DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Russell; Nagarajan, Harsha; Yamangil, Emre
2016-06-24
MICOT is a tool for optimizing and controlling infrastructure systems. In includes modules for optimizing the operations of an infrastructure structure (for example optimal dispatch), designing infrastructure systems, restoring infrastructures systems, resiliency, preparing for natural disasters, interdicting networks, state estimation, sensor placement, and simulation of infrastructure systems. It implements algorithms developed at LANL that have been published in the academic community. This is a release of the of resilient design module of the MICOT.
ERIC Educational Resources Information Center
Morsey, Christopher
2017-01-01
In the critical infrastructure world, many critical infrastructure sectors use a Supervisory Control and Data Acquisition (SCADA) system. The sectors that use SCADA systems are the electric power, nuclear power and water. These systems are used to control, monitor and extract data from the systems that give us all the ability to light our homes…
NASA Astrophysics Data System (ADS)
Loginov, E. L.; Raikov, A. N.
2015-04-01
The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.
NASA Astrophysics Data System (ADS)
Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.
2016-01-01
The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.
Common Badging and Access Control System (CBACS)
NASA Technical Reports Server (NTRS)
Dischinger, Portia
2005-01-01
This slide presentation presents NASA's Common Badging and Access Control System. NASA began a Smart Card implementation in January 2004. Following site surveys, it was determined that NASA's badging and access control systems required upgrades to common infrastructure in order to provide flexibly, usability, and return on investment prior to a smart card implantation. Common Badging and Access Control System (CBACS) provides the common infrastructure from which FIPS-201 compliant processes, systems, and credentials can be developed and used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Wang, Hong; Young, Stan
Documenting existing state of practice is an initial step in developing future control infrastructure to be co-deployed for heterogeneous mix of connected and automated vehicles with human drivers while leveraging benefits to safety, congestion, and energy. With advances in information technology and extensive deployment of connected and automated vehicle technology anticipated over the coming decades, cities globally are making efforts to plan and prepare for these transitions. CAVs not only offer opportunities to improve transportation systems through enhanced safety and efficient operations of vehicles. There are also significant needs in terms of exploring how best to leverage vehicle-to-vehicle (V2V) technology,more » vehicle-to-infrastructure (V2I) technology and vehicle-to-everything (V2X) technology. Both Connected Vehicle (CV) and Connected and Automated Vehicle (CAV) paradigms feature bi-directional connectivity and share similar applications in terms of signal control algorithm and infrastructure implementation. The discussion in our synthesis study assumes the CAV/CV context where connectivity exists with or without automated vehicles. Our synthesis study explores the current state of signal control algorithms and infrastructure, reports the completed and newly proposed CV/CAV deployment studies regarding signal control schemes, reviews the deployment costs for CAV/AV signal infrastructure, and concludes with a discussion on the opportunities such as detector free signal control schemes and dynamic performance management for intersections, and challenges such as dependency on market adaptation and the need to build a fault-tolerant signal system deployment in a CAV/CV environment. The study will serve as an initial critical assessment of existing signal control infrastructure (devices, control instruments, and firmware) and control schemes (actuated, adaptive, and coordinated-green wave). Also, the report will help to identify the future needs for the signal infrastructure to act as the nervous system for urban transportation networks, providing not only signaling, but also observability, surveillance, and measurement capacity. The discussion of the opportunities space includes network optimization and control theory perspectives, and the current states of observability for key system parameters (what can be detected, how frequently can it be reported) as well as controllability of dynamic parameters (this includes adjusting not only the signal phase and timing, but also the ability to alter vehicle trajectories through information or direct control). The perspective of observability and controllability of the dynamic systems provides an appropriate lens to discuss future directions as CAV/CV become more prevalent in the future.« less
Infrastructure Vulnerability Assessment Model (I-VAM).
Ezell, Barry Charles
2007-06-01
Quantifying vulnerability to critical infrastructure has not been adequately addressed in the literature. Thus, the purpose of this article is to present a model that quantifies vulnerability. Vulnerability is defined as a measure of system susceptibility to threat scenarios. This article asserts that vulnerability is a condition of the system and it can be quantified using the Infrastructure Vulnerability Assessment Model (I-VAM). The model is presented and then applied to a medium-sized clean water system. The model requires subject matter experts (SMEs) to establish value functions and weights, and to assess protection measures of the system. Simulation is used to account for uncertainty in measurement, aggregate expert assessment, and to yield a vulnerability (Omega) density function. Results demonstrate that I-VAM is useful to decisionmakers who prefer quantification to qualitative treatment of vulnerability. I-VAM can be used to quantify vulnerability to other infrastructures, supervisory control and data acquisition systems (SCADA), and distributed control systems (DCS).
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottler, Gary
General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.
Testbeds for Assessing Critical Scenarios in Power Control Systems
NASA Astrophysics Data System (ADS)
Dondossola, Giovanna; Deconinck, Geert; Garrone, Fabrizio; Beitollahi, Hakem
The paper presents a set of control system scenarios implemented in two testbeds developed in the context of the European Project CRUTIAL - CRitical UTility InfrastructurAL Resilience. The selected scenarios refer to power control systems encompassing information and communication security of SCADA systems for grid teleoperation, impact of attacks on inter-operator communications in power emergency conditions, impact of intentional faults on the secondary and tertiary control in power grids with distributed generators. Two testbeds have been developed for assessing the effect of the attacks and prototyping resilient architectures.
Increasing the resilience and security of the United States' power infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
2015-08-01
The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROOT, R.W.
1999-05-18
This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.
A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure
NASA Technical Reports Server (NTRS)
Murch, Austin M.
2008-01-01
A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.
INcreasing Security and Protection through Infrastructure REsilience: The INSPIRE Project
NASA Astrophysics Data System (ADS)
D'Antonio, Salvatore; Romano, Luigi; Khelil, Abdelmajid; Suri, Neeraj
The INSPIRE project aims at enhancing the European potential in the field of security by ensuring the protection of critical information infrastructures through (a) the identification of their vulnerabilities and (b) the development of innovative techniques for securing networked process control systems. To increase the resilience of such systems INSPIRE will develop traffic engineering algorithms, diagnostic processes and self-reconfigurable architectures along with recovery techniques. Hence, the core idea of the INSPIRE project is to protect critical information infrastructures by appropriately configuring, managing, and securing the communication network which interconnects the distributed control systems. A working prototype will be implemented as a final demonstrator of selected scenarios. Controls/Communication Experts will support project partners in the validation and demonstration activities. INSPIRE will also contribute to standardization process in order to foster multi-operator interoperability and coordinated strategies for securing lifeline systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaus, P.S.
This Configuration Management Implementation Plan (CMIP) was developed to assist in managing systems, structures, and components (SSCS), to facilitate the effective control and statusing of changes to SSCS, and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Privatization Infrastructure will take in implementing a configuration management program, to identify the Program`s products that need configuration management control, to determine the rigor of control, and to identify the mechanisms for that control.
Resilience in social insect infrastructure systems
2016-01-01
Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030
Collaborative Access Control For Critical Infrastructures
NASA Astrophysics Data System (ADS)
Baina, Amine; El Kalam, Anas Abou; Deswarte, Yves; Kaaniche, Mohamed
A critical infrastructure (CI) can fail with various degrees of severity due to physical and logical vulnerabilities. Since many interdependencies exist between CIs, failures can have dramatic consequences on the entire infrastructure. This paper focuses on threats that affect information and communication systems that constitute the critical information infrastructure (CII). A new collaborative access control framework called PolyOrBAC is proposed to address security problems that are specific to CIIs. The framework offers each organization participating in a CII the ability to collaborate with other organizations while maintaining control of its resources and internal security policy. The approach is demonstrated on a practical scenario involving the electrical power grid.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Data Archiving and Quality Control
NASA Astrophysics Data System (ADS)
He, B.; Cui, C.; Fan, D.; Li, C.; Xiao, J.; Yu, C.; Wang, C.; Cao, Z.; Chen, J.; Yi, W.; Li, S.; Mi, L.; Yang, S.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences)1(Cui et al. 2014). To archive the astronomical data in China, we present the implementation of the astronomical data archiving system (ADAS). Data archiving and quality control are the infrastructure for the AstroCloud. Throughout the data of the entire life cycle, data archiving system standardized data, transferring data, logging observational data, archiving ambient data, And storing these data and metadata in database. Quality control covers the whole process and all aspects of data archiving.
DOT National Transportation Integrated Search
2017-06-13
MnDOT has already deployed an extensive infrastructure for Active Traffic Management (ATM) on I-35W and I-94 with plans to expand on other segments of the Twin Cities freeway network. The ATM system includes intelligent lane control signals (ILCS) sp...
US-CERT Control System Center Input/Output (I/O) Conceputal Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-02-01
This document was prepared for the US-CERT Control Systems Center of the National Cyber Security Division (NCSD) of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs the federal departments to identify and prioritize critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the NCSD to address the control system security component addressed in the National Strategy to Secure Cyberspace andmore » the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems; the I/O upgrade described in this document supports these goals. The vulnerability assessment Test Bed, located in the Information Operations Research Center (IORC) facility at Idaho National Laboratory (INL), consists of a cyber test facility integrated with multiple test beds that simulate the nation's critical infrastructure. The fundamental mission of the Test Bed is to provide industry owner/operators, system vendors, and multi-agency partners of the INL National Security Division a platform for vulnerability assessments of control systems. The Input/Output (I/O) upgrade to the Test Bed (see Work Package 3.1 of the FY-05 Annual Work Plan) will provide for the expansion of assessment capabilities within the IORC facility. It will also provide capabilities to connect test beds within the Test Range and other Laboratory resources. This will allow real time I/O data input and communication channels for full replications of control systems (Process Control Systems [PCS], Supervisory Control and Data Acquisition Systems [SCADA], and components). This will be accomplished through the design and implementation of a modular infrastructure of control system, communications, networking, computing and associated equipment, and measurement/control devices. The architecture upgrade will provide a flexible patching system providing a quick ''plug and play''configuration through various communication paths to gain access to live I/O running over specific protocols. This will allow for in-depth assessments of control systems in a true-to-life environment. The full I/O upgrade will be completed through a two-phased approach. Phase I, funded by DHS, expands the capabilities of the Test Bed by developing an operational control system in two functional areas, the Science & Technology Applications Research (STAR) Facility and the expansion of various portions of the Test Bed. Phase II (see Appendix A), funded by other programs, will complete the full I/O upgrade to the facility.« less
Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)
NASA Astrophysics Data System (ADS)
Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.
2018-03-01
Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.
Autonomous watersheds: Reducing flooding and stream erosion through real-time control
NASA Astrophysics Data System (ADS)
Kerkez, B.; Wong, B. P.
2017-12-01
We introduce an analytical toolchain, based on dynamical system theory and feedback control, to determine how many control points (valves, gates, pumps, etc.) are needed to transform urban watersheds from static to adaptive. Advances and distributed sensing and control stand to fundamentally change how we manage urban watersheds. In lieu of new and costly infrastructure, the real-time control of stormwater systems will reduce flooding, mitigate stream erosion, and improve the treatment of polluted runoff. We discuss the how open source technologies, in the form of wireless sensor nodes and remotely-controllable valves (open-storm.org), have been deployed to build "smart" stormwater systems in the Midwestern US. Unlike "static" infrastructure, which cannot readily adapt to changing inputs and land uses, these distributed control assets allow entire watersheds to be reconfigured on a storm-by-storm basis. Our results show how the control of even just a few valves within urban catchments (1-10km^2) allows for the real-time "shaping" of hydrographs, which reduces downstream erosion and flooding. We also introduce an equivalence framework that can be used by decision-makers to objectively compare investments into "smart" system to more traditional solutions, such as gray and green stormwater infrastructure.
National Infrastructure Protection Plan
2006-01-01
effective and efficient CI/KR protection; and • Provide a system for continuous measurement and improvement of CI/KR...information- based core processes, a top-down system -, network-, or function- based approach may be more appropri- ate. A bottom-up approach normally... e - commerce , e -mail, and R&D systems . • Control Systems : Cyber systems used within many infrastructure and industries to monitor and
Resilience in social insect infrastructure systems.
Middleton, Eliza J T; Latty, Tanya
2016-03-01
Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. © 2016 The Author(s).
Modernization of B-2 Data, Video, and Control Systems Infrastructure
NASA Technical Reports Server (NTRS)
Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.
Modernization of B-2 Data, Video, and Control Systems Infrastructure
NASA Technical Reports Server (NTRS)
Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.
Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure pract...
Conception of the system for traffic measurements based on piezoelectric foils
NASA Astrophysics Data System (ADS)
Płaczek, M.
2016-08-01
A concept of mechatronic system for traffic measurements based on the piezoelectric transducers used as sensors is presented. The aim of the work project is to theoretically and experimentally analyse the dynamic response of road infrastructure forced by vehicles motion. The subject of the project is therefore on the borderline of civil engineering and mechanical and covers a wide range of issues in both these areas. To measure the dynamic response of the tested pieces of road infrastructure application of piezoelectric, in particular piezoelectric transducers in the form of piezoelectric films (MFC - Macro Fiber Composite) is proposed. The purpose is to verify the possibility to use composite piezoelectric transducers as sensors used in traffic surveillance systems - innovative methods of controlling the road infrastructure and traffic. Presented paper reports works that were done in order to receive the basic information about analysed systems and their behaviour under excitation by passing vehicles. It is very important to verify if such kind of systems can be controlled by the analysis of the dynamic response of road infrastructure measured using piezoelectric transducers. Obtained results show that it could be possible.
Access Control Management for SCADA Systems
NASA Astrophysics Data System (ADS)
Hong, Seng-Phil; Ahn, Gail-Joon; Xu, Wenjuan
The information technology revolution has transformed all aspects of our society including critical infrastructures and led a significant shift from their old and disparate business models based on proprietary and legacy environments to more open and consolidated ones. Supervisory Control and Data Acquisition (SCADA) systems have been widely used not only for industrial processes but also for some experimental facilities. Due to the nature of open environments, managing SCADA systems should meet various security requirements since system administrators need to deal with a large number of entities and functions involved in critical infrastructures. In this paper, we identify necessary access control requirements in SCADA systems and articulate access control policies for the simulated SCADA systems. We also attempt to analyze and realize those requirements and policies in the context of role-based access control that is suitable for simplifying administrative tasks in large scale enterprises.
Schwaber, Mitchell J; Carmeli, Yehuda
2017-11-29
In 2006 the Israeli healthcare system faced an unprecedented outbreak of carbapenem-resistant Enterobacteriaceae, primarily involving KPC-producing Klebsiella pneumoniae clonal complex CC258. This public health crisis exposed major gaps in infection control. In response, Israel established a national infection control infrastructure. The steps taken to build this infrastructure and benefits realized from its creation are described here. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Applications of CCSDS recommendations to Integrated Ground Data Systems (IGDS)
NASA Technical Reports Server (NTRS)
Mizuta, Hiroshi; Martin, Daniel; Kato, Hatsuhiko; Ihara, Hirokazu
1993-01-01
This paper describes an application of the CCSDS Principle Network (CPH) service model to communications network elements of a postulated Integrated Ground Data System (IGDS). Functions are drawn principally from COSMICS (Cosmic Information and Control System), an integrated space control infrastructure, and the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). From functional requirements, this paper derives a set of five communications network partitions which, taken together, support proposed space control infrastructures and data distribution systems. Our functional analysis indicates that the five network partitions derived in this paper should effectively interconnect the users, centers, processors, and other architectural elements of an IGDS. This paper illustrates a useful application of the CCSDS (Consultive Committee for Space Data Systems) Recommendations to ground data system development.
Neural Network Based Intrusion Detection System for Critical Infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd Vollmer; Ondrej Linda; Milos Manic
2009-07-01
Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recordedmore » from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Mark D.; Clements, Samuel L.
2009-01-01
Battelle’s National Security & Defense objective is, “applying unmatched expertise and unique facilities to deliver homeland security solutions. From detection and protection against weapons of mass destruction to emergency preparedness/response and protection of critical infrastructure, we are working with industry and government to integrate policy, operational, technological, and logistical parameters that will secure a safe future”. In an ongoing effort to meet this mission, engagements with industry that are intended to improve operational and technical attributes of commercial solutions that are related to national security initiatives are necessary. This necessity will ensure that capabilities for protecting critical infrastructure assets aremore » considered by commercial entities in their development, design, and deployment lifecycles thus addressing the alignment of identified deficiencies and improvements needed to support national cyber security initiatives. The Secure Firewall (Sidewinder) appliance by Secure Computing was assessed for applicable use in critical infrastructure control system environments, such as electric power, nuclear and other facilities containing critical systems that require augmented protection from cyber threat. The testing was performed in the Pacific Northwest National Laboratory’s (PNNL) Electric Infrastructure Operations Center (EIOC). The Secure Firewall was tested in a network configuration that emulates a typical control center network and then evaluated. A number of observations and recommendations are included in this report relating to features currently included in the Secure Firewall that support critical infrastructure security needs.« less
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1991-01-01
Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.
Innovative neuro-fuzzy system of smart transport infrastructure for road traffic safety
NASA Astrophysics Data System (ADS)
Beinarovica, Anna; Gorobetz, Mikhail; Levchenkov, Anatoly
2017-09-01
The proposed study describes applying of neural network and fuzzy logic in transport control for safety improvement by evaluation of accidents’ risk by intelligent infrastructure devices. Risk evaluation is made by following multiple-criteria: danger, changeability and influence of changes for risk increasing. Neuro-fuzzy algorithms are described and proposed for task solution. The novelty of the proposed system is proved by deep analysis of known studies in the field. The structure of neuro-fuzzy system for risk evaluation and mathematical model is described in the paper. The simulation model of the intelligent devices for transport infrastructure is proposed to simulate different situations, assess the risks and propose the possible actions for infrastructure or vehicles to minimize the risk of possible accidents.
Security middleware infrastructure for DICOM images in health information systems.
Kallepalli, Vijay N V; Ehikioya, Sylvanus A; Camorlinga, Sergio; Rueda, Jose A
2003-12-01
In health care, it is mandatory to maintain the privacy and confidentiality of medical data. To achieve this, a fine-grained access control and an access log for accessing medical images are two important aspects that need to be considered in health care systems. Fine-grained access control provides access to medical data only to authorized persons based on priority, location, and content. A log captures each attempt to access medical data. This article describes an overall middleware infrastructure required for secure access to Digital Imaging and Communication in Medicine (DICOM) images, with an emphasis on access control and log maintenance. We introduce a hybrid access control model that combines the properties of two existing models. A trust relationship between hospitals is used to make the hybrid access control model scalable across hospitals. We also discuss events that have to be logged and where the log has to be maintained. A prototype of security middleware infrastructure is implemented.
Network Randomization and Dynamic Defense for Critical Infrastructure Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason
2015-04-01
Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and developmentmore » to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.« less
Closing the Gap: Cybersecurity for U.S. Forces and Commands
2017-03-30
Dickson, Ph.D. Professor of Military Studies , JAWS Thesis Advisor Kevin Therrien, Col, USAF Committee Member Stephen Rogers, Colonel, USA Director...infrastructures, and includes the Internet, telecommunications networks, computer systems, and embedded processors and controllers in critical industries.”5...of information technology infrastructures, including the Internet, telecommunications networks, computer systems, and embedded processors and
Arid Green Infrastructure for Water Control and Conservation ...
Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i
Modeling and Managing Risk in Billing Infrastructures
NASA Astrophysics Data System (ADS)
Baiardi, Fabrizio; Telmon, Claudio; Sgandurra, Daniele
This paper discusses risk modeling and risk management in information and communications technology (ICT) systems for which the attack impact distribution is heavy tailed (e.g., power law distribution) and the average risk is unbounded. Systems with these properties include billing infrastructures used to charge customers for services they access. Attacks against billing infrastructures can be classified as peripheral attacks and backbone attacks. The goal of a peripheral attack is to tamper with user bills; a backbone attack seeks to seize control of the billing infrastructure. The probability distribution of the overall impact of an attack on a billing infrastructure also has a heavy-tailed curve. This implies that the probability of a massive impact cannot be ignored and that the average impact may be unbounded - thus, even the most expensive countermeasures would be cost effective. Consequently, the only strategy for managing risk is to increase the resilience of the infrastructure by employing redundant components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, John C.; Schwartz, Moses Daniel; Berg, Michael J.
2013-10-01
Critical infrastructures, such as electrical power plants and oil refineries, rely on programmable logic controllers (PLCs) to control essential processes. State of the art security cannot detect attacks on PLCs at the hardware or firmware level. This renders critical infrastructure control systems vulnerable to costly and dangerous attacks. WeaselBoard is a PLC backplane analysis system that connects directly to the PLC backplane to capture backplane communications between modules. WeaselBoard forwards inter-module traffic to an external analysis system that detects changes to process control settings, sensor values, module configuration information, firmware updates, and process control program (logic) updates. WeaselBoard provides zero-daymore » exploit detection for PLCs by detecting changes in the PLC and the process. This approach to PLC monitoring is protected under U.S. Patent Application 13/947,887.« less
Data distribution service-based interoperability framework for smart grid testbed infrastructure
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
2016-03-02
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
High Resolution Sensing and Control of Urban Water Networks
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Wong, B. P.; Kerkez, B.
2016-12-01
We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marco Carvalho; Richard Ford
2012-05-14
Supervisory Control and Data Acquisition (SCADA) Systems are a type of Industrial Control System characterized by the centralized (or hierarchical) monitoring and control of geographically dispersed assets. SCADA systems combine acquisition and network components to provide data gathering, transmission, and visualization for centralized monitoring and control. However these integrated capabilities, especially when built over legacy systems and protocols, generally result in vulnerabilities that can be exploited by attackers, with potentially disastrous consequences. Our research project proposal was to investigate new approaches for secure and survivable SCADA systems. In particular, we were interested in the resilience and adaptability of large-scale mission-criticalmore » monitoring and control infrastructures. Our research proposal was divided in two main tasks. The first task was centered on the design and investigation of algorithms for survivable SCADA systems and a prototype framework demonstration. The second task was centered on the characterization and demonstration of the proposed approach in illustrative scenarios (simulated or emulated).« less
Systems engineering considerations for operational support systems
NASA Technical Reports Server (NTRS)
Aller, Robert O.
1993-01-01
Operations support as considered here is the infrastructure of people, procedures, facilities and systems that provide NASA with the capability to conduct space missions. This infrastructure involves most of the Centers but is concentrated principally at the Johnson Space Center, the Kennedy Space Center, the Goddard Space Flight Center, and the Jet Propulsion Laboratory. It includes mission training and planning, launch and recovery, mission control, tracking, communications, data retrieval and data processing.
Virtual Control Systems Environment (VCSE)
Atkins, Will
2018-02-14
Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.
NASA Astrophysics Data System (ADS)
Pasqualini, D.; Witkowski, M.
2005-12-01
The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.
An Assessment of Vulnerabilities for Ship-based Control Systems
2009-09-01
VULNERABILITIES FOR SHIP- BASED CONTROL SYSTEMS by Richard Bensing September 2009 Thesis Advisor: Karen Burke Co-Advisor: George Dinolt...COVERED Master’s Thesis 4. TITLE AND SUBTITLE: An Assessment of Vulnerabilities for Ship- based Control Systems 6. AUTHOR(S) Richard Bensing 5...soft underbelly. Computer- based control systems form the heart of the critical infrastructure, and these control systems are riddled with rampant
Next generation information communication infrastructure and case studies for future power systems
NASA Astrophysics Data System (ADS)
Qiu, Bin
As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective is to shed the load in the limited area with minimum disturbance.
NASA Astrophysics Data System (ADS)
Alpi, Danielle Marie
The 16 sectors of critical infrastructure in the US are susceptible to cyber-attacks. Potential attacks come from internal and external threats. These attacks target the industrial control systems (ICS) of companies within critical infrastructure. Weakness in the energy sector's ICS, specifically the oil and gas industry, can result in economic and ecological disaster. The purpose of this study was to establish means for oil companies to identify and stop cyber-attacks specifically APT threats. This research reviewed current cyber vulnerabilities and ways in which a cyber-attack may be deterred. This research found that there are insecure devices within ICS that are not regularly updated. Therefore, security issues have amassed. Safety procedures and training thereof are often neglected. Jurisdiction is unclear in regard to critical infrastructure. The recommendations this research offers are further examination of information sharing methods, development of analytic platforms, and better methods for the implementation of defense-in-depth security measures.
Influence of governance structure on green stormwater infrastructure investment
Hopkins, Kristina G.; Grimm, Nancy B.; York, Abigail M.
2018-01-01
Communities are faced with the challenge of meeting regulatory requirements mandating reductions in water pollution from stormwater and combined sewer overflows (CSO). Green stormwater infrastructure and gray stormwater infrastructure are two types of water management strategies communities can use to address water pollution. In this study, we used long-term control plans from 25 U.S. cities to synthesize: the types of gray and green infrastructure being used by communities to address combined sewer overflows; the types of goals set; biophysical characteristics of each city; and factors associated with the governance of stormwater management. These city characteristics were then used to identify common characteristics of “green leader” cities—those that dedicated >20% of the control plan budget in green infrastructure. Five “green leader” cities were identified: Milwaukee, WI, Philadelphia, PA, Syracuse, NY, New York City, NY, and Buffalo, NY. These five cities had explicit green infrastructure goals targeting the volume of stormwater or percentage of impervious cover managed by green infrastructure. Results suggested that the management scale and complexity of the management system are less important factors than the ability to harness a “policy window” to integrate green infrastructure into control plans. Two case studies—Philadelphia, PA, and Milwaukee, WI—indicated that green leader cities have a long history of building momentum for green infrastructure through a series of phases from experimentation, demonstration, and finally—in the case of Philadelphia—a full transition in the approach used to manage CSOs.
NASA Astrophysics Data System (ADS)
Pellegrin, F.; Jeram, B.; Haucke, J.; Feyrin, S.
2016-07-01
The paper describes the introduction of a new automatized build and test infrastructure, based on the open-source software Jenkins1, into the ESO Very Large Telescope control software to replace the preexisting in-house solution. A brief introduction to software quality practices is given, a description of the previous solution, the limitations of it and new upcoming requirements. Modifications required to adapt the new system are described, how these were implemented to current software and the results obtained. An overview on how the new system may be used in future projects is also presented.
Real-time contaminant sensing and control in civil infrastructure systems
NASA Astrophysics Data System (ADS)
Rimer, Sara; Katopodes, Nikolaos
2014-11-01
A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
NASA Astrophysics Data System (ADS)
Papa, Mauricio; Shenoi, Sujeet
The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua
As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the servermore » and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.« less
Prototyping the E-ELT M1 local control system communication infrastructure
NASA Astrophysics Data System (ADS)
Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.
2016-08-01
The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.
The National Biological Information Infrastructure: Coming of age
Cotter, G.; Frame, M.; Sepic, R.; Zolly, L.
2000-01-01
Coordinated by the US Geological Survey, the National Biological Information Infrastructure (NBII) is a Web-based system that provides increased access to data and information on the nation's biological resources. The NBII can be viewed from a variety of perspectives. This article - an individual case study and not a broad survey with extensive references to the literature - addresses the structure of the NBII related to thematic sections, infrastructure sections and place-based sections, and other topics such as the Integrated Taxonomic Information System (one of our more innovative tools) and the development of our controlled vocabulary.
Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure
2010-02-01
FY2009 - 2011 • Benefits: Reduced corrosion due to elimination of metallic rebar , reduced weight equates to reduced dead load and increased dynamic...Decks as Replacement for Steel Reinforced Concrete Decks F09AR04: Corrosion Resistant Roofs with Integrated Sustainable PV Power Systems • Where...Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure Dr. Craig E. College Deputy Assistant Chief of Staff for
Interdependent Network Recovery Games.
Smith, Andrew M; González, Andrés D; Dueñas-Osorio, Leonardo; D'Souza, Raissa M
2017-10-30
Recovery of interdependent infrastructure networks in the presence of catastrophic failure is crucial to the economy and welfare of society. Recently, centralized methods have been developed to address optimal resource allocation in postdisaster recovery scenarios of interdependent infrastructure systems that minimize total cost. In real-world systems, however, multiple independent, possibly noncooperative, utility network controllers are responsible for making recovery decisions, resulting in suboptimal decentralized processes. With the goal of minimizing recovery cost, a best-case decentralized model allows controllers to develop a full recovery plan and negotiate until all parties are satisfied (an equilibrium is reached). Such a model is computationally intensive for planning and negotiating, and time is a crucial resource in postdisaster recovery scenarios. Furthermore, in this work, we prove this best-case decentralized negotiation process could continue indefinitely under certain conditions. Accounting for network controllers' urgency in repairing their system, we propose an ad hoc sequential game-theoretic model of interdependent infrastructure network recovery represented as a discrete time noncooperative game between network controllers that is guaranteed to converge to an equilibrium. We further reduce the computation time needed to find a solution by applying a best-response heuristic and prove bounds on ε-Nash equilibrium, where ε depends on problem inputs. We compare best-case and ad hoc models on an empirical interdependent infrastructure network in the presence of simulated earthquakes to demonstrate the extent of the tradeoff between optimality and computational efficiency. Our method provides a foundation for modeling sociotechnical systems in a way that mirrors restoration processes in practice. © 2017 Society for Risk Analysis.
Traffic signal control enhancements under vehicle infrastructure integration systems.
DOT National Transportation Integrated Search
2011-12-01
Most current traffic signal systems are operated using a very archaic traffic-detection simple binary : logic (vehicle presence/non presence information). The logic was originally developed to provide input for old : electro-mechanical controllers th...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaver, Justin M; Borges, Raymond Charles; Buckner, Mark A
Critical infrastructure Supervisory Control and Data Acquisition (SCADA) systems were designed to operate on closed, proprietary networks where a malicious insider posed the greatest threat potential. The centralization of control and the movement towards open systems and standards has improved the efficiency of industrial control, but has also exposed legacy SCADA systems to security threats that they were not designed to mitigate. This work explores the viability of machine learning methods in detecting the new threat scenarios of command and data injection. Similar to network intrusion detection systems in the cyber security domain, the command and control communications in amore » critical infrastructure setting are monitored, and vetted against examples of benign and malicious command traffic, in order to identify potential attack events. Multiple learning methods are evaluated using a dataset of Remote Terminal Unit communications, which included both normal operations and instances of command and data injection attack scenarios.« less
Khan, Mishal S; Schwanke-Khilji, Sara; Yoong, Joanne; Tun, Zaw Myo; Watson, Samantha; Coker, Richard James
2017-10-01
There are numerous challenges in planning and implementing effective disease control programmes in Myanmar, which is undergoing internal political and economic transformations whilst experiencing massive inflows of external funding. The objective of our study-involving key informant discussions, participant observations and linked literature reviews-was to analyse how tuberculosis (TB) control strategies in Myanmar are influenced by the broader political, economic, epidemiological and health systems context using the Systemic Rapid Assessment conceptual and analytical framework. Our findings indicate that the substantial influx of donor funding, in the order of one billion dollars over a 5-year period, may be too rapid for the country's infrastructure to effectively utilize. TB control strategies thus far have tended to favour medical or technological approaches rather than infrastructure development, and appear to be driven more by perceived urgency to 'do something' rather informed by evidence of cost-effectiveness and sustainable long-term impact. Progress has been made towards ambitious targets for scaling up treatment of drug-resistant TB, although there are concerns about ensuring quality of care. We also find substantial disparities in health and funding allocation between regions and ethnic groups, which are related to the political context and health system infrastructure. Our situational assessment of emerging TB control strategies in this transitioning health system indicates that large investments by international donors may be pushing Myanmar to scale up TB and drug-resistant TB services too quickly, without due consideration given to the health system (service delivery infrastructure, human resource capacity, quality of care, equity) and epidemiological (evidence of effectiveness of interventions, prevention of new cases) context. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Aktan, A. Emin
2003-08-01
Although the interconnected systems nature of the infrastructures, and the complexity of interactions between their engineered, socio-technical and natural constituents have been recognized for some time, the principles of effectively operating, protecting and preserving such systems by taking full advantage of "modeling, simulations, optimization, control and decision making" tools developed by the systems engineering and operations research community have not been adequately studied or discussed by many engineers including the writer. Differential and linear equation systems, numerical and finite element modeling techniques, statistical and probabilistic representations are universal, however, different disciplines have developed their distinct approaches to conceptualizing, idealizing and modeling the systems they commonly deal with. The challenge is in adapting and integrating deterministic and stochastic, geometric and numerical, physics-based and "soft (data-or-knowledge based)", macroscopic or microscopic models developed by various disciplines for simulating infrastructure systems. There is a lot to be learned by studying how different disciplines have studied, improved and optimized the systems relating to various processes and products in their domains. Operations research has become a fifty-year old discipline addressing complex systems problems. Its mathematical tools range from linear programming to decision processes and game theory. These tools are used extensively in management and finance, as well as by industrial engineers for optimizing and quality control. Progressive civil engineering academic programs have adopted "systems engineering" as a focal area. However, most of the civil engineering systems programs remain focused on constructing and analyzing highly idealized, often generic models relating to the planning or operation of transportation, water or waste systems, maintenance management, waste management or general infrastructure hazards risk management. We further note that in the last decade there have been efforts for "agent-based" modeling of synthetic infrastructure systems by taking advantage of supercomputers at various DOE Laboratories. However, whether there is any similitude between such synthetic and actual systems needs investigating further.
SCOS2: ESA's new generation of mission control systems
NASA Technical Reports Server (NTRS)
Kaufeler, J. F.; Head, N. C.
1993-01-01
The paper describes the next generation Spacecraft Control System infrastructure (SCOSII) which is being developed at the Operations Centre (ESOC) of the European Space Agency (ESA). The objectives of the new system and selected areas of the proposed hardware and software approach are described.
2006-09-01
Telecommunications and Information Administration Telecom Telecommunications Telco Telecommunications Company VBIED Vehicle Borne Improvised Explosive... effect the damage to one system or sector would have on another. These concentrations of the sector’s key assets are becoming attractive targets even...critical U.S. infrastructures, such as the nation’s telephone system . Companies make it easier to control their networks from remote locations to save
A case analysis of INFOMED: the Cuban national health care telecommunications network and portal.
Séror, Ann C
2006-01-27
The Internet and telecommunications technologies contribute to national health care system infrastructures and extend global health care services markets. The Cuban national health care system offers a model to show how a national information portal can contribute to system integration, including research, education, and service delivery as well as international trade in products and services. The objectives of this paper are (1) to present the context of the Cuban national health care system since the revolution in 1959, (2) to identify virtual institutional infrastructures of the system associated with the Cuban National Health Care Telecommunications Network and Portal (INFOMED), and (3) to show how they contribute to Cuban trade in international health care service markets. Qualitative case research methods were used to identify the integrated virtual infrastructure of INFOMED and to show how it reflects socialist ideology. Virtual institutional infrastructures include electronic medical and information services and the structure of national networks linking such services. Analysis of INFOMED infrastructures shows integration of health care information, research, and education as well as the interface between Cuban national information networks and the global Internet. System control mechanisms include horizontal integration and coordination through virtual institutions linked through INFOMED, and vertical control through the Ministry of Public Health and the government hierarchy. Telecommunications technology serves as a foundation for a dual market structure differentiating domestic services from international trade. INFOMED is a model of interest for integrating health care information, research, education, and services. The virtual infrastructures linked through INFOMED support the diffusion of Cuban health care products and services in global markets. Transferability of this model is contingent upon ideology and interpretation of values such as individual intellectual property and confidentiality of individual health information. Future research should focus on examination of these issues and their consequences for global markets in health care.
A Case Analysis of INFOMED: The Cuban National Health Care Telecommunications Network and Portal
2006-01-01
Background The Internet and telecommunications technologies contribute to national health care system infrastructures and extend global health care services markets. The Cuban national health care system offers a model to show how a national information portal can contribute to system integration, including research, education, and service delivery as well as international trade in products and services. Objective The objectives of this paper are (1) to present the context of the Cuban national health care system since the revolution in 1959, (2) to identify virtual institutional infrastructures of the system associated with the Cuban National Health Care Telecommunications Network and Portal (INFOMED), and (3) to show how they contribute to Cuban trade in international health care service markets. Methods Qualitative case research methods were used to identify the integrated virtual infrastructure of INFOMED and to show how it reflects socialist ideology. Virtual institutional infrastructures include electronic medical and information services and the structure of national networks linking such services. Results Analysis of INFOMED infrastructures shows integration of health care information, research, and education as well as the interface between Cuban national information networks and the global Internet. System control mechanisms include horizontal integration and coordination through virtual institutions linked through INFOMED, and vertical control through the Ministry of Public Health and the government hierarchy. Telecommunications technology serves as a foundation for a dual market structure differentiating domestic services from international trade. Conclusions INFOMED is a model of interest for integrating health care information, research, education, and services. The virtual infrastructures linked through INFOMED support the diffusion of Cuban health care products and services in global markets. Transferability of this model is contingent upon ideology and interpretation of values such as individual intellectual property and confidentiality of individual health information. Future research should focus on examination of these issues and their consequences for global markets in health care. PMID:16585025
Cyber Security Assessment Report: Adventium Labs
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2007-12-31
Major control system components often have life spans of 15-20 years. Many systems in our Nation's critical infrastructure were installed before the Internet became a reality and security was a concern. Consequently, control systems are generally insecure. Security is now being included in the development of new control system devices; however, legacy control systems remain vulnerable. Most efforts to secure control systems are aimed at protecting network borers, but if an intruder gets inside the network these systems are vulnerable to a cyber attack.
Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership
NASA Astrophysics Data System (ADS)
Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya
CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.
Quantifying Availability in SCADA Environments Using the Cyber Security Metric MFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aissa, Anis Ben; Rabai, Latifa Ben Arfa; Abercrombie, Robert K
2014-01-01
Supervisory Control and Data Acquisition (SCADA) systems are distributed networks dispersed over large geographic areas that aim to monitor and control industrial processes from remote areas and/or a centralized location. They are used in the management of critical infrastructures such as electric power generation, transmission and distribution, water and sewage, manufacturing/industrial manufacturing as well as oil and gas production. The availability of SCADA systems is tantamount to assuring safety, security and profitability. SCADA systems are the backbone of the national cyber-physical critical infrastructure. Herein, we explore the definition and quantification of an econometric measure of availability, as it applies tomore » SCADA systems; our metric is a specialization of the generic measure of mean failure cost.« less
Cyber-Critical Infrastructure Protection Using Real-Time Payload-Based Anomaly Detection
NASA Astrophysics Data System (ADS)
Düssel, Patrick; Gehl, Christian; Laskov, Pavel; Bußer, Jens-Uwe; Störmann, Christof; Kästner, Jan
With an increasing demand of inter-connectivity and protocol standardization modern cyber-critical infrastructures are exposed to a multitude of serious threats that may give rise to severe damage for life and assets without the implementation of proper safeguards. Thus, we propose a method that is capable to reliably detect unknown, exploit-based attacks on cyber-critical infrastructures carried out over the network. We illustrate the effectiveness of the proposed method by conducting experiments on network traffic that can be found in modern industrial control systems. Moreover, we provide results of a throughput measuring which demonstrate the real-time capabilities of our system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Yen; Chu, Peter; Gadh, Rajit
Currently, when Electric Vehicles (EVs) are charging, they only have the option to charge at a selected current or not charge. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. There is a need for technology that controls the current being disbursed to these electric vehicles. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuitmore » by multiplexing power and providing charge control. The smart charging infrastructure includes the server and the smart charging station. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV management system« less
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Dunlap, C; Garlick, J
2002-04-24
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, and scheduling modules. The design also includes a scalable, general-purpose communication infrastructure. Development will take place in four phases: Phase I results in a solid infrastructure; Phase II produces a functional but limited interactive job initiation capability without use of the interconnect/switch; Phase III provides switch support and documentation; Phase IV provides job status, fault-tolerance, and job queuing and control through Livermore's Distributed Productionmore » Control System (DPCS), a meta-batch and resource management system.« less
In 2010, Kansas City, MO (KCMO) signed a consent degree with EPA on combined sewer overflows. The City decided to use adaptive management in order to extensively utilize green infrastructure (GI) in lieu of, and in addition to, structural controls. KCMO installed 130 GI storm co...
Complex Failure Forewarning System - DHS Conference Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J
2011-01-01
As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain, aging bridges, is used to explain the Complex Structure Failure Forewarning System. We discuss the workings ofmore » such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less
Testbed-based Performance Evaluation of Attack Resilient Control for AGC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashok, Aditya; Sridhar, Siddharth; McKinnon, Archibald D.
The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. This infrastructure, supported by an extensive communication backbone, enables several control applications functioning at multiple time scales to ensure the grid is maintained within stable operating limits. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control application to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this papermore » we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's \\textit{PowerCyber} testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.« less
Komatsoulis, George A; Warzel, Denise B; Hartel, Francis W; Shanbhag, Krishnakant; Chilukuri, Ram; Fragoso, Gilberto; Coronado, Sherri de; Reeves, Dianne M; Hadfield, Jillaine B; Ludet, Christophe; Covitz, Peter A
2008-02-01
One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service-Oriented Architecture (SSOA) for cancer research by the National Cancer Institute's cancer Biomedical Informatics Grid (caBIG).
Komatsoulis, George A.; Warzel, Denise B.; Hartel, Frank W.; Shanbhag, Krishnakant; Chilukuri, Ram; Fragoso, Gilberto; de Coronado, Sherri; Reeves, Dianne M.; Hadfield, Jillaine B.; Ludet, Christophe; Covitz, Peter A.
2008-01-01
One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service Oriented Architecture (SSOA) for cancer research by the National Cancer Institute’s cancer Biomedical Informatics Grid (caBIG™). PMID:17512259
2007-05-01
partners will be encouraged to use the assessment methodologies referenced above, or ISO 27001 and ISO 17799, which are intended to be used together...the Information Systems Audit and Control Association (ISACA), the International Organization for Standardization ( ISO ), and a number of other...programs are aligned with NCSD’s goals for the IT sector and follow best practices developed by NIST and the ISO . The cyber protective programs
ERIC Educational Resources Information Center
Micco, Mary; Popp, Rich
Techniques for building a world-wide information infrastructure by reverse engineering existing databases to link them in a hierarchical system of subject clusters to create an integrated database are explored. The controlled vocabulary of the Library of Congress Subject Headings is used to ensure consistency and group similar items. Each database…
2014-02-09
often operators of command and control systems within critical infrastructures, and can in some ways be considered critical assets themselves. The...application layer makes up the command and control system for the critical infrastructure. That includes operating systems and applications for users and...Determine how to achieve secure synchronization between primary and secondary systems . • Ensure alternatives are operating , trained for, and practiced
Forewarning of Failure in Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J
2011-01-01
As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain is failure in critical equipment. A second is aging bridges. We discuss the workings of such amore » system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less
The national response for preventing healthcare-associated infections: infrastructure development.
Mendel, Peter; Siegel, Sari; Leuschner, Kristin J; Gall, Elizabeth M; Weinberg, Daniel A; Kahn, Katherine L
2014-02-01
In 2009, the US Department of Health and Human Services (HHS) launched the Action Plan to Prevent Healthcare-associated Infections (HAIs). The Action Plan adopted national targets for reduction of specific infections, making HHS accountable for change across the healthcare system over which federal agencies have limited control. This article examines the unique infrastructure developed through the Action Plan to support adoption of HAI prevention practices. Interviews of federal (n=32) and other stakeholders (n=38), reviews of agency documents and journal articles (n=260), and observations of interagency meetings (n=17) and multistakeholder conferences (n=17) over a 3-year evaluation period. We extract key progress and challenges in the development of national HAI prevention infrastructure--1 of the 4 system functions in our evaluation framework encompassing regulation, payment systems, safety culture, and dissemination and technical assistance. We then identify system properties--for example, coordination and alignment, accountability and incentives, etc.--that enabled or hindered progress within each key development. The Action Plan has developed a model of interagency coordination (including a dedicated "home" and culture of cooperation) at the federal level and infrastructure for stimulating change through the wider healthcare system (including transparency and financial incentives, support of state and regional HAI prevention capacity, changes in safety culture, and mechanisms for stakeholder engagement). Significant challenges to infrastructure development included many related to the same areas of progress. The Action Plan has built a foundation of infrastructure to expand prevention of HAIs and presents useful lessons for other large-scale improvement initiatives.
Advanced Metering Infrastructure based on Smart Meters
NASA Astrophysics Data System (ADS)
Suzuki, Hiroshi
By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.
Accelerator infrastructure in Europe: EuCARD 2011
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-10-01
The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles McQueen; Annarita Giani
2011-09-01
This paper describes a first investigation on a low cost and low false alarm, reliable mechanism for detecting manipulation of critical physical processes and falsification of system state. We call this novel mechanism Known Secure Sensor Measurements (KSSM). The method moves beyond analysis of network traffic and host based state information, in fact it uses physical measurements of the process being controlled to detect falsification of state. KSSM is intended to be incorporated into the design of new, resilient, cost effective critical infrastructure control systems. It can also be included in incremental upgrades of already in- stalled systems for enhancedmore » resilience. KSSM is based on known secure physical measurements for assessing the likelihood of an attack and will demonstrate a practical approach to creating, transmitting, and using the known secure measurements for detection.« less
Reusable experiment controllers, case studies
NASA Astrophysics Data System (ADS)
Buckley, Brian A.; Gaasbeck, Jim Van
1996-03-01
Congress has given NASA and the science community a reality check. The tight and ever shrinking budgets are trimming the fat from many space science programs. No longer can a Principal Investigator (PI) afford to waste development dollars on re-inventing spacecraft controllers, experiment/payload controllers, ground control systems, or test sets. Inheritance of the Ground Support Equipment (GSE) from one program to another is not a significant re-use of technology to develop a science mission in these times. Reduction of operational staff and highly autonomous experiments are needed to reduce the sustaining cost of a mission. The re-use of an infrastructure from one program to another is needed to truly attain the cost and time savings required. Interface and Control Systems, Inc. (ICS) has a long history of re-usable software. Navy, Air Force, and NASA programs have benefited from the re-use of a common control system from program to program. Several standardization efforts in the AIAA have adopted the Spacecraft Command Language (SCL) architecture as a point solution to satisfy requirements for re-use and autonomy. The Environmental Research Institute of Michigan (ERIM) has been a long-standing customer of ICS and are working on their 4th generation system using SCL. Much of the hardware and software infrastructure has been re-used from mission to mission with little cost for re-hosting a new experiment. The same software infrastructure has successfully been used on Clementine, and an end-to-end system is being deployed for the Far Ultraviolet Spectroscopic Explorer (FUSE) for Johns Hopkins University. A case study of the ERIM programs, Clementine and FUSE will be detailed in this paper.
2017-03-24
for Design and Control of Adaptive Stochastic Complex Systems John Baillieul∗ Contents 1 Executive Summary 2 2 Introduction and Issues to Be Addressed...difficult of real-world Systems-of-Systems challenges is the design and operational control of medical treatment networks that support forces operating...This report describes a brief research project on foundartional aspects of systems-of-systems design and operation. The overarching goal of the
Calibration of controlling input models for pavement management system.
DOT National Transportation Integrated Search
2013-07-01
The Oklahoma Department of Transportation (ODOT) is currently using the Deighton Total Infrastructure Management System (dTIMS) software for pavement management. This system is based on several input models which are computational backbones to dev...
A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure
NASA Astrophysics Data System (ADS)
Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong
2011-08-01
We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.
Security Engineering and Educational Initiatives for Critical Information Infrastructures
2013-06-01
standard for cryptographic protection of SCADA communications. The United Kingdom’s National Infrastructure Security Co-ordination Centre (NISCC...has released a good practice guide on firewall deployment for SCADA systems and process control networks [17]. Meanwhile, National Institute for ...report. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 18 The SCADA gateway collects the data gathered by sensors, translates them from
NASA Technical Reports Server (NTRS)
Kennedy, Barbara J.
2004-01-01
The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.
Wang, Hao; Lau, Nathan; Gerdes, Ryan M
2018-04-01
The aim of this study was to apply work domain analysis for cybersecurity assessment and design of supervisory control and data acquisition (SCADA) systems. Adoption of information and communication technology in cyberphysical systems (CPSs) for critical infrastructures enables automated and distributed control but introduces cybersecurity risk. Many CPSs employ SCADA industrial control systems that have become the target of cyberattacks, which inflict physical damage without use of force. Given that absolute security is not feasible for complex systems, cyberintrusions that introduce unanticipated events will occur; a proper response will in turn require human adaptive ability. Therefore, analysis techniques that can support security assessment and human factors engineering are invaluable for defending CPSs. We conducted work domain analysis using the abstraction hierarchy (AH) to model a generic SCADA implementation to identify the functional structures and means-ends relations. We then adopted a case study approach examining the Stuxnet cyberattack by developing and integrating AHs for the uranium enrichment process, SCADA implementation, and malware to investigate the interactions between the three aspects of cybersecurity in CPSs. The AHs for modeling a generic SCADA implementation and studying the Stuxnet cyberattack are useful for mapping attack vectors, identifying deficiencies in security processes and features, and evaluating proposed security solutions with respect to system objectives. Work domain analysis is an effective analytical method for studying cybersecurity of CPSs for critical infrastructures in a psychologically relevant manner. Work domain analysis should be applied to assess cybersecurity risk and inform engineering and user interface design.
2000-10-01
control systems and prototyped the approach by porting the ILU ORB from Xerox to the Lynx real - time operating system . They then provided a distributed...compliant real - time operating system , a real-time ORB, and an ODMG-compliant real-time ODBMS [12]. The MITRE system is an infrastructure for...the server’s local operating system can handle. For instance, on a node controlled by the VXWorks real - time operating system with 256 local
Cyber Security Testing and Training Programs for Industrial Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel Noyes
2012-03-01
Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall securitymore » posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.« less
Modeling joint restoration strategies for interdependent infrastructure systems.
Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P
2018-01-01
Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.
Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility
NASA Technical Reports Server (NTRS)
Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer
2009-01-01
Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).
AERIS : Eco-Vehicle Speed Control at Signalized Intersections Using I2V Communication
DOT National Transportation Integrated Search
2012-06-01
This report concentrates on a velocity advisory tool, or decision support system, for vehicles approaching an intersection using communication capabilities between the infrastructure and vehicles. The system uses available signal change information, ...
Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Jason Wright
Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.
Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H
2017-03-20
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
NASA Astrophysics Data System (ADS)
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.
2017-03-01
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.
2017-01-01
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835
Green infrastructure (GI) studies are needed to make informed decisions about whether or not to select GI technologies over traditional urban drainage control methods and to assist in the timing of effective maintenance. Two permeable pavement infiltration stormwater control meas...
A cyber infrastructure for the SKA Telescope Manager
NASA Astrophysics Data System (ADS)
Barbosa, Domingos; Barraca, João. P.; Carvalho, Bruno; Maia, Dalmiro; Gupta, Yashwant; Natarajan, Swaminathan; Le Roux, Gerhard; Swart, Paul
2016-07-01
The Square Kilometre Array Telescope Manager (SKA TM) will be responsible for assisting the SKA Operations and Observation Management, carrying out System diagnosis and collecting Monitoring and Control data from the SKA subsystems and components. To provide adequate compute resources, scalability, operation continuity and high availability, as well as strict Quality of Service, the TM cyber-infrastructure (embodied in the Local Infrastructure - LINFRA) consists of COTS hardware and infrastructural software (for example: server monitoring software, host operating system, virtualization software, device firmware), providing a specially tailored Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solution. The TM infrastructure provides services in the form of computational power, software defined networking, power, storage abstractions, and high level, state of the art IaaS and PaaS management interfaces. This cyber platform will be tailored to each of the two SKA Phase 1 telescopes (SKA_MID in South Africa and SKA_LOW in Australia) instances, each presenting different computational and storage infrastructures and conditioned by location. This cyber platform will provide a compute model enabling TM to manage the deployment and execution of its multiple components (observation scheduler, proposal submission tools, MandC components, Forensic tools and several Databases, etc). In this sense, the TM LINFRA is primarily focused towards the provision of isolated instances, mostly resorting to virtualization technologies, while defaulting to bare hardware if specifically required due to performance, security, availability, or other requirement.
Operational flood control of a low-lying delta system using large time step Model Predictive Control
NASA Astrophysics Data System (ADS)
Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick
2015-01-01
The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.
Modeling joint restoration strategies for interdependent infrastructure systems
Simonovic, Slobodan P.
2018-01-01
Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300
Toward city-scale water quality control: building a theory for smart stormwater systems
NASA Astrophysics Data System (ADS)
Kerkez, B.; Mullapudi, A. M.; Wong, B. P.
2016-12-01
Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.
SIMSAT: An object oriented architecture for real-time satellite simulation
NASA Technical Reports Server (NTRS)
Williams, Adam P.
1993-01-01
Real-time satellite simulators are vital tools in the support of satellite missions. They are used in the testing of ground control systems, the training of operators, the validation of operational procedures, and the development of contingency plans. The simulators must provide high-fidelity modeling of the satellite, which requires detailed system information, much of which is not available until relatively near launch. The short time-scales and resulting high productivity required of such simulator developments culminates in the need for a reusable infrastructure which can be used as a basis for each simulator. This paper describes a major new simulation infrastructure package, the Software Infrastructure for Modelling Satellites (SIMSAT). It outlines the object oriented design methodology used, describes the resulting design, and discusses the advantages and disadvantages experienced in applying the methodology.
Using Physical Models for Anomaly Detection in Control Systems
NASA Astrophysics Data System (ADS)
Svendsen, Nils; Wolthusen, Stephen
Supervisory control and data acquisition (SCADA) systems are increasingly used to operate critical infrastructure assets. However, the inclusion of advanced information technology and communications components and elaborate control strategies in SCADA systems increase the threat surface for external and subversion-type attacks. The problems are exacerbated by site-specific properties of SCADA environments that make subversion detection impractical; and by sensor noise and feedback characteristics that degrade conventional anomaly detection systems. Moreover, potential attack mechanisms are ill-defined and may include both physical and logical aspects.
Infrastructure for deployment of power systems
NASA Technical Reports Server (NTRS)
Sprouse, Kenneth M.
1991-01-01
A preliminary effort in characterizing the types of stationary lunar power systems which may be considered for emplacement on the lunar surface from the proposed initial 100-kW unit in 2003 to later units ranging in power from 25 to 825 kW is presented. Associated with these power systems are their related infrastructure hardware including: (1) electrical cable, wiring, switchgear, and converters; (2) deployable radiator panels; (3) deployable photovoltaic (PV) panels; (4) heat transfer fluid piping and connection joints; (5) power system instrumentation and control equipment; and (6) interface hardware between lunar surface construction/maintenance equipment and power system. This report: (1) presents estimates of the mass and volumes associated with these power systems and their related infrastructure hardware; (2) provides task breakdown description for emplacing this equipment; (3) gives estimated heat, forces, torques, and alignment tolerances for equipment assembly; and (4) provides other important equipment/machinery requirements where applicable. Packaging options for this equipment will be discussed along with necessary site preparation requirements. Design and analysis issues associated with the final emplacement of this power system hardware are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert S. Anderson; Mark Schanfein; Trond Bjornard
2011-07-01
Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is tomore » provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.« less
Integrated Energy System Simulation | Grid Modernization | NREL
Systems Integration Facility Control Room. For example, if the goal is to provide heat and electricity to infrastructure-and used when needed. For example, mid-day in early to late spring, sunshine is abundant, but
The centrality of meta-programming in the ES-DOC eco-system
NASA Astrophysics Data System (ADS)
Greenslade, Mark
2017-04-01
The Earth System Documentation (ES-DOC) project is an international effort aiming to deliver a robust earth system model inter-comparison project documentation infrastructure. Such infrastructure both simplifies & standardizes the process of documenting (in detail) projects, experiments, models, forcings & simulations. In support of CMIP6, ES-DOC has upgraded its eco-system of tools, web-services & web-sites. The upgrade consolidates the existing infrastructure (built for CMIP5) and extends it with the introduction of new capabilities. The strategic focus of the upgrade is improvements in the documentation experience and broadening the range of scientific use-cases that the archived documentation may help deliver. Whether it is highlighting dataset errors, exploring experimental protocols, comparing forcings across ensemble runs, understanding MIP objectives, reviewing citations, exploring component properties of configured models, visualising inter-model relationships, scientists involved in CMIP6 will find the ES-DOC infrastructure helpful. This presentation underlines the centrality of meta-programming within the ES-DOC eco-system. We will demonstrate how agility is greatly enhanced by taking a meta-programming approach to representing data models and controlled vocabularies. Such an approach nicely decouples representations from encodings. Meta-models will be presented along with the associated tooling chain that forward engineers artefacts as diverse as: class hierarchies, IPython notebooks, mindmaps, configuration files, OWL & SKOS documents, spreadsheets …etc.
Real-Time Optimization and Control of Next-Generation Distribution
Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution Infrastructure This project develops innovative, real-time optimization and control methods for next-generation
Fragmented Flows: Water Supply in Los Angeles County
NASA Astrophysics Data System (ADS)
Pincetl, Stephanie; Porse, Erik; Cheng, Deborah
2016-08-01
In the Los Angeles metropolitan region, nearly 100 public and private entities are formally involved in the management and distribution of potable water—a legacy rooted in fragmented urban growth in the area and late 19th century convictions about local control of services. Yet, while policy debates focus on new forms of infrastructure, restructured pricing mechanisms, and other technical fixes, the complex institutional architecture of the present system has received little attention. In this paper, we trace the development of this system, describe its interconnections and disjunctures, and demonstrate the invisibility of water infrastructure in LA in multiple ways—through mapping, statistical analysis, and historical texts. Perverse blessings of past water abundance led to a complex, but less than resilient, system with users accustomed to cheap, easily accessible water. We describe the lack of transparency and accountability in the current system, as well as its shortcomings in building needed new infrastructure and instituting new water rate structures. Adapting to increasing water scarcity and likely droughts must include addressing the architecture of water management.
An RFID-based intelligent vehicle speed controller using active traffic signals.
Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C; de Pedro, Teresa
2010-01-01
These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver's attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.
An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals
Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C.; de Pedro, Teresa
2010-01-01
These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results. PMID:22219692
DOT National Transportation Integrated Search
2013-07-29
The John A. Volpe National Transportation Systems Center was asked by the Office of Security of the Maritime Administration to examine the issue of industrial control systems (ICS) security in the Maritime Transportation System (MTS), and to develop ...
NASA Astrophysics Data System (ADS)
Bogdanov, A. V.; Iuzhanin, N. V.; Zolotarev, V. I.; Ezhakova, T. R.
2017-12-01
In this article the problem of scientific projects support throughout their lifecycle in the computer center is considered in every aspect of support. Configuration Management system plays a connecting role in processes related to the provision and support of services of a computer center. In view of strong integration of IT infrastructure components with the use of virtualization, control of infrastructure becomes even more critical to the support of research projects, which means higher requirements for the Configuration Management system. For every aspect of research projects support, the influence of the Configuration Management system is being reviewed and development of the corresponding elements of the system is being described in the present paper.
Integrated homeland security system with passive thermal imaging and advanced video analytics
NASA Astrophysics Data System (ADS)
Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert
2007-04-01
A complete detection, management, and control security system is absolutely essential to preempting criminal and terrorist assaults on key assets and critical infrastructure. According to Tom Ridge, former Secretary of the US Department of Homeland Security, "Voluntary efforts alone are not sufficient to provide the level of assurance Americans deserve and they must take steps to improve security." Further, it is expected that Congress will mandate private sector investment of over $20 billion in infrastructure protection between 2007 and 2015, which is incremental to funds currently being allocated to key sites by the department of Homeland Security. Nearly 500,000 individual sites have been identified by the US Department of Homeland Security as critical infrastructure sites that would suffer severe and extensive damage if a security breach should occur. In fact, one major breach in any of 7,000 critical infrastructure facilities threatens more than 10,000 people. And one major breach in any of 123 facilities-identified as "most critical" among the 500,000-threatens more than 1,000,000 people. Current visible, nightvision or near infrared imaging technology alone has limited foul-weather viewing capability, poor nighttime performance, and limited nighttime range. And many systems today yield excessive false alarms, are managed by fatigued operators, are unable to manage the voluminous data captured, or lack the ability to pinpoint where an intrusion occurred. In our 2006 paper, "Critical Infrastructure Security Confidence Through Automated Thermal Imaging", we showed how a highly effective security solution can be developed by integrating what are now available "next-generation technologies" which include: Thermal imaging for the highly effective detection of intruders in the dark of night and in challenging weather conditions at the sensor imaging level - we refer to this as the passive thermal sensor level detection building block Automated software detection for creating initial alerts - we refer to this as software level detection, the next level building block Immersive 3D visual assessment for situational awareness and to manage the reaction process - we refer to this as automated intelligent situational awareness, a third building block Wide area command and control capabilities to allow control from a remote location - we refer to this as the management and process control building block integrating together the lower level building elements. In addition, this paper describes three live installations of complete, total systems that incorporate visible and thermal cameras as well as advanced video analytics. Discussion of both system elements and design is extensive.
A Proven Method for Meeting Export Control Objectives in Postal and Shipping Sectors
2015-02-01
months, the USPIS team developed and implemented an export screening standard operating procedure, implemented new and updated processes and systems ...support and protect the U.S. Postal Service and its employees, infrastructure, and customers; enforce the laws that defend the nation’s mail system ...the incidence of mail shipments violating export control laws, regulations, and standards . • Evaluate current processes and systems and identify
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene
2011-01-01
This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.
Green Infrastructure for CSO Control in Kansas City, Missouri
Kansas City Water Services Department (WSD) conducted extensive modeling and economic studies of its combined sewer system over the last 5 years, for submittal of its long term control plan to EPA. These studies and recent funding opportunities have provided the impetus for sele...
NASA Astrophysics Data System (ADS)
Yanes-Díaz, A.; Antón, J. L.; Rueda-Teruel, S.; Guillén-Civera, L.; Bello, R.; Jiménez-Mejías, D.; Chueca, S.; Lasso-Cabrera, N. M.; Suárez, O.; Rueda-Teruel, F.; Cenarro, A. J.; Cristobal-Hornillos, D.; Marin-Franch, A.; Luis-Simoes, R.; López-Alegre, G.; Rodríguez-Hernández, M. A. C.; Moles, M.; Ederoclite, A.; Varela, J.; Vazquez Ramió, H.; Díaz-Martín, M. C.; Iglesias-Marzoa, R.; Maicas, N.; Lamadrid, J. L.; Lopez-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.
2014-07-01
The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys with two unprecedented telescopes of unusually large fields of view: the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. CEFCA engineering team has been designing the OAJ control system as a global concept to manage, monitor, control and maintain all the observatory systems including not only astronomical subsystems but also infrastructure and other facilities. In order to provide quality, reliability and efficiency, the OAJ control system (OCS) design is based on CIA (Control Integrated Architecture) and OEE (Overall Equipment Effectiveness) as a key to improve day and night operation processes. The OCS goes from low level hardware layer including IOs connected directly to sensors and actuators deployed around the whole observatory systems, including telescopes and astronomical instrumentation, up to the high level software layer as a tool to perform efficiently observatory operations. We will give an overview of the OAJ control system design and implementation from an engineering point of view, giving details of the design criteria, technology, architecture, standards, functional blocks, model structure, development, deployment, goals, report about the actual status and next steps.
Higher Education Facilities: The SmartGrid Earns a Doctorate in Economics
ERIC Educational Resources Information Center
Tysseling, John C.; Zibelman, Audrey; Freifeld, Allen
2011-01-01
Most higher education facilities have already accomplished some measure of a "microgrid" investment with building control systems (BCS), energy management systems (EMS), and advanced metering infrastructure (AMI) installations. Available energy production facilities may include boilers, chillers, cogeneration, thermal storage, electrical…
Assessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers
Infiltration is a primary functional mechanism in green infrastructure stormwater controls. This study used time domain reflectometers (TDRs) to measure spatial infiltration and assess clogging dynamics of permeable pavement systems in Edison, NJ, and Louisville, KY. In 2009, t...
Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion
NASA Technical Reports Server (NTRS)
Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)
2002-01-01
Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.
NASA Astrophysics Data System (ADS)
Yang, Y.; Chui, T. F. M.
2016-12-01
Green infrastructure (GI) is identified as sustainable and environmentally friendly alternatives to the conventional grey stormwater infrastructure. Commonly used GI (e.g. green roof, bioretention, porous pavement) can provide multifunctional benefits, e.g. mitigation of urban heat island effects, improvements in air quality. Therefore, to optimize the design of GI and grey drainage infrastructure, it is essential to account for their benefits together with the costs. In this study, a comprehensive simulation-optimization modelling framework that considers the economic and hydro-environmental aspects of GI and grey infrastructure for small urban catchment applications is developed. Several modelling tools (i.e., EPA SWMM model, the WERF BMP and LID Whole Life Cycle Cost Modelling Tools) and optimization solvers are coupled together to assess the life-cycle cost-effectiveness of GI and grey infrastructure, and to further develop optimal stormwater drainage solutions. A typical residential lot in New York City is examined as a case study. The life-cycle cost-effectiveness of various GI and grey infrastructure are first examined at different investment levels. The results together with the catchment parameters are then provided to the optimization solvers, to derive the optimal investment and contributing area of each type of the stormwater controls. The relationship between the investment and optimized environmental benefit is found to be nonlinear. The optimized drainage solutions demonstrate that grey infrastructure is preferred at low total investments while more GI should be adopted at high investments. The sensitivity of the optimized solutions to the prices the stormwater controls is evaluated and is found to be highly associated with their utilizations in the base optimization case. The overall simulation-optimization framework can be easily applied to other sites world-wide, and to be further developed into powerful decision support systems.
NASA Astrophysics Data System (ADS)
Argenti, M.; Giannini, V.; Averty, R.; Bigagli, L.; Dumoulin, J.
2012-04-01
The EC FP7 ISTIMES project has the goal of realizing an ICT-based system exploiting distributed and local sensors for non destructive electromagnetic monitoring in order to make critical transport infrastructures more reliable and safe. Higher situation awareness thanks to real time and detailed information and images of the controlled infrastructure status allows improving decision capabilities for emergency management stakeholders. Web-enabled sensors and a service-oriented approach are used as core of the architecture providing a sys-tem that adopts open standards (e.g. OGC SWE, OGC CSW etc.) and makes efforts to achieve full interoperability with other GMES and European Spatial Data Infrastructure initiatives as well as compliance with INSPIRE. The system exploits an open easily scalable network architecture to accommodate a wide range of sensors integrated with a set of tools for handling, analyzing and processing large data volumes from different organizations with different data models. Situation Awareness tools are also integrated in the system. Definition of sensor observations and services follows a metadata model based on the ISO 19115 Core set of metadata elements and the O&M model of OGC SWE. The ISTIMES infrastructure is based on an e-Infrastructure for geospatial data sharing, with a Data Cata-log that implements the discovery services for sensor data retrieval, acting as a broker through static connections based on standard SOS and WNS interfaces; a Decision Support component which helps decision makers providing support for data fusion and inference and generation of situation indexes; a Presentation component which implements system-users interaction services for information publication and rendering, by means of a WEB Portal using SOA design principles; A security framework using Shibboleth open source middleware based on the Security Assertion Markup Language supporting Single Sign On (SSO). ACKNOWLEDGEMENT - The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 225663
Robust control of seismically excited cable stayed bridges with MR dampers
NASA Astrophysics Data System (ADS)
YeganehFallah, Arash; Khajeh Ahamd Attari, Nader
2017-03-01
In recent decades active and semi-active structural control are becoming attractive alternatives for enhancing performance of civil infrastructures subjected to seismic and winds loads. However, in order to have reliable active and semi-active control, there is a need to include information of uncertainties in design of the controller. In real world for civil structures, parameters such as loading places, stiffness, mass and damping are time variant and uncertain. These uncertainties in many cases model as parametric uncertainties. The motivation of this research is to design a robust controller for attenuating the vibrational responses of civil infrastructures, regarding their dynamical uncertainties. Uncertainties in structural dynamic’s parameters are modeled as affine uncertainties in state space modeling. These uncertainties are decoupled from the system through Linear Fractional Transformation (LFT) and are assumed to be unknown input to the system but norm bounded. The robust H ∞ controller is designed for the decoupled system to regulate the evaluation outputs and it is robust to effects of uncertainties, disturbance and sensors noise. The cable stayed bridge benchmark which is equipped with MR damper is considered for the numerical simulation. The simulated results show that the proposed robust controller can effectively mitigate undesired uncertainties effects on systems’ responds under seismic loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okhravi, Hamed; Sheldon, Frederick T.; Haines, Joshua
Data diodes provide protection of critical cyber assets by the means of physically enforcing traffic direction on the network. In order to deploy data diodes effectively, it is imperative to understand the protection they provide, the protection they do not provide, their limitations, and their place in the larger security infrastructure. In this work, we study data diodes, their functionalities and limitations. We then propose two critical infrastructure systems that can benefit from the additional protection offered by data diodes: process control networks and net-centric cyber decision support systems. We review the security requirements of these systems, describe the architectures,more » and study the trade-offs. Finally, the architectures are evaluated against different attack patterns.« less
A framework for quantifying and optimizing the value of seismic monitoring of infrastructure
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr
2017-04-01
This paper outlines a framework for quantifying and optimizing the value of information from structural health monitoring (SHM) technology deployed on large infrastructure, which may sustain damage in a series of earthquakes (the main and the aftershocks). The evolution of the damage state of the infrastructure without or with SHM is presented as a time-dependent, stochastic, discrete-state, observable and controllable nonlinear dynamical system. The pre-posterior Bayesian analysis and the decision tree are used for quantifying and optimizing the value of SHM information. An optimality problem is then formulated how to decide on the adoption of SHM and how to manage optimally the usage and operations of the possibly damaged infrastructure and its repair schedule using the information from SHM. The objective function to minimize is the expected total cost or risk.
Séror, Ann C
2002-12-01
The Internet and emergent telecommunications infrastructures are transforming the future of health care management. The costs of health care delivery systems, products, and services continue to rise everywhere, but performance of health care delivery is associated with institutional and ideological considerations as well as availability of financial and technological resources. to identify the effects of ideological differences on health care market infrastructures including the Internet and telecommunications technologies by a comparative case analysis of two large health care organizations: the British National Health Service and the California-based Kaiser Permanente health maintenance organization. A qualitative comparative analysis focusing on the British National Health Service and the Kaiser Permanente health maintenance organization to show how system infrastructures vary according to market dynamics dominated by health care institutions ("push") or by consumer demand ("pull"). System control mechanisms may be technologically embedded, institutional, or behavioral. The analysis suggests that telecommunications technologies and the Internet may contribute significantly to health care system performance in a context of ideological diversity. The study offers evidence to validate alternative models of health care governance: the national constitution model, and the enterprise business contract model. This evidence also suggests important questions for health care policy makers as well as researchers in telecommunications, organizational theory, and health care management.
2002-01-01
Background The Internet and emergent telecommunications infrastructures are transforming the future of health care management. The costs of health care delivery systems, products, and services continue to rise everywhere, but performance of health care delivery is associated with institutional and ideological considerations as well as availability of financial and technological resources. Objective To identify the effects of ideological differences on health care market infrastructures including the Internet and telecommunications technologies by a comparative case analysis of two large health care organizations: the British National Health Service and the California-based Kaiser Permanente health maintenance organization. Methods A qualitative comparative analysis focusing on the British National Health Service and the Kaiser Permanente health maintenance organization to show how system infrastructures vary according to market dynamics dominated by health care institutions ("push") or by consumer demand ("pull"). System control mechanisms may be technologically embedded, institutional, or behavioral. Results The analysis suggests that telecommunications technologies and the Internet may contribute significantly to health care system performance in a context of ideological diversity. Conclusions The study offers evidence to validate alternative models of health care governance: the national constitution model, and the enterprise business contract model. This evidence also suggests important questions for health care policy makers as well as researchers in telecommunications, organizational theory, and health care management. PMID:12554552
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL ismore » tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.« less
A flexible architecture for advanced process control solutions
NASA Astrophysics Data System (ADS)
Faron, Kamyar; Iourovitski, Ilia
2005-05-01
Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue Control Technologies has developed an advance service oriented architecture Run to Run Control System which addresses these requirements.
Anomaly-based intrusion detection for SCADA systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, D.; Usynin, A.; Hines, J. W.
2006-07-01
Most critical infrastructure such as chemical processing plants, electrical generation and distribution networks, and gas distribution is monitored and controlled by Supervisory Control and Data Acquisition Systems (SCADA. These systems have been the focus of increased security and there are concerns that they could be the target of international terrorists. With the constantly growing number of internet related computer attacks, there is evidence that our critical infrastructure may also be vulnerable. Researchers estimate that malicious online actions may cause $75 billion at 2007. One of the interesting countermeasures for enhancing information system security is called intrusion detection. This paper willmore » briefly discuss the history of research in intrusion detection techniques and introduce the two basic detection approaches: signature detection and anomaly detection. Finally, it presents the application of techniques developed for monitoring critical process systems, such as nuclear power plants, to anomaly intrusion detection. The method uses an auto-associative kernel regression (AAKR) model coupled with the statistical probability ratio test (SPRT) and applied to a simulated SCADA system. The results show that these methods can be generally used to detect a variety of common attacks. (authors)« less
Access to emergency and surgical care in sub-Saharan Africa: the infrastructure gap.
Hsia, Renee Y; Mbembati, Naboth A; Macfarlane, Sarah; Kruk, Margaret E
2012-05-01
The effort to increase access to emergency and surgical care in low-income countries has received global attention. While most of the literature on this issue focuses on workforce challenges, it is critical to recognize infrastructure gaps that hinder the ability of health systems to make emergency and surgical care a reality. This study reviews key barriers to the provision of emergency and surgical care in sub-Saharan Africa using aggregate data from the Service Provision Assessments and Demographic and Health Surveys of five countries: Ghana, Kenya, Rwanda, Tanzania and Uganda. For hospitals and health centres, competency was assessed in six areas: basic infrastructure, equipment, medicine storage, infection control, education and quality control. Percentage of compliant facilities in each country was calculated for each of the six areas to facilitate comparison of hospitals and health centres across the five countries. The percentage of hospitals with dependable running water and electricity ranged from 22% to 46%. In countries analysed, only 19-50% of hospitals had the ability to provide 24-hour emergency care. For storage of medication, only 18% to 41% of facilities had unexpired drugs and current inventories. Availability of supplies to control infection and safely dispose of hazardous waste was generally poor (less than 50%) across all facilities. As few as 14% of hospitals (and as high as 76%) among those surveyed had training and supervision in place. No surveyed hospital had enough infrastructure to follow minimum standards and practices that the World Health Organization has deemed essential for the provision of emergency and surgical care. The countries where these hospitals are located may be representative of other low-income countries in sub-Saharan Africa. Thus, the results suggest that increased attention to building up the infrastructure within struggling health systems is necessary for improvements in global access to medical care.
Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC
NASA Technical Reports Server (NTRS)
2005-01-01
This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia
Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for amore » renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.« less
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1992-01-01
This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.
Communication Security for Control Systems in Smart Grid
NASA Astrophysics Data System (ADS)
Robles, Rosslin John; Kim, Tai-Hoon
As an example of Control System, Supervisory Control and Data Acquisition systems can be relatively simple, such as one that monitors environmental conditions of a small office building, or incredibly complex, such as a system that monitors all the activity in a nuclear power plant or the activity of a municipal water system. SCADA systems are basically Process Control Systems, designed to automate systems such as traffic control, power grid management, waste processing etc. Connecting SCADA to the Internet can provide a lot of advantages in terms of control, data viewing and generation. SCADA infrastructures like electricity can also be a part of a Smart Grid. Connecting SCADA to a public network can bring a lot of security issues. To answer the security issues, a SCADA communication security solution is proposed.
Intrusion-Tolerant Replication under Attack
ERIC Educational Resources Information Center
Kirsch, Jonathan
2010-01-01
Much of our critical infrastructure is controlled by large software systems whose participants are distributed across the Internet. As our dependence on these critical systems continues to grow, it becomes increasingly important that they meet strict availability and performance requirements, even in the face of malicious attacks, including those…
What are… the effects of major influencing factors (climate change, population dynamics, etc.) on future system demands? the innovative technologies that can cost-effectively improve performance and extend the life of existing systems? the new designs and management approaches...
DOT National Transportation Integrated Search
2015-11-01
The field of Intelligent Transportation Systems (ITS) has : witnessed significantly increased activity in recent years, : with the application of modern control, communications, : and information technologies to vehicles and roadway : infrastructure....
Operational models of infrastructure resilience.
Alderson, David L; Brown, Gerald G; Carlyle, W Matthew
2015-04-01
We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. © 2014 Society for Risk Analysis.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Overview
NASA Astrophysics Data System (ADS)
Cui, C.; Yu, C.; Xiao, J.; He, B.; Li, C.; Fan, D.; Wang, C.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Cao, Z.; Wang, J.; Yin, S.; Fan, Y.; Wang, J.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Tasks such as proposal submission, proposal peer-review, data archiving, data quality control, data release and open access, Cloud based data processing and analyzing, will be all supported on the platform. It will act as a full lifecycle management system for astronomical data and telescopes. Achievements from international Virtual Observatories and Cloud Computing are adopted heavily. In this paper, backgrounds of the project, key features of the system, and latest progresses are introduced.
Efficient mission control for the 48-satellite Globalstar Constellation
NASA Technical Reports Server (NTRS)
Smith, Dan
1994-01-01
The Globalstar system is being developed by Globalstar, Limited Partnership and will utilize 48 satellites in low earth orbit (See Figure 1) to create a world-wide mobile communications system consistent with Vice President Gore's vision of a Global Information Infrastructure. As a large long term commercial system developed by a newly formed organization, Globalstar provides an excellent opportunity to explore innovative solutions for highly efficient satellite command and control. Design and operational concepts being developed are unencumbered by existing physical and organizational infrastructures. This program really is 'starting with a clean sheet of paper'. Globalstar operations challenges can appear enormous. Clearly, assigning even a single person around the clock to monitor and control each satellite is excessive for Globalstar (it would require a staff of 200! . Even with only a single contact per orbit per satellite, data acquisitions will start or stop every 45 seconds! Although essentially identical, over time the satellites will develop their own 'personalities'and will re quire different data calibrations and levels of support. This paper discusses the Globalstar system and challenges and presents engineering concepts, system design decisions, and operations concepts which address the combined needs and concerns of satellite, ground system, and operations teams. Lessons from past missions have been applied, organizational barriers broken, partnerships formed across the mission segments, and new operations concepts developed for satellite constellation management. Control center requirements were then developed from the operations concepts.
Augmenting Trust Establishment in Dynamic Systems with Social Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagesse, Brent J; Kumar, Mohan; Venkatesh, Svetha
2010-01-01
Social networking has recently flourished in popularity through the use of social websites. Pervasive computing resources have allowed people stay well-connected to each other through access to social networking resources. We take the position that utilizing information produced by relationships within social networks can assist in the establishment of trust for other pervasive computing applications. Furthermore, we describe how such a system can augment a sensor infrastructure used for event observation with information from mobile sensors (ie, mobile phones with cameras) controlled by potentially untrusted third parties. Pervasive computing systems are invisible systems, oriented around the user. As a result,more » many future pervasive systems are likely to include a social aspect to the system. The social communities that are developed in these systems can augment existing trust mechanisms with information about pre-trusted entities or entities to initially consider when beginning to establish trust. An example of such a system is the Collaborative Virtual Observation (CoVO) system fuses sensor information from disaparate sources in soft real-time to recreate a scene that provides observation of an event that has recently transpired. To accomplish this, CoVO must efficently access services whilst protecting the data from corruption from unknown remote nodes. CoVO combines dynamic service composition with virtual observation to utilize existing infrastructure with third party services available in the environment. Since these services are not under the control of the system, they may be unreliable or malicious. When an event of interest occurs, the given infrastructure (bus cameras, etc.) may not sufficiently cover the necessary information (be it in space, time, or sensor type). To enhance observation of the event, infrastructure is augmented with information from sensors in the environment that the infrastructure does not control. These sensors may be unreliable, uncooperative, or even malicious. Additionally, to execute queries in soft real-time, processing must be distributed to available systems in the environment. We propose to use information from social networks to satisfy these requirements. In this paper, we present our position that knowledge gained from social activities can be used to augment trust mechanisms in pervasive computing. The system uses social behavior of nodes to predict a subset that it wants to query for information. In this context, social behavior such as transit patterns and schedules (which can be used to determine if a queried node is likely to be reliable) or known relationships, such as a phone's address book, that can be used to determine networks of nodes that may also be able to assist in retrieving information. Neither implicit nor explicit relationships necessarily imply that the user trusts an entity, but rather will provide a starting place for establishing trust. The proposed framework utilizes social network information to assist in trust establishment when third-party sensors are used for sensing events.« less
Green Infrastructure 101 • What is it? What does it do? What doesn’t it do? • Green Infrastructure as a stormwater and combined sewer control • GI Controls and Best Management Practices that make sense for Yonkers o (Include operations and maintenance requirements for each)
NASA Astrophysics Data System (ADS)
Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry
2006-12-01
We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.
Microbially influenced corrosion communities associated with fuel-grade ethanol environments.
Williamson, Charles H D; Jain, Luke A; Mishra, Brajendra; Olson, David L; Spear, John R
2015-08-01
Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these "newer fuels" as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion.
NASA Astrophysics Data System (ADS)
Allgood, Glenn O.; Kuruganti, Phani Teja; Nutaro, James; Saffold, Jay
2009-05-01
Combat resiliency is the ability of a commander to prosecute, control, and consolidate his/her's sphere of influence in adverse and changing conditions. To support this, an infrastructure must exist that allows the commander to view the world in varying degrees of granularity with sufficient levels of detail to permit confidence estimates to be levied against decisions and course of actions. An infrastructure such as this will include the ability to effectively communicate context and relevance within and across the battle space. To achieve this will require careful thought, planning, and understanding of a network and its capacity limitations in post-event command and control. Relevance and impact on any existing infrastructure must be fully understood prior to deployment to exploit the system's full capacity and capabilities. In this view, the combat communication network is considered an integral part of or National communication network and infrastructure. This paper will describe an analytical tool set developed at ORNL and RNI incorporating complexity theory, advanced communications modeling, simulation, and visualization technologies that could be used as a pre-planning tool or post event reasoning application to support response and containment.
NASA Astrophysics Data System (ADS)
Murakami, S.; Takemoto, T.; Ito, Y.
2012-07-01
The Japanese government, local governments and businesses are working closely together to establish spatial data infrastructures in accordance with the Basic Act on the Advancement of Utilizing Geospatial Information (NSDI Act established in August 2007). Spatial data infrastructures are urgently required not only to accelerate computerization of the public administration, but also to help restoration and reconstruction of the areas struck by the East Japan Great Earthquake and future disaster prevention and reduction. For construction of a spatial data infrastructure, various guidelines have been formulated. But after an infrastructure is constructed, there is a problem of maintaining it. In one case, an organization updates its spatial data only once every several years because of budget problems. Departments and sections update the data on their own without careful consideration. That upsets the quality control of the entire data system and the system loses integrity, which is crucial to a spatial data infrastructure. To ensure quality, ideally, it is desirable to update data of the entire area every year. But, that is virtually impossible, considering the recent budget crunch. The method we suggest is to update spatial data items of higher importance only in order to maintain quality, not updating all the items across the board. We have explored a method of partially updating the data of these two geographical features while ensuring the accuracy of locations. Using this method, data on roads and buildings that greatly change with time can be updated almost in real time or at least within a year. The method will help increase the availability of a spatial data infrastructure. We have conducted an experiment on the spatial data infrastructure of a municipality using those data. As a result, we have found that it is possible to update data of both features almost in real time.
Wireless intelligent network: infrastructure before services?
NASA Astrophysics Data System (ADS)
Chu, Narisa N.
1996-01-01
The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.
Global Positioning System: Observations on Quarterly Reports from the Air Force
2016-10-17
Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX) and development of military GPS
Artuñedo, Antonio; del Toro, Raúl M.; Haber, Rodolfo E.
2017-01-01
Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks. PMID:28445398
Artuñedo, Antonio; Del Toro, Raúl M; Haber, Rodolfo E
2017-04-26
Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller ( TLC ) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.
Requirements Engineering in Building Climate Science Software
NASA Astrophysics Data System (ADS)
Batcheller, Archer L.
Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the software team or users have control and responsibility for making changes in response to new scientific ideas. Thick infrastructure provides more functionality for users, but gives them less control of it. The stability of infrastructure trades off against the responsiveness that the infrastructure can have to user needs.
From Informal to Formal: Status and Challenges of Informal Water Infrastructures in Indonesia
NASA Astrophysics Data System (ADS)
Maryati, S.; Humaira, A. N. S.; Kipuw, D. M.
2018-05-01
Informal water infrastructures in Indonesia have emerged due to the government’s inability or incapacity to guarantee the service of water provision to all communities. Communities have their own mechanisms to meet their water needs and arrange it as a self-supplying or self-governed form of water infrastructure provision. In general, infrastructure provisions in Indonesia are held in the form of public systems (centralized systems) that cover most of the urban communities; communal systems that serve some groups of households limited only to a particular small-scale area; and individual systems. The communal and individual systems are systems that are provided by the communities themselves, sometimes with some intervention by the government. This kind of system is usually built according to lower standards compared to the system built by the government. Informal systems in this study are not defined in terms of their legal aspect, but more in technical terms. The aim of this study was to examine the existing status and challenges in transforming informal water infrastructures to formal infrastructures. Formalizing informal infrastructures is now becoming an issue because of the limitations the government faces in building new formal infrastructures. On the other hand, global and national targets state 100% access to water supplies for the whole population in the near future. Formalizing informal infrastructures seems more realistic than building new infrastructures. The scope of this study were the technical aspects thereof. Making descriptive and comparative analyses was the methodology used. Generally, most of the informal systems do not apply progressive tariffs, do not have storage/reservoirs, do not have water treatment plants, and rarely conduct treatment in accordance with standards and procedures as formal systems do, which leads to dubious access to safe water, especially considering the quality aspect.
Intelligent Transportation Infrastructure Benefits: Expected And Experienced
DOT National Transportation Integrated Search
1996-08-20
In traffic engineering, the concept of traffic control is giving way to the broader philosophy of Transportation Systems Management (TSM), whose purpose is not to move vehicles, but to optimize the utilization of transportation resources to improve t...
Highway Economic Requirements System - v. IV. Technical Report (Version 2)
DOT National Transportation Integrated Search
1999-05-04
This paper present background information for evaluating a possible relationship between the geographic extent of broadband telecommunications infrastructure available for general use, and the level of control exercised by the public right-of-way (RO...
ATLAS Metadata Infrastructure Evolution for Run 2 and Beyond
NASA Astrophysics Data System (ADS)
van Gemmeren, P.; Cranshaw, J.; Malon, D.; Vaniachine, A.
2015-12-01
ATLAS developed and employed for Run 1 of the Large Hadron Collider a sophisticated infrastructure for metadata handling in event processing jobs. This infrastructure profits from a rich feature set provided by the ATLAS execution control framework, including standardized interfaces and invocation mechanisms for tools and services, segregation of transient data stores with concomitant object lifetime management, and mechanisms for handling occurrences asynchronous to the control framework's state machine transitions. This metadata infrastructure is evolving and being extended for Run 2 to allow its use and reuse in downstream physics analyses, analyses that may or may not utilize the ATLAS control framework. At the same time, multiprocessing versions of the control framework and the requirements of future multithreaded frameworks are leading to redesign of components that use an incident-handling approach to asynchrony. The increased use of scatter-gather architectures, both local and distributed, requires further enhancement of metadata infrastructure in order to ensure semantic coherence and robust bookkeeping. This paper describes the evolution of ATLAS metadata infrastructure for Run 2 and beyond, including the transition to dual-use tools—tools that can operate inside or outside the ATLAS control framework—and the implications thereof. It further examines how the design of this infrastructure is changing to accommodate the requirements of future frameworks and emerging event processing architectures.
Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E.; Tkachenko, Valery; Torcivia-Rodriguez, John; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja
2016-01-01
The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure. The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu PMID:26989153
Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E; Tkachenko, Valery; Torcivia-Rodriguez, John; Voskanian, Alin; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja
2016-01-01
The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure.The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu. © The Author(s) 2016. Published by Oxford University Press.
Information-theoretic characterization of dynamic energy systems
NASA Astrophysics Data System (ADS)
Bevis, Troy Lawson
The latter half of the 20th century saw tremendous growth in nearly every aspect of civilization. From the internet to transportation, the various infrastructures relied upon by society has become exponentially more complex. Energy systems are no exception, and today the power grid is one of the largest infrastructures in the history of the world. The growing infrastructure has led to an increase in not only the amount of energy produced, but also an increase in the expectations of the energy systems themselves. The need for a power grid that is reliable, secure, and efficient is apparent, and there have been several initiatives to provide such a system. These increases in expectations have led to a growth in the renewable energy sources that are being integrated into the grid, a change that increases efficiency and disperses the generation throughout the system. Although this change in the grid infrastructure is beneficial, it leads to grand challenges in system level control and operation. As the number of sources increases and becomes geographically distributed, the control systems are no longer local to the system. This means that communication networks must be enhanced to support multiple devices that must communicate reliably. A common solution to these new systems is to use wide area networks for the communication network, as opposed to point-to-point communication. Although the wide area network will support a large number of devices, it generally comes with a compromise in the form of latency in the communication system. Now the device controller has latency injected into the feedback loop of the system. Also, renewable energy sources are largely non-dispatchable generation. That is, they are never guaranteed to be online and supplying the demanded energy. As renewable generation is typically modeled as stochastic process, it would useful to include this behavior in the control system algorithms. The combination of communication latency and stochastic sources are compounded by the dynamics of the grid itself. Loads are constantly changing, as well as the sources; this can sometimes lead to a quick change in system states. There is a need for a metric to be able to take into consideration all of the factors detailed above; it needs to be able to take into consideration the amount of information that is available in the system and the rate that the information is losing its value. In a dynamic system, the information is only valid for a length of time, and the controller must be able to take into account the decay of currently held information. This thesis will present the information theory metrics in a way that is useful for application to dynamic energy systems. A test case involving synchronization of several generators is presented for analysis and application of the theory. The objective is to synchronize all the generators and connect them to a common bus. As the phase shift of each generator is a random process, the effects of latency and information decay can be directly observed. The results of the experiments clearly show that the expected outcomes are observed and that entropy and information theory is a valid metric for timing requirement extraction.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35622] SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver...
Dean, Hazel D; Roberts, George W; Bouye, Karen E; Green, Yvonne; McDonald, Marian
2016-01-01
The public health infrastructure required for achieving health equity is multidimensional and complex. The infrastructure should be responsive to current and emerging priorities and capable of providing the foundation for developing, planning, implementing, and evaluating health initiatives. This article discusses these infrastructure requirements by examining how they are operationalized in the organizational infrastructure for promoting health equity at the Centers for Disease Control and Prevention, utilizing the nation's premier public health agency as a lens. Examples from the history of the Centers for Disease Control and Prevention's work in health equity from its centers, institute, and offices are provided to identify those structures and functions that are critical to achieving health equity. Challenges and facilitators to sustaining a health equity organizational infrastructure, as gleaned from the Centers for Disease Control and Prevention's experience, are noted. Finally, we provide additional considerations for expanding and sustaining a health equity infrastructure, which the authors hope will serve as "food for thought" for practitioners in state, tribal, or local health departments, community-based organizations, or nongovernmental organizations striving to create or maintain an impactful infrastructure to achieve health equity.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Architecture
NASA Astrophysics Data System (ADS)
Xiao, J.; Yu, C.; Cui, C.; He, B.; Li, C.; Fan, D.; Hong, Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Zhang, H.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). The ultimate goal of this project is to provide a comprehensive end-to-end astronomy research environment where several independent systems seamlessly collaborate to support the full lifecycle of the modern observational astronomy based on big data, from proposal submission, to data archiving, data release, and to in-situ data analysis and processing. In this paper, the architecture and key designs of the AstroCloud platform are introduced, including data access middleware, access control and security framework, extendible proposal workflow, and system integration mechanism.
Recommended Practice for Securing Control System Modems
DOE Office of Scientific and Technical Information (OSTI.GOV)
James R. Davidson; Jason L. Wright
2008-01-01
This paper addresses an often overlooked “backdoor” into critical infrastructure control systems created by modem connections. A modem’s connection to the public telephone system is similar to a corporate network connection to the Internet. By tracing typical attack paths into the system, this paper provides the reader with an analysis of the problem and then guides the reader through methods to evaluate existing modem security. Following the analysis, a series of methods for securing modems is provided. These methods are correlated to well-known networking security methods.
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.
Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Yen; Shepelev, Aleksey; Qiu, Charlie
With an increased number of Electric Vehicles (EVs) on the roads, charging infrastructure is gaining an ever-more important role in simultaneously meeting the needs of the local distribution grid and of EV users. This paper proposes a mesh network RFID system for user identification and charging authorization as part of a smart charging infrastructure providing charge monitoring and control. The Zigbee-based mesh network RFID provides a cost-efficient solution to identify and authorize vehicles for charging and would allow EV charging to be conducted effectively while observing grid constraints and meeting the needs of EV drivers
Requirements for maintaining cryogenic propellants during planetary surface stays
NASA Technical Reports Server (NTRS)
Riccio, Joseph R.; Schoenberg, Richard J.
1991-01-01
Potential impacts on the planetary surface system infrastructure resulting from the use of liquid hydrogen and oxygen propellants for a stage and half lander are discussed. Particular attention is given to techniques which can be incorporated into the surface infrastructure and/or the vehicle to minimize the impact resulting from the use of these cryogens. Methods offered for reducing cryogenic propellant boiloff include modification of the lander to accommodate boiloff, incorporation of passive thermal control devices to the lander, addition of active propellant management, and use of alternative propellants.
NASA Astrophysics Data System (ADS)
Ramaswami, A.
2016-12-01
Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. (2016). Meta-Principles for developing smart, sustainable, and healthy cities, Science, 352(6288), 940-3. Ramaswami, A., et al. A Social-Ecological Infrastructural Systems Framework for Inter-Disciplinary Study of Sustainable City-Systems. J. Ind Ecol, 16(6): 801-813, 2012.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... Partners, Inc., Corporate Center Division, Group Technology Infrastructure Services, Infrastructure Service... Infrastructure Services, Distributed Systems and Storage Group, Chicago, Illinois. The workers provide... unit formerly known as Group Technology Infrastructure Services, Distributed Systems and Storage is...
Positioning infrastructure and technologies for low-carbon urbanization
NASA Astrophysics Data System (ADS)
Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.
2014-10-01
The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.
Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.
Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé
2015-06-26
Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.
Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures
Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé
2015-01-01
Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry
1991-01-01
A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.
Sensor Technologies for Intelligent Transportation Systems
Guerrero-Ibáñez, Juan; Zeadally, Sherali
2018-01-01
Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524
Sensor Technologies for Intelligent Transportation Systems.
Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan
2018-04-16
Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.
Soga, Kenichi; Schooling, Jennifer
2016-08-06
Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.
Soga, Kenichi; Schooling, Jennifer
2016-01-01
Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845
Method for Controlling Space Transportation System Life Cycle Costs
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Bartine, David E.
2006-01-01
A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.
NASA Astrophysics Data System (ADS)
Mullins, A.; Bain, D.
2017-12-01
Infiltration-based green infrastructure (GI) is being increasingly applied in urban areas, systems characterized by substantial legacy contamination and complicated hydrology. However, it is not clear how the application of green infrastructure changes the geochemistry of urban roadside environments. Most current research on GI focuses on small sets of chemical parameters (e.g. road salt, nitrogen and phosphorous species) over relatively short time periods, limiting comprehensive understanding of geochemical function. This work measures changes in groundwater infiltration rate and dissolved metal concentrations in two infiltration trenches in Pittsburgh, PA to evaluate function and measure dissolved metal transport from the system over time. Two distinct geochemical regimes seem to be driven by seasonality: road de-icer exchange and microbial driven summer reducing conditions. Interactions between these geochemical regimes and variability in infiltration rate control the flux of different metals, varying with metal chemistry. These findings suggest the adoption of infiltration based green infrastructure will likely create complicated patterns of legacy contamination transport to downstream receptors.
Scholz, Stefan; Ngoli, Baltazar; Flessa, Steffen
2015-05-01
Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health information systems lack data on facility infrastructure. A rapid assessment tool for the infrastructure of primary health care facilities was developed by the authors and pilot-tested in Tanzania. The tool measures the quality of all infrastructural components comprehensively and with high standardization. Ratings use a 2-1-0 scheme which is frequently used in Tanzanian health care services. Infrastructural indicators and indices are obtained from the assessment and serve for reporting and tracing of interventions. The tool was pilot-tested in Tanga Region (Tanzania). The pilot test covered seven primary care facilities in the range between dispensary and district hospital. The assessment encompassed the facilities as entities as well as 42 facility buildings and 80 pieces of technical medical equipment. A full assessment of facility infrastructure was undertaken by health care professionals while the rapid assessment was performed by facility staff. Serious infrastructural deficiencies were revealed. The rapid assessment tool proved a reliable instrument of routine data collection by health facility staff. The authors recommend integrating the rapid assessment tool in the health information systems of developing countries. Health authorities in a decentralized health system are thus enabled to detect infrastructural deficiencies and trace the effects of interventions. The tool can lay the data foundation for district facility infrastructure management.
The history of infrastructures and the future of cyberinfrastructure in the Earth system sciences
NASA Astrophysics Data System (ADS)
Edwards, P. N.
2012-12-01
Infrastructures display similar historical patterns of inception, development, growth and decay. They typically begin as centralized systems which later proliferate into competing variants. Users' desire for seamless functionality tends eventually to push these variants toward interoperability, usually through "gateway" technologies that link incompatible systems into networks. Another stage is reached when these networks are linked to others, as in the cases of container transport (connecting trucking, rail, and shipping) or the Internet. End stages of infrastructure development include "splintering" (specialized service tiering) and decay, as newer infrastructures displace older ones. Temporal patterns are also visible in historical infrastructure development. This presentation, by a historian of science and technology, describes these patterns through examples of both physical and digital infrastructures, focusing on the global weather forecast infrastructure since the 19th century. It then investigates how some of these patterns might apply to the future of cyberinfrastructure for the Earth system sciences.
National Stormwater Calculator: Low Impact Development ...
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention using green infrastructure practices as low impact development (LID) controls. The primary focus of the SWC is to inform site developers on how well they can meet a desired stormwater retention target with and without the use of green infrastructure. It can also be used by landscapers and homeowners. Platform. The SWC is a Windows-based desktop program that requires an internet connection. A mobile web application version that will be compatible with all operating systems is currently being developed and is expected to be released in the fall of 2017.Cost Module. An LID cost estimation module within the application allows planners and managers to evaluate LID controls based on comparison of regional and national project planning level cost estimates (capital and average annual maintenance) and predicted LID control performance. Cost estimation is accomplished based on user-identified size configuration of the LID control infrastructure and other key project and site-specific variables. This includes whether the project is being applied as part of new development or redevelopment and if there are existing site constraints.Climate Scenarios. The SWC allows users to consider how runoff may vary based
Besada, Juan A.; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; Bernardos, Ana M.; Casar, José R.
2018-01-01
This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control. PMID:29641506
Besada, Juan A; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; López-Araquistain, Jaime; Bernardos, Ana M; Casar, José R
2018-04-11
This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control.
Damage identification in highway bridges using distribution factors
NASA Astrophysics Data System (ADS)
Gangone, Michael V.; Whelan, Matthew J.
2017-04-01
The U.S. infrastructure system is well behind the needs of the 21st century and in dire need of improvements. The American Society of Civil Engineers (ASCE) graded America's Infrastructure as a "D+" in its recent 2013 Report Card. Bridges are a major component of the infrastructure system and were awarded a "C+". Nearly 25 percent of the nation's bridges are categorized as deficient by the Federal Highway Administration (FWHA). Most bridges were designed with an expected service life of roughly 50 years and today the average age of a bridge is 42 years. Finding alternative methods of condition assessment which captures the true performance of the bridge is of high importance. This paper discusses the monitoring of two multi-girder/stringer bridges at different ages of service life. Normal strain measurements were used to calculate the load distribution factor at the midspan of the bridge under controlled loading conditions. Controlled progressive damage was implemented to one of the superstructures to determine if the damage could be detected using the distribution factor. An uncertainty analysis, based on the accuracy and precision of the normal strain measurement, was undertaken to determine how effective it is to use the distribution factor measurement as a damage indicator. The analysis indicates that this load testing parameter may be an effective measure for detecting damage.
Comparable Systems Analysis: Design and Operation of Advanced Control Centers
DOT National Transportation Integrated Search
2011-12-01
This paper examines next generation wide-area cellular such as fourth generation (4G) will be able to support vehicular applications, and how transportation infrastructure may mesh with wireless networks. This report is part of the Connected Vehicle ...
NASA Astrophysics Data System (ADS)
Culley, S.; Noble, S.; Yates, A.; Timbs, M.; Westra, S.; Maier, H. R.; Giuliani, M.; Castelletti, A.
2016-09-01
Many water resource systems have been designed assuming that the statistical characteristics of future inflows are similar to those of the historical record. This assumption is no longer valid due to large-scale changes in the global climate, potentially causing declines in water resource system performance, or even complete system failure. Upgrading system infrastructure to cope with climate change can require substantial financial outlay, so it might be preferable to optimize existing system performance when possible. This paper builds on decision scaling theory by proposing a bottom-up approach to designing optimal feedback control policies for a water system exposed to a changing climate. This approach not only describes optimal operational policies for a range of potential climatic changes but also enables an assessment of a system's upper limit of its operational adaptive capacity, beyond which upgrades to infrastructure become unavoidable. The approach is illustrated using the Lake Como system in Northern Italy—a regulated system with a complex relationship between climate and system performance. By optimizing system operation under different hydrometeorological states, it is shown that the system can continue to meet its minimum performance requirements for more than three times as many states as it can under current operations. Importantly, a single management policy, no matter how robust, cannot fully utilize existing infrastructure as effectively as an ensemble of flexible management policies that are updated as the climate changes.
NASA Astrophysics Data System (ADS)
Proto, Monica; Massimo, Bavusi; Francesco, Soldovieri
2010-05-01
The research project "Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing" (ISTIMES), was approved in the 7th Framework Programme, in the Joint Call ICT and Security and started on 1st July 2009. The purpose of ISTIMES project is to design, assess and promote an ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring in order to achieve the critical transport infrastructures more reliable and safe. The transportation sector's components are susceptible to the consequences of natural disasters and can also be attractive as terrorist targets. The sector's size, its physically dispersed and decentralized nature, the many public and private entities involved in its operations, the critical importance of cost considerations, and the inherent requirement of convenient accessibility to its services by all users - make the transportation particularly vulnerable to security and safety threats. As well known, the surface transportation system consists of interconnected infrastructures including highways, transit systems, railroads, airports, waterways, pipelines and ports, and the vehicles, aircraft, and vessels that operate along these networks. Thus, interdependencies exist between transportation and nearly every other sector of the economy and the effective operation of this system is essential to the European economic productivity; therefore, transportation sector protection is of paramount importance since threats to it may impact other industries that rely on it. The system exploits an open network architecture that can accommodate a wide range of sensors, static and mobile, and can be easily scaled up to allow the integration of additional sensors and interfacing with other networks. It relies on heterogeneous state-of-the-art electromagnetic sensors, enabling a self-organizing, self-healing, ad-hoc networking of terrestrial sensors, supported by specific satellite measurements. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. Thus, the proposal will concern also with the development of tools for handling, analysing and processing large data volume (Information Fusion) and then providing information and performing behaviour prediction in a quick, easy and intuitive way (Situation Awareness). The proposal is based on several independent non-invasive imaging technologies based on electromagnetic sensing. Sensor cross validation, synergy and new data fusion and correlation schemes will permit a multi-method, multi-resolution and multi-scale electromagnetic detection and monitoring of surface and subsurface changes of the infrastructure. According to GMES and European Spatial Data Infrastructure (ESDI) initiatives, the system will adopt open architectures and will make efforts to achieve full interoperability. The system will be tested on two very challenging test beds such as: a highway-bridge and a railway tunnel. The system will be based on clear end-user requirements, coming from representative end-users and technological choices will be based on a long term cost-benefit analysis. Then, a dissemination plan was included into the project to encourage a wide range of public institutions and private companies to evaluate and adopt our approach for real-time control and distributed monitoring also in the more general framework of critical and civil infrastructure management and protection. Finally, an exploitation plan will develop for the commercialization of any derived technology, software, or monitoring concepts. ISTIMES project is carried out by an international partnership formed by nine partners coming from seven countries: Tecnologie per le Osservazioni della Terra (TeRN), Elsag Datamat (ED) and Dipartimento della Protezione Civile (DPC) from Italy, Eidgenoessische Materialpruefungs-und Forschungsanstalt (EMPA) from Switzerland, Laboratoire Central des Ponts et Chaussées (LCPC) from France, Lund University (ULUND) from Sweden, Tel Aviv University (TAU) from Israel, Territorial Data Elaboration (TDE) from Romania and Norsk Elektro Optikk (NEO) from Norway.
NASA Astrophysics Data System (ADS)
Pamulaparthy, Balakrishna; KS, Swarup; Kommu, Rajagopal
2014-12-01
Distribution automation (DA) applications are limited to feeder level today and have zero visibility outside of the substation feeder and reaching down to the low-voltage distribution network level. This has become a major obstacle in realizing many automated functions and enhancing existing DA capabilities. Advanced metering infrastructure (AMI) systems are being widely deployed by utilities across the world creating system-wide communications access to every monitoring and service point, which collects data from smart meters and sensors in short time intervals, in response to utility needs. DA and AMI systems convergence provides unique opportunities and capabilities for distribution grid modernization with the DA system acting as a controller and AMI system acting as feedback to DA system, for which DA applications have to understand and use the AMI data selectively and effectively. In this paper, we propose a load segmentation method that helps the DA system to accurately understand and use the AMI data for various automation applications with a suitable case study on power restoration.
Engineering Infrastructures: Problems of Safety and Security in the Russian Federation
NASA Astrophysics Data System (ADS)
Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.
Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.
Sharing Data and Analytical Resources Securely in a Biomedical Research Grid Environment
Langella, Stephen; Hastings, Shannon; Oster, Scott; Pan, Tony; Sharma, Ashish; Permar, Justin; Ervin, David; Cambazoglu, B. Barla; Kurc, Tahsin; Saltz, Joel
2008-01-01
Objectives To develop a security infrastructure to support controlled and secure access to data and analytical resources in a biomedical research Grid environment, while facilitating resource sharing among collaborators. Design A Grid security infrastructure, called Grid Authentication and Authorization with Reliably Distributed Services (GAARDS), is developed as a key architecture component of the NCI-funded cancer Biomedical Informatics Grid (caBIG™). The GAARDS is designed to support in a distributed environment 1) efficient provisioning and federation of user identities and credentials; 2) group-based access control support with which resource providers can enforce policies based on community accepted groups and local groups; and 3) management of a trust fabric so that policies can be enforced based on required levels of assurance. Measurements GAARDS is implemented as a suite of Grid services and administrative tools. It provides three core services: Dorian for management and federation of user identities, Grid Trust Service for maintaining and provisioning a federated trust fabric within the Grid environment, and Grid Grouper for enforcing authorization policies based on both local and Grid-level groups. Results The GAARDS infrastructure is available as a stand-alone system and as a component of the caGrid infrastructure. More information about GAARDS can be accessed at http://www.cagrid.org. Conclusions GAARDS provides a comprehensive system to address the security challenges associated with environments in which resources may be located at different sites, requests to access the resources may cross institutional boundaries, and user credentials are created, managed, revoked dynamically in a de-centralized manner. PMID:18308979
EuCARD 2010: European coordination of accelerator research and development
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2010-09-01
Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.
De La O, Ana L; Martel García, Fernando
2014-09-03
Poor governance and accountability compromise young democracies' efforts to provide public services critical for human development, including water, sanitation, health, and education. Evidence shows that accountability agencies like superior audit institutions can reduce corruption and waste in federal grant programs financing service infrastructure. However, little is know about their effect on compliance with grant reporting and resource allocation requirements, or about the causal mechanisms. This study protocol for an exploratory randomized controlled trial tests the hypothesis that federal and state audits increase compliance with a federal grant program to improve municipal service infrastructure serving marginalized households. The AUDIT study is a block randomized, controlled, three-arm parallel group exploratory trial. A convenience sample of 5 municipalities in each of 17 states in Mexico (n=85) were block randomized to be audited by federal auditors (n=17), by state auditors (n=17), and a control condition outside the annual program of audits (n=51) in a 1:1:3 ratio. Replicable and verifiable randomization was performed using publicly available lottery numbers. Audited municipalities were included in the national program of audits and received standard audits on their use of federal public service infrastructure grants. Municipalities receiving moderate levels of grant transfers were recruited, as these were outside the auditing sampling frame--and hence audit program--or had negligible probabilities of ever being audited. The primary outcome measures capture compliance with the grant program and markers for the causal mechanisms, including deterrence and information effects. Secondary outcome measure include differences in audit reports across federal and state auditors, and measures like career concerns, political promotions, and political clientelism capturing synergistic effects with municipal accountability systems. The survey firm and research assistants assessing outcomes were blind to treatment status. This study will improve our understanding of local accountability systems for public service delivery in the 17 states under study, and may have downstream policy implications. The study design also demonstrates the use of verifiable and replicable randomization, and of sequentially partitioned hypotheses to reduce the Type I error rate in multiple hypothesis tests. Controlled-trials.com Identifier ISRCTN22381841: Date registered 02/11/2012.
Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction
Ran, L.; Ye, X. W.; Ming, G.; Dong, X. B.
2014-01-01
Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented. PMID:25032238
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... anonymous access system, and EPA will not know your identity or contact information unless you provide it in... control measures. Section 110(a)(2)(B): Ambient air quality monitoring/data system. Section 110(a)(2)(C... significant deterioration (PSD) and visibility protection. Section 110(a)(2)(K): Air quality modeling and...
NASA Technical Reports Server (NTRS)
Randolph, Lynwood P.
1994-01-01
The Open Systems Interconnection Transmission Control Protocol/Internet Protocol (OSI TCP/IP) and the Government Open Systems Interconnection Profile (GOSIP) are compared and described in terms of Federal internetworking. The organization and functions of the Federal Internetworking Requirements Panel (FIRP) are discussed and the panel's conclusions and recommendations with respect to the standards and implementation of the National Information Infrastructure (NII) are presented.
