Sample records for infrastructure research program

  1. Role of EPA in Asset Management Research – The Aging Water Infrastructure Research Program

    EPA Science Inventory

    This slide presentation provides an overview of the EPA Office of Research and Development’s Aging Water infrastructure Research Program (AWIRP). The research program origins, goals, products, and plans are described. The research program focuses on four areas: condition asses...

  2. AGING WATER INFRASTRUCTURE RESEARCH PROGRAM: ADDRESSING THE CHALLENGE THROUGH INNOVATION

    EPA Science Inventory

    A driving force behind the Sustainable Water Infrastructure (SI) initiative and the Aging Water Infrastructure (AWI) research program is the Clean Water and Drinking Water Infrastructure Gap Analysis. In this report, EPA estimated that if operation, maintenance, and capital inves...

  3. Aging Water Infrastructure Research Program Update: Innovation & Research for the 21st Century

    EPA Science Inventory

    This slide presentation summarizes key elements of the EOA, Office of Research and Development’s (ORD) Aging Water Infrastructure (AWI)) Research program. An overview of the national problems posed by aging water infrastructure is followed by a brief description of EPA’s overall...

  4. Overview of U.S. EPA Aging Water Infrastructure Research Program - Interfacing with the Water Industry on Technology Assessment

    EPA Science Inventory

    This slide presentation summarizes key elements of the EPA Office of Research and Development’s (ORD) Aging Water Infrastructure (AWI) Research program. An overview of the national problems posed by aging water infrastructure is followed by a brief description of EPA’s overall r...

  5. Rehabilitation, Replacement and Redesign of the Nation's Water and Wastewater Infrastructure as a Valuable Adaptation Opportunity

    EPA Science Inventory

    In support of the Agency's Sustainable Water Infrastructure Initiative, EPA's Office of Research and Develpment initiated the Aging Water Infrastructure Research Program in 2007. The program, with its core focus on the support of strategic asset management, is designed to facili...

  6. US EPA/ORD Condition Assessment Research for Drinking Water Conveyance Infrastructure

    EPA Science Inventory

    This presentation describes research on condition assessment for drinking water transmission and distribution systems that EPA is conducting under the U.S. Environmental Protection Agency’s Aging Water Infrastructure (AWI) Research Program. This research program will help U.S. ...

  7. Leading by Success: Impact of a Clinical & Translational Research Infrastructure Program to Address Health Inequities

    PubMed Central

    Shiramizu, Bruce; Shambaugh, Vicki; Petrovich, Helen; Seto, Todd B.; Ho, Tammy; Mokuau, Noreen; Hedges, Jerris R.

    2016-01-01

    Building research infrastructure capacity to address clinical and translational gaps has been a focus of funding agencies and foundations. Clinical and Translational Sciences Awards, Research Centers in Minority Institutions Infrastructure for Clinical and Translational Research (RCTR) and the Institutional Development Award Infrastructure for Clinical and Translational Research funded by United States (US) government to fund clinical translational research programs have existed for over a decade to address racial and ethnic health disparities across the US. While the impact on the nation’s health can’t be made in a short period, assessment of a program’s impact could be a litmus test to gauge its effectiveness at the institution and communities. We report the success of a Pilot Project Program in the University of Hawaii RCTR Award in advancing careers of emerging investigators and community collaborators. Our findings demonstrated that the investment has a far-reaching impact on engagement with community-based research collaborators, career advancement of health disparities investigators, and favorable impacts on health policy. PMID:27797013

  8. National Study of Nursing Research Characteristics at Magnet®-Designated Hospitals.

    PubMed

    Pintz, Christine; Zhou, Qiuping Pearl; McLaughlin, Maureen Kirkpatrick; Kelly, Katherine Patterson; Guzzetta, Cathie E

    2018-05-01

    To describe the research infrastructure, culture, and characteristics of building a nursing research program in Magnet®-designated hospitals. Magnet recognition requires hospitals to conduct research and implement evidence-based practice (EBP). Yet, the essential characteristics of productive nursing research programs are not well described. We surveyed 181 nursing research leaders at Magnet-designated hospitals to assess the characteristics in their hospitals associated with research infrastructure, research culture, and building a nursing research program. Magnet hospitals provide most of the needed research infrastructure and have a culture that support nursing research. Higher scores for the 3 categories were found when hospitals had a nursing research director, a research department, and more than 10 nurse-led research studies in the past 5 years. While some respondents indicated their nurse executives and leaders support the enculturation of EBP and research, there continue to be barriers to full implementation of these characteristics in practice.

  9. Aging Water Infrastructure Research Program Innovation & Research for the 21st Century

    EPA Science Inventory

    The U.S. infrastructure is critical for providing essential services: protect public health and the environment and support and sustain our economy. Significant investment in water infrastructure: over 16,000 WWTPs serving 190 million people; about 54,000 community water syste...

  10. Examination of State-of-the-Art Rehabilitation Technologies for the Nation's Water Infrastructure - slides

    EPA Science Inventory

    The research overview of the US EPA Aging Water Infrastructure Research Program includes: Research areas: condition assessment; rehabilitation; advanced design/treatment concepts and Research project focused on innovative rehabilitation technologies to reduce costs and increase...

  11. Clinical Trial Assessment of Infrastructure Matrix Tool to Improve the Quality of Research Conduct in the Community.

    PubMed

    Dimond, Eileen P; Zon, Robin T; Weiner, Bryan J; St Germain, Diane; Denicoff, Andrea M; Dempsey, Kandie; Carrigan, Angela C; Teal, Randall W; Good, Marjorie J; McCaskill-Stevens, Worta; Grubbs, Stephen S; Dimond, Eileen P; Zon, Robin T; Weiner, Bryan J; St Germain, Diane; Denicoff, Andrea M; Dempsey, Kandie; Carrigan, Angela C; Teal, Randall W; Good, Marjorie J; McCaskill-Stevens, Worta; Grubbs, Stephen S

    2016-01-01

    Several publications have described minimum standards and exemplary attributes for clinical trial sites to improve research quality. The National Cancer Institute (NCI) Community Cancer Centers Program (NCCCP) developed the clinical trial Best Practice Matrix tool to facilitate research program improvements through annual self-assessments and benchmarking. The tool identified nine attributes, each with three progressive levels, to score clinical trial infrastructural elements from less to more exemplary. The NCCCP sites correlated tool use with research program improvements, and the NCI pursued a formative evaluation to refine the interpretability and measurability of the tool. From 2011 to 2013, 21 NCCCP sites self-assessed their programs with the tool annually. During 2013 to 2014, NCI collaborators conducted a five-step formative evaluation of the matrix tool. Sites reported significant increases in level-three scores across the original nine attributes combined (P<.001). Two specific attributes exhibited significant change: clinical trial portfolio diversity and management (P=.0228) and clinical trial communication (P=.0281). The formative evaluation led to revisions, including renaming the Best Practice Matrix as the Clinical Trial Assessment of Infrastructure Matrix (CT AIM), expanding infrastructural attributes from nine to 11, clarifying metrics, and developing a new scoring tool. Broad community input, cognitive interviews, and pilot testing improved the usability and functionality of the tool. Research programs are encouraged to use the CT AIM to assess and improve site infrastructure. Experience within the NCCCP suggests that the CT AIM is useful for improving quality, benchmarking research performance, reporting progress, and communicating program needs with institutional leaders. The tool model may also be useful in disciplines beyond oncology.

  12. Transportation security research : coordination needed in selecting and implementing infrastructure vulnerability assessments

    DOT National Transportation Integrated Search

    2003-05-01

    The Department of Transportation's (DOT) Research and Special Programs Administration (RSPA) began research in to assess the vulnerabilities of the nation's transportation infrastructure and develop needed improvements in security in June 2001. The g...

  13. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  14. GREEN INFRASTRUCTURE RESEARCH PROGRAM: Rain Gardens

    EPA Science Inventory

    the National Risk Management Research Laboratory (NRMRL) rain garden evaluation is part of a larger collection of long-term research that evaluates a variety of stormwater management practices. The U.S. EPA recognizes the potential of rain gardens as a green infrastructure manag...

  15. White Paper on Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The Office of Research and Development’s National Risk Management Research Laboratory has published this report in support of the Aging Water Infrastructure (AWI) Research Program, which directly supports the Office of Water’s Sustainable Water Infrastructure Initiative. Scienti...

  16. INNOVATION AND RESEARCH FOR WATER INFRASTRUCTURE FOR THE 21ST CENTURY RESEARCH PLAN

    EPA Science Inventory

    This plan has been developed to provide the Office of Research and Development (ORD) with a guide for implementing a research program that addresses high priority needs of the Nation relating to its drinking water and wastewater infrastructure. By identifying these critical need...

  17. Key Management Infrastructure Increment 2 (KMI Inc 2)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Key Management Infrastructure Increment 2 (KMI Inc 2) Defense Acquisition Management...PB - President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD - To Be Determined TY - Then...Assigned: April 6, 2015 Program Information Program Name Key Management Infrastructure Increment 2 (KMI Inc 2) DoD Component DoD The acquiring DoD

  18. Implementation Practice and Implementation Research: A Report from the Field

    ERIC Educational Resources Information Center

    Brekke, John S.; Phillips, Elizabeth; Pancake, Laura; O, Anne; Lewis, Jenebah; Duke, Jessica

    2009-01-01

    The Interventions and Practice Research Infrastructure Program (IPRISP) funding mechanism was introduced by the National Institute of Mental Health (NIMH) to bridge the gap between the worlds of services research and the usual care practice in the community. The goal was to build infrastructure that would provide a platform for research to…

  19. Network and computing infrastructure for scientific applications in Georgia

    NASA Astrophysics Data System (ADS)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  20. 77 FR 20872 - Enabling a Secure Environment for Vehicle-to-Infrastructure Research Workshop; Notice of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... DEPARTMENT OF TRANSPORTATION Enabling a Secure Environment for Vehicle-to-Infrastructure Research Workshop; Notice of Public Meeting AGENCY: ITS Joint Program Office, Research and Innovative Technology Administration, U.S. Department of Transportation. ACTION: Notice. The U.S. Department of Transportation (USDOT...

  1. Identifying Audiences of E-Infrastructures - Tools for Measuring Impact

    PubMed Central

    van den Besselaar, Peter

    2012-01-01

    Research evaluation should take into account the intended scholarly and non-scholarly audiences of the research output. This holds too for research infrastructures, which often aim at serving a large variety of audiences. With research and research infrastructures moving to the web, new possibilities are emerging for evaluation metrics. This paper proposes a feasible indicator for measuring the scope of audiences who use web-based e-infrastructures, as well as the frequency of use. In order to apply this indicator, a method is needed for classifying visitors to e-infrastructures into relevant user categories. The paper proposes such a method, based on an inductive logic program and a Bayesian classifier. The method is tested, showing that the visitors are efficiently classified with 90% accuracy into the selected categories. Consequently, the method can be used to evaluate the use of the e-infrastructure within and outside academia. PMID:23239995

  2. Field Evaluation of Innovative Wastewater Collection System Condition Assessment Technologies

    EPA Science Inventory

    As part of an effort to address aging infrastructure needs, the U.S. Environmental Protection Agency (USEPA) initiated research under the Aging Water Infrastructure program, part of the USEPA Office of Water’s Sustainable Infrastructure Initiative. This presentation discusses fi...

  3. 76 FR 34286 - ITS Joint Program Office; Webinar on Connected Vehicle Infrastructure Deployment Analysis Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Deployment Analysis Report Review; Notice of Public Meeting AGENCY: Research and Innovative Technology... discuss the Connected Vehicle Infrastructure Deployment Analysis Report. The webinar will provide an... and Transportation Officials (AASHTO) Connected Vehicle Infrastructure Deployment Analysis Report...

  4. Research Infrastructure Challenges for Graduate Programs in STEM Disciplines at Minority Institutions

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Lal, Ravi; Penn, Benjamin G.

    2007-01-01

    It is much more challenging to perform experimental research functions at many minority institutions, because of lack of adequate research infrastructure. This is especially true if one wishes to initiate and implement masters and doctoral degree program in physics. In the present paper, an attempt is made to discuss the various hurdles encountered by the authors in the establishment of Master's and Doctoral degree programs in physics at one of the HBCUs (Historically Black Colleges and Universities). The department got no special or necessary treatment and faculty members are asked to teach as much course work as any other undergraduate department on the campus. It was very hard to convince university administration that giving less teaching load to research producing department faculty, shall culminate in abundant funding for the future years. This scenario created an extra heavy pressure on the faculty to continue the program. Some of the challenges included the resistance of some faculty and administrators to change, lack of sufficient release time for research producing faculty, and potential variation in funding or support with changes in the state education budget proration or members of the administration. In spite of the indirect cost recovery, very little infrastructure facilities was provided and the federal funding agencies did not want to interfere in the administration of the university. Various issues of recruiting and mentoring minority students, retention in the STEM disciplines as well as research infrastructure challenges at an HBCU university are presented.

  5. 77 FR 43416 - ITS Industry Forum on Connected Vehicles: Moving From Research Towards Implementation; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ..., Vehicle-to-Infrastructure, and Testing programs; along with a special session discussing lessons learned... evolving in terms of a robust Vehicle-to- Infrastructure environment, and identify what we have learned... wireless communication between vehicles, infrastructure, and personal communications devices to [[Page...

  6. Facilities and Infrastructure FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  7. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  8. Getting from A to IRB: developing an institutional review board at a historically black university.

    PubMed

    Howard, Daniel L; Boyd, Carlton L; Nelson, Daniel K; Godley, Paul

    2010-03-01

    Shaw University, the oldest historically black college or university in the southern USA, recently partnered with the University of North Carolina at Chapel Hill, a major research institution in North Carolina, to further develop Shaw's research infrastructure. One aim of the partnership involved establishing a human research ethics committee and an accompanying administrative structure and research ethics education program. This paper describes the process of developing an entire human research protection program de novo through collaboration with and mentoring by the members of the human research protection program at a nearby major research institution. This paper provides a detailed description of the aims, procedures, accomplishments, and challenges involved in such a project, which may serve as a useful model for other primarily teaching institutions wishing to develop research infrastructure and ethical capacity.

  9. Getting From A to IRB: Developing an Institutional Review Board at a Historically Black University

    PubMed Central

    Howard, Daniel L.; Boyd, Carlton L.; Nelson, Daniel K.; Godley, Paul

    2011-01-01

    Shaw University, the oldest historically black college or university in the southern USA, recently partnered with the University of North Carolina at Chapel Hill, a major research institution in North Carolina, to further develop Shaw’s research infrastructure. One aim of the partnership involved establishing a human research ethics committee and an accompanying administrative structure and research ethics education program. This paper describes the process of developing an entire human research protection program de novo through collaboration with and mentoring by the members of the human research protection program at a nearby major research institution. This paper provides a detailed description of the aims, procedures, accomplishments, and challenges involved in such a project, which may serve as a useful model for other primarily teaching institutions wishing to develop research infrastructure and ethical capacity. PMID:20235865

  10. 76 FR 19793 - Advisory Committee for Polar Programs; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... presentations and discussion on opportunities and challenges for polar research, education and infrastructure; discussion of OPP Strategic Vision development; transformative research, ad hoc proposals & program... advise NSF on the impact of its policies, programs, and [[Page 19794

  11. Improving Defense Health Program Medical Research Processes

    DTIC Science & Technology

    2017-08-08

    needed for DHP medical research , such as the Army’s Clinical and Translational Research Program Office, 38 the Navy’s Research Methods Training Program... research stated, “key infrastructure for a learning health system will encompass three core elements: data networks, methods , and workforce.” 221 A 2012... Research Methods Training Program, 132 which will be further discussed in Appendix D.2. AIR FORCE Air Force Instruction 40-402, Protection of

  12. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.

  13. Review of EuCARD project on accelerator infrastructure in Europe

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-01-01

    The aim of big infrastructural and research programs (like pan-European Framework Programs) and individual projects realized inside these programs in Europe is to structure the European Research Area - ERA in this way as to be competitive with the leaders of the world. One of this projects in EuCARD (European Coordination of Accelerator Research and Development) with the aim to structure and modernize accelerator, (including accelerators for big free electron laser machines) research infrastructure. This article presents the periodic development of EuCARD which took place between the annual meeting, April 2012 in Warsaw and SC meeting in Uppsala, December 2012. The background of all these efforts are achievements of the LHC machine and associated detectors in the race for new physics. The LHC machine works in the regime of p-p, Pb-p, Pb-Pb (protons and lead ions). Recently, a discovery by the LHC of Higgs like boson, has started vivid debates on the further potential of this machine and the future. The periodic EuCARD conference, workshop and meetings concern building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The aim of the discussion is not only summarize the current status but make plans and prepare practically to building new infrastructures. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. Accelerator technology is intensely developed in all developed nations and regions of the world. The EuCARD project contains a lot of subjects related directly and indirectly to photon physics and photonics, as well as optoelectronics, electronics and integration of these with large research infrastructure.

  14. Transit aspects of the connected vehicle research program.

    DOT National Transportation Integrated Search

    2014-01-01

    The U.S. Department of Transportations (USDOTs) Connected Vehicle Research Program is examining how wireless technology can enable vehicles to communicate with each other and with the infrastructure around them. This connected vehicle technolog...

  15. The GEOSS solution for enabling data interoperability and integrative research.

    PubMed

    Nativi, Stefano; Mazzetti, Paolo; Craglia, Max; Pirrone, Nicola

    2014-03-01

    Global sustainability research requires an integrative research effort underpinned by digital infrastructures (systems) able to harness data and heterogeneous information across disciplines. Digital data and information sharing across systems and applications is achieved by implementing interoperability: a property of a product or system to work with other products or systems, present or future. There are at least three main interoperability challenges a digital infrastructure must address: technological, semantic, and organizational. In recent years, important international programs and initiatives are focusing on such an ambitious objective. This manuscript presents and combines the studies and the experiences carried out by three relevant projects, focusing on the heavy metal domain: Global Mercury Observation System, Global Earth Observation System of Systems (GEOSS), and INSPIRE. This research work recognized a valuable interoperability service bus (i.e., a set of standards models, interfaces, and good practices) proposed to characterize the integrative research cyber-infrastructure of the heavy metal research community. In the paper, the GEOSS common infrastructure is discussed implementing a multidisciplinary and participatory research infrastructure, introducing a possible roadmap for the heavy metal pollution research community to join GEOSS as a new Group on Earth Observation community of practice and develop a research infrastructure for carrying out integrative research in its specific domain.

  16. 76 FR 57748 - National Cancer Institute Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Cancer Institute Special Emphasis Panel; Core Infrastructure and Methodological Research for Cancer... Review Officer, Research Programs Review Branch, Division of Extramural Activities, National Cancer... Panel; Community Clinical Oncology Program Research Bases (U10). Date: November 9, 2011. Time: 8:30 a.m...

  17. Managing the Service Supply Chain in Department of Defense: Implications for the Program Management Infrastructure

    DTIC Science & Technology

    2007-04-30

    School 4th Annual Acquisition Research Symposium of the Naval Postgraduate School: Approved for public release, distribution unlimited. Prepared ...where he teaches graduate acquisition and contract management courses . Prior to his appointment at the Naval Postgraduate School, he served for ... for the Program Management Infrastructure Published: 30 April 2007 by Rene G. Rendon, Lecturer, and Uday Apte, Professor, Naval Postgraduate

  18. Beyond Homes and Centers: The Workforce in Three California Early Childhood Infrastructure Organizations. Research Report

    ERIC Educational Resources Information Center

    Whitebook, Marcy; Sakai, Laura; Kipnis, Fran

    2010-01-01

    In 2009, the authors surveyed a population of 1,588 persons who work in three types of early childhood infrastructure organizations in California--child care resource and referral programs, local First 5 commissions and as child care coordinators. All of these infrastructure organizations receive public dollars and at least one of each type is…

  19. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  20. Building Cyberinfrastructures for Earth and Space Sciences so that they will come: lessons learnt from Australia

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Woodcock, R.

    2013-12-01

    One of the greatest drivers for change in the way scientific research is undertaken in Australia was the development of the Australian eResearch Infrastructure which was coordinated by the then Australian Government Department of Innovation, Industry, Science and Research. There were two main tranches of funding: the 2007-2013 National Collaborative Research Infrastructure Strategy (NCRIS) and the 2009 Education and Investment Framework (EIF) Super Science Initiative. Investments were in two areas: the Australian e-Research Infrastructure and domain specific capabilities: combined investment in both is 1,452M with at least 456M being invested in eResearch infrastructure. NCRIS was specifically designed as a community-guided process to provide researchers, both academic and government, with major research facilities, supporting infrastructures and networks necessary for world-class research. Extensive community engagement was sought to inform decisions on where Australia could best make strategic infrastructure investments to further develop its research capacity and improve research outcomes over the next 5 to 10years. The current (2007-2014) Australian e-Research Infrastructure has 2 components: 1. The National eResearch physical infrastructure which includes two petascale HPC facilities (one in Canberra and one in Perth), a 10 Gbps national network (National Research Network), a national data storage infrastructure comprising 8 multi petabyte data stores and shared access methods (Australian Access Federation). 2. A second component is focused on research integration infrastructures and includes the Australian National Data Service, which is concerned with better management, description and access to distributed research data in Australia and the National eResearch Collaboration Tools and Resources (NeCTAR) project. NeCTAR is centred on developing problem oriented digital laboratories which provide better and coordinated access to research tools, data environments and workflows. The eResearch Infrastructure Stack is designed to support 12 individual domain-specific capabilities. Four are relevant to the Earth and Space Sciences: (1) AuScope (a national Earth Science Infrastructure Program), (2) the Integrated Marine Observing System (IMOS), (3) the Terrestrial Ecosystems Research Network (TERN) and (4) the Australian Urban Research Infrastructure Network (AURIN). The two main research integration infrastructures, ANDS and NeCTAR, are seen as pivotal to the success of the Australian eResearch Infrastructure. Without them, there was a risk that that the investments in new computers and data storage would provide physical infrastructure, but few would come to use it as the skills barriers to entry were too high. ANDS focused on transforming Australia's research data environment. Its flagship is Research Data Australia, an Internet-based discovery service designed to provide rich connections between data, projects, researchers and institutions, and promote visibility of Australian research data collections in search engines. NeCTAR focused on building eResearch infrastructure in four areas: virtual laboratories, tools, a federated research cloud and a hosting service. Combined, ANDS and NeCTAR are ensuring that people ARE coming and ARE using the physical infrastructures that were built.

  1. Molecular Survey of Microbial Communities Involved in Concrete Corrosion in Wastewater Collection Systems

    EPA Science Inventory

    This information is relevant to the development of condition assessment tools associated with the aging water infrastructure research program Corrosion of wastewater collection infrastructure, especially concrete sewers, is a significant cause of deterioration and premature failu...

  2. Alternative Fuels Data Center

    Science.gov Websites

    jobs, economic growth, tax relief, improvements in education and healthcare, infrastructure of alternative fuel and advanced vehicle technologies through grant programs, tax credits, research Section 1123 amends the alternative fuel infrastructure tax credit for qualified equipment placed into

  3. Integration of bicycling and walking facilities into the infrastructure of urban communities : [research brief].

    DOT National Transportation Integrated Search

    2012-02-01

    Many manuals, handbooks and web resources exist that provide guidance on planning for and designing bicycle and pedestrian facilities. However few of these resources emphasize program and infrastructure characteristics most desired by current (and po...

  4. The research infrastructure of Chinese foundations, a database for Chinese civil society studies

    PubMed Central

    Ma, Ji; Wang, Qun; Dong, Chao; Li, Huafang

    2017-01-01

    This paper provides technical details and user guidance on the Research Infrastructure of Chinese Foundations (RICF), a database of Chinese foundations, civil society, and social development in general. The structure of the RICF is deliberately designed and normalized according to the Three Normal Forms. The database schema consists of three major themes: foundations’ basic organizational profile (i.e., basic profile, board member, supervisor, staff, and related party tables), program information (i.e., program information, major program, program relationship, and major recipient tables), and financial information (i.e., financial position, financial activities, cash flow, activity overview, and large donation tables). The RICF’s data quality can be measured by four criteria: data source reputation and credibility, completeness, accuracy, and timeliness. Data records are properly versioned, allowing verification and replication for research purposes. PMID:28742065

  5. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.

    2009-12-01

    The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision “to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders.” Six major strategies are proposed: 1) Develop a capability to model climate change and its effects at a regional and sub-regional scales to evaluate different future scenarios and strategies (Climate Modeling Component) 2) Develop data collection, modeling, and visualization infrastructure to determine and analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Develop data collection, modeling, and visualization infrastructure to better quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Develop data collection and modeling infrastructure to assess effects on human systems, responses to institutional and societal aspects, and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Develop educational infrastructure to train students at all levels and provide public outreach in climate change issues (Education Component). As part of the new infrastructure, two observational transects will be established across Great Basin Ranges, one in southern Nevada in the Spring Mountains, and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?

  6. Satellite Communications for Aeronautical Applications: Recent research and Development Results

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2001-01-01

    Communications systems have always been a critical element in aviation. Until recently, nearly all communications between the ground and aircraft have been based on analog voice technology. But the future of global aviation requires a more sophisticated "information infrastructure" which not only provides more and better communications, but integrates the key information functions (communications, navigation, and surveillance) into a modern, network-based infrastructure. Satellite communications will play an increasing role in providing information infrastructure solutions for aviation. Developing and adapting satellite communications technologies for aviation use is now receiving increased attention as the urgency to develop information infrastructure solutions grows. The NASA Glenn Research Center is actively involved in research and development activities for aeronautical satellite communications, with a key emphasis on air traffic management communications needs. This paper describes the recent results and status of NASA Glenn's research program.

  7. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean energy deployment, and secure and modernize critical infrastructure. INL’s research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL’s leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE’s Strategic Partnership Program.« less

  8. Advancing research opportunities and promoting pathways in graduate education: a systemic approach to BUILD training at California State University, Long Beach (CSULB).

    PubMed

    Urizar, Guido G; Henriques, Laura; Chun, Chi-Ah; Buonora, Paul; Vu, Kim-Phuong L; Galvez, Gino; Kingsford, Laura

    2017-01-01

    First-generation college graduates, racial and ethnic minorities, people with disabilities, and those from disadvantaged backgrounds are gravely underrepresented in the health research workforce representing behavioral health sciences and biomedical sciences and engineering (BHS/BSE). Furthermore, relative to their peers, very few students from these underrepresented groups (URGs) earn scientific bachelor's degrees with even fewer earning doctorate degrees. Therefore, programs that engage and retain URGs in health-related research careers early on in their career path are imperative to promote the diversity of well-trained research scientists who have the ability to address the nation's complex health challenges in an interdisciplinary way. The purpose of this paper is to describe the challenges, lessons learned, and sustainability of implementing a large-scale, multidisciplinary research infrastructure at California State University, Long Beach (CSULB) - a minority-serving institution - through federal funding received by the National Institutes of Health (NIH) Building Infrastructure Leading to Diversity (BUILD) Initiative. The CSULB BUILD initiative consists of developing a research infrastructure designed to engage and retain URGs on the research career path by providing them with the research training and skills needed to make them highly competitive for doctoral programs and entry into the research workforce. This initiative unites many research disciplines using basic, applied, and translational approaches to offer insights and develop technologies addressing prominent community and national health issues from a multidisciplinary perspective. Additionally, this initiative brings together local (e.g., high school, community college, doctoral research institutions) and national (e.g., National Research Mentoring Network) collaborative partners to alter how we identify, develop, and implement resources to enhance student and faculty research. Finally, this initiative establishes a student research training program that engages URGs earlier in their academic development, is larger and multidisciplinary in scope, and is responsive to the life contexts and promotes the cultural capital that URGs bring to their career path. Although there have been many challenges to planning for and developing CSULB BUILD's large-scale, multidisciplinary research infrastructure, there have been many lessons learned in the process that could aid other campuses in the development and sustainability of similar research programs.

  9. Development of the AuScope Australian Earth Observing System

    NASA Astrophysics Data System (ADS)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four-dimensional Earth Model for the Australian Continent and its immediate environs.

  10. Enhancing the STEM Ecosystem through Teacher-Researcher Partnerships

    ERIC Educational Resources Information Center

    Tapprich, William; Grandgenett, Neal; Leas, Heather; Rodie, Steve; Shuster, Robert; Schaben, Chris; Cutucache, Christine

    2016-01-01

    STEM faculty at the University of Nebraska at Omaha (UNO) have partnered with teachers and administrators in the Omaha Public Schools (OPS) to implement a Teacher-Researcher Partnership Program. This program establishes resources and infrastructure that engage K-12 science teachers in scientific research experiences. In the first implementation of…

  11. 78 FR 61377 - Office of the Director, National Institutes of Health; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...; 93.22, Clinical Research Loan Repayment Program for Individuals from Disadvantaged Backgrounds; 93... clearly unwarranted invasion of personal privacy. Name of Committee: Office of Research Infrastructure Programs Special Emphasis Panel; Biomedical Research Conference Review. Date: October 22, 2013. Time: 3:00...

  12. EuCARD 2010: European coordination of accelerator research and development

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2010-09-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.

  13. Review of defense display research programs

    NASA Astrophysics Data System (ADS)

    Tulis, Robert W.; Hopper, Darrel G.; Morton, David C.; Shashidhar, Ranganathan

    2001-09-01

    Display research has comprised a substantial portion of the defense investment in new technology for national security for the past 13 years. These investments have been made by the separate service departments and, especially, via several Defense Research Projects Agency (DARPA) programs, known collectively as the High Definition Systems (HDS) Program (which ended in 2001) and via the Office of the Secretary of Defense (OSD) Defense Production Act (DPA) Title III Program (efforts ended in 2000). Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These completed DARPA and DPA research and infrastructure programs are reviewed. Service investments have been and are being made to transition display technology; examples are described. Display science and technology (S&T) visions are documented for each service to assist the identification of areas meriting consideration for future defense research.

  14. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  15. Connected vehicle pilot deployment program.

    DOT National Transportation Integrated Search

    2014-01-01

    The U.S. Department of Transportations (USDOTs) connected vehicle research program is a multimodal initiative to enable safe, interoperable, networked wireless communications among vehicles, infrastructure, and personal communications devices. ...

  16. Board on Earth Sciences and Resources and its activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less

  17. Undergraduate Research and Service-Learning Programs in a Kinesiology Program at a Teaching University

    ERIC Educational Resources Information Center

    O, Jenny; Sherwood, Jennifer J.; Yingling, Vanessa R.

    2017-01-01

    High-impact practices foster student success, but faculty faced with heavy teaching loads and lack of resources and infrastructure are challenged to implement such practices. Kinesiology faculty at California State University, East Bay collaborated to implement two student programs: Kinesiology Research Group and Get Fit! Stay Fit! The Kinesiology…

  18. Programs | Office of Cancer Genomics

    Cancer.gov

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  19. A Tool for Rating the Resilience of Critical Infrastructures in Extreme Fires

    DTIC Science & Technology

    2014-05-01

    provide a tool for NRC to help the Canadian industry to develop extreme fire protection materials and technologies for critical infrastructures. Future...supported by the Canadian Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre for Security Science, in...in oil refinery and chemical industry facilities. The only available standard in North America that addresses the transportation infrastructure is

  20. Centre for Research Infrastructure of Polish GNSS Data - response and possible contribution to EPOS

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Rohm, Witold; Bosy, Jaroslaw; Szolucha, Marcin; Kaplon, Jan; Kroszczynski, Krzysztof

    2017-04-01

    In the frame of the first call under Action 4.2: Development of modern research infrastructure of the science sector in the Smart Growth Operational Programme 2014-2020 in the late of 2016 the "EPOS-PL" project has launched. Following institutes are responsible for the implementation of this project: Institute of Geophysics, Polish Academy of Sciences - Project Leader, Academic Computer Centre Cyfronet AGH University of Science and Technology, Central Mining Institute, the Institute of Geodesy and Cartography, Wrocław University of Environmental and Life Sciences, Military University of Technology. In addition, resources constituting entrepreneur's own contribution will come from the Polish Mining Group. Research Infrastructure EPOS-PL will integrate both existing and newly built National Research Infrastructures (Theme Centre for Research Infrastructures), which, under the premise of the program EPOS, are financed exclusively by the national founds. In addition, the e-science platform will be developed. The Centre for Research Infrastructure of GNSS Data (CIBDG - Task 5) will be built based on the experience and facilities of two institutions: Military University of Technology and Wrocław University of Environmental and Life Sciences. The project includes the construction of the National GNNS Repository with data QC procedures and adaptation of two Regional GNNS Analysis Centres for rapid and long-term geodynamical monitoring.

  1. Infrastructure support for a waste management institute. Final project report, September 12, 1994--September 11, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-11-01

    North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative andmore » exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.« less

  2. Evaluation of doctoral nursing programs in Japan by faculty members and their educational and research activities.

    PubMed

    Arimoto, Azusa; Gregg, Misuzu F; Nagata, Satoko; Miki, Yuko; Murashima, Sachiyo

    2012-07-01

    Evaluation of doctoral programs in nursing is becoming more important with the rapid increase in the programs in Japan. This study aimed to evaluate doctoral nursing programs by faculty members and to analyze the relationship of the evaluation with educational and research activities of faculty members in Japan. Target settings were all 46 doctoral nursing programs. Eighty-five faculty members from 28 programs answered the questionnaire, which included 17 items for program evaluation, 12 items for faculty evaluation, 9 items for resource evaluation, 3 items for overall evaluations, and educational and research activities. A majority gave low evaluations for sources of funding, the number of faculty members and support staff, and administrative systems. Faculty members who financially supported a greater number of students gave a higher evaluation for extramural funding support, publication, provision of diverse learning experiences, time of supervision, and research infrastructure. The more time a faculty member spent on advising doctoral students, the higher were their evaluations on the supportive learning environment, administrative systems, time of supervision, and timely feedback on students' research. The findings of this study indicate a need for improvement in research infrastructure, funding sources, and human resources to achieve quality nursing doctoral education in Japan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Kentucky DOE-EPSCoR Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stencel, J.M.; Ochsenbein, M.P.

    2003-04-14

    The KY DOE EPSCoR Program included efforts to impact positively the pipeline of science and engineering students and to establish research, education and business infrastructure, sustainable beyond DOE EPSCoR funding.

  4. 76 FR 55074 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research Infrastructure, 93.306, 93.333; 93.702, ARRA Related Construction...

  5. 78 FR 69857 - Eunice Kennedy Shriver National Institute of Child Health and Human Development; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... research opportunities and needs; Renewing research infrastructure network program. Place: Hyatt Regency...., Acting Director, National Center for Medical Rehabilitation Research (NCMRR), Director, Biological...

  6. Considering Climate Change in Road and Building Design

    NASA Astrophysics Data System (ADS)

    Jacobs, Jennifer M.; Kirshen, Paul H.; Daniel, Jo Sias

    2013-07-01

    What is the role of climate in infrastructure design? How can engineers design for a changing climate? How can climate scientists better inform the design process? These were the questions posed at the first Infrastructure and Climate Network (ICNet) Steering Committee Workshop, which was sponsored by a U.S. National Science Foundation research grant (CBET-1231326) from the Research Coordination Networks-Science, Engineering and Education for Sustainability (RCN-SEES) program.

  7. Against Infrastructure: Curating Community Literacy in a Jail Writing Program

    ERIC Educational Resources Information Center

    Jacobi, Tobi

    2016-01-01

    This essay argues that while fostering individual and collaborative literacy can indeed promote self-awareness, confidence, and political awareness, the threat of emotional and material retribution is ever-present in jail, making the development of infrastructure challenging. Such reality compels engaged teacher-researchers to develop tactical…

  8. Latin American space activities based on different infrastructures

    NASA Astrophysics Data System (ADS)

    Gall, Ruth

    The paper deals with recent basic space research and space applications in several Latin-American countries. It links space activities with national scientific and institutional infrastructures and stresses the importance of interdisciplinary space programs, that can play a major role in the developing countries achievement of self reliance in space matters.

  9. 76 FR 72426 - Agency Information Collection Activities: Submission for Review; Information Collection Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... (DHS), Science and Technology, Protected Repository for the Defense of Infrastructure Against Cyber... the Defense of Infrastructure against Cyber Threats (PREDICT) program, and is a revision of a... operational data for use in cyber security research and development through the establishment of distributed...

  10. Overview of NASA communications infrastructure

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Fuechsel, Charles

    1991-01-01

    The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.

  11. AMF3 ARM's Research Facility at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.

    2015-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.

  12. Human genome program report. Part 2, 1996 research abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  13. Human Genome Program Report. Part 2, 1996 Research Abstracts

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  14. 76 FR 24890 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research Infrastructure, 93.306, 93.333; 93.702...

  15. 75 FR 70934 - National Center For Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... . (Catalogue of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research Infrastructure, 93.306, 93.333; 93.702, ARRA...

  16. 76 FR 24500 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research Infrastructure, 93.306, 93.333...

  17. 75 FR 16816 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research Infrastructure; 93.306, 93.333; 93.702, ARRA Related Construction...

  18. Developing research and recruitment while fostering stakeholder engagement in a National Institutes of Mental Health-funded Interventions and Practice Research Infrastructure Programs grant for depression.

    PubMed

    Stirman, Shannon Wiltsey; Goldstein, Lizabeth A; Wrenn, Glenda; Barrett, Marna; Gibbons, Mary Beth Connolly; Casiano, Delane; Thompson, Donald; Green, Patricia P; Heintz, Laura; Barber, Jacques P; Crits-Christoph, Paul

    2010-01-01

    In the context of a National Institutes of Mental Health-funded Interventions and Practice Research Infrastructure Programs (IP-RISP) grant for the treatment of depression, a partnership was developed between a community mental health organization and a team of researchers. This paper describes the collaborative process, key challenges, and strategies employed to meet the goals of the first phase of the grant, which included development of a working and sustainable partnership and building capacity for recruitment and research. This paper was developed through the use of qualitative interviews and discussion with a variety of IP-RISP partners. Communication with multiple stakeholders through varied channels, feedback from stakeholders on research procedures, and employing a research liaison at the clinic have been key strategies in the first phase of the grant. The strategies we employed allowed multiple stakeholders to contribute to the larger mission of the IP-RISP and helped to establish an ongoing research program within the mental health organization.

  19. Building Identity and Community through Research

    ERIC Educational Resources Information Center

    Rude, Carolyn D.

    2015-01-01

    A field's identity and sustainability depend on its research as well as on programs, practice, and infrastructure. Research and practice have a reciprocal relationship, with practice identifying research questions and researchers answering those questions to improve practice. Technical communication research also has an exploratory purpose, using…

  20. Partnership between CTSI and Business Schools Can Promote Best Practices for Core Facilities and Resources

    PubMed Central

    Reeves, Lilith; Dunn‐Jensen, Linda M.; Baldwin, Timothy T.; Tatikonda, Mohan V.

    2013-01-01

    Abstract Biomedical research enterprises require a large number of core facilities and resources to supply the infrastructure necessary for translational research. Maintaining the financial viability and promoting efficiency in an academic environment can be particularly challenging for medical schools and universities. The Indiana Clinical and Translational Sciences Institute sought to improve core and service programs through a partnership with the Indiana University Kelley School of Business. The program paired teams of Masters of Business Administration students with cores and programs that self‐identified the need for assistance in project management, financial management, marketing, or resource efficiency. The projects were developed by CTSI project managers and business school faculty using service‐learning principles to ensure learning for students who also received course credit for their participation. With three years of experience, the program demonstrates a successful partnership that improves clinical research infrastructure by promoting business best practices and providing a valued learning experience for business students. PMID:23919365

  1. Partnership between CTSI and business schools can promote best practices for core facilities and resources.

    PubMed

    Reeves, Lilith; Dunn-Jensen, Linda M; Baldwin, Timothy T; Tatikonda, Mohan V; Cornetta, Kenneth

    2013-08-01

    Biomedical research enterprises require a large number of core facilities and resources to supply the infrastructure necessary for translational research. Maintaining the financial viability and promoting efficiency in an academic environment can be particularly challenging for medical schools and universities. The Indiana Clinical and Translational Sciences Institute sought to improve core and service programs through a partnership with the Indiana University Kelley School of Business. The program paired teams of Masters of Business Administration students with cores and programs that self-identified the need for assistance in project management, financial management, marketing, or resource efficiency. The projects were developed by CTSI project managers and business school faculty using service-learning principles to ensure learning for students who also received course credit for their participation. With three years of experience, the program demonstrates a successful partnership that improves clinical research infrastructure by promoting business best practices and providing a valued learning experience for business students. © 2013 Wiley Periodicals, Inc.

  2. The Importance of Distributed Broadband Networks to Academic Biomedical Research and Education Programs

    ERIC Educational Resources Information Center

    Yellowlees, Peter M.; Hogarth, Michael; Hilty, Donald M.

    2006-01-01

    Objective: This article highlights the importance of distributed broadband networks as part of the core infrastructure necessary to deliver academic research and education programs. Method: The authors review recent developments in the field and present the University of California, Davis, environment as a case study of a future virtual regional…

  3. caGrid 1.0 : an enterprise Grid infrastructure for biomedical research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oster, S.; Langella, S.; Hastings, S.

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design: An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG{trademark}) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including (1) discovery, (2) integrated and large-scale data analysis, and (3) coordinated study. Measurements: The caGrid is built as a Grid software infrastructure andmore » leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results: The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: .« less

  4. Environmentally Responsible Aviation Project: Infrastructure Enhancements and New Capabilities

    NASA Technical Reports Server (NTRS)

    Bezos-OConnor, Gaudy M.

    2015-01-01

    This oral presentation highlights the technical investments the NASA Environmentally Responsible Aviation Project under the Integrated Systems Research Program within ARMD made during FY10-FY14 to upgrade/enhance the NASA infrastructure/testing assets and new capabilities required to mature the ERA N=2 Portfolio of airframe and propulsion technologies to TRL 5/6.

  5. 77 FR 1707 - National Cancer Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... Special Emphasis Panel; Core Infrastructure and Methodological Research for Cancer Epidemiology Cohorts... Domestic Assistance Program Nos. 93.392, Cancer Construction; 93.393, Cancer Cause and Prevention Research; 93.394, Cancer Detection and Diagnosis Research; 93.395, Cancer Treatment Research; 93.396, Cancer...

  6. Energy - Sandia National Laboratories

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  7. Earth Science - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  8. Stationary Power - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  9. Transportation Energy - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  10. Grid Modernization - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  11. Research Institute for Technical Careers

    NASA Technical Reports Server (NTRS)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  12. The CTSA Consortium's Catalog of Assets for Translational and Clinical Health Research (CATCHR)

    PubMed Central

    Mapes, Brandy; Basford, Melissa; Zufelt, Anneliese; Wehbe, Firas; Harris, Paul; Alcorn, Michael; Allen, David; Arnim, Margaret; Autry, Susan; Briggs, Michael S.; Carnegie, Andrea; Chavis‐Keeling, Deborah; De La Pena, Carlos; Dworschak, Doris; Earnest, Julie; Grieb, Terri; Guess, Marilyn; Hafer, Nathaniel; Johnson, Tesheia; Kasper, Amanda; Kopp, Janice; Lockie, Timothy; Lombardo, Vincetta; McHale, Leslie; Minogue, Andrea; Nunnally, Beth; O'Quinn, Deanna; Peck, Kelly; Pemberton, Kieran; Perry, Cheryl; Petrie, Ginny; Pontello, Andria; Posner, Rachel; Rehman, Bushra; Roth, Deborah; Sacksteder, Paulette; Scahill, Samantha; Schieri, Lorri; Simpson, Rosemary; Skinner, Anne; Toussant, Kim; Turner, Alicia; Van der Put, Elaine; Wasser, June; Webb, Chris D.; Williams, Maija; Wiseman, Lori; Yasko, Laurel; Pulley, Jill

    2014-01-01

    Abstract The 61 CTSA Consortium sites are home to valuable programs and infrastructure supporting translational science and all are charged with ensuring that such investments translate quickly to improved clinical care. Catalog of Assets for Translational and Clinical Health Research (CATCHR) is the Consortium's effort to collect and make available information on programs and resources to maximize efficiency and facilitate collaborations. By capturing information on a broad range of assets supporting the entire clinical and translational research spectrum, CATCHR aims to provide the necessary infrastructure and processes to establish and maintain an open‐access, searchable database of consortium resources to support multisite clinical and translational research studies. Data are collected using rigorous, defined methods, with the resulting information made visible through an integrated, searchable Web‐based tool. Additional easy‐to‐use Web tools assist resource owners in validating and updating resource information over time. In this paper, we discuss the design and scope of the project, data collection methods, current results, and future plans for development and sustainability. With increasing pressure on research programs to avoid redundancy, CATCHR aims to make available information on programs and core facilities to maximize efficient use of resources. PMID:24456567

  13. IS-EPOS - a prototype of EPOS Thematic Core Service for seismic processes induced by human operations

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, Beata; Lasocki, Stanislaw; Leptokaropoulos, Konstantinos

    2014-05-01

    The community focused on seismic processes induced by human operations has been organized within EPOS Integration Program as Working Group 10 Infrastructure for Georesources. This group has brought together representatives from the scientific community and industry from 13 European countries. WG10 aims to integrate the research infrastructure (RI) in the area of seismicity induced (IS) by human activity: tremors and rockbursts in underground mines, seismicity associated with conventional and unconventional oil and gas production, induced by geothermal energy extraction and by underground reposition and storage of liquids (e.g. water disposal associated with energy extraction) and gases (CO2 sequestration, inter alia) and triggered by filling surface water reservoirs, etc. WG10 priority is to create new research opportunities in the field responding to global challenges connected with exploitation of georesources. WG10 has prepared the model of integration fulfilling the scientific mission and raising the visibility of stakeholders. The end-state Induced Seismicity Thematic Core Service (IS TCS) has been designed together with key metrics for TCS benefits in four areas: scientific, societal, economic and capacity building. IS-EPOS project, funded by National Centre for Research and Development, Poland within the program "Innovative Economy Operational Program Priority Axis 2 - R&D Infrastructure", aims at building a prototype of IS TCS. The prototype will implement fully the designed logic of IS TCS. Research infrastructure integrated within the prototype will comprise altogether seven comprehensive data cases of seismicity linked to deep mining related, associating geothermal production and triggered by reservoir impoundment. The implemented thematic services will enable studies within the use-case "Clustering of induced earthquakes". The IS TCS prototype is expected to reach full functionality by the end of 2014.

  14. AMF3 ARM's Research Facility and MAOS at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data to determine the impact that clouds and aerosols have on solar radiation. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. A Mobile Aerosol Observing System (MAOS) has been added to AMF3 in 2016 more details of the instrumentation at www.arm.gov/sites/amf/mobile-aos. Data from these instruments are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at the ARM Program's AMF3 and highlight the newest addition to AMF3, the Mobile Aerosol Observing System (MAOS).

  15. Influences on Faculty Willingness to Mentor Undergraduate Students from Another University as Part of an Interinstitutional Research Training Program

    ERIC Educational Resources Information Center

    Morales, Danielle X.; Grineski, Sara E.; Collins, Timothy W.

    2016-01-01

    In 2014, the National Institutes of Health invested $31 million in 10 primary institutions across the United States through the Building Undergraduate Infrastructure Leading to Diversity (BUILD) program; one requirement of BUILD is sending undergraduate trainees from those primary institutions to partner institutions for research experiences.…

  16. Consideration of an Applied Model of Public Health Program Infrastructure

    PubMed Central

    Lavinghouze, Rene; Snyder, Kimberly; Rieker, Patricia; Ottoson, Judith

    2015-01-01

    Systemic infrastructure is key to public health achievements. Individual public health program infrastructure feeds into this larger system. Although program infrastructure is rarely defined, it needs to be operationalized for effective implementation and evaluation. The Ecological Model of Infrastructure (EMI) is one approach to defining program infrastructure. The EMI consists of 5 core (Leadership, Partnerships, State Plans, Engaged Data, and Managed Resources) and 2 supporting (Strategic Understanding and Tactical Action) elements that are enveloped in a program’s context. We conducted a literature search across public health programs to determine support for the EMI. Four of the core elements were consistently addressed, and the other EMI elements were intermittently addressed. The EMI provides an initial and partial model for understanding program infrastructure, but additional work is needed to identify evidence-based indicators of infrastructure elements that can be used to measure success and link infrastructure to public health outcomes, capacity, and sustainability. PMID:23411417

  17. Energy Fact Sheets - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  18. An Overview of USDOT Connected Vehicle Roadside Unit Research Activities

    DOT National Transportation Integrated Search

    2017-05-01

    The USDOT Vehicle-to-Infrastructure (V2I) research program has developed this white paper to provide stakeholders with an overview of the history, background, and plans relating to V2I Roadside Unit Research, focusing on the development of Dedicated ...

  19. Building Sustainable Local Capacity for Global Health Research in West Africa.

    PubMed

    Sam-Agudu, Nadia A; Paintsil, Elijah; Aliyu, Muktar H; Kwara, Awewura; Ogunsola, Folasade; Afrane, Yaw A; Onoka, Chima; Awandare, Gordon A; Amponsah, Gladys; Cornelius, Llewellyn J; Mendy, Gabou; Sturke, Rachel; Ghansah, Anita; Siberry, George K; Ezeanolue, Echezona E

    Global health research in resource-limited countries has been largely sponsored and led by foreign institutions. Thus, these countries' training capacity and productivity in global health research is limited. Local participation at all levels of global health knowledge generation promotes equitable access to evidence-based solutions. Additionally, leadership inclusive of competent local professionals promotes best outcomes for local contextualization and implementation of successful global health solutions. Among the sub-Saharan African regions, West Africa in particular lags in research infrastructure, productivity, and impact in global health research. In this paper, experts discuss strategies for scaling up West Africa's participation in global health evidence generation using examples from Ghana and Nigeria. We conducted an online and professional network search to identify grants awarded for global health research and research education in Ghana and Nigeria. Principal investigators, global health educators, and representatives of funding institutions were invited to add their knowledge and expertise with regard to strengthening research capacity in West Africa. While there has been some progress in obtaining foreign funding, foreign institutions still dominate local research. Local research funding opportunities in the 2 countries were found to be insufficient, disjointed, poorly sustained, and inadequately publicized, indicating weak infrastructure. As a result, research training programs produce graduates who ultimately fail to launch independent investigator careers because of lack of mentoring and poor infrastructural support. Research funding and training opportunities in Ghana and Nigeria remain inadequate. We recommend systems-level changes in mentoring, collaboration, and funding to drive the global health research agenda in these countries. Additionally, research training programs should be evaluated not only by numbers of individuals graduated but also by numbers of independent investigators and grants funded. Through equitable collaborations, infrastructure, and mentoring, West Africa can match the rest of Africa in impactful global health research. Copyright © 2016 Icahn School of Medicine at Mount Sinai. All rights reserved.

  20. Evaluation Program on the Implementation of Industrial Apprenticeship (Prakerin) in Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Maulana, I.; Sumarto; Nurafiati, P.; Puspita, R. H.

    2018-02-01

    This research aims to find out the evaluation program of the Industrial apprenticeship (Prakerin) in electrical engineering. This research includes on four variables of CIPP. (1). Context (a). programme planning (b). design. (2). Input (a). readiness of students (b). performance of vocational education teachers (c). Facilities and infrastructure, (3). process (a). performance students (b). performance mentors, (4). Product (a). readiness of student work. This research is a type of program evaluation research with Stake model approach. Data collection methods used are questionnaires with closed questions and frequently asked questions.

  1. 77 FR 49450 - National Cancer Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... Committee: National Cancer Institute Special Emphasis Panel; Core Infrastructure and Methodological Research...; Small Grants for Behavioral Research in Cancer Control. Date: September 18-19, 2012.. Time: 9 a.m. to 12...., Scientific Review Officer, Research Programs Review Branch, Division of Extramural Activities, National...

  2. Research Challenges and Opportunities for Clinically Oriented Academic Radiology Departments.

    PubMed

    Decker, Summer J; Grajo, Joseph R; Hazelton, Todd R; Hoang, Kimberly N; McDonald, Jennifer S; Otero, Hansel J; Patel, Midhir J; Prober, Allen S; Retrouvey, Michele; Rosenkrantz, Andrew B; Roth, Christopher G; Ward, Robert J

    2016-01-01

    Between 2004 and 2012, US funding for the biomedical sciences decreased to historic lows. Health-related research was crippled by receiving only 1/20th of overall federal scientific funding. Despite the current funding climate, there is increased pressure on academic radiology programs to establish productive research programs. Whereas larger programs have resources that can be utilized at their institutions, small to medium-sized programs often struggle with lack of infrastructure and support. To address these concerns, the Association of University Radiologists' Radiology Research Alliance developed a task force to explore any untapped research productivity potential in these smaller radiology departments. We conducted an online survey of faculty at smaller clinically funded programs and found that while they were interested in doing research and felt it was important to the success of the field, barriers such as lack of resources and time were proving difficult to overcome. One potential solution proposed by this task force is a collaborative structured research model in which multiple participants from multiple institutions come together in well-defined roles that allow for an equitable distribution of research tasks and pooling of resources and expertise. Under this model, smaller programs will have an opportunity to share their unique perspective on how to address research topics and make a measureable impact on the field of radiology as a whole. Through a health services focus, projects are more likely to succeed in the context of limited funding and infrastructure while simultaneously providing value to the field. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. The Human Genome Initiative of the Department of Energy

    DOE R&D Accomplishments Database

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  4. Healthy Families America state systems development: an emerging practice to ensure program growth and sustainability.

    PubMed

    Friedman, Lori; Schreiber, Lisa

    2007-01-01

    In an era of fiscal constraints and increased accountability for social service programs, having a centralized and efficient infrastructure is critical. A well-functioning infrastructure helps a state reduce duplication of services, creates economies of scale, coordinates resources, supports high-quality site development and promotes the self-sufficiency and growth of community-based programs. Throughout the Healthy Families America home visitation network, both program growth and contraction have been managed by in-state collaborations, referred to as "state systems." This article explores the research base that supports the rationale for implementing state systems, describes the evolution of state systems for Healthy Families America, and discusses the benefits, challenges and lessons learned of utilizing a systems approach.

  5. EPA's Safe and Sustainable Water Resources Research Program: Water Systems Research

    EPA Science Inventory

    Water systems challenged by limited resources, aging infrastructure, shifting demographics, climate change, and extreme weather events need transformative approaches to meet public health and environmental goals, while optimizing water treatment and maximizing resource recovery a...

  6. How can we improve clinical research in pneumonia?

    PubMed

    Ramirez, Julio A

    2018-05-01

    The primary challenges in the field of clinical research include a lack of support within existing infrastructure, insufficient number of clinical research training programs and a paucity of qualified mentors. Most medical centers offer infrastructure support for investigators working with industry sponsors or government-funded clinical trials, yet there are a significant amount of clinical studies performed in the field of pneumonia which are observational studies. For this type of research, which is frequently unfunded, support is usually lacking. In an attempt to optimize clinical research in pneumonia, at the University of Louisville, we developed a clinical research coordinating center (CRCC). The center manages clinical studies in the field of respiratory infections, with the primary focus being pneumonia. Other activities of the CRCC include the organization of an annual clinical research training course for physicians and other healthcare workers, and the facilitation of international research mentoring by a process of connecting new pneumonia investigators with established clinical investigators. To improve clinical research in pneumonia, institutions need to have the appropriate infrastructure in place to support investigators in all aspects of the clinical research process.

  7. NASA's commercial research plans and opportunities

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.

    1992-01-01

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  8. NASA's commercial research plans and opportunities

    NASA Astrophysics Data System (ADS)

    Arnold, Ray J.

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  9. Reframing the Dissemination Challenge: A Marketing and Distribution Perspective

    PubMed Central

    Bernhardt, Jay M.

    2009-01-01

    A fundamental obstacle to successful dissemination and implementation of evidence-based public health programs is the near-total absence of systems and infrastructure for marketing and distribution. We describe the functions of a marketing and distribution system, and we explain how it would help move effective public health programs from research to practice. Then we critically evaluate the 4 dominant strategies now used to promote dissemination and implementation, and we explain how each would be enhanced by marketing and distribution systems. Finally, we make 6 recommendations for building the needed system infrastructure and discuss the responsibility within the public health community for implementation of these recommendations. Without serious investment in such infrastructure, application of proven solutions in public health practice will continue to occur slowly and rarely. PMID:19833993

  10. Reframing the dissemination challenge: a marketing and distribution perspective.

    PubMed

    Kreuter, Matthew W; Bernhardt, Jay M

    2009-12-01

    A fundamental obstacle to successful dissemination and implementation of evidence-based public health programs is the near-total absence of systems and infrastructure for marketing and distribution. We describe the functions of a marketing and distribution system, and we explain how it would help move effective public health programs from research to practice. Then we critically evaluate the 4 dominant strategies now used to promote dissemination and implementation, and we explain how each would be enhanced by marketing and distribution systems. Finally, we make 6 recommendations for building the needed system infrastructure and discuss the responsibility within the public health community for implementation of these recommendations. Without serious investment in such infrastructure, application of proven solutions in public health practice will continue to occur slowly and rarely.

  11. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov Websites

    Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials

  12. Research and Resources on Sustainable Land Use in Built and Natural Environments

    EPA Science Inventory

    Land Use was identified as one of four overarching topics to integrate science and research products for the Sustainable and Healthy Communities Research Program (U.S.EPA 2012). Land use and the other three topics--“Buildings and Infrastructure,” “Transportatio...

  13. Sandia National Laboratories: Directed-energy tech receives funding to

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research

  14. Adolescent bariatric surgery program characteristics: the Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study experience.

    PubMed

    Michalsky, Marc P; Inge, Thomas H; Teich, Steven; Eneli, Ihuoma; Miller, Rosemary; Brandt, Mary L; Helmrath, Michael; Harmon, Carroll M; Zeller, Meg H; Jenkins, Todd M; Courcoulas, Anita; Buncher, Ralph C

    2014-02-01

    The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Data were obtained from the Teen-LABS database, and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. All centers had extensive multidisciplinary involvement in the assessment, pre-operative education, and post-operative management of adolescents undergoing WLS. Eligibility criteria and pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well-developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. The composition of clinical team and institutional resources is consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. © 2013 Published by Elsevier Inc.

  15. Adolescent Bariatric Surgery Program Characteristics: The Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS) Study Experience

    PubMed Central

    Michalsky, M.P.; Inge, T.H.; Teich, S.; Eneli, I.; Miller, R.; Brandt, M.L.; Helmrath, M.; Harmon, C.M.; Zeller, M.H.; Jenkins, T.M.; Courcoulas, A.; Buncher, C.R.

    2013-01-01

    Background The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Methods Data were obtained from the Teen-LABS database and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. Results All centers had extensive multidisciplinary involvement in the assessment, preoperative education and post-operative management of adolescents undergoing WLS. Eligibility criteria, pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. Conclusions The composition of clinical team and institutional resources are consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. PMID:24491361

  16. Teacher Programs | Argonne National Laboratory

    Science.gov Websites

    Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  17. Educational Programs | Argonne National Laboratory

    Science.gov Websites

    Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  18. Measuring infrastructure: A key step in program evaluation and planning

    PubMed Central

    Schmitt, Carol L.; Glasgow, LaShawn; Lavinghouze, S. Rene; Rieker, Patricia P.; Fulmer, Erika; McAleer, Kelly; Rogers, Todd

    2016-01-01

    State tobacco prevention and control programs (TCPs) require a fully functioning infrastructure to respond effectively to the Surgeon General’s call for accelerating the national reduction in tobacco use. The literature describes common elements of infrastructure; however, a lack of valid and reliable measures has made it difficult for program planners to monitor relevant infrastructure indicators and address observed deficiencies, or for evaluators to determine the association among infrastructure, program efforts, and program outcomes. The Component Model of Infrastructure (CMI) is a comprehensive, evidence-based framework that facilitates TCP program planning efforts to develop and maintain their infrastructure. Measures of CMI components were needed to evaluate the model’s utility and predictive capability for assessing infrastructure. This paper describes the development of CMI measures and results of a pilot test with nine state TCP managers. Pilot test findings indicate that the tool has good face validity and is clear and easy to follow. The CMI tool yields data that can enhance public health efforts in a funding-constrained environment and provides insight into program sustainability. Ultimately, the CMI measurement tool could facilitate better evaluation and program planning across public health programs. PMID:27037655

  19. Measuring infrastructure: A key step in program evaluation and planning.

    PubMed

    Schmitt, Carol L; Glasgow, LaShawn; Lavinghouze, S Rene; Rieker, Patricia P; Fulmer, Erika; McAleer, Kelly; Rogers, Todd

    2016-06-01

    State tobacco prevention and control programs (TCPs) require a fully functioning infrastructure to respond effectively to the Surgeon General's call for accelerating the national reduction in tobacco use. The literature describes common elements of infrastructure; however, a lack of valid and reliable measures has made it difficult for program planners to monitor relevant infrastructure indicators and address observed deficiencies, or for evaluators to determine the association among infrastructure, program efforts, and program outcomes. The Component Model of Infrastructure (CMI) is a comprehensive, evidence-based framework that facilitates TCP program planning efforts to develop and maintain their infrastructure. Measures of CMI components were needed to evaluate the model's utility and predictive capability for assessing infrastructure. This paper describes the development of CMI measures and results of a pilot test with nine state TCP managers. Pilot test findings indicate that the tool has good face validity and is clear and easy to follow. The CMI tool yields data that can enhance public health efforts in a funding-constrained environment and provides insight into program sustainability. Ultimately, the CMI measurement tool could facilitate better evaluation and program planning across public health programs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, themore » International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.« less

  1. Multidisciplinary acute care research organization (MACRO): if you build it, they will come.

    PubMed

    Early, Barbara J; Huang, David T; Callaway, Clifton W; Zenati, Mazen; Angus, Derek C; Gunn, Scott R; Yealy, Donald M; Unikel, Daniel; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L

    2013-07-01

    Clinical research will increasingly play a core role in the evolution and growth of acute care surgery program development across the country. What constitutes an efficient and effective clinical research infrastructure in the current fiscal and academic environment remains obscure. We sought to characterize the effects of implementation of a multidisciplinary acute care research organization (MACRO) at a busy tertiary referral university setting. In 2008, to minimize redundancy and cost as well as to maximize existing resources promoting acute care research, MACRO was created, unifying clinical research infrastructure among the Departments of Critical Care Medicine, Emergency Medicine, and Surgery. During the periods 2008 to 2012, we performed a retrospective analysis and determined volume of clinical studies, patient enrollment for both observational and interventional trials, and staff growth since MACRO's origination and characterized changes over time. From 2008 to 2011, the volume of patients enrolled in clinical studies, which MACRO facilitates has significantly increased more than 300%. The percentage of interventional/observational trials has remained stable during the same period (50-60%). Staff has increased from 6 coordinators to 10, with an additional 15 research associates allowing 24/7 service. With this significant growth, MACRO has become financially self-sufficient, and additional outside departments now seek MACRO's services. Appropriate organization of acute care clinical research infrastructure minimizes redundancy and can promote sustainable, efficient growth in the current academic environment. Further studies are required to determine if similar models can be successful at other acute care surgery programs.

  2. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  3. Condition Assessment Technologies for Water Transmission and Distribution Systems

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency’s (EPA’s) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...

  4. A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving Drinking Water Utilities: Scoping Study

    DTIC Science & Technology

    2014-05-01

    A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving Drinking Water Utilities: Scoping Study... Drinking Water Utilities was supported by the Canadian Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre...after CBRN Event Involving Drinking Water Utilities Scoping Study Prepared by: Vladimir Blinov Konstantin Volchek Emergencies Science and

  5. caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research

    PubMed Central

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    Objective To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG™) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. Measurements The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. Conclusions While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community. PMID:18096909

  6. caGrid 1.0: an enterprise Grid infrastructure for biomedical research.

    PubMed

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community.

  7. Air Force Office of Scientific Research 1991 Research Highlights

    DTIC Science & Technology

    1991-01-01

    research at Air Force Europe, allied victory in the Persian Gulf con- programs totaling nearly $300 million annual- laboratories . Air Force ...transitioning nological environment? laboratories and research centers into four research accomplishments for Air Force use. In this added role as... Air Force’s saries; maintaining a strong research Organizationally, AFOSR has also glo ehran gol per infrastructure among Air Force

  8. A Study of Federal Academic Earmarks and Research Funding in Relation to the Institutional Research Culture of Research University/High (RU/H) Institutions in Mississippi

    ERIC Educational Resources Information Center

    Young, James Hubert, III

    2013-01-01

    Nationally, reductions in public funding for higher education, a stagnate economy, looming sequestration, and a divisive political culture present a complex and challenging dynamic for research universities in pursuit of external funding for their research programs and infrastructure needs. These universities and their research initiatives have…

  9. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  10. 2010 Annual Progress Report DOE Hydrogen Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  11. Data interoperabilty between European Environmental Research Infrastructures and their contribution to global data networks

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Zhao, Z.; Hardisty, A.; Hellström, M.; Chin, Y.; Magagna, B.; Asmi, A.; Papale, D.; Pfeil, B.; Atkinson, M.

    2017-12-01

    Environmental Research Infrastructures (ENVRIs) are expected to become important pillars not only for supporting their own scientific communities, but also a) for inter-disciplinary research and b) for the European Earth Observation Program Copernicus as a contribution to the Global Earth Observation System of Systems (GEOSS) or global thematic data networks. As such, it is very important that data-related activities of the ENVRIs will be well integrated. This requires common policies, models and e-infrastructure to optimise technological implementation, define workflows, and ensure coordination, harmonisation, integration and interoperability of data, applications and other services. The key is interoperating common metadata systems (utilising a richer metadata model as the `switchboard' for interoperation with formal syntax and declared semantics). The metadata characterises data, services, users and ICT resources (including sensors and detectors). The European Cluster Project ENVRIplus has developed a reference model (ENVRI RM) for common data infrastructure architecture to promote interoperability among ENVRIs. The presentation will provide an overview of recent progress and give examples for the integration of ENVRI data in global integration networks.

  12. USEPA’s Water Resource Adaptation Program (WRAP) — Drinking Water Research and Global Climate Change

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to EPA’s efforts to provide water resource managers and decision makers with the tools they need to adapt water resources (e.g., watersheds and infrastructure) to future climate change and demographic and economic developme...

  13. The Threat and Local Observation Notice (TALON) Report Program

    DTIC Science & Technology

    2007-06-27

    protect DoD personnel, resources, critical information, research and development programs, technology, critical infrastructure, economic security...Olllcl CMnpus Pr<.>vost We a.re greatly co!lcemed about the Pcnta~on’s investiJiation of a UCSC c> mpus protest: of ~nilitary recruiwrs lnst spring. MSNBC

  14. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  15. EPA Office of Research and Development - I/I Research Information Update

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and is currently one of the top national water program priorities. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox to assist communities in devel...

  16. Strengthening the Research Architecture for High Quality Universal Pre-K: Development of a Quality Monitoring Tool

    ERIC Educational Resources Information Center

    Rojas, Natalia; Raver, Cybele; Morris, Pamela

    2016-01-01

    The purpose of this presentation is to describe some of the activities of a partnership forged between NYU researchers and senior leaders in NYC that was intended to provide research infrastructure and capacity-building solutions while also addressing jointly identified research questions about the "Pre-K for All" (PKA) program. The…

  17. Strengthening and Fostering Science and Technology Programs in Latinamerica and the Caribbean

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.

    2013-05-01

    An overview and discussion of the status of research and education in Latinamerica and the Caribbean is used for developing a proposal for a research foundation or agency in the region and establishing initiatives for capacity building and promoting and strengthening scientific programs and cooperation. Scientific research increasingly requires global multi- and inter-disciplinary approaches and infrastructure. Developing countries face challenges resulting from small academic communities, limited economic resources, and pressing social and political issues. Science and education are not major priorities as compared with more pressing issues related to poverty, diseases, conflicts, drugs and famine. However, solving major problems require improved educational and research programs. International research collaboration, north-south and south-south, has an immense potential, but basic infrastructure and internal organization at national and regional levels are required. For the analysis we concentrate on current situation, size and characteristics of research community, education programs, facilities, economic support, and bilateral and multinational collaborations. Analysis also includes the São Paulo Research Foundation (FAPESP) and the Yucatan Science and Technology System (SIIDETEY). FAPESP is a highly successful public foundation started more than 50 years ago, dedicated to foster scientific and technological development in the State of São Paulo and which has had a major impact in Brazil. SIIDETEY is a more recent effort of the Yucatan Government, also dedicated to support research and technology innovation within the state. We then move to discussion on perspectives for future development and capacity building in regional and international contexts, including international collaboration programs. We propose to establish a Science Foundation for the Latinamerica and Caribbean and develop an agenda for strengthening scientific programs in the region.

  18. 76 FR 21789 - ITS Joint Program Office; Vehicle to Infrastructure Core System Concept of Operations; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Vehicle to Infrastructure Core System... Program Office (ITS JPO) will host a free public meeting to discuss the Vehicle to Infrastructure (V2I... to work originally performed under the Vehicle Infrastructure Integration Proof of Concept (VII POC...

  19. Transit connected vehicle research program.

    DOT National Transportation Integrated Search

    2011-01-01

    Connected vehicles have the potential to transform the way Americans travel through the creation of a safe, : interoperable wireless communications network that links cars, buses, trucks, trains, transportation infrastructure, : and personal mobile d...

  20. The Component Model of Infrastructure: A Practical Approach to Understanding Public Health Program Infrastructure

    PubMed Central

    Snyder, Kimberly; Rieker, Patricia P.

    2014-01-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement. PMID:24922125

  1. Management of information in a research and development agency

    NASA Technical Reports Server (NTRS)

    Keene, Wallace O.

    1990-01-01

    The NASA program for managing scientific and technical information (STI) is examined, noting the technological, managerial, educational, and legal aspects of transferring and disseminating information. A definition of STI is introduced and NASA's STI-related management programs are outlined. Consideration is given to the role of STI management in NASA mission programs, research efforts supporting the management and use of STI, STI program interfaces, and the Automated Information Management Program to eliminate redundant automation efforts in common administrative functions. The infrastructure needed to manage the broad base of NASA information and the interfaces between NASA's STI management and external organizations are described.

  2. Linking Sustainability Research to Intervention Types

    PubMed Central

    2013-01-01

    Researchers, funders, and managers of health programs and interventions have become concerned about their long-term sustainability. However, most research about sustainability has not considered the nature of the program to be sustained. Health-related interventions may differ in their likelihood of sustainability and in the factors likely to influence continuation. I suggest a framework for analyzing the sustainability of 6 types of interventions: (1) those implemented by individual providers; (2) programs requiring coordination among multiple staff; (3) new policies, procedures, or technologies; (4) capacity or infrastructure building; (5) community partnerships or collaborations; and (6) broad-scale system change. Hypotheses for future research and strategies that program managers might use to achieve sustainability also differ by program or intervention type. PMID:23409904

  3. A centralized informatics infrastructure for the National Institute on Drug Abuse Clinical Trials Network.

    PubMed

    Pan, Jeng-Jong; Nahm, Meredith; Wakim, Paul; Cushing, Carol; Poole, Lori; Tai, Betty; Pieper, Carl F

    2009-02-01

    Clinical trial networks (CTNs) were created to provide a sustaining infrastructure for the conduct of multisite clinical trials. As such, they must withstand changes in membership. Centralization of infrastructure including knowledge management, portfolio management, information management, process automation, work policies, and procedures in clinical research networks facilitates consistency and ultimately research. In 2005, the National Institute on Drug Abuse (NIDA) CTN transitioned from a distributed data management model to a centralized informatics infrastructure to support the network's trial activities and administration. We describe the centralized informatics infrastructure and discuss our challenges to inform others considering such an endeavor. During the migration of a clinical trial network from a decentralized to a centralized data center model, descriptive data were captured and are presented here to assess the impact of centralization. We present the framework for the informatics infrastructure and evaluative metrics. The network has decreased the time from last patient-last visit to database lock from an average of 7.6 months to 2.8 months. The average database error rate decreased from 0.8% to 0.2%, with a corresponding decrease in the interquartile range from 0.04%-1.0% before centralization to 0.01-0.27% after centralization. Centralization has provided the CTN with integrated trial status reporting and the first standards-based public data share. A preliminary cost-benefit analysis showed a 50% reduction in data management cost per study participant over the life of a trial. A single clinical trial network comprising addiction researchers and community treatment programs was assessed. The findings may not be applicable to other research settings. The identified informatics components provide the information and infrastructure needed for our clinical trial network. Post centralization data management operations are more efficient and less costly, with higher data quality.

  4. Survey of Collaboration Technologies in Multi-level Security Environments

    DTIC Science & Technology

    2014-04-28

    infrastructure or resources. In this research program, the security implications of the US Air Force GeoBase (the US The problem is that in many cases...design structure. ORA uses a Java interface for ease of use, and a C++ computational backend . The current version ORA1.2 software is available on the...information: culture, policy, governance, economics and resources, and technology and infrastructure . This plan, the DoD Information Sharing

  5. Special Provisions for Intelligent Compaction of Stabilized Soil Subgrades

    DOT National Transportation Integrated Search

    2017-12-30

    Slowing the deterioration of highway infrastructure, reducing carbon emissions, conserving resources, repurposing industrial waste-this Exploratory Advanced Research (EAR) Program project is pursuing multiple benefits through a unique experimental ap...

  6. Institutional shared resources and translational cancer research.

    PubMed

    De Paoli, Paolo

    2009-06-29

    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology.In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment and management represent essential tools, providing solutions to overcome existing barriers in the development of translational research in biomedical research centers.

  7. Institutional shared resources and translational cancer research

    PubMed Central

    De Paoli, Paolo

    2009-01-01

    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology. In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment and management represent essential tools, providing solutions to overcome existing barriers in the development of translational research in biomedical research centers. PMID:19563639

  8. Clinical and translational research in global health and emergency care: a research agenda.

    PubMed

    Runyon, Michael S; Sawe, Hendry R; Levine, Adam C; Pousson, Amelia; House, Darlene R; Agrawal, Pooja; Osei-Ampofo, Maxwell; Weiner, Scott G; Douglass, Katherine

    2013-12-01

    As policy-makers increasingly recognize emergency care to be a global health priority, the need for high-quality clinical and translational research in this area continues to grow. As part of the proceedings of the 2013 Academic Emergency Medicine consensus conference, this article discusses the importance of: 1) including clinical and translational research in the initial emergency care development plan, 2) defining the burden of acute disease and the barriers to conducting research in resource-limited settings, 3) assessing the appropriateness and effectiveness of local and global acute care guidelines within the local context, 4) studying the local research infrastructure needs to understand the best methods to build a sustainable research infrastructure, and 5) studying the long-term effects of clinical research programs on health care systems. © 2013 by the Society for Academic Emergency Medicine.

  9. USEPA Safe and Sustainable Water Resources Program: Green Infrastructure for Stormwater Management

    EPA Science Inventory

    The water research portfolio of the USEPA Office of Research and Development (ORD) includes a significant focus on stormwater management as a major cause of contaminants in and degradation to surface waters. The importance of maintaining and restoring natural hydrology via green...

  10. Strategic Design for Delivery with Linked Transportation Assets : Trucks and Drones : tech transfer summary

    DOT National Transportation Integrated Search

    2018-01-01

    The USDOT Vehicle-to-Infrastructure (V2I) research program has developed this white paper to provide stakeholders with an overview of the history, background, and plans relating to V2I Roadside Unit Research, focusing on the development of Dedicated ...

  11. Situational Analysis for Complex Systems: Methodological Development in Public Health Research.

    PubMed

    Martin, Wanda; Pauly, Bernie; MacDonald, Marjorie

    2016-01-01

    Public health systems have suffered infrastructure losses worldwide. Strengthening public health systems requires not only good policies and programs, but also development of new research methodologies to support public health systems renewal. Our research team considers public health systems to be complex adaptive systems and as such new methods are necessary to generate knowledge about the process of implementing public health programs and services. Within our program of research, we have employed situational analysis as a method for studying complex adaptive systems in four distinct research studies on public health program implementation. The purpose of this paper is to demonstrate the use of situational analysis as a method for studying complex systems and highlight the need for further methodological development.

  12. 75 FR 60771 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0080] Critical Infrastructure Partnership..., Section Chief Partnership Programs, Partnership and Outreach Division, Office of Infrastructure Protection... Outreach Division, Office of Infrastructure Protection, National Protection and Programs Directorate...

  13. State investments in high-technology job growth.

    PubMed

    Leicht, Kevin T; Jenkins, J Craig

    2017-07-01

    Since the early 1970's state and local governments have launched an array of economic development programs designed to promote high-technology development. The question our analysis addresses is whether these programs promote long-term high-technology employment growth net of state location and agglomeration advantages. Proponents talk about an infrastructure strategy that promotes investment in public research and specialized infrastructure to attract and grow new high technology industries in specific locations, and a more decentralized entrepreneurial strategy that reinforces local agglomeration capacities by investing in new enterprises and products, promoting the development of local networks and partnerships. Our results support the entrepreneurial strategy, suggesting that state governments can accelerate high technology development by adopting market-supportive programs that complement private sector initiatives. In addition to positive direct benefits of technology deployment/transfer programs and SBIR programs, entrepreneurial programs affect change in high-technology employment in concert with existing locational and agglomeration advantages. Rural (i.e. low population density) states tend to benefit by technology development programs. Infrastructure strategy programs also facilitate high technology job growth in places where local advantages already exist. Our results suggest that critics of industrial policy are correct that high technology growth is organic and endogenous, yet state governments are able to "pick winners and losers" in ways that grow their local economy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  15. ITS strategic plan for Texas.

    DOT National Transportation Integrated Search

    2016-07-01

    The purpose of this research was to provide a framework to guide the development and deployment of an : integrated statewide program for Intelligent Transportation Systems (ITS). ITS is a critical component of the : transportation infrastructure that...

  16. Coexistence of Polaronic States and Superconductivity in Iron-Pnictide Compound Ba2Ti2Fe2As4O

    NASA Astrophysics Data System (ADS)

    Rong, Li-Yuan; Shi, Xun; Richard, Pierre; Sun, Yun-Lei; Cao, Guang-Han; Zhang, Xiang-Zhi; Ma, Jun-Zhang; Shi, Ming; Huang, Yao-Bo; Qian, Tian; Ding, Hong; Tai, Ren-Zhong

    2018-05-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2013CB921700, 2015CB921300 and 2015CB921301, the National Natural Science Foundation of China under Grant Nos 11234014, 11622435, 11274362, 11674371 and 11474340, the National Key Research and Development Program of China under Grant Nos 2016YFA0300300, 2016YFA0300600, 2016YFA0401000 and 2016YFA0400902, the Open Large Infrastructure Research of Chinese Academy of Sciences, and the Pioneer Hundred Talents Program (Type C) of Chinese Academy of Sciences.

  17. Crossing the Chasm: Information Technology to Biomedical Informatics

    PubMed Central

    Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph

    2011-01-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632

  18. Quality Assurance and Quality Control Practices for Rehabilitation of Sewer and Water Mains

    EPA Science Inventory

    As part of the US Environmental Protection Agency (EPA)’s Aging Water Infrastructure Research Program, several areas of research are being pursued, including a review of quality assurance and quality control (QA/QC) practices and acceptance testing during the installation of reha...

  19. Quality Assurance and Quality Control Practices For Rehabilitation of Sewer and Water Mains

    EPA Science Inventory

    As part of the US Environmental Protection Agency (EPA)’s Aging Water Infrastructure Research Program, several areas of research are being pursued including a review of quality assurance and quality control (QA/QC) practices and acceptance testing during the installation of rehab...

  20. Intelligent Transportation Systems Joint Program Office (ITS JPO) within the Office of the Assistant Secretary for Research and Technology (OST-R) : [fact sheet

    DOT National Transportation Integrated Search

    2017-05-19

    The ITS JPO is the U.S. Department of Transportations primary advocate and national leader for ITS research, development, and future deployment of connected vehicle technologies, focusing on intelligent vehicles, intelligent infrastructure, and th...

  1. Ecosystem Services Modeling Infrastructures: Simile/MIMES (Gund Institute) and FRAMES/3MRA (US EPA) Integrated Modeling for Forecasting

    EPA Science Inventory

    The Ecological Research Program (ERP) of the EPA Office of Research and Development has the vision of a comprehensive theory and practice for characterizing, quantifying, and valuing ecosystem services and their relationship to human well-being for environmental decision making. ...

  2. GAPS OF DECISION SUPPORT MODELS FOR PIPELINE RENEWAL AND RECOMMENDATIONS FOR IMPROVEMENT - Paper

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency (EPA)’s Aging Water Infrastructure Research Program, one key area of research pursued, in collaboration with wastewater and water utilities, was a study of the current approaches available for making rehabilitation versus replac...

  3. Human Research and Engineering Directorate, Major Laboratory Programs: Current Thrust Areas and Recent Research

    DTIC Science & Technology

    2010-09-01

    response equipment. After the hardware and software infrastructure is complete, the focus will shift to creating soundscapes over headphones and...Background sounds will emulate a range of conditions from quiet deserts to busy urban streets. Accurate portrayals of military soundscapes and listening

  4. Report of the Interagency Optical Network Testbeds Workshop 2, NASA Ames Research Center, September 12-14, 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.

  5. Women's health nursing in the context of the National Health Information Infrastructure.

    PubMed

    Jenkins, Melinda L; Hewitt, Caroline; Bakken, Suzanne

    2006-01-01

    Nurses must be prepared to participate in the evolving National Health Information Infrastructure and the changes that will consequently occur in health care practice and documentation. Informatics technologies will be used to develop electronic health records with integrated decision support features that will likely lead to enhanced health care quality and safety. This paper provides a summary of the National Health Information Infrastructure and highlights electronic health records and decision support systems within the context of evidence-based practice. Activities at the Columbia University School of Nursing designed to prepare nurses with the necessary informatics competencies to practice in a National Health Information Infrastructure-enabled health care system are described. Data are presented from electronic (personal digital assistant) encounter logs used in our Women's Health Nurse Practitioner program to support evidence-based advanced practice nursing care. Implications for nursing practice, education, and research in the evolving National Health Information Infrastructure are discussed.

  6. Mental health research in Brazil: policies, infrastructure, financing and human resources.

    PubMed

    Mari, Jair de Jesus; Bressan, Rodrigo A; Almeida-Filho, Naomar; Gerolin, Jerônimo; Sharan, Pratap; Saxena, Shekhar

    2006-02-01

    The objective of this descriptive study was to map mental health research in Brazil, providing an overview of infrastructure, financing and policies mental health research. As part of the Atlas-Research Project, a WHO initiative to map mental health research in selected low and middle-income countries, this study was carried out between 1998 and 2002. Data collection strategies included evaluation of governmental documents and sites and questionnaires sent to key professionals for providing information about the Brazilian mental health research infrastructure. In the year 2002, the total budget for Health Research was USD 101 million, of which USD 3.4 million (3.4) was available for Mental Health Research. The main funding sources for mental health research were found to be the São Paulo State Funding Agency (FAPESP, 53.2%) and the Ministry of Education (CAPES, 30.2%). The rate of doctors is 1.7 per 1,000 inhabitants, and the rate of psychiatrists is 2.7 per 100,000 inhabitants estimated 2000 census. In 2002, there were 53 postgraduate courses directed to mental health training in Brazil (43 in psychology, six in psychiatry, three in psychobiology and one in psychiatric nursing), with 1,775 students being trained in Brazil and 67 overseas. There were nine programs including psychiatry, neuropsychiatry, psychobiology and mental health, seven of them implemented in Southern states. During the five-year period, 186 students got a doctoral degree (37 per year) and 637 articles were published in Institute for Scientific Information (ISI)-indexed journals. The investment channeled towards postgraduate and human resource education programs, by means of grants and other forms of research support, has secured the country a modest but continuous insertion in the international knowledge production in the mental health area.

  7. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2014-01-01 2014-01-01 false Protected Critical Infrastructure Information...

  8. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2011-01-01 2011-01-01 false Protected Critical Infrastructure Information...

  9. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2010-01-01 2010-01-01 false Protected Critical Infrastructure Information...

  10. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2012-01-01 2012-01-01 false Protected Critical Infrastructure Information...

  11. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2013-01-01 2013-01-01 false Protected Critical Infrastructure Information...

  12. 78 FR 56903 - Office of the Director, National Institutes of Health; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Emphasis Panel; Comparative Medicine Resource Applications. Date: October 9-10, 2013. Time: 8:00 a.m. to 5... of Research Infrastructure Programs Special Emphasis Panel; Comparative Medicine Training...

  13. Electrofuels: More Efficient Than Photosynthesis

    ScienceCinema

    Toone, Eric; Eggert, Chas; Lynch, Mike; Roberts, B

    2018-06-06

    The Advanced Research Projects Agency -- Energy (ARPA-E) has funded successful programs with OPXBIO, NC State and others to create hyper efficient processes for manufacturing biofuels and electrofuels, which can be used in the existing transportation infrastructure.

  14. Electrofuels: More Efficient Than Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toone, Eric; Eggert, Chas; Lynch, Mike

    2011-01-01

    The Advanced Research Projects Agency -- Energy (ARPA-E) has funded successful programs with OPXBIO, NC State and others to create hyper efficient processes for manufacturing biofuels and electrofuels, which can be used in the existing transportation infrastructure.

  15. 75 FR 28821 - Advisory Panel for Integrative Activities, #1373; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... Foundation announces the following meeting. Name: Major Research Infrastructure (MRI) Committee of Visitors... Session Welcome and introduction of COV Members and present the overview of the MRI Program to the members...

  16. Human Health Countermeasures (HHC) Element Management Plan: Human Research Program. Revision B

    NASA Technical Reports Server (NTRS)

    Norsk, Peter; Baumann, David

    2012-01-01

    NASA s Human Research Program (HRP) is an applied research and technology program within the Human Exploration and Operations Mission Directorate (HEOMD) that addresses human health and performance risk mitigation strategies in support of exploration missions. The HRP research and technology development is focused on the highest priority risks to crew health and safety with the goal of ensuring mission success and maintaining long-term crew health. Crew health and performance standards, defined by the NASA Chief Health and Medical Officer (CHMO), set the acceptable risk level for exploration missions. The HRP conducts research to inform these standards as well as provide deliverables, such as countermeasures, that ensure standards can be met to maximize human performance and mission success. The Human Health Countermeasures (HHC) Element was formed as part of the HRP to develop a scientifically-based, integrated approach to understanding and mitigating the health risks associated with human spaceflight. These health risks have been organized into four research portfolios that group similar or related risks. A fifth portfolio exists for managing technology developments and infrastructure projects. The HHC Element portfolios consist of: a) Vision and Cardiovascular; b) Exercise and Performance; c) Multisystem; d) Bone; and e) Technology and Infrastructure. The HHC identifies gaps associated with the health risks and plans human physiology research that will result in knowledge required to more fully understand risks and will result in validated countermeasures to mitigate risks.

  17. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design.

    PubMed

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I

    2015-01-01

    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  18. Revitalization of the NASA Langley Research Center's Infrastructure

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  19. Minority University Research and Education Division (MURED) Update

    NASA Technical Reports Server (NTRS)

    Malone, John

    2000-01-01

    Program priorities include: (1) Expand and advance NASA's scientific and technological base by building on prior year's efforts in research and academic infrastructure; (2) Increase exposure to NASA's unique mission and facilities by developing closer relationships with NASA Strategic Enterprises; (3) Increase involvement in competitive peer review and merit selection processes; (4) Contribute significantly to the Agency's strategic goals and objectives; (5) Create systemic and sustainable change through partnerships and programs that enhance research and education programs; (6) Prepare faculty and students at HBCU's for NASA-related fields and increase number of students that enter and successfully complete degrees in NASA-related fields; (7) Establish measurable program goals and objectives; and (8) Improve financial management performance.

  20. Interdisciplinary training in mathematical biology through team-based undergraduate research and courses.

    PubMed

    Miller, Jason E; Walston, Timothy

    2010-01-01

    Inspired by BIO2010 and leveraging institutional and external funding, Truman State University built an undergraduate program in mathematical biology with high-quality, faculty-mentored interdisciplinary research experiences at its core. These experiences taught faculty and students to bridge the epistemological gap between the mathematical and life sciences. Together they created the infrastructure that currently supports several interdisciplinary courses, an innovative minor degree, and long-term interdepartmental research collaborations. This article describes how the program was built with support from the National Science Foundation's Interdisciplinary Training for Undergraduates in Biology and Mathematics program, and it shares lessons learned that will help other undergraduate institutions build their own program.

  1. Distinctions between intelligent manufactured and constructed systems and a new discipline for intelligent infrastructure hypersystems

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin

    2003-08-01

    Although the interconnected systems nature of the infrastructures, and the complexity of interactions between their engineered, socio-technical and natural constituents have been recognized for some time, the principles of effectively operating, protecting and preserving such systems by taking full advantage of "modeling, simulations, optimization, control and decision making" tools developed by the systems engineering and operations research community have not been adequately studied or discussed by many engineers including the writer. Differential and linear equation systems, numerical and finite element modeling techniques, statistical and probabilistic representations are universal, however, different disciplines have developed their distinct approaches to conceptualizing, idealizing and modeling the systems they commonly deal with. The challenge is in adapting and integrating deterministic and stochastic, geometric and numerical, physics-based and "soft (data-or-knowledge based)", macroscopic or microscopic models developed by various disciplines for simulating infrastructure systems. There is a lot to be learned by studying how different disciplines have studied, improved and optimized the systems relating to various processes and products in their domains. Operations research has become a fifty-year old discipline addressing complex systems problems. Its mathematical tools range from linear programming to decision processes and game theory. These tools are used extensively in management and finance, as well as by industrial engineers for optimizing and quality control. Progressive civil engineering academic programs have adopted "systems engineering" as a focal area. However, most of the civil engineering systems programs remain focused on constructing and analyzing highly idealized, often generic models relating to the planning or operation of transportation, water or waste systems, maintenance management, waste management or general infrastructure hazards risk management. We further note that in the last decade there have been efforts for "agent-based" modeling of synthetic infrastructure systems by taking advantage of supercomputers at various DOE Laboratories. However, whether there is any similitude between such synthetic and actual systems needs investigating further.

  2. 75 FR 81284 - National Protection and Programs Directorate; National Infrastructure Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... Directorate; National Infrastructure Advisory Council Meeting AGENCY: National Protection and Programs...

  3. [Attributes of forest infrastructure].

    PubMed

    Gao, Jun-kai; Jin, Ying-shan

    2007-06-01

    This paper discussed the origin and evolution of the conception of ecological infrastructure, the understanding of international communities about the functions of forest, the important roles of forest in China' s economic development and ecological security, and the situations and challenges to the ongoing forestry ecological restoration programs. It was suggested that forest should be defined as an essential infrastructure for national economic and social development in a modern society. The critical functions of forest infrastructure played in the transition of forestry ecological development were emphasized. Based on the synthesis of forest ecosystem features, it was considered that the attributes of forest infrastructure are distinctive, due to the fact that it is constructed by living biological material and diversified in ownership. The forestry ecological restoration program should not only follow the basic principles of infrastructural construction, but also take the special characteristics of forests into consideration in studying the managerial system of the programs. Some suggestions for the ongoing programs were put forward: 1) developing a modern concept of ecosystem where man and nature in harmony is the core, 2) formulating long-term stable investments for forestry ecological restoration programs, 3) implementing forestry ecological restoration programs based on infrastructure construction principles, and 4) managing forests according to the principles of infrastructural construction management.

  4. A Study of Facilities and Infrastructure Planning, Prioritization, and Assessment at Federal Security Laboratories

    DTIC Science & Technology

    2012-11-01

    Research , Development, Test , and Evaluation (RDT&E) Appropriations The RDT&E appropriation consists of the mission program budgets for all... research , development, test and evaluation work performed by contractors and government installations and includes an installations and activities budget...than $4,000,000. 9 f. Research , Development, Test , and Evaluation Appropriations The Research , Development, Test , and Evaluation (RDT&E

  5. Theoretically-Driven Infrastructure for Supporting Healthcare Teams Training at a Military Treatment Facility

    NASA Technical Reports Server (NTRS)

    Turner, Robert T.; Parodi, Andrea V.

    2011-01-01

    The Team Resource Center (TRC) at Naval Medical Center Portsmouth (NMCP) currently hosts a tri-service healthcare teams training course three times annually . The course consists of didactic learning coupled with simulation exercises to provide an interactive educational experience for healthcare professionals. The course is also the foundation of a research program designed to explore the use of simulation technologies for enhancing team training and evaluation. The TRC has adopted theoretical frameworks for evaluating training readiness and efficacy, and is using these frameworks to guide a systematic reconfiguration of the infrastructure supporting healthcare teams training and research initiatives at NMCP.

  6. CAEP 2014 Academic Symposium: "How to make research succeed in your emergency department: How to develop and train career researchers in emergency medicine".

    PubMed

    Perry, Jeffrey J; Snider, Carolyn E; Artz, Jennifer D; Stiell, Ian G; Shaeri, Sedigheh; McLeod, Shelley; Le Sage, Natalie; Hohl, Corinne; Calder, Lisa A; Vaillancourt, Christian; Holroyd, Brian; Hollander, Judd E; Morrison, Laurie J

    2015-05-01

    We sought to 1) identify best practices for training and mentoring clinician researchers, 2) characterize facilitators and barriers for Canadian emergency medicine researchers, and 3) develop pragmatic recommendations to improve and standardize emergency medicine postgraduate research training programs to build research capacity. We performed a systematic review of MEDLINE and Embase using search terms relevant to emergency medicine research fellowship/graduate training. We conducted an email survey of all Canadian emergency physician researchers. The Society for Academic Emergency Medicine (SAEM) research fellowship program was analysed, and other similar international programs were sought. An expert panel reviewed these data and presented recommendations at the Canadian Association of Emergency Physicians (CAEP) 2014 Academic Symposium. We refined our recommendations based on feedback received. Of 1,246 potentially relevant citations, we included 10 articles. We identified five key themes: 1) creating training opportunities; 2) ensuring adequate protected time; 3) salary support; 4) infrastructure; and 5) mentorship. Our survey achieved a 72% (67/93) response rate. From these responses, 42 (63%) consider themselves clinical researchers (i.e., spend a significant proportion of their career conducting research). The single largest constraint to conducting research was funding. Factors felt to be positive contributors to a clinical research career included salary support, research training (including an advanced graduate degree), mentorship, and infrastructure. The SAEM research fellowship was the only emergency medicine research fellowship program identified. This 2-year program requires approval of both the teaching centre and each applying fellow. This program requires training in 15 core competencies, manuscript preparation, and submission of a large grant to a national peer-review funding organization. We recommend that the CAEP Academic Section create a process to endorse research fellowship/graduate training programs. These programs should include two phases: Phase I: Research fellowship/graduate training would include an advanced research university degree and 15 core learning areas. Phase II: research consolidation involves a further 1-3 years with an emphasis on mentorship and scholarship production. It is anticipated that clinician scientists completing Phase I and Phase II training at a CAEP Academic Section-endorsed site(s) will be independent researchers with a higher likelihood of securing external peer-reviewed funding and be able to have a meaningful external impact in emergency medicine research.

  7. 0-6672 : ITS strategic plan for Texas : project summary.

    DOT National Transportation Integrated Search

    2013-08-01

    The purpose of this research was to provide a : framework to guide the development and : deployment of an integrated statewide program for : intelligent transportation systems (ITS).ITS is a : critical component of the transportation : infrastructure...

  8. Crossing the chasm: information technology to biomedical informatics.

    PubMed

    Fahy, Brenda G; Balke, C William; Umberger, Gloria H; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L; Conigliaro, Joseph

    2011-06-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) "Roadmap for Medical Research." The Clinical and Translational Science Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH's translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology platforms of the enterprise clinical operations within academic health centers.This report details one academic health center's transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This article describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.

  9. Eric Lantz | NREL

    Science.gov Websites

    Lantz Photo of Eric Lantz Eric Lantz Manager II-Program Management Research Eric.Lantz@nrel.gov acceptance of renewable energy infrastructure. Eric was a contributing author to the IEA Wind Task 26, The published in 2013. Prior to joining NREL full-time, Eric was a graduate research partner to NREL and a

  10. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  11. Development and Implementation of Collaborative e-Infrastructures and Data Management for Global Change Research

    NASA Astrophysics Data System (ADS)

    Allison, M. Lee; Davis, Rowena

    2016-04-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations that were adopted in fall, 2015 by the Belmont Forum collaboration of national science funding agencies and international bodies on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: • adoption of data principles that promote a global, interoperable e-infrastructure, that can be enforced • establishment of information and data officers for coordination of global data management and e-infrastructure efforts • promotion of effective data planning and stewardship • determination of international and community best practices for adoption • development of a cross-disciplinary training curriculum on data management and curation The implementation plan is being executed under four internationally-coordinated Action Themes towards a globally organized, internationally relevant e-infrastructure and data management capability drawn from existing components, protocols, and standards. The Belmont Forum anticipates opportunities to fund additional projects to fill key gaps and to integrate best practices into an e-infrastructure to support their programs but that can also be scaled up and deployed more widely. Background The Belmont Forum is a global consortium established in 2009 to build on the work of the International Group of Funding Agencies for Global Change Research toward furthering collaborative efforts to deliver knowledge needed for action to avoid and adapt to detrimental environmental change, including extreme hazardous events.

  12. 76 FR 55335 - Alternate Passenger Rail Service Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... proceeding to develop a pilot program that permits a rail carrier or rail carriers that own infrastructure... develop a pilot program that permits a rail carrier or rail carriers that own infrastructure over which... that permits a rail carrier or rail carriers that own infrastructure over which Amtrak operates a...

  13. 76 FR 77716 - Alternate Passenger Rail Service Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... program that permits a rail carrier or rail carriers that own infrastructure over which Amtrak operates... develops a pilot program that permits a rail carrier or rail carriers that own infrastructure over which... the infrastructure as described in Sec. 269.7 of this final rule. In addition, such information...

  14. Laboratory challenges in the scaling up of HIV, TB, and malaria programs: The interaction of health and laboratory systems, clinical research, and service delivery.

    PubMed

    Birx, Deborah; de Souza, Mark; Nkengasong, John N

    2009-06-01

    Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.

  15. Quantitative assessment of participant knowledge and evaluation of participant satisfaction in the CARES training program.

    PubMed

    Goodman, Melody S; Si, Xuemei; Stafford, Jewel D; Obasohan, Adesuwa; Mchunguzi, Cheryl

    2012-01-01

    The purpose of the Community Alliance for Research Empowering Social change (CARES) training program was to (1) train community members on evidence-based public health, (2) increase their scientific literacy, and (3) develop the infrastructure for community-based participatory research (CBPR). We assessed participant knowledge and evaluated participant satisfaction of the CARES training program to identify learning needs, obtain valuable feedback about the training, and ensure learning objectives were met through mutually beneficial CBPR approaches. A baseline assessment was administered before the first training session and a follow-up assessment and evaluation was administered after the final training session. At each training session a pretest was administered before the session and a posttest and evaluation were administered at the end of the session. After training session six, a mid-training evaluation was administered. We analyze results from quantitative questions on the assessments, pre- and post-tests, and evaluations. CARES fellows knowledge increased at follow-up (75% of questions were answered correctly on average) compared with baseline (38% of questions were answered correctly on average) assessment; post-test scores were higher than pre-test scores in 9 out of 11 sessions. Fellows enjoyed the training and rated all sessions well on the evaluations. The CARES fellows training program was successful in participant satisfaction and increasing community knowledge of public health, CBPR, and research methodology. Engaging and training community members in evidence-based public health research can develop an infrastructure for community-academic research partnerships.

  16. Developing and fostering a dynamic program for training in veterinary pathology and clinical pathology: veterinary students to post-graduate education.

    PubMed

    Lairmore, Michael D; Oglesbee, Michael; Weisbrode, Steve E; Wellman, Maxey; Rosol, Thomas; Stromberg, Paul

    2007-01-01

    Recent reports project a deficiency of veterinary pathologists, indicating a need to train highly qualified veterinary pathologists, particularly in academic veterinary medicine. The need to provide high-quality research training for veterinary pathologists has been recognized by the veterinary pathology training program of the Ohio State University (OSU) since its inception. The OSU program incorporates elements of both residency training and graduate education into a unified program. This review illustrates the components and structure of the training program and reflects on future challenges in training veterinary pathologists. Key elements of the OSU program include an experienced faculty, dedicated staff, and high-quality students who have a sense of common mission. The program is supported through cultural and infrastructure support. Financial compensation, limited research funding, and attractive work environments, including work-life balance, will undoubtedly continue to be forces in the marketplace for veterinary pathologists. To remain competitive and to expand the ability to train veterinary pathologists with research skills, programs must support strong faculty members, provide appropriate infrastructure support, and seek active partnerships with private industry to expand program opportunities. Shortages of trained faculty may be partially resolved by regional cooperation to share faculty expertise or through the use of communications technology to bridge distances between programs. To foster continued interest in academic careers, training programs will need to continue to evolve and respond to trainees' needs while maintaining strong allegiances to high-quality pathology training. Work-life balance, collegial environments that foster a culture of respect for veterinary pathology, and continued efforts to reach out to veterinary students to provide opportunities to learn about the diverse careers offered in veterinary pathology will pay long-term dividends for the future of the profession.

  17. Developing and Fostering a Dynamic Program for Training in Veterinary Pathology and Clinical Pathology: Veterinary Students to Post-graduate Education

    PubMed Central

    Lairmore, Michael D.; Oglesbee, Michael; Weisbrode, Steve E.; Wellman, Maxey; Rosol, Thomas; Stromberg, Paul

    2011-01-01

    Recent reports project a deficiency of veterinary pathologists, indicating a need to train highly qualified veterinary pathologists, particularly in academic veterinary medicine. The need to provide high-quality research training for veterinary pathologists has been recognized by the veterinary pathology training program of the Ohio State University (OSU) since its inception. The OSU program incorporates elements of both residency training and graduate education into a unified program. This review illustrates the components and structure of the training program and reflects on future challenges in training veterinary pathologists. Key elements of the OSU program include an experienced faculty, dedicated staff, and high-quality students who have a sense of common mission. The program is supported through cultural and infrastructure support. Financial compensation, limited research funding, and attractive work environments, including work–life balance, will undoubtedly continue to be forces in the marketplace for veterinary pathologists. To remain competitive and to expand the ability to train veterinary pathologists with research skills, programs must support strong faculty members, provide appropriate infrastructure support, and seek active partnerships with private industry to expand program opportunities. Shortages of trained faculty may be partially resolved by regional cooperation to share faculty expertise or through the use of communications technology to bridge distances between programs. To foster continued interest in academic careers, training programs will need to continue to evolve and respond to trainees' needs while maintaining strong allegiances to high-quality pathology training. Work–life balance, collegial environments that foster a culture of respect for veterinary pathology, and continued efforts to reach out to veterinary students to provide opportunities to learn about the diverse careers offered in veterinary pathology will pay long-term dividends for the future of the profession. PMID:18287474

  18. Building an intellectual infrastructure for space commerce

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Struthers, Jeffrey L.

    1992-01-01

    Competition in commerce requires an 'intellectual infrastructure', that is, a work force with extensive scientific and technical knowledge and a thorough understanding of the business world. This paper focuses on the development of such intellectual infrastructure for space commerce. Special consideration is given to the contributions to this development by the 17 Centers for the Commercial Development of Space Program conducting commercially oriented research in eight specialized areas: automation and robotics, remote sensing, life sciences, materials processing in space, space power, space propulsion, space structures and materials, and advanced satellite communications. Attention is also given to the Space Business Development Center concept aimed at addressing a variety of barriers common to the development of space commerce.

  19. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    NASA Astrophysics Data System (ADS)

    Gales, S.; Zamfir, N. V.

    2015-02-01

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  20. EPA's Safe and Sustainable Water Resources Research Program

    EPA Science Inventory

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an inte...

  1. Road Weather Management Program : connected vehicle-infrastructure research. Final Report

    DOT National Transportation Integrated Search

    2016-04-30

    This report provides insight into how existing vehicle sensor data (e.g., location, heading, road surface and atmospheric conditions) can be utilized by the CVI environment to support transportation safety through road-weather applications. Of specia...

  2. 75 FR 14454 - National Protection and Programs Directorate; National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ..., National Infrastructure Advisory Council. [FR Doc. 2010-6633 Filed 3-24-10; 8:45 am] BILLING CODE 9110-9P-P ... Directorate; National Infrastructure Advisory Council AGENCY: National Protection and Programs Directorate... Infrastructure Advisory Council (NIAC) will meet on Tuesday, April 13, 2010, at the National Press Club's...

  3. A Roadmap for Academic Health Centers to Establish Good Laboratory Practice-Compliant Infrastructure

    PubMed Central

    Adamo, Joan E.; Bauer, Gerhard; Berro, Marlene; Burnett, Bruce K.; Hartman, Karen A.; Masiello, Lisa M.; Moorman-White, Diane; Rubinstein, Eric P.; Schuff, Kathryn G.

    2012-01-01

    Prior to human clinical trials, nonclinical safety and toxicology studies are required to demonstrate that a new product appears safe for human testing; these nonclinical studies are governed by good laboratory practice (GLP) regulations. As academic health centers (AHCs) embrace the charge to increase the translation of basic science research into clinical discoveries, researchers at these institutions increasingly will be conducting GLP-regulated nonclinical studies. Because the consequences for noncompliance are severe and many AHC researchers are unfamiliar with Food and Drug Administration (FDA) regulations, the authors describe the regulatory requirements for conducting GLP research, including the strict documentation requirements, the necessary personnel training, the importance of study monitoring, and the critical role that compliance oversight plays in the process. They then explain the process that AHCs interested in conducting GLP studies should take prior to the start of their research program, including conducting a needs assessment and a gap analysis and selecting a model for GLP compliance. Finally, the authors identify and analyze several critical barriers to developing and implementing a GLP-compliant infrastructure at an AHC. Despite these challenges, the capacity to perform such research will help AHCs to build and maintain competitive research programs and to facilitate the successful translation of faculty-initiated research from nonclinical studies to first-in-human clinical trials. PMID:22373618

  4. A Plan to Develop a Red Tide Warning System for Seawater Desalination Process Management

    NASA Astrophysics Data System (ADS)

    Kim, Tae Woo; Yun, Hong Sik

    2017-04-01

    The holt of the seawater desalination process for fifty five days due to the eight-month long red tide in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red tide that threatens the stable operation of the seawater desalination facility. A red tide warning system can offer the seawater desalination facility manager customized services on red tide information and potential red tide inflow to the water intake. This study aimed to develop a red tide warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red tide forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red tide. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).

  5. ARM Mentor Selection Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisterson, D. L.

    2015-10-01

    The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that providemore » ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.« less

  6. Manpower and Educational Programs for Management, Research, and Professional Growth in Library and Information Services. Related Paper No. 6.

    ERIC Educational Resources Information Center

    Taylor, Robert S.

    Libraries are part of a larger information infrastructure which must be understood before planning professional education for librarianship. Research is needed in three areas: (1) options within overall library objectives, (2) information needs of different user audiences, and (3) technological and economic descriptions of information systems.…

  7. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    Transportation Energy Energy Research Global Security WMD Counterterrorism & Response Global Threat Reduction Homeland Defense & Force Protection Homeland Security Cyber & Infrastructure Security Global Business Procurement Technical Assistance Program (PTAP) Current Suppliers iSupplier Account Accounts

  8. Managing Watersheds with WMOST (Watershed Management Optimization Support Tool)

    EPA Science Inventory

    EPA’s Green Infrastructure research program and EPA Region 1 recently released a new public-domain software application, WMOST, which supports community applications of Integrated Water Resources Management (IWRM) principles (http://cfpub.epa.gov/si/si_public_record_report....

  9. Novel Alternative Cementitious Maerials for Development of the Next Generation of Sustainable Transportation Infrastructure[Tech Brief

    DOT National Transportation Integrated Search

    2015-10-01

    Georgia Institute of Technology and collaborators from Oklahoma State University, Tourney Consulting, and the Army Corps of Engineers, for an Exploratory Advanced Research (EAR) Program project funded by the Federal Highway Administrations (FHWA...

  10. Impacts of Permafrost on Infrastructure and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Trochim, E.; Schuur, E.; Schaedel, C.; Kelly, B. P.

    2017-12-01

    The Study of Environmental Arctic Change (SEARCH) program developed knowledge pyramids as a tool for advancing scientific understanding and making this information accessible for decision makers. Knowledge pyramids are being used to synthesize, curate and disseminate knowledge of changing land ice, sea ice, and permafrost in the Arctic. Each pyramid consists of a one-two page summary brief in broadly accessible language and literature organized by levels of detail including synthesizes and scientific building blocks. Three knowledge pyramids have been produced related to permafrost on carbon, infrastructure, and ecosystem services. Each brief answers key questions with high societal relevance framed in policy-relevant terms. The knowledge pyramids concerning infrastructure and ecosystem services were developed in collaboration with researchers specializing in the specific topic areas in order to identify the most pertinent issues and accurately communicate information for integration into policy and planning. For infrastructure, the main issue was the need to build consensus in the engineering and science communities for developing improved methods for incorporating data applicable to building infrastructure on permafrost. In ecosystem services, permafrost provides critical landscape properties which affect basic human needs including fuel and drinking water availability, access to hunting and harvest, and fish and wildlife habitat. Translating these broad and complex topics necessitated a systematic and iterative approach to identifying key issues and relating them succinctly to the best state of the art research. The development of the knowledge pyramids provoked collaboration and synthesis across distinct research and engineering communities. The knowledge pyramids also provide a solid basis for policy development and the format allows the content to be regularly updated as the research community advances.

  11. 77 FR 14462 - Space Transportation Infrastructure Matching Grants Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Space Transportation Infrastructure... grant proposals for the Space Transportation Infrastructure Matching Grants Program. SUMMARY: This notice solicits Fiscal Year (FY) 2012 grant proposals to continue the development of a Commercial Space...

  12. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L.; Sleiti, Ahmad

    2011-09-19

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has alsomore » established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.« less

  13. Linking International Development Actors to Geophysical Infrastructure: Exploring an IRIS Community Role in Bridging a Communications Gap

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Fisher, K.; Meltzer, A.; Nyblade, A.; Sandvol, E.; Willemann, R.

    2008-12-01

    Over the past quarter century, national investments in high-fidelity digital seismograph networks have resulted in a global infrastructure for real-time in situ earthquake monitoring. Many network operators adhere to community-developed standards, with the result that there are few technical impediments to data sharing and real-time information exchange. Two unanswered questions, however, are whether the existing models of international collaboration will ensure the stability and sustainability of global earthquake monitoring, and whether the participating institutions can work with international development agencies and non- governmental organizations in meeting linked development and natural hazard risk reduction goals. Since the 2004 Indian Ocean tsunami, many of these actors are enlarging their commitments to natural hazard risk reduction and building national technical capacities, among broader programs in poverty alleviation and adaptation to environmental stress. Despite this renewed commitment, international development organizations, with notable exceptions, have been relatively passive in discussions of how the existing earthquake monitoring infrastructure could be leveraged to support risk-reduction programs and meet sustainable development goals. At the same time, the international seismological community - comprising universities and government seismological surveys - has built research and education initiatives such as EarthScope, AfricaArray, and similar programs in China, Europe and South America, that use innovative instrumentation technologies and deployment strategies to enable new science and applications, and promote education and training in critical sectors. Can these developments be combined? Recognizing this communication or knowledge gap, the IRIS International Working Group (IWG) explores the link between the activities of IRIS Members using IRIS facilities and the missions of international development agencies, such as US AID, the World Bank, other international development banks, and agencies of the United Nations. Interests of US seismologists are served by encouraging development of modern seismographic systems in countries around the world to collect data that are useful in research as well as hazard mitigation and other national interests. Activities of the IWG to date include communicating the benefits of geophysical infrastructure and training to disaster risk reduction programs within the United Nations and development banks, coordinating an initiative to leverage retired PASSCAL data loggers through long-term loans to network operators in foreign countries, preparing a white paper outlining IRIS capabilities relevant to international development, and conducting a workshop, "Out of Africa", on modernizing geophysical infrastructure in the Americas and Southeast Asia through projects that are closely tied to university education and academic research.

  14. European environmental research infrastructures are going for common 30 years strategy

    NASA Astrophysics Data System (ADS)

    Asmi, Ari; Konjin, Jacco; Pursula, Antti

    2014-05-01

    Environmental Research infrastructures are facilities, resources, systems and related services that are used by research communities to conduct top-level research. Environmental research is addressing processes at very different time scales, and supporting research infrastructures must be designed as long-term facilities in order to meet the requirements of continuous environmental observation, measurement and analysis. This longevity makes the environmental research infrastructures ideal structures to support the long-term development in environmental sciences. ENVRI project is a collaborative action of the major European (ESFRI) Environmental Research Infrastructures working towards increased co-operation and interoperability between the infrastructures. One of the key products of the ENVRI project is to combine the long-term plans of the individual infrastructures towards a common strategy, describing the vision and planned actions. The envisaged vision for environmental research infrastructures toward 2030 is to support the holistic understanding of our planet and it's behavior. The development of a 'Standard Model of the Planet' is a common ambition, a challenge to define an environmental standard model; a framework of all interactions within the Earth System, from solid earth to near space. Indeed scientists feel challenged to contribute to a 'Standard Model of the Planet' with data, models, algorithms and discoveries. Understanding the Earth System as an interlinked system requires a systems approach. The Environmental Sciences are rapidly moving to become a one system-level science. Mainly since modern science, engineering and society are increasingly facing complex problems that can only be understood in the context of the full overall system. The strategy of the supporting collaborating research infrastructures is based on developing three key factors for the Environmental Sciences: the technological, the cultural and the human capital. The technological capital development concentrates on improving the capacities to measure, observe, preserve and compute. This requires staff, technologies, sensors, satellites, floats, software to integrate and to do analysis and modeling, including data storage, computing platforms and networks. The cultural capital development addresses issues such as open access to data, rules, licenses, citation agreements, IPR agreements, technologies for machine-machine interaction, workflows, metadata, and RI community on the policy level. Human capital actions are based on anticipated need of specialists, including data scientists and 'generalists' that oversee more than just their own discipline. Developing these, as interrelated services, should help the scientific community to enter innovative and large projects contributing to a 'Standard Model of the Planet'. To achieve the overall goal, ENVRI will publish a set of action items that contains intermediate aims, bigger and smaller steps to work towards the development of the 'Standard Model of the Planet' approach. This timeline of actions can used as reference and 'common denominator' in defining new projects and research programs. Either within the various environmental scientific disciplines or when cooperating among these disciplines or even when outreaching towards other disciplines like social sciences, physics/chemistry, medical/life sciences etc.

  15. Development of Vehicle-to-Infrastructure Applications Program Second Annual Report.

    DOT National Transportation Integrated Search

    2016-08-31

    This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the second year of the Development of Vehicle-to-Infrastructure Applications (V2I) Program. Participat...

  16. 78 FR 37648 - Space Transportation Infrastructure Matching (STIM) Grants Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Space Transportation Infrastructure...-availability of Space Transportation Infrastructure Matching Grants in FY 2013. SUMMARY: The Office of Commercial Space Transportation (AST) will not solicit or award grants under the STIM program this fiscal...

  17. Development of vehicle-to-infrastructure applications program : first annual report.

    DOT National Transportation Integrated Search

    2015-08-01

    This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the first year of the Development of Vehicle-to-Infrastructure Applications (V2I) Program. Participati...

  18. The Mais Médicos (More Doctors) Program, the infrastructure of Primary Health Units and the Municipal Human Development Index.

    PubMed

    Soares, Joaquim José; Machado, Maria Helena; Alves, Cecília Brito

    2016-09-01

    The main objective of this article was to examine the context in which professionals working within the Mais Médicos (More Doctors) Program operate. This study used the infrastructure scale of primary health units (PHUs), which was recently developed by Soares Neto and colleagues to provide more information regarding the relationship between the infrastructure of PHUs and the Municipal Human Development Index (MHDI) of municipalities that received Mais Médicos Program doctors. Using exploratory and inferential statistics, the article shows that 65.2% of the PHUs that received Mais Médicos Program doctors had medium-quality infrastructure and only 5.8% of them had low-quality infrastructure. The correlation of 0.50 between the infrastructure indicator and the MHDI points to a moderate tendency for municipalities with low MHDIs to have more precarious PHUs. Using multiple linear regression analysis it can be inferred that the main factor that contributed to the increase in the infrastructure indicator of the PHUs was the average municipal income. On the other hand, the factor that negatively affected the infrastructure of the PHUs was being located in the north or northeast regions.

  19. LANL: Weapons Infrastructure Briefing to Naval Reactors, July 18, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, Frances

    Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Toolmore » for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.« less

  20. Information Operations: A Research Aid Includes Coverage of: Information Warfare, Information Assurance, and Infrastructure Protection.

    DTIC Science & Technology

    1997-09-01

    Policy Implications Stephen D. Biddle, IDA Papaer P-3123 Institute for Defense Analysis (IDA), Strategy Forces and Research Division 1801 N...IDA INSTITUTE FOR DEFENSE ANALYSES Information Operations: A Research Aid Includes Coverage of: Information Warfare, Information Assurance...Gray, Principal Investigator [pBC Q^^E^ nsSSPECTBD 8’ 19980303 031 This work was conducted under IDA’S central research program. The publication of

  1. What Makes a Plastic Surgery Residency Program Attractive? An Applicant's Perspective.

    PubMed

    Atashroo, David A; Luan, Anna; Vyas, Krishna S; Zielins, Elizabeth R; Maan, Zeshaan; Duscher, Dominik; Walmsley, Graham G; Lynch, Michael P; Davenport, Daniel L; Wan, Derrick C; Longaker, Michael T; Vasconez, Henry C

    2015-07-01

    Plastic surgery is among the most competitive specialties in medicine, but little is known about the attributes of programs that are most attractive to successful applicants. This study aimed to understand and provide insights regarding program characteristics that are most influential to students when ranking plastic surgery programs. An anonymous online survey was conducted with newly matched plastic surgery residents for the integrated and combined Match in 2012 and 2013. Subjects were queried regarding their demographics, qualifications, application experiences, and motivations for residency program selection. A total of 92 of 245 matched plastic surgery residents (38 percent) responded to the survey. The perception of resident happiness was the most positive factor influencing program ranking, followed by high operative volume, faculty mentorship, and strong research infrastructure. Perception of a program as "malignant" was the most negative attribute. Applicants with Step 1 scores greater than 245 received significantly more interviews (p =0.001) and considered resident benefits less important (p < 0.05), but geographic location more important (p =0.005). Applicants who published more than two articles also received more interviews (p =0.001) and ranked a strong research infrastructure and program reputation as significantly more important (p < 0.05). Forty-two percent of applicants completed an away rotation at the program with which they matched, and these applicants were more likely to match at their number one ranked program (p = 0.001). Plastic surgery applicants have differing preferences regarding the ideal training program, but some attributes resonate. These trends can guide programs for improvement in attracting the best applicants.

  2. 78 FR 66373 - Office of the Director, National Institutes of Health; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... of the Office of Research Infrastructure Programs Special Emphasis Panel, October 09, 2013, 08:00 a.m... Advisory Committee Policy. [FR Doc. 2013-26434 Filed 11-4-13; 8:45 am] BILLING CODE 4140-01-P ...

  3. Our Plan for a Wireless Loan Service.

    ERIC Educational Resources Information Center

    Allmang, Nancy

    2003-01-01

    Discusses the planning for wireless technology at the research library of the National Institute of Standards and Technology (NIST). Highlights include computer equipment, including laptops and PDAs; local area networks; equipment loan service; writing a business plan; infrastructure; training programs; and future considerations, including…

  4. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as themore » science, applications and future perspectives will be discussed.« less

  5. Building Community-Engaged Health Research and Discovery Infrastructure on the South Side of Chicago: Science in Service to Community Priorities

    PubMed Central

    Lindau, Stacy Tessler; Makelarski, Jennifer A.; Chin, Marshall H.; Desautels, Shane; Johnson, Daniel; Johnson, Waldo E.; Miller, Doriane; Peters, Susan; Robinson, Connie; Schneider, John; Thicklin, Florence; Watson, Natalie P.; Wolfe, Marcus; Whitaker, Eric

    2011-01-01

    Objective To describe the roles community members can and should play in, and an asset-based strategy used by Chicago’s South Side Health and Vitality Studies for, building sustainable, large-scale community health research infrastructure. The Studies are a family of research efforts aiming to produce actionable knowledge to inform health policy, programming, and investments for the region. Methods Community and university collaborators, using a consensus-based approach, developed shared theoretical perspectives, guiding principles, and a model for collaboration in 2008, which were used to inform an asset-based operational strategy. Ongoing community engagement and relationship-building support the infrastructure and research activities of the Studies. Results Key steps in the asset-based strategy include: 1) continuous community engagement and relationship building, 2) identifying community priorities, 3) identifying community assets, 4) leveraging assets, 5) conducting research, 6) sharing knowledge and 7) informing action. Examples of community member roles, and how these are informed by the Studies’ guiding principles, are provided. Conclusions Community and university collaborators, with shared vision and principles, can effectively work together to plan innovative, large-scale community-based research that serves community needs and priorities. Sustainable, effective models are needed to realize NIH’s mandate for meaningful translation of biomedical discovery into improved population health. PMID:21236295

  6. Climate Science's Globally Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  7. Clemson University Science Master's Program in Sustainable and Resilient Infrastructure: A program evaluation

    NASA Astrophysics Data System (ADS)

    O'Sell, Elizabeth Eberhart

    The Clemson University Science Master's Program (SMP) in Sustainable and Resilient Infrastructure is a program which aims to link engineering, materials, construction, environment, architecture, business, and public policy to produce graduates with unique holistic perspective and expertise to immediately contribute to the workforce in the area of sustainable and resilient infrastructure. A program evaluation of the SMP has been performed to study the effectiveness of the SMP and identify areas where the goals and vision of the SMP are achieved and areas where improvements can be made. This was completed by analysis of trends within survey responses, review of Master's thesis reports, and review of courses taken. It was found that the SMP has facilitated new interdisciplinary research collaborations of faculty in different concentration areas within the Glenn Department of Civil Engineering, as well as collaboration with faculty in other departments. It is recommended that a course which provides instruction in all eight competency areas be required for all SMP students to provide a comprehensive overview and ensure all students are exposed to concepts of all competency areas. While all stakeholders are satisfied with the program and believe it has been successful thus far, efforts do need to be made as the program moves forward to address and improve some items that have been mentioned as needing improvement. The concerns about concentration courses, internship planning, and advising should be addressed. This evaluation provides benefits to prospective students, current SMP participants, and outside program supporters. The goal of this evaluation is to provide support that the SMP is an effective and worthwhile program for participating students, while attempting to identify any necessary program improvements and provide recommendations for achieving these improvements. This goal has been accomplished.

  8. 78 FR 29375 - Protected Critical Infrastructure Information (PCII) Office Self-Assessment Questionnaire

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...), Office of Infrastructure Protection (IP), Infrastructure Information Collection Division (IICD... Forrest DHS/NPPD/IP/PCII, [email protected] . SUPPLEMENTARY INFORMATION: The PCII Program was... administered by DHS/ NPPD/IP/IICD. The PCII Program is responsible for ensuring compliance with the Regulation...

  9. Creating a Culture of Communication: A Graduate-Level STEM Communication Fellows Program at a Science and Engineering University

    ERIC Educational Resources Information Center

    Simpson, Steve; Clemens, Rebecca; Killingsworth, Drea Rae; Ford, Julie Dyke

    2015-01-01

    A flurry of recent research in writing studies has addressed the need for more systematic approaches to graduate-level writing support, though more research is needed into more organic models that account for graduate students' specific needs and that build infrastructure for writing support within university departments. This article reports on a…

  10. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle. More information about NOON is available at NOON's web site www.oceanobservatory.com. PIC

  11. 77 FR 26792 - Advisory Committee for Polar Programs; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... long-range planning. Agenda: Staff presentations and discussion on opportunities and challenges for polar research, education and infrastructure; discussion of OPP Strategic Vision and Committee of Visitors process. Dated: May 2, 2012. Susanne Bolton, Committee Management Officer. [FR Doc. 2012-10881...

  12. From Earth to orbit. [assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Arthur

    1992-01-01

    Within this document, the National Research Council (NRC) assesses the requirements, benefits, technological feasibility, and roles of Earth-to-orbit transportation options that could be developed in support of the national space program. Among the topics covered are launch vehicles and infrastructure, propulsion, and technology.

  13. Concept development and needs identification for Intelligent Network Flow Optimization (INFLO) : assessment of relevant prior and ongoing research.

    DOT National Transportation Integrated Search

    2012-03-01

    Through the USDOT Dynamic Mobility Applications (DMA) program, a number of high-priority mobility applications have been assessed and identified that can connect vehicles, travelers, and infrastructure in order to provide better information to travel...

  14. A mobile concrete laboratory to support quality concrete, technology transfer, and training.

    DOT National Transportation Integrated Search

    2016-07-01

    This report is a summary of work performed by the Mobile Infrastructure Materials Testing Laboratory (MIMTL) as a part of the Joint : Transportation Research Program (JTRP) through SPR-3858. The development of the MIMTL began in February of 2014 and ...

  15. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  16. Establishing a distributed national research infrastructure providing bioinformatics support to life science researchers in Australia.

    PubMed

    Schneider, Maria Victoria; Griffin, Philippa C; Tyagi, Sonika; Flannery, Madison; Dayalan, Saravanan; Gladman, Simon; Watson-Haigh, Nathan; Bayer, Philipp E; Charleston, Michael; Cooke, Ira; Cook, Rob; Edwards, Richard J; Edwards, David; Gorse, Dominique; McConville, Malcolm; Powell, David; Wilkins, Marc R; Lonie, Andrew

    2017-06-30

    EMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distributed national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia's capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs. The activities of EMBL-ABR are focussed in six key areas, aligning with comparable international initiatives such as ELIXIR, CyVerse and NIH Commons. These key areas-Tools, Data, Standards, Platforms, Compute and Training-are described in this article. © The Author 2017. Published by Oxford University Press.

  17. caCORE version 3: Implementation of a model driven, service-oriented architecture for semantic interoperability.

    PubMed

    Komatsoulis, George A; Warzel, Denise B; Hartel, Francis W; Shanbhag, Krishnakant; Chilukuri, Ram; Fragoso, Gilberto; Coronado, Sherri de; Reeves, Dianne M; Hadfield, Jillaine B; Ludet, Christophe; Covitz, Peter A

    2008-02-01

    One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service-Oriented Architecture (SSOA) for cancer research by the National Cancer Institute's cancer Biomedical Informatics Grid (caBIG).

  18. caCORE version 3: Implementation of a model driven, service-oriented architecture for semantic interoperability

    PubMed Central

    Komatsoulis, George A.; Warzel, Denise B.; Hartel, Frank W.; Shanbhag, Krishnakant; Chilukuri, Ram; Fragoso, Gilberto; de Coronado, Sherri; Reeves, Dianne M.; Hadfield, Jillaine B.; Ludet, Christophe; Covitz, Peter A.

    2008-01-01

    One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service Oriented Architecture (SSOA) for cancer research by the National Cancer Institute’s cancer Biomedical Informatics Grid (caBIG™). PMID:17512259

  19. The Infrastructure of an Integrated Virtual Reality Environment for International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Wang, Peter Hor-Ching

    1996-01-01

    This study is a continuation of the summer research of 1995 NASA/ASEE Summer Faculty Fellowship Program. This effort is to provide the infrastructure of an integrated Virtual Reality (VR) environment for the International Space Welding Experiment (ISWE) Analytical Tool and Trainer and the Microgravity Science Glovebox (MSG) Analytical Tool study. Due to the unavailability of the MSG CAD files and the 3D-CAD converter, little was done to the MSG study. However, the infrastructure of the integrated VR environment for ISWE is capable of performing the MSG study when the CAD files become available. Two primary goals are established for this research. First, the essential peripheral devices for an integrated VR environment will be studied and developed for the ISWE and MSG studies. Secondly, the training of the flight crew (astronaut) in general orientation, procedures, and location, orientation, and sequencing of the welding samples and tools are built into the VR system for studying the welding process and training the astronaut.

  20. Extreme Light Infrastructure - Nuclear Physics Eli-Np Project

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-06-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  1. National Report Norway: Arctic Access to Space

    NASA Astrophysics Data System (ADS)

    Brekke, P.

    2015-09-01

    Norway has long traditions as a space nation, much due to our northern latitude. Our space science activities are concentrated into relatively few areas. This concentration is necessary due to limited resources, both in funding and personnel. The main scientific activities are within Solar-terrestrial physics and cosmology. The first field has been a priority since before the space age and is still the major priority. The usage of the ground infrastructure in Northern Norway and on Svalbard is essential in studying the middle and upper atmosphere and the interaction with the Sun. This includes the utilization of sounding rockets, both small and large, and ground based installations like radars, lidars and other optical instrumentation. The planned use of Svalbard as a launch site for large stratospheric balloons may allow the cosmology community access to our northern infrastructure. The solar physics community is also heavily involved in the HINODE and IRIS missions and Norway is supporting downlink of data via the Svalbard Station for these missions. The sounding rocket program is in close collaboration with many countries like Germany, USA, France, Canada and Japan. Two scientific sounding rocket programs are currently being pursued: The ICI series (from Svalbard) and MaxiDusty (from Andoya). A series of scientific publications have recently appeared from the ECOMA campaign a few years ago. A significant improvement of today's polar and ionospheric research infrastructure in Northern Norway and Svalbard has recently been put on the ESFRI roadmap for European research infrastructure through the 5105 and EISCAT 3D initiatives. The Norwegian government has recently decided to upgrade the VLBI facilities at Svalbard.

  2. Accelerating the translation of research into practice in long term services and supports: a critical need for federal infrastructure at the nexus of aging and disability.

    PubMed

    Washko, Michelle M; Campbell, Margaret; Tilly, Jane

    2012-01-01

    The nexus of aging and disability, characterized by the phenomenon of aging with a disability, will become more visible as the population ages and the number of people with disabilities surviving to midlife increases. This article addresses 3 interrelated issues critical to the fields of aging and disability: increasing demand for community-based long-term services and supports, a paucity of evidence-based programs demonstrating effectiveness in facilitating independence for those aging with a disability, and lack of a federal infrastructure to support coordinated investments in research-to-practice for this population. Suggestions for federal interagency collaborations are given, along with roles for key stakeholders.

  3. 78 FR 43261 - Transportation Infrastructure Financing and Innovation Act (TIFIA) Program; Agency Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... Infrastructure Financing and Innovation Act (TIFIA) Program; Agency Information Collection Activities and Request... Transportation (DOT) invites public comments on a request to the Office of Management and Budget (OMB) to approve... 2013 and $1 billion in FY 2014 for the Transportation Infrastructure Financing and Innovation Act...

  4. 77 FR 68795 - Protected Critical Infrastructure Information (PCII) Office Self-Assessment Questionnaire

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...), Office of Infrastructure Protection (IP), Infrastructure Information Collection Division (IICD... forwarded to DHS/NPPD/IP/IICD, 245 Murray Lane, SW., Mail Stop 0602, Arlington,VA 20598-0602. Emailed.../IP PCII Program to assess state and local programs, their compliance with PCII rules and requirements...

  5. 50 CFR 86.13 - What is boating infrastructure?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false What is boating infrastructure? 86.13 Section 86.13 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... (BIG) PROGRAM General Information About the Grant Program § 86.13 What is boating infrastructure...

  6. Cooperative Extension as a Framework for Health Extension: The Michigan State University Model.

    PubMed

    Dwyer, Jeffrey W; Contreras, Dawn; Eschbach, Cheryl L; Tiret, Holly; Newkirk, Cathy; Carter, Erin; Cronk, Linda

    2017-10-01

    The Affordable Care Act charged the Agency for Healthcare Research and Quality to create the Primary Care Extension Program, but did not fund this effort. The idea to work through health extension agents to support health care delivery systems was based on the nationally known Cooperative Extension System (CES). Instead of creating new infrastructure in health care, the CES is an ideal vehicle for increasing health-related research and primary care delivery. The CES, a long-standing component of the land-grant university system, features a sustained infrastructure for providing education to communities. The Michigan State University (MSU) Model of Health Extension offers another means of developing a National Primary Care Extension Program that is replicable in part because of the presence of the CES throughout the United States. A partnership between the MSU College of Human Medicine and MSU Extension formed in 2014, emphasizing the promotion and support of human health research. The MSU Model of Health Extension includes the following strategies: building partnerships, preparing MSU Extension educators for participation in research, increasing primary care patient referrals and enrollment in health programs, and exploring innovative funding. Since the formation of the MSU Model of Health Extension, researchers and extension professionals have made 200+ connections, and grants have afforded savings in salary costs. The MSU College of Human Medicine and MSU Extension partnership can serve as a model to promote health partnerships nationwide between CES services within land-grant universities and academic health centers or community-based medical schools.

  7. 75 FR 18850 - National Protection and Programs Directorate; Chemical Facility Anti-Terrorism Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... Programs Directorate (NPPD), Office of Infrastructure Protection (IP), Infrastructure Security Compliance... submitted by mail to the DHS/NPPD/ IP/ISCD CFATS Program Manager at the Department of Homeland Security, 245...

  8. ARCUS Project Managers and the Intangible Infrastructure of Large Interdisciplinary Arctic Research Networks

    NASA Astrophysics Data System (ADS)

    Myers, B.; Wiggins, H. V.; Turner-Bogren, E. J.; Warburton, J.

    2017-12-01

    Project Managers at the Arctic Research Consortium of the U.S. (ARCUS) lead initiatives to convene, communicate with, and connect the Arctic research community across challenging disciplinary, geographic, temporal, and cultural boundaries. They regularly serve as the organizing hubs, archivists and memory-keepers for collaborative projects comprised of many loosely affiliated partners. As leading organizers of large open science meetings and other outreach events, they also monitor the interdisciplinary landscape of community needs, concerns, opportunities, and emerging research directions. However, leveraging the ARCUS Project Manager role to strategically build out the intangible infrastructure necessary to advance Arctic research requires a unique set of knowledge, skills, and experience. Drawing on a range of lessons learned from past and ongoing experiences with collaborative science, education and outreach programming, this presentation will highlight a model of ARCUS project management that we believe works best to support and sustain our community in its long-term effort to conquer the complexities of Arctic research.

  9. Achieving successful evidence-based practice implementation in juvenile justice: The importance of diagnostic and evaluative capacity.

    PubMed

    Walker, Sarah Cusworth; Bumbarger, Brian K; Phillippi, Stephen W

    2015-10-01

    Evidence-based programs (EBPs) are an increasingly visible aspect of the treatment landscape in juvenile justice. Research demonstrates that such programs yield positive returns on investment and are replacing more expensive, less effective options. However, programs are unlikely to produce expected benefits when they are not well-matched to community needs, not sustained and do not reach sufficient reach and scale. We argue that achieving these benchmarks for successful implementation will require states and county governments to invest in data-driven decision infrastructure in order to respond in a rigorous and flexible way to shifting political and funding climates. We conceptualize this infrastructure as diagnostic capacity and evaluative capacity: Diagnostic capacity is defined as the process of selecting appropriate programing and evaluative capacity is defined as the ability to monitor and evaluate progress. Policy analyses of Washington State, Pennsylvania and Louisiana's program implementation successes are used to illustrate the benefits of diagnostic and evaluate capacity as a critical element of EBP implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors andmore » measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry infrastructure based on acoustic wireless transmission of data that is being developed and tested by the INL, Penn State and Westinghouse.« less

  11. Review of flat panel display programs and defense applications

    NASA Astrophysics Data System (ADS)

    Gnade, Bruce; Schulze, Raymond; Henderson, Girardeau L.; Hopper, Darrel G.

    1997-07-01

    Flat panel display research has comprised a substantial portion of the national investment in new technology for economic and national security for the past nine years. These investments have ben made principally via several Defense Advanced Research Projects Agency (DARPA) programs, known collectively as the continuing High Definition Systems Program, and the Office of the Secretary of Defense Production Act Title III Program. Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These research programs are reviewed and opportunities for applications are described. Future technology development, transfer, and transition requirements are identified. Strategy and vision are documented to assist the identification of areas meriting further consideration.

  12. A Study of Facilities and Infrastructure Planning, Prioritization, and Assessment at Federal Security Laboratories (Revised)

    DTIC Science & Technology

    2013-02-01

    or funds authorized under Section 219(a) for projects costing no more than $4M. Research , Development, Test , and Evaluation (RDT&E) Appropriations...The RDT&E appropriation consists of the mission program budgets for all research , development, test and evaluation work performed by contractors...carry out an unspecified minor military construction project costing not more than $4,000,000. 9 f. Research , Development, Test , and Evaluation

  13. The NASA Scientific and Technical Information Program: Prologue to the Future

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA STI Program offers researchers an infrastructure of people and systems that facilitates access to STI; worldwide. The Program is also NASA's institutional mechanism for disseminating the results of its research and developing activities. Through discussions in 1991, the STI Program formulated its Strategic Plan. The plan gives the Program a renewed sense of direction by focusing on future opportunities, customer requirements and Program goals, along with the changes needed to achieve those goals. The Program provides users access to a massive flow of STI which, in fact, represents the largest collection of aeronautical and space science information in the world. The STI Program products and services are outlined, along with the NASA centers, international operations, and the fact that total quality management drives NASA wide program developments. As is detailed, the NASA STI Program is using its resources as effectively as possible to meet the missing needs of NASA.

  14. Aging Water Infrastructure and Nutrient Control at WWTPs: U.S. Environmental Protection Agency Research Program

    EPA Science Inventory

    What are… the effects of major influencing factors (climate change, population dynamics, etc.) on future system demands? the innovative technologies that can cost-effectively improve performance and extend the life of existing systems? the new designs and management approaches...

  15. Benchmarking infrastructure for mutation text mining

    PubMed Central

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  16. Benchmarking infrastructure for mutation text mining.

    PubMed

    Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo

    2014-02-25

    Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

  17. Defense Infrastructure: The Enhanced Use Lease Program Requires Management Attention

    DTIC Science & Technology

    2011-06-01

    included in our EUL case studies, the escrow agreements executed by the Army in connection with the EUL at Yuma Proving Ground , Arizona, and the EUL at...research park. 6 Army Redstone Arsenal, Alabama 2009 50 468 acres Site for office and research center development. 7 Army Yuma Proving Ground ...9The three Army EUL case studies were located at Aberdeen Proving Ground , Maryland; Fort

  18. Intermediate outcomes of a tribal community public health infrastructure assessment.

    PubMed

    English, Kevin C; Wallerstein, Nina; Chino, Michelle; Finster, Carolyn E; Rafelito, Alvin; Adeky, Sarah; Kennedy, Marianna

    2004-01-01

    The purpose of this collaborative participatory project was to assess the strengths and needs of a tribal community as part of a larger public health capacity building program. Key project partners included: the Ramah Band of Navajo Indians, the Albuquerque Area Indian Health Board, the University of New Mexico Masters in Public Health Program, and the University of Nevada, Las Vegas, American Indian Research and Education Center. Principal intervention steps entailed: 1) relationship-building activities among tribal programs and between the Tribe and the scientific community; 2) an orientation to public health; 3) a comprehensive public health infrastructure assessment, utilizing a standardized CDC instrument; and 4) a prioritization of identified needs. The direct outcome was the development and beginning implementation of a community specific public health strategic action plan. Broader results included: 1) increased comprehension of public health within the Tribe; 2) the creation of a community public health task force; 3) the design of a tribally applicable assessment instrument; and 4) improved collaboration between the Tribe and the scientific community. This project demonstrated that public health assessment in tribal communities is feasible and valuable. Further, the development of a tribally applicable instrument highlights a significant tribal contribution to research and assessment.

  19. NASA Nebraska Space Grant Consortium 1995-1999 Self Evaluation

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M.; Bowen, Brent D.; Schaffart, Mary M.

    1999-01-01

    The NASA Nebraska Space Grant Consortium receives funds from NASA to allow Nebraska colleges and universities to implement balanced programs of research, education and public service related to aeronautics, space science and technology. Nebraska is a capability enhancement state which directs efforts and resources toward developing research infrastructure and enhancing the quality of aerospace research and education for all Nebraskans. Furthermore, the Nebraska Space Grant strives to provide national leadership in applied aspects of aeronautics. Nebraska has met, meets and will continue to meet all requirements set forth by NASA. Nebraska is a top-tier consortium and will continue to be a model program.

  20. Services for domain specific developments in the Cloud

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, Horst; Gemuend, André

    2015-04-01

    We will discuss and demonstrate the possibilities of new Cloud Services where the complete development of code is in the Cloud. We will discuss the possibilities of such services where the complete development cycle from programing to testing is in the cloud. This can be also combined with dedicated research domain specific services and hide the burden of accessing available infrastructures. As an example, we will show a service that is intended to complement the services of the VERCE projects infrastructure, a service that utilizes Cloud resources to offer simplified execution of data pre- and post-processing scripts. It offers users access to the ObsPy seismological toolbox for processing data with the Python programming language, executed on virtual Cloud resources in a secured sandbox. The solution encompasses a frontend with a modern graphical user interface, a messaging infrastructure as well as Python worker nodes for background processing. All components are deployable in the Cloud and have been tested on different environments based on OpenStack and OpenNebula. Deployments on commercial, public Clouds will be tested in the future.

  1. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.

    2008-12-01

    The Great Basin is characterized by complex basin and range topography, arid to semiarid climate, and a history of sensitivity to climate change. Mountain areas comprise about 10% of the landscape, yet are the areas of highest precipitation and generate 85% of groundwater recharge and most surface runoff. These characteristics provide an ideal natural laboratory to study the effects of climate change. The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision "to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders." Six major strategies are proposed to develop infrastructure needs and attain our vision: 1) Develop a capability to model climate change at a regional and sub-regional scale(Climate Modeling Component) 2) Analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Assess effects on human systems and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Train teachers and students at all levels and provide public outreach in climate change issues (Education Component). Two new climate observational transects will be established across Great Basin Ranges, one anticipated on a mountain range in southern Nevada and the second to be located in north-central Nevada. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions key to understanding the effects of future climate change on Great Basin mountain ecosystems and the potential management strategies for responding to these changes: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems? Infrastructure developed through this project will provide new interdisciplinary capability to detect, analyze, and model effects of regional climate change in mountainous regions of the west and provide a major contribution to existing climate change research and monitoring networks.

  2. 10 CFR 217.3 - Program eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... programs for military and energy production or construction, military or critical infrastructure assistance... Act (42 U.S.C. 5195 et seq.) and critical infrastructure protection and restoration. ...

  3. 10 CFR 217.3 - Program eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... programs for military and energy production or construction, military or critical infrastructure assistance... Act (42 U.S.C. 5195 et seq.) and critical infrastructure protection and restoration. ...

  4. 10 CFR 217.3 - Program eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... programs for military and energy production or construction, military or critical infrastructure assistance... Act (42 U.S.C. 5195 et seq.) and critical infrastructure protection and restoration. ...

  5. Higher Education Scenario from a Cross-Cultural Perspective: eLearning Implications

    ERIC Educational Resources Information Center

    Serradell-Lopez, Enric; Lara-Navarra, Pablo; Casado-Lumbreras, Cristina

    2012-01-01

    Higher education institutions are crucial in the present. Universities play a role that varies with time and evolves with society. Globalization is changing the world and affecting higher education institutions in all their intrinsic characteristics: personnel, programs, infrastructures and students. Analyzed is the relevant research on cultural…

  6. 76 FR 55107 - Draft Environmental Impact Statement for General Management Plan, Gulf Islands National Seashore...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... reduce the level of infrastructure rebuilt on the barrier islands and allow natural processes to... to enhance visitor education, research, and resource protection opportunities. The seashore would be... barrier islands and coastal environments. Interpretive programs would focus on illustrating how barrier...

  7. State Technical Assistance Initiatives for IDEA Part B Programs.

    ERIC Educational Resources Information Center

    Hanft, Barbara

    This report discusses a study that examined state technical assistance (TA) infrastructures that support research-based practices for improved outcomes for students with disabilities served under Part B of the Individuals with Disabilities Education Act. The 10 participating states included: Alabama, Colorado, Iowa, Maryland, Montana, Oklahoma,…

  8. A Comprehensive Approach of E-learning Design for Effective Learning Transfer

    ERIC Educational Resources Information Center

    Lim, Doo Hun

    2012-01-01

    Literature indicates that there is limited research on the national and organizational level decision processes to develop and deliver e-learning programs. In this paper, existing e-learning literature is analyzed in terms of national level factors (national culture, readiness for new technology, and infrastructure), organizational level factors…

  9. 76 FR 34287 - ITS Joint Program Office; Core System Requirements Walkthrough and Architecture Proposal Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Architecture Proposal Review Meetings and Webinars; Notice of Public Meeting AGENCY: Research and Innovative... webinars to discuss the Vehicle to Infrastructure (V2I) Core System Requirements and Architecture Proposal... review of System Requirements Specification and Architecture Proposal. The second meeting will be a...

  10. Is the Infrastructure of EHDI Programs Working?

    ERIC Educational Resources Information Center

    Houston, K. Todd; Hoffman, Jeff; Munoz, Karen F.; Bradham, Tamala S.

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that consisted of 12 evaluative areas of EHDI programs. For the EHDI program infrastructure area, 47 coordinators responded with a total of 292 items, and themes were identified in each…

  11. 78 FR 59666 - Transmission Infrastructure Program; Proposed Transmission Infrastructure Program Updates and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... Loan Programs Office into the process. The FRN also identifies the principles Western will continue using to ensure (1) that the Program is separate and distinct from Western's power marketing functions... obtain project funding. Table of Contents I. Definitions II. Principles III. Project Evaluation Criteria...

  12. Public key infrastructure for DOE security research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiken, R.; Foster, I.; Johnston, W.E.

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-keymore » infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.« less

  13. Informal Physics Education: Outreach from a National Laboratory

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne

    2012-02-01

    This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.

  14. Achievements of the DOT-NASA Joint Program on Remote Sensing and Spatial Information Technologies: Application to Multimodal Transportation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents three-year accomplishments from the national program on Commercial Remote Sensing and Geospatial Technology (CRSGT) application to transportation, administered by the U.S. Department of Transportation (U.S. DOT) in collaboration with the National Aeronautics and Space Administration (NASA). The joint program was authorized under Section 5113 of the Transportation Equity Act for the 21st Century (TEA-21). This is the first national program of its type focusing on transportation applications of emerging commercial remote sensing technologies. U.S. DOT's Research and Special Programs Administration manages the program in coordination with NASA's Earth Science Enterprise's application programs. The program focuses on applications of CRSGT products and systems for providing smarter and more efficient transportation operations and services. The program is performed in partnership with four major National Consortia for Remote Sensing in Transportation (NCRST). Each consortium focuses on research and development of products in one of the four priority areas for transportation application, and includes technical application and demonstration projects carried out in partnership with industries and service providers in their respective areas. The report identifies products and accomplishments from each of the four consortia in meeting the goal of providing smarter and more efficient transportation services. The products and results emerging from the program are being implemented in transportation operations and services through state and local agencies. The Environmental Assessment and Application Consortium (NCRST-E) provides leadership for developing and deploying cost effective environmental and transportation planning services, and integrates CRSGT advances for achieving smarter and cost effective corridor planning. The Infrastructure Management Consortium (NCRST-I) provides leadership in technologies that achieve smarter and cheaper ways of managing transportation infrastructure assets, operation, and inspection, and integrates CRSGT advances for achieving infrastructure security. The Traffic Flow Consortium (NCRST-F) provides leadership to develop new tools for regional traffic flow management including heavy vehicles and intermodal flow of freight, and integrates CRSGT advances for complementing and extending the reach of ITS user services. The Safety, Hazards and Disasters (NCRST-H) provides leadership for deploying remote sensing technology to locate transportation hazards and improve disaster recovery, and integrates CRSGT advances for application to protect transportation systems from terrorism. The DOT-NASA team is proud to present this report of accomplishments on products and results emerging from the joint program for application to transportation practice.

  15. Sustainability Logistics Basing - Science and Technology Objective - Demonstration; 50, 300, 1000- Person Base Camp, Analysis of FY12 Operationally Relevant Technical Baseline

    DTIC Science & Technology

    2017-04-10

    Natick Soldier Research , Development and Engineering Center’s Sustainability/Logistics- Basing -Science and Technology Objective – Demonstration to...CERDEC)  Tank Automotive Research , Development, and Engineering Center (TARDEC)  Product Director Contingency Basing Infrastructure (PdD – CBI...assessed using the QoL (O) tool, developed for the SLB-STO-D program by the Consumer Research Team (NSRDEC), based upon the assumptions documented within

  16. NASA Lewis' IITA K-12 Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center's Information Infrastructure Technology and Applications for Kindergarten to 12th Grade (IITA K-12) Program is designed to introduce into school systems computing and communications technology that benefits math and science studies. By incorporating this technology into K-12 curriculums, we hope to increase the proficiency and interest in math and science subjects by K-12 students so that they continue to study technical subjects after their high school careers are over.

  17. 25 CFR 170.303 - Can a tribe apply for loans or credit from a State infrastructure bank?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... infrastructure bank? 170.303 Section 170.303 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Flexible Financing § 170.303 Can a tribe apply for loans or credit from a State infrastructure bank? Yes. Upon the request...

  18. 25 CFR 170.303 - Can a tribe apply for loans or credit from a State infrastructure bank?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... infrastructure bank? 170.303 Section 170.303 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Flexible Financing § 170.303 Can a tribe apply for loans or credit from a State infrastructure bank? Yes. Upon the request...

  19. Australia's TERN: Building, Sustaining and Advancing Collaborative Long Term Ecosystem Research Networks

    NASA Astrophysics Data System (ADS)

    HEld, A. A.; Phinn, S. R.

    2012-12-01

    TERN is Australia's Terrestrial Ecosystem Research Network (www.tern.org.au) is one of several environmental data collection, storage and sharing projects developed through the government's research infrastructure programs 2008-2014. This includes terrestrial and coastal ecosystem data collection infrastructure across multiple disciplines, hardware, software and processes used to store, analyse and integrate data sets. TERN's overall objective is to build the collaborations, infrastructure and programs to meet the needs of ecosystem science communities in Australia in the long term, through institutional frameworks necessary to establish a national terrestrial ecosystem site and observational network, coordinated networks enabling cooperation and operational experience; public access to quality assured and appropriately licensed data; and allowing the terrestrial ecosystem research community to define and sustain the terrestrial observing paradigm into the longer term. This paper explains how TERN was originally established, and now operates, along with plans to sustain itself in the future. TERN is implemented through discipline/technical groups referred to as "TERN Facilities". Combined, the facilities provide observations of surface mass and energy fluxes over key ecosystems, biophysical remote sensing data, ecological survey plots, soils information, and coastal ecosystems and associated water quality variables across Australia. Additional integrative facilities cover elements of ecoinformatics, data-scaling and modelling, and linking science to management. A central coordination and portal facility provides meta-data storage, data identification, legal and licensing support. Data access, uploading, meta-data generation, DOI attachment and licensing is completed at each facility's own portal level. TERN also acts as the open-data repository of choice for Australian scientists required to publish their data. Several key lessons we have learnt, will be presented during the talk.

  20. NCI's national environmental research data collection: metadata management built on standards and preparing for the semantic web

    NASA Astrophysics Data System (ADS)

    Wang, Jingbo; Bastrakova, Irina; Evans, Ben; Gohar, Kashif; Santana, Fabiana; Wyborn, Lesley

    2015-04-01

    National Computational Infrastructure (NCI) manages national environmental research data collections (10+ PB) as part of its specialized high performance data node of the Research Data Storage Infrastructure (RDSI) program. We manage 40+ data collections using NCI's Data Management Plan (DMP), which is compatible with the ISO 19100 metadata standards. We utilize ISO standards to make sure our metadata is transferable and interoperable for sharing and harvesting. The DMP is used along with metadata from the data itself, to create a hierarchy of data collection, dataset and time series catalogues that is then exposed through GeoNetwork for standard discoverability. This hierarchy catalogues are linked using a parent-child relationship. The hierarchical infrastructure of our GeoNetwork catalogues system aims to address both discoverability and in-house administrative use-cases. At NCI, we are currently improving the metadata interoperability in our catalogue by linking with standardized community vocabulary services. These emerging vocabulary services are being established to help harmonise data from different national and international scientific communities. One such vocabulary service is currently being established by the Australian National Data Services (ANDS). Data citation is another important aspect of the NCI data infrastructure, which allows tracking of data usage and infrastructure investment, encourage data sharing, and increasing trust in research that is reliant on these data collections. We incorporate the standard vocabularies into the data citation metadata so that the data citation become machine readable and semantically friendly for web-search purpose as well. By standardizing our metadata structure across our entire data corpus, we are laying the foundation to enable the application of appropriate semantic mechanisms to enhance discovery and analysis of NCI's national environmental research data information. We expect that this will further increase the data discoverability and encourage the data sharing and reuse within the community, increasing the value of the data much further than its current use.

  1. 77 FR 32656 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0008] Critical Infrastructure Partnership... Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register... Federal Officer, Critical Infrastructure Partnership Advisory Council, Sector Outreach and Programs...

  2. 75 FR 21011 - Critical Infrastructure Partnership Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0032] Critical Infrastructure Partnership... Infrastructure Partnership Advisory Council (CIPAC) charter renewal. SUMMARY: The Department of Homeland Security... and Outreach Division, Office of Infrastructure Protection, National Protection and Programs...

  3. Reusable experiment controllers, case studies

    NASA Astrophysics Data System (ADS)

    Buckley, Brian A.; Gaasbeck, Jim Van

    1996-03-01

    Congress has given NASA and the science community a reality check. The tight and ever shrinking budgets are trimming the fat from many space science programs. No longer can a Principal Investigator (PI) afford to waste development dollars on re-inventing spacecraft controllers, experiment/payload controllers, ground control systems, or test sets. Inheritance of the Ground Support Equipment (GSE) from one program to another is not a significant re-use of technology to develop a science mission in these times. Reduction of operational staff and highly autonomous experiments are needed to reduce the sustaining cost of a mission. The re-use of an infrastructure from one program to another is needed to truly attain the cost and time savings required. Interface and Control Systems, Inc. (ICS) has a long history of re-usable software. Navy, Air Force, and NASA programs have benefited from the re-use of a common control system from program to program. Several standardization efforts in the AIAA have adopted the Spacecraft Command Language (SCL) architecture as a point solution to satisfy requirements for re-use and autonomy. The Environmental Research Institute of Michigan (ERIM) has been a long-standing customer of ICS and are working on their 4th generation system using SCL. Much of the hardware and software infrastructure has been re-used from mission to mission with little cost for re-hosting a new experiment. The same software infrastructure has successfully been used on Clementine, and an end-to-end system is being deployed for the Far Ultraviolet Spectroscopic Explorer (FUSE) for Johns Hopkins University. A case study of the ERIM programs, Clementine and FUSE will be detailed in this paper.

  4. Information science and technology developments within the National Biological Information Infrastructure

    USGS Publications Warehouse

    Frame, M.T.; Cotter, G.; Zolly, L.; Little, J.

    2002-01-01

    Whether your vantage point is that of an office window or a national park, your view undoubtedly encompasses a rich diversity of life forms, all carefully studied or managed by some scientist, resource manager, or planner. A few simple calculations - the number of species, their interrelationships, and the many researchers studying them - and you can easily see the tremendous challenges that the resulting biological data presents to the information and computer science communities. Biological information varies in format and content: it may pertain to a particular species or an entire ecosystem; it can contain land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents, the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993 on the recommendation of the National Research Council (National Research Council 1993). The NBII is designed to address these issues on a national scale, and through international partnerships. This paper discusses current information and computer science efforts within the National Biological Information Infrastructure Program, and future computer science research endeavors that are needed to address the ever-growing issues related to our nation's biological concerns. ?? 2003 by The Haworth Press, Inc. All rights reserved.

  5. 76 FR 20995 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0028] Critical Infrastructure Partnership... Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register... Infrastructure Protection, National Protection and Programs Directorate, U.S. Department of Homeland Security...

  6. Towards a distributed infrastructure for research drilling in Europe

    NASA Astrophysics Data System (ADS)

    Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.

    2012-04-01

    The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will facilitate the sharing of technological and scientific expertise for the benefit of the science community. It will link with other relevant infrastructure initiatives such as EMSO (European Marine Seafloor Observatories). It will raise the profile of scientific drilling in Europe and hopefully lead to better funding opportunities.

  7. Do federal and state audits increase compliance with a grant program to improve municipal infrastructure (AUDIT study): study protocol for a randomized controlled trial.

    PubMed

    De La O, Ana L; Martel García, Fernando

    2014-09-03

    Poor governance and accountability compromise young democracies' efforts to provide public services critical for human development, including water, sanitation, health, and education. Evidence shows that accountability agencies like superior audit institutions can reduce corruption and waste in federal grant programs financing service infrastructure. However, little is know about their effect on compliance with grant reporting and resource allocation requirements, or about the causal mechanisms. This study protocol for an exploratory randomized controlled trial tests the hypothesis that federal and state audits increase compliance with a federal grant program to improve municipal service infrastructure serving marginalized households. The AUDIT study is a block randomized, controlled, three-arm parallel group exploratory trial. A convenience sample of 5 municipalities in each of 17 states in Mexico (n=85) were block randomized to be audited by federal auditors (n=17), by state auditors (n=17), and a control condition outside the annual program of audits (n=51) in a 1:1:3 ratio. Replicable and verifiable randomization was performed using publicly available lottery numbers. Audited municipalities were included in the national program of audits and received standard audits on their use of federal public service infrastructure grants. Municipalities receiving moderate levels of grant transfers were recruited, as these were outside the auditing sampling frame--and hence audit program--or had negligible probabilities of ever being audited. The primary outcome measures capture compliance with the grant program and markers for the causal mechanisms, including deterrence and information effects. Secondary outcome measure include differences in audit reports across federal and state auditors, and measures like career concerns, political promotions, and political clientelism capturing synergistic effects with municipal accountability systems. The survey firm and research assistants assessing outcomes were blind to treatment status. This study will improve our understanding of local accountability systems for public service delivery in the 17 states under study, and may have downstream policy implications. The study design also demonstrates the use of verifiable and replicable randomization, and of sequentially partitioned hypotheses to reduce the Type I error rate in multiple hypothesis tests. Controlled-trials.com Identifier ISRCTN22381841: Date registered 02/11/2012.

  8. The Bridging Advanced Developments for Exceptional Rehabilitation (BADER) Consortium: Reaching in Partnership for Optimal Orthopaedic Rehabilitation Outcomes

    PubMed Central

    Stanhope, Steven J.; Wilken, Jason M.; Pruziner, Alison L.; Dearth, Christopher L.; Wyatt, Marilynn; Ziemke, CAPT Gregg W.; Strickland, Rachel; Milbourne, Suzanne A.; Kaufman, Kenton R.

    2017-01-01

    The Bridging Advanced Developments for Exceptional Rehabilitation (BADER) Consortium began in September 2011 as a cooperative agreement with the Department of Defense (DoD) Congressionally Directed Medical Research Programs Peer Reviewed Orthopaedic Research Program. A partnership was formed with DoD Military Treatment Facilities (MTFs), U.S. Department of Veterans Affairs (VA) Centers, the National Institutes of Health (NIH), academia, and industry to rapidly conduct innovative, high-impact, and sustainable clinically relevant research. The BADER Consortium has a unique research capacity-building focus that creates infrastructures and strategically connects and supports research teams to conduct multiteam research initiatives primarily led by MTF and VA investigators. BADER relies on strong partnerships with these agencies to strengthen and support orthopaedic rehabilitation research. Its focus is on the rapid forming and execution of projects focused on obtaining optimal functional outcomes for patients with limb loss and limb injuries. The Consortium is based on an NIH research capacity-building model that comprises essential research support components that are anchored by a set of BADER-funded and initiative-launching studies. Through a partnership with the DoD/VA Extremity Trauma and Amputation Center of Excellence, the BADER Consortium’s research initiative-launching program has directly supported the identification and establishment of eight BADER-funded clinical studies. BADER’s Clinical Research Core (CRC) staff, who are embedded within each of the MTFs, have supported an additional 37 non-BADER Consortium-funded projects. Additional key research support infrastructures that expedite the process for conducting multisite clinical trials include an omnibus Cooperative Research and Development Agreement and the NIH Clinical Trials Database. A 2015 Defense Health Board report highlighted the Consortium’s vital role, stating the research capabilities of the DoD Advanced Rehabilitation Centers are significantly enhanced and facilitated by the BADER Consortium. PMID:27849456

  9. The Bridging Advanced Developments for Exceptional Rehabilitation (BADER) Consortium: Reaching in Partnership for Optimal Orthopaedic Rehabilitation Outcomes.

    PubMed

    Stanhope, Steven J; Wilken, Jason M; Pruziner, Alison L; Dearth, Christopher L; Wyatt, Marilynn; Ziemke, Gregg W; Strickland, Rachel; Milbourne, Suzanne A; Kaufman, Kenton R

    2016-11-01

    The Bridging Advanced Developments for Exceptional Rehabilitation (BADER) Consortium began in September 2011 as a cooperative agreement with the Department of Defense (DoD) Congressionally Directed Medical Research Programs Peer Reviewed Orthopaedic Research Program. A partnership was formed with DoD Military Treatment Facilities (MTFs), U.S. Department of Veterans Affairs (VA) Centers, the National Institutes of Health (NIH), academia, and industry to rapidly conduct innovative, high-impact, and sustainable clinically relevant research. The BADER Consortium has a unique research capacity-building focus that creates infrastructures and strategically connects and supports research teams to conduct multiteam research initiatives primarily led by MTF and VA investigators.BADER relies on strong partnerships with these agencies to strengthen and support orthopaedic rehabilitation research. Its focus is on the rapid forming and execution of projects focused on obtaining optimal functional outcomes for patients with limb loss and limb injuries. The Consortium is based on an NIH research capacity-building model that comprises essential research support components that are anchored by a set of BADER-funded and initiative-launching studies. Through a partnership with the DoD/VA Extremity Trauma and Amputation Center of Excellence, the BADER Consortium's research initiative-launching program has directly supported the identification and establishment of eight BADER-funded clinical studies. BADER's Clinical Research Core (CRC) staff, who are embedded within each of the MTFs, have supported an additional 37 non-BADER Consortium-funded projects. Additional key research support infrastructures that expedite the process for conducting multisite clinical trials include an omnibus Cooperative Research and Development Agreement and the NIH Clinical Trials Database. A 2015 Defense Health Board report highlighted the Consortium's vital role, stating the research capabilities of the DoD Advanced Rehabilitation Centers are significantly enhanced and facilitated by the BADER Consortium. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  10. Information Infrastructure Technology and Applications (IITA) Program: Annual K-12 Workshop

    NASA Technical Reports Server (NTRS)

    Hunter, Paul; Likens, William; Leon, Mark

    1995-01-01

    The purpose of the K-12 workshop is to stimulate a cross pollination of inter-center activity and introduce the regional centers to curing edge K-1 activities. The format of the workshop consists of project presentations, working groups, and working group reports, all contained in a three day period. The agenda is aggressive and demanding. The K-12 Education Project is a multi-center activity managed by the Information Infrastructure Technology and Applications (IITA)/K-12 Project Office at the NASA Ames Research Center (ARC). this workshop is conducted in support of executing the K-12 Education element of the IITA Project The IITA/K-12 Project funds activities that use the National Information Infrastructure (NII) (e.g., the Internet) to foster reform and restructuring in mathematics, science, computing, engineering, and technical education.

  11. Cooperative Extension as a Framework for Health Extension: The Michigan State University Model

    PubMed Central

    Dwyer, Jeffrey W.; Contreras, Dawn; Tiret, Holly; Newkirk, Cathy; Carter, Erin; Cronk, Linda

    2017-01-01

    Problem The Affordable Care Act charged the Agency for Healthcare Research and Quality to create the Primary Care Extension Program, but did not fund this effort. The idea to work through health extension agents to support health care delivery systems was based on the nationally known Cooperative Extension System (CES). Instead of creating new infrastructure in health care, the CES is an ideal vehicle for increasing health-related research and primary care delivery. Approach The CES, a long-standing component of the land-grant university system, features a sustained infrastructure for providing education to communities. The Michigan State University (MSU) Model of Health Extension offers another means of developing a National Primary Care Extension Program that is replicable in part because of the presence of the CES throughout the United States. A partnership between the MSU College of Human Medicine and MSU Extension formed in 2014, emphasizing the promotion and support of human health research. The MSU Model of Health Extension includes the following strategies: building partnerships, preparing MSU Extension educators for participation in research, increasing primary care patient referrals and enrollment in health programs, and exploring innovative funding. Outcomes Since the formation of the MSU Model of Health Extension, researchers and extension professionals have made 200+ connections, and grants have afforded savings in salary costs. Next Steps The MSU College of Human Medicine and MSU Extension partnership can serve as a model to promote health partnerships nationwide between CES services within land-grant universities and academic health centers or community-based medical schools. PMID:28353501

  12. Utilisation of a thoracic oncology database to capture radiological and pathological images for evaluation of response to chemotherapy in patients with malignant pleural mesothelioma

    PubMed Central

    Carey, George B; Kazantsev, Stephanie; Surati, Mosmi; Rolle, Cleo E; Kanteti, Archana; Sadiq, Ahad; Bahroos, Neil; Raumann, Brigitte; Madduri, Ravi; Dave, Paul; Starkey, Adam; Hensing, Thomas; Husain, Aliya N; Vokes, Everett E; Vigneswaran, Wickii; Armato, Samuel G; Kindler, Hedy L; Salgia, Ravi

    2012-01-01

    Objective An area of need in cancer informatics is the ability to store images in a comprehensive database as part of translational cancer research. To meet this need, we have implemented a novel tandem database infrastructure that facilitates image storage and utilisation. Background We had previously implemented the Thoracic Oncology Program Database Project (TOPDP) database for our translational cancer research needs. While useful for many research endeavours, it is unable to store images, hence our need to implement an imaging database which could communicate easily with the TOPDP database. Methods The Thoracic Oncology Research Program (TORP) imaging database was designed using the Research Electronic Data Capture (REDCap) platform, which was developed by Vanderbilt University. To demonstrate proof of principle and evaluate utility, we performed a retrospective investigation into tumour response for malignant pleural mesothelioma (MPM) patients treated at the University of Chicago Medical Center with either of two analogous chemotherapy regimens and consented to at least one of two UCMC IRB protocols, 9571 and 13473A. Results A cohort of 22 MPM patients was identified using clinical data in the TOPDP database. After measurements were acquired, two representative CT images and 0–35 histological images per patient were successfully stored in the TORP database, along with clinical and demographic data. Discussion We implemented the TORP imaging database to be used in conjunction with our comprehensive TOPDP database. While it requires an additional effort to use two databases, our database infrastructure facilitates more comprehensive translational research. Conclusions The investigation described herein demonstrates the successful implementation of this novel tandem imaging database infrastructure, as well as the potential utility of investigations enabled by it. The data model presented here can be utilised as the basis for further development of other larger, more streamlined databases in the future. PMID:23103606

  13. Sustainability Through Technology Licensing and Commercialization: Lessons Learned from the TRIAD Project

    PubMed Central

    Payne, Philip R.O.

    2014-01-01

    Ongoing transformation relative to the funding climate for healthcare research programs housed in academic and non-profit research organizations has led to a new (or renewed) emphasis on the pursuit of non-traditional sustainability models. This need is often particularly acute in the context of data management and sharing infrastructure that is developed under the auspices of such research initiatives. One option for achieving sustainability of such data management and sharing infrastructure is the pursuit of technology licensing and commercialization, in an effort to establish public-private or equivalent partnerships that sustain and even expand upon the development and dissemination of research-oriented data management and sharing technologies. However, the critical success factors for technology licensing and commercialization efforts are often unknown to individuals outside of the private sector, thus making this type of endeavor challenging to investigators in academic and non-profit settings. In response to such a gap in knowledge, this article will review a number of generalizable lessons learned from an effort undertaken at The Ohio State University to commercialize a prototypical research-oriented data management and sharing infrastructure, known as the Translational Research Informatics and Data Management (TRIAD) Grid. It is important to note that the specific emphasis of these lessons learned is on the early stages of moving a technology from the research setting into a private-sector entity and as such are particularly relevant to academic investigators interested in pursuing such activities. PMID:25848609

  14. Alternative Fuels Data Center

    Science.gov Websites

    administers the Ethanol Infrastructure Incentive Program, providing grants to offset the cost of installing Ethanol Infrastructure Incentive Program website. (Reference South Dakota Statutes 10-47B-162 and 10-47B

  15. 76 FR 70730 - The Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0112] The Critical Infrastructure Partnership... Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register... Infrastructure Protection, National Protection and Programs Directorate, U.S. Department of Homeland Security...

  16. 76 FR 29775 - The Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0038] The Critical Infrastructure Partnership... Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register... Infrastructure Protection, National Protection and Programs Directorate, U.S. Department of Homeland Security...

  17. 75 FR 48983 - The Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0062] The Critical Infrastructure Partnership... Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register... Infrastructure Protection, National Protection and Programs Directorate, Department of Homeland Security, 245...

  18. Rationale and Initial Design for a Virtual Undergraduate Internship in Astronomy

    NASA Astrophysics Data System (ADS)

    Berryhill, Katie; Slater, T. F.; Slater, S. J.

    2012-01-01

    In recent decades, research experiences for undergraduates (REUs) programs have provided students with opportunities to spend a summer working on a research project with a faculty mentor. The aim of these programs has generally been to take up the challenge of the Boyer-2 report to introduce research-based learning into the undergraduate experience (Boyer 1998). Recent efforts have been aimed at encouraging women and underrepresented minorities to pursue STEM careers. With the advent of successful models for online degree programs that can add to the STEM workforce pipeline, there is now the possibility of expanding these research experiences to include the new diverse demographic of previously untapped online learners. Many online learners are working adults, and therefore do not have the same flexibility as traditional undergraduates to attend a summer REU at another institution, nor do they have the opportunity for internships at their home institution. This project is intended to leverage significant developments in rapidly emerging social media; investments in Internet-accessible telescopes for professional and amateur use; and contemporary advances in the learning sciences to build pathways through long-term, collaborative, astronomy research projects. The first stage involves developing initial research protocols and online mentoring infrastructures for establishing an ongoing national program for virtual astronomy internships for undergraduate STEM majors. Underlying this project is a plan for students to work collaboratively alongside active professional and amateur astronomers to conduct original research using remotely controlled and robotic telescopes. We anticipate that by the start of this project, more than 100 robotic and remotely controlled telescopes will exist around the world (mo-www.harvard.edu/OWN, aavso.org/aavsonet, and lcogt.net among others) providing continuous world-wide coverage. We plan to test and iteratively build a successful infrastructure for students to take advantage of these and other rapidly emerging resources and support an expansion of the STEM career workforce.

  19. EPA's Safe and Sustainable Water Resources Research ...

    EPA Pesticide Factsheets

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an integrated, sustainable manner can jeopardize human and aquatic ecosystem health, which can impact our society and economy.Through innovative science and engineering, the SSWR Research Program is developing cost-effective, sustainable solutions to 21st century complex water issues and proactively developing solutions to emerging concerns. Our research is helping to ensure that clean, adequate, and equitable supplies of water are available to support human health and resilient aquatic ecosystems, now and into the future. To share information on EPA's water research program

  20. PRACE - The European HPC Infrastructure

    NASA Astrophysics Data System (ADS)

    Stadelmeyer, Peter

    2014-05-01

    The mission of PRACE (Partnership for Advanced Computing in Europe) is to enable high impact scientific discovery and engineering research and development across all disciplines to enhance European competitiveness for the benefit of society. PRACE seeks to realize this mission by offering world class computing and data management resources and services through a peer review process. This talk gives a general overview about PRACE and the PRACE research infrastructure (RI). PRACE is established as an international not-for-profit association and the PRACE RI is a pan-European supercomputing infrastructure which offers access to computing and data management resources at partner sites distributed throughout Europe. Besides a short summary about the organization, history, and activities of PRACE, it is explained how scientists and researchers from academia and industry from around the world can access PRACE systems and which education and training activities are offered by PRACE. The overview also contains a selection of PRACE contributions to societal challenges and ongoing activities. Examples of the latter are beside others petascaling, application benchmark suite, best practice guides for efficient use of key architectures, application enabling / scaling, new programming models, and industrial applications. The Partnership for Advanced Computing in Europe (PRACE) is an international non-profit association with its seat in Brussels. The PRACE Research Infrastructure provides a persistent world-class high performance computing service for scientists and researchers from academia and industry in Europe. The computer systems and their operations accessible through PRACE are provided by 4 PRACE members (BSC representing Spain, CINECA representing Italy, GCS representing Germany and GENCI representing France). The Implementation Phase of PRACE receives funding from the EU's Seventh Framework Programme (FP7/2007-2013) under grant agreements RI-261557, RI-283493 and RI-312763. For more information, see www.prace-ri.eu

  1. Preparing Marketing for the Future: Strategic Marketing Challenges for Continuing Education

    ERIC Educational Resources Information Center

    Fong, James

    2013-01-01

    Today's programs and delivery methods in continuing education for the adult student are evolving due to changing needs, competition, and new markets and technologies. The marketing infrastructure, including staffing, budgeting, and processes such as customer relationship marketing and market research, must be in alignment with changing needs.

  2. Transportation infrastructure asset damage cost recovery correlated with shale oil/gas recovery operations in Louisiana : research project capsule : technology transfer program.

    DOT National Transportation Integrated Search

    2016-10-01

    Due to shale oil/gas recovery : operations, a large number : of truck trips on Louisiana : roadways are required for : transporting equipment and : materials to and from the : recovery sites. As a result, : roads and bridges that were : designed for ...

  3. Early Detection Research Network (EDRN) | Division of Cancer Prevention

    Cancer.gov

    http://edrn.nci.nih.gov/EDRN is a collaborative network that maintains comprehensive infrastructure and resources critical to the discovery, development and validation of biomarkers for cancer risk and early detection. The program comprises a public/private sector consortium to accelerate the development of biomarkers that will change medical practice, ensure data

  4. Semantic Language Extensions for Implicit Parallel Programming

    DTIC Science & Technology

    2013-09-01

    mobile CPU interacts with a GPU on the same device and a cloud based backend at a remote location presents endless possibilities for solving com...for his contribution to the compiler infrastructure . His creativity in solving research problems and expertise in architecting and implementing...92 5.5.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.5.2 Backend

  5. Performance of Green Stormwater Management Practices at EPA’s Edison Environmental Center: Permeable Pavement and Bioretention

    EPA Science Inventory

    As part of the departmental Chemistry and Environmental Science weekly seminar series at NJIT in Newark, NJ, Rowe and Stander have been invited to conduct a joint presentation on UWMB’s green infrastructure research program, including the parking lot and rain garden studies. The...

  6. Cost-Efficient Storage of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2007-01-01

    NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.

  7. OSiRIS: a distributed Ceph deployment using software defined networking for multi-institutional research

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Kissel, Ezra; Meekhof, Benjeman; Swany, Martin; Miller, Charles; Gregorowicz, Michael

    2017-10-01

    We report on the first year of the OSiRIS project (NSF Award #1541335, UM, IU, MSU and WSU) which is targeting the creation of a distributed Ceph storage infrastructure coupled together with software-defined networking to provide high-performance access for well-connected locations on any participating campus. The projects goal is to provide a single scalable, distributed storage infrastructure that allows researchers at each campus to read, write, manage and share data directly from their own computing locations. The NSF CC*DNI DIBBS program which funded OSiRIS is seeking solutions to the challenges of multi-institutional collaborations involving large amounts of data and we are exploring the creative use of Ceph and networking to address those challenges. While OSiRIS will eventually be serving a broad range of science domains, its first adopter will be the LHC ATLAS detector project via the ATLAS Great Lakes Tier-2 (AGLT2) jointly located at the University of Michigan and Michigan State University. Part of our presentation will cover how ATLAS is using the OSiRIS infrastructure and our experiences integrating our first user community. The presentation will also review the motivations for and goals of the project, the technical details of the OSiRIS infrastructure, the challenges in providing such an infrastructure, and the technical choices made to address those challenges. We will conclude with our plans for the remaining 4 years of the project and our vision for what we hope to deliver by the projects end.

  8. 29 CFR 215.3 - Employees represented by a labor organization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to applicants for the Over-the-Road Bus Accessibility Program, and grant applications for the Other... Commute Program or grants to capitalize State Infrastructure Bank accounts under the State Infrastructure...

  9. Alternative Fuels Data Center

    Science.gov Websites

    Biofuels Infrastructure Partnership (BIP) grant program. The BIP program works with retailers and state and eligible applicants in the following amounts: Infrastructure Grant Amount E15 Pumps 50% of the costs of

  10. A neo-strategic planning approach to enhance local tobacco control programs.

    PubMed

    Douglas, Malinda R; Carter, Sara Sally R; Wilson, Andrew P; Chan, Andie

    2015-01-01

    Research in tobacco control demonstrating best practices is widely disseminated; however, application at the local level is often difficult. Translating research into practice requires a concerted effort to develop an understanding of the evidence and how it can be applied within diverse contexts. A strategic planning infrastructure was developed to support the translation of evidence-based interventions into community practice. This paper highlights the strategic process of turning "know-what" into "know-how" to facilitate the strategic planning and implementation of tobacco control best practices at the local level. The purpose, people, process, and product strategies of knowledge management and translation provided a framework for the strategic planning infrastructure. The knowledge translation concepts of audience, motivations, and mechanisms were synergized in the neo-strategic planning component design. The participants were 20 community coalitions funded to implement local tobacco control programs. From 2004 to 2011, the strategic planners facilitated a cyclical process to translate research into practice using a trio of integrated tools, skill-building workshops on strategic planning, and grantee-driven technical assistance and consultation. In the short term, the usefulness of the strategic planning components to the programs was measured. The intermediate outcome was the successful movement of the community programs from the planning stage to the implementation stage. The achievement of community-level changes in planned tobacco control efforts was the overall outcome measure for the success of the local coalitions. Seventeen of 20 communities that began the planning process implemented strategic plans. All 17 of the programs implemented evidence-based practices, resulting in numerous tobacco-free policies, increased cessation, and increased support from the media and community. Bridging the gap between research and practice can enhance the practicality, efficiency, and effectiveness of tobacco control programs at the local level, maximizing the potential positive health impact. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Nanotechnology research for aerospace applications

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  12. Exploring the Feasibility of a Consolidated Joint Civil Augmentation Program (JCAP)

    DTIC Science & Technology

    2009-12-01

    operations. The primary focus of the program is on design and engineering, and infrastructure design and construction; however AFCAP also performs...Following is the primary research question: “Is it more cost effective for the Army, Navy, and Air Force to combine their individual CAPs into one JCAP...Force, Marines and U.S. Allies. “The program’s rationale and primary emphasis is joint-service development of a next-generation multi-role stirke

  13. Demonstration and Validation of a Waste-to-Energy Conversion System for Fixed DoD Installations

    DTIC Science & Technology

    2013-08-01

    Corporation (IST Energy) was incorporated as a majority-owned subsidiary of IST to develop, market, manufacture and sell mobile , compact, and fully...provided the necessary infrastructure to support the Demonstration. The GEM WEC system was placed on a concrete pad provided by Edwards AFB near the...the Army Research Office [12, 13]. This program was part of a more inclusive program to develop a mobile waste-to-energy system to convert bulk

  14. Environmental Management Science Program Workshop. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less

  15. Development of a practice-based research program.

    PubMed

    Hawk, C; Long, C R; Boulanger, K

    1998-01-01

    To establish an infrastructure to collect accurate data from ambulatory settings. The program was developed through an iterative model governed by a process of formative evaluation. The three iterations were a needs assessment, feasibility study and pilot project. Necessary program components were identified as infrastructure, practitioner-researcher partnership, centralized data management and standardized quality assurance measures. Volunteer chiropractors and their staff collected data on patients in their practices in ambulatory settings in the U.S. and Canada. Evaluative measures were counts of participants, patients and completed forms. Standardized, validated and reliable measures collected by patient self-report were used to assess treatment outcomes. These included the SF-36 or SF-12 Health Survey, the Pain Disability Index, and the Global Well-Being Scale. For characteristics for which appropriate standardized instruments were not available, questionnaires were designed and and pilot-tested before use. Information was gathered on practice and patient characteristics and treatment outcomes, but for this report, only those data concerning process evaluation are reported. Through the three program iterations, 65 DCs collected data on 1360 patients, 663 of whom were new patients. Follow-up data recorded by doctors were obtained for more than 70% of patients; a maximum of 50% of patient-completed follow-up forms were collected in the three iterations. This program is capable of providing data for descriptive epidemiology of ambulatory patients, and, with continued effort to maximize follow-up, may have utility in providing insight into utilization patterns and patient outcomes.

  16. Increasing chronic disease research capacity in Guatemala through a mentoring program.

    PubMed

    Barnoya, Joaquin; Monzon, Jose C; Colditz, Graham A

    2013-09-12

    The Chronic Disease Research Fellowship Program (RFP) aims to build the research capacity of recent medical graduates to support the development of chronic disease control strategies. Guatemala is undergoing an epidemiologic transition. However, given the way universities and the health care system are structured, it lacks an environment that fosters research careers and generates the required knowledge to implement sound public health policies and clinical strategies. The RFP was implemented at the Cardiovascular Unit of Guatemala. This 4-year Program recruited two one-year fellows and provided funding to define a research topic, write a protocol and implement the research. Strong emphasis is placed on developing skills in knowledge translation and exchange to bridge the "know-do" gap. Close mentoring relationships between the Principal Investigator and former and current fellows are fostered through the Program. The mentoring Program has generated strategic data to support the implementation of sound chronic disease control strategies, mainly related to tobacco control. Results have been presented nationally and internationally. Research training has included principles of biostatistics and epidemiology, and a journal club. The Program is increasingly generating interest among medical graduates to pursue further research training abroad and is building local research capacity. Fellows and research assistants have created a research network in Guatemala and abroad. The main obstacle the Program faces is ensuring long-term sustainability. A mentoring program can lead to an increase in research interest and capacity in a low-income country with little research infrastructure.

  17. 78 FR 59751 - Transportation Infrastructure Financing and Innovation Act (TIFIA) Program; Agency Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... Innovation Act (TIFIA) Program; Agency Information Collection Activities and Request for Comments AGENCY... public comments on a request to the Office of Management and Budget (OMB) to renew an Information... in FY 2014 for the Transportation Infrastructure Financing and Innovation Act (TIFIA) program to pay...

  18. 77 FR 74685 - Chemical Facility Anti-Terrorism Standards (CFATS) Chemical-Terrorism Vulnerability Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... Programs Directorate (NPPD), Office of Infrastructure Protection (IP), Infrastructure Security Compliance... questions about this Information Collection Request should be forwarded to DHS/NPPD/IP/ISCD CFATS Program... to the DHS/NPPD/IP/ISCD CFATS Program Manager at the Department of Homeland Security, 245 Murray Lane...

  19. 77 FR 37060 - Critical Infrastructure and Key Resources (CIKR) Asset Protection Technical Assistance Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ...), National Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP.../IP/IICD, 245 Murray Lane SW., Mailstop 0602, Arlington, VA 20598-0602. Email requests should go to... Technical Assistance Program (CAPTAP) is offered jointly by the NPPD/IP and the Federal Emergency Management...

  20. The Federal Public Works Infrastructure Strategy Program - Federal Works Infrastructure R&D: A New Perspective

    DTIC Science & Technology

    1993-07-01

    Strategy, please contact Robert A. Pietrowsky , Program Manager at: Institute for Water Resources Casey Building 7701 Telegraph Road Fort Belvoir, VA 22060...management responsibility under the direction of Dr. Eugene Z. Stakhiv, Chief, Policy and Special Studies Division and Mr. Robert A. Pietrowsky , Program

  1. Eligibility of Indoor Plumbing Under Alaska Sanitation Infrastructure Grant Program

    EPA Pesticide Factsheets

    Memorandum response to questions that relate to whether indoor plumbing of homes, as part of a wastewater construction project, is an eligible cost item under the EPA Alaska Sanitation Infrastructure Grant Program.

  2. The Infrastructure of Academic Research.

    ERIC Educational Resources Information Center

    Davey, Ken

    1996-01-01

    Canadian university infrastructures have eroded as seen in aging equipment, deteriorating facilities, and fewer skilled personnel to maintain and operate research equipment. Research infrastructure includes administrative overhead, facilities and equipment, and research personnel including faculty, technicians, and students. The biggest erosion of…

  3. Final Report, University Research Program in Robotics (URPR), Nuclear Facilities Clean-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesar, Delbert; Kapoor, Chetan; Pryor, Mitch

    This final report describes the research activity at the University of Texas at Austin with application to EM needs at DOE. This research activity is divided in to two major thrusts and contributes to the overall University Research Program in Robotics (URPR) thrust by providing mechanically oriented robotic solutions based on modularity and generalized software. These thrusts are also the core strengths of the UTA program that has a 40-year history in machine development, 30 years specifically devoted to robotics. Since 1975, much of this effort has been to establish the general analytical and design infrastructure for an open (modular)more » architecture of systems with many degrees of freedom that are able to satisfy a broad range of applications for future production machines. This work has coalesced from two principal areas: standardized actuators and generalized software.« less

  4. The Electronic Data Methods (EDM) forum for comparative effectiveness research (CER).

    PubMed

    Holve, Erin; Segal, Courtney; Lopez, Marianne Hamilton; Rein, Alison; Johnson, Beth H

    2012-07-01

    AcademyHealth convened the Electronic Data Methods (EDM) Forum to collect, synthesize, and share lessons from eleven projects that are building infrastructure and using electronic clinical data for comparative effectiveness research (CER) and patient-centered outcomes research (PCOR). This paper provides a brief review of participating projects and provides a framework of common challenges. EDM Forum staff conducted a text review of relevant grant programs' funding opportunity announcements; projects' research plans; and available information on projects' websites. Additional information was obtained from presentations provided by each project; phone calls with project principal investigators, affiliated partners, and staff from the Agency for Healthcare Research and Quality (AHRQ); and six site visits. Projects participating in the EDM Forum are building infrastructure and developing innovative strategies to address a set of methodological, and data and informatics challenges, here identified in a common framework. The eleven networks represent more than 20 states and include a range of partnership models. Projects vary substantially in size, from 11,000 to more than 7.5 million individuals. Nearly all of the AHRQ priority populations and conditions are addressed. In partnership with the projects, the EDM Forum is focused on identifying and sharing lessons learned to advance the national dialogue on the use of electronic clinical data to conduct CER and PCOR. These efforts have the shared goal of addressing challenges in traditional research studies and data sources, and aim to build infrastructure and generate evidence to support a learning health care system that can improve patient outcomes.

  5. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  6. DARPA Orbital Express program: effecting a revolution in space-based systems

    NASA Astrophysics Data System (ADS)

    Whelan, David A.; Adler, E. A.; Wilson, Samuel B., III; Roesler, Gordon M., Jr.

    2000-11-01

    A primary goal of the Defense Advanced Research Projects Agency is to develop innovative, high-risk technologies with the potential of a revolutionary impact on missions of the Department of Defense. DARPA is developing a space experiment to prove the feasibility of autonomous on- orbit servicing of spacecraft. The Orbital Express program will demonstrate autonomous on-orbit refueling, as well as autonomous delivery of a small payload representing an avionics upgrade package. The maneuverability provided to spacecraft from a ready refueling infrastructure will enable radical new capabilities for the military, civil and commercial spacecraft. Module replacement has the potential to extend bus lifetimes, and to upgrade the performance of key subsystems (e.g. processors) at the pace of technology development. The Orbital Express technology development effort will include the necessary autonomy for a viable servicing infrastructure; a universal interface for docking, refueling and module transfers; and a spacecraft bus design compatible with this servicing concept. The servicer spacecraft of the future may be able to act as a host platform for microsatellites, extending their capabilities while reducing risk. An infrastructure based on Orbital Express also benefits from, and stimulates the development of, lower-cost launch strategies.

  7. Developing the community empowered research training program: building research capacity for community-initiated and community-driven research.

    PubMed

    Kwon, Simona; Rideout, Catlin; Tseng, Winston; Islam, Nadia; Cook, Won Kim; Ro, Marguerite; Trinh-Shevrin, Chau

    2012-01-01

    Health promotion practice research conducted by or in partnership with community-based organizations (CBOs) serving Asian Americans, Native Hawaiians, and Pacific Islanders (AA and NHPI) can address health disparities. Few CBOs have the tools to integrate or initiate research into their programmatic agenda. The New York University (NYU) Center for the Study of Asian American Health (CSAAH) and the Asian & Pacific Islander American Health Forum (APIAHF) created a partnership with the goal to support CBO research infrastructure development by creating the Community Empowered Research Training (CERT) program. A survey was conducted and discussions held with CBO leaders representing AA and NHPI communities to inform the development of the CERT program. The majority of participants are engaged in service-related research and reported interest in building their research capacity. CBOs may require help reframing how data can be collected and used to better inform programmatic activities and to address health disparities facing AA and NHPI communities. CBOs possess both an interest in and access to local knowledge that can inform health priorities. Findings have been applied to the CERT program to build capacity to support community-initiated/driven research to address health disparities affecting AAs and NHPIs.

  8. Presentation: EPA’s Stormwater Program and Improving Resiliency with Green Infrastructure

    EPA Pesticide Factsheets

    This presentation, EPA’s Stormwater Program and Improving Resiliency with Green Infrastructure, was given at the STAR Human and Ecological Health Impacts Associated with Water Reuse and Conservation Practices Kick-off Meeting and Webinar.

  9. The 2014 Academic College of Emergency Experts in India's Education Development Committee (EDC) White Paper on establishing an academic department of Emergency Medicine in India – Guidelines for Staffing, Infrastructure, Resources, Curriculum and Training

    PubMed Central

    Aggarwal, Praveen; Galwankar, Sagar; Kalra, Om Prakash; Bhalla, Ashish; Bhoi, Sanjeev; Sundarakumar, Sundarajan

    2014-01-01

    Emergency medicine services and training in Emergency Medicine (EM) has developed to a large extent in developed countries but its establishment is far from optimal in developing countries. In India, Medical Council of India (MCI) has taken great steps by notifying EM as a separate specialty and so far 20 medical colleges have already initiated 3-year training program in EM. However, there has been shortage of trained faculty, and ambiguity regarding curriculum, rotation policy, infrastructure, teachers’ eligibility qualifications and scheme of examination. Academic College of Emergency Experts in India (ACEE-India) has been a powerful advocate for developing Academic EM in India. The ACEE's Education Development Committee (EDC) was created to chalk out guidelines for staffing, infrastructure, resources, curriculum, and training which may be of help to the MCI and the National Board of Examinations (NBE) to set standards for starting 3-year training program in EM and develop the departments of EM as centers of quality education, research, and treatment across India. This paper has made an attempt to give recommendations so as to provide a uniform framework to the institutions, thus guiding them towards establishing an academic Department of EM for starting the 3-year training program in the specialty of EM. PMID:25114431

  10. The 2014 Academic College of Emergency Experts in India's Education Development Committee (EDC) White Paper on establishing an academic department of Emergency Medicine in India - Guidelines for Staffing, Infrastructure, Resources, Curriculum and Training.

    PubMed

    Aggarwal, Praveen; Galwankar, Sagar; Kalra, Om Prakash; Bhalla, Ashish; Bhoi, Sanjeev; Sundarakumar, Sundarajan

    2014-07-01

    Emergency medicine services and training in Emergency Medicine (EM) has developed to a large extent in developed countries but its establishment is far from optimal in developing countries. In India, Medical Council of India (MCI) has taken great steps by notifying EM as a separate specialty and so far 20 medical colleges have already initiated 3-year training program in EM. However, there has been shortage of trained faculty, and ambiguity regarding curriculum, rotation policy, infrastructure, teachers' eligibility qualifications and scheme of examination. Academic College of Emergency Experts in India (ACEE-India) has been a powerful advocate for developing Academic EM in India. The ACEE's Education Development Committee (EDC) was created to chalk out guidelines for staffing, infrastructure, resources, curriculum, and training which may be of help to the MCI and the National Board of Examinations (NBE) to set standards for starting 3-year training program in EM and develop the departments of EM as centers of quality education, research, and treatment across India. This paper has made an attempt to give recommendations so as to provide a uniform framework to the institutions, thus guiding them towards establishing an academic Department of EM for starting the 3-year training program in the specialty of EM.

  11. How does Entrepreneurship Education Develop Soft Skills?

    NASA Astrophysics Data System (ADS)

    Humsona, R.; Yuliani, S.

    2018-02-01

    The objective of research was to identify the comprehensive information on the entrepreneurship education program in Olifant School, Yogyakarta, Indonesia. The research method employed was descriptive qualitative one. The sampling technique used was purposive; the data collection was carried out using observation, in-depth interview and document. The data validation was carried out using source triangulations, and data analysis using an interactive model. The result of research showed that the headmaster implemented entrepreneurship education program through holding some training for the teachers, admitting the students with special needs, modifying curriculum and providing school infrastructure in accordance with the needs of the students. The constraints with entrepreneurship education programs included the limited number of special assistant teachers and the response of parents. The result of learning process can be seen from the students’ creativity, independency, and optimism as mentioned in entrepreneurship skill.

  12. Inter-Institutional Partnerships Propel A Successful Collaborative Undergraduate Degree Program In Chemistry

    PubMed Central

    Wang, Qiquan

    2013-01-01

    Small private liberal arts colleges are increasingly tuition-dependent and mainly attract students by creating student-centered learning communities. On the other hand, larger universities tend to be trendsetters where its faculty tend to seek intellectual independence and are involved in career focused cutting-edge research. The Institutional Development Awards (IDeA) and Experimental Program to Stimulate Competitive Research (EPSCoR) are federal-state-university partnerships that builds basic research infrastructure and coax the state-wide higher education institutions to collaborate with each other in order to enhance their competitiveness. As a result in Delaware, Wesley College instituted curricular and operational changes to launch an undergraduate program in biological chemistry where its students take three upper division chemistry courses and can choose to participate in annual summer undergraduate internships at nearby Delaware State University. PMID:24273464

  13. Telecommunications and Technology Infrastructure Program, 2013

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2014

    2014-01-01

    This 16th annual report highlights up-to-date information on the programs supported through the Chancellor's Office Telecommunications and Technology Infrastructure Program (TTIP). To summarize 2012-13, one would describe it as a year of planning and preparation. The system-wide budget cuts of the past few years, reports of impacted classes, staff…

  14. Classification of factors of development of transport infrastructure in the region

    NASA Astrophysics Data System (ADS)

    Karpovich, Oleg; Shlafman, Alexander

    2017-10-01

    The formation of a unified strategy for the development of the transport infrastructure of the region is considered to be the basic direction of the developing the whole territory The article is devoted to determining priorities in the implementation of programs of redevelopment of the regional plants. The submission suggested authors the characteristics of a grouping of theoretical and practical approaches to spatial reorganization of production. The result of this research, the specific recommendations on the application of redevelopment for the development of industrial areas. The organization of economic relations within the eastern regions of the Russian Federation, as well as the implementation of economic activities involving the transit and processing of a multitude of material and intangible flows on their territory, is a priority task of the state policy of smoothing the development of the regions of the country. To solve these macroeconomic problems, the transport infrastructure of the region has a priority.

  15. Human Research Program Integrated Research Plan: December 20, 2007, Interim Baseline

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. This Integrated Research Plan (IRP) describes the program s research activities that are intended to address the needs of human space exploration and serve HRP customers. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration. The document serves several purposes for the Human Research Program: The IRP provides a means to assure that the most significant risks to human space explorers are being adequately mitigated and/or addressed, The IRP shows the relationship of research activities to expected outcomes and need dates, The IRP shows the interrelationships among research activities that may interact to produce products that are integrative or cross defined research disciplines, The IRP illustrates the non-deterministic nature of research and technology activities by showing expected decision points and potential follow-on activities, The IRP shows the assignments of responsibility within the program organization and, as practical, the intended solicitation approach, The IRP shows the intended use of research platforms such as the International Space Station, NASA Space Radiation Laboratory, and various space flight analogs. The IRP does not show all budgeted activities of the Human research program, as some of these are enabling functions, such as management, facilities and infrastructure

  16. EPA Recognizes Excellence and Innovation in Clean Water Infrastructure

    EPA Pesticide Factsheets

    Today, the U.S. Environmental Protection Agency recognized 28 clean water infrastructure projects for excellence & innovation within the Clean Water State Revolving Fund (CWSRF) program. Honored projects include large wastewater infrastructure projects.

  17. 75 FR 61160 - National Protection and Programs Directorate; National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as.... Deliberation: Optimization of Resources for Mitigating Infrastructure Disruptions VII. Discussion of Potential...

  18. [Thirty years of US long-term ecological research: characteristics, results, and lessons learned of--taking the Virginia Coast Reserve as an example].

    PubMed

    Zhu, Gao-Ru; Porter, John H; Xu, Xue-Gong

    2011-06-01

    In order to observe and understand long-term and large-scale ecological changes, the US National Science Foundation initiated a Long-Term Ecological Research (LTER) program in 1980. Over the past 30 years, the US LTER program has achieved advances in ecological and social science research, and in the development of site-based research infrastructure. This paper attributed the success of the program to five characteristics, i.e., 1) consistency of research topics and data across the network, 2) long-term time scale of both the research and the program, 3) flexibility in research content and funding procedures, 4) growth of LTER to include international partners, new disciplines such as social science, advanced research methods, and cooperation among sites, and 5) sharing of data and educational resources. The Virginia Coast Reserve LTER site was taken as an example to illustrate how the US LTER works at site level. Some suggestions were made on the China long-term ecological research, including strengthening institution construction, improving network and inter-site cooperation, emphasizing data quality, management, and sharing, reinforcing multidisciplinary cooperation, and expanding public influence.

  19. Local food protection and safety infrastructure and capacity: a Maryland case study.

    PubMed

    Kufel, Joanna Zablotsky; Resnick, Beth A; Fox, Mary; Frattaroli, Shannon; Gielen, Andrea; Burke, Thomas A

    2011-01-01

    In Maryland, county Food Protection Programs (FPP), housed within Environmental Public Health (EPH) Divisions, maintain responsibility for regular inspection of all food service facilities (FSF). With growing concerns about how our food supply is protected, it is important to determine the state and effectiveness of our food safety systems. This research elucidates the roles, responsibilities, strengths, and weaknesses of Food Safety and Protection Programs in Maryland. A 16-question survey tool, which addressed facets of the local food protection infrastructure, including FSF inspections, staffing, budget, and foodborne illness surveillance, was distributed to all 24 county FPP. The number of FSF in Maryland increased 97% from 2001 to 2006 and counties had an average inspection completion rate of 73%, with a 4% increase over the time period. Statewide, there were 4.1 EPH full-time employees (FTE) per 10 000 population and 1.6 FPP FTE per 10 000 population. EPH Division budgets increased 63% statewide, from $19.5 million in 2000 to $31.9 million in 2007. FPP budgets also increased 59% over the period, from $6.2 million in 2000 to $9.8 million in 2007. This study offers new quantitative measures of the demands, capacities, and performance of Food Protection and Safety Programs in Maryland. This assessment of local EPH and FPP capacity also offers insight into the strengths and weaknesses of the local food protection and safety infrastructure. Importantly, it reveals an infrastructure and dedicated food protection workforce that inspects the food supply and responds to foodborne illness outbreaks. Yet, resources vary substantially from county to county, impacting which services can be provided and how well they can be performed. This can, in turn, impact the potential risk of foodborne illness and the public's overall health.

  20. Multi-Sector Sustainability Browser (MSSB) User Manual: A Decision Support Tool (DST) for Supporting Sustainability Efforts in Four Areas - Land Use, Transportation, Buildings and Infrastructure, and Materials Management

    EPA Science Inventory

    EPA’s Sustainable and Healthy Communities (SHC) Research Program is developing methodologies, resources, and tools to assist community members and local decision makers in implementing policy choices that facilitate sustainable approaches in managing their resources affecti...

  1. Building the Community Nexus: A Community Centered Approach to Planning and Design

    ERIC Educational Resources Information Center

    Bingler, Steven

    2011-01-01

    Recent research indicates that the goals (of producing management efficiencies to deliver community programs and infrastructure and more graduates) can be better achieved through a holistic model that supports the whole family and child by providing better access to wrap around services. Nexus planning is a process through which these services can…

  2. 75 FR 67989 - Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ..., National Protection and Programs Directorate, Office of Infrastructure Protection (IP), will submit the... manner.'' DHS designated IP to lead these efforts. Given that the vast majority of the Nation's critical infrastructure and key resources in most sectors are privately owned or controlled, IP's success in achieving the...

  3. A method for analyzing the business case for provider participation in the National Cancer Institute's Community Clinical Oncology Program and similar federally funded, provider-based research networks.

    PubMed

    Reiter, Kristin L; Song, Paula H; Minasian, Lori; Good, Marjorie; Weiner, Bryan J; McAlearney, Ann Scheck

    2012-09-01

    The Community Clinical Oncology Program (CCOP) plays an essential role in the efforts of the National Cancer Institute (NCI) to increase enrollment in clinical trials. Currently, there is little practical guidance in the literature to assist provider organizations in analyzing the return on investment (ROI), or business case, for establishing and operating a provider-based research network (PBRN) such as the CCOP. In this article, the authors present a conceptual model of the business case for PBRN participation, a spreadsheet-based tool and advice for evaluating the business case for provider participation in a CCOP organization. A comparative, case-study approach was used to identify key components of the business case for hospitals attempting to support a CCOP research infrastructure. Semistructured interviews were conducted with providers and administrators. Key themes were identified and used to develop the financial analysis tool. Key components of the business case included CCOP start-up costs, direct revenue from the NCI CCOP grant, direct expenses required to maintain the CCOP research infrastructure, and incidental benefits, most notably downstream revenues from CCOP patients. The authors recognized the value of incidental benefits as an important contributor to the business case for CCOP participation; however, currently, this component is not calculated. The current results indicated that providing a method for documenting the business case for CCOP or other PBRN involvement will contribute to the long-term sustainability and expansion of these programs by improving providers' understanding of the financial implications of participation. Copyright © 2011 American Cancer Society.

  4. Facilities | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a

  5. Enhancement of Health Research Capacity in Nigeria through North-South and In-Country Partnerships

    PubMed Central

    Olaleye, David O.; Odaibo, Georgina N.; Carney, Paula; Agbaji, Oche; Sagay, Atiene S.; Muktar, Haruna; Akinyinka, Olusegun O.; Omigbodun, Akinyinka O.; Ogunniyi, Adesola; Gashau, Wadzani; Akanmu, Sulaimon; Ogunsola, Folasade; Chukwuka, Chinwe; Okonkwo, Prosper I.; Meloni, Seema T.; Adewole, Isaac; Kanki, Phyllis J.; Murphy, Robert L.

    2014-01-01

    Research productivity in Sub-Saharan Africa has the potential to affect teaching, student quality, faculty career development, and translational country-relevant research as it has in developed countries. Nigeria is the most populous country in Africa, with an academic infrastructure that includes 129 universities and 45 medical schools; however, despite the size, the country has unacceptably poor health status indicators. To further develop the research infrastructure in Nigeria, faculty and research career development topics were identified within the six Nigerian universities of the nine institutions of the Medical Education Partnership Initiative in Nigeria (MEPIN) consortium. The consortium identified a training model that incorporated multi-institutional “train the trainers” programs at the University of Ibadan, followed by replication at the other MEPIN universities. More than 140 in-country trainers subsequently presented nine courses to more than 1,600 faculty, graduate students, and resident doctors throughout the consortium during the program’s first three years (2011–2013). This model has fostered a new era of collaboration among the major Nigerian research universities, which now have increased capacity for collaborative research initiatives and improved research output. These changes, in turn, have the potential to improve the nation’s health outcomes. PMID:25072590

  6. The University of Mississippi Geoinformatics Center (UMGC)

    NASA Technical Reports Server (NTRS)

    Easson, Gregory L.

    2003-01-01

    The overarching goal of the University of Mississippi Geoinformatics Center (UMGC) is to promote application of geospatial information technologies through technology education, research support, and infrastructure development. During the initial two- year phase of operation the UMGC has successfully met those goals and is uniquely positioned to continue operation and further expand the UMGC into additional academic programs. At the end of the first funding cycle, the goals of the UMGC have been and are being met through research and educational activities in the original four participating programs; Biology, Computer and Information Science, Geology and Geological Engineering, and Sociology and Anthropology, with the School of Business joining the UMGC in early 2001. Each of these departments is supporting graduate students conducting research, has created combination teaching and research laboratories, and supported faculty during the summer months.

  7. Ten years of the Immune Tolerance Network: an integrated clinical research organization.

    PubMed

    Bluestone, Jeffrey A; Krensky, Alan M; Turka, Laurence A; Rotrosen, Daniel; Matthews, Jeffrey B

    2010-02-17

    The U.S. National Institutes of Health Roadmap and the U.S. Food and Drug Administration's Critical Path Initiative have endorsed the establishment of large academic clinical research networks as part of the solution to the growing divide between increased R&D spending and the lagging number of new drugs making it to market. Clearly, the role of these networks as translational science incubators that complement industry-sponsored programs is laudable and much-needed. However, the path to success for such organizations is less clear. Here, drawing on the experiences of the Immune Tolerance Network, a multidisciplinary clinical research network founded in 1999, we discuss some of the barriers inherent in developing such consortia and offer firsthand insight into the planning, resources, and organizational infrastructure required for a successful research program.

  8. Online molecular image repository and analysis system: A multicenter collaborative open-source infrastructure for molecular imaging research and application.

    PubMed

    Rahman, Mahabubur; Watabe, Hiroshi

    2018-05-01

    Molecular imaging serves as an important tool for researchers and clinicians to visualize and investigate complex biochemical phenomena using specialized instruments; these instruments are either used individually or in combination with targeted imaging agents to obtain images related to specific diseases with high sensitivity, specificity, and signal-to-noise ratios. However, molecular imaging, which is a multidisciplinary research field, faces several challenges, including the integration of imaging informatics with bioinformatics and medical informatics, requirement of reliable and robust image analysis algorithms, effective quality control of imaging facilities, and those related to individualized disease mapping, data sharing, software architecture, and knowledge management. As a cost-effective and open-source approach to address these challenges related to molecular imaging, we develop a flexible, transparent, and secure infrastructure, named MIRA, which stands for Molecular Imaging Repository and Analysis, primarily using the Python programming language, and a MySQL relational database system deployed on a Linux server. MIRA is designed with a centralized image archiving infrastructure and information database so that a multicenter collaborative informatics platform can be built. The capability of dealing with metadata, image file format normalization, and storing and viewing different types of documents and multimedia files make MIRA considerably flexible. With features like logging, auditing, commenting, sharing, and searching, MIRA is useful as an Electronic Laboratory Notebook for effective knowledge management. In addition, the centralized approach for MIRA facilitates on-the-fly access to all its features remotely through any web browser. Furthermore, the open-source approach provides the opportunity for sustainable continued development. MIRA offers an infrastructure that can be used as cross-boundary collaborative MI research platform for the rapid achievement in cancer diagnosis and therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. COOPEUS - connecting research infrastructures in environmental sciences

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, Ketil; Waldmann, Christoph; Huber, Robert

    2015-04-01

    The COOPEUS project was initiated in 2012 bringing together 10 research infrastructures (RIs) in environmental sciences from the EU and US in order to improve the discovery, access, and use of environmental information and data across scientific disciplines and across geographical borders. The COOPEUS mission is to facilitate readily accessible research infrastructure data to advance our understanding of Earth systems through an international community-driven effort, by: Bringing together both user communities and top-down directives to address evolving societal and scientific needs; Removing technical, scientific, cultural and geopolitical barriers for data use; and Coordinating the flow, integrity and preservation of information. A survey of data availability was conducted among the COOPEUS research infrastructures for the purpose of discovering impediments for open international and cross-disciplinary sharing of environmental data. The survey showed that the majority of data offered by the COOPEUS research infrastructures is available via the internet (>90%), but the accessibility to these data differ significantly among research infrastructures; only 45% offer open access on their data, whereas the remaining infrastructures offer restricted access e.g. do not release raw data or sensible data, demand user registration or require permission prior to release of data. These rules and regulations are often installed as a form of standard practice, whereas formal data policies are lacking in 40% of the infrastructures, primarily in the EU. In order to improve this situation COOPEUS has installed a common data-sharing policy, which is agreed upon by all the COOPEUS research infrastructures. To investigate the existing opportunities for improving interoperability among environmental research infrastructures, COOPEUS explored the opportunities with the GEOSS common infrastructure (GCI) by holding a hands-on workshop. Through exercises directly registering resources, the first steps were taken to implement the GCI as a platform for documenting the capabilities of the COOPEUS research infrastructures. COOPEUS recognizes the potential for the GCI to become an important platform promoting cross-disciplinary approaches in the studies of multifaceted environmental challenges. Recommendations from the workshop participants also revealed that in order to attract research infrastructures to use the GCI, the registration process must be simplified and accelerated. However, also the data policies of the individual research infrastructure, or lack thereof, can prevent the use of the GCI or other portals, due to unclarities regarding data management authority and data ownership. COOPEUS shall continue to promote cross-disciplinary data exchange in the environmental field and will in the future expand to also include other geographical areas.

  10. Promoting the Utilization of Science in Healthcare (PUSH) Project: A Description of the Perceived Barriers and Facilitators to Research Utilization Among Pediatric Nurses.

    PubMed

    Cline, Genieveve J; Burger, Kristina J; Amankwah, Ernest K; Goldenberg, Neil A; Ghazarian, Sharon R

    The purpose of this descriptive study was to identify the perceived barriers and facilitators to research utilization and evidence-based practice among nurses employed in a tertiary care children's hospital. Results revealed seven facilitator and six barrier themes that contribute to the understanding of the problem. The themes can be utilized by nursing professional development specialists to customize organizational infrastructure and educational programs.

  11. A European perspective--the European clinical research infrastructures network.

    PubMed

    Demotes-Mainard, J; Kubiak, C

    2011-11-01

    Evaluating research outcomes requires multinational cooperation in clinical research for optimization of treatment strategies and comparative effectiveness research, leading to evidence-based practice and healthcare cost containment. The European Clinical Research Infrastructures Network (ECRIN) is a distributed ESFRI (European Strategy Forum on Research Infrastructures) roadmap pan-European infrastructure designed to support multinational clinical research, making Europe a single area for clinical studies, taking advantage of its population size to access patients, and unlocking latent scientific potential. Servicing multinational trials started during its preparatory phase, and ECRIN will now apply for an ERIC (European Research Infrastructures Consortium) status by 2011. By creating a single area for clinical research in Europe, this achievement will contribute to the implementation of the Europe flagship initiative 2020 'Innovation Union', whose objectives include defragmentation of the research and education capacity, tackling the major societal challenges starting with the area of healthy ageing, and removing barriers to bring ideas to the market.

  12. Vehicle-to-infrastructure (V2I) program.

    DOT National Transportation Integrated Search

    2017-01-01

    Vehicle-to-infrastructure (V2I) communication, which involves the exchange of safety and operational data between vehicles and elements of the transportation infrastructure, offers a wide range of safety, mobility and environmental benefits. When car...

  13. 75 FR 39266 - National Protection and Programs Directorate; National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... infrastructure sectors and their information systems. Pursuant to 41 CFR 102-3.150(b), this notice was published... Critical Infrastructure Resilience Goals VI. Working Group Status: Optimization of Resources for Mitigating...

  14. Establishment of a Research Pharmacy to Support Ebola Clinical Research in Liberia

    PubMed Central

    Pierson, Jerome F.; Kirchoff, Matthew Carl; Tyee, Rev Tegli; Rhie, Julie K.; Montello, Michael J

    2017-01-01

    Objective This paper describes the establishment of a research pharmacy to support the PREVAIL vaccine study for Ebola Virus Disease. Setting This paper describes the establishment of the pharmacy element to support the overall research program during an Ebola outbreak in Monrovia, Liberia in 2014 and 2015. Practice Innovation The need to rapidly establish infrastructure to support the Liberian-US joint clinical research partnership in response to the emerging Ebola Virus Disease provided the opportunity for collaboration among Liberian and US pharmacists. Evaluation and Results Experiences of the Liberian and US pharmacists involved in the program are described. Conclusion The partnership was successful in the conduct of the study, but more importantly, capacity for Liberian pharmacists to support clinical research was established. Additionally, the US team learned several important lessons that will help prepare them for responding to research needs in future infectious disease outbreaks. PMID:28610940

  15. NASA Electronic Parts and Packaging (NEPP) Program

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2008-01-01

    This viewgraph presentation reviews NASA's Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission needs. The NEPP Program focuses on the reliability aspects of electronic devices. Three principal aspects to this reliability: (1) lifetime, (2) effects of space radiation and the space environment, and (3) creation and maintenance of the assurance support infrastructure required for success.

  16. A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research: Recommendations of a New Study from the National Academes of Sciences, Engineering, and Medicine.

    NASA Astrophysics Data System (ADS)

    Weller, R. A.; Bell, R. E.; Geller, L.

    2015-12-01

    A Committee convened by the National Academies of Sciences, Engineering, and Medicine carried out a study (at the request of NSF's Division of Polar Programs) to develop a strategic vision for the coming decade of NSF's investments in Antarctic and Southern Ocean research. The study was informed by extensive efforts to gather ideas from researchers across the United States. This presentation will provide an overview of the Committee's recommendations—regarding an overall strategic framework for a robust U.S. Antarctic program, regarding the specific areas of research recommended as highest priority for NSF support, and regarding the types of infrastructure, logistical support, data management, and other critical foundations for enabling and adding lasting value to the proposed research .

  17. Telecommunication and Technology Infrastructure Program (TTIP) Certification for Expenditures, Fiscal Year 2000-2001.

    ERIC Educational Resources Information Center

    Williams, Lindy

    This document presents the guidelines for the California Community College 2000-2001 State-Funded Telecommunication and Technology Infrastructure Program (TTIP) Program. The 2000-2001 State Budget Act contains $44.3 million for expenditures on the TTIP. The Act provides that $31,600,000 be allocated to colleges for the following purposes: (1) data…

  18. Developing Your Evaluation Plans: A Critical Component of Public Health Program Infrastructure.

    PubMed

    Lavinghouze, S Rene; Snyder, Kimberly

    A program's infrastructure is often cited as critical to public health success. The Component Model of Infrastructure (CMI) identifies evaluation as essential under the core component of engaged data. An evaluation plan is a written document that describes how to monitor and evaluate a program, as well as how to use evaluation results for program improvement and decision making. The evaluation plan clarifies how to describe what the program did, how it worked, and why outcomes matter. We use the Centers for Disease Control and Prevention's (CDC) "Framework for Program Evaluation in Public Health" as a guide for developing an evaluation plan. Just as using a roadmap facilitates progress on a long journey, a well-written evaluation plan can clarify the direction your evaluation takes and facilitate achievement of the evaluation's objectives.

  19. Clinical research in a hospital--from the lone rider to teamwork.

    PubMed

    Hannisdal, E

    1996-01-01

    Clinical research of high international standard is very demanding and requires clinical data of high quality, software, hardware and competence in research design and statistical treatment of data. Most busy clinicians have little time allocated for clinical research and this increases the need for a potent infrastructure. This paper describes how the Norwegian Radium Hospital, a specialized cancer hospital, has reorganized the clinical research process. This includes a new department, the Clinical Research Office, which serves the formal framework, a central Diagnosis Registry, clinical databases and multicentre studies. The department assists about 120 users, mainly clinicians. Installation of a network software package with over 10 programs has strongly provided an internal standardization, reduced the costs and saved clinicians a great deal of time. The hospital is building up about 40 diagnosis-specific clinical databases with up to 200 variables registered. These databases are shared by the treatment group and seem to be important tools for quality assurance. We conclude that the clinical research process benefits from a firm infrastructure facilitating teamwork through extensive use of modern information technology. We are now ready for the next phase, which is to work for a better external technical framework for cooperation with other institutions throughout the world.

  20. Development of a public health nursing data infrastructure.

    PubMed

    Monsen, Karen A; Bekemeier, Betty; P Newhouse, Robin; Scutchfield, F Douglas

    2012-01-01

    An invited group of national public health nursing (PHN) scholars, practitioners, policymakers, and other stakeholders met in October 2010 identifying a critical need for a national PHN data infrastructure to support PHN research. This article summarizes the strengths, limitations, and gaps specific to PHN data and proposes a research agenda for development of a PHN data infrastructure. Future implications are suggested, such as issues related to the development of the proposed PHN data infrastructure and future research possibilities enabled by the infrastructure. Such a data infrastructure has potential to improve accountability and measurement, to demonstrate the value of PHN services, and to improve population health. © 2012 Wiley Periodicals, Inc.

  1. Research Ethics Capacity Building in Sub-Saharan Africa: A Review of NIH Fogarty-Funded Programs 2000–2012

    PubMed Central

    Ndebele, Paul; Wassenaar, Douglas; Benatar, Solomon; Fleischer, Theodore; Kruger, Mariana; Adebamowo, Clement; Kass, Nancy; Hyder, Adnan A.; Meslin, Eric M.

    2014-01-01

    The last fifteen years have witnessed a significant increase in investment in research ethics capacity development throughout the world. We examine nine research ethics training programs that are focused on Sub-Saharan Africa and supported by the US National Institutes of Health. We collected data from grants awards’ documents and annual reports supplemented by questionnaires completed by the training program directors. Together, these programs provided long-term training in research ethics to 275 African professionals, strengthened research ethics committees in 19 countries in Sub-Saharan Africa, and created research ethics curricula at many institutions and bioethics centers within Africa. Trainees’ leadership resulted in new national systems and policies on research ethics, human tissue storage and export, and methods of monitoring compliance with research ethics guidelines. Training programs adapted to challenges that arose due to varied trainees’ background knowledge in ethics, duration of time available for training, spoken and written English language skills, administrative obstacles, and the need to sustain post-training research ethics activities. Our report showcases the development of awareness of research ethics and building/strengthening of basic research ethics infrastructure in Sub-Saharan Africa. Nevertheless, the increasing amount and complexity of health research being conducted in Sub-Saharan Africa suggests the need for continued investment in research ethics capacity development in this region. This paper is part of a collection of papers analyzing the Fogarty International Center’s International Research Ethics Education and Curriculum Development program. PMID:24782070

  2. Research ethics capacity building in Sub-Saharan Africa: a review of NIH Fogarty-funded programs 2000–2012.

    PubMed

    Ndebele, Paul; Wassenaar, Douglas; Benatar, Solomon; Fleischer, Theodore; Kruger, Mariana; Adebamowo, Clement; Kass, Nancy; Hyder, Adnan A; Meslin, Eric M

    2014-04-01

    The last fifteen years have witnessed a significant increase in investment in research ethics capacity development throughout the world. We examine nine research ethics training programs that are focused on Sub-Saharan Africa and supported by the US National Institutes of Health. We collected data from grants awards' documents and annual reports supplemented by questionnaires completed by the training program directors. Together, these programs provided long-term training in research ethics to 275 African professionals, strengthened research ethics committees in 19 countries in Sub-Saharan Africa, and created research ethics curricula at many institutions and bioethics centers within Africa. Trainees' leadership resulted in new national systems and policies on research ethics, human tissue storage and export, and methods of monitoring compliance with research ethics guidelines. Training programs adapted to challenges that arose due to varied trainees' background knowledge in ethics, duration of time available for training, spoken and written English language skills, administrative obstacles, and the need to sustain post-training research ethics activities. Our report showcases the development of awareness of research ethics and building/strengthening of basic research ethics infrastructure in Sub-Saharan Africa. Nevertheless, the increasing amount and complexity of health research being conducted in Sub-Saharan Africa suggests the need for continued investment in research ethics capacity development in this region. This paper is part of a collection of papers analyzing the Fogarty International Center's International Research Ethics Education and Curriculum Development program.

  3. A Disability and Health Institutional Research Capacity Building and Infrastructure Model Evaluation: A Tribal College-Based Case Study

    ERIC Educational Resources Information Center

    Moore, Corey L.; Manyibe, Edward O.; Sanders, Perry; Aref, Fariborz; Washington, Andre L.; Robertson, Cherjuan Y.

    2017-01-01

    Purpose: The purpose of this multimethod study was to evaluate the institutional research capacity building and infrastructure model (IRCBIM), an emerging innovative and integrated approach designed to build, strengthen, and sustain adequate disability and health research capacity (i.e., research infrastructure and investigators' research skills)…

  4. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROOT, R.W.

    1999-05-18

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  5. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  6. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  7. The Sunrise project: An R&D project for a national information infrastructure prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Juhnyoung

    1995-02-01

    Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to a prototype National Information Infrastructure (NII) development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multimedia technologies, and data mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; and (3) To define a new way of collaboration between computer science and industrially relevant research.« less

  8. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  9. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T.D.; Morris, R.C.; Markham, O.D.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.

  10. 75 FR 68370 - Agency Information Collection Activities: Office of Infrastructure Protection; Chemical Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... DEPARTMENT OF HOMELAND SECURITY National Protection and Programs Directorate [Docket No. DHS-2010-0071] Agency Information Collection Activities: Office of Infrastructure Protection; Chemical Security...: The Department of Homeland Security (DHS), National Protection and Programs Directorate (NPPD), Office...

  11. Surface transportation : clear federal role and criteria-based selection process could improve three national and regional infrastructure programs.

    DOT National Transportation Integrated Search

    2009-02-01

    To help meet increasing transportation demands, the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) created three programs to invest federal funds in national and regional transportation infrastructur...

  12. The way forward

    USGS Publications Warehouse

    Estes, John; Belward, Alan; Loveland, Thomas; Scepan, Joseph; Strahler, Alan H.; Townshend, John B.; Justice, Chris

    1999-01-01

    This paper focuses on the lessons hearned in the conduct of the lnternational Geosphere Biosphere Program's Data and Information System (rcnr-nts), global 1-km Land-Cover Mapping Project (n$cover). There is stiLL considerable fundamental research to be conducted dealing with the development and validation of thematic geospatial products derived from a combination of remotely sensed and ancillary data. Issues include database and data product development, classification legend definitions, processing and analysis techniques, and sampling strategies. A significant infrastructure is required to support an effort such as DISCover. The infrastructure put in place under the auspices of the IGBP-DIS serves as a model, and must be put in place to enable replication and development of projects such as Discover.

  13. Urban ecosystem services and decision making for a green Philadelphia

    USGS Publications Warehouse

    Hogan, Dianna M.; Shapiro, Carl D.; Karp, David N.; Wachter, Susan M.

    2014-01-01

    Traditional approaches to urban development often do not account for, or recognize, the role of ecosystem services and the benefits these services provide to the health and well-being of city residents. Without such accounting, urban ecosystem services are likely to be degraded over time, with negative consequences for the sustainability of cities and the well-being of their residents (Millennium Ecosystem Assessment, 2005; Hirsch, 2008). On May 23, 2013, the Spatial Integration Laboratory for Urban Systems (SILUS), a collaboration between the U.S. Geological Survey (USGS) Science and Decisions Center and the Wharton GIS Lab, convened a one-day symposium—Urban Ecosystem Services and Decision Making: A Green Philadelphia—at the University of Pennsylvania in Philadelphia, Pennsylvania, to examine the role of green infrastructure in the environmental, economic, and social well-being of cities. Cosponsored by the USGS and the Penn Institute for Urban Research (Penn IUR), the symposium brought together policymakers, practitioners, and researchers from a range of disciplines to advance a research agenda on the use of science in public decision making to inform investment in green infrastructure and ecosystem services in urban areas. The city of Philadelphia has recently implemented a program designed to sustain urban ecosystem services and advance the use of green infrastructure. In 2009, the Philadelphia Mayor’s Office of Sustainability launched its Greenworks plan, establishing a citywide sustainability strategy. Major contributions towards its goals are being implemented in coordination with the Philadelphia Water Department (PWD). The Green City, Clean Waters initiative, the city’s nationally recognized stormwater management plan, was signed into action with the U.S. Environmental Protection Agency (EPA) in April 2012. The plan outlines a 25-year strategy to use green infrastructure to protect and improve the city’s watershed. Widespread support for the plan marks a citywide effort to factor environmental quality concerns into the city’s strategic planning, choosing to replace expensive and aging grey infrastructure, with innovative and resilient green infrastructure. The symposium focused on these city of Philadelphia initiatives and also on two new Federal- local partnership programs: America’s Great Outdoors, initiated to promote conservation and recreation, and the Urban Waters Federal Partnership, a multiagency effort to reconnect urban communities to their waterways. A second goal of the symposium was to advance a research agenda on urban ecosystem services. While there has been considerable work on ecosystem services, the discussion of the benefits provided by urban ecosystems is not as developed. Benefits range from improved water and air quality to quality of life gains, including aesthetic and recreational considerations. There is also need for additional focused research toward furthering the understanding of the multiple indirect benefits provided by urban ecosystem services (Bolund and Hunhammar, 1999). Moreover, there is a need for a greater understanding of how best to inform local decision making in this area, as local decision makers in cities across the country are increasingly recognizing the importance of developing sustainability measures for their immediate and long-term planning (United States Conference of Mayors, 2005). Approaching these local and regional plans from a holistic perspective has become a guiding principle of sustainability and resiliency. Therefore, there is a need to better understand the gains that have been achieved and to advance a research agenda on ecosystem services going forward. The day’s program included presentations on greening initiatives from the Philadelphia’s Mayor’s Office of Sustainability, as well as discussion about using an urban ecosystem services framework to evaluate these initiatives. Panel sessions included discussion of the Green City, Clean Waters initiative; a dialogue about the management of urban trees and green space; and a conversation addressing the needs for future research.

  14. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kim, P

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less

  15. Interventional Radiation Oncology (IRO): Transition of a magnetic resonance simulator to a brachytherapy suite.

    PubMed

    Anderson, Roberta; Armour, Elwood; Beeckler, Courtney; Briner, Valerie; Choflet, Amanda; Cox, Andrea; Fader, Amanda N; Hannah, Marie N; Hobbs, Robert; Huang, Ellen; Kiely, Marilyn; Lee, Junghoon; Morcos, Marc; McMillan, Paige E; Miller, Dave; Ng, Sook Kien; Prasad, Rashmi; Souranis, Annette; Thomsen, Robert; DeWeese, Theodore L; Viswanathan, Akila N

    As a core component of a new gynecologic cancer radiation program, we envisioned, structured, and implemented a novel Interventional Radiation Oncology (IRO) unit and magnetic resonance (MR)-brachytherapy environment in an existing MR simulator. We describe the external and internal processes required over a 6-8 month time frame to develop a clinical and research program for gynecologic brachytherapy and to successfully convert an MR simulator into an IRO unit. Support of the institution and department resulted in conversion of an MR simulator to a procedural suite. Development of the MR gynecologic brachytherapy program required novel equipment, staffing, infrastructural development, and cooperative team development with anesthetists, nurses, therapists, physicists, and physicians to ensure a safe and functional environment. Creation of a separate IRO unit permitted a novel billing structure. The creation of an MR-brachytherapy environment in an MR simulator is feasible. Developing infrastructure includes several collaborative elements. Unique to the field of radiation oncology, formalizing the space as an Interventional Radiation Oncology unit permits a sustainable financial structure. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. A Model for Sustainable Development of Child Mental Health Infrastructure in the LMIC World: Vietnam as a Case Example.

    PubMed

    Weiss, Bahr; Ngo, Victoria Khanh; Dang, Hoang-Minh; Pollack, Amie; Trung, Lam T; Tran, Cong V; Tran, Nam T; Sang, David; Do, Khanh N

    2012-01-01

    Children and adolescents are among the highest need populations in regards to mental health support, especially in low and middle income countries (LMIC). Yet resources in LMIC for prevention and treatment of mental health problems are limited, in particular for children and adolescents. In this paper, we discuss a model for development of child and adolescent mental health (CAMH) resources in LMIC that has guided a ten year initiative focused on development of CAMH treatment and research infrastructure in Vietnam. We first review the need for development of mental health resources for children and adolescents in general, and then in Vietnam. We next present the model that guided our program as it developed, focused on the twin Capacity Development Goals of efficacy and sustainability, and the Capacity Development Targets used to move towards these goals. Finally we discuss our CAMH development initiative in Vietnam, the center of which has been development of a graduate program in clinical psychology at Vietnam National University, linking program activities to this model.

  17. The EPOS Architecture: Integrated Services for solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Consortium, Epos

    2013-04-01

    The European Plate Observing System (EPOS) represents a scientific vision and an IT approach in which innovative multidisciplinary research is made possible for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes and tsunamis as well as those driving tectonics and Earth surface dynamics. EPOS has a long-term plan to facilitate integrated use of data, models and facilities from existing (but also new) distributed research infrastructures, for solid Earth science. One primary purpose of EPOS is to take full advantage of the new e-science opportunities coming available. The aim is to obtain an efficient and comprehensive multidisciplinary research platform for the Earth sciences in Europe. The EPOS preparatory phase (EPOS PP), funded by the European Commission within the Capacities program, started on November 1st 2010 and it has completed its first two years of activity. EPOS is presently mid-way through its preparatory phase and to date it has achieved all the objectives, milestones and deliverables planned in its roadmap towards construction. The EPOS mission is to integrate the existing research infrastructures (RIs) in solid Earth science warranting increased accessibility and usability of multidisciplinary data from monitoring networks, laboratory experiments and computational simulations. This is expected to enhance worldwide interoperability in the Earth Sciences and establish a leading, integrated European infrastructure offering services to researchers and other stakeholders. The Preparatory Phase aims at leveraging the project to the level of maturity required to implement the EPOS construction phase, with a defined legal structure, detailed technical planning and financial plan. We will present the EPOS architecture, which relies on the integration of the main outcomes from legal, governance and financial work following the strategic EPOS roadmap and according to the technical work done during the first two years in order to establish an effective implementation plan guaranteeing long term sustainability for the infrastructure and the associated services. We plan to describe the RIs to be integrated in EPOS and to illustrate the initial suite of integrated and thematic core services to be offered to the users. We will present examples of combined data analyses and we will address the importance of opening our research infrastructures to users from different communities. We will describe the use-cases identified so far in order to allow stakeholders and potential future users to understand and interact with the EPOS infrastructure. In this framework, we also discuss the global perspectives for data infrastructures in order to verify the coherency of the EPOS plans and present the EPOS contributions. We also discuss the international cooperation initiatives in which EPOS is involved emphasizing the implications for solid Earth data infrastructures. In particular, EPOS and the satellite Earth Observation communities are collaborating in order to promote the integration of data from in-situ monitoring networks and satellite observing systems. Finally, we will also discuss the priorities for the third year of activity and the key actions planned to better involve users in EPOS. In particular, we will discuss the work done to finalize the design phase as well as the activities to start the validation and testing phase of the EPOS infrastructure.

  18. Executive summary of the CAEP 2014 Academic Symposium: How to make research succeed in your department.

    PubMed

    Stiell, Ian G; Artz, Jennifer D; Perry, Jeffrey; Vaillancourt, Christian; Calder, Lisa

    2015-05-01

    The vision of the recently created Canadian Association of Emergency Physicians (CAEP) Academic Section is to promote high-quality emergency patient care by conducting world-leading education and research in emergency medicine. The Academic Section plans to achieve this goal by enhancing academic emergency medicine primarily at Canadian medical schools and teaching hospitals. It seeks to foster and develop education, research, and academic leadership amongst Canadian emergency physicians, residents, and students. In this light, the Academic Section began in 2013 to hold the annual Academic Symposia to highlight best practices and recommendations for the three core domains of governance and leadership, education scholarship, and research. Each year, members of three panels are asked to review the literature, survey and interview experts, achieve consensus, and present their recommendations at the Symposium (2013, Education Scholarship; 2014, Research; and 2015, Governance and Funding). Research is essential to medical advancement. As a relatively young specialty, emergency medicine is rapidly evolving to adapt to new diagnostic tools, the challenges of crowding in emergency departments, and the growing needs of emergency patients. There is significant variability in the infrastructure, support, and productivity of emergency medicine research programs across Canada. All Canadians benefit from an investigation of the means to improve research infrastructure, training programs, and funding opportunities. Such an analysis is essential to identify areas for improvement, which will support the expansion of emergency medicine research. To this end, physician-scientist leaders were gathered from across Canada to develop pragmatic recommendations on the improvement of emergency medicine research through a comprehensive analysis of current best practices, systematic literature reviews, stakeholder surveys, and expert interviews.

  19. Highways of the future : a strategic plan for highway infrastructure research and development

    DOT National Transportation Integrated Search

    2008-07-01

    This Highways of the FutureA Strategic Plan for Highway Infrastructure Research and Development was developed in response to a need expressed by the staff of the Federal Highway Administration (FHWA) Office of Infrastructure Research and Developme...

  20. TRANSVAC research infrastructure - Results and lessons learned from the European network of vaccine research and development.

    PubMed

    Geels, Mark J; Thøgersen, Regitze L; Guzman, Carlos A; Ho, Mei Mei; Verreck, Frank; Collin, Nicolas; Robertson, James S; McConkey, Samuel J; Kaufmann, Stefan H E; Leroy, Odile

    2015-10-05

    TRANSVAC was a collaborative infrastructure project aimed at enhancing European translational vaccine research and training. The objective of this four year project (2009-2013), funded under the European Commission's (EC) seventh framework programme (FP7), was to support European collaboration in the vaccine field, principally through the provision of transnational access (TNA) to critical vaccine research and development (R&D) infrastructures, as well as by improving and harmonising the services provided by these infrastructures through joint research activities (JRA). The project successfully provided all available services to advance 29 projects and, through engaging all vaccine stakeholders, successfully laid down the blueprint for the implementation of a permanent research infrastructure for early vaccine R&D in Europe. Copyright © 2015. Published by Elsevier Ltd.

  1. Microgravity Materials Research and Code U ISRU

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Sibille, Laurent

    2004-01-01

    The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.

  2. A Novel Program Trains Community‐Academic Teams to Build Research and Partnership Capacity

    PubMed Central

    Brown, Jen; LeBailly, Susan; McGee, Richard; Bayldon, Barbara; Huber, Gail; Kaleba, Erin; Lowry, Kelly Walker; Martens, Joseph; Mason, Maryann; Nuñez, Abel

    2013-01-01

    Abstract The Community‐Engaged Research Team Support (CERTS) program was developed and tested to build research and partnership capacity for community‐engaged research (CEnR) teams. Led by the Northwestern University Clinical and Translational Sciences Institute (NUCATS), the goals of CERTS were: (1) to help community‐academic teams build capacity for conducting rigorous CEnR and (2) to support teams as they prepare federal grant proposal drafts. The program was guided by an advisory committee of community and clinical partners, and representatives from Chicago's Clinical and Translational Science Institutes. Monthly workshops guided teams to write elements of NIH‐style research proposals. Draft reviewing fostered a collaborative learning environment and helped teams develop equal partnerships. The program culminated in a mock‐proposal review. All teams clarified their research and acquired new knowledge about the preparation of NIH‐style proposals. Trust, partnership collaboration, and a structured writing strategy were assets of the CERTS approach. CERTS also uncovered gaps in resources and preparedness for teams to be competitive for federally funded grants. Areas of need include experience as principal investigators, publications on study results, mentoring, institutional infrastructure, and dedicated time for research. PMID:23751028

  3. IT Infrastructure Projects: A Framework for Analysis. ECAR Research Bulletin

    ERIC Educational Resources Information Center

    Grochow, Jerrold M.

    2014-01-01

    Just as maintaining a healthy infrastructure of water delivery and roads is essential to the functioning of cities and towns, maintaining a healthy infrastructure of information technology is essential to the functioning of universities. Deterioration in IT infrastructure can lead to deterioration in research, teaching, and administration. Given…

  4. Commonwealth Infrastructure Funding for Australian Universities: 2004 to 2011

    ERIC Educational Resources Information Center

    Koshy, Paul; Phillimore, John

    2013-01-01

    This paper provides an overview of recent trends in the provision of general infrastructure funding by the Commonwealth for Australian universities (Table A providers) over the period 2004 to 2011. It specifically examines general infrastructure development and excludes funding for research infrastructure through the Australian Research Council or…

  5. Using high-performance networks to enable computational aerosciences applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1992-01-01

    One component of the U.S. Federal High Performance Computing and Communications Program (HPCCP) is the establishment of a gigabit network to provide a communications infrastructure for researchers across the nation. This gigabit network will provide new services and capabilities, in addition to increased bandwidth, to enable future applications. An understanding of these applications is necessary to guide the development of the gigabit network and other high-performance networks of the future. In this paper we focus on computational aerosciences applications run remotely using the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames Research Center. We characterize these applications in terms of network-related parameters and relate user experiences that reveal limitations imposed by the current wide-area networking infrastructure. Then we investigate how the development of a nationwide gigabit network would enable users of the NAS facility to work in new, more productive ways.

  6. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Julia A.; Wallace, Kelly E.; Kudo, Terence Y.

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  7. A Cloud-based Infrastructure and Architecture for Environmental System Research

    NASA Astrophysics Data System (ADS)

    Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.

    2016-12-01

    The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.

  8. Support Process Development for Assessing Green Infrastructure in Omaha, NE

    EPA Pesticide Factsheets

    Evaluates Omaha’s current process for assessing green infrastructure projects and recommends improvements for comparing green and gray infrastructure. Compares Omaha’s design criteria to other cities. Reviews other US programs with rights-of-way criteria.

  9. Alternative Fuels Data Center

    Science.gov Websites

    Alternative Fuel Infrastructure Grants The Maryland Energy Administration administers the Maryland Alternative Fuel Infrastructure Program (AFIP), which provides grants to develop public access alternative fueling and charging infrastructure. Only Maryland-based private businesses are eligible, and projects

  10. Linking HIV-Negative Youth to Prevention Services in 12 U.S. Cities: Barriers and Facilitators to Implementing the HIV Prevention Continuum.

    PubMed

    Doll, Mimi; Fortenberry, J Dennis; Roseland, Denise; McAuliff, Kathleen; Wilson, Craig M; Boyer, Cherrie B

    2018-04-01

    Linkage of HIV-negative youth to prevention services is increasingly important with the development of effective pre-exposure prophylaxis that complements behavioral and other prevention-focused interventions. However, effective infrastructure for delivery of prevention services does not exist, leaving many programs to address HIV prevention without data to guide program development/implementation. The objective of this study was to provide a qualitative description of barriers and facilitators of linkage to prevention services among high-risk, HIV-negative youth. Thematic analysis of structured interviews with staff implementing linkage to prevention services programs for youth aged 12-24 years. Twelve adolescent medicine HIV primary care programs as part of larger testing research program focused on young sexual minority men of color. The study included staff implementing linkage to prevention services programs along with community-based HIV testing programs. The main outcomes of the study were key barriers/facilitators to linkage to prevention services. Eight themes summarized perspectives on linkage to prevention services: (1) relationships with community partners, (2) trust between providers and youth, (3) youth capacity to navigate prevention services, (4) pre-exposure prophylaxis specific issues, (5) privacy issues, (6) gaps in health records preventing tailored services, (7) confidentiality of care for youth accessing services through parents'/caretakers' insurance, and (8) need for health-care institutions to keep pace with models that prioritize HIV prevention among at-risk youth. Themes are discussed in the context of factors that facilitated/challenged linkage to prevention services. Several evidence-based HIV prevention tools are available; infrastructures for coordinated service delivery to high-risk youth have not been developed. Implementation of such infrastructures requires attention to community-, provider-, and youth-related issues. Copyright © 2017 The Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  11. Evaluation of intelligent transportation infrastructure program (ITIP) in Pittsburgh and Philadelphia, Pennsylvania

    DOT National Transportation Integrated Search

    2003-03-20

    The Transportation Equity Act for the 21st Century (TEA-21) Public Laws 105-178 and 105-206, Title V, Section 5117(b) (3) provides for an Intelligent Transportation Infrastructure Program (ITIP) to advance the deployment of operational intelligent tr...

  12. The High-Performance Computing and Communications program, the national information infrastructure and health care.

    PubMed Central

    Lindberg, D A; Humphreys, B L

    1995-01-01

    The High-Performance Computing and Communications (HPCC) program is a multiagency federal effort to advance the state of computing and communications and to provide the technologic platform on which the National Information Infrastructure (NII) can be built. The HPCC program supports the development of high-speed computers, high-speed telecommunications, related software and algorithms, education and training, and information infrastructure technology and applications. The vision of the NII is to extend access to high-performance computing and communications to virtually every U.S. citizen so that the technology can be used to improve the civil infrastructure, lifelong learning, energy management, health care, etc. Development of the NII will require resolution of complex economic and social issues, including information privacy. Health-related applications supported under the HPCC program and NII initiatives include connection of health care institutions to the Internet; enhanced access to gene sequence data; the "Visible Human" Project; and test-bed projects in telemedicine, electronic patient records, shared informatics tool development, and image systems. PMID:7614116

  13. Is strategic asset management applicable to small and medium utilities?

    PubMed

    Alegre, Helena

    2010-01-01

    Urban water infrastructures provide essential services to modern societies and represent a major portion of the value of municipal physical assets. Managing these assets rationally is therefore fundamental for the sustainability of the services and to the economy of societies. "Asset Management" (AM) is a modern term for an old practice--assets have always been managed. In recent years, significant evolution occurred in terms of the AM formal approaches, of the monitoring and decision support tools and of the implementation success cases. However, most tools developed are too sophisticated and data seek for small utilities. The European R&D network COST Action C18 ( E-mail: www.costc18.org) identified key research problems related to the management of urban water infrastructures, currently not covered by on-going projects of the European Framework Program. The top 1 topic is "Efficient management of small community". This paper addresses challenges and opportunities for small and medium utilities with regard to infrastructure AM (IAM). To put this into context, the first sections discuss the need for IAM, highlight key recent developments, and present IAM drivers, as well as research and development gaps, priorities and products needed.

  14. Aligning Scales of Certification Tests. Research Report. ETS RR-10-07

    ERIC Educational Resources Information Center

    Dorans, Neil J.; Liang, Longjuan; Puhan, Gautam

    2010-01-01

    Scores are the most visible and widely used products of a testing program. The choice of score scale has implications for test specifications, equating, and test reliability and validity, as well as for test interpretation. At the same time, the score scale should be viewed as infrastructure likely to require repair at some point. In this report…

  15. Resurrecting social infrastructure as a determinant of urban tuberculosis control in Delhi, India

    PubMed Central

    2014-01-01

    Background The key to universal coverage in tuberculosis (TB) management lies in community participation and empowerment of the population. Social infrastructure development generates social capital and addresses the crucial social determinants of TB, thereby improving program performance. Recently, there has been renewed interest in the concept of social infrastructure development for TB control in developing countries. This study aims to revive this concept and highlight the fact that documentation on ways to operationalize urban TB control is required from a holistic development perspective. Further, it explains how development of social infrastructure impacts health and development outcomes, especially with respect to TB in urban settings. Methods A wide range of published Government records pertaining to social development parameters and TB program surveillance, between 2001 and 2011 in Delhi, were studied. Social infrastructure development parameters like human development index along with other indicators reflecting patient profile and habitation in urban settings were selected as social determinants of TB. These include adult literacy rates, per capita income, net migration rates, percentage growth in slum population, and percentage of urban population living in one-room dwelling units. The impact of the Revised National Tuberculosis Control Program on TB incidence was assessed as an annual decline in new TB cases notified under the program. Univariate linear regression was employed to examine the interrelationship between social development parameters and TB program outcomes. Results The decade saw a significant growth in most of the social development parameters in the State. TB program performance showed 46% increment in lives saved among all types of TB cases per 100,000 population. The 7% reduction in new TB case notifications from the year 2001 to 2011, translates to a logarithmic decline of 5.4 new TB cases per 100,000 population. Except per capita income, literacy, and net migration rates, other social determinants showed significant correlation with decline in new TB cases per 100,000 population. Conclusions Social infrastructure development leads to social capital generation which engenders positive growth in TB program outcomes. Strategies which promote social infrastructure development should find adequate weightage in the overall policy framework for urban TB control in developing countries. PMID:24438431

  16. Resurrecting social infrastructure as a determinant of urban tuberculosis control in Delhi, India.

    PubMed

    Chandra, Shivani; Sharma, Nandini; Joshi, Kulanand; Aggarwal, Nishi; Kannan, Anjur Tupil

    2014-01-17

    The key to universal coverage in tuberculosis (TB) management lies in community participation and empowerment of the population. Social infrastructure development generates social capital and addresses the crucial social determinants of TB, thereby improving program performance. Recently, there has been renewed interest in the concept of social infrastructure development for TB control in developing countries. This study aims to revive this concept and highlight the fact that documentation on ways to operationalize urban TB control is required from a holistic development perspective. Further, it explains how development of social infrastructure impacts health and development outcomes, especially with respect to TB in urban settings. A wide range of published Government records pertaining to social development parameters and TB program surveillance, between 2001 and 2011 in Delhi, were studied. Social infrastructure development parameters like human development index along with other indicators reflecting patient profile and habitation in urban settings were selected as social determinants of TB. These include adult literacy rates, per capita income, net migration rates, percentage growth in slum population, and percentage of urban population living in one-room dwelling units. The impact of the Revised National Tuberculosis Control Program on TB incidence was assessed as an annual decline in new TB cases notified under the program. Univariate linear regression was employed to examine the interrelationship between social development parameters and TB program outcomes. The decade saw a significant growth in most of the social development parameters in the State. TB program performance showed 46% increment in lives saved among all types of TB cases per 100,000 population. The 7% reduction in new TB case notifications from the year 2001 to 2011, translates to a logarithmic decline of 5.4 new TB cases per 100,000 population. Except per capita income, literacy, and net migration rates, other social determinants showed significant correlation with decline in new TB cases per 100,000 population. Social infrastructure development leads to social capital generation which engenders positive growth in TB program outcomes. Strategies which promote social infrastructure development should find adequate weightage in the overall policy framework for urban TB control in developing countries.

  17. 75 FR 31458 - Infrastructure Protection Data Call Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ...-0022] Infrastructure Protection Data Call Survey AGENCY: National Protection and Programs Directorate... New Information Collection Request, Infrastructure Protection Data Call Survey. DHS previously... territories are able to achieve this mission, IP requests opinions and information in a survey from IP Data...

  18. Vehicle infrastructure integration (VII) based road-condition warning system for highway collision prevention.

    DOT National Transportation Integrated Search

    2009-05-01

    As a major ITS initiative, the Vehicle Infrastructure Integration (VII) program is to revolutionize : transportation by creating an enabling communication infrastructure that will open up a wide range of : safety applications. The road-condition warn...

  19. Pavement Technology and Airport Infrastructure Expansion Impact

    NASA Astrophysics Data System (ADS)

    Sabib; Setiawan, M. I.; Kurniasih, N.; Ahmar, A. S.; Hasyim, C.

    2018-01-01

    This research aims for analyzing construction and infrastructure development activities potential contribution towards Airport Performance. This research is correlation study with variable research that includes Airport Performance as X variable and construction and infrastructure development activities as Y variable. The population in this research is 148 airports in Indonesia. The sampling technique uses total sampling, which means 148 airports that becomes the population unit then all of it become samples. The results of coefficient correlation (R) test showed that construction and infrastructure development activities variable have a relatively strong relationship with Airport Performance variable, but the value of Adjusted R Square shows that an increase in the construction and infrastructure development activities is influenced by factor other than Airport Performance.

  20. Romanian contribution to research infrastructure database for EPOS

    NASA Astrophysics Data System (ADS)

    Ionescu, Constantin; Craiu, Andreea; Tataru, Dragos; Balan, Stefan; Muntean, Alexandra; Nastase, Eduard; Oaie, Gheorghe; Asimopolos, Laurentiu; Panaiotu, Cristian

    2014-05-01

    European Plate Observation System - EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for solid Earth Science. In EPOS Preparatory Phase were integrated the national Research Infrastructures at pan European level in order to create the EPOS distributed research infrastructures, structure in which, at the present time, Romania participates by means of the earth science research infrastructures of the national interest declared on the National Roadmap. The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for solid Earth Sciences in Europe and to allow the scientific community to study the same phenomena from different points of view, in different time periods and spatial scales (laboratory and field experiments). At national scale, research and monitoring infrastructures have gathered a vast amount of geological and geophysical data, which have been used by research networks to underpin our understanding of the Earth. EPOS promotes the creation of comprehensive national and regional consortia, as well as the organization of collective actions. To serve the EPOS goals, in Romania a group of National Research Institutes, together with their infrastructures, gathered in an EPOS National Consortium, as follows: 1. National Institute for Earth Physics - Seismic, strong motion, GPS and Geomagnetic network and Experimental Laboratory; 2. National Institute of Marine Geology and Geoecology - Marine Research infrastructure and Euxinus integrated regional Black Sea observation and early-warning system; 3. Geological Institute of Romania - Surlari National Geomagnetic Observatory and National lithoteque (the latter as part of the National Museum of Geology) 4. University of Bucharest - Paleomagnetic Laboratory After national dissemination of EPOS initiative other Research Institutes and companies from the potential stakeholders group also show their interest to participate in the EPOS National Consortium.

  1. Envri Cluster - a Community-Driven Platform of European Environmental Researcher Infrastructures for Providing Common E-Solutions for Earth Science

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Sorvari, S.; Kutsch, W. L.; Laj, P.

    2017-12-01

    European long-term environmental research infrastructures (often referred as ESFRI RIs) are the core facilities for providing services for scientists in their quest for understanding and predicting the complex Earth system and its functioning that requires long-term efforts to identify environmental changes (trends, thresholds and resilience, interactions and feedbacks). Many of the research infrastructures originally have been developed to respond to the needs of their specific research communities, however, it is clear that strong collaboration among research infrastructures is needed to serve the trans-boundary research requires exploring scientific questions at the intersection of different scientific fields, conducting joint research projects and developing concepts, devices, and methods that can be used to integrate knowledge. European Environmental research infrastructures have already been successfully worked together for many years and have established a cluster - ENVRI cluster - for their collaborative work. ENVRI cluster act as a collaborative platform where the RIs can jointly agree on the common solutions for their operations, draft strategies and policies and share best practices and knowledge. Supporting project for the ENVRI cluster, ENVRIplus project, brings together 21 European research infrastructures and infrastructure networks to work on joint technical solutions, data interoperability, access management, training, strategies and dissemination efforts. ENVRI cluster act as one stop shop for multidisciplinary RI users, other collaborative initiatives, projects and programmes and coordinates and implement jointly agreed RI strategies.

  2. e-Infrastructures supporting research into depression, self-harm and suicide.

    PubMed

    McCafferty, S; Doherty, T; Sinnott, R O; Watt, J

    2010-08-28

    The Economic and Social Research Council (ESRC)-funded Data Management through e-Social Sciences (DAMES) project is investigating, as one of its four research themes, how research into depression, self-harm and suicide may be enhanced through the adoption of e-Science infrastructures and techniques. In this paper, we explore the challenges in supporting such research infrastructures and describe the distributed and heterogeneous datasets that need to be provisioned to support such research. We describe and demonstrate the application of an advanced user and security-driven infrastructure that has been developed specifically to meet these challenges in an on-going study into depression, self-harm and suicide.

  3. The Department of Energy Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Felty, James R.

    2005-05-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  4. Reaching for the Horizon: Enabling 21st Century Antarctic Science

    NASA Astrophysics Data System (ADS)

    Rogan-Finnemore, M.; Kennicutt, M. C., II; Kim, Y.

    2015-12-01

    The Council of Managers of National Antarctic Programs' (COMNAP) Antarctic Roadmap Challenges(ARC) project translated the 80 highest priority Antarctic and Southern Ocean scientific questionsidentified by the community via the SCAR Antarctic Science Horizon Scan into the highest prioritytechnological, access, infrastructure and logistics needs to enable the necessary research to answer thequestions. A workshop assembled expert and experienced Antarctic scientists and National AntarcticProgram operators from around the globe to discern the highest priority technological needs includingthe current status of development and availability, where the technologies will be utilized in the Antarctic area, at what temporal scales and frequencies the technologies will be employed,and how broadly applicable the technologies are for answering the highest priority scientific questions.Secondly the logistics, access, and infrastructure requirements were defined that are necessary todeliver the science in terms of feasibility including cost and benefit as determined by expected scientific return on investment. Finally, based on consideration of the science objectives and the mix oftechnologies implications for configuring National Antarctic Program logistics capabilities andinfrastructure architecture over the next 20 years were determined. In particular those elements thatwere either of a complexity, requiring long term investments to achieve and/or having an associated cost that realistically can only (or best) be achieved by international coordination, planning and partnerships were identified. Major trends (changes) in logistics, access, and infrastructure requirements were identified that allow for long-term strategic alignment of international capabilities, resources and capacity. The outcomes of this project will be reported.

  5. Overview of the Human Exploration Research Analog (HERA)

    NASA Technical Reports Server (NTRS)

    Neigut, J.

    2015-01-01

    In 2013, the Human Research Program at NASA began developing a new confinement analog specifically for conducting research to investigate the effects of confinement on the human system. The HERA (Human Exploration Research Analog) habitat has been used for both 7 and 14 day missions to date to examine and mitigate exploration risks to enable safe, reliable and productive human space exploration. This presentation will describe how the Flight Analogs Project developed the HERA facility and the infrastructure to suit investigator requirements for confinement research and in the process developed a new approach to analog utilization and a new state of the art analog facility. Details regarding HERA operations will be discussed including specifics on the mission simulation utilized for the current 14-day campaign, the specifics of the facility (total volume, overall size, hardware), and the capabilities available to researchers. The overall operational philosophy, mission fidelity including timeline, schedule pressures and cadence, and development and implementation of mission stressors will be presented. Research conducted to date in the HERA has addressed risks associated with behavioral health and performance, human physiology, as well as human factors. This presentation will conclude with a discussion of future research plans for the HERA, including infrastructure improvements and additional research capabilities planned for the upcoming 30-day missions in 2016.

  6. Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)

    NASA Astrophysics Data System (ADS)

    Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.

    2018-03-01

    Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.

  7. Develop Improved Materials to Support the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael C. Martin

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less

  8. Connecting the Dots: Linking the National Program of Cancer Registries and the Needs of Survivors and Clinicians.

    PubMed

    Ryerson, A Blythe; Eheman, Christie; Styles, Timothy; Rycroft, Randi; Snyder, Claire

    2015-12-01

    Cancer survivors, the medical community, public health professionals, researchers, and policymakers all need information about newly diagnosed cancer cases and deaths to better understand and address the disease burden. CDC collects cancer data on 96% of the U.S. population through the National Program of Cancer Registries. The National Program of Cancer Registries routinely collects data on all cancer occurrences, deaths, and the types of initial treatment received by the patients, and recently CDC has made advances in its cancer surveillance activities that have direct applicability to cancer survivorship research and care. This article examines CDC's innovative uses of the National Program of Cancer Registries infrastructure and data as a recruitment source for survivorship research studies and behavioral interventions; comparative effectiveness and patient-centered outcomes research; and the collection, consolidation, and dissemination of treatment summaries for cancer survivors and their providers. This paper also discusses long-term, idealistic plans for additional data linkages and sharing among public health, providers, and the cancer survivor through innovative concepts such as patient portals and rapid-learning health care. Published by Elsevier Inc.

  9. Alabama DOE/EPSCoR traineeship program. Final report, September 28, 1991--September 28, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruitt, K.M.; April, G.C.

    1995-12-01

    This report covers programmatic accomplishments of the Alabama DOE/EPSCoR Traineeship Program for the period September 28, 1991 to September 29, 1995. The Alabama DOE/EPSCoR Traineeship Program is an integral part of this state`s efforts to address barriers that inhibit the full development and substantial growth of energy-related research at the six major research institutions and at Alabama`s Historically Black Colleges and Universities (HBCUs). To overcome these barriers it was determined that the following actions were needed: Area 1: Strengthening the Research Faculty Base Area 2: Increasing the Number of Outstanding Graduate Students Area 3: Improving the Research Environment Area 4:more » Developing the Human Resources Base Area 5. Improving the Energy-related Infrastructure, Collaborations and Communications. Although the DOE/EPSCoR Traineeship Grant complements each of the areas listed above, its primary emphasis is the enhancement of opportunities for graduate students. The extent to which this program has met this challenge during the three year funding period constitutes the substance of this report.« less

  10. Development of a pharmacy student research program at a large academic medical center.

    PubMed

    McLaughlin, Milena M; Skoglund, Erik; Bergman, Scott; Scheetz, Marc H

    2015-11-01

    A program to promote research by pharmacy students created through the collaboration of an academic medical center and a college of pharmacy is described. In 2009, Midwestern University Chicago College of Pharmacy and Northwestern Memorial Hospital (NMH) expanded their existing partnership by establishing a program to increase opportunities for pharmacy students to conduct clinical-translational research. All professional year 1, 2, or 3 students at the college, as well as professional year 4 students on rotation at NMH, can participate in the program. Central to the program's infrastructure is the mentorship of student leads by faculty- and hospital-based pharmacists. The mentors oversee the student research projects and guide development of poster presentations; student leads mentor junior students and assist with orientation and training activities. Publication of research findings in the peer-reviewed literature is a key program goal. In the first four years after program implementation, participation in a summer research program grew nearly 10-fold (mainly among incoming professional year 2 or 3 students, and student poster presentations at national pharmacy meetings increased nearly 20-fold; the number of published research articles involving student authors increased from zero in 2009 to three in 2012 and two in 2013. A collaborative program between an academic medical center and a college of pharmacy has enabled pharmacy students to conduct research at the medical center and has been associated with increases in the numbers of poster presentations and publications involving students. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  11. [caCORE: core architecture of bioinformation on cancer research in America].

    PubMed

    Gao, Qin; Zhang, Yan-lei; Xie, Zhi-yun; Zhang, Qi-peng; Hu, Zhang-zhi

    2006-04-18

    A critical factor in the advancement of biomedical research is the ease with which data can be integrated, redistributed and analyzed both within and across domains. This paper summarizes the Biomedical Information Core Infrastructure built by National Cancer Institute Center for Bioinformatics in America (NCICB). The main product from the Core Infrastructure is caCORE--cancer Common Ontologic Reference Environment, which is the infrastructure backbone supporting data management and application development at NCICB. The paper explains the structure and function of caCORE: (1) Enterprise Vocabulary Services (EVS). They provide controlled vocabulary, dictionary and thesaurus services, and EVS produces the NCI Thesaurus and the NCI Metathesaurus; (2) The Cancer Data Standards Repository (caDSR). It provides a metadata registry for common data elements. (3) Cancer Bioinformatics Infrastructure Objects (caBIO). They provide Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. The vision for caCORE is to provide a common data management framework that will support the consistency, clarity, and comparability of biomedical research data and information. In addition to providing facilities for data management and redistribution, caCORE helps solve problems of data integration. All NCICB-developed caCORE components are distributed under open-source licenses that support unrestricted usage by both non-profit and commercial entities, and caCORE has laid the foundation for a number of scientific and clinical applications. Based on it, the paper expounds caCORE-base applications simply in several NCI projects, of which one is CMAP (Cancer Molecular Analysis Project), and the other is caBIG (Cancer Biomedical Informatics Grid). In the end, the paper also gives good prospects of caCORE, and while caCORE was born out of the needs of the cancer research community, it is intended to serve as a general resource. Cancer research has historically contributed to many areas beyond tumor biology. At the same time, the paper makes some suggestions about the study at the present time on biomedical informatics in China.

  12. Data protection in biomaterial banks for Parkinson's disease research: the model of GEPARD (Gene Bank Parkinson's Disease Germany).

    PubMed

    Eggert, Karla; Wüllner, Ullrich; Antony, Gisela; Gasser, Thomas; Janetzky, Bernd; Klein, Christine; Schöls, Ludger; Oertel, Wolfgang

    2007-04-15

    Parkinson's disease (PD) is the second most common neurodegenerative disease. Although 10 gene loci have been identified to cause a Parkinsonian syndrome, these loci account only for a minority of PD patients. Large, systematic research programs are required to collect, store, and analyze DNA samples and clinical information to support further discovery of additional genetic components of PD or other movement disorders. Such programs facilitate research into the relationship between genotype and phenotype. The German Competence Network on Parkinson's disease (CNP) initiated the Gene Bank Parkinson's Disease Germany (GEPARD), providing an administrative and scientific infrastructure for the storage of DNA and clinical data that are electronically accessible and protective of patient rights. In this article, we offer guidance on how to establish a framework for a clinical genetic data and DNA bank, and describe GEPARD as a model that may be useful to other local, national, and international research groups developing similar programs.

  13. Connecting the Dots

    PubMed Central

    Ryerson, A. Blythe; Eheman, Christie; Styles, Timothy; Rycroft, Randi; Snyder, Claire

    2015-01-01

    Cancer survivors, the medical community, public health professionals, researchers, and policymakers all need information about newly diagnosed cancer cases and deaths to better understand and address the disease burden. CDC collects cancer data on 96% of the U.S. population through the National Program of Cancer Registries. The National Program of Cancer Registries routinely collects data on all cancer occurrences, deaths, and the types of initial treatment received by the patients, and recently CDC has made advances in its cancer surveillance activities that have direct applicability to cancer survivorship research and care. This Special Article examines CDC’s innovative uses of the National Program of Cancer Registries infrastructure and data as a recruitment source for survivorship research studies and behavioral interventions; comparative effectiveness and patient-centered outcomes research; and for the collection, consolidation, and dissemination of treatment summaries for cancer survivors and their providers. This paper also discusses long-term, idealistic plans for additional data linkages and sharing among public health, providers, and the cancer survivor through innovative concepts such as patient portals and rapid-learning health care. PMID:26590648

  14. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In 1987, responding to widespread concern about America's competitiveness and future in the development of space technology and the academic preparation of our next generation of space professionals, NASA initiated a program to establish Space Engineering Research Centers (SERC's) at universities with strong doctoral programs in engineering. The goal was to create a national infrastructure for space exploration and development, and sites for the Centers would be selected on the basis of originality of proposed research, the potential for near-term utilization of technologies developed, and the impact these technologies could have on the U.S. space program. The Centers would also be charged with a major academic mission: the recruitment of topnotch students and their training as space professionals. This document describes the goals, accomplishments, and benefits of the research activities of the University of Arizona/NASA SERC. This SERC has become recognized as the premier center in the area known as In-Situ Resource Utilization or Indigenous Space Materials Utilization.

  15. 78 FR 76187 - Transportation Infrastructure Financing and Innovation Act (TIFIA) Program; Agency Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary Transportation Infrastructure Financing and... 2013 and $1 billion in FY 2014 for the Transportation Infrastructure Financing and Innovation Act... eligible surface transportation projects. This information collection relates to the collection of...

  16. Translational leadership: new approaches to team development.

    PubMed

    Harrigan, Rosanne C; Emery, Lori M

    2010-01-01

    Little is known about how to develop collaborative multidisciplinary research teams. Following a comprehensive needs assessment, we developed a curriculum-based, multi-disciplinary, didactic and experiential Translational Leadership training program grounded in adult learning theory. In addition, we constructed collaborative clinical/translational research experiences for trainees to enhance clinical/translational research skills. KEY PROGRAMMATIC ELEMENTS AND PRELIMINARY FINDINGS: This 15-week Translational Leadership program was generated based on the following premises. Academic translational leadership teams should partner and collaborate, customize, make the program relevant to the culture, create a common language, use the best resources, and establish measurable goals for success. Development of effective collaborative research teams is essential to the management of successful translational research teams. Development of these skills in addition to cultural humility will provide the best infrastructure and human capital committed to the resolution of health disparities. Effective translational research teams are more comfortable with the component team members and the communities where they implement their protocols. Our participants highly valued the diverse experiences from this program; several have succeeded in leading community-based research teams. Our Translational Leadership program offers essential skills using adult learning theory for translational researchers who become capable of leading and participating in translational research teams. We believe including community members in the training of translational research programs is an important asset. The multidisciplinary approach develops skills that are also of significant use to the community and its acceptance of responsibility for its own health.

  17. 50 CFR 86.10 - What does this regulation do?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false What does this regulation do? 86.10... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG... Boating Infrastructure Grant (BIG) Program. “We” and “us” refers to the Fish and Wildlife Service. This...

  18. Evaluating Infrastructure Development in Complex Home Visiting Systems

    ERIC Educational Resources Information Center

    Hargreaves, Margaret; Cole, Russell; Coffee-Borden, Brandon; Paulsell, Diane; Boller, Kimberly

    2013-01-01

    In recent years, increased focus on the effectiveness and accountability of prevention and intervention programs has led to greater government funding for the implementation and spread of evidence-based health and human service delivery models. In particular, attention has been paid to programs that require significant infrastructure investment…

  19. Space commerce - Preparing for the next century

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1991-01-01

    The role of NASA in space commerce is discussed in terms of providing direct assistance to the private sector and in terms of the most suitable industrial areas for such support. The primary mechanism for such support is the program of Centers for the Commercial Development of Space (CCDS) which selects industrial high-technology projects to help make them viable. The research spans such fields as remote sensing, crop forecasting, and microgravity materials processing. The collaboration of NASA and private industry is discussed in terms of sounding-rocket projects, the Commercial Experiment Transporter, and academic/industrial programs designed to generate enthusiasm for commercial space research. The future of such research is expected to focus on CCDSs for microgravity-developed products, commercial infrastructure, SEI, and commercial use of the Space Station Freedom.

  20. Shifting the HIV training and research paradigm to address disparities in HIV outcomes

    PubMed Central

    LEVISON, Julie H.; ALEGRÍA, Margarita

    2016-01-01

    Tailored programs to diversify the pool of HIV/AIDS investigators and provide sufficient training and support for minority investigators to compete successfully are uncommon in the US and abroad. This paper encourages a shift in the HIV/AIDS training and research paradigm to effectively train and mentor Latino researchers in the US, Latin America and the Caribbean. We suggest three strategies to accomplish this: 1) coaching senior administrative and academic staff of HIV/AIDS training programs on the needs, values, and experiences unique to Latino investigators; 2) encouraging mentors to be receptive to a different set of research questions and approaches that Latino researchers offer due to their life experiences and perspectives; and 3) creating a virtual infrastructure to share resources and tackle challenges faced by minority researchers. Shifts in the research paradigm to include, retain, and promote Latino HIV/AIDS researchers will benefit the scientific process and the patients and communities who await the promise of HIV/AIDS research. PMID:27501811

  1. Contemporary (post-Wills) survey of the views of Australian medical researchers: importance of funding, infrastructure and motivators for a research career.

    PubMed

    Shewan, Louise G; Glatz, Jane A; Bennett, Christine C; Coats, Andrew J S

    To investigate the perceptions of Australian health and medical researchers 4 years after the Wills Report recommended and led to a substantial increase in health and medical research funding in Australia. A telephone poll of 501 active health and medical researchers, conducted between 28 April and 5 May, 2003. Researchers' views on the adequacy of funding, infrastructure and support, salary, community recognition, the excitement of discovery and research outcomes such as publication and patenting in research. Research funding was the most important concern: 91% of researchers (455/498) viewed funding as "very" or "extremely" important to their role, but only 10% (52/500) were "very" or "extremely" satisfied with the level of funding. Research infrastructure and support were seen as "very" or "extremely" important by 90% of researchers (449/501), while only 21% (104/501) were "very" or "extremely" satisfied. Researchers in medical research institutes were significantly more likely to be satisfied (27% [56/205] "very" or "extremely" satisfied) with the level of infrastructure and support than those working in universities (15% [41/268] "very" or "extremely" satisfied; P = 0.001). Among the factors that motivate researchers, the excitement of discovery stood out in terms of both high importance and satisfaction. Publications were viewed as more important research outcomes than patenting or commercial ventures. Funding and infrastructure support remain overwhelmingly researchers' greatest concerns. University-based researchers were less satisfied with infrastructure and support than those in independent medical research institutes.

  2. Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2014-09-01

    The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.

  3. The value of biomedical research training for veterinary anatomic and clinical pathologists.

    PubMed

    Sharkey, L C; Simpson, R M; Wellman, M L; Craig, L E; Birkebak, T A; Kock, N D; Miller, M A; Harris, R K; Munson, L

    2012-07-01

    Veterinary pathologists traditionally have been actively engaged in research as principal investigators and as collaborators. Pathologists frequently obtain advanced training in research; however, it appears that in the last 10 years there has been a reversal of a previous trend toward increasing numbers of pathologists obtaining PhD degrees. This has arisen despite an established shortage of veterinarians engaged in research. This article evaluates the benefits of research training for individual pathologists, including a wide spectrum of professional opportunities and additional skill development beyond that usually provided by diagnostic pathology training alone. Various training models are discussed, including combined and sequential diagnostic residency and research degree training as well as the nondegree research fellowship programs more commonly pursued in human medicine. Best-practice recommendations for program infrastructure, mentorship, time management, and a team approach to research and research training are advocated to facilitate the development of successful programs and to encourage a continued emphasis on integrated training for pathologists as both clinical diagnosticians and experimentalists. This article is intended to help prospective and active pathology trainees, their mentors, and educational administrators optimize opportunities to ensure the future vitality of veterinary pathologists, and their contributions, in basic and applied research.

  4. 76 FR 17935 - Protected Critical Infrastructure Information (PCII) Stakeholder Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Infrastructure Protection (IP) will submit the following Information Collection Request to the Office of... questions about this Information Collection Request should be forwarded to DHS/NPPD/IP, Attn: Emily R... PCII Program is administered by IP's Infrastructure Information Collection Division (IICD). The PCII...

  5. NREL Serves as the Energy Department's Showcase for Cutting-Edge Fuel Cell

    Science.gov Websites

    vehicle on loan from Hyundai through a one-year Cooperative Research and Development Agreement and a B produced at the Hydrogen Infrastructure Testing and Research Facility (HITRF) located at NREL's Energy and infrastructure as part of the Energy Department's Hydrogen Fueling Infrastructure Research and

  6. An electronic infrastructure for research and treatment of the thalassemias and other hemoglobinopathies: the Euro-mediterranean ITHANET project.

    PubMed

    Lederer, Carsten W; Basak, A Nazli; Aydinok, Yesim; Christou, Soteroula; El-Beshlawy, Amal; Eleftheriou, Androulla; Fattoum, Slaheddine; Felice, Alex E; Fibach, Eitan; Galanello, Renzo; Gambari, Roberto; Gavrila, Lucian; Giordano, Piero C; Grosveld, Frank; Hassapopoulou, Helen; Hladka, Eva; Kanavakis, Emmanuel; Locatelli, Franco; Old, John; Patrinos, George P; Romeo, Giovanni; Taher, Ali; Traeger-Synodinos, Joanne; Vassiliou, Panayiotis; Villegas, Ana; Voskaridou, Ersi; Wajcman, Henri; Zafeiropoulos, Anastasios; Kleanthous, Marina

    2009-01-01

    Hemoglobin (Hb) disorders are common, potentially lethal monogenic diseases, posing a global health challenge. With worldwide migration and intermixing of carriers, demanding flexible health planning and patient care, hemoglobinopathies may serve as a paradigm for the use of electronic infrastructure tools in the collection of data, the dissemination of knowledge, the harmonization of treatment, and the coordination of research and preventive programs. ITHANET, a network covering thalassemias and other hemoglobinopathies, comprises 26 organizations from 16 countries, including non-European countries of origin for these diseases (Egypt, Israel, Lebanon, Tunisia and Turkey). Using electronic infrastructure tools, ITHANET aims to strengthen cross-border communication and data transfer, cooperative research and treatment of thalassemia, and to improve support and information of those affected by hemoglobinopathies. Moreover, the consortium has established the ITHANET Portal, a novel web-based instrument for the dissemination of information on hemoglobinopathies to researchers, clinicians and patients. The ITHANET Portal is a growing public resource, providing forums for discussion and research coordination, and giving access to courses and databases organized by ITHANET partners. Already a popular repository for diagnostic protocols and news related to hemoglobinopathies, the ITHANET Portal also provides a searchable, extendable database of thalassemia mutations and associated background information. The experience of ITHANET is exemplary for a consortium bringing together disparate organizations from heterogeneous partner countries to face a common health challenge. The ITHANET Portal as a web-based tool born out of this experience amends some of the problems encountered and facilitates education and international exchange of data and expertise for hemoglobinopathies.

  7. The PBRN Initiative

    PubMed Central

    Curro, F.A.; Vena, D.; Naftolin, F.; Terracio, L.; Thompson, V.P.

    2012-01-01

    The NIDCR-supported Practice-based Research Network initiative presents dentistry with an unprecedented opportunity by providing a pathway for modifying and advancing the profession. It encourages practitioner participation in the transfer of science into practice for the improvement of patient care. PBRNs vary in infrastructure and design, and sustaining themselves in the long term may involve clinical trial validation by regulatory agencies. This paper discusses the PBRN concept in general and uses the New York University College of Dentistry’s Practitioners Engaged in Applied Research and Learning (PEARL) Network as a model to improve patient outcomes. The PEARL Network is structured to ensure generalizability of results, data integrity, and to provide an infrastructure in which scientists can address clinical practitioner research interests. PEARL evaluates new technologies, conducts comparative effectiveness research, participates in multidisciplinary clinical studies, helps evaluate alternative models of healthcare, educates and trains future clinical faculty for academic positions, expands continuing education to include “benchmarking” as a form of continuous feedback to practitioners, adds value to dental schools’ educational programs, and collaborates with the oral health care and pharmaceutical industries and medical PBRNs to advance the dental profession and further the integration of dental research and practice into contemporary healthcare (NCT00867997, NCT01268605). PMID:22699662

  8. OOI CyberInfrastructure - Next Generation Oceanographic Research

    NASA Astrophysics Data System (ADS)

    Farcas, C.; Fox, P.; Arrott, M.; Farcas, E.; Klacansky, I.; Krueger, I.; Meisinger, M.; Orcutt, J.

    2008-12-01

    Software has become a key enabling technology for scientific discovery, observation, modeling, and exploitation of natural phenomena. New value emerges from the integration of individual subsystems into networked federations of capabilities exposed to the scientific community. Such data-intensive interoperability networks are crucial for future scientific collaborative research, as they open up new ways of fusing data from different sources and across various domains, and analysis on wide geographic areas. The recently established NSF OOI program, through its CyberInfrastructure component addresses this challenge by providing broad access from sensor networks for data acquisition up to computational grids for massive computations and binding infrastructure facilitating policy management and governance of the emerging system-of-scientific-systems. We provide insight into the integration core of this effort, namely, a hierarchic service-oriented architecture for a robust, performant, and maintainable implementation. We first discuss the relationship between data management and CI crosscutting concerns such as identity management, policy and governance, which define the organizational contexts for data access and usage. Next, we detail critical services including data ingestion, transformation, preservation, inventory, and presentation. To address interoperability issues between data represented in various formats we employ a semantic framework derived from the Earth System Grid technology, a canonical representation for scientific data based on DAP/OPeNDAP, and related data publishers such as ERDDAP. Finally, we briefly present the underlying transport based on a messaging infrastructure over the AMQP protocol, and the preservation based on a distributed file system through SDSC iRODS.

  9. Electronic Commerce: A National Performance Review Initiative.

    DTIC Science & Technology

    1995-09-01

    This study of the National Information Infrastructure (NII) was conducted as part of IDA’s Central Research Program. Electronic commerce is one of... commerce is nothing more than conducting business via electronic means. An outgrowth of the NPR, the electronic commerce initiative, commits the...private, and public sectors are committed to implementing electronic commerce throughout the United States. The objective ol this paper is to enhance

  10. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  11. Optical/IR from ground

    NASA Technical Reports Server (NTRS)

    Strom, Stephen; Sargent, Wallace L. W.; Wolff, Sidney; Ahearn, Michael F.; Angel, J. Roger; Beckwith, Steven V. W.; Carney, Bruce W.; Conti, Peter S.; Edwards, Suzan; Grasdalen, Gary

    1991-01-01

    Optical/infrared (O/IR) astronomy in the 1990's is reviewed. The following subject areas are included: research environment; science opportunities; technical development of the 1980's and opportunities for the 1990's; and ground-based O/IR astronomy outside the U.S. Recommendations are presented for: (1) large scale programs (Priority 1: a coordinated program for large O/IR telescopes); (2) medium scale programs (Priority 1: a coordinated program for high angular resolution; Priority 2: a new generation of 4-m class telescopes); (3) small scale programs (Priority 1: near-IR and optical all-sky surveys; Priority 2: a National Astrometric Facility); and (4) infrastructure issues (develop, purchase, and distribute optical CCDs and infrared arrays; a program to support large optics technology; a new generation of large filled aperture telescopes; a program to archive and disseminate astronomical databases; and a program for training new instrumentalists)

  12. FOSS Tools for Research Infrastructures - A Success Story?

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Wächter, J.

    2015-12-01

    Established initiatives and mandated organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. The basic idea behind these infrastructures is the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. Especially the management of research data is gaining more and more importance. In geosciences these developments have to be merged with the enhanced data management approaches of Spatial Data Infrastructures (SDI). The Centre for GeoInformationTechnology (CeGIT) at the GFZ German Research Centre for Geosciences has the objective to establish concepts and standards of SDIs as an integral part of research infrastructure architectures. In different projects, solutions to manage research data for land- and water management or environmental monitoring have been developed based on a framework consisting of Free and Open Source Software (FOSS) components. The framework provides basic components supporting the import and storage of data, discovery and visualization as well as data documentation (metadata). In our contribution, we present our data management solutions developed in three projects, Central Asian Water (CAWa), Sustainable Management of River Oases (SuMaRiO) and Terrestrial Environmental Observatories (TERENO) where FOSS components build the backbone of the data management platform. The multiple use and validation of tools helped to establish a standardized architectural blueprint serving as a contribution to Research Infrastructures. We examine the question of whether FOSS tools are really a sustainable choice and whether the increased efforts of maintenance are justified. Finally it should help to answering the question if the use of FOSS for Research Infrastructures is a success story.

  13. Enabling technologies for transition to utilization of space-based resources and operations

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.; Litty, J. D.

    1985-01-01

    This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.

  14. System Architecture Development for Energy and Water Infrastructure Data Management and Geovisual Analytics

    NASA Astrophysics Data System (ADS)

    Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.

    2017-12-01

    Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).

  15. Information technology developments within the national biological information infrastructure

    USGS Publications Warehouse

    Cotter, G.; Frame, M.T.

    2000-01-01

    Looking out an office window or exploring a community park, one can easily see the tremendous challenges that biological information presents the computer science community. Biological information varies in format and content depending whether or not it is information pertaining to a particular species (i.e. Brown Tree Snake), or a specific ecosystem, which often includes multiple species, land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993. The NBII is designed to address these issues on a National scale within the United States, and through international partnerships abroad. This paper discusses current computer science efforts within the National Biological Information Infrastructure Program and future computer science research endeavors that are needed to address the ever-growing issues related to our Nation's biological concerns.

  16. Spatial modelling of disaster resilience using infrastructure components of baseline resilience indicators for communities (BRIC) in special region of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Kuscahyadi, Febriana; Meilano, Irwan; Riqqi, Akhmad

    2017-07-01

    Special Region of Yogyakarta Province (DIY) is one of Indonesian regions that often harmed by varied natural disasters which caused huge negative impacts. The most catastrophic one is earthquake in May, 27th 2006 with 6.3 magnitude moment [1], evoked 5716 people died, and economic losses for Rp. 29.1 Trillion, [2]. Their impacts could be minimized by committing disaster risk reduction program. Therefore, it is necessary to measure the natural disaster resilience within a region. Since infrastructure are might be able as facilities that means for evacuations, distribute supplies, and post disaster recovery [3], this research concerns to establish spatial modelling of natural disaster resilience using infrastructure components based on BRIC in DIY Province. There are three infrastructure used in this model; they are school, health facilities, and roads. Distance analysis is used to determine the level of resilient zone. The result gives the spatial understanding as a map that urban areas have better disaster resilience than the rural areas. The coastal areas and mountains areas which are vulnerable towards disaster have less resilience since there are no enough facilities that will increase the disaster resilience

  17. Tank waste remediation system privatization infrastructure program, configuration management implementation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaus, P.S.

    This Configuration Management Implementation Plan (CMIP) was developed to assist in managing systems, structures, and components (SSCS), to facilitate the effective control and statusing of changes to SSCS, and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Privatization Infrastructure will take in implementing a configuration management program, to identify the Program`s products that need configuration management control, to determine the rigor of control, and to identify the mechanisms for that control.

  18. Vehicle infrastructure integration proof-of-concept results and findings--infrastructure : final report, volume 3B.

    DOT National Transportation Integrated Search

    2009-05-01

    In 2005, the US Department of Transportation (DOT) initiated a program to develop and test a 5.9GHzbased : Vehicle Infrastructure Integration (VII) proof of concept (POC). The POC was implemented in the northwest : suburbs of Detroit, Michigan. Th...

  19. Amendments to the Drinking Water Infrastructure Grants Program as Required by the Water Infrastructure Improvements for the Nation Act

    EPA Pesticide Factsheets

    The WIIN Act has expanded the activities that qualify for Drinking Water Infrastructure Grant Tribal Set-Aside (DWIG-TSA) funding to include training and operator certification for operators of PWSs serving American Indians and Alaskan Natives.

  20. NISAC | National Infrastructure Simulation and Analysis Center | NISAC

    Science.gov Websites

    Logo National Infrastructure Simulation and Analysis Center Search Btn search this site... Overview Capabilities Fact Sheets Publications Contacts NISAC content top NISAC The National Infrastructure Simulation and Analysis Center (NISAC) is a modeling, simulation, and analysis program within the Department of

  1. Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and

    Science.gov Websites

    Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality

  2. National Biological Information Infrastructure (NBII) | Information Center

    Science.gov Websites

    National Biological Information Infrastructure (NBII) Contact Information Website: http://www.nbii.gov/ The National Biological Information Infrastructure (NBII) is a broad, collaborative program to provide increased access to data and information on the nation's biological resources. The NBII links diverse, high

  3. Research training among pediatric residency programs: a national assessment.

    PubMed

    Abramson, Erika L; Naifeh, Monique M; Stevenson, Michelle D; Todd, Christopher; Henry, Emilie D; Chiu, Ya-Lin; Gerber, Linda M; Li, Su-Ting T

    2014-12-01

    The Accreditation Council for Graduate Medical Education (ACGME) states that "residents should participate in scholarly activity." However, there is little guidance for effectively integrating scholarly activity into residency. This study was conducted to understand how pediatric residency programs meet ACGME requirements and to identify characteristics of successful programs. The authors conducted an online cross-sectional survey of all pediatric residency program directors in October 2012, assessing program characteristics, resident participation in scholarly activity, program infrastructure, barriers, and outcomes. Multivariate logistic regression was used to identify characteristics of programs in the top quartile for resident scholarly activity participation. The response rate was 52.8% (105/199 programs). Seventy-seven (78.6%) programs required scholarly activity, although definitions were variable. When including only original research, systematic reviews or meta-analyses, and case reports or series with references, resident participation averaged 56% (range 0%-100%). Characteristics associated with high-participation programs included a scholarly activity requirement (odds ratio [OR] = 5.5, 95% confidence interval [CI] = 1.03-30.0); program director belief that all residents should present work regionally or nationally (OR = 4.7, 95% CI = 1.5-15.1); and mentorship by >25% of faculty (OR = 3.6, CI = 1.2-11.4). Only 47.1% (41) of program directors were satisfied with resident participation, and only 30.7% (27) were satisfied with the quality of research training provided. The findings suggest that resident scholarly activity experience is highly variable and suboptimal. Identifying characteristics of successful programs can improve the resident research training experience.

  4. Building Pipelines for Information: Developing Partnerships Between Scientists, Educators, and Community Groups to Learn More About Hydraulic Fracturing in Colorado

    NASA Astrophysics Data System (ADS)

    Hafich, K. A.; Hannigan, M.; Martens, W.; McDonald, J. E.; Knight, D.; Gardiner, L. S.; Collier, A. M.; Fletcher, H.; Polmear, M.

    2015-12-01

    Hydraulic fracturing is a highly contentious issue, and trusted sources of information about the impacts and benefits are difficult to find. Scientific research is making strides to catch up with rapidly expanding unconventional oil and gas development, in part, to meet the need for information for policy, regulation, and public interest. A leader in hydraulic fracturing research, the AirWaterGas Sustainability Research Network is a multi-institution, multi-disciplinary team of researchers working to understand the environmental, economic, and social tradeoffs of oil and gas development. AirWaterGas recently restructured and implemented our education and outreach program around a partnership with the CU-Boulder Office for Outreach and Engagement that leverages existing campus infrastructure, networks, and expertise to disseminate research results and engage the public. The education and outreach team is working with formal and informal K-12 educators through several programs: a yearlong teacher professional development program, a rural classroom air quality monitoring program, and a community partnership grant program. Each program brings together scientists and educators in different environments such as the classroom, online learning, in-person workshops, and community lectures. We will present best practices for developing and implementing a viable outreach