sound field in terms of the surrounding structural velocity. This paper proposes an efficient approach to do this by presenting an analytical method to describe the radiation modes of interior sound radiation. The method requires no knowledge of the structural modal properties, which are often difficult to obtain in control applications. The procedure is exemplified for two generic systems of fluid-structure interaction, namely a rectangular plate coupled to a cuboid cavity and a hollow cylinder with the fluid in its enclosed cavity. The radiation modes are described as a subset of the acoustic eigenvectors on the structural-acoustic interface. For the two studied systems, they are therefore independent of frequency.

  2. Improving Infrasound Signal Detection and Event Location in the Western US Using Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Dannemann, F. K.; Park, J.; Marcillo, O. E.; Blom, P. S.; Stump, B. W.; Hayward, C.

    2016-12-01

    Data from five infrasound arrays in the western US jointly operated by University of Utah Seismograph Station and Southern Methodist University are used to test a database-centric processing pipeline, InfraPy, for automated event detection, association and location. Infrasonic array data from a one-year time period (January 1 2012 to December 31 2012) are used. This study focuses on the identification and location of 53 ground-truth verified events produced from near surface military explosions at the Utah Test and Training Range (UTTR). Signals are detected using an adaptive F-detector, which accounts for correlated and uncorrelated time-varying noise in order to reduce false detections due to the presence of coherent noise. Variations in detection azimuth and correlation are found to be consistent with seasonal changes in atmospheric winds. The Bayesian infrasonic source location (BISL) method is used to produce source location and time credibility contours based on posterior probability density functions. Updates to the previous BISL methodology include the application of celerity range and azimuth deviation distributions in order to accurately account for the spatial and temporal variability of infrasound propagation through the atmosphere. These priors are estimated by ray tracing through Ground-to-Space (G2S) atmospheric models as a function of season and time of day using historic atmospheric characterizations from 2007 to 2013. Out of the 53 events, 31 are successfully located using the InfraPy pipeline. Confidence contour areas for maximum a posteriori event locations produce error estimates which are reduced a maximum of 98% and an average of 25% from location estimates utilizing a simple time independent uniform atmosphere. We compare real-time ray tracing results with the statistical atmospheric priors used in this study to examine large time differences between known origin times and estimated origin times that might be due to the misidentification of

  3. New Approaches to Radiation Protection

    PubMed Central

    Rosen, Eliot M.; Day, Regina; Singh, Vijay K.

    2015-01-01

    Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development. PMID:25653923

  4. Broadband optical radiation detector

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Hong, S. D.; Moacanin, J. (Inventor)

    1981-01-01

    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein.

  5. Prostate radiation - discharge

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000399.htm Prostate radiation - discharge To use the sharing features on ... keeping or getting an erection may occur after prostate radiation therapy. You may not notice this problem ...

  6. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  7. Radiation delivery system and method

    DOEpatents

    Sorensen, Scott A.; Robison, Thomas W.; Taylor, Craig M. V.

    2002-01-01

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  8. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  9. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, John R.; Schertz, William W.

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  10. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  11. Implications of radiation dose and exposed populations on radiation protection in the 21st century.

    PubMed

    Boice, John D

    2014-02-01

    Radiation is in the public eye because of Fukushima, computed tomography examinations, airport screenings, and possible terrorist attacks. What if the Boston Marathon pressure cooker had also contained a radioactive source? Nuclear power may be on the resurgence. Because of the increasing uses of radiation, the increases in population exposures, and the increasing knowledge of radiation effects, constant vigilance is needed to keep up with the changing times. Psychosocial disorders associated with the inappropriate (but real) fear of radiation need to be recognized as radiation detriments. Radiation risk communication, radiation education, and communication must improve at all levels: to members of the public, to the media, to other scientists, and to radiation professionals. Stakeholders must continue to be involved in all radiation protection initiatives. Finally, we are at a crisis as the number of war babies (me) and baby boomers (you?) who are also radiation professionals continues its rapid decline, and there are few in the pipeline to fill the current and looming substantial need: "The old road is rapidly agin'" (Dylan). NCRP has begun the WARP initiative-Where Are the Radiation Professionals?-an attempt to rejuvenate the pipeline of future professionals before the trickle becomes tiny drops. A Workshop was held in July 2013 with government agencies, military, private sector, universities, White House representatives, and societies to develop a coordinated and national action plan. A "Manhattan Project" is needed to get us "Back to the Future" in terms of the funding levels that existed in years past that provided the necessary resources to train, engage, and retain (a.k.a., jobs) the radiation professionals needed for the nation. If we don't keep swimmin' (Disney's Nemo) we'll "sink like a stone" (Dylan).Introduction of Implications of Radiation Dose and Exposed Populations (Video 2:06, http://links.lww.com/HP/A25).

  12. Understanding Radiation.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radiation is a natural energy force that has been a part of the environment since the Earth was formed. It takes various forms, none of which can be smelled, tasted, seen, heard, or felt. Nevertheless, scientists know what it is, where it comes from, how to measure and detect it, and how it affects people. Cosmic radiation from outer space and…

  13. Radiation Hydrodynamics with GIZMO: The Disruption of Giant Molecular Clouds by Stellar Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Khatami, David; Hopkins, Philip F.

    2016-01-01

    We present a numerical implementation of radiation hydrodynamics for the meshless code GIZMO. The radiation transport is treated as an anisotropic diffusion process combined with radiation pressure effects, photoionization with heating and cooling routines, and a multifrequency treatment of an arbitrary number of sources. As a first application of the method, we investigate the disruption of giant molecular clouds by stellar radiative feedback. Specifically, what fraction of the gas must a GMC convert into stars to cause self-disruption? We test a range of cloud masses and sizes with several source luminosities to probe the effects of photoheating and radiation pressure on timescales shorter than the onset of the first supernovae. Observationally, only ~1-10% of gas is converted into stars, an inefficiency that is likely the result of feedback from newly formed stars. Whether photoheating or radiation pressure dominates is dependent on the given cloud properties. For denser clouds, we expect photoheating to play a negligible role with most of the feedback driven by radiation pressure. This work explores the necessary parameters a GMC must have in order for radiation pressure to be the main disruption process.

  14. Investigating Undergraduate Students’ Conceptions of Radiation

    NASA Astrophysics Data System (ADS)

    Romine, James M.; Buxner, Sanlyn; Impey, Chris; Nieberding, Megan; Antonellis, Jessie C.

    2014-11-01

    Radiation is an essential topic to the physical sciences yet is often misunderstood by the general public. The last time most people have formal instruction about radiation is as students in high school and this knowledge will be carried into adulthood. Peoples’ conceptions of radiation influence their attitude towards research regarding radiation, radioactivity, and other work where radiation is prevalent. In order to understand students’ ideas about radiation after having left high school, we collected science surveys from nearly 12,000 undergraduates enrolled in introductory science courses over a span of 25 years. This research investigates the relationship between students’ conceptions of radiation and students’ personal beliefs and academic field of study.Our results show that many students in the sample were unable to adequately describe radiation. Responses were typically vague, brief, and emotionally driven. Students’ field of study was found to significantly correlate with their conceptions. Students pursuing STEM majors were 60% more likely to describe radiation as an emission and/or form of energy and cited atomic or radioactive sources of radiation twice as often as non-STEM students. Additionally, students’ personal beliefs also appear to relate to their conceptions of radiation. The most prominent misconception shown was that radiation is a generically harmful substance, which was found to be consistent throughout the duration of the study. In particular, non-science majors in our sample had higher rates of misconceptions, often generalized the idea of radiation into a broad singular topic, and had difficulty properly identifying sources.Generalized ideas of radiation and the inability to properly recognize sources of radiation may contribute to the prevalent misconception that radiation is an inexplicably dangerous substance. A basic understanding of both electromagnetic and particulate radiation and the existence of radiation at various

  15. Space Radiation Risk Assessment

    NASA Astrophysics Data System (ADS)

    Blakely, E.

    Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from

  16. Radiation Protection Handbook

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  17. Freezable Radiator Coupon Testing and Full Scale Radiator Design

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses

    2009-01-01

    Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.

  18. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  19. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  20. Status of LDEF radiation modeling

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.

  1. Radiation treatment for newly diagnosed esophageal cancer with prior radiation to the thoracic cavity

    SciTech Connect

    Sponseller, Patricia, E-mail: sponselp@uw.edu; Lenards, Nishele; Kusano, Aaron

    2014-10-01

    The purpose of this report is to communicate the use of single-positron emission computed tomography scan in planning radiation treatments for patients with a history of radiation to the thoracic cavity. A patient presented with obstructive esophageal cancer, having previously received chemotherapy and radiation therapy to the mediastinum for non-Hodgkin lymphoma 11 years earlier. Owing to a number of comorbidities, the patient was not a surgical candidate and was referred to the University of Washington Medical Center for radiation therapy. Prior dose to the spinal cord and lung were taken into account before designing the radiation treatment plan.

  2. Radiation effects in space

    NASA Astrophysics Data System (ADS)

    Fry, R. J. M.

    The radiation protection guidelines of the National Aeronautics and Space Administration (NASA) are under review by Scientific Committe 75 of the National Council on Radiation Protection and Measurements. The re-evaluation of the current guidelines is necessary, first, because of the increase in information about radiation risks since 1970 when the original recommendations were made and second, the population at risk has changed. For example, women have joined the ranks of the astronauts. Two types of radiation, protons and heavy ions, are of particular concern in space. Unfortunately, there is less information about the effects on tissues and the induction of cancer by these radiations than by other radiations. The choice of Quality Factors (Q) for obtaining dose equivalents for these radiations, is an important aspect of the risk estimate for space travel. There are not sufficient data for the induction of late effects by either protons or by heavy ions. The current information suggests a RBE for the relative protons of about 1, whereas, -a RBE of 20 for tumor induction by heavy ions, such as iron-56, appears appropriate. The recommendations for the dose equivalent career limits for skin and the lens of the eye have been reduced but the 30-day and annual limits have been raised.

  3. Radiative Energy Budget Studies Using Observations from the Earth Radiation Budget Experiment (ERBE)

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, R.; Shie, M.; Olson, R.; Collimore, C.; Friedman, M.

    1997-01-01

    Our research activities under this NASA grant have focused on two broad topics associated with the Earth Radiation Budget Experiment (ERBE): (1) the role of clouds and the surface in modifying the radiative balance; and (2) the spatial and temporal variability of the earth's radiation budget. Each of these broad topics is discussed separately in the text that follows. The major points of the thesis are summarized in section 3 of this report. Other dissertation focuses on deriving the radiation budget over the TOGA COARE region.

  4. Is Radiation Dangerous?

    SciTech Connect

    Lincoln, Don

    Radiation is all around us, ranging from the non-dangerous to the lethal. In this video, Fermilab’s Dr. Don Lincoln talks about radiation and gives you the real deal on whether it is dangerous or not.

  5. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuringmore » the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.« less

  6. RADIATION INJURY OF MYELOPOIESIS IN MONKEYS,

    DTIC Science & Technology

    RADIATION EFFECTS, *HEMATOPOIETIC SYSTEM, RADIATION INJURIES, GAMMA RAYS, LEUKOCYTES, BLOOD COUNTS, HEMOGLOBIN, MORTALITY RATE, BONE MARROW, LEUKEMIA, ANEMIAS , RADIATION SICKNESS, RADIATION DOSAGE, USSR.

  7. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Three-dimensional, position-sensitive radiation detection

    DOEpatents

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  9. Understanding Radiation Thermometry. Part II

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2015-01-01

    This document is a two-part course on the theory and practice of radiation thermometry. Radiation thermometry is the technique for determining the temperature of a surface or a volume by measuring the electromagnetic radiation it emits. This course covers the theory and practice of radiative thermometry and emphasizes the modern application of the field using commercially available electronic detectors and optical components. The course covers the historical development of the field, the fundamental physics of radiative surfaces, along with modern measurement methods and equipment.

  10. Understanding Radiation Thermometry. Part I

    NASA Technical Reports Server (NTRS)

    Risch Timothy K.

    2015-01-01

    This document is a two-part course on the theory and practice of radiation thermometry. Radiation thermometry is the technique for determining the temperature of a surface or a volume by measuring the electromagnetic radiation it emits. This course covers the theory and practice of radiative thermometry and emphasizes the modern application of the field using commercially available electronic detectors and optical components. The course covers the historical development of the field, the fundamental physics of radiative surfaces, along with modern measurement methods and equipment.

  11. Radiation and thyroid neoplasia

    SciTech Connect

    McConahey, W.M.; Hayles, A.B.

    1976-06-01

    It is now generally accepted that an association exists between external radiation administered to the head, neck, and upper thorax of infants, children, and adolescents and the subsequent development of neoplastic changes in the thyroid gland. Until recent years, external radiation was frequently administered to shrink an enlarged thymus or for the treatment of tonsillitis, adenoiditis, hearing loss, hemangioma, acne, tinea capitis, and other conditions. During the course of these treatments, the thyroid gland was exposed to scatter radiation. The use of external radiation therapy was then accepted practice, and its value was attested by many. Concern about the adversemore » effects was not initially appreciated, primarily because of the long periods of time between the radiation and the recognition of changes in the thyroid. The availability and effectiveness of other therapeutic measures and the growing concern about the delayed effects of radiation therapy when administered to the young for relatively benign conditions has, in recent years, largely eliminated use of this form of therapy, except in a few unusual conditions.« less

  12. Packet personal radiation monitor

    DOEpatents

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  13. 10 CFR 835.901 - Radiation safety training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...

  14. 10 CFR 835.901 - Radiation safety training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...

  15. 10 CFR 835.901 - Radiation safety training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...

  16. Predicted levels of human radiation tolerance extrapolated from clinical studies of radiation effects

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1972-01-01

    Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.

  17. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  18. Space Radiation Research at NASA

    NASA Technical Reports Server (NTRS)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  19. Human radiation tolerance

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1974-01-01

    The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.

  20. Liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; White, K. Alan, III

    1987-01-01

    A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w), ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator, (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.

  1. Acute Radiation Disease : Cutaneous Syndrome and Toxic properties of Radiomimetics -Radiation Neurotoxins and Hematotoxins.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Cutaneous injury is an important complication of a general or local acute irradiation. A type of a skin and tissues lesions depends on a type, intensity, and period of irradiation. Also, the clinical picture, signs, and manifestations of the cutaneous syndrome depend on a type of the radiation toxins circulated in lymph and blood of irradiated mammals. Radiation Toxins were isolated from lymph of the mammals that were irradiated and developed different forms of the Acute Radiation Syndromes (ARS) -Cerebrovascular, Cardiovascular, Gastrointestinal, and Hematopoietic. Radiation Toxins can be divided into the two important types of toxins (Neu-rotoxins and Hematotoxins) or four groups. The effects of Radiation Neurotoxins include severe damages and cell death of brain, heart, gastrointestinal tissues and endothelial cells of blood and lymphatic vessels. The hematotoxicity of Hematotoxic Radiation Toxins includes lym-phopenia, leukopenia, thrombocytopenia, and anemia in the blood circulation and transitory lymphocytosis and leukocytosis in the Central Lymphatic System. In all cases, administration of the Radiomimetics (Radiation Toxins) intramuscularly or intravenously to healthy, radiation naive mammals had induced and developed the typical clinical manifestations of the ARS. In all cases, administration of Radiomimetics by subtoxic doses had demonstrated development of typical clinical signs of the cutaneous syndrome such as hair loss, erythema, swelling, desqua-mation, blistering and skin necrosis. In animal-toxic models, we have activated development of the local skin and tissue injury after injection of Radiation Toxins with cytoxic properties.

  2. Earth Radiation Budget Science, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system planned in order to understand climate on various temporal and spatial scales is considered. Topics discussed include: climate modeling, climate diagnostics, radiation modeling, radiation variability and correlation studies, cloudiness and the radiation budget, and radiation budget and related measurements in 1985 and beyond.

  3. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    SciTech Connect

    Jagsi, Reshma, E-mail: rjagsi@med.umich.edu; Bekelman, Justin E.; Brawley, Otis W.

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patientsmore » and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.« less

  4. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  5. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  6. Radiation oncology in Canada.

    PubMed

    Giuliani, Meredith; Gospodarowicz, Mary

    2018-01-01

    In this article we provide an overview of the Canadian healthcare system and the cancer care system in Canada as it pertains to the governance, funding and delivery of radiotherapy programmes. We also review the training and practice for radiation oncologists, medical physicists and radiation therapists in Canada. We describe the clinical practice of radiation medicine from patients' referral, assessment, case conferences and the radiotherapy process. Finally, we provide an overview of the practice culture for Radiation Oncology in Canada. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Solar radiation on Mars

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  8. Solar radiation on Mars

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1990-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  9. IMPROVEMENTS IN RADIATION SHUTTERS

    SciTech Connect

    None

    1961-07-12

    An apparatus for the protection of eyesight from the radiated energy released from a thermonuclear explosion is described. The apparatus consists of a shutter which is opaque to the radiation, an electrically ignitible detonator for blowing the shutter across the path of the radiation, and a phototransistor for igniting the detonator when the radiated energy exceeds a level which is injurious to the eyesight. There may be a second detonator for blowing the shutter away after the explosion has subsided. The second detonator is manually operated. Diagrams show the apparatus attached to a soldier's helmet and a turret. (N.W.R.)

  10. Radiation-induced leukemia: lessons from history.

    PubMed

    Finch, Stuart C

    2007-03-01

    Beginning in 1895, with the discovery of x-rays, alpha and beta radiation, uranium, radium, thorium, and polonium, the fascinating story of the beginning of knowledge concerning the existence of ionizing radiation unfolds. This brief history of radiation and leukemia is divided into two main parts: the first 50 years, which deals with the confusion regarding radiation effects and the failure to clearly recognize that exposure to ionizing radiation may induce leukemia. The second part focuses on the last 60 years, when the radiation induction of leukemia was accepted and some progress achieved in understanding the clinical and pathophysiological characteristics of radiation-induced leukemia. Particular attention in this is paid to the effects of radiation on the survivors of Hiroshima and Nagasaki. The discussion in this section also covers some concepts of radiation-induced cell damage and ruminations on unanswered questions.

  11. Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy

    SciTech Connect

    Lingos, T.I.; Recht, A.; Vicini, F.

    1991-07-01

    The likelihood of radiation pneumonitis and factors associated with its development in breast cancer patients treated with conservative surgery and radiation therapy have not been well established. To assess these, the authors retrospectively reviewed 1624 patients treated between 1968 and 1985. Median follow-up for patients without local or distant failure was 77 months. Patients were treated with either tangential fields alone (n = 508) or tangents with a third field to the supraclavicular (SC) or SC-axillary (AX) region (n = 1116). Lung volume treated in the tangential fields was generally limited by keeping the perpendicular distance (demagnified) at the isocentermore » from the deep field edges to the posterior chest wall (CLD) to 3 cm or less. Seventeen patients with radiation pneumonitis were identified (1.0%). Radiation pneumonitis was diagnosed when patients presented with cough (15/17, 88%), fever (9/17, 53%), and/or dyspnea (6/17, 35%) and radiographic changes (17/17) following completion of RT. Radiographic infiltrates corresponded to treatment portals in all patients, and in 12 of the 17 patients, returned to baseline within 1-12 months. Five patients had permanent scarring on chest X ray. No patient had late or persistent pulmonary symptoms. The incidence of radiation pneumonitis was correlated with the combined use of chemotherapy (CT) and a third field. Three percent (11/328) of patients treated with a 3-field technique who received chemotherapy developed radiation pneumonitis compared to 0.5% (6 of 1296) for all other patients (p = 0.0001). When patients treated with a 3-field technique received chemotherapy concurrently with radiation therapy, the incidence of radiation pneumonitis was 8.8% (8/92) compared with 1.3% (3/236) for those who received sequential chemotherapy and radiation therapy (p = 0.002).« less

  12. An experimental device for characterizing degassing processes and related elastic fingerprints: Analog volcano seismo-acoustic observations.

    PubMed

    Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego

    2018-05-01

    A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.

  13. An experimental device for characterizing degassing processes and related elastic fingerprints: Analog volcano seismo-acoustic observations

    NASA Astrophysics Data System (ADS)

    Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego

    2018-05-01

    A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.

  14. Malignant mesothelioma following radiation exposure

    SciTech Connect

    Antman, K.H.; Corson, J.M.; Li, F.P.

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommonmore » cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered.« less

  15. Limitation of the synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu; Yang, Jianming

    2001-06-01

    In recent years, owing to the great success of the synchrotron radiation in contemporary astrophysical research, the abusive use of synchrotron radiation has been emerged. In this paper, we show that the traditional idea, "electrons with a power-law energy distribution certainly yield a power-law radiation spectrum", should be changed. If the magnetic field of the radiation region is not flat and straight, the synchro-curvature radiation, instead of the synchrotron radiation, should be used to get a real description. In a curved magnetic field, the resulting spectrum of electrons could obviously distinct from a power-law one. This means that the way of only adding many other mechanisms to a pure power-law spectrum to get the expected spectrum might not be reasonable.

  16. Adaptive radiation versus 'radiation' and 'explosive diversification': why conceptual distinctions are fundamental to understanding evolution.

    PubMed

    Givnish, Thomas J

    2015-07-01

    Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within a lineage. Recently, some researchers have begun to use 'adaptive radiation' or 'radiation' as synonymous with 'explosive species diversification'. This essay aims to clarify distinctions between these concepts, and the related ideas of geographic speciation, sexual selection, key innovations, key landscapes and ecological keys. Several examples are given to demonstrate that adaptive radiation and explosive diversification are not the same phenomenon, and that focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some 'radiations' involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of 'adaptive radiation' appear to involve effects driven partly by geographic speciation, species' dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  17. Job satisfaction and its relationship to Radiation Protection Knowledge, Attitude and Practice (RPKAP) of Iranian radiation workers.

    PubMed

    Alavi, S S; Dabbagh, S T; Abbasi, M; Mehrdad, R

    2017-01-23

    This study aimed to find the association between job satisfaction and radiation protection knowledge, attitude and practice of medical radiation workers occupationally exposed to ionizing radiation. In this crosssectional study, 530 radiation workers affiliated to Tehran University of Medical Sciences completed a knowledge, attitude and practice questionnaire on protecting themselves against radiation and Job Descriptive Index as a job satisfaction measure during May to November 2014. Opportunities for promotion (84.2%) and payment (91.5%) were the most important factors for dissatisfaction. Radiation workers who were married, had more positive attitudes toward protecting themselves against radiation, and had higher level of education accounted for 15.8% of the total variance in predicting job satisfaction. In conclusion, medical radiation workers with a more positive attitude toward self-protection against radiation were more satisfied with their jobs. In radiation environments, improving staff attitudes toward their safety may be considered as a key strategy to increase job satisfaction.

  18. Endoscopic treatment of chronic radiation proctopathy.

    PubMed

    Wilson, Sydney A; Rex, Douglas K

    2006-09-01

    Chronic radiation proctopathy is a complication of pelvic radiation therapy. The acute phase of radiation injury to the rectum occurs during or up to 3 months following radiation. Acute radiation injury can continue into a chronic phase or chronic radiation proctopathy may develop after a latent period of several months or years. Symptoms associated with the condition include diarrhea, rectal pain, bleeding, tenesmus, and stricture formation. Of the various symptoms, only bleeding from radiation-induced telangiectasias is amenable to endoscopic therapy. This paper summarizes the findings of experts in the field on endoscopic treatment of bleeding from chronic radiation proctopathy. Medical management is generally ineffective in controlling bleeding from chronic radiation proctopathy. Surgical intervention has a high incidence of morbidity. Promising advances have been made in endoscopic therapy, including formalin, neodymium/yttrium aluminum garnet, argon and potassium titanyl phosphate laser treatments, as well as argon plasma coagulation. Argon plasma coagulation presents an effective, efficient, inexpensive and reasonably safe noncontact method for destruction of radiation telangiectasias. Based on currently available data and trends, argon plasma coagulation is the favored treatment for bleeding from chronic radiation proctopathy.

  19. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  20. DOE 2011 occupational radiation exposure

    SciTech Connect

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.« less

  1. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  2. Chapter 1: Direct Normal Radiation

    SciTech Connect

    Myer, Daryl R.

    2016-04-15

    This chapter addresses the quantitative and qualitative aspects of the solar resource, the direct solar radiation. It discusses the total or integrated broadband direct beam extraterrestrial radiation (ETR). This total integrated irradiance is comprised of photons of electromagnetic radiation. The chapter also discusses the impact of the atmosphere and its effect upon the direct normal irradiance (DNI) beam radiation. The gases and particulates present in the atmosphere traversed by the direct beam reflect, absorb, and scatter differing spectral regions and proportions of the direct beam, and act as a variable filter. Knowledge of the available broadband DNI beam radiation resourcemore » data is essential in designing a concentrating photovoltaic (CPV) system. Spectral variations in the DNI beam radiation affect the performance of a CPV system depending on the solar cell technology used. The chapter describes propagation and scattering processes of circumsolar radiation (CSR), which includes the Mie scattering from large particles.« less

  3. Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Plaček, V.; Hnát, V.

    2007-05-01

    The radiation degradation behavior of commercial low density polyethylene (LDPE) and ethylene-vinylacetate (EVA) cable materials has been investigated. The changes of mechanical properties, thermooxidative stability and density exhibit different radiation stability towards 60Co-gamma radiation and 160 keV electron beam radiation. This difference reflects much higher penetration of the gamma radiation through the polymeric material as a function of sample thickness. These results are discussed with respect to the role of beta radiation during design basis events in a nuclear power plants. In case when total accidental design basis event (DBE) dose (involving about 80% soft beta radiation) is simulated by 60Co-gamma radiation the conservatism is reached.

  4. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2014-11-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  5. Radiation epidemiology: Past and present

    SciTech Connect

    Boice, J.D. Jr.

    1997-03-01

    Major advancements in radiation epidemiology have occurred during the last several years in studies of atomic bomb survivors, patients given medical radiation, and radiation workers, including underground miners. Risks associated with the Chernobyl accident, indoor radon and childhood exposure to I-131 have yet to be elucidated. Situations in the former Soviet Union around Chelyabinsk, a nuclear installation in the southern Urals, and in the Altai, which received radioactive fallout from weapons testing at Semipalatinsk, Kazakhstan, have the potential to provide information on the effects of chronic radiation exposure. Since Roentgen`s discovery of x-rays just 100 years ago, a tremendous amountmore » of knowledge has been accumulated about human health effects following irradiation. The 1994 UNSCEAR report contains the latest compilation and synthesis of radiation epidemiology. This overview will cover epidemiology from a radiation perspective. The different types of study methodologies will be described, followed by a kaleidoscope coverage of past and present studies; ending with some remaining questions in radiation epidemiology. This should set the stage for future chapters, and stimulate thinking about implications of the new data on radiation cancer risks.« less

  6. Fundamentals of Radiation Physics

    DTIC Science & Technology

    2008-07-01

    Sources of Ionizing Radiation Electrically generated • Charged particle accelerators • Van de Graaff generator , cyclotron linear accelerator ...Presented at the Armed Forces Radiobiology Research Institute Scientific Medical Effects of Ionizing Radiation Course July 28 through August 1, 2008...conducted once a year, focuses on the latest research about the medical effects of ionizing radiation to help clinicians, health physicists, and

  7. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  8. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  9. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  10. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  11. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  12. Protecting Juno Electronics from Radiation

    NASA Image and Video Library

    2010-07-12

    Technicians installed the special radiation vault for NASA Juno spacecraft on the propulsion module. The radiation vault has titanium walls to protect the spacecraft electronic brain and heart from Jupiter harsh radiation environment.

  13. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing

  14. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  15. Radiation treatment for newly diagnosed esophageal cancer with prior radiation to the thoracic cavity.

    PubMed

    Sponseller, Patricia; Lenards, Nishele; Kusano, Aaron; Patel, Shilpen

    2014-01-01

    The purpose of this report is to communicate the use of single-positron emission computed tomography scan in planning radiation treatments for patients with a history of radiation to the thoracic cavity. A patient presented with obstructive esophageal cancer, having previously received chemotherapy and radiation therapy to the mediastinum for non-Hodgkin lymphoma 11 years earlier. Owing to a number of comorbidities, the patient was not a surgical candidate and was referred to the University of Washington Medical Center for radiation therapy. Prior dose to the spinal cord and lung were taken into account before designing the radiation treatment plan. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. Monitoring cosmic radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Bentley, Robert D.; Iles, R. H. A.; Jones, J. B. L.; Hunter, R.; Taylor, G. C.; Thomas, D. J.

    2002-03-01

    The Earth is constantly bombarded by cosmic radiation that can be either galactic or solar in origin. At aircraft altitudes, the radiation levels are much higher than at sea level and recent European legislation has classified aircrew as radiation workers. University College London is working with Virgin Atlantic Airways on a 3 year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether models currently used to predict radiation exposure of aircrew are adequate. It will also try to determine whether solar flare activity can cause significant enhancement to the predicted doses.

  17. Flexible Metal-Fabric Radiators

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Nguyen, Hai D.; Ruemmele, Warren; Andish, Kambiz K.; McCalley, Sean

    2005-01-01

    Flexible metal-fabric radiators have been considered as alternative means of dissipating excess heat from spacecraft and space suits. The radiators also may be useful in such special terrestrial applications as rejecting heat from space-suit-like protective suits worn in hot work environments. In addition to flexibility and consequent ease of deployment and installation on objects of varying sizes and shapes, the main advantages of these radiators over conventional rigid radiators are that they weigh less and occupy less volume for a given amount of cooling capacity. A radiator of this type includes conventional stainless-steel tubes carrying a coolant fluid. The main radiating component consists of a fabric of interwoven aluminum-foil strips bonded to the tubes by use of a proprietary process. The strip/tube bonds are strong and highly thermally conductive. Coolant is fed to and from the tubes via flexible stainless-steel manifolds designed to accommodate flexing of, and minimize bending forces on, the fabric. The manifolds are sized to minimize pressure drops and distribute the flow of coolant evenly to all the tubes. The tubes and manifolds are configured in two independent flow loops for operational flexibility and protective redundancy.

  18. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  19. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  20. Solid-state radiation-emitting compositions and devices

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.

    1992-01-01

    The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy.

  1. Solid-state radiation-emitting compositions and devices

    DOEpatents

    Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.

    1992-08-11

    The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy. 4 figs.

  2. Miniaturized radiation chirper

    DOEpatents

    Umbarger, C. John; Wolf, Michael A.

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  3. Cellular telephone-based radiation detection instrument

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  4. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  5. Infrasound, Its Sources and Its Effects on Man

    DTIC Science & Technology

    1976-05-01

    modulated by an infra - Annoyance has been broken out as a separate sonic frequency. For instance, the amplified topic because I believe that the greatest...importance is the nigh frequency response of quency sound. In general, infrasound does not the measurement system. Measurement of infra - often occur at levels...esuential for detailed analysis and changes in barometric pressure would be con- from these recordings a narrow band spectral sidered infrasonic . The

  6. On simulation of the atmospheric acoustic channel for some nuclear tests in former soviet test site Semipalatinsk

    NASA Astrophysics Data System (ADS)

    Sorokin, A. G.; Lobycheva, I. Yu.

    2011-08-01

    This paper presents data on the recording of infrasound from distant nuclear explosions set off in former soviet test site Semipalatinsk and recorded by infrasonic station Irkutsk-Badary of the Institute of Solar-Terrestrial Physics SB RAS in the Tunkinsky region in the Buryat Republic. We assess the state of the atmospheric acoustic channel (AAC) along the propagation path. Results of the AAC modeling are compared with experimental data.

  7. Sensing of Living Casualties on the Modern Integrated Battlefield

    DTIC Science & Technology

    1983-11-01

    spa- tial and energy resolution this technology is not considered to be appropriate to our task. Acoustic sensors including infrasonic (seismic... sonic , and ultrasonic have found application in detecting vehicle and troop movements. This type of sensor may be a useful indicator of notion and, hence...Street Columbus, OH 43210 DAVE NORDIN Monitoring of CO , Blood Resuscitation Products Manager pressure, pH, u trasound, McMinnville Division infra -red

  8. Realization of State-Space Models for Wave Propagation Simulations

    DTIC Science & Technology

    2012-01-01

    reduction techniques can be applied to reduce the dimension of the model further if warranted. INFRASONIC PROPAGATION MODEL Infrasound is sound below 20...capable of scatter- ing and blocking the propagation. This is because the infrasound wavelengths are near the scales of topographic features. These...and Development Center (ERDC) Big Black Test Site (BBTS) and an infrasound -sensing array at the ERDC Waterways Experiment Station (WES). Both are

  9. Radiation effects on electronic parts

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1971-01-01

    A search of literature concerning the long term effects of nuclear radiation on electronic parts was conducted to determine the effects of radiation fields encountered on deep space missions to parts used in the Pioneer Spacecraft. Topics discussed include: the various types of radiation the spacecraft will encounter, effects of radiation on electronic parts, and estimates of the damage thresholds for transistors and integrated circuits used on the Pioneer Spacecraft.

  10. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  11. Radiation injury to the nervous system

    SciTech Connect

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system.

  12. A review on natural background radiation

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Setayandeh, Samaneh

    2013-01-01

    The world is naturally radioactive and approximately 82% of human-absorbed radiation doses, which are out of control, arise from natural sources such as cosmic, terrestrial, and exposure from inhalation or intake radiation sources. In recent years, several international studies have been carried out, which have reported different values regarding the effect of background radiation on human health. Gamma radiation emitted from natural sources (background radiation) is largely due to primordial radionuclides, mainly 232Th and 238U series, and their decay products, as well as 40K, which exist at trace levels in the earth's crust. Their concentrations in soil, sands, and rocks depend on the local geology of each region in the world. Naturally occurring radioactive materials generally contain terrestrial-origin radionuclides, left over since the creation of the earth. In addition, the existence of some springs and quarries increases the dose rate of background radiation in some regions that are known as high level background radiation regions. The type of building materials used in houses can also affect the dose rate of background radiations. The present review article was carried out to consider all of the natural radiations, including cosmic, terrestrial, and food radiation. PMID:24223380

  13. Radiation associated tumors following therapeutic cranial radiation

    PubMed Central

    Chowdhary, Abhineet; Spence, Alex M.; Sales, Lindsay; Rostomily, Robert C.; Rockhill, Jason K.; Silbergeld, Daniel L.

    2012-01-01

    Background: A serious, albeit rare, sequel of therapeutic ionizing radiotherapy is delayed development of a new, histologically distinct neoplasm within the radiation field. Methods: We identified 27 cases, from a 10-year period, of intracranial tumors arising after cranial irradiation. The original lesions for which cranial radiation was used for treatment included: tinea capitis (1), acute lymphoblastic leukemia (ALL; 5), sarcoma (1), scalp hemangioma (1), cranial nerve schwannoma (1) and primary (13) and metastatic (1) brain tumors, pituitary tumor (1), germinoma (1), pinealoma (1), and unknown histology (1). Dose of cranial irradiation ranged from 1800 to 6500 cGy, with a mean of 4596 cGy. Age at cranial irradiation ranged from 1 month to 43 years, with a mean of 13.4 years. Results: Latency between radiotherapy and diagnosis of a radiation-induced neoplasm ranged from 4 to 47 years (mean 18.8 years). Radiation-induced tumors included: meningiomas (14), sarcomas (7), malignant astrocytomas (4), and medulloblastomas (2). Data were analyzed to evaluate possible correlations between gender, age at irradiation, dose of irradiation, latency, use of chemotherapy, and radiation-induced neoplasm histology. Significant correlations existed between age at cranial irradiation and development of either a benign neoplasm (mean age 8.5 years) versus a malignant neoplasm (mean age 20.3; P = 0.012), and development of either a meningioma (mean age 7.0 years) or a sarcoma (mean age 27.4 years; P = 0.0001). There was also a significant positive correlation between latency and development of either a meningioma (mean latency 21.8 years) or a sarcoma (mean latency 7.7 years; P = 0.001). The correlation between dose of cranial irradiation and development of either a meningioma (mean dose 4128 cGy) or a sarcoma (mean dose 5631 cGy) approached significance (P = 0.059). Conclusions: Our study is the first to show that younger patients had a longer latency period and were more likely

  14. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  15. RADIATION EFFECTS ON IMMUNE MECHANISMS

    SciTech Connect

    Stoner, R.D.; Hale, W.M.

    1963-03-01

    Experiments were performed on pathogen-free Swiss albino mice to determine the repressive effect of ionizing radiation on immune mechanisms. In animals given sublethal doses of Co/sup 60/ gamma radiation by acute short-term exposure or by chronic long-term exposure at a low dose rate, ability to produce antibody was inhibited or abolished, and natural resistance and active and passive immunity to pneumococcal and Trichinella infections were severely depressed. It appears that the repression resulted from damage to the cellular defensive mechanisms of the host. Active immunity and natural resistance to influenza virus infections were not altered significantly by radiation. Exposure tomore » radiation enhanced the severity of anaphylactic shock markedly in mice previously sensitized to tetanus toxoid and challenged with tetanus toxoid after radiation. Chronic exposure to radiation caused immediate increased sensitivity to fatal anaphylaxis. (auth)« less

  16. [Highly quality-controlled radiation therapy].

    PubMed

    Shirato, Hiroki

    2005-04-01

    Advanced radiation therapy for intracranial disease has focused on set-up accuracy for the past 15 years. However, quality control in the prescribed dose is actually as important as the tumor set-up in radiation therapy. Because of the complexity of the three-dimensional radiation treatment planning system in recent years, the highly quality-controlled prescription of the dose has now been reappraised as the mainstream to improve the treatment outcome of radiation therapy for intracranial disease. The Japanese Committee for Quality Control of Radiation Therapy has developed fundamental requirements such as a QC committee in each hospital, a medical physicist, dosimetrists (QC members), and an external audit.

  17. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  18. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    SciTech Connect

    Not Available

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of themore » workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.« less

  19. Revisiting the `forbidden' region: AGN radiative feedback with radiation trapping

    NASA Astrophysics Data System (ADS)

    Ishibashi, W.; Fabian, A. C.; Ricci, C.; Celotti, A.

    2018-06-01

    Active galactic nucleus (AGN) feedback, driven by radiation pressure on dust, is an important mechanism for efficiently coupling the accreting black hole to the surrounding environment. Recent observations confirm that X-ray selected AGN samples respect the effective Eddington limit for dusty gas in the plane defined by the observed column density versus the Eddington ratio, the so-called NH - λ plane. A `forbidden' region occurs in this plane, where obscuring clouds cannot be long-lived, due to the action of radiation pressure on dust. Here we compute the effective Eddington limit by explicitly taking into account the trapping of reprocessed radiation (which has been neglected in previous works), and investigate its impact on the NH - λ plane. We show that the inclusion of radiation trapping leads to an enhanced forbidden region, such that even Compton-thick material can potentially be disrupted by sub-Eddington luminosities. We compare our model results to the most complete sample of local AGNs with measured X-ray properties, and find good agreement. Considering the anisotropic emission from the accretion disc, we also expect the development of dusty outflows along the polar axis, which may naturally account for the polar dust emission recently detected in several AGNs from mid-infrared observations. Radiative feedback thus appears to be the key mechanism regulating the obscuration properties of AGNs, and we discuss its physical implications in the context of co-evolution scenarios.

  20. Earth Radiation Budget Science, 1978. 1: Introduction. [to obtain radiation budget measurements by satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system (ERBSS) is planned in order to understand climate on various temporal and spatial scales. The system consists of three satellites and is designed to obtain radiation budget data from the earth's surface. Among the topics discussed are the climate modeling and climate diagnostics, the applications of radiation modeling to ERBSS, and the influence of albedo clouds on radiation budget and atmospheric circulation.

  1. Curiosity First Radiation Measurements on Mars

    NASA Image and Video Library

    2012-08-08

    Like a human working in a radiation environment, NASA Curiosity rover carries its own version of a dosimeter to measure radiation from outer space and the sun. This graphic shows the flux of radiation detected the rover Radiation Assessment Detector.

  2. Space radiation and cardiovascular disease risk

    PubMed Central

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-01-01

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293

  3. Space radiation and cardiovascular disease risk.

    PubMed

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-12-26

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.

  4. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  5. Anti-radiation vaccine: Immunologically-based Prophylaxis of Acute Toxic Radiation Syndromes Associated with Long-term Space Flight

    NASA Technical Reports Server (NTRS)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael C.

    2007-01-01

    Protecting crew from ionizing radiation is a key life sciences problem for long-duration space missions. The three major sources/types of radiation are found in space: galactic cosmic rays, trapped Van Allen belt radiation, and solar particle events. All present varying degrees of hazard to crews; however, exposure to high doses of any of these types of radiation ultimately induce both acute and long-term biological effects. High doses of space radiation can lead to the development of toxicity associated with the acute radiation syndrome (ARS) which could have significant mission impact, and even render the crew incapable of performing flight duties. The creation of efficient radiation protection technologies is considered an important target in space radiobiology, immunology, biochemistry and pharmacology. Two major mechanisms of cellular, organelle, and molecular destruction as a result of radiation exposure have been identified: 1) damage induced directly by incident radiation on the macromolecules they encounter and 2) radiolysis of water and generation of secondary free radicals and reactive oxygen species (ROS), which induce chemical bond breakage, molecular substitutions, and damage to biological molecules and membranes. Free-radical scavengers and antioxidants, which neutralize the damaging activities of ROS, are effective in reducing the impact of small to moderate doses of radiation. In the case of high doses of radiation, antioxidants alone may be inadequate as a radioprotective therapy. However, it remains a valuable component of a more holistic strategy of prophylaxis and therapy. High doses of radiation directly damage biological molecules and modify chemical bond, resulting in the main pathological processes that drive the development of acute radiation syndromes (ARS). Which of two types of radiation-induced cellular lethality that ultimately develops, apoptosis or necrosis, depends on the spectrum of incident radiation, dose, dose rate, and

  6. Radiative Cooling: Principles, Progress, and Potentials

    PubMed Central

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  7. 29 CFR 1910.97 - Nonionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radiation. (a) Electromagnetic radiation—(1) Definitions applicable to this paragraph. (i) The term electromagnetic radiation is restricted to that portion of the spectrum commonly defined as the radio frequency... electromagnetic energy. (iii) Radiation protection guide. Radiation level which should not be exceeded without...

  8. 29 CFR 1910.97 - Nonionizing radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiation. (a) Electromagnetic radiation—(1) Definitions applicable to this paragraph. (i) The term electromagnetic radiation is restricted to that portion of the spectrum commonly defined as the radio frequency... electromagnetic energy. (iii) Radiation protection guide. Radiation level which should not be exceeded without...

  9. 29 CFR 1910.97 - Nonionizing radiation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... radiation. (a) Electromagnetic radiation—(1) Definitions applicable to this paragraph. (i) The term electromagnetic radiation is restricted to that portion of the spectrum commonly defined as the radio frequency... electromagnetic energy. (iii) Radiation protection guide. Radiation level which should not be exceeded without...

  10. 29 CFR 1910.97 - Nonionizing radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... radiation. (a) Electromagnetic radiation—(1) Definitions applicable to this paragraph. (i) The term electromagnetic radiation is restricted to that portion of the spectrum commonly defined as the radio frequency... electromagnetic energy. (iii) Radiation protection guide. Radiation level which should not be exceeded without...

  11. The enhancement of biological ocular UV radiation on beaches compared to the radiation on grass.

    PubMed

    Liu, Guang-Cong; Wang, Fang; Gao, Yan-Yan; Yang, Zheng; Hu, Li-Wen; Gao, Qian; Ri, Jun-Chol; Liu, Yang

    2014-12-01

    The influence of albedo on ocular UV exposure has seldom been reported. This paper aimed to explore the enhancement effect on measured ocular UV radiation due to a sand surface compared to measured ocular UV radiation due to a grass surface. We measured ambient and ocular UV radiation over the beach and grass surface in Sanya City of China (18.4°N, 109.7°E). The experimental apparatus was composed of a manikin and a dual-detector spectrometer. Integration of both UVA and UVB radiation was used to denote UV radiation. Then biologically effective ocular UVB radiation (UVBE) and the ratios of UVBE of two surfaces were calculated. Maximum of ocular UV radiation versus time over the two surfaces is bimodal. UVBE on the beach is significantly larger than UVBE on the sand, and UVBE peaked at different solar elevation angle (SEA) over the two surfaces (about 53° and 40° on the beach and grass, respectively, according to Bayesian regression). The maximum of ocular UVBE ratios is greater than two, which peaked SEA was about 50°. One hour's cumulative radiation under sunny weather exceeds thresholds for photokeratitis, conjunctivitis and lens damage. Higher albedo significantly increased biological ocular UV radiation. Tourists on tropical beaches should take protective measures and avoid facing the sun directly, especially when SEA is around 50°. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. LAURISTON S. TAYLOR LECTURE ON RADIATION PROTECTION AND MEASURMENTS: WHAT MAKES PARTICLE RADIATION SO EFFECTIVE?

    PubMed Central

    Blakely, Eleanor A.

    2012-01-01

    The scientific basis for the physical and biological effectiveness of particle radiations has emerged from many decades of meticulous basic research. A diverse array of biologically relevant consequences at the molecular, cellular, tissue, and organism level have been reported, but what are the key processes and mechanisms that make particle radiation so effective, and what competing processes define dose dependences? Recent studies have shown that individual genotypes control radiation-regulated genes and pathways in response to radiations of varying ionization density. The fact that densely ionizing radiations can affect different gene families than sparsely ionizing radiations, and that the effects are dose- and time-dependent has opened up new areas of future research. The complex microenvironment of the stroma, and the significant contributions of the immune response have added to our understanding of tissue-specific differences across the linear energy transfer (LET) spectrum. The importance of targeted vs. nontargeted effects remain a thorny, but elusive and important contributor to chronic low dose radiation effects of variable LET that still needs further research. The induction of cancer is also LET-dependent, suggesting different mechanisms of action across the gradient of ionization density. The focus of this 35th Lauriston S. Taylor Lecture is to chronicle the step-by-step acquisition of experimental clues that have refined our understanding of what makes particle radiation so effective, with emphasis on the example of radiation effects on the crystalline lens of the human eye. PMID:23032880

  13. 1 D analysis of Radiative Shock damping by lateral radiative losses.

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Colombier, Jean-Philippe; Stehle, Chantal

    2007-11-01

    It has been shown theoretically and experimentally [1] that the radiative precursor in front of a strong shock in hi-Z material is slowed down by lateral radiative losses. The 2D simulation showed that the shock front and the precursor front remain planar, with an increase of density and a decrease of temperature close to the walls. The damping of the precursor is obviously sensitive to the fraction of self-emitted radiation reflected by the walls (the albedo). In order to perform parametric studies we include the albedo controlled lateral radiative losses in the 1D hydro-code MULTI (created by Ramis et al [2]) both in terms of energy balance and of spectral diagnostic. [1] Gonzales et al, Laser Part. Beams 24, 1-6 (2006) ; Busquet et al, High Energy Density Physics (2007), doi: 10.1016/j.hedp.2007.01.002 [2] Ramis et al, Comp. Phys. Comm., 49 (1988), 475

  14. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    SciTech Connect

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu; Aravindan, Sheeja; Pandian, Vijayabaskar

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cellsmore » were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.« less

  15. ISO radiation sterilization standards

    NASA Astrophysics Data System (ADS)

    Lambert, Byron J.; Hansen, Joyce M.

    1998-06-01

    This presentation provides an overview of the current status of the ISO radiation sterilization standards. The ISO standards are voluntary standards which detail both the validation and routine control of the sterilization process. ISO 11137 was approved in 1994 and published in 1995. When reviewing the standard you will note that less than 20% of the standard is devoted to requirements and the remainder is guidance on how to comply with the requirements. Future standards developments in radiation sterilization are being focused on providing additional guidance. The guidance that is currently provided in informative annexes of ISO 11137 includes: device/packaging materials, dose setting methods, and dosimeters and dose measurement, currently, there are four Technical Reports being developed to provide additional guidance: 1. AAMI Draft TIR, "Radiation Sterilization Material Qualification" 2. ISO TR 13409-1996, "Sterilization of health care products — Radiation sterilization — Substantiation of 25 kGy as a sterilization dose for small or infrequent production batches" 3. ISO Draft TR, "Sterilization of health care products — Radiation sterilization Selection of a sterilization dose for a single production batch" li]4. ISO Draft TR, "Sterilization of health care products — Radiation sterilization-Product Families, Plans for Sampling and Frequency of Dose Audits."

  16. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  17. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  18. DoD Space Radiation Concerns.

    DTIC Science & Technology

    1992-07-15

    cosmic - ray transport. NASA TM X-2440, 1972:117-122. DoD Space Radiation Concerns 8 2. Atkins SG, Small JT, McFarland TH. Military Man-in Space (MMIS...136. 29. Silberberg R, Tsao CH, Adams JH Jr., Letaw JR. Radiation doses and LET distributions of cosmic rays . Rad. Res., 1984, 98:209-226. 30. Stauber...levels on mission success and completion. Natural Radiation Trapped Radiation Belts Galactic Cosmic Rays (GCR) Solar Particle Events (SPEs) Man-Made

  19. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: Possible roles of radiation in carcinogenesis

    PubMed Central

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-01-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers. PMID:25483826

  20. Ground truth data for test sites (SL-3). [solar radiation and thermal radiation brightness temperature measurements

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneously with Skylab overpasses in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. The solar radiation region from 400 to 1300 nanometers and the thermal radiation region from 8 to 14 micrometer region were investigated. The measurements of direct solar radiation were analyzed for atmospheric optical depth; the total and reflected solar radiation were analyzed for target reflectivity. These analyses were used in conjunction with a radiative transfer computer program in order to calculate the amount and spectral distribution of solar radiation at the apertures of the EREP sensors. The instrumentation and techniques employed, calibrations and analyses performed, and results obtained are discussed.