Resilient Military Systems and the Advanced Cyber Threat
2013-01-01
systems; intelligence, surveillance, and reconnaissance systems; logistics and human resource systems; and mobile as well as fixed- infrastructure ...significant portions of military and critical infrastructure : power generation, communications, fuel and transportation, emergency services, financial...vulnerabilities in the domestic power grid and critical infrastructure systems.4,5 DoD, and the United States, is extremely reliant on the
NASA Astrophysics Data System (ADS)
Wu, H. Felix; Wan, Yan
2014-03-01
Our nation's infrastructural systems are crumbling. The deteriorating process grows over time. The physical aging of these vital facilities and the remediation of their current critical state pose a key societal challenge to the United States. Current sensing technologies, while well developed in controlled laboratory environments, have not yet yielded tools for producing real-time, in-situ data that are adequately comprehensible for infrastructure decision-makers. The need for advanced sensing technologies is national because every municipality and state in the nation faces infrastructure management challenges. The need is critical because portions of infrastructure are reaching the end of their life-spans and there are few cost-effective means to monitor infrastructure integrity and to prioritize the renovation and replacement of infrastructure elements. New advanced sensing technologies that produce cost-effective inspection and real-time monitoring data, and that can also help or aid in meaningful interpretation of the acquired data, therefore will enhance the safety in regard to the public on structural integrity by issuing timely and accurate alert data for effective maintenance to avoid disasters happening. New advanced sensing technologies also allow more informed management of infrastructural investments by avoiding premature replacement of infrastructure and identifying those structures in need of immediate action to prevent from catastrophic failure. Infrastructure management requires that once a structural defect is detected, an economical and efficient repair be made. Advancing the technologies of repairing infrastructure elements in contact with water, road salt, and subjected to thermal changes requires innovative research to significantly extend the service life of repairs, lower the costs of repairs, and provide repair technologies that are suitable for a wide range of conditions. All these new technologies will provide increased lifetimes, security, and safety of elements of critical infrastructure for the Nation's already deteriorating civil infrastructure. It is envisioned that the Nation should look far beyond: not only should we efficiently and effectively address current problems of the aging infrastructure, but we must also further develop next-generation construction materials and processes for new construction. To accomplish this ambitious goal, we must include process efficiency that will help select the most reliable and cost-effective materials in construction processes; performance and cost will be the prime consideration for selections construction materials based on life-cycle cost and materials performance; energy efficiency will drive reduced energy consumption from current levels by 50 % per unit of output; and environmental responsiveness will achieve net-zero waste from construction materials and its constituents. Should it be successfully implemented, we will transform the current 21st century infrastructure systems to enable the vital functioning of society and improve competitiveness of the economy to ensure that our quality of life remains high.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Vehicle to Infrastructure Core System... Program Office (ITS JPO) will host a free public meeting to discuss the Vehicle to Infrastructure (V2I... to work originally performed under the Vehicle Infrastructure Integration Proof of Concept (VII POC...
Pandemic influenza and critical infrastructure dependencies: possible impact on hospitals.
Itzwerth, Ralf L; Macintyre, C Raina; Shah, Smita; Plant, Aileen J
2006-11-20
Hospitals will be particularly challenged when pandemic influenza spreads. Within the health sector in general, existing pandemic plans focus on health interventions to control outbreaks. The critical relationship between the health sector and other sectors is not well understood and addressed. Hospitals depend on critical infrastructure external to the organisation itself. Existing plans do not adequately consider the complexity and interdependency of systems upon which hospitals rely. The failure of one such system can trigger a failure of another, causing cascading breakdowns. Health is only one of the many systems that struggle at maximum capacity during "normal" times, as current business models operate with no or minimal "excess" staff and have become irreducible operations. This makes interconnected systems highly vulnerable to acute disruptions, such as a pandemic. Companies use continuity plans and highly regulated business continuity management to overcome process interruptions. This methodology can be applied to hospitals to minimise the impact of a pandemic.
NASA Astrophysics Data System (ADS)
Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea
2017-04-01
Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of different operating strategies.
Game-Theoretic strategies for systems of components using product-form utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; Ma, Cheng-Yu; Hausken, K.
Many critical infrastructures are composed of multiple systems of components which are correlated so that disruptions to one may propagate to others. We consider such infrastructures with correlations characterized in two ways: (i) an aggregate failure correlation function specifies the conditional failure probability of the infrastructure given the failure of an individual system, and (ii) a pairwise correlation function between two systems specifies the failure probability of one system given the failure of the other. We formulate a game for ensuring the resilience of the infrastructure, wherein the utility functions of the provider and attacker are products of an infrastructuremore » survival probability term and a cost term, both expressed in terms of the numbers of system components attacked and reinforced. The survival probabilities of individual systems satisfy first-order differential conditions that lead to simple Nash Equilibrium conditions. We then derive sensitivity functions that highlight the dependence of infrastructure resilience on the cost terms, correlation functions, and individual system survival probabilities. We apply these results to simplified models of distributed cloud computing and energy grid infrastructures.« less
Strategic behaviors and governance challenges in social-ecological systems
NASA Astrophysics Data System (ADS)
Muneepeerakul, Rachata; Anderies, John M.
2017-08-01
The resource management and environmental policy literature focuses on devising regulations and incentive structures to achieve desirable goals. It often presumes the existence of public infrastructure that actualizes these incentives and regulations through a process loosely referred to as `governance.' In many cases, it is not clear if and how such governance infrastructure can be created and supported. Here, we take a complex systems view in which `governance' is an emergent phenomenon generated by interactions between social, economic, and environmental (both built and natural) factors. We present a framework and formal stylized model to explore under what circumstances stable governance structures may emerge endogenously in coupled infrastructure systems comprising shared natural, social, and built infrastructures of which social-ecological systems are specific examples. The model allows us to derive general conditions for a sustainable coupled infrastructure system in which critical infrastructure (e.g., canals) is provided by a governing entity that enables resource users (e.g., farmers) to produce outputs from natural infrastructure (e.g., water) to meet their needs while supporting the governing entity.
Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim
2007-01-01
Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Spaceport Command and Control System Automation Testing
NASA Technical Reports Server (NTRS)
Plano, Tom
2017-01-01
The goal of automated testing is to create and maintain a cohesive infrastructure of robust tests that could be run independently on a software package in its entirety. To that end, the Spaceport Command and Control System (SCCS) project at the National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) has brought in a large group of interns to work side-by-side with full time employees to do just this work. Thus, our job is to implement the tests that will put SCCS through its paces.
Cost efficient command management
NASA Technical Reports Server (NTRS)
Brandt, Theresa; Murphy, C. W.; Kuntz, Jon; Barlett, Tom
1996-01-01
The design and implementation of a command management system (CMS) for a NASA control center, is described. The technology innovations implemented in the CMS provide the infrastructure required for operations cost reduction and future development cost reduction through increased operational efficiency and reuse in future missions. The command management design facilitates error-free operations which enables the automation of the routine control center functions and allows for the distribution of scheduling responsibility to the instrument teams. The reusable system was developed using object oriented methodologies.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
NASA Astrophysics Data System (ADS)
Alessio, F.; Barandela, M. C.; Callot, O.; Duval, P.-Y.; Franek, B.; Frank, M.; Galli, D.; Gaspar, C.; Herwijnen, E. v.; Jacobsson, R.; Jost, B.; Neufeld, N.; Sambade, A.; Schwemmer, R.; Somogyi, P.
2010-04-01
LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented
Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.
Lynggaard, Per; Skouby, Knud Erik
2016-11-02
The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.
Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision
Lynggaard, Per; Skouby, Knud Erik
2016-01-01
The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants. PMID:27827851
A semi-automated workflow for biodiversity data retrieval, cleaning, and quality control
Mathew, Cherian; Obst, Matthias; Vicario, Saverio; Haines, Robert; Williams, Alan R.; de Jong, Yde; Goble, Carole
2014-01-01
Abstract The compilation and cleaning of data needed for analyses and prediction of species distributions is a time consuming process requiring a solid understanding of data formats and service APIs provided by biodiversity informatics infrastructures. We designed and implemented a Taverna-based Data Refinement Workflow which integrates taxonomic data retrieval, data cleaning, and data selection into a consistent, standards-based, and effective system hiding the complexity of underlying service infrastructures. The workflow can be freely used both locally and through a web-portal which does not require additional software installations by users. PMID:25535486
Testing Omega P’s 650 KW, 1.3 GHZ Low-Voltage Multi-Beam Klystron for the Project X Pulsed LINAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fermi Research Alliance; Omega-P Inc.
Omega-P Inc. had developed a multi beam 1.3 GHz klystron (MBK) for the Project X pulsed linac application. Testing of the klystron require a special hardware such as a modulator, RF components, control system, power supplies, etc, as well as associated infrastructure( electricity, water, safety). This is an expensive part of klystron development for which Omega-P does not have the required equipment. Fermilab will test the MBK at Fermilab site providing contribution to the project all the necessary facilities, infrastructure and manpower for MBK test performance and analysis.
NASA Astrophysics Data System (ADS)
Plag, H.-P.; Foley, G.; Jules-Plag, S.; Ondich, G.; Kaufman, J.
2012-04-01
The Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS) as a user-driven service infrastructure responding to the needs of users in nine interdependent Societal Benefit Areas (SBAs) of Earth observations (EOs). GEOSS applies an interdisciplinary scientific approach integrating observations, research, and knowledge in these SBAs in order to enable scientific interpretation of the collected observations and the extraction of actionable information. Using EOs to actually produce these societal benefits means getting the data and information to users, i.e., decision-makers. Thus, GEO needs to know what the users need and how they would use the information. The GEOSS User Requirements Registry (URR) is developed as a service-oriented infrastructure enabling a wide range of users, including science and technology (S&T) users, to express their needs in terms of EOs and to understand the benefits of GEOSS for their fields. S&T communities need to be involved in both the development and the use of GEOSS, and the development of the URR accounts for the special needs of these communities. The GEOSS Common Infrastructure (GCI) at the core of GEOSS includes system-oriented registries enabling users to discover, access, and use EOs and derived products and services available through GEOSS. In addition, the user-oriented URR is a place for the collection, sharing, and analysis of user needs and EO requirements, and it provides means for an efficient dialog between users and providers. The URR is a community-based infrastructure for the publishing, viewing, and analyzing of user-need related information. The data model of the URR has a core of seven relations for User Types, Applications, Requirements, Research Needs, Infrastructure Needs, Technology Needs, and Capacity Building Needs. The URR also includes a Lexicon, a number of controlled vocabularies, and
Review of EuCARD project on accelerator infrastructure in Europe
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-01-01
The aim of big infrastructural and research programs (like pan-European Framework Programs) and individual projects realized inside these programs in Europe is to structure the European Research Area - ERA in this way as to be competitive with the leaders of the world. One of this projects in EuCARD (European Coordination of Accelerator Research and Development) with the aim to structure and modernize accelerator, (including accelerators for big free electron laser machines) research infrastructure. This article presents the periodic development of EuCARD which took place between the annual meeting, April 2012 in Warsaw and SC meeting in Uppsala, December 2012. The background of all these efforts are achievements of the LHC machine and associated detectors in the race for new physics. The LHC machine works in the regime of p-p, Pb-p, Pb-Pb (protons and lead ions). Recently, a discovery by the LHC of Higgs like boson, has started vivid debates on the further potential of this machine and the future. The periodic EuCARD conference, workshop and meetings concern building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The aim of the discussion is not only summarize the current status but make plans and prepare practically to building new infrastructures. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. Accelerator technology is intensely developed in all developed nations and regions of the world. The EuCARD project contains a lot of subjects related directly and indirectly to photon physics and photonics, as well as optoelectronics, electronics and integration of these with large research infrastructure.
Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Steven M
2012-01-01
Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both ofmore » these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.« less
NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing
NASA Technical Reports Server (NTRS)
Clements, Greg
2011-01-01
This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.
Crowdsourced Contributions to the Nation's Geodetic Elevation Infrastructure
NASA Astrophysics Data System (ADS)
Stone, W. A.
2014-12-01
NOAA's National Geodetic Survey (NGS), a United States Department of Commerce agency, is engaged in providing the nation's fundamental positioning infrastructure - the National Spatial Reference System (NSRS) - which includes the framework for latitude, longitude, and elevation determination as well as various geodetic models, tools, and data. Capitalizing on Global Navigation Satellite System (GNSS) technology for improved access to the nation's precise geodetic elevation infrastructure requires use of a geoid model, which relates GNSS-derived heights (ellipsoid heights) with traditional elevations (orthometric heights). NGS is facilitating the use of crowdsourced GNSS observations collected at published elevation control stations by the professional surveying, geospatial, and scientific communities to help improve NGS' geoid modeling capability. This collocation of published elevation data and newly collected GNSS data integrates together the two height systems. This effort in turn supports enhanced access to accurate elevation information across the nation, thereby benefiting all users of geospatial data. By partnering with the public in this collaborative effort, NGS is not only helping facilitate improvements to the elevation infrastructure for all users but also empowering users of NSRS with the capability to do their own high-accuracy positioning. The educational outreach facet of this effort helps inform the public, including the scientific community, about the utility of various NGS tools, including the widely used Online Positioning User Service (OPUS). OPUS plays a key role in providing user-friendly and high accuracy access to NSRS, with optional sharing of results with NGS and the public. All who are interested in helping evolve and improve the nationwide elevation determination capability are invited to participate in this nationwide partnership and to learn more about the geodetic infrastructure which is a vital component of viable spatial data for many disciplines, including the geosciences.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-04
..., National Protection and Programs Directorate, Office of Infrastructure Protection (IP), will submit the... manner.'' DHS designated IP to lead these efforts. Given that the vast majority of the Nation's critical infrastructure and key resources in most sectors are privately owned or controlled, IP's success in achieving the...
Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R
2008-01-01
Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.
Complex Networks and Critical Infrastructures
NASA Astrophysics Data System (ADS)
Setola, Roberto; de Porcellinis, Stefano
The term “Critical Infrastructures” indicates all those technological infrastructures such as: electric grids, telecommunication networks, railways, healthcare systems, financial circuits, etc. that are more and more relevant for the welfare of our countries. Each one of these infrastructures is a complex, highly non-linear, geographically dispersed cluster of systems, that interact with their human owners, operators, users and with the other infrastructures. Their augmented relevance and the actual political and technological scenarios, which have increased their exposition to accidental failure and deliberate attacks, demand for different and innovative protection strategies (generally indicate as CIP - Critical Infrastructure Protection). To this end it is mandatory to understand the mechanisms that regulate the dynamic of these infrastructures. In this framework, an interesting approach is those provided by the complex networks. In this paper we illustrate some results achieved considering structural and functional properties of the corresponding topological networks both when each infrastructure is assumed as an autonomous system and when we take into account also the dependencies existing among the different infrastructures.
DOT National Transportation Integrated Search
2012-03-01
Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and : uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the po...
PLANNING FOR SSO CONTROL: HENRICO COUNTY, VA - CASE STUDY
The nation's sanitary-sewer infrastructure is aging with some sewers over 100 years. There are more than 19,500 municipal sanitary-sewer collecton systems nationwide serving 150M people comprising 500,000 sewer miles. About 40,000 sanitary-sewer overflow (SSO) events nationwide y...
development to improve the nation's electrical grid infrastructure, making it more flexible, reliable Standard, IEEE 1547 Blue cover page of report with hexagon shapes over electric grid Basic Research Needs Controls Power Systems Design and Studies Security and Resilience Institutional Support NREL grid research
Monitoring Artificial Pancreas Trials Through Agent-based Technologies
Scarpellini, Stefania; Di Palma, Federico; Toffanin, Chiara; Del Favero, Simone; Magni, Lalo; Bellazzi, Riccardo
2014-01-01
The increase in the availability and reliability of network connections lets envision systems supporting a continuous remote monitoring of clinical parameters useful either for overseeing chronic diseases or for following clinical trials involving outpatients. We report here the results achieved by a telemedicine infrastructure that has been linked to an artificial pancreas platform and used during a trial of the AP@home project, funded by the European Union. The telemedicine infrastructure is based on a multiagent paradigm and is able to deliver to the clinic any information concerning the patient status and the operation of the artificial pancreas. A web application has also been developed, so that the clinic staff and the researchers involved in the design of the blood glucose control algorithms are able to follow the ongoing experiments. Albeit the duration of the experiments in the trial discussed in the article was limited to only 2 days, the system proved to be successful for monitoring patients, in particular overnight when the patients are sleeping. Based on that outcome we can conclude that the infrastructure is suitable for the purpose of accomplishing an intelligent monitoring of an artificial pancreas either during longer trials or whenever that system will be used as a routine treatment. PMID:24876570
A Cloud-based Infrastructure and Architecture for Environmental System Research
NASA Astrophysics Data System (ADS)
Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.
2016-12-01
The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.
Study on the Future Internet System through Analysis of SCADA Systems
NASA Astrophysics Data System (ADS)
Song, Jae-Gu; Jung, Sungmo; Kim, Seoksoo
Research on the future Internet is focused on establishing standards by solving problems through various projects and accepting various requirements. In this study, the SCADA (Supervisory Control And Data Acquisition) environment, closely related with national infrastructure, is analyzed in order to explore requirements of the future Internet and then those of the SCADA network. Also, this study provides SCADA system environments for the future Internet.
ERIC Educational Resources Information Center
Hu, Qinran; Li, Fangxing; Chen, Chien-fei
2015-01-01
There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…
Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS)
2012-05-01
protect, and secure the United States and its interests. • AOF is the United States, Alaska, Canada, Mexico, Bahamas, Puerto Rico , and the U.S. Virgin...Criteria (UFC) for Smart Microgrid Cyber design guides for Industrial Control Systems (ICS) Residual systems Operations and Maintenance Operator...Training Sustainment Commercial Transition Cooperation with NIST for microgrid security standards Working with industry associations and
The Impact of Emerging MEMS-Based Microsystems on US Defense Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
STAPLE,BEVAN D.; JAKUBCZAK II,JEROME F.
2000-01-20
This paper examines the impact of inserting Micro-Electro-Mechanical Systems (MEMS) into US defense applications. As specific examples, the impacts of micro Inertial Measurement Units (IMUs), radio frequency MEMS (RF MEMS), and Micro-Opto-Electro-Mechanical Systems (MOEMS) to provide integrated intelligence, communication, and control to the defense infrastructure with increased affordability, functionality, and performance are highlighted.
A System for Integrated Reliability and Safety Analyses
NASA Technical Reports Server (NTRS)
Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Coumeri, Marc; Scheidler, Peter, Jr.; Bonesteel, Charles
1999-01-01
We present an integrated reliability and aviation safety analysis tool. The reliability models for selected infrastructure components of the air traffic control system are described. The results of this model are used to evaluate the likelihood of seeing outcomes predicted by simulations with failures injected. We discuss the design of the simulation model, and the user interface to the integrated toolset.
AN ANTIFRAGILE APPROACH TO PREPARING FOR CYBER CONFLICT
2017-04-05
Cyber Strategic Approach The need to protect critical infrastructure, sensitive unclassified and classified data, and Command and Control systems that...high-reward approaches , particularly those that are non -material in nature. Finally, a systemic focus on feedback, memory and continuous...AIR WAR COLLEGE AIR UNIVERSITY AN ANTIFRAGILE APPROACH TO PREPARING FOR CYBER CONFLICT by Lance Baxter, Lt Col, USAF A Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duren, Mike; Aldridge, Hal; Abercrombie, Robert K
2013-01-01
Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution andmore » management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.« less
Fuzzy architecture assessment for critical infrastructure resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, George
2012-12-01
This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systemsmore » architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.« less
Defense Strategies for Asymmetric Networked Systems with Discrete Components.
Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun
2018-05-03
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.
Defense Strategies for Asymmetric Networked Systems with Discrete Components
Rao, Nageswara S. V.; Ma, Chris Y. T.; Hausken, Kjell; He, Fei; Yau, David K. Y.
2018-01-01
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models. PMID:29751588
NASA Astrophysics Data System (ADS)
Slota, S.; Khalsa, S. J. S.
2015-12-01
Infrastructures are the result of systems, networks, and inter-networks that accrete, overlay and segment one another over time. As a result, working infrastructures represent a broad heterogeneity of elements - data types, computational resources, material substrates (computing hardware, physical infrastructure, labs, physical information resources, etc.) as well as organizational and social functions which result in divergent outputs and goals. Cyber infrastructure's engineering often defaults to a separation of the social from the technical that results in the engineering succeeding in limited ways, or the exposure of unanticipated points of failure within the system. Studying the development of middleware intended to mediate interactions among systems within an earth systems science infrastructure exposes organizational, technical and standards-focused negotiations endemic to a fundamental trait of infrastructure: its characteristic invisibility in use. Intended to perform a core function within the EarthCube cyberinfrastructure, the development, governance and maintenance of an automated brokering system is a microcosm of large-scale infrastructural efforts. Points of potential system failure, regardless of the extent to which they are more social or more technical in nature, can be considered in terms of the reverse salient: a point of social and material configuration that momentarily lags behind the progress of an emerging or maturing infrastructure. The implementation of the BCube data broker has exposed reverse salients in regards to the overall EarthCube infrastructure (and the role of middleware brokering) in the form of organizational factors such as infrastructural alignment, maintenance and resilience; differing and incompatible practices of data discovery and evaluation among users and stakeholders; and a preponderance of local variations in the implementation of standards and authentication in data access. These issues are characterized by their role in increasing tension or friction among components that are on the path to convergence and may help to predict otherwise-occluded endogenous points of failure or non-adoption in the infrastructure.
Galaxy CloudMan: delivering cloud compute clusters.
Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James
2010-12-21
Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.
Galaxy CloudMan: delivering cloud compute clusters
2010-01-01
Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983
Cyberspace and Posse Comitatus: Legal Implications of a Borderless Domain
2010-03-01
technology infrastructures, including the Internet , telecommunications networks, computer systems, and embedded processors and controllers.” 9 This...the people, and stopped just short of shutting down economic markets . 2 Though never admitted, all indications point to a coordinated attack from...control orders transit many of the same, generally commercially-owned, routers, switches, computers, and wires, each with the goal of passing information
Ramp - Metering Algorithms Evaluated within Simplified Conditions
NASA Astrophysics Data System (ADS)
Janota, Aleš; Holečko, Peter; Gregor, Michal; Hruboš, Marián
2017-12-01
Freeway networks reach their limits, since it is usually impossible to increase traffic volumes by indefinitely extending transport infrastructure through adding new traffic lanes. One of the possible solutions is to use advanced intelligent transport systems, particularly ramp metering systems. The paper shows how two particular algorithms of local and traffic-responsive control (Zone, ALINEA) can be adapted to simplified conditions corresponding to Slovak freeways. Both control strategies are modelled and simulated using PTV Vissim software, including the module VisVAP. Presented results demonstrate the properties of both control strategies, which are compared mutually as well as with the initial situation in which no control strategy is applied
47 CFR 10.330 - Provider infrastructure requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...
47 CFR 10.330 - Provider infrastructure requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...
47 CFR 10.330 - Provider infrastructure requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...
Consideration of an Applied Model of Public Health Program Infrastructure
Lavinghouze, Rene; Snyder, Kimberly; Rieker, Patricia; Ottoson, Judith
2015-01-01
Systemic infrastructure is key to public health achievements. Individual public health program infrastructure feeds into this larger system. Although program infrastructure is rarely defined, it needs to be operationalized for effective implementation and evaluation. The Ecological Model of Infrastructure (EMI) is one approach to defining program infrastructure. The EMI consists of 5 core (Leadership, Partnerships, State Plans, Engaged Data, and Managed Resources) and 2 supporting (Strategic Understanding and Tactical Action) elements that are enveloped in a program’s context. We conducted a literature search across public health programs to determine support for the EMI. Four of the core elements were consistently addressed, and the other EMI elements were intermittently addressed. The EMI provides an initial and partial model for understanding program infrastructure, but additional work is needed to identify evidence-based indicators of infrastructure elements that can be used to measure success and link infrastructure to public health outcomes, capacity, and sustainability. PMID:23411417
DOT National Transportation Integrated Search
2016-05-01
Stop sign controlled unsignalized intersections raise a public safe concern. Even though various strategies, such as engineering, education, and policy, have been applied in practice, there are a number of fatal crashes occurred at unsignalized inter...
PLANNING FOR SSO CONTROL: HENRICO COUNTY, VA - CASE STUDY
The Nation's sanitary-sewer infrastructure is aging with some sewers dating back over 100 years. There are more than 19,500 municipal sanitary-sewer collection systems nationwide serving an estimated 150M people and comprising about 500,000 sewer miles. It is estimated that there...
COMPUTER MODEL ANALYSIS FOR CONTROL PLANNING OF SANITARY-SEWER OVERFLOWS
The Nation's sanitary-sewer infrastructure is aging with some sewers dating back over 100 years. There are more than 19,500 municipal sanitary-sewer collection systems nationwide serving an estimated 150 million people and comprising about 800,000 km (500,000 mi) of municipally ...
DOT National Transportation Integrated Search
1999-11-01
The FAST-TRAC (Faster and Safer Travel through Traffic Routing and Advanced Controls) Operational Field Test (OFT) is an Intelligent Transportation Systems (ITS) project being conducted in Southeast Michigan, largely within Oakland County. The projec...
Control Systems Cyber Security:Defense in Depth Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Kuipers; Mark Fabro
2006-05-01
Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecturemore » that requires: Maintenance of various field devices, telemetry collection, and/or industrial-level process systems Access to facilities via remote data link or modem Public facing services for customer or corporate operations A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.« less
Control Systems Cyber Security: Defense-in-Depth Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Fabro
2007-10-01
Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecturemore » that requires: • Maintenance of various field devices, telemetry collection, and/or industrial-level process systems • Access to facilities via remote data link or modem • Public facing services for customer or corporate operations • A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Rebecca L.; Turnbull, Laura; Earl, Stevan
Urban watersheds are often sources of nitrogen (N) to downstream systems, contributing to poor water quality. However, it is unknown which components (e.g., land cover and stormwater infrastructure type) of urban watersheds contribute to N export and which may be sites of retention. In this study we investigated which watershed characteristics control N sourcing, biogeochemical processing of nitrate (NO3–) during storms, and the amount of rainfall N that is retained within urban watersheds. We used triple isotopes of NO3– (δ15N, δ18O, and Δ17O) to identify sources and transformations of NO3– during storms from 10 nested arid urban watersheds that variedmore » in stormwater infrastructure type and drainage area. Stormwater infrastructure and land cover—retention basins, pipes, and grass cover—dictated the sourcing of NO3– in runoff. Urban watersheds can be strong sinks or sources of N to stormwater depending on the proportion of rainfall that leaves the watershed as runoff, but we found no evidence that denitrification occurred during storms. Our results suggest that watershed characteristics control the sources and transport of inorganic N in urban stormwater but that retention of inorganic N at the timescale of individual runoff events is controlled by hydrologic, rather than biogeochemical, mechanisms.« less
A technological review on electric vehicle DC charging stations using photovoltaic sources
NASA Astrophysics Data System (ADS)
Youssef, Cheddadi; Fatima, Errahimi; najia, Es-sbai; Chakib, Alaoui
2018-05-01
Within the next few years, Electrified vehicles are destined to become the essential component of the transport field. Consequently, the charging infrastructure should be developed in the same time. Among this substructure, Charging stations photovoltaic-assisted are attracting a substantial interest due to increased environmental awareness, cost reduction and rise in efficiency of the PV modules. The intention of this paper is to review the technological status of Photovoltaic–Electric vehicle (PV-EV) charging stations during the last decade. The PV-EV charging station is divided into two categories, which are PV-grid and PV-standalone charging systems. From a practical point view, the distinction between the two architectures is the bidirectional inverter, which is added to link the station to the smart grid. The technological infrastructure includes the common hardware components of every station, namely: PV array, dc-dc converter provided with MPPT control, energy storage unit, bidirectional dc charger and inverter. We investigate, compare and evaluate many valuable researches that contain the design and control of PV-EV charging system. Additionally, this concise overview reports the studies that include charging standards, the power converters topologies that focus on the adoption of Vehicle-to grid technology and the control for both PV–grid and PV standalone DC charging systems.
A Framework for the Evaluation of the Cost and Benefits of Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Greg Young; Abbey, Chad; Joos, Geza
2011-07-15
A Microgrid is recognized as an innovative technology to help integrate renewables into distribution systems and to provide additional benefits to a variety of stakeholders, such as offsetting infrastructure investments and improving the reliability of the local system. However, these systems require additional investments for control infrastructure, and as such, additional costs and the anticipated benefits need to be quantified in order to determine whether the investment is economically feasible. This paper proposes a methodology for systematizing and representing benefits and their interrelationships based on the UML Use Case paradigm, which allows complex systems to be represented in a concise,more » elegant format. This methodology is demonstrated by determining the economic feasibility of a Microgrid and Distributed Generation installed on a typical Canadian rural distribution system model as a case study. The study attempts to minimize the cost of energy served to the community, considering the fixed costs associated with Microgrids and Distributed Generation, and suggests benefits to a variety of stakeholders.« less
Assessing water reservoir management and development in Northern Vietnam
NASA Astrophysics Data System (ADS)
Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.
2012-04-01
In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.
A Governance Roadmap and Framework for EarthCube
NASA Astrophysics Data System (ADS)
Governance Steering Committee, EarthCube
2013-04-01
EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and more effectively, by providing a community endorsed Governance Framework, released in September of 2012. The Framework, and corresponding community outreach, maximizes engagement of the broader EarthCube community, which in turn minimizes the risks that the community will not adopt EarthCube in its development and final states. The target stakeholder community includes academia, government, and the private-sector, both nationally and internationally. http://earthcube.ning.com/group/governance
A Hierarchical Security Architecture for Cyber-Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quanyan Zhu; Tamer Basar
2011-08-01
Security of control systems is becoming a pivotal concern in critical national infrastructures such as the power grid and nuclear plants. In this paper, we adopt a hierarchical viewpoint to these security issues, addressing security concerns at each level and emphasizing a holistic cross-layer philosophy for developing security solutions. We propose a bottom-up framework that establishes a model from the physical and control levels to the supervisory level, incorporating concerns from network and communication levels. We show that the game-theoretical approach can yield cross-layer security strategy solutions to the cyber-physical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, Joshua; Fisher, Stephen; Reiner, Mark B.
The term 'leapfrogging' has been applied to cities and nations that have adopted a new form of infrastructure by bypassing the traditional progression of development, e.g., from no phones to cell phones - bypassing landlines all together. However, leapfrogging from unreliable infrastructure systems to 'smart' cities is too large a jump resulting in unsustainable and unhealthy infrastructure systems. In the Global South, a baseline of unreliable infrastructure is a prevalent problem. The push for sustainable and 'smart' [re]development tends to ignore many of those already living with failing, unreliable infrastructure. Without awareness of baseline conditions, uninformed projects run the riskmore » of returning conditions to the status quo, keeping many urban populations below targets of the United Nations' Sustainable Development Goals. A key part of understanding the baseline is to identify how citizens have long learned to adjust their expectations of basic services. To compensate for poor infrastructure, most residents in the Global South invest in remedial secondary infrastructure (RSI) at the household and business levels. The authors explore three key 'smart' city transformations that address RSI within a hierarchical planning pyramid known as the comprehensive resilient and reliable infrastructure systems (CRISP) planning framework.« less
Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services
NASA Astrophysics Data System (ADS)
Parkinson, Simon Christopher
Widespread access to renewable electricity is seen as a viable method to mitigate carbon emissions, although problematic are the issues associated with the integration of the generation systems within current power system configurations. Wind power plants are the primary large-scale renewable generation technology applied globally, but display considerable short-term supply variability that is difficult to predict. Power systems are currently not designed to operate under these conditions, and results in the need to increase operating reserve in order to guarantee stability. Often, operating conventional generation as reserve is both technically and economically inefficient, which can overshadow positive benefits associated with renewable energy exploitation. The purpose of this thesis is to introduce and assess an alternative method of enhancing power system operations through the control of electric loads. In particular, this thesis focuses on managing highly-distributed sustainable demand-side infrastructure, in the form of heat pumps, electric vehicles, and electrolyzers, as dispatchable short-term energy balancing resources. The main contribution of the thesis is an optimal control strategy capable of simultaneously balancing grid- and demand-side objectives. The viability of the load control strategy is assessed through model-based simulations that explicitly track end-use functionality of responsive devices within a power systems analysis typically implemented to observe the effects of integrated wind energy systems. Results indicate that there is great potential for the proposed method to displace the need for increased reserve capacity in systems considering a high penetration of wind energy, thereby allowing conventional generation to operate more efficiently and avoid the need for possible capacity expansions.
Design and implementation of a remote UAV-based mobile health monitoring system
NASA Astrophysics Data System (ADS)
Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix
2017-04-01
Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.
Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures
Zlotnik, Anatoly; Roald, Line; Backhaus, Scott; ...
2016-03-24
The extensive installation of gas-fired power plants in many parts of the world has led electric systems to depend heavily on reliable gas supplies. The use of gas-fired generators for peak load and reserve provision causes high intraday variability in withdrawals from high-pressure gas transmission systems. Such variability can lead to gas price fluctuations and supply disruptions that affect electric generator dispatch, electricity prices, and threaten the security of power systems and gas pipelines. These infrastructures function on vastly different spatio-temporal scales, which prevents current practices for separate operations and market clearing from being coordinated. Here in this article, wemore » apply new techniques for control of dynamic gas flows on pipeline networks to examine day-ahead scheduling of electric generator dispatch and gas compressor operation for different levels of integration, spanning from separate forecasting, and simulation to combined optimal control. We formulate multiple coordination scenarios and develop tractable physically accurate computational implementations. These scenarios are compared using an integrated model of test networks for power and gas systems with 24 nodes and 24 pipes, respectively, which are coupled through gas-fired generators. The analysis quantifies the economic efficiency and security benefits of gas-electric coordination and dynamic gas system operation.« less
ERIC Educational Resources Information Center
Mathisen, Arve; Nerland, Monika
2012-01-01
This paper employs a socio-technical perspective to explore the role of complex work support systems in organising knowledge and providing opportunities for learning in professional work. Drawing on concepts from infrastructure studies, such systems are seen as work infrastructures which connect information, knowledge, standards and work…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta
Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtainedmore » via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.« less
Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar
2017-04-01
When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p < 0.001). There were no statistically significant differences among the infrastructures (p > 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.
Peer-to-peer Cooperative Scheduling Architecture for National Grid Infrastructure
NASA Astrophysics Data System (ADS)
Matyska, Ludek; Ruda, Miroslav; Toth, Simon
For some ten years, the Czech National Grid Infrastructure MetaCentrum uses a single central PBSPro installation to schedule jobs across the country. This centralized approach keeps a full track about all the clusters, providing support for jobs spanning several sites, implementation for the fair-share policy and better overall control of the grid environment. Despite a steady progress in the increased stability and resilience to intermittent very short network failures, growing number of sites and processors makes this architecture, with a single point of failure and scalability limits, obsolete. As a result, a new scheduling architecture is proposed, which relies on higher autonomy of clusters. It is based on a peer to peer network of semi-independent schedulers for each site or even cluster. Each scheduler accepts jobs for the whole infrastructure, cooperating with other schedulers on implementation of global policies like central job accounting, fair-share, or submission of jobs across several sites. The scheduling system is integrated with the Magrathea system to support scheduling of virtual clusters, including the setup of their internal network, again eventually spanning several sites. On the other hand, each scheduler is local to one of several clusters and is able to directly control and submit jobs to them even if the connection of other scheduling peers is lost. In parallel to the change of the overall architecture, the scheduling system itself is being replaced. Instead of PBSPro, chosen originally for its declared support of large scale distributed environment, the new scheduling architecture is based on the open-source Torque system. The implementation and support for the most desired properties in PBSPro and Torque are discussed and the necessary modifications to Torque to support the MetaCentrum scheduling architecture are presented, too.
Green Infrastructure in the Mix to Reduce District of Columbia Sewer Overflows
District of Columbia's Long Term Control Plan to keep sewage out of the city’s rivers is being modified to include a substantial greening component for the first time, making it a dominant feature of 2 of the 3 drainage areas of the combined sewer system.
NASA Technical Reports Server (NTRS)
Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.
1991-01-01
The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.
Advanced design concepts such as Low Impact Development (LID) and Green Solutions (or upland runoff control techniques) are currently being encouraged by the United States Environmental Protection Agency (EPA) as a management practice to contain and control stormwater at the lot ...
Hazard Management with DOORS: Rail Infrastructure Projects
NASA Astrophysics Data System (ADS)
Hughes, Dave; Saeed, Amer
LOI is a major rail infrastructure project that will contribute to a modernised transport system in time for the 2012 Olympic Games. A review of the procedures and tool infrastructure was conducted in early 2006, coinciding with a planned move to main works. A hazard log support tool was needed to provide: an automatic audit trial, version control and support collaborative working. A DOORS based Hazard Log (DHL) was selected as the Tool Strategy. A systematic approach was followed for the development of DHL, after a series of tests and acceptance gateways, DHL was handed over to the project in autumn 2006. The first few months were used for operational trials and he Hazard Management rocedure was modified to be a hybrid approach that used the strengths of DHL and Excel. The user experience in the deployment of DHL is summarised and directions for future improvement identified.
Powering the Network: The Forgotten Infrastructure.
ERIC Educational Resources Information Center
Learn, Larry L., Ed.
1995-01-01
Discusses systems that power the telecommunications infrastructure. Highlights include power for central telephone company offices; private branch exchange systems; power interruptions and power irregularities; uninterruptible power systems; problems in the systems; and photovoltaic systems. (LRW)
Sustainable infrastructure system modeling under uncertainties and dynamics
NASA Astrophysics Data System (ADS)
Huang, Yongxi
Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.
Timpka, Toomas; Nordqvist, Cecilia; Lindqvist, Kent
2009-03-09
Safety promotion is planned and practised not only by public health organizations, but also by other welfare state agencies, private companies and non-governmental organizations. The term 'infrastructure' originally denoted the underlying resources needed for warfare, e.g. roads, industries, and an industrial workforce. Today, 'infrastructure' refers to the physical elements, organizations and people needed to run projects in different societal arenas. The aim of this study was to examine associations between infrastructure and local implementation of safety policies in injury prevention and safety promotion programs. Qualitative data on municipalities in Sweden designated as Safe Communities were collected from focus group interviews with municipal politicians and administrators, as well as from policy documents, and materials published on the Internet. Actor network theory was used to identify weaknesses in the present infrastructure and determine strategies that can be used to resolve these. The weakness identification analysis revealed that the factual infrastructure available for effectuating national strategies varied between safety areas and approaches, basically reflecting differences between bureaucratic and network-based organizational models. At the local level, a contradiction between safety promotion and the existence of quasi-markets for local public service providers was found to predispose for a poor local infrastructure diminishing the interest in integrated inter-agency activities. The weakness resolution analysis showed that development of an adequate infrastructure for safety promotion would require adjustment of the legal framework regulating injury data exchange, and would also require rational financial models for multi-party investments in local infrastructures. We found that the "silo" structure of government organization and assignment of resources was a barrier to collaborative action for safety at a community level. It may therefore be overly optimistic to take for granted that different approaches to injury control, such as injury prevention and safety promotion, can share infrastructure. Similarly, it may be unrealistic to presuppose that safety promotion can reach its potential in terms of injury rate reductions unless the critical infrastructure for this is in place. Such an alignment of the infrastructure to organizational processes requires more than financial investments.
Approach to spatial information security based on digital certificate
NASA Astrophysics Data System (ADS)
Cong, Shengri; Zhang, Kai; Chen, Baowen
2005-11-01
With the development of the online applications of geographic information systems (GIS) and the spatial information services, the spatial information security becomes more important. This work introduced digital certificates and authorization schemes into GIS to protect the crucial spatial information combining the techniques of the role-based access control (RBAC), the public key infrastructure (PKI) and the privilege management infrastructure (PMI). We investigated the spatial information granularity suited for sensitivity marking and digital certificate model that fits the need of GIS security based on the semantics analysis of spatial information. It implements a secure, flexible, fine-grained data access based on public technologies in GIS in the world.
Symmetric Key Services Markup Language (SKSML)
NASA Astrophysics Data System (ADS)
Noor, Arshad
Symmetric Key Services Markup Language (SKSML) is the eXtensible Markup Language (XML) being standardized by the OASIS Enterprise Key Management Infrastructure Technical Committee for requesting and receiving symmetric encryption cryptographic keys within a Symmetric Key Management System (SKMS). This protocol is designed to be used between clients and servers within an Enterprise Key Management Infrastructure (EKMI) to secure data, independent of the application and platform. Building on many security standards such as XML Signature, XML Encryption, Web Services Security and PKI, SKSML provides standards-based capability to allow any application to use symmetric encryption keys, while maintaining centralized control. This article describes the SKSML protocol and its capabilities.
NASA Astrophysics Data System (ADS)
Vastianos, George E.; Argyreas, Nick D.; Xilouris, Chris K.; Thomopoulos, Stelios C. A.
2015-05-01
The field of Homeland Security focuses on the air, land, and sea borders surveillance in order to prevent illegal activities while facilitating lawful travel and trade. The achievement of this goal requires collaboration of complex decentralized systems and services, and transfer of huge amount of information between the remote surveillance areas and the command & control centers. It becomes obvious that the effectiveness of the provided security depends highly on the available communication capabilities between the interconnected areas. Although nowadays the broadband communication between remote places is presumed easy because of the extensive infrastructure inside residential areas, it becomes a real challenge when the required information should be acquired from locations where no infrastructure is available such as mountain or sea areas. The Integrated Systems Lab of NCSR Demokritos within the PERSEUS FP7- SEC-2011-261748 project has developed a wireless broadband telecommunication system that combines different communication channels from subGHz to microwave frequencies and provides secure IP connectivity between sea surveillance vessels and the Command and Control Centers (C3). The system was deployed in Fast Patrol Boats of the Hellenic Coast Guard that are used for maritime surveillance in sea boarders and tested successfully in two demonstration exercises for irregular migration and smuggling scenarios in the Aegean Archipelagos. This paper describes in detail the system architecture in terms of hardware and software and the evaluation measurements of the system communication capabilities.
Cloud-Based Perception and Control of Sensor Nets and Robot Swarms
2016-04-01
distributed stream processing framework provides the necessary API and infrastructure to develop and execute such applications in a cluster of computation...streaming DDDAS applications based on challenges they present to the backend Cloud control system. Figure 2 Parallel SLAM Application 3 1) Set of...the art deep learning- based object detectors can recognize among hundreds of object classes and this capability would be very useful for mobile
NASA Astrophysics Data System (ADS)
Kershaw, P.
2016-12-01
CEDA, the Centre for Environmental Data Analysis, hosts a range of services on behalf of NERC (Natural Environment Research Council) for the UK environmental sciences community and its work with international partners. It is host to four data centres covering atmospheric science, earth observation, climate and space data domain areas. It holds this data on behalf of a number of different providers each with their own data policies which has thus required the development of a comprehensive system to manage access. With the advent of CMIP5, CEDA committed to be one of a number of centres to host the climate model outputs and make them available through the Earth System Grid Federation, a globally distributed software infrastructure developed for this purpose. From the outset, a means for restricting access to datasets was required, necessitating the development a federated system for authentication and authorisation so that access to data could be managed across multiple providers around the world. From 2012, CEDA has seen a further evolution with the development of JASMIN, a multi-petabyte data analysis facility. Hosted alongside the CEDA archive, it provides a range of services for users including a batch compute cluster, group workspaces and a community cloud. This has required significant changes and enhancements to the access control system. In common with many other examples in the research community, the experiences of the above underline the difficulties of developing collaborative e-Research infrastructures. Drawing from these there are some recurring themes: Clear requirements need to be established at the outset recognising that implementing strict access policies can incur additional development and administrative overhead. An appropriate balance is needed between ease of access desired by end users and metrics and monitoring required by resource providers. The major technical challenge is not with security technologies themselves but their effective integration with services and resources which they must protect. Effective policy and governance structures are needed for ongoing operations Federated identity infrastructures often exist only at the national level making it difficult for international research collaborations to exploit them.
Towards a Generic and Adaptive System-On-Chip Controller for Space Exploration Instrumentation
NASA Technical Reports Server (NTRS)
Iturbe, Xabier; Keymeulen, Didier; Yiu, Patrick; Berisford, Dan; Hand, Kevin; Carlson, Robert; Ozer, Emre
2015-01-01
This paper introduces one of the first efforts conducted at NASA’s Jet Propulsion Laboratory (JPL) to develop a generic System-on-Chip (SoC) platform to control science instruments that are proposed for future NASA missions. The SoC platform is named APEX-SoC, where APEX stands for Advanced Processor for space Exploration, and is based on a hybrid Xilinx Zynq that combines an FPGA and an ARM Cortex-A9 dual-core processor on a single chip. The Zynq implements a generic and customizable on-chip infrastructure that can be reused with a variety of instruments, and it has been coupled with a set of off-chip components that are necessary to deal with the different instruments. We have taken JPL’s Compositional InfraRed Imaging Spectrometer (CIRIS), which is proposed for NASA icy moons missions, as a use-case scenario to demonstrate that the entire data processing, control and interface of an instrument can be implemented on a single device using the on-chip infrastructure described in this paper. We show that the performance results achieved in this preliminary version of the instrumentation controller are sufficient to fulfill the science requirements demanded to the CIRIS instrument in future NASA missions, such as Europa.
Abbott, K; Klarenaar, P; Donaldson, A; Sherker, S
2008-06-01
To evaluate a sports safety-focused risk-management training programme. Controlled before and after test. Four community soccer associations in Sydney, Australia. 76 clubs (32 intervention, 44 control) at baseline, and 67 clubs (27 intervention, 40 control) at post-season and 12-month follow-ups. SafeClub, a sports safety-focused risk-management training programme (3x2 hour sessions) based on adult-learning principles and injury-prevention concepts and models. Changes in mean policy, infrastructure and overall safety scores as measured using a modified version of the Sports Safety Audit Tool. There was no significant difference in the mean policy, infrastructure and overall safety scores of intervention and control clubs at baseline. Intervention clubs achieved higher post-season mean policy (11.9 intervention vs 7.5 controls), infrastructure (15.2 vs 10.3) and overall safety (27.0 vs 17.8) scores than did controls. These differences were greater at the 12-month follow-up: policy (16.4 vs 7.6); infrastructure (24.7 vs 10.7); and overall safety (41.1 vs 18.3). General linear modelling indicated that intervention clubs achieved statistically significantly higher policy (p<0.001), infrastructure (p<0.001) and overall safety (p<0.001) scores compared with control clubs at the post-season and 12-month follow-ups. There was also a significant linear interaction of time and group for all three scores: policy (p<0.001), infrastructure (p<0.001) and overall safety (p<0.001). SafeClub effectively assisted community soccer clubs to improve their sports safety activities, particularly the foundations and processes for good risk-management practice, in a sustainable way.
Vehicle-to-infrastructure program cooperative adaptive cruise control.
DOT National Transportation Integrated Search
2015-03-01
This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the project titled Cooperative Adaptive Cruise Control (CACC). Participating companies in the V2I Cons...
Situating Green Infrastructure in Context: Adaptive Socio-Hydrology for Sustainable Cities - poster
The benefits of green infrastructure (GI) in controlling urban hydrologic processes have largely focused on practical matters like stormwater management, which drives the planning stage. Green Infrastructure design and implementation usually takes into account physical site chara...
Defense strategies for asymmetric networked systems under composite utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell
We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively.more » They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Hart, David; Moriarty, Dylan Michael
Drinking water systems face multiple challenges, including aging infrastructure, water quality concerns, uncertainty in supply and demand, natural disasters, environmental emergencies, and cyber and terrorist attacks. All of these have the potential to disrupt a large portion of a water system causing damage to infrastructure and outages to customers. Increasing resilience to these types of hazards is essential to improving water security. As one of the United States (US) sixteen critical infrastructure sectors, drinking water is a national priority. The National Infrastructure Advisory Council defined infrastructure resilience as “the ability to reduce the magnitude and/or duration of disruptive events. Themore » effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event”. Being able to predict how drinking water systems will perform during disruptive incidents and understanding how to best absorb, recover from, and more successfully adapt to such incidents can help enhance resilience.« less
Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I
2015-01-01
Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.
Chon, Yongho
2013-01-01
One of the main reasons for reforming long-term care systems is a deficient existing service infrastructure for the elderly. This article provides an overview of why and how the Korean government expanded long-term care infrastructure through the introduction of a new compulsory insurance system, with a particular focus on the market-friendly policies used to expand the infrastructure. Then, the positive results of the expansion of the long-term care infrastructure and the challenges that have emerged are examined. Finally, it is argued that the Korean government should actively implement a range of practical policies and interventions within the new system.
A Value Based Justification Process for Aerospace RDT and E Capability Investments
2017-12-01
end of MS C by funding the five-year, $350 million T&E infrastructure investment proposed in the DoD plan. This expansion of the cost - benefit “control...expansion of the cost - benefit “control volume” to include projected system development savings, as described in Ref. [3], proved successful in justifying...Fig. 1 The Expanded Cost - Benefit Analysis Control Volume. It is also worth noting that this process has the greatest potential for success when the
Dreachslin, Janice L; Weech-Maldonado, Robert; Gail, Judith; Epané, Josué Patien; Wainio, Joyce Anne
How can healthcare leaders build a sustainable infrastructure to leverage workforce diversity and deliver culturally and linguistically appropriate care to patients? To answer that question, two health systems participated in the National Center for Healthcare Leadership's diversity leadership demonstration project, November 2008 to December 2013. Each system provided one intervention hospital and one control hospital.The control hospital in each system participated in pre- and postassessments but received no preassessment feedback and no intervention support. Each intervention hospital's C-suite leadership and demonstration project manager worked with a diversity coach provided by the National Center for Healthcare Leadership to design and implement an action plan to improve diversity and cultural competence practices and build a sustainable infrastructure. Plans explored areas of strength and areas for improvement that were identified through preintervention assessments. The assessments focused on five competencies of strategic diversity management and culturally and linguistically appropriate care: diversity leadership, strategic human resource management, organizational climate, diversity climate, and patient cultural competence.This article describes each intervention hospital's success in action plan implementation and reports results of postintervention interviews with leadership to provide a blueprint for sustainable change.
Cyberwarfare on the Electricity Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarka, N.; Ramesh, V.C.
2000-03-20
The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.
South Africa's School Infrastructure Performance Indicator System
ERIC Educational Resources Information Center
Gibberd, Jeremy
2007-01-01
While some South African schools have excellent infrastructure, others lack basic services such as water and sanitation. This article describes the school infrastructure performance indicator system (SIPIS) in South Africa. The project offers an approach that can address both the urgent provision of basic services as well as support the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... Known as Brinson Partners, Inc., Corporate Center Division; Group Technology Infrastructure Services... Division, Group Technology Infrastructure Services, Distributed Systems and Storage Group, Chicago... Infrastructure Services, Distributed Systems and Storage Group have their wages reported under a separate...
The GEOSS solution for enabling data interoperability and integrative research.
Nativi, Stefano; Mazzetti, Paolo; Craglia, Max; Pirrone, Nicola
2014-03-01
Global sustainability research requires an integrative research effort underpinned by digital infrastructures (systems) able to harness data and heterogeneous information across disciplines. Digital data and information sharing across systems and applications is achieved by implementing interoperability: a property of a product or system to work with other products or systems, present or future. There are at least three main interoperability challenges a digital infrastructure must address: technological, semantic, and organizational. In recent years, important international programs and initiatives are focusing on such an ambitious objective. This manuscript presents and combines the studies and the experiences carried out by three relevant projects, focusing on the heavy metal domain: Global Mercury Observation System, Global Earth Observation System of Systems (GEOSS), and INSPIRE. This research work recognized a valuable interoperability service bus (i.e., a set of standards models, interfaces, and good practices) proposed to characterize the integrative research cyber-infrastructure of the heavy metal research community. In the paper, the GEOSS common infrastructure is discussed implementing a multidisciplinary and participatory research infrastructure, introducing a possible roadmap for the heavy metal pollution research community to join GEOSS as a new Group on Earth Observation community of practice and develop a research infrastructure for carrying out integrative research in its specific domain.
Ecohydrology frameworks for green infrastructure design and ecosystem service provision
NASA Astrophysics Data System (ADS)
Pavao-Zuckerman, M.; Knerl, A.; Barron-Gafford, G.
2014-12-01
Urbanization is a dominant form of landscape change that affects the structure and function of ecosystems and alters control points in biogeochemical and hydrologic cycles. Green infrastructure (GI) has been proposed as a solution to many urban environmental challenges and may be a way to manage biogeochemical control points. Despite this promise, there has been relatively limited empirical focus to evaluate the efficacy of GI, relationships between design and function, and the ability of GI to provide ecosystem services in cities. This work has been driven by goals of adapting GI approaches to dryland cities and to harvest rain and storm water for providing ecosystem services related to storm water management and urban heat island mitigation, as well as other co-benefits. We will present a modification of ecohydrologic theory for guiding the design and function of green infrastructure for dryland systems that highlights how GI functions in context of Trigger - Transfer - Reserve - Pulse (TTRP) dynamic framework. Here we also apply this TTRP framework to observations of established street-scape green infrastructure in Tucson, AZ, and an experimental installation of green infrastructure basins on the campus of Biosphere 2 (Oracle, AZ) where we have been measuring plant performance and soil biogeochemical functions. We found variable sensitivity of microbial activity, soil respiration, N-mineralization, photosynthesis and respiration that was mediated both by elements of basin design (soil texture and composition, choice of surface mulches) and antecedent precipitation inputs and soil moisture conditions. The adapted TTRP framework and field studies suggest that there are strong connections between design and function that have implications for stormwater management and ecosystem service provision in dryland cities.
17 CFR 49.24 - System safeguards.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and disaster recovery resources, including infrastructure and personnel, sufficient to enable it to... infrastructure and personnel such that: (i) Infrastructure sufficient to enable the swap data repository to meet... infrastructure the entity normally relies upon to conduct activities necessary to the reporting, recordkeeping...
17 CFR 49.24 - System safeguards.
Code of Federal Regulations, 2013 CFR
2013-04-01
... and disaster recovery resources, including infrastructure and personnel, sufficient to enable it to... infrastructure and personnel such that: (i) Infrastructure sufficient to enable the swap data repository to meet... infrastructure the entity normally relies upon to conduct activities necessary to the reporting, recordkeeping...
17 CFR 49.24 - System safeguards.
Code of Federal Regulations, 2014 CFR
2014-04-01
... and disaster recovery resources, including infrastructure and personnel, sufficient to enable it to... infrastructure and personnel such that: (i) Infrastructure sufficient to enable the swap data repository to meet... infrastructure the entity normally relies upon to conduct activities necessary to the reporting, recordkeeping...
75 FR 75611 - Critical Infrastructure Protection Month, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
... Part IV The President Proclamation 8607--Critical Infrastructure Protection Month, 2010..., 2010 Critical Infrastructure Protection Month, 2010 By the President of the United States of America A Proclamation During Critical Infrastructure Protection Month, we highlight the vast network of systems and...
2008-04-01
consumers and electric utilities in Arizona and Southern California. Twelve people, including five children, died as a result of the explosion. The...Modern electronics, communications, pro- tection, control and computers have allowed the physical system to be utilized fully with ever smaller... margins for error. Therefore, a relatively modest upset to the system can cause functional collapse. As the system grows in complexity and interdependence
Kondoh, Hiroshi; Teramoto, Kei; Kawai, Tatsurou; Mochida, Maki; Nishimura, Motohiro
2013-01-01
A Newly developed Oshidori-Net2, providing medical professionals with remote access to electronic patient record systems (EPR) and PACSs of four hospitals, of different venders, using cloud computing technology and patient identifier cross reference manager. The operation was started from April 2012. The patients moved to other hospital were applied. Objective is to show the merit and demerit of the new system.
Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure
NASA Astrophysics Data System (ADS)
Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.
2016-12-01
Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Khaleeq, Hyder; Abou-Elnour, Ahmad
2016-04-01
In the present work, wireless sensor network and real-time controlling and monitoring system are integrated for efficient water quality monitoring for environmental and domestic applications. The proposed system has three main components (i) the sensor circuits, (ii) the wireless communication system, and (iii) the monitoring and controlling unit. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee and myRIO wireless modules have been used to implement the wireless system. The water quality parameters are accurately measured by the present computer based monitoring system and the measurement results are instantaneously transmitted and published with minimum infrastructure costs and maximum flexibility in term of distance or location. The mobility and durability of the proposed system are further enhanced by fully powering via a photovoltaic system. The reliability and effectiveness of the system are evaluated under realistic operating conditions.
Report of the Defense Science Board Task Force on Nuclear Deterrence Skills
2008-09-01
entail modeling and simulation capability analogous to that for weapon design. A minimum “national” nuclear weapons effects simulator enterprise...systems programs (design, develop, produce, deploy, and sustain) relies 18 I C HA P TE R 3 upon a variety of management models . For example, the Air...entry vehicle design, modeling and simulation efforts, command and control, launch system infrastructure, intermediate-range missile concepts, advanced
Joseph, Christine Lm; Ownby, Dennis R; Zoratti, Edward; Johnson, Dayna; Considine, Shannon; Bourgeois, Renee; Melkonian, Christina; Miree, Cheryl; Johnson, Christine Cole; Lu, Mei
2016-01-01
Modernized approaches to multisite randomized controlled trials (RCT) include the use of electronic medical records (EMR) for recruitment, remote data capture (RDC) for multisite data collection, and strategies to reduce the need for research infrastructure. These features facilitate the conduct of pragmatic trials, or trials conducted in "real life" settings. We describe the recruitment experience of an RCT to evaluate a clinic-based intervention targeting urban youth with asthma. Using encounter and prescription databases, a list of potentially-eligible patients was linked to the Epic appointment scheduling system. Patients were enrolled during a scheduled visit and then electronically randomized to a tailored versus generic online intervention. 1146 appointments for 580 eligible patients visiting 5 clinics were identified, of which 45.9% (266/580) were randomized to reach targeted enrollment (n=250). RDC facilitated multisite enrollment. Intervention content was further personalized through real- time entry of asthma medications prescribed at the clinic visit. EMR monitoring helped with recruitment trouble-shooting. Systemic challenges included a system-wide EMR transition and a system-wide reorganization of clinic staffing. Modernized RCTs can accelerate translation of research findings. Electronic initiatives facilitated implementation of this RCT; however, adaptations to recruitment strategies resulted in a more "explanatory" framework. .
eC3--a modern telecommunications matrix for cervical cancer prevention in Zambia.
Parham, Groesbeck P; Mwanahamuntu, Mulindi H; Pfaendler, Krista S; Sahasrabuddhe, Vikrant V; Myung, Daniel; Mkumba, Gracilia; Kapambwe, Sharon; Mwanza, Bianca; Chibwesha, Carla; Hicks, Michael L; Stringer, Jeffrey S A
2010-07-01
Low physician density, undercapacitated laboratory infrastructures, and limited resources are major limitations to the development and implementation of widely accessible cervical cancer prevention programs in sub-Saharan Africa. We developed a system operated by nonphysician health providers that used widely available and affordable communication technology to create locally adaptable and sustainable public sector cervical cancer prevention program in Zambia, one of the world's poorest countries. Nurses were trained to perform visual inspection with acetic acid aided by digital cervicography using predefined criteria. Electronic digital images (cervigrams) were reviewed with patients, and distance consultation was sought as necessary. Same-visit cryotherapy or referral for further evaluation by a gynecologist was offered. The Zambian system of "electronic cervical cancer control" bypasses many of the historic barriers to the delivery of preventive health care to women in low-resource environments while facilitating monitoring, evaluation, and continued education of primary health care providers, patient education, and medical records documentation. The electronic cervical cancer control system uses appropriate technology to bridge the gap between screening and diagnosis, thereby facilitating the conduct of "screen-and-treat" programs. The inherent flexibility of the system lends itself to the integration with future infrastructures using rapid molecular human papillomavirus-based screening approaches and wireless telemedicine communications.
Game-theoretic strategies for asymmetric networked systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell
Abstract—We consider an infrastructure consisting of a network of systems each composed of discrete components that can be reinforced at a certain cost to guard against attacks. The network provides the vital connectivity between systems, and hence plays a critical, asymmetric role in the infrastructure operations. We characterize the system-level correlations using the aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual system or network. The survival probabilities of systems and network satisfy first-order differential conditions that capture the component-level correlations. We formulate the problem of ensuring the infrastructure survival as a gamemore » between anattacker and a provider, using the sum-form and product-form utility functions, each composed of a survival probability term and a cost term. We derive Nash Equilibrium conditions which provide expressions for individual system survival probabilities, and also the expected capacity specified by the total number of operational components. These expressions differ only in a single term for the sum-form and product-form utilities, despite their significant differences.We apply these results to simplified models of distributed cloud computing infrastructures.« less
New Process Controls for the Hera Cryogenic Plant
NASA Astrophysics Data System (ADS)
Böckmann, T.; Clausen, M.; Gerke, Chr.; Prüß, K.; Schoeneburg, B.; Urbschat, P.
2010-04-01
The cryogenic plant built for the HERA accelerator at DESY in Hamburg (Germany) is now in operation for more than two decades. The commercial process control system for the cryogenic plant is in operation for the same time period. Ever since the operator stations, the control network and the CPU boards in the process controllers went through several upgrade stages. Only the centralized Input/Output system was kept unchanged. Many components have been running beyond the expected lifetime. The control system for one at the three parts of the cryogenic plant has been replaced recently by a distributed I/O system. The I/O nodes are connected to several Profibus-DP field busses. Profibus provides the infrastructure to attach intelligent sensors and actuators directly to the process controllers which run the open source process control software EPICS. This paper describes the modification process on all levels from cabling through I/O configuration, the process control software up to the operator displays.
Sousa, V; Matos, J P; Almeida, N; Saldanha Matos, J
2014-01-01
Operation, maintenance and rehabilitation comprise the main concerns of wastewater infrastructure asset management. Given the nature of the service provided by a wastewater system and the characteristics of the supporting infrastructure, technical issues are relevant to support asset management decisions. In particular, in densely urbanized areas served by large, complex and aging sewer networks, the sustainability of the infrastructures largely depends on the implementation of an efficient asset management system. The efficiency of such a system may be enhanced with technical decision support tools. This paper describes the role of artificial intelligence tools such as artificial neural networks and support vector machines for assisting the planning of operation and maintenance activities of wastewater infrastructures. A case study of the application of this type of tool to the wastewater infrastructures of Sistema de Saneamento da Costa do Estoril is presented.
76 FR 36137 - National Infrastructure Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0034] National Infrastructure Advisory...
6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2014-01-01 2014-01-01 false Protected Critical Infrastructure Information...
6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2011-01-01 2011-01-01 false Protected Critical Infrastructure Information...
6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2010-01-01 2010-01-01 false Protected Critical Infrastructure Information...
6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2012-01-01 2012-01-01 false Protected Critical Infrastructure Information...
6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2013-01-01 2013-01-01 false Protected Critical Infrastructure Information...
A Governance Roadmap and Framework for EarthCube
NASA Astrophysics Data System (ADS)
Allison, M. L.
2012-12-01
EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and more effectively, by providing a community endorsed Governance Framework. The Framework, and corresponding community outreach, will maximize engagement of the broader EarthCube community, which in turn will minimize the risks that the community will not adopt EarthCube in its development and final states. The target community includes academia, government, and the private-sector, both nationally and internationally. Based on community feedback to-date, we compiled and synthesized system-wide governance requirements to draft an initial set of EarthCube Governance functions. These functions will permit us to produce a Governance Framework based on an aggressive community outreach and engagement plan.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... to address basic SIP requirements, including emissions inventories, monitoring, and modeling to... basic structural SIP elements such as modeling, monitoring, and emissions inventories that are designed...): Emission limits and other control measures. 110(a)(2)(B): Ambient air quality monitoring/data system. 110(a...
Renewable Energy on the Front Lines - Continuum Magazine | NREL
, vehicles, the microgrid, and intelligent controls. Functional models of this system could be used to of the multi-year, multi-agency Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) project, which focuses on improving energy surety for military installations. Funded by
Remote third shift EAST operation: a new paradigm
NASA Astrophysics Data System (ADS)
Schissel, D. P.; Coviello, E.; Eidietis, N.; Flanagan, S.; Garcia, F.; Humphreys, D.; Kostuk, M.; Lanctot, M.; Lee, X.; Margo, M.; Miller, D.; Parker, C.; Penaflor, B.; Qian, J. P.; Sun, X.; Tan, H.; Walker, M.; Xiao, B.; Yuan, Q.
2017-05-01
General Atomics’ (GA) scientists in the United States remotely conducted experimental operation of the experimental advanced superconducting tokamak (EAST) in China during its third shift. Scientists led these experiments in a dedicated remote control room that utilized a novel computer science hardware and software infrastructure to allow data movement, visualization, and communication on the time scale of EAST’s pulse cycle. This Fusion Science Collaboration Zone infrastructure allows the movement of large amounts of data between continents in a short time scale with a 300-fold increase in data transfer rate over that available using the traditional transmission protocol. Real-time data from control systems is moved almost instantaneously. An event system tied to the EAST pulse cycle allows automatic initiation of data transfers, resulting in bulk EAST data to be transferred to GA within minutes. The EAST data at GA is served via MDSplus to approved US collaborators avoiding multiple US clients from requesting data from EAST and competing for the long-haul network’s bandwidth. At present there are 37 approved scientists from 8 US research institutions.
Integration of structural health monitoring and asset management.
DOT National Transportation Integrated Search
2012-08-01
This project investigated the feasibility and potential benefits of the integration of infrastructure monitoring systems into enterprise-scale transportation management systems. An infrastructure monitoring system designed for bridges was implemented...
Sansalone, John; Raje, Saurabh; Kertesz, Ruben; Maccarone, Kerrilynn; Seltzer, Karl; Siminari, Michele; Simms, Peter; Wood, Brandon
2013-12-01
The built environs alter hydrology and water resource chemistry. Florida is subject to nutrient criteria and is promulgating "no-net-load-increase" criteria for runoff and constituents (nutrients and particulate matter, PM). With such criteria, green infrastructure, hydrologic restoration, indirect reuse and source control are potential design solutions. The study simulates runoff and constituent load control through urban source area re-design to provide long-term "no-net-load-increases". A long-term continuous simulation of pre- and post-development response for an existing surface parking facility is quantified. Retrofits include a biofiltration area reactor (BAR) for hydrologic and denitrification control. A linear infiltration reactor (LIR) of cementitious permeable pavement (CPP) provides infiltration, adsorption and filtration. Pavement cleaning provided source control. Simulation of climate and source area data indicates re-design achieves "no-net-load-increases" at lower costs compared to standard construction. The retrofit system yields lower cost per nutrient load treated compared to Best Management Practices (BMPs). Copyright © 2013 Elsevier Ltd. All rights reserved.
Cyber-Threat Assessment for the Air Traffic Management System: A Network Controls Approach
NASA Technical Reports Server (NTRS)
Roy, Sandip; Sridhar, Banavar
2016-01-01
Air transportation networks are being disrupted with increasing frequency by failures in their cyber- (computing, communication, control) systems. Whether these cyber- failures arise due to deliberate attacks or incidental errors, they can have far-reaching impact on the performance of the air traffic control and management systems. For instance, a computer failure in the Washington DC Air Route Traffic Control Center (ZDC) on August 15, 2015, caused nearly complete closure of the Centers airspace for several hours. This closure had a propagative impact across the United States National Airspace System, causing changed congestion patterns and requiring placement of a suite of traffic management initiatives to address the capacity reduction and congestion. A snapshot of traffic on that day clearly shows the closure of the ZDC airspace and the resulting congestion at its boundary, which required augmented traffic management at multiple locations. Cyber- events also have important ramifications for private stakeholders, particularly the airlines. During the last few months, computer-system issues have caused several airlines fleets to be grounded for significant periods of time: these include United Airlines (twice), LOT Polish Airlines, and American Airlines. Delays and regional stoppages due to cyber- events are even more common, and may have myriad causes (e.g., failure of the Department of Homeland Security systems needed for security check of passengers, see [3]). The growing frequency of cyber- disruptions in the air transportation system reflects a much broader trend in the modern society: cyber- failures and threats are becoming increasingly pervasive, varied, and impactful. In consequence, an intense effort is underway to develop secure and resilient cyber- systems that can protect against, detect, and remove threats, see e.g. and its many citations. The outcomes of this wide effort on cyber- security are applicable to the air transportation infrastructure, and indeed security solutions are being implemented in the current system. While these security solutions are important, they only provide a piecemeal solution. Particular computers or communication channels are protected from particular attacks, without a holistic view of the air transportation infrastructure. On the other hand, the above-listed incidents highlight that a holistic approach is needed, for several reasons. First, the air transportation infrastructure is a large scale cyber-physical system with multiple stakeholders and diverse legacy assets. It is impractical to protect every cyber- asset from known and unknown disruptions, and instead a strategic view of security is needed. Second, disruptions to the cyber- system can incur complex propagative impacts across the air transportation network, including its physical and human assets. Also, these implications of cyber- events are exacerbated or modulated by other disruptions and operational specifics, e.g. severe weather, operator fatigue or error, etc. These characteristics motivate a holistic and strategic perspective on protecting the air transportation infrastructure from cyber- events. The analysis of cyber- threats to the air traffic system is also inextricably tied to the integration of new autonomy into the airspace. The replacement of human operators with cyber functions leaves the network open to new cyber threats, which must be modeled and managed. Paradoxically, the mitigation of cyber events in the airspace will also likely require additional autonomy, given the fast time scale and myriad pathways of cyber-attacks which must be managed. The assessment of new vulnerabilities upon integration of new autonomy is also a key motivation for a holistic perspective on cyber threats.
Towards a Cyber Defense Framework for SCADA Systems Based on Power Consumption Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez Jimenez, Jarilyn M; Chen, Qian; Nichols, Jeff A.
Supervisory control and data acquisition (SCADA) is an industrial automation system that remotely monitor, and control critical infrastructures. SCADA systems are major targets for espionage and sabotage attackers. According to the 2015 Dell security annual threat report, the number of cyber-attacks against SCADA systems has doubled in the past year. Cyber-attacks (i.e., buffer overflow, rootkits and code injection) could cause serious financial losses and physical infrastructure damages. Moreover, some specific cyber-attacks against SCADA systems could become a threat to human life. Current commercial off-the-shelf security solutions are insufficient in protecting SCADA systems against sophisticated cyber-attacks. In 2014 a report bymore » Mandiant stated that only 69% of organizations learned about their breaches from third entities, meaning that these companies lack of their own detection system. Furthermore, these breaches are not detected in real-time or fast enough to prevent further damages. The average time between compromise and detection (for those intrusions that were detected) was 205 days. To address this challenge, we propose an Intrusion Detection System (IDS) that detects SCADA-specific cyber-attacks by analyzing the power consumption of a SCADA device. Specifically, to validate the proposed approach, we chose to monitor in real-time the power usage of a a Programmable Logic Controller (PLC). To this end, we configured the hardware of the tetsbed by installing the required sensors to monitor and collect its power consumption. After that two SCADA-specific cyber-attacks were simulated and TracerDAQ Pro was used to collect the power consumption of the PLC under normal and anomalous scenarios. Results showed that is possible to distinguish between the regular power usage of the PLC and when the PLC was under specific cyber-attacks.« less
Industrial Control Systems/SCADA systems risk assessment in the energy sector
NASA Astrophysics Data System (ADS)
Falodun, Babatunde
The energy sector is one of the most critical components of our national infrastructure. It not only provides the electrical power and petroleum required to run day-to-day operations and mechanisms in society, it's also an important element that directly impacts the economy with regard to growth and stability. Industrial Control Systems (ICS) /Supervisory Control and Data Acquisition Systems (SCADA) are computerized mechanisms, they are both software and hardware that are used to control real time processes and operations in power plants and oil production facilities. A significant attack on these control systems that leads to widespread disruption of energy could result in catastrophic consequences for any major city and even the nation. This research paper explores cyber threats and vulnerabilities faced by ICS/SCADA systems in the energy sector and also highlights possible outcomes of a successful breach. Furthermore, the research underscores mitigation strategies that could be used to prevent and respond to an attack. Keywords: Cybersecurity, SCADA, Cyber Attacks, Threats, Vulnerabilities, Risk Assessment, Dr. Albert Orbinati.
A systems framework for national assessment of climate risks to infrastructure.
Dawson, Richard J; Thompson, David; Johns, Daniel; Wood, Ruth; Darch, Geoff; Chapman, Lee; Hughes, Paul N; Watson, Geoff V R; Paulson, Kevin; Bell, Sarah; Gosling, Simon N; Powrie, William; Hall, Jim W
2018-06-13
Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.
A systems framework for national assessment of climate risks to infrastructure
NASA Astrophysics Data System (ADS)
Dawson, Richard J.; Thompson, David; Johns, Daniel; Wood, Ruth; Darch, Geoff; Chapman, Lee; Hughes, Paul N.; Watson, Geoff V. R.; Paulson, Kevin; Bell, Sarah; Gosling, Simon N.; Powrie, William; Hall, Jim W.
2018-06-01
Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
A systems framework for national assessment of climate risks to infrastructure
Thompson, David; Johns, Daniel; Darch, Geoff; Paulson, Kevin
2018-01-01
Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712793
77 FR 19300 - National Infrastructure Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... Group regarding the scope of the next phase of the Working Group's critical infrastructure resilience...
Development of a Free-Flight Simulation Infrastructure
NASA Technical Reports Server (NTRS)
Miles, Eric S.; Wing, David J.; Davis, Paul C.
1999-01-01
In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.
NASA Technical Reports Server (NTRS)
Ivancic, William; Stewart, Dave; Shell, Dan; Wood, Lloyd; Paulsen, Phil; Jackson, Chris; Hodgson, Dave; Notham, James; Bean, Neville; Miller, Eric
2005-01-01
This report documents the design of network infrastructure to support operations demonstrating the concept of network-centric operations and command and control of space-based assets. These demonstrations showcase major elements of the Transformal Communication Architecture (TCA), using Internet Protocol (IP) technology. These demonstrations also rely on IP technology to perform the functions outlined in the Consultative Committee for Space Data Systems (CCSDS) Space Link Extension (SLE) document. A key element of these demonstrations was the ability to securely use networks and infrastructure owned and/or controlled by various parties. This is a sanitized technical report for public release. There is a companion report available to a limited audience. The companion report contains detailed networking addresses and other sensitive material and is available directly from William Ivancic at Glenn Research Center.
Transforming Our Cities: High-Performance Green Infrastructure (WERF Report INFR1R11)
The objective of this project is to demonstrate that the highly distributed real-time control (DRTC) technologies for green infrastructure being developed by the research team can play a critical role in transforming our nation’s urban infrastructure. These technologies include a...
Integration of Mobil Satellite and Cellular Systems
NASA Technical Reports Server (NTRS)
Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.
1993-01-01
By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Caldwell, Blake A.; Hicks, Susan Elaine
High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges formore » the use of shared infrastructure in HPC environments. This report details current state-of-the-art in reconfigurable network enclaving through Software Defined Networking (SDN) and Network Function Virtualization (NFV) and their applicability to secure enclaves in HPC environments. SDN and NFV methods are based on a solid foundation of system wide virtualization. The purpose of which is very straight forward, the system administrator can deploy networks that are more amenable to customer needs, and at the same time achieve increased scalability making it easier to increase overall capacity as needed without negatively affecting functionality. The network administration of both the server system and the virtual sub-systems is simplified allowing control of the infrastructure through well-defined APIs (Application Programming Interface). While SDN and NFV technologies offer significant promise in meeting these goals, they also provide the ability to address a significant component of the multi-tenant challenge in HPC environments, namely resource isolation. Traditional HPC systems are built upon scalable high-performance networking technologies designed to meet specific application requirements. Dynamic isolation of resources within these environments has remained difficult to achieve. SDN and NFV methodology provide us with relevant concepts and available open standards based APIs that isolate compute and storage resources within an otherwise common networking infrastructure. Additionally, the integration of the networking APIs within larger system frameworks such as OpenStack provide the tools necessary to establish isolated enclaves dynamically allowing the benefits of HPC while providing a controlled security structure surrounding these systems.« less
Effect of infrastructure design on commons dilemmas in social-ecological system dynamics.
Yu, David J; Qubbaj, Murad R; Muneepeerakul, Rachata; Anderies, John M; Aggarwal, Rimjhim M
2015-10-27
The use of shared infrastructure to direct natural processes for the benefit of humans has been a central feature of human social organization for millennia. Today, more than ever, people interact with one another and the environment through shared human-made infrastructure (the Internet, transportation, the energy grid, etc.). However, there has been relatively little work on how the design characteristics of shared infrastructure affect the dynamics of social-ecological systems (SESs) and the capacity of groups to solve social dilemmas associated with its provision. Developing such understanding is especially important in the context of global change where design criteria must consider how specific aspects of infrastructure affect the capacity of SESs to maintain vital functions in the face of shocks. Using small-scale irrigated agriculture (the most ancient and ubiquitous example of public infrastructure systems) as a model system, we show that two design features related to scale and the structure of benefit flows can induce fundamental changes in qualitative behavior, i.e., regime shifts. By relating the required maintenance threshold (a design feature related to infrastructure scale) to the incentives facing users under different regimes, our work also provides some general guidance on determinants of robustness of SESs under globalization-related stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Thomas; Trail, Jessica; Gevondyan, Erna
During times of crisis, communities and regions rely heavily on critical infrastructure systems to support their emergency management response and recovery activities. Therefore, the resilience of critical infrastructure systems to crises is a pivotal factor to a community’s overall resilience. Critical infrastructure resilience can be influenced by many factors, including State policies – which are not always uniform in their structure or application across the United States – were identified by the U.S. Department of Homeland Security as an area of particular interest with respect to their the influence on the resilience of critical infrastructure systems. This study focuses onmore » developing an analytical methodology to assess links between policy and resilience, and applies that methodology to critical infrastructure in the Transportation Systems Sector. Specifically, this study seeks to identify potentially influential linkages between State transportation capital funding policies and the resilience of bridges located on roadways that are under the management of public agencies. This study yielded notable methodological outcomes, including the general capability of the analytical methodology to yield – in the case of some States – significant results connecting State policies with critical infrastructure resilience, with the suggestion that further refinement of the methodology may be beneficial.« less
Effect of infrastructure design on commons dilemmas in social−ecological system dynamics
Yu, David J.; Qubbaj, Murad R.; Muneepeerakul, Rachata; Anderies, John M.; Aggarwal, Rimjhim M.
2015-01-01
The use of shared infrastructure to direct natural processes for the benefit of humans has been a central feature of human social organization for millennia. Today, more than ever, people interact with one another and the environment through shared human-made infrastructure (the Internet, transportation, the energy grid, etc.). However, there has been relatively little work on how the design characteristics of shared infrastructure affect the dynamics of social−ecological systems (SESs) and the capacity of groups to solve social dilemmas associated with its provision. Developing such understanding is especially important in the context of global change where design criteria must consider how specific aspects of infrastructure affect the capacity of SESs to maintain vital functions in the face of shocks. Using small-scale irrigated agriculture (the most ancient and ubiquitous example of public infrastructure systems) as a model system, we show that two design features related to scale and the structure of benefit flows can induce fundamental changes in qualitative behavior, i.e., regime shifts. By relating the required maintenance threshold (a design feature related to infrastructure scale) to the incentives facing users under different regimes, our work also provides some general guidance on determinants of robustness of SESs under globalization-related stresses. PMID:26460043
NASA Astrophysics Data System (ADS)
Licari, Daniele; Calzolari, Federico
2011-12-01
In this paper we introduce a new way to deal with Grid portals referring to our implementation. L-GRID is a light portal to access the EGEE/EGI Grid infrastructure via Web, allowing users to submit their jobs from a common Web browser in a few minutes, without any knowledge about the Grid infrastructure. It provides the control over the complete lifecycle of a Grid Job, from its submission and status monitoring, to the output retrieval. The system, implemented as client-server architecture, is based on the Globus Grid middleware. The client side application is based on a java applet; the server relies on a Globus User Interface. There is no need of user registration on the server side, and the user needs only his own X.509 personal certificate. The system is user-friendly, secure (it uses SSL protocol, mechanism for dynamic delegation and identity creation in public key infrastructures), highly customizable, open source, and easy to install. The X.509 personal certificate does not get out from the local machine. It allows to reduce the time spent for the job submission, granting at the same time a higher efficiency and a better security level in proxy delegation and management.
Abstracting application deployment on Cloud infrastructures
NASA Astrophysics Data System (ADS)
Aiftimiei, D. C.; Fattibene, E.; Gargana, R.; Panella, M.; Salomoni, D.
2017-10-01
Deploying a complex application on a Cloud-based infrastructure can be a challenging task. In this contribution we present an approach for Cloud-based deployment of applications and its present or future implementation in the framework of several projects, such as “!CHAOS: a cloud of controls” [1], a project funded by MIUR (Italian Ministry of Research and Education) to create a Cloud-based deployment of a control system and data acquisition framework, “INDIGO-DataCloud” [2], an EC H2020 project targeting among other things high-level deployment of applications on hybrid Clouds, and “Open City Platform”[3], an Italian project aiming to provide open Cloud solutions for Italian Public Administrations. We considered to use an orchestration service to hide the complex deployment of the application components, and to build an abstraction layer on top of the orchestration one. Through Heat [4] orchestration service, we prototyped a dynamic, on-demand, scalable platform of software components, based on OpenStack infrastructures. On top of the orchestration service we developed a prototype of a web interface exploiting the Heat APIs. The user can start an instance of the application without having knowledge about the underlying Cloud infrastructure and services. Moreover, the platform instance can be customized by choosing parameters related to the application such as the size of a File System or the number of instances of a NoSQL DB cluster. As soon as the desired platform is running, the web interface offers the possibility to scale some infrastructure components. In this contribution we describe the solution design and implementation, based on the application requirements, the details of the development of both the Heat templates and of the web interface, together with possible exploitation strategies of this work in Cloud data centers.
NASA Astrophysics Data System (ADS)
Doskocz, Adam
2016-01-01
All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI), including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.
INL Control System Situational Awareness Technology Final Report 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon Rueff; Bryce Wheeler; Todd Vollmer
The Situational Awareness project is a comprehensive undertaking of Idaho National Laboratory (INL) in an effort to produce technologies capable of defending the country’s energy sector infrastructure from cyber attack. INL has addressed this challenge through research and development of an interoperable suite of tools that safeguard critical energy sector infrastructure. The technologies in this project include the Sophia Tool, Mesh Mapper (MM) Tool, Intelligent Cyber Sensor (ICS) Tool, and Data Fusion Tool (DFT). Each is designed to function effectively on its own, or they can be integrated in a variety of customized configurations based on the end user’s riskmore » profile and security needs.« less
Autonomous rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.
1991-01-01
In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehlen, Mark Andrew; Vugrin, Eric D.; Warren, Drake E.
In recent years, the nation has recognized that critical infrastructure protection should consider not only the prevention of disruptive events, but also the processes that infrastructure systems undergo to maintain functionality following disruptions. This more comprehensive approach has been termed critical infrastructure resilience (CIR). Given the occurrence of a particular disruptive event, the resilience of a system to that event is the system's ability to efficiently reduce both the magnitude and duration of the deviation from targeted system performance levels. Sandia National Laboratories (Sandia) has developed a comprehensive resilience assessment framework for evaluating the resilience of infrastructure and economic systems.more » The framework includes a quantitative methodology that measures resilience costs that result from a disruption to infrastructure function. The framework also includes a qualitative analysis methodology that assesses system characteristics that affect resilience in order to provide insight and direction for potential improvements to resilience. This paper describes the resilience assessment framework. This paper further demonstrates the utility of the assessment framework through application to a hypothetical scenario involving the disruption of a petrochemical supply chain by a hurricane.« less
31 CFR 800.208 - Critical infrastructure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... Directorate; National Infrastructure Advisory Council Meeting AGENCY: National Protection and Programs...
31 CFR 800.208 - Critical infrastructure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...
31 CFR 800.208 - Critical infrastructure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...
31 CFR 800.208 - Critical infrastructure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...
Decision analysis and risk models for land development affecting infrastructure systems.
Thekdi, Shital A; Lambert, James H
2012-07-01
Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development. © 2011 Society for Risk Analysis.
Hoffman, P; Kline, E; George, L; Price, K; Clark, M; Walasin, R
1995-01-01
The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian.
Hoffman, P.; Kline, E.; George, L.; Price, K.; Clark, M.; Walasin, R.
1995-01-01
The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian. PMID:8563346
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Supriya; Shankar, Mallikarjun
Critical Infrastructure systems(CIs) such as energy, water, transportation and communication are highly interconnected and mutually dependent in complex ways. Robust modeling of CIs interconnections is crucial to identify vulnerabilities in the CIs. We present here a national-scale Infrastructure Vulnerability Analysis System (IVAS) vision leveraging Se- mantic Big Data (SBD) tools, Big Data, and Geographical Information Systems (GIS) tools. We survey existing ap- proaches on vulnerability analysis of critical infrastructures and discuss relevant systems and tools aligned with our vi- sion. Next, we present a generic system architecture and discuss challenges including: (1) Constructing and manag- ing a CI network-of-networks graph,more » (2) Performing analytic operations at scale, and (3) Interactive visualization of ana- lytic output to generate meaningful insights. We argue that this architecture acts as a baseline to realize a national-scale network based vulnerability analysis system.« less
The Resilient Infrastructure Initiative
Clifford, Megan
2016-10-01
Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less
The Advanced Technology Development Center (ATDC)
NASA Technical Reports Server (NTRS)
Clements, G. R.; Willcoxon, R. (Technical Monitor)
2001-01-01
NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.
Ouyang, Min; Tian, Hui; Wang, Zhenghua; Hong, Liu; Mao, Zijun
2017-01-17
This article studies a general type of initiating events in critical infrastructures, called spatially localized failures (SLFs), which are defined as the failure of a set of infrastructure components distributed in a spatially localized area due to damage sustained, while other components outside the area do not directly fail. These failures can be regarded as a special type of intentional attack, such as bomb or explosive assault, or a generalized modeling of the impact of localized natural hazards on large-scale systems. This article introduces three SLFs models: node centered SLFs, district-based SLFs, and circle-shaped SLFs, and proposes a SLFs-induced vulnerability analysis method from three aspects: identification of critical locations, comparisons of infrastructure vulnerability to random failures, topologically localized failures and SLFs, and quantification of infrastructure information value. The proposed SLFs-induced vulnerability analysis method is finally applied to the Chinese railway system and can be also easily adapted to analyze other critical infrastructures for valuable protection suggestions. © 2017 Society for Risk Analysis.
Structural health monitoring of civil infrastructure.
Brownjohn, J M W
2007-02-15
Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.
What Should a Restored River Look Like? (Invited)
NASA Astrophysics Data System (ADS)
Florsheim, J. L.; Chin, A.
2010-12-01
Removal of infrastructure such as dams, levees, and erosion control structures is a promising approach toward restoring river system connectivity, processes, and ecology. Significant management challenges exist, however, related to removal of such structures that have already transformed riparian processes or societal perceptions. Here, we consider the effects of bank erosion infrastructure versus the benefits of allowing channel banks to erode in order to address the question: what should a restored river look like? The extent of channel bank infrastructure globally is unknown; nevertheless, it dominates rivers in most urban areas and is growing in rural areas as small projects merge and creeks and rivers are progressively channelized. Bank erosion control structures are usually installed to limit land loss and to reduce associated hazards. Structures are sometimes themselves considered restoration under the assumption that sediment erosion is bad for ecosystems. Geomorphic and ecological effects of bank erosion control structures are well understood, however, and include loss of sediment sources, bank substrate, dynamic geomorphic processes, and riparian habitat. Thus, a rationale for allowing eroding banks in restored rivers is as follows: 1) bank erosion processes are a component of system-scale channel adjustment needed to accommodate variable hydrology and sediment loads and to promote long-term stability; 2) bank erosion is a source of coarse and fine sediment to channels needed to maintain downstream bed elevations and topographic heterogeneity; and 3) bank erosion is a component of river migration, a process that promotes riparian vegetation succession and provides large woody material and morphologic diversity required to sustain habitat and riparian biodiversity. When structures that were originally intended to control or manage dynamic natural processes such as flooding and erosion are removed, not surprisingly, a return to dynamic processes may cause economic and cultural impacts to a public that that has often encroached on land too close to the riparian zone to accommodate the magnitude of these processes. Thus, to accomplish river system restoration in rural areas, science is needed to inform policy-makers and managers about the multidimensional physical extent of the riparian zone required for restoration of bio-hydro-geomorphic processes that promote functioning ecology. In urban areas, river system restoration requires a long-term dedication to education, fund raising for land acquisition, infrastructure removal, as well as planning, new riparian policy, governance, and management that takes into account the value and dynamic nature of river processes. So, what should a restored river look like? The banks of the restored river might be thought of as an aquatic-terrestrial ecotone that is longitudinally, laterally, and vertically connected to adjacent ecosystems. This ecotone includes a non-stationary mosaic of bare ground, irregular topography, live vegetation of diverse ages, sizes, and type, dead woody material, and diverse fauna.
Goals and strategies in the global control design of the OAJ Robotic Observatory
NASA Astrophysics Data System (ADS)
Yanes-Díaz, A.; Rueda-Teruel, S.; Antón, J. L.; Rueda-Teruel, F.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Gruel, N.; Varela, J.; Cristóbal-Hornillos, D.; Chueca, S.; Díaz-Martín, M. C.; Guillén, L.; Luis-Simoes, R.; Maícas, N.; Lamadrid, J. L.; López-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.
2012-09-01
There are many ways to solve the challenging problem of making a high performance robotic observatory from scratch. The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located in the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys. The OAJ control system has been designed from a global point of view including astronomical subsystems as well as infrastructures and other facilities. Three main factors have been considered in the design of a global control system for the robotic OAJ: quality, reliability and efficiency. We propose CIA (Control Integrated Architecture) design and OEE (Overall Equipment Effectiveness) as a key performance indicator in order to improve operation processes, minimizing resources and obtaining high cost reduction whilst maintaining quality requirements. The OAJ subsystems considered for the control integrated architecture are the following: two wide-field telescopes and their instrumentation, active optics subsystems, facilities for sky quality monitoring (seeing, extinction, sky background, sky brightness, cloud distribution, meteorological station), domes and several infrastructure facilities such as water supply, glycol water, water treatment plant, air conditioning, compressed air, LN2 plant, illumination, surveillance, access control, fire suppression, electrical generators, electrical distribution, electrical consumption, communication network, Uninterruptible Power Supply and two main control rooms, one at the OAJ and the other remotely located in Teruel, 40km from the observatory, connected through a microwave radio-link. This paper presents the OAJ strategy in control design to achieve maximum quality efficiency for the observatory processes and operations, giving practical examples of our approach.
A National contribution to the GEO Science and Technology roadmap: GIIDA Project
NASA Astrophysics Data System (ADS)
Nativi, Stefano; Mazzetti, Paolo; Guzzetti, Fausto; Oggioni, Alessandro; Pirrone, Nicola; Santolieri, Rosalia; Viola, Angelo; Tartari, Gianni; Santoro, Mattia
2010-05-01
The GIIDA (Gestione Integrata e Interoperativa dei Dati Ambientali) project is an initiative of the Italian National Research Council (CNR) launched in 2008 as an inter-departmental project, aiming to design and develop a multidisciplinary e-infrastructure (cyber-infrastructure) for the management, processing, and evaluation of Earth and Environmental resources -i.e. data, services, models, sensors, best practices. GIIDA has been contributing to the implementation of the GEO (Group of Earth Observation) Science and Technology (S&T) roadmap by: (a) linking relevant S&T communities to GEOSS (GEO System of Systems); (b) ensuring that GEOSS is built based on state-of-the-art science and technology. GIIDA co-ordinates the CNR's digital infrastructure development for Earth Observation resources sharing and cooperates with other national agencies and existing projects pursuing the same objective. For the CNR, GIIDA provides an interface to European and international interoperability programmes (e.g. INSPIRE, and GMES). It builds a national network for dialogue and resolution of issues at varying scientific and technical levels. To achieve such goals, GIIDA introduced a set of guidance principles: • To shift from a "traditional" data centric approach to a more advanced service-based solution for Earth System Science and Environmental information. • To shift the focus from Data to Information Spatial Infrastructures in order to support decision-making. • To be interoperable with analogous National (e.g. SINAnet, and the INSPIRE National Infrastructure) and international initiatives (e.g. INSPIRE, GMES, SEIS, and GEOSS). • To reinforce the Italian presence in the European and international programmes concerning digital infrastructures, geospatial information, and the Mega-Science approach. • To apply the National and International Information Technology (IT) standards for achieving multi-disciplinary interoperability in the Earth and Space Sciences (e.g. ISO, OGC, CEN, CNIPA) In keeping with GEOSS, GIIDA infrastructure adopts a System of Systems architectural approach in order to federate the existing systems managed by a set of recognized Thematic Areas (i.e. Risks, Biodiversity, Climate Change, Air Quality, Land and Water Quality, Ocean and Marine resources, Joint Research and Public Administration infrastructures). GIIDA system of systems will contribute to develop multidisciplinary teams studying the global Earth systems in order to address the needs coming from the GEO Societal Benefit Areas (SBAs). GIIDA issued a Call For Pilots receiving more than 20 high-level projects which are contributing to the GIIDA system development. A national-wide research environmental infrastructure must be interconnected with analogous digital infrastructures operated by other important stakeholders, such as public users and private companies. In fact, the long-term sustainability of a "System of Systems" requires synergies between all the involved stakeholders' domains: Users, Governance, Capacity provision, and Research. Therefore, in order to increase the effectiveness of the GIIDA contribution process to a national environmental e-infrastructure, collaborations were activated with relevant actors of the other stakeholders' domains at the national level (e.g. ISPRA SINAnet).
Strengthening the Security of ESA Ground Data Systems
NASA Astrophysics Data System (ADS)
Flentge, Felix; Eggleston, James; Garcia Mateos, Marc
2013-08-01
A common approach to address information security has been implemented in ESA's Mission Operations (MOI) Infrastructure during the last years. This paper reports on the specific challenges to the Data Systems domain within the MOI and how security can be properly managed with an Information Security Management System (ISMS) according to ISO 27001. Results of an initial security risk assessment are reported and the different types of security controls that are being implemented in order to reduce the risks are briefly described.
Airoldi, Laura; Bulleri, Fabio
2011-01-01
Coastal landscapes are being transformed as a consequence of the increasing demand for infrastructures to sustain residential, commercial and tourist activities. Thus, intertidal and shallow marine habitats are largely being replaced by a variety of artificial substrata (e.g. breakwaters, seawalls, jetties). Understanding the ecological functioning of these artificial habitats is key to planning their design and management, in order to minimise their impacts and to improve their potential to contribute to marine biodiversity and ecosystem functioning. Nonetheless, little effort has been made to assess the role of human disturbances in shaping the structure of assemblages on marine artificial infrastructures. We tested the hypothesis that some negative impacts associated with the expansion of opportunistic and invasive species on urban infrastructures can be related to the severe human disturbances that are typical of these environments, such as those from maintenance and renovation works. Maintenance caused a marked decrease in the cover of dominant space occupiers, such as mussels and oysters, and a significant enhancement of opportunistic and invasive forms, such as biofilm and macroalgae. These effects were particularly pronounced on sheltered substrata compared to exposed substrata. Experimental application of the disturbance in winter reduced the magnitude of the impacts compared to application in spring or summer. We use these results to identify possible management strategies to inform the improvement of the ecological value of artificial marine infrastructures. We demonstrate that some of the impacts of globally expanding marine urban infrastructures, such as those related to the spread of opportunistic, and invasive species could be mitigated through ecologically-driven planning and management of long-term maintenance of these structures. Impact mitigation is a possible outcome of policies that consider the ecological features of built infrastructures and the fundamental value of controlling biodiversity in marine urban systems.
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Best, Susan L.
2006-01-01
When the systems are developed and in place to provide the services needed to operate en route and on the Lunar and Martian surfaces, an Earth based replication will need to be in place for the safety and protection of mission success. The replication will entail all aspects of the flight configuration end to end but will not include any closed loop systems. This would replicate the infrastructure from Lunar and Martian robots, manned surface excursions, through man and unmanned terrestrial bases, through the various types of communication systems and technologies, manned and un-manned space vehicles (large and small), to Earth based systems and control centers. An Earth based replicated infrastructure will enable checkout and test of new technologies, hardware, software updates and upgrades and procedures without putting humans and missions at risk. Analysis of events, what ifs and trouble resolution could be played out on the ground to remove as much risk as possible from any type of proposed change to flight operational systems. With adequate detail, it is possible that failures could be predicted with a high probability and action taken to eliminate failures. A major factor in any mission to the Moon and to Mars is the complexity of systems, interfaces, processes, their limitations, associated risks and the factor of the unknown including the development by many contractors and NASA centers. The need to be able to introduce new technologies over the life of the program requires an end to end test bed to analyze and evaluate these technologies and what will happen when they are introduced into the flight system. The ability to analyze system behaviors end to end under varying conditions would enhance safety e.g. fault tolerances. This analysis along with the ability to mine data from the development environment (e.g. test data), flight ops and modeling/simulations data would provide a level of information not currently available to operations and astronauts. In this paper we will analyze the beginnings of such a replication and what it could do in terms of reducing risk in the near term for development. We will analyze the Space Shuttle Main Engine (SSME) test lab which has to a large extent accomplished this replication for the SSME and has been highly successful in analyzing hardware and software problems and changes. The cost of replicating the flight system as proposed here could be very high if attempted as an afterthought. We will describe the initial steps for the development of a replication of this infrastructure starting with the communication infrastructure. The Constellation of Labs (CofL) under the Command, Control, Communication and Information (C3I) project for the NASA Exploration Initiative will provide the initial foundation upon which to base this replication. Simply put, there is very little margin for error in high latency situations e.g. en-route to/from Mars or in an autonomous process on the Lunar far side. Any thought out approach to reduce risk and increase safety needs to be accomplished end to end with the actual systems configuration.
Microelectromechanical Systems
NASA Technical Reports Server (NTRS)
Gabriel, Kaigham J.
1995-01-01
Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.
Toward a digital library strategy for a National Information Infrastructure
NASA Technical Reports Server (NTRS)
Coyne, Robert A.; Hulen, Harry
1993-01-01
Bills currently before the House and Senate would give support to the development of a National Information Infrastructure, in which digital libraries and storage systems would be an important part. A simple model is offered to show the relationship of storage systems, software, and standards to the overall information infrastructure. Some elements of a national strategy for digital libraries are proposed, based on the mission of the nonprofit National Storage System Foundation.
Shortliffe, E H; Bleich, H L; Caine, C G; Masys, D R; Simborg, D W
1996-01-01
Some observers feel that the federal government should play a more active leadership role in educating the medical community and in coordinating and encouraging a more rapid and effective implementation of clinically relevant applications of wide-area networking. Other people argue that the private sector is recognizing the importance of these issues and will, when the market demands it, adopt and enhance the telecommunications systems that are needed to produce effective uses of the National Information Infrastructure (NII) by the healthcare community. This debate identifies five areas for possible government involvement: convening groups for the development of standards; providing funding for research and development; ensuring the equitable distribution of resources, particularly to places and people considered by private enterprise to provide low opportunities for profit; protecting rights of privacy, intellectual property, and security; and overcoming the jurisdictional barriers to cooperation, particularly when states offer conflicting regulations. Arguments against government involvement include the likely emergence of an adequate infrastructure under free market forces, the often stifling effect of regulation, and the need to avoid a common-and-control mentality in an infrastructure that is best promoted collaboratively. PMID:8816347
Examining the front lines of local environmental public health practice: a Maryland case study.
Resnick, Beth; Zablotsky, Joanna; Nachman, Keeve; Burke, Thomas
2008-01-01
Local environmental public health (EPH) is the foundation of a nation's environmental protection infrastructure. With increasing pressure to demonstrate the ability of EPH activities to effectively protect health, the Johns Hopkins Center for Excellence in EPH Practice, as part of the Centers for Disease Control and Prevention's (CDC's) EPH capacity-building effort, developed the Profile of Maryland Environmental Public Health Practice. This profile offers an examination of front-line local EPH strengths, needs, challenges, and provides recommendations to strengthen the EPH infrastructure. A multistep process was conducted, including site visits to all of Maryland's 24 local EPH agencies and a questionnaire addressing administrative structure, communication, funding, workforce, crisis management, technology, and legal authority, completed by local EPH directors. The Maryland Profile revealed a dedicated and responsive workforce limited by a neglected, fragmented, and underfunded EPH infrastructure. Recommendations regarding leadership, workforce, training, technology, communication, and legal authority are offered. This research has implications for the national EPH infrastructure. Recommendations offered are consistent with the CDC's findings in A National Strategy to Revitalize Environmental Public Health Services. These findings and recommendations offer opportunities to facilitate the advancement of an EPH system to better protect the nation's health.
A Security Architecture for Grid-enabling OGC Web Services
NASA Astrophysics Data System (ADS)
Angelini, Valerio; Petronzio, Luca
2010-05-01
In the proposed presentation we describe an architectural solution for enabling a secure access to Grids and possibly other large scale on-demand processing infrastructures through OGC (Open Geospatial Consortium) Web Services (OWS). This work has been carried out in the context of the security thread of the G-OWS Working Group. G-OWS (gLite enablement of OGC Web Services) is an international open initiative started in 2008 by the European CYCLOPS , GENESI-DR, and DORII Project Consortia in order to collect/coordinate experiences in the enablement of OWS's on top of the gLite Grid middleware. G-OWS investigates the problem of the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Concerning security issues, the integration of OWS compliant infrastructures and gLite Grids needs to address relevant challenges, due to their respective design principles. In fact OWS's are part of a Web based architecture that demands security aspects to other specifications, whereas the gLite middleware implements the Grid paradigm with a strong security model (the gLite Grid Security Infrastructure: GSI). In our work we propose a Security Architectural Framework allowing the seamless use of Grid-enabled OGC Web Services through the federation of existing security systems (mostly web based) with the gLite GSI. This is made possible mediating between different security realms, whose mutual trust is established in advance during the deployment of the system itself. Our architecture is composed of three different security tiers: the user's security system, a specific G-OWS security system, and the gLite Grid Security Infrastructure. Applying the separation-of-concerns principle, each of these tiers is responsible for controlling the access to a well-defined resource set, respectively: the user's organization resources, the geospatial resources and services, and the Grid resources. While the gLite middleware is tied to a consolidated security approach based on X.509 certificates, our system is able to support different kinds of user's security infrastructures. Our central component, the G-OWS Security Framework, is based on the OASIS WS-Trust specifications and on the OGC GeoRM architectural framework. This allows to satisfy advanced requirements such as the enforcement of specific geospatial policies and complex secure web service chained requests. The typical use case is represented by a scientist belonging to a given organization who issues a request to a G-OWS Grid-enabled Web Service. The system initially asks the user to authenticate to his/her organization's security system and, after verification of the user's security credentials, it translates the user's digital identity into a G-OWS identity. This identity is linked to a set of attributes describing the user's access rights to the G-OWS services and resources. Inside the G-OWS Security system, access restrictions are applied making use of the enhanced Geospatial capabilities specified by the OGC GeoXACML. If the required action needs to make use of the Grid environment the system checks if the user is entitled to access a Grid infrastructure. In that case his/her identity is translated to a temporary Grid security token using the Short Lived Credential Services (IGTF Standard). In our case, for the specific gLite Grid infrastructure, some information (VOMS Attributes) is plugged into the Grid Security Token to grant the access to the user's Virtual Organization Grid resources. The resulting token is used to submit the request to the Grid and also by the various gLite middleware elements to verify the user's grants. Basing on the presented framework, the G-OWS Security Working Group developed a prototype, enabling the execution of OGC Web Services on the EGEE Production Grid through the federation with a Shibboleth based security infrastructure. Future plans aim to integrate other Web authentication services such as OpenID, Kerberos and WS-Federation.
NASA capabilities roadmap: advanced telescopes and observatories
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.
2005-01-01
The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
DOT National Transportation Integrated Search
1997-03-01
This is our Management Advisory Memorandum on the National Airspace : System (NAS) Infrastructure Management System (NIMS) prototype : project in the Federal Aviation Administration (FAA). Our review was : initiated in response to a hotline complaint...
Railroad infrastructure trespassing detection systems research in Pittsford, New York
DOT National Transportation Integrated Search
2006-08-01
The U.S. Department of Transportations Volpe National Transportation Systems Center, under the direction of the Federal Railroad Administration, conducted a 3-year demonstration of an automated prototype railroad infrastructure security system on ...
Federal Research and Development Funding: FY2010
2009-09-23
Budget activities 6.4 and 6.5 focus on the development of specific weapon systems or components (e.g., the Joint Strike Fighter or missile defense systems...more than the request for chemical and biological basic research and would provide $10 million in the Infrastructure and Geophysical Division for...40 40 Chemical and Biological 208 200 207 222 207 Command, Control, and Interoperability 57 75 80 81 83 Explosives 78 96 121 121 121 Human
Patient-centered care: the jury is still out.
Enright, S M; Flagstad, M S
1994-04-01
The patient-centered care model needs to retain a central focus on the patient. Process and system interfaces are key areas where alignment on behalf of the patient is required. Often, the current system is out of control. Departmental infrastructure and the need for resource reallocation must be assessed. No blueprint exists for implementing patient-centered care, although many incremental patient-focused initiatives are already underway. Impact on patients must be the balancing factor.
The BaBar Data Reconstruction Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceseracciu, A
2005-04-20
The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a Control System has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system ismore » distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on {approx}450 CPUs organized in 9 farms.« less
The BaBar Data Reconstruction Control System
NASA Astrophysics Data System (ADS)
Ceseracciu, A.; Piemontese, M.; Tehrani, F. S.; Pulliam, T. M.; Galeazzi, F.
2005-08-01
The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a control system has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of object oriented (OO) design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful finite state machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on /spl sim/450 CPUs organized in nine farms.
NASA Astrophysics Data System (ADS)
Fernandes, R. M. S.; Bos, M. S.; Bruyninx, C.; Crocker, P.; Dousa, J.; Walpersdorf, A.; Socquet, A.; Avallone, A.; Ganas, A.; Ionescu, C.; Kenyeres, A.; Ofeigsson, B.; Ozener, H.; Vergnolle, M.; Lidberg, M.; Liwosz, T.; Soehne, W.; Bezdeka, P.; Cardoso, R.; Cotte, N.; Couto, R.; D'Agostino, N.; Deprez, A.; Fabian, A.; Gonçalves, H.; Féres, L.; Legrand, J.; Menut, J. L.; Nastase, E.; Ngo, K. M.; Sigurðarson, F.; Vaclavovic, P.
2017-12-01
The GNSS working group part of the EPOS-IP (European Plate Observing System - Implementation Phase) project oversees the implementation of services focused on GNSS data and derived products for the use of the geo-sciences community. The objective is to serve essentially the Solid Earth community, but other scientific and technical communities will also be able the benefit of the efforts being carried out to access the data (and derived products) of the European Geodetic Infrastructures. The geodetic component of EPOS is dealing essentially with implementing an e-infrastructure to store and disseminate continuous GNSS data (and derived solutions) from existing Research Infrastructures and new dedicated services. Present efforts are on developing an integrated software package, called GLASS, that will permit to disseminate quality controlled data (using special tools) in a seamless way from dozens of Geodetic Research Infrastructures in Europe. Conceptually, GLASS can be used in a single Research Infrastructure or in hundreds cooperative ones. We present and discuss the status of the implementation of these services, including also the generation of products - time-series, velocity fields and strain rate fields. In concrete, we will present the results of the current validation phase of these services and we will discuss in detail the technical and cooperative efforts being implemented. EPOS-IP is a project funded by the ESFRI European Union.
Towards a Multi-Mission, Airborne Science Data System Environment
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.
2011-12-01
NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs. A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.
An Encryption Scheme for Communication Internet SCADA Components
NASA Astrophysics Data System (ADS)
Robles, Rosslin John; Kim, Tai-Hoon
The trend in most systems is that they are connected through the Internet. Traditional Supervisory Control and Data Acquisition Systems (SCADA) is connected only in a limited private network. SCADA is considered a critical infrastructure, and connecting to the internet is putting the society on jeopardy, some operators hold back on connecting it to the internet. But since the internet Supervisory Control and Data Acquisition Systems (SCADA) facility has brought a lot of advantages in terms of control, data viewing and generation. Along with these advantages, are security issues regarding web SCADA, operators are pushed to connect Supervisory Control and Data Acquisition Systems (SCADA) through the internet. Because of this, many issues regarding security surfaced. In this paper, we discuss web SCADA and the issues regarding security. As a countermeasure, a web SCADA security solution using crossed-crypto-scheme is proposed to be used in the communication of SCADA components.
Virtualization for the LHCb Online system
NASA Astrophysics Data System (ADS)
Bonaccorsi, Enrico; Brarda, Loic; Moine, Gary; Neufeld, Niko
2011-12-01
Virtualization has long been advertised by the IT-industry as a way to cut down cost, optimise resource usage and manage the complexity in large data-centers. The great number and the huge heterogeneity of hardware, both industrial and custom-made, has up to now led to reluctance in the adoption of virtualization in the IT infrastructure of large experiment installations. Our experience in the LHCb experiment has shown that virtualization improves the availability and the manageability of the whole system. We have done an evaluation of available hypervisors / virtualization solutions and find that the Microsoft HV technology provides a high level of maturity and flexibility for our purpose. We present the results of these comparison tests, describing in detail, the architecture of our virtualization infrastructure with a special emphasis on the security for services visible to the outside world. Security is achieved by a sophisticated combination of VLANs, firewalls and virtual routing - the cost and benefits of this solution are analysed. We have adapted our cluster management tools, notably Quattor, for the needs of virtual machines and this allows us to migrate smoothly services on physical machines to the virtualized infrastructure. The procedures for migration will also be described. In the final part of the document we describe our recent R&D activities aiming to replacing the SAN-backend for the virtualization by a cheaper iSCSI solution - this will allow to move all servers and related services to the virtualized infrastructure, excepting the ones doing hardware control via non-commodity PCI plugin cards.
Control Structures for VSC-based FACTS Devices under Normal and Faulted AC-systems
NASA Astrophysics Data System (ADS)
Babaei, Saman
This thesis is concerned with improving the Flexible AC Transmission Systems (FACTS) devices performance under the normal and fault AC-system conditions by proposing new control structures and also converter topologies. The combination of the increasing electricity demand and restrictions in expanding the power system infrastructures has urged the utility owners to deploy the utility-scaled power electronics in the power system. Basically, FACTS is referred to the application of the power electronics in the power systems. Voltage Source Converter (VSC) is the preferred building block of the FACTS devices and many other utility-scale power electronics applications. Despite of advances in the semiconductor technology and ultra-fast microprocessor based controllers, there are still many issues to address and room to improve[25]. An attempt is made in this thesis to address these important issues of the VSC-based FACTS devices and provide solutions to improve them.
Fuller, Daniel; Gauvin, Lise; Kestens, Yan
2013-02-01
Few studies have examined potential disparities in access to transportation infrastructures, an important determinant of population health. To examine individual- and area-level disparities in access to the road network, public transportation system, and a public bicycle share program in Montreal, Canada. Examining associations between sociodemographic variables and access to the road network, public transportation system, and a public bicycle share program, 6,495 adult respondents (mean age, 48.7 years; 59.0 % female) nested in 33 areas were included in a multilevel analysis. Individuals with lower incomes lived significantly closer to public transportation and the bicycle share program. At the area level, the interaction between low-education and low-income neighborhoods showed that these areas were significantly closer to public transportation and the bicycle share program controlling for individual and urbanicity variables. More deprived areas of the Island of Montreal have better access to transportation infrastructure than less-deprived areas.
The Conception Approach to the Traffic Control in Czech Cities - Examples from Prague
NASA Astrophysics Data System (ADS)
Tichý, Tomáš; Krajčír, Dušan
Modern and economic development of contemporary towns is without question highly dependent upon traffic infrastructure progress. Automobile transport intensity is dramatically rising in large towns and other Czech and European cities. At the same time number of traffic congestions and accidents is increasing, standing times are becoming longer and ecological stress is also escalated. To solve this situation seems to be the most effective solution to design intelligent traffic light intersection control system, variable message signs, preference of public transportation, road line traffic control and next telematics subsystems. This control system and subsystems should improve permeability of traffic road network with a respect for all demands on recent trends of traffic development in towns and regions.
Demonstration of Green/Gray Infrastructure for Combined Sewer Overflow Control
This project is a major national demonstration of the integration of green and gray infrastructure for combined sewer overflow (CSO) control in a cost-effective and environmentally friendly manner. It will use Kansas City, MO, as a case example. The project will have a major in...
Quality Control Review of the Defense Finance and Accounting Service Internal Audit Organization
2014-12-01
Executive documented a threat to independence because they provided direction in a nonaudit service (IR End-to-End Assessment of DFAS Texarkana Operations...effect the lack of segregation of duties and system management controls has on the DFAS Texarkana Vendor Pay and Payroll functions.” Based on our...Infrastructure Management, February 10, 2014 Performance CO12PRC010TX Columbus Audit of DFAS Texarkana Vendor Pay and Payroll, November 19, 2013
Dawson, David A; Purnell, Phil; Roelich, Katy; Busch, Jonathan; Steinberger, Julia K
2014-11-04
Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. The evolution of these technologies has progressed based on the enhancement of technology-specific performance criteria, without explicitly considering the wider system (global) impacts. This paper presents a methodology for simultaneously assessing local (technology) and global (infrastructure) performance, allowing key technological interventions to be evaluated with respect to their effect on the vulnerability of wider infrastructure systems. We use exposure of low carbon infrastructure to critical material supply disruption (criticality) to demonstrate the methodology. A series of local performance changes are analyzed; and by extension of this approach, a method for assessing the combined criticality of multiple materials for one specific technology is proposed. Via a case study of wind turbines at both the material (magnets) and technology (turbine generators) levels, we demonstrate that analysis of a given intervention at different levels can lead to differing conclusions regarding the effect on vulnerability. Infrastructure design decisions should take a systemic approach; without these multilevel considerations, strategic goals aimed to help meet low-carbon targets, that is, through long-term infrastructure transitions, could be significantly jeopardized.
Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps.
Moya, José M; Araujo, Alvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier
2009-01-01
The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals.
Multi-time scale dynamics in power electronics-dominated power systems
NASA Astrophysics Data System (ADS)
Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie
2017-09-01
Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.
Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps
Moya, José M.; Araujo, Álvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier
2009-01-01
The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals. PMID:22291569
An autonomous structural health monitoring system for Waiau interchange.
DOT National Transportation Integrated Search
2013-03-01
Bridge infrastructure is a critical element of the transportation system which makes maintaining its safety and : performance vital to a healthy society. However, the civil infrastructure systems in the United States are decaying : at an accelerated ...
NAS infrastructure management system build 1.5 computer-human interface
DOT National Transportation Integrated Search
2001-01-01
Human factors engineers from the National Airspace System (NAS) Human Factors Branch (ACT-530) of the Federal Aviation Administration William J. Hughes Technical Center conducted an evaluation of the NAS Infrastructure Management System (NIMS) Build ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
..., and modeling to assure attainment and maintenance for that new NAAQS. Section 110(a) of the CAA... structural SIP requirements such as modeling, monitoring, and emissions inventories that are designed to... limits and other control measures. 110(a)(2)(B): Ambient air quality monitoring/data system. 110(a)(2)(C...
Infiltration is one of the primary functional mechanisms of green infrastructure stormwater controls, so this study explored selection and placement of embedded soil moisture, water level, and temperature sensors to monitor surface infiltration and infiltration into the underlyin...
2015-07-07
communications system that might utilize balloons or unmanned aerial vehicles (UAV) when the existing communications infrastructure is damaged or destroyed in...controlled by member in the back and safely tethered to the po man in front. HADR Group 7 Laser infrared images color-calibrated to show heights or
Ivins talks on the Softphone OCA system from Atlantis' MDK
2001-02-07
STS098-345-001 (7-20 February 2001) --- Astronaut Marsha S. Ivins, STS-98 mission specialist, places a phone call to Houstons Mission Control Center (MCC) with the virtual phone. This test is designed to demonstrate communications capability of a new upgrade utilizing the existing Shuttle Orbiter Communications Adapter (OCA) infrastructure.
A wireless electronic monitoring system for securing milk from farm to processor
NASA Astrophysics Data System (ADS)
Womble, Phillip; Hopper, Lindsay; Thompson, Chris; Alexander, Suraj M.; Crist, William; Payne, Fred; Stombaugh, Tim; Paschal, Jon; Moore, Ryan; Luck, Brian; Tabayehnejab, Nasrin
2008-04-01
The Department of Homeland Security and the Department of Health and Human Services have targeted bulk food contamination as a focus for attention. The contamination of bulk food poses a high consequence threat to our society. Milk transport falls into three of the 17 targeted NIPP (National Infrastructure Protection Plan) sectors including agriculture-food, public health, and commercial facilities. Minimal security safeguards have been developed for bulk milk transport. The current manual methods of securing milk are paper intensive and prone to errors. The bulk milk transportation sector requires a security enhancement that will both reduce recording errors and enable normal transport activities to occur while providing security against unauthorized access. Milk transportation companies currently use voluntary seal programs that utilize plastic, numbered seals on milk transport tank openings. Our group has developed a Milk Transport Security System which is an electromechanical access control and communication system that assures the secure transport of milk, milk samples, milk data, and security data between locations and specifically between dairy farms, transfer stations, receiving stations, and milk plants. It includes a security monitoring system installed on the milk transport tank, a hand held device, optional printers, data server, and security evaluation software. The system operates automatically and requires minimal or no attention by the bulk milk hauler/sampler. The system is compatible with existing milk transport infrastructure, and has the support of the milk producers, milk transportation companies, milk marketing agencies, and dairy processors. The security protocol developed is applicable for transport of other bulk foods both nationally and internationally. This system adds significantly to the national security infrastructure for bulk food transport. We are currently demonstrating the system in central Kentucky and will report on the results of the demonstration.
Modular Seafloor and Water Column Systems for the Ocean Observatories Initiative Cabled Array
NASA Astrophysics Data System (ADS)
Delaney, J. R.; Manalang, D.; Harrington, M.; Tilley, J.; Dosher, J.; Cram, G.; Harkins, G.; McGuire, C.; Waite, P.; McRae, E.; McGinnis, T.; Kenney, M.; Siani, C.; Michel-Hart, N.; Denny, S.; Boget, E.; Kawka, O. E.; Daly, K. L.; Luther, D. S.; Kelley, D. S.; Milcic, M.
2016-02-01
Over the past decade, cabled ocean observatories have become an increasingly important way to collect continuous real-time data at remote subsea locations. This has led to the development of a class of subsea systems designed and built specifically to distribute power and bandwidth among sensing instrumentation on the seafloor and throughout the water column. Such systems are typically powered by shore-based infrastructure and involve networks of fiber optic and electrical cabling that provide real-time data access and control of remotely deployed instrumentation. Several subsea node types were developed and/or adapted for cabled use in order to complete the installation of the largest North American scientific cabled observatory in Oct, 2014. The Ocean Observatories Initiative (OOI) Cabled Array, funded by the US National Science Foundation, consists of a core infrastructure that includes 900 km of fiber optic/electrical cables, seven primary nodes, 18 seafloor junction boxes, three mooring-mounted winched profiling systems, and three wire-crawling profiler systems. In aggregate, the installed infrastructure has 200 dedicated scientific instrument ports (of which 120 are currently assigned), and is capable of further expansion. The installed system has a 25-year design life for reliable, sustained monitoring; and all nodes, profilers and instrument packages are ROV-serviceable. Now in it's second year of operation, the systems that comprise the Cabled Array are providing reliable, 24/7 real-time data collection from deployed instrumentation, and offer a modular and scalable class of subsea systems for ocean observing. This presentation will provide an overview of the observatory-class subsystems of the OOI Cabled Array, focusing on the junction boxes, moorings and profilers that power and communicate with deployed instrumentation.
Invisible transportation infrastructure technology to mitigate energy and environment.
Hossain, Md Faruque
2017-01-01
Traditional transportation infrastructure built by heat trapping products and the transportation vehiles run by fossil fuel, both causing deadly climate change. Thus, a new technology of invisible Flying Transportation system has been proposed to mitigate energy and environmental crisis caused by traditional infrastructure system. Underground Maglev system has been modeled to be constructed for all transportation systems to run the vehicle smoothly just over two feet over the earth surface by propulsive and impulsive force at flying stage. A wind energy modeling has also been added to meet the vehicle's energy demand when it runs on a non-maglev area. Naturally, all maglev infrastructures network to be covered by evergreen herb except pedestrian walkways to absorb CO 2 , ambient heat, and moisture (vapor) from the surrounding environment to make it cool. The research revealed that the vehicle will not require any energy since it will run by superconducting electromagnetic force while it runs on a maglev infrastructure area and directed by wind energy while it runs on non-maglev area. The proposed maglev transportation infrastructure technology will indeed be an innovative discovery in modern engineering science which will reduce fossil fuel energy consumption and climate change dramatically.
Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures
Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé
2015-01-01
Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648
A Real-Time Web of Things Framework with Customizable Openness Considering Legacy Devices
Zhao, Shuai; Yu, Le; Cheng, Bo
2016-01-01
With the development of the Internet of Things (IoT), resources and applications based on it have emerged on a large scale. However, most efforts are “silo” solutions where devices and applications are tightly coupled. Infrastructures are needed to connect sensors to the Internet, open up and break the current application silos and move to a horizontal application mode. Based on the concept of Web of Things (WoT), many infrastructures have been proposed to integrate the physical world with the Web. However, issues such as no real-time guarantee, lack of fine-grained control of data, and the absence of explicit solutions for integrating heterogeneous legacy devices, hinder their widespread and practical use. To address these issues, this paper proposes a WoT resource framework that provides the infrastructures for the customizable openness and sharing of users’ data and resources under the premise of ensuring the real-time behavior of their own applications. The proposed framework is validated by actual systems and experimental evaluations. PMID:27690038
A Real-Time Web of Things Framework with Customizable Openness Considering Legacy Devices.
Zhao, Shuai; Yu, Le; Cheng, Bo
2016-09-28
With the development of the Internet of Things (IoT), resources and applications based on it have emerged on a large scale. However, most efforts are "silo" solutions where devices and applications are tightly coupled. Infrastructures are needed to connect sensors to the Internet, open up and break the current application silos and move to a horizontal application mode. Based on the concept of Web of Things (WoT), many infrastructures have been proposed to integrate the physical world with the Web. However, issues such as no real-time guarantee, lack of fine-grained control of data, and the absence of explicit solutions for integrating heterogeneous legacy devices, hinder their widespread and practical use. To address these issues, this paper proposes a WoT resource framework that provides the infrastructures for the customizable openness and sharing of users' data and resources under the premise of ensuring the real-time behavior of their own applications. The proposed framework is validated by actual systems and experimental evaluations.
An Architecture for SCADA Network Forensics
NASA Astrophysics Data System (ADS)
Kilpatrick, Tim; Gonzalez, Jesus; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet
Supervisory control and data acquisition (SCADA) systems are widely used in industrial control and automation. Modern SCADA protocols often employ TCP/IP to transport sensor data and control signals. Meanwhile, corporate IT infrastructures are interconnecting with previously isolated SCADA networks. The use of TCP/IP as a carrier protocol and the interconnection of IT and SCADA networks raise serious security issues. This paper describes an architecture for SCADA network forensics. In addition to supporting forensic investigations of SCADA network incidents, the architecture incorporates mechanisms for monitoring process behavior, analyzing trends and optimizing plant performance.
Measuring Systemic Impacts of Bike Infrastructure Projects
DOT National Transportation Integrated Search
2018-05-01
This paper qualitatively identifies the impacts of bicycle infrastructure on all roadway users, including safety, operations, and travel route choice. Bicycle infrastructure includes shared lanes, conventional bike lanes, and separated bike lanes. Th...
EPA NRMRL green Infrastructure research
Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...
75 FR 61160 - National Protection and Programs Directorate; National Infrastructure Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as.... Deliberation: Optimization of Resources for Mitigating Infrastructure Disruptions VII. Discussion of Potential...
Johannessen, Liv Karen; Obstfelder, Aud; Lotherington, Ann Therese
2013-05-01
The purpose of this paper is to explore the making and scaling of information infrastructures, as well as how the conditions for scaling a component may change for the vendor. The first research question is how the making and scaling of a healthcare information infrastructure can be done and by whom. The second question is what scope for manoeuvre there might be for vendors aiming to expand their market. This case study is based on an interpretive approach, whereby data is gathered through participant observation and semi-structured interviews. A case study of the making and scaling of an electronic system for general practitioners ordering laboratory services from hospitals is described as comprising two distinct phases. The first may be characterized as an evolving phase, when development, integration and implementation were achieved in small steps, and the vendor, together with end users, had considerable freedom to create the solution according to the users' needs. The second phase was characterized by a large-scale procurement process over which regional healthcare authorities exercised much more control and the needs of groups other than the end users influenced the design. The making and scaling of healthcare information infrastructures is not simply a process of evolution, in which the end users use and change the technology. It also consists of large steps, during which different actors, including vendors and healthcare authorities, may make substantial contributions. This process requires work, negotiation and strategies. The conditions for the vendor may change dramatically, from considerable freedom and close relationships with users and customers in the small-scale development, to losing control of the product and being required to engage in more formal relations with customers in the wider public healthcare market. Onerous procurement processes may be one of the reasons why large-scale implementation of information projects in healthcare is difficult and slow. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.
2017-12-01
A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.
On-Site Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Good, James E.
2008-01-01
Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. So what do we do when we get to the moon for sustainable exploration. On-site fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The on-site fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR element has worked closely with the ISRU element in the past year to assess the ability of using lunar regolith as a viable feedstock for fabrication material. Preliminary work has shown promise and the ISFR Element will continue to concentrate on this activity. Fabrication capabilities have been furthered with the process certification effort that, when completed, will allow for space-qualified hardware to be manufactured. Materials being investigated include titanium and aluminum alloys as well as lunar regolith simulants with binders. This paper addresses the latest advancements made in the fabrication of infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; infrastructures that allow sustained, affordable and highly effective operations on the Moon and beyond.
Code of Federal Regulations, 2012 CFR
2012-01-01
... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...
Code of Federal Regulations, 2010 CFR
2010-01-01
... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...
Code of Federal Regulations, 2014 CFR
2014-01-01
... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...
Code of Federal Regulations, 2013 CFR
2013-01-01
... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...
Code of Federal Regulations, 2011 CFR
2011-01-01
... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...
The New BaBar Data Reconstruction Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceseracciu, Antonio
2003-06-02
The BaBar experiment is characterized by extremely high luminosity, a complex detector, and a huge data volume, with increasing requirements each year. To fulfill these requirements a new control system has been designed and developed for the offline data reconstruction system. The new control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is activelymore » distributed, enforces the separation between different processing tiers by using different naming domains, and glues them together by dedicated brokers. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes this new control system, currently in use at SLAC and Padova on {approx}450 CPUs organized in 12 farms.« less
Integration of robotic resources into FORCEnet
NASA Astrophysics Data System (ADS)
Nguyen, Chinh; Carroll, Daniel; Nguyen, Hoa
2006-05-01
The Networked Intelligence, Surveillance, and Reconnaissance (NISR) project integrates robotic resources into Composeable FORCEnet to control and exploit unmanned systems over extremely long distances. The foundations are built upon FORCEnet-the U.S. Navy's process to define C4ISR for net-centric operations-and the Navy Unmanned Systems Common Control Roadmap to develop technologies and standards for interoperability, data sharing, publish-and-subscribe methodology, and software reuse. The paper defines the goals and boundaries for NISR with focus on the system architecture, including the design tradeoffs necessary for unmanned systems in a net-centric model. Special attention is given to two specific scenarios demonstrating the integration of unmanned ground and water surface vehicles into the open-architecture web-based command-and-control information-management system of Composeable FORCEnet. Planned spiral development for NISR will improve collaborative control, expand robotic sensor capabilities, address multiple domains including underwater and aerial platforms, and extend distributive communications infrastructure for battlespace optimization for unmanned systems in net-centric operations.
Importance of biometrics to addressing vulnerabilities of the U.S. infrastructure
NASA Astrophysics Data System (ADS)
Arndt, Craig M.; Hall, Nathaniel A.
2004-08-01
Human identification technologies are important threat countermeasures in minimizing select infrastructure vulnerabilities. Properly targeted countermeasures should be selected and integrated into an overall security solution based on disciplined analysis and modeling. Available data on infrastructure value, threat intelligence, and system vulnerabilities are carefully organized, analyzed and modeled. Prior to design and deployment of an effective countermeasure; the proper role and appropriateness of technology in addressing the overall set of vulnerabilities is established. Deployment of biometrics systems, as with other countermeasures, introduces potentially heightened vulnerabilities into the system. Heightened vulnerabilities may arise from both the newly introduced system complexities and an unfocused understanding of the set of vulnerabilities impacted by the new countermeasure. The countermeasure's own inherent vulnerabilities and those introduced by the system's integration with the existing system are analyzed and modeled to determine the overall vulnerability impact. The United States infrastructure is composed of government and private assets. The infrastructure is valued by their potential impact on several components: human physical safety, physical/information replacement/repair cost, potential contribution to future loss (criticality in weapons production), direct productivity output, national macro-economic output/productivity, and information integrity. These components must be considered in determining the overall impact of an infrastructure security breach. Cost/benefit analysis is then incorporated in the security technology deployment decision process. Overall security risks based on system vulnerabilities and threat intelligence determines areas of potential benefit. Biometric countermeasures are often considered when additional security at intended points of entry would minimize vulnerabilities.
Service Modeling Language Applied to Critical Infrastructure
NASA Astrophysics Data System (ADS)
Baldini, Gianmarco; Fovino, Igor Nai
The modeling of dependencies in complex infrastructure systems is still a very difficult task. Many methodologies have been proposed, but a number of challenges still remain, including the definition of the right level of abstraction, the presence of different views on the same critical infrastructure and how to adequately represent the temporal evolution of systems. We propose a modeling methodology where dependencies are described in terms of the service offered by the critical infrastructure and its components. The model provides a clear separation between services and the underlying organizational and technical elements, which may change in time. The model uses the Service Modeling Language proposed by the W3 consortium for describing critical infrastructure in terms of interdependent services nodes including constraints, behavior, information flows, relations, rules and other features. Each service node is characterized by its technological, organizational and process components. The model is then applied to a real case of an ICT system for users authentication.
Landlord project multi-year program plan, fiscal year 1999, WBS 1.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallas, M.D.
The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The mission of Landlord Project is to provide more maintenance replacement of general infrastructure facilities and systems to facilitate the Hanford Site cleanup mission. Also, once an infrastructure facility or system is no longer needed the Landlord Project transitions the facility to final closure/removal through excess, salvage or demolition. Landlord Project activities will be performed in an environmentally sound, safe, economical, prudent, and reliable manner. The Landlord Project consists of the following facilities systems: steam, water, liquid sanitary waste,more » electrical distribution, telecommunication, sanitary landfill, emergency services, general purpose offices, general purpose shops, general purpose warehouses, environmental supports facilities, roads, railroad, and the site land. The objectives for general infrastructure support are reflected in two specific areas, (1) Core Infrastructure Maintenance, and (2) Infrastructure Risk Mitigation.« less
China national space remote sensing infrastructure and its application
NASA Astrophysics Data System (ADS)
Li, Ming
2016-07-01
Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor
2012-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.
Development of a PVDF film sensor for infrastructure monitoring
NASA Astrophysics Data System (ADS)
Satpathi, Debashis; Victor, J. P.; Wang, Ming L.; Yang, H. Y.; Shih, C. C.
1999-05-01
Development of a health monitoring system is of vital importance for all civil infrastructures. However, this effort has been stymied in part by the lack of suitable low priced sensors and associated signal conditioning. Very often the requirement of a controlled stable power supply to the sensor itself poses another challenge. Piezoelectric polymer films offer an excellent alternative to the ubiquitous strain gage technology. The PVDF film generates an electrical charge when mechanically deformed. The PVDF film is typically a high impedance source with a capacitance in the nanofarad range and measurement of low frequency event can pose a challenge. The authors have utilized a charge mode amplification scheme for measuring quasi-static processes. The processed signal can be transmitted to a data acquisition system via a RF microelectronic circuit. The PVDF film as a transducer can be cut to very small size and are very affordable at around 50 cents per sensor. The whole circuitry can be integrated into one single unit. It would require very low power to function and could be embedded in the structure for a large number of remote applications. In this article the authors have reported the result of the various characterization test that have been carried out to determine the suitability of the basic film as the core of an autoadaptive sensor system to be designed for infrastructure monitoring.
The inherent weaknesses in industrial control systems devices; hacking and defending SCADA systems
NASA Astrophysics Data System (ADS)
Bianco, Louis J.
The North American Electric Reliability Corporation (NERC) is about to enforce their NERC Critical Infrastructure Protection (CIP) Version Five and Six requirements on July 1st 2016. The NERC CIP requirements are a set of cyber security standards designed to protect cyber assets essential the reliable operation of the electric grid. The new Version Five and Six requirements are a major revision to the Version Three (currently enforced) requirements. The new requirements also bring substations into scope alongside Energy Control Centers. When the Version Five requirements were originally drafted they were vague, causing in depth discussions throughout the industry. The ramifications of these requirements has made owners look at their systems in depth, questioning how much money it will take to meet these requirements. Some owners saw backing down from routable networks to non-routable as a means to save money as they would be held to less requirements within the standards. Some owners saw removing routable connections as a proper security move. The purpose of this research was to uncover the inherent weaknesses in Industrial Control Systems (ICS) devices; to show how ICS devices can be hacked and figure out potential protections for these Critical Infrastructure devices. In addition, this research also aimed to validate the decision to move from External Routable connectivity to Non-Routable connectivity, as a security measure and not as a means of savings. The results reveal in order to ultimately protect Industrial Control Systems they must be removed from the Internet and all bi-directional external routable connections must be removed. Furthermore; non-routable serial connections should be utilized, and these non-routable serial connections should be encrypted on different layers of the OSI model. The research concluded that most weaknesses in SCADA systems are due to the inherent weaknesses in ICS devices and because of these weaknesses, human intervention is the biggest threat to SCADA systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settlemyer, Bradley; Kettimuthu, R.; Boley, Josh
High-performance scientific work flows utilize supercomputers, scientific instruments, and large storage systems. Their executions require fast setup of a small number of dedicated network connections across the geographically distributed facility sites. We present Software-Defined Network (SDN) solutions consisting of site daemons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers to set up these connections. The development of these SDN solutions could be quite disruptive to the infrastructure, while requiring a close coordination among multiple sites; in addition, the large number of possible controller and device combinations to investigate could make the infrastructure unavailable to regular users for extended periods ofmore » time. In response, we develop a Virtual Science Network Environment (VSNE) using virtual machines, Mininet, and custom scripts that support the development, testing, and evaluation of SDN solutions, without the constraints and expenses of multi-site physical infrastructures; furthermore, the chosen solutions can be directly transferred to production deployments. By complementing VSNE with a physical testbed, we conduct targeted performance tests of various SDN solutions to help choose the best candidates. In addition, we propose a switching response method to assess the setup times and throughput performances of different SDN solutions, and present experimental results that show their advantages and limitations.« less
75 FR 39266 - National Protection and Programs Directorate; National Infrastructure Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... infrastructure sectors and their information systems. Pursuant to 41 CFR 102-3.150(b), this notice was published... Critical Infrastructure Resilience Goals VI. Working Group Status: Optimization of Resources for Mitigating...
Intelligent Transportation Infrastructure Deployment Analysis System
DOT National Transportation Integrated Search
1997-01-01
Much of the work on Intelligent Transportation Systems (ITS) to date has emphasized technologies, Standards/protocols, architecture, user services, core infrastructure requirements, and various other technical and institutional issues. ITS implementa...
A nonlinear disturbance-decoupled elevation axis controller for the Multiple Mirror Telescope
NASA Astrophysics Data System (ADS)
Clark, Dusty; Trebisky, Tom; Powell, Keith
2008-07-01
The Multiple Mirror Telescope (MMT), upgraded in 2000 to a monolithic 6.5m primary mirror from its original array of six 1.8m primary mirrors, was commissioned with axis controllers designed early in the upgrade process without regard to structural resonances or the possibility of the need for digital filtering of the control axis signal path. Post-commissioning performance issues led us to investigate replacement of the original control system with a more modern digital controller with full control over the system filters and gain paths. This work, from system identification through controller design iteration by simulation, and pre-deployment hardware-in-the-loop testing, was performed using latest-generation tools with Matlab® and Simulink®. Using Simulink's Real Time Workshop toolbox to automatically generate C source code for the controller from the Simulink diagram and a custom target build script, we were able to deploy the new controller into our existing software infrastructure running Wind River's VxWorks™real-time operating system. This paper describes the process of the controller design, including system identification data collection, with discussion of implementation of non-linear control modes and disturbance decoupling, which became necessary to obtain acceptable wind buffeting rejection.
Transportation systems analyses. Volume 2: Technical/programmatics
NASA Astrophysics Data System (ADS)
1993-05-01
The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This report documents the three principal transportation systems analyses (TSA) efforts during the period 7 November 92 - 6 May 93. The analyses are as follows: Mixed-Fleet (STS/ELV) strategies for SSF resupply; Transportation Systems Data Book - overview; and Operations Cost Model - overview/introduction.
Wide-area, real-time monitoring and visualization system
Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.
2013-03-19
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Wide-area, real-time monitoring and visualization system
Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA
2011-11-15
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Real-time performance monitoring and management system
Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA
2007-06-19
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Data management in Oceanography at SOCIB
NASA Astrophysics Data System (ADS)
Joaquin, Tintoré; March, David; Lora, Sebastian; Sebastian, Kristian; Frontera, Biel; Gómara, Sonia; Pau Beltran, Joan
2014-05-01
SOCIB, the Balearic Islands Coastal Ocean Observing and Forecasting System (http://www.socib.es), is a Marine Research Infrastructure, a multiplatform distributed and integrated system, a facility of facilities that extends from the nearshore to the open sea and provides free, open and quality control data. SOCIB is a facility o facilities and has three major infrastructure components: (1) a distributed multiplatform observing system, (2) a numerical forecasting system, and (3) a data management and visualization system. We present the spatial data infrastructure and applications developed at SOCIB. One of the major goals of the SOCIB Data Centre is to provide users with a system to locate and download the data of interest (near real-time and delayed mode) and to visualize and manage the information. Following SOCIB principles, data need to be (1) discoverable and accessible, (2) freely available, and (3) interoperable and standardized. In consequence, SOCIB Data Centre Facility is implementing a general data management system to guarantee international standards, quality assurance and interoperability. The combination of different sources and types of information requires appropriate methods to ingest, catalogue, display, and distribute this information. SOCIB Data Centre is responsible for directing the different stages of data management, ranging from data acquisition to its distribution and visualization through web applications. The system implemented relies on open source solutions. In other words, the data life cycle relies in the following stages: • Acquisition: The data managed by SOCIB mostly come from its own observation platforms, numerical models or information generated from the activities in the SIAS Division. • Processing: Applications developed at SOCIB to deal with all collected platform data performing data calibration, derivation, quality control and standardization. • Archival: Storage in netCDF and spatial databases. • Distribution: Data web services using Thredds, Geoserver and RESTful own services. • Catalogue: Metadata is provided through the ncISO plugin in Thredds and Geonetwork. • Visualization: web and mobile applications to present SOCIB data to different user profiles. SOCIB data services and applications have been developed to provide response to science and society needs (eg. European initiatives such as Emodnet or Copernicus), by targeting different user profiles (eg. researchers, technicians, policy and decision makers, educators, students, and society in general). For example, SOCIB has developed applications to: 1) allow researchers and technicians to access oceanographic information; 2) provide decision support for oil spills response; 3) disseminate information about the coastal state for tourists and recreational users; 4) present coastal research in educational programs; and 5) offer easy and fast access to marine information through mobile devices. In conclusion, the organizational and conceptual structure of SOCIB's Data Centre and the components developed provide an example of marine information systems within the framework of new ocean observatories and/or marine research infrastructures.
SCOSII: ESA's new generation of mission control systems: The user's perspective
NASA Technical Reports Server (NTRS)
Kaufeler, P.; Pecchioli, M.; Shurmer, I.
1994-01-01
In 1974 ESOC decided to develop a reusable Mission Control System infrastructure for ESA's missions operated under its responsibility. This triggered a long and successful product development line, which started with the Multi Mission Support System (MSSS) which entered in service in 1977 and is still being used today by the MARECS and ECS missions; it was followed in 1989 by a second generation of systems known as SCOS-I, which was/is used by the Hipparcos, ERS-1 and EURECA missions and will continue to support all future ESCO controlled missions until approximately 1995. In the meantime the increasing complexity of future missions together with the emergence of new hardware and software technologies have led ESOC to go for the development of a third generation of control systems, SCOSII, which will support their future missions up to at least the middle of the next decade. The objective of the paper is to present the characteristics of the SCOSII system from the perspective of the mission control team; i.e. it will concentrate on the improvements and advances in the performance, functionality and work efficiency of the system.
McDermott, J J; Randolph, T F; Staal, S J
1999-08-01
Livestock kept or produced in smallholder farming systems are an important component of the agricultural economy in the developing world. The role of livestock on smallholder farms varies widely, providing draught power for crop production or as a production activity for subsistence needs or market sale under systems ranging from extensive pastoralist to intensive, peri-urban feeder and dairy systems. A set of unique conditions and features characterise smallholder systems, and these need to be appreciated when assessing the strategies that have evolved for managing animal health in smallholder systems, and evaluating opportunities for improving disease control strategies. To provide a framework for discussing animal health issues and analytical methodogies, a typology of smallholder livestock and crop/livestock systems is developed. The typology considers livestock systems both in terms of the degree of intensification, as measured by market orientation and intensity of factor use, and in terms of importance within the household economy, as measured by contribution to household income. A number of characteristics are identified that distinguish smallholder systems from the commercialised systems of developed countries, including the multiple functions livestock serve, the integrated nature of livestock activities, multiple objectives of producers and lower capacity to bear risk at the household level, as well as poor infrastructure, markets, and access to information at the community level. Three representative smallholder livestock systems from Africa are described in detail, highlighting the relevant characteristics and the implications for analysing disease control strategies. Smallholder dairy systems in Kenya demonstrate the role of individual producer decision-making for animal health management in intensive, market-oriented systems, placing emphasis on farm-level risk and production management aspects of disease control. In extensive pastoralist systems where epidemic disease are still important and infrastructure is poor, disease control primarily involves managing communal natural resources, requiring a different analytical approach. Finally, in crop farming systems using draught cattle, the livestock activity is an integrated component of crop production and this must be reflected in the approach used to evaluate draught animal health management. Continued development of analytical approaches and decision-support tools for disease control strategies adapted to the special characteristics of these systems will be needed as smallholder systems continue to intensify in areas with good market access, and those in marginal areas face increasing pressures to optimally manage the natural resource base.
Reusablility in ESOC mission control systems developments - the SMART-1 mission case
NASA Astrophysics Data System (ADS)
Pignède, Max; Davies, Kevin
2002-07-01
The European Space Operations Centre (ESOC) have a long experience in spacecraft mission control systems developments and use a large number of existing elements for the build up of control systems for new missions. The integration of such elements in a new system covers not only the direct re-use of infrastructure software but also the re-use of concepts and work methodology. Applying reusability is a major asset in ESOC's strategy, especially for low cost space missions. This paper describes re-use of existing elements in the ESOC production of the SMART-1 mission control system (S1MCS) and explores the following areas: The most significant (and major cost-saving contributors) re-used elements are the Spacecraft Control and Operations System (SCOS-2000) and the Network Control and TM/TC Router System (NCTRS) infrastructure systems. These systems are designed precisely for allowing all general mission parameters to be configured easily without any change in the software (in particular the NCTRS configuration for SMART-1 was time and cost effective). Further, large parts of the ESOC ROSETTA and INTEGRAL software systems (also SCOS-2000 based) were directly re-used, such as the on-board command schedule maintenance and modelling subsystem (OBQ), the time correlator (TCO) and the external file transfer subsystem (FTS). The INTEGRAL spacecraft database maintenance system (both the editors and configuration control mechanism) and its export facilities into the S1MCS runtime system are directly reused. A special kind of re-use concerns the ENVISAT approach to both the telemetry (TM) and telecommanding (TC) context saving in the redundant server system in order to enable smooth support of operations in case of prime server failure. In this case no software or tools can be re-used because the S1MCS is based on a much more modern technology than the ENVISAT mission control system as well as on largely differing workstations architectures but the ENVISAT validated capabilities to support hot-standby system reconfiguration and machines and data resynchronisation following failures for all mission phases make them a good candidate for re-use by newer missions. Common methods and tools for requirements production, test plan production and problem tracking which are used by most of the other ESOC missions development teams in their daily work are also re-used without any changes. Finally conclusions are drawn about reusability in perspective with the latest state of the S1MCS and about benefits to other SCOS-2000 based "client" missions. Lessons learned for ESOC space missions (whether for mission control systems currently under development or up-and-coming space missions) and also related considerations for the wider space community are made, reflecting ESOC skills and expertise in mission operations and control.
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring
Gharavi, Hamid; Hu, Bin
2018-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.
Gharavi, Hamid; Hu, Bin
2017-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.
This paper outlines a life-cycle cost analysis comparing a green (rain gardens) and gray (tunnels) infrastructure combination to a gray-only option to control combined sewer overflow in the Turkey Creek Combined Sewer Overflow Basin, in Kansas City, MO. The plan area of this Bas...
NASA Technical Reports Server (NTRS)
Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.
2014-01-01
Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.
2017-03-30
experimental evaluations for hosting DDDAS-like applications in public cloud infrastructures . Finally, we report on ongoing work towards using the DDDAS...developed and their experimental evaluations for hosting DDDAS-like applications in public cloud infrastructures . Finally, we report on ongoing work towards...Dynamic resource management, model learning, simulation-based optimizations, cloud infrastructures for DDDAS applications. I. INTRODUCTION Critical cyber
2014-04-01
must be done to determine current infrastructure and capabilities so that necessary updates and changes can be addressed up front. Mobile biometric...with existing satellite communications infrastructure . 20 PSTP 03-427BIOM 4 State of Mobile Biometric Device Market 4.1 Fingerprint...is a wireless information system highlighted by Real-time wireless data collection mobile device independence, wireless infrastructure independence
Integrating Network Management for Cloud Computing Services
2015-06-01
abstraction and system design. In this dissertation, we make three major contributions. We rst propose to consolidate the tra c and infrastructure management...abstraction and system design. In this dissertation, we make three major contributions. We first propose to consolidate the traffic and infrastructure ...1.3.1 Safe Datacenter Traffic/ Infrastructure Management . . . . . . 9 1.3.2 End-host/Network Cooperative Traffic Management . . . . . . 10 1.3.3 Direct
Code of Federal Regulations, 2013 CFR
2013-01-01
... waste disposal system means any system of community infrastructure that provides collection and/or disposal of solid waste and whose services are available by design to all or a substantial portion of the... other electronic communication system means any community infrastructure that provides telecommunication...
Code of Federal Regulations, 2014 CFR
2014-01-01
... waste disposal system means any system of community infrastructure that provides collection and/or disposal of solid waste and whose services are available by design to all or a substantial portion of the... other electronic communication system means any community infrastructure that provides telecommunication...
Code of Federal Regulations, 2012 CFR
2012-01-01
... waste disposal system means any system of community infrastructure that provides collection and/or disposal of solid waste and whose services are available by design to all or a substantial portion of the... other electronic communication system means any community infrastructure that provides telecommunication...
Cyber Security and Resilient Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert S. Anderson
2009-07-01
The Department of Energy (DOE) Idaho National Laboratory (INL) has become a center of excellence for critical infrastructure protection, particularly in the field of cyber security. It is one of only a few national laboratories that have enhanced the nation’s cyber security posture by performing industrial control system (ICS) vendor assessments as well as user on-site assessments. Not only are vulnerabilities discovered, but described actions for enhancing security are suggested – both on a system-specific basis and from a general perspective of identifying common weaknesses and their corresponding corrective actions. These cyber security programs have performed over 40 assessments tomore » date which have led to more robust, secure, and resilient monitoring and control systems for the US electrical grid, oil and gas, chemical, transportation, and many other sectors. In addition to cyber assessments themselves, the INL has been engaged in outreach to the ICS community through vendor forums, technical conferences, vendor user groups, and other special engagements as requested. Training programs have been created to help educate all levels of management and worker alike with an emphasis towards real everyday cyber hacking methods and techniques including typical exploits that are used. The asset owner or end user has many products available for its use created from these programs. One outstanding product is the US Department of Homeland Security (DHS) Cyber Security Procurement Language for Control Systems document that provides insight to the user when specifying a new monitoring and control system, particularly concerning security requirements. Employing some of the top cyber researchers in the nation, the INL can leverage this talent towards many applications other than critical infrastructure. Monitoring and control systems are used throughout the world to perform simple tasks such as cooking in a microwave to complex ones such as the monitoring and control of the next generation fighter jets or nuclear material safeguards systems in complex nuclear fuel cycle facilities. It is the intent of this paper to describe the cyber security programs that are currently in place, the experiences and successes achieved in industry including outreach and training, and suggestions about how other sectors and organizations can leverage this national expertise to help their monitoring and control systems become more secure.« less
2015-11-01
provided by a stand-alone desktop or hand held computing device. This introduces into the discussion a large number of mobile , tactical command...control, communications, and computer (C4) systems across the Services. A couple of examples are mobile command posts mounted on the back of an M1152... infrastructure (DCPI). This term encompasses on-site backup generators, switchgear, uninterruptible power supplies (UPS), power distribution units
Haimes, Yacov Y
2012-11-01
Natural and human-induced disasters affect organizations in myriad ways because of the inherent interconnectedness and interdependencies among human, cyber, and physical infrastructures, but more importantly, because organizations depend on the effectiveness of people and on the leadership they provide to the organizations they serve and represent. These human-organizational-cyber-physical infrastructure entities are termed systems of systems. Given the multiple perspectives that characterize them, they cannot be modeled effectively with a single model. The focus of this article is: (i) the centrality of the states of a system in modeling; (ii) the efficacious role of shared states in modeling systems of systems, in identification, and in the meta-modeling of systems of systems; and (iii) the contributions of the above to strategic preparedness, response to, and recovery from catastrophic risk to such systems. Strategic preparedness connotes a decision-making process and its associated actions. These must be: implemented in advance of a natural or human-induced disaster, aimed at reducing consequences (e.g., recovery time, community suffering, and cost), and/or controlling their likelihood to a level considered acceptable (through the decisionmakers' implicit and explicit acceptance of various risks and tradeoffs). The inoperability input-output model (IIM), which is grounded on Leontief's input/output model, has enabled the modeling of interdependent subsystems. Two separate modeling structures are introduced. These are: phantom system models (PSM), where shared states constitute the essence of modeling coupled systems; and the IIM, where interdependencies among sectors of the economy are manifested by the Leontief matrix of technological coefficients. This article demonstrates the potential contributions of these two models to each other, and thus to more informative modeling of systems of systems schema. The contributions of shared states to this modeling and to systems identification are presented with case studies. © 2012 Society for Risk Analysis.
Kiparsky, Michael; Sedlak, David L; Thompson, Barton H; Truffer, Bernhard
2013-08-01
Interaction between institutional change and technological change poses important constraints on transitions of urban water systems to a state that can meet future needs. Research on urban water and other technology-dependent systems provides insights that are valuable to technology researchers interested in assuring that their efforts will have an impact. In the context of research on institutional change, innovation is the development, application, diffusion, and utilization of new knowledge and technology. This definition is intentionally inclusive: technological innovation will play a key role in reinvention of urban water systems, but is only part of what is necessary. Innovation usually depends on context, such that major changes to infrastructure include not only the technological inventions that drive greater efficiencies and physical transformations of water treatment and delivery systems, but also the political, cultural, social, and economic factors that hinder and enable such changes. On the basis of past and present changes in urban water systems, institutional innovation will be of similar importance to technological innovation in urban water reinvention. To solve current urban water infrastructure challenges, technology-focused researchers need to recognize the intertwined nature of technologies and institutions and the social systems that control change.
2015-03-01
unlimited 13. ABSTRACT (maximum 200 words) Physical network maps are important to critical infrastructure defense and planning. Current state-of...the-art network infrastructure geolocation relies on Domain Name System (DNS) inferences. However, not only is using the DNS relatively inaccurate for...INTENTIONALLY LEFT BLANK iv ABSTRACT Physical network maps are important to critical infrastructure defense and planning. Cur- rent state-of-the-art
A Plan to Develop a Red Tide Warning System for Seawater Desalination Process Management
NASA Astrophysics Data System (ADS)
Kim, Tae Woo; Yun, Hong Sik
2017-04-01
The holt of the seawater desalination process for fifty five days due to the eight-month long red tide in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red tide that threatens the stable operation of the seawater desalination facility. A red tide warning system can offer the seawater desalination facility manager customized services on red tide information and potential red tide inflow to the water intake. This study aimed to develop a red tide warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red tide forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red tide. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).
DOT National Transportation Integrated Search
1998-10-01
Do transportation systems, comprising infrastructure, service, and use, produce external benefits? If they do, should positive externalities be accounted for in the evaluation of infrastructure investments? This paper argues that while direct, techno...
Soares, Sérgio R A; Bernardes, Ricardo S; Netto, Oscar de M Cordeiro
2002-01-01
The understanding of sanitation infrastructure, public health, and environmental relations is a fundamental assumption for planning sanitation infrastructure in urban areas. This article thus suggests elements for developing a planning model for sanitation infrastructure. The authors performed a historical survey of environmental and public health issues related to the sector, an analysis of the conceptual frameworks involving public health and sanitation systems, and a systematization of the various effects that water supply and sanitation have on public health and the environment. Evaluation of these effects should guarantee the correct analysis of possible alternatives, deal with environmental and public health objectives (the main purpose of sanitation infrastructure), and provide the most reasonable indication of actions. The suggested systematization of the sanitation systems effects in each step of their implementation is an advance considering the association between the fundamental elements for formulating a planning model for sanitation infrastructure.
Infrastructure Management Information System User Manual
DOT National Transportation Integrated Search
1998-10-01
This publication describes and explains the user interface for the Infrastructure Management Information System (IMIS). The IMIS is designed to answer questions regarding public water supply, wastewater treatment, and census information. This publica...
Autonomous rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.
1991-01-01
In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.
Roadmap for Developing of Brokering as a Component of EarthCube
NASA Astrophysics Data System (ADS)
Pearlman, J.; Khalsa, S. S.; Browdy, S.; Duerr, R. E.; Nativi, S.; Parsons, M. A.; Pearlman, F.; Robinson, E. M.
2012-12-01
The goal of NSF's EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. Key to achieving the EarthCube vision is establishing a process that will guide the evolution of the infrastructure through community engagement and appropriate investment so that the infrastructure is embraced and utilized by the entire geosciences community. In this presentation we describe a roadmap, developed through the EarthCube Brokering Concept Award, for an evolutionary process of infrastructure and interoperability development. All geoscience communities already have, to a greater or lesser degree, elements of an information infrastructure in place. These elements include resources such as data archives, catalogs, and portals as well as vocabularies, data models, protocols, best practices and other community conventions. What is necessary now is a process for consolidating these diverse infrastructure elements into an overall infrastructure that provides easy discovery, access and utilization of resources across disciplinary boundaries. This process of consolidation will be achieved by creating "interfaces," what we call "brokers," between systems. Brokers connect disparate systems without imposing new burdens upon those systems, and enable the infrastructure to adjust to new technical developments and scientific requirements as they emerge. Robust cyberinfrastructure will arise only when social, organizational, and cultural issues are resolved in tandem with the creation of technology-based services. This is best done through use-case-driven requirements and agile, iterative development methods. It is important to start by solving real (not hypothetical) information access and use problems via small pilot projects that develop capabilities targeted to specific communities. These pilots can then grow into larger prototypes addressing intercommunity problems working towards a full-scale socio-technical infrastructure vision. Brokering, as a critical capability for connecting systems, evolves over time through more connections and increased functionality. This adaptive process allows for continual evaluation as to how well science-driven use cases are being met. Several NSF infrastructure projects are underway and beginning to shape the next generation of information sharing. There is a near term, and possibly unique, opportunity to increase the impact and interconnectivity of these projects, and further improve science research collaboration through brokering. Brokering has been demonstrated to be an essential part of a robust, adaptive infrastructure, but critical questions of governance and detailed implementation remain. Our roadmap proposes the expansion of brokering pilots into fully operational prototypes that work with the broader science and informatics communities to answer these questions, connect existing and emerging systems, and evolve the EarthCube infrastructure.
NASA Astrophysics Data System (ADS)
Wang, Z.
To strengthen rural infrastructure management, give full play to the role of benefit of infrastructure, it has important significance for promoting the development of rural economy and society. Protection-use and facility energy-use issues are outstanding during Beijing rural infrastructure management. The comprehensive and detailed analysis of the cause of the problems put forward the concrete feasible countermeasures from the government to fulfill the effective function to rural infrastructure: A clear property ownership; Implementation of special funds audit system of the rural infrastructure management; Implementation of rural infrastructure maintenance and management assessment methods and so on.
Li, Ye; Wang, Hao; Wang, Wei; Liu, Shanwen; Xiang, Yun
2016-08-17
Adaptive cruise control (ACC) has been investigated recently to explore ways to increase traffic capacity, stabilize traffic flow, and improve traffic safety. However, researchers seldom have studied the integration of ACC and roadside control methods such as the variable speed limit (VSL) to improve safety. The primary objective of this study was to develop an infrastructure-to-vehicle (I2V) integrated system that incorporated both ACC and VSL to reduce rear-end collision risks on freeways. The intelligent driver model was firstly modified to simulate ACC behavior and then the VSL strategy used in this article was introduced. Next, the I2V system was proposed to integrate the 2 advanced techniques, ACC and VSL. Four scenarios of no control, VSL only, ACC only, and the I2V system were tested in simulation experiments. Time exposed time to collision (TET) and time integrated time to collision (TIT), 2 surrogate safety measures derived from time to collision (TTC), were used to evaluate safety issues associated with rear-end collisions. The total travel times of each scenario were also compared. The simulation results indicated that both the VSL-only and ACC-only methods had a positive impact on reducing the TET and TIT values (reduced by 53.0 and 58.6% and 59.0 and 65.3%, respectively). The I2V system combined the advantages of both ACC and VSL to achieve the most safety benefits (reduced by 71.5 and 77.3%, respectively). Sensitivity analysis of the TTC threshold also showed that the I2V system obtained the largest safety benefits with all of the TTC threshold values. The impact of different market penetration rates of ACC vehicles in I2V system indicated that safety benefits increase with an increase in ACC proportions. Compared to VSL-only and ACC-only scenarios, this integrated I2V system is more effective in reducing rear-end collision risks. The findings of this study provide useful information for traffic agencies to implement novel techniques to improve safety on freeways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bri Rolston
2005-06-01
Threat characterization is a key component in evaluating the threat faced by control systems. Without a thorough understanding of the threat faced by critical infrastructure networks, adequate resources cannot be allocated or directed effectively to the defense of these systems. Traditional methods of threat analysis focus on identifying the capabilities and motivations of a specific attacker, assessing the value the adversary would place on targeted systems, and deploying defenses according to the threat posed by the potential adversary. Too many effective exploits and tools exist and are easily accessible to anyone with access to an Internet connection, minimal technical skills,more » and a significantly reduced motivational threshold to be able to narrow the field of potential adversaries effectively. Understanding how hackers evaluate new IT security research and incorporate significant new ideas into their own tools provides a means of anticipating how IT systems are most likely to be attacked in the future. This research, Attack Methodology Analysis (AMA), could supply pertinent information on how to detect and stop new types of attacks. Since the exploit methodologies and attack vectors developed in the general Information Technology (IT) arena can be converted for use against control system environments, assessing areas in which cutting edge exploit development and remediation techniques are occurring can provide significance intelligence for control system network exploitation, defense, and a means of assessing threat without identifying specific capabilities of individual opponents. Attack Methodology Analysis begins with the study of what exploit technology and attack methodologies are being developed in the Information Technology (IT) security research community within the black and white hat community. Once a solid understanding of the cutting edge security research is established, emerging trends in attack methodology can be identified and the gap between those threats and the defensive capabilities of control systems can be analyzed. The results of the gap analysis drive changes in the cyber security of critical infrastructure networks to close the gap between current exploits and existing defenses. The analysis also provides defenders with an idea of how threat technology is evolving and how defenses will need to be modified to address these emerging trends.« less
NASA Astrophysics Data System (ADS)
Taraba, M.; Fauland, H.; Turetschek, T.; Stumptner, W.; Kudielka, V.; Scheer, D.; Sattler, B.; Fritz, A.; Stingl, B.; Fuchs, H.; Gubo, B.; Hettrich, S.; Hirtl, A.; Unger, E.; Soucek, A.; Frischauf, N.; Grömer, G.
2014-12-01
The Passepartout sounding balloon transportation system for low-mass (< 1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads.
Benchmarking infrastructure for mutation text mining
2014-01-01
Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600
Benchmarking infrastructure for mutation text mining.
Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo
2014-02-25
Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.
Fiber optic sensors for infrastructure applications
DOT National Transportation Integrated Search
1998-02-01
Fiber optic sensor technology offers the possibility of implementing "nervous systems" for infrastructure elements that allow high performance, cost effective health and damage assessment systems to be achieved. This is possible, largely due to syner...
Marine Corps Budgetary Reprogramming Effectiveness
2015-03-01
infrastructure (Appropriations Act of Congress, 2008). The environmental restoration is a transfer account controlled by the DOD. Usually in the case of...at an average just over 11 percent and the Marine Corps encircle the backend of the DOD portion of reprogramming with the Marine Corps reprogramming...blue force tracker (BFT), radio systems, high mobility multipurpose wheeled vehicle (HMMWV), medium tactical vehicle replacement (MTVR), and
47 CFR 10.330 - Provider infrastructure requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...
47 CFR 10.330 - Provider infrastructure requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...
Lick Run: Green Infrastructure in Cincinnati and Beyond
By capturing and redistributing rain water or runoff in plant-soil systems such as green roofs, rain gardens or swales, green infrastructure restores natural hydrologic cycles and reduces runoff from overburdened gray infrastructure. Targeted ecosystem restoration, contaminant fi...
NASA Astrophysics Data System (ADS)
Pedamallu, Chandra Sekhar; Ozdamar, Linet; Weber, Gerhard-Wilhelm; Kropat, Erik
2010-06-01
The system dynamics approach is a holistic way of solving problems in real-time scenarios. This is a powerful methodology and computer simulation modeling technique for framing, analyzing, and discussing complex issues and problems. System dynamics modeling and simulation is often the background of a systemic thinking approach and has become a management and organizational development paradigm. This paper proposes a system dynamics approach for study the importance of infrastructure facilities on quality of primary education system in developing nations. The model is proposed to be built using the Cross Impact Analysis (CIA) method of relating entities and attributes relevant to the primary education system in any given community. We offer a survey to build the cross-impact correlation matrix and, hence, to better understand the primary education system and importance of infrastructural facilities on quality of primary education. The resulting model enables us to predict the effects of infrastructural facilities on the access of primary education by the community. This may support policy makers to take more effective actions in campaigns.
Implementation of Distributed Services for a Deep Sea Moored Instrument Network
NASA Astrophysics Data System (ADS)
Oreilly, T. C.; Headley, K. L.; Risi, M.; Davis, D.; Edgington, D. R.; Salamy, K. A.; Chaffey, M.
2004-12-01
The Monterey Ocean Observing System (MOOS) is a moored observatory network consisting of interconnected instrument nodes on the sea surface, midwater, and deep sea floor. We describe Software Infrastructure and Applications for MOOS ("SIAM"), which implement the management, control, and data acquisition infrastructure for the moored observatory. Links in the MOOS network include fiber-optic and 10-BaseT copper connections between the at-sea nodes. A Globalstar satellite transceiver or 900 MHz Freewave terrestrial line-of-sight RF modem provides the link to shore. All of these links support Internet protocols, providing TCP/IP connectivity throughout a system that extends from shore to sensor nodes at the air-sea interface, through the oceanic water column to a benthic network of sensor nodes extending across the deep sea floor. Exploiting this TCP/IP infrastructure as well as capabilities provided by MBARI's MOOS mooring controller, we use powerful Internet software technologies to implement a distributed management, control and data acquisition system for the moored observatory. The system design meets the demanding functional requirements specified for MOOS. Nodes and their instruments are represented by Java RMI "services" having well defined software interfaces. Clients anywhere on the network can interact with any node or instrument through its corresponding service. A client may be on the same node as the service, may be on another node, or may reside on shore. Clients may be human, e.g. when a scientist on shore accesses a deployed instrument in real-time through a user interface. Clients may also be software components that interact autonomously with instruments and nodes, e.g. for purposes such as system resource management or autonomous detection and response to scientifically interesting events. All electrical power to the moored network is provided by solar and wind energy, and the RF shore-to-mooring links are intermittent and relatively low-bandwidth connections. Thus power and wireless bandwidth are limited resources that constrain our choice of service technologies and wireless access strategy. We describe and evaluate system performance in light of actual deployment of observatory elements in Monterey Bay, and discuss how the system can be developed further. We also consider management and control strategies for the cable-to-shore observatory known as MARS ("Monterey Accelerated Research System"). The MARS cable will provide high power and continuous high-bandwidth connectivity between seafloor instrument nodes and shore, thus removing key limitations of the moored observatory. Moreover MARS functional requirements may differ significantly from MOOS requirements. In light of these differences, we discuss how elements of our MOOS moored observatory architecture might be adapted to MARS.
Experiments Toward the Application of Multi-Robot Systems to Disaster-Relief Scenarios
2015-09-01
responsibility is assessment, such as dislocated populations, degree of property damage, and remaining communications infrastructure . These are all...specific problems: evaluating of damage to infrastructure in the environment, e.g., traversability of roads; and localizing particular targets of interest...regarding hardware and software infrastructure are driven by the need for these systems to “survive the field” and allow for reliable evaluation of autonomy
A Drupal-Based Collaborative Framework for Science Workflows
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, P.; Gandara, A.
2010-12-01
Cyber-infrastructure is built from utilizing technical infrastructure to support organizational practices and social norms to provide support for scientific teams working together or dependent on each other to conduct scientific research. Such cyber-infrastructure enables the sharing of information and data so that scientists can leverage knowledge and expertise through automation. Scientific workflow systems have been used to build automated scientific systems used by scientists to conduct scientific research and, as a result, create artifacts in support of scientific discoveries. These complex systems are often developed by teams of scientists who are located in different places, e.g., scientists working in distinct buildings, and sometimes in different time zones, e.g., scientist working in distinct national laboratories. The sharing of these specifications is currently supported by the use of version control systems such as CVS or Subversion. Discussions about the design, improvement, and testing of these specifications, however, often happen elsewhere, e.g., through the exchange of email messages and IM chatting. Carrying on a discussion about these specifications is challenging because comments and specifications are not necessarily connected. For instance, the person reading a comment about a given workflow specification may not be able to see the workflow and even if the person can see the workflow, the person may not specifically know to which part of the workflow a given comments applies to. In this paper, we discuss the design, implementation and use of CI-Server, a Drupal-based infrastructure, to support the collaboration of both local and distributed teams of scientists using scientific workflows. CI-Server has three primary goals: to enable information sharing by providing tools that scientists can use within their scientific research to process data, publish and share artifacts; to build community by providing tools that support discussions between scientists about artifacts used or created through scientific processes; and to leverage the knowledge collected within the artifacts and scientific collaborations to support scientific discoveries.
The costs of uncoordinated infrastructure management in multi-reservoir river basins
NASA Astrophysics Data System (ADS)
Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume
2014-10-01
Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3-12% (or US12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources.
Formal Methods Applications in Air Transportation
NASA Technical Reports Server (NTRS)
Farley, Todd
2009-01-01
The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.
EuCARD2: enhanced accelerator research and development in Europe
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-10-01
Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.
Power Systems Integration Laboratory | Energy Systems Integration Facility
inverters. Key Infrastructure Grid simulator, load bank, Opal-RT, battery, inverter mounting racks, data , frequency-watt, and grid anomaly ride-through. Key Infrastructure House power, Opal-RT, PV simulator access
Fiber optic sensors for infrastructure applications : final report.
DOT National Transportation Integrated Search
1998-02-01
Fiber optic sensor technology offers the possibility of implementing "nervous systems" for infrastructure elements that allow high performance, cost effective health and damage assessment systems to be achieved. This is possible, largely due to syner...
The Earth System Grid Federation (ESGF) Project
NASA Astrophysics Data System (ADS)
Carenton-Madiec, Nicolas; Denvil, Sébastien; Greenslade, Mark
2015-04-01
The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system is a collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of model output and observational data. ESGF's primary goal is to facilitate advancements in Earth System Science. It is an interagency and international effort led by the US Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), Infrastructure for the European Network of Earth System Modelling (IS-ENES) and international laboratories such as the Max Planck Institute for Meteorology (MPI-M) german Climate Computing Centre (DKRZ), the Australian National University (ANU) National Computational Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the British Atmospheric Data Center (BADC). Its main mission is to support current CMIP5 activities and prepare for future assesments. The ESGF architecture is based on a system of autonomous and distributed nodes, which interoperate through common acceptance of federation protocols and trust agreements. Data is stored at multiple nodes around the world, and served through local data and metadata services. Nodes exchange information about their data holdings and services, trust each other for registering users and establishing access control decisions. The net result is that a user can use a web browser, connect to any node, and seamlessly find and access data throughout the federation. This type of collaborative working organization and distributed architecture context en-lighted the need of integration and testing processes definition to ensure the quality of software releases and interoperability. This presentation will introduce the ESGF project and demonstrate the range of tools and processes that have been set up to support release management activities.
A Virtual Environment for Resilient Infrastructure Modeling and Design
2015-09-01
Security CI Critical Infrastructure CID Center for Infrastructure Defense CSV Comma Separated Value DAD Defender-Attacker-Defender DHS Department...responses to disruptive events (e.g., cascading failure behavior) in a context- rich , controlled environment for exercises, education, and training...The general attacker-defender (AD) and defender-attacker-defender ( DAD ) models for CI are defined in Brown et al. (2006). These models help
DOT National Transportation Integrated Search
The purpose of this report, "Working Paper National Costs of the Metropolitan ITS infrastructure: Updated with 2004 Deployment Data," is to update the estimates of the costs remaining to deploy Intelligent Transportation Systems (ITS) infrastructure ...
DOT National Transportation Integrated Search
2009-05-01
As a major ITS initiative, the Vehicle Infrastructure Integration (VII) program is to revolutionize : transportation by creating an enabling communication infrastructure that will open up a wide range of : safety applications. The road-condition warn...
78 FR 72718 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
...; Information Technology Infrastructure Committee; Meeting AGENCY: National Aeronautics and Space Administration... Information Technology Infrastructure Committee (ITIC) of the NASA Advisory Council (NAC). DATES: Tuesday... Chief Information Officer Space Launch System Kennedy Space Center Operations and Technology Issues...
Energy Systems Integration Laboratory | Energy Systems Integration Facility
systems test hub includes a Class 1, Division 2 space for performing tests of high-pressure hydrogen Laboratory offers the following capabilities. High-Pressure Hydrogen Systems The high-pressure hydrogen infrastructure. Key Infrastructure Robotic arm; high-pressure hydrogen; natural gas supply; standalone SCADA
Resurrecting social infrastructure as a determinant of urban tuberculosis control in Delhi, India
2014-01-01
Background The key to universal coverage in tuberculosis (TB) management lies in community participation and empowerment of the population. Social infrastructure development generates social capital and addresses the crucial social determinants of TB, thereby improving program performance. Recently, there has been renewed interest in the concept of social infrastructure development for TB control in developing countries. This study aims to revive this concept and highlight the fact that documentation on ways to operationalize urban TB control is required from a holistic development perspective. Further, it explains how development of social infrastructure impacts health and development outcomes, especially with respect to TB in urban settings. Methods A wide range of published Government records pertaining to social development parameters and TB program surveillance, between 2001 and 2011 in Delhi, were studied. Social infrastructure development parameters like human development index along with other indicators reflecting patient profile and habitation in urban settings were selected as social determinants of TB. These include adult literacy rates, per capita income, net migration rates, percentage growth in slum population, and percentage of urban population living in one-room dwelling units. The impact of the Revised National Tuberculosis Control Program on TB incidence was assessed as an annual decline in new TB cases notified under the program. Univariate linear regression was employed to examine the interrelationship between social development parameters and TB program outcomes. Results The decade saw a significant growth in most of the social development parameters in the State. TB program performance showed 46% increment in lives saved among all types of TB cases per 100,000 population. The 7% reduction in new TB case notifications from the year 2001 to 2011, translates to a logarithmic decline of 5.4 new TB cases per 100,000 population. Except per capita income, literacy, and net migration rates, other social determinants showed significant correlation with decline in new TB cases per 100,000 population. Conclusions Social infrastructure development leads to social capital generation which engenders positive growth in TB program outcomes. Strategies which promote social infrastructure development should find adequate weightage in the overall policy framework for urban TB control in developing countries. PMID:24438431
Resurrecting social infrastructure as a determinant of urban tuberculosis control in Delhi, India.
Chandra, Shivani; Sharma, Nandini; Joshi, Kulanand; Aggarwal, Nishi; Kannan, Anjur Tupil
2014-01-17
The key to universal coverage in tuberculosis (TB) management lies in community participation and empowerment of the population. Social infrastructure development generates social capital and addresses the crucial social determinants of TB, thereby improving program performance. Recently, there has been renewed interest in the concept of social infrastructure development for TB control in developing countries. This study aims to revive this concept and highlight the fact that documentation on ways to operationalize urban TB control is required from a holistic development perspective. Further, it explains how development of social infrastructure impacts health and development outcomes, especially with respect to TB in urban settings. A wide range of published Government records pertaining to social development parameters and TB program surveillance, between 2001 and 2011 in Delhi, were studied. Social infrastructure development parameters like human development index along with other indicators reflecting patient profile and habitation in urban settings were selected as social determinants of TB. These include adult literacy rates, per capita income, net migration rates, percentage growth in slum population, and percentage of urban population living in one-room dwelling units. The impact of the Revised National Tuberculosis Control Program on TB incidence was assessed as an annual decline in new TB cases notified under the program. Univariate linear regression was employed to examine the interrelationship between social development parameters and TB program outcomes. The decade saw a significant growth in most of the social development parameters in the State. TB program performance showed 46% increment in lives saved among all types of TB cases per 100,000 population. The 7% reduction in new TB case notifications from the year 2001 to 2011, translates to a logarithmic decline of 5.4 new TB cases per 100,000 population. Except per capita income, literacy, and net migration rates, other social determinants showed significant correlation with decline in new TB cases per 100,000 population. Social infrastructure development leads to social capital generation which engenders positive growth in TB program outcomes. Strategies which promote social infrastructure development should find adequate weightage in the overall policy framework for urban TB control in developing countries.
Ugolini, Donatella; Neri, Monica; Bennati, Luca; Canessa, Pier Aldo; Casanova, Georgia; Lando, Cecilia; Leoncini, Giacomo; Marroni, Paola; Parodi, Barbara; Simonassi, Claudio; Bonassi, Stefano
2012-03-01
Advances in molecular epidemiology and translational research have led to the need for biospecimen collection. The Cancer of the Respiratory Tract (CREST) biorepository is concerned with pleural malignant mesothelioma (MM) and lung cancer (LC). The biorepository staff has collected demographic and epidemiological data directly from consenting subjects using a structured questionnaire, in agreement with The Public Population Project in Genomics (P(3)G). Clinical and follow-up data were collected. Sample data were also recorded. The architecture is based on a database designed with Microsoft Access. Data standardization was carried out to conform with established conventions or procedures. As from January 31, 2011, the overall number of recruited subjects was 1,857 (454 LC, 245 MM, 130 other cancers and 1,028 controls). Due to its infrastructure, CREST was able to join international projects, sharing samples and/or data with other research groups in the field. The data management system allows CREST to be involved, through a minimum data set, in the national project for the construction of the Italian network of Oncologic BioBanks (RIBBO), and in the infrastructure of a pan-European biobank network (BBMRI). The CREST biorepository is a valuable tool for translational studies on respiratory tract diseases, because of its simple and efficient infrastructure.
SCOS 2: ESA's new generation of mission control system
NASA Technical Reports Server (NTRS)
Jones, M.; Head, N. C.; Keyte, K.; Howard, P.; Lynenskjold, S.
1994-01-01
New mission-control infrastructure is currently being developed by ESOC, which will constitute the second generation of the Spacecraft Control Operations system (SCOS 2). The financial, functional and strategic requirements lying behind the new development are explained. The SCOS 2 approach is described. The technological implications of these approaches is described: in particular it is explained how this leads to the use of object oriented techniques to provide the required 'building block' approach. The paper summarizes the way in which the financial, functional and strategic requirements have been met through this combination of solutions. Finally, the paper outlines the development process to date, noting how risk reduction was achieved in the approach to new technologies and summarizes the current status future plans.
Application of Smart Infrastructure Systems approach to precision medicine.
Govindaraju, Diddahally R; Annaswamy, Anuradha M
2015-12-01
All biological variation is hierarchically organized dynamic network system of genomic components, organelles, cells, tissues, organs, individuals, families, populations and metapopulations. Individuals are axial in this hierarchy, as they represent antecedent, attendant and anticipated aspects of health, disease, evolution and medical care. Humans show individual specific genetic and clinical features such as complexity, cooperation, resilience, robustness, vulnerability, self-organization, latent and emergent behavior during their development, growth and senescence. Accurate collection, measurement, organization and analyses of individual specific data, embedded at all stratified levels of biological, demographic and cultural diversity - the big data - is necessary to make informed decisions on health, disease and longevity; which is a central theme of precision medicine initiative (PMI). This initiative also calls for the development of novel analytical approaches to handle complex multidimensional data. Here we suggest the application of Smart Infrastructure Systems (SIS) approach to accomplish some of the goals set forth by the PMI on the premise that biological systems and the SIS share many common features. The latter has been successfully employed in managing complex networks of non-linear adaptive controls, commonly encountered in smart engineering systems. We highlight their concordance and discuss the utility of the SIS approach in precision medicine programs.
Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franusich, Michael D.
SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less
Quantifying the Impact of Unavailability in Cyber-Physical Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aissa, Anis Ben; Abercrombie, Robert K; Sheldon, Federick T.
2014-01-01
The Supervisory Control and Data Acquisition (SCADA) system discussed in this work manages a distributed control network for the Tunisian Electric & Gas Utility. The network is dispersed over a large geographic area that monitors and controls the flow of electricity/gas from both remote and centralized locations. The availability of the SCADA system in this context is critical to ensuring the uninterrupted delivery of energy, including safety, security, continuity of operations and revenue. Such SCADA systems are the backbone of national critical cyber-physical infrastructures. Herein, we propose adapting the Mean Failure Cost (MFC) metric for quantifying the cost of unavailability.more » This new metric combines the classic availability formulation with MFC. The resulting metric, so-called Econometric Availability (EA), offers a computational basis to evaluate a system in terms of the gain/loss ($/hour of operation) that affects each stakeholder due to unavailability.« less
Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting
Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B
2014-01-01
Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ∼ 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes. PMID:24455163
Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting.
Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B
2014-01-01
Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ∼ 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes.
The Emergence of Dominant Design(s) in Large Scale Cyber-Infrastructure Systems
ERIC Educational Resources Information Center
Diamanti, Eirini Ilana
2012-01-01
Cyber-infrastructure systems are integrated large-scale IT systems designed with the goal of transforming scientific practice by enabling multi-disciplinary, cross-institutional collaboration. Their large scale and socio-technical complexity make design decisions for their underlying architecture practically irreversible. Drawing on three…
DOT National Transportation Integrated Search
2014-05-01
This project seeks to develop a rapidly deployable, low-cost, and wireless system for bridge : weigh-in-motion (BWIM) and nondestructive evaluation (NDE). The system is proposed to : assist in monitoring transportation infrastructure safety, for the ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Sensory System for Critical Infrastructure Defect Recognition, Visualization and... Critical Infrastructure Defect Recognition, Visualization and Failure Prediction ('Sensory System'') has...
ERIC Educational Resources Information Center
Hill, Linda L.; Crosier, Scott J.; Smith, Terrence R.; Goodchild, Michael; Iannella, Renato; Erickson, John S.; Reich, Vicky; Rosenthal, David S. H.
2001-01-01
Includes five articles. Topics include requirements for a content standard to describe computational models; architectures for digital rights management systems; access control for digital information objects; LOCKSS (Lots of Copies Keep Stuff Safe) that allows libraries to run Web caches for specific journals; and a Web site from the U.S.…
ISTIMES project: status and outcomes
NASA Astrophysics Data System (ADS)
Cuomo, V.; Proto, M.; Soldovieri, F.
2012-04-01
ISTIMES is a project approved in the Seventh Framework Programme of the European Union under the Joint Call FP7-ICT-SEC-2007-1. It has a three years duration and will be completed within June 2012. According to the aims of the proposal, ISTIMES project has designed, assessed and developed a prototypical modular and scalable ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring; the specific application field was the reliability and safety of critical transport infrastructures, even if the modularity of the ISTIMES approach has permitted to extend it successfully to other critical infrastructures as dams. The continuous and fruitful involvement of end users (as Italian Civil Protection) allowed to develop applications focused on users needs. ISTIMES couples current monitoring of infrastructures with a high situational awareness during crises management, providing updated and detailed real and near real time information about the infrastructure status to improve decision support for emergency and disasters stakeholders. The system exploits an open network architecture that can accommodate a wide range of heterogeneous sensors, static and mobile, and can be easily scaled up to allow the integration of additional sensors and interfaces with other networks. It relies on state-of-the-art electromagnetic sensors, enabling a networking of terrestrial sensors, supported by specific satellite and airborne measurements. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance at different temporal and spatial scales, providing indexes and images of the critical transport infrastructures. The project has exploited, assessed and improved many different non-invasive technologies based on electromagnetic sensing as: Optic Fiber Sensors, Synthetic Aperture; Radar (SAR) satellite platform; Hyperspectral Spectroscopy; Infrared Thermography; Ground Penetrating Radar; low-frequency Geophysical Techniques; ground based SAR and optical cameras for the assessment of the dynamical behaviour of the infrastructure. A great effort has been devoted to "transfer" these novel and state-of art technologies from the laboratory experience to actual on field applications by adapting/improving them and developing prototypes for the specific application domain of the monitoring of transport and critical infrastructures. Sensor synergy, data cross correlation and novel concepts of information fusion have permitted to carry out a multi-method, multi-resolution and multi-scale electromagnetic detection and monitoring of the infrastructure, including surface and subsurface aspects. The project has allowed to develop an ICT architecture based on web sensors and serviceoriented- technologies that comply with specific end-user requirements, including interoperability, economical convenience, exportability, efficiency and reliability. The efforts have focussed mainly to the creation of web based interfaces able to control "not standard" sensors, as the ones proposed in the project, and to the standardization necessary to have a full interoperability and modularity of the monitoring system. In addition, the system is able to provide a more easily accessible and transparent scheme for use by different end-users and to integrate the monitoring results and images with other kind of information such as GIS layer and historical datasets relating to the site. The ISTIMES system has been evaluated at two test sites and two test beds. At the two test sites of Montagnole rock-fall station (Chambery, France) and Hydrogeosite Laboratory (Potenza, Italy), the attention was posed to a thorough analysis of the performances of the in situ sensing techniques, by investigating, with good outcomes, also the possibility to correlate and have a synergy from the different sensors. In particular, it is worth noting that the experiment realized at Montagnole is unique, at least at European level, regarding both the high mechanical impact on a real scale elements of civil engineering structure, and also for the exploitation of all sensor techniques set up in a cooperative way. The effectiveness of the overall monitoring system has been assessed by the experiments at real test beds as Sihlhochstrasse bridge, a 1.5 km bridge representing one of the main entrance road to Zurich city (Switzerland), Varco Izzo railway tunnel and Musmeci motorway bridge located in the area of Potenza city in Basilicata region (Italy) affected by a high seismic risk. In particular, for the Musmeci bridge, the main entrance road to Potenza city and a masterpiece of architectural/civil engineering realized by Sergio Musmeci in 60' years, all the sensing technologies involved in the project have been exploited to perform a monitoring/diagnostics; the Musmeci bridge results have been correlated and tested also by the comparison with the sensors mostly used by civil engineers for this kind of infrastructures (Proto et al., 2010). Acknowledgment The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663.
Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhao, Changhong; Zamzam, Admed S.
This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successivemore » convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.« less
The SKA1 LOW telescope: system architecture and design performance
NASA Astrophysics Data System (ADS)
Waterson, Mark F.; Labate, Maria Grazia; Schnetler, Hermine; Wagg, Jeff; Turner, Wallace; Dewdney, Peter
2016-07-01
The SKA1-LOW radio telescope will be a low-frequency (50-350 MHz) aperture array located in Western Australia. Its scientific objectives will prioritize studies of the Epoch of Reionization and pulsar physics. Development of the telescope has been allocated to consortia responsible for the aperture array front end, timing distribution, signal and data transport, correlation and beamforming signal processors, infrastructure, monitor and control systems, and science data processing. This paper will describe the system architectural design and key performance parameters of the telescope and summarize the high-level sub-system designs of the consortia.
Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT
NASA Astrophysics Data System (ADS)
Ou, Jinping
2005-06-01
The intelligent health monitoring systems more and more become a technique for ensuring the health and safety of civil infrastructures and also an important approach for research of the damage accumulation or even disaster evolving characteristics of civil infrastructures, and attracts prodigious research interests and active development interests of scientists and engineers since a great number of civil infrastructures are planning and building each year in mainland China. In this paper, some recent advances on research, development nad implementation of intelligent health monitoring systems for civil infrastructuresin mainland China, especially in Harbin Institute of Technology (HIT), P.R.China. The main contents include smart sensors such as optical fiber Bragg grating (OFBG) and polivinyllidene fluoride (PVDF) sensors, fatigue life gauges, self-sensing mortar and carbon fiber reinforced polymer (CFRP), wireless sensor networks and their implementation in practical infrastructures such as offshore platform structures, hydraulic engineering structures, large span bridges and large space structures. Finally, the relative research projects supported by the national foundation agencies of China are briefly introduced.
Green Infrastructure Research and Demonstration at the Edison Environmental Center
This presentation will review the need for storm water control practices and will present a portion of the green infrastructure research and demonstration being performed at the Edison Environmental Center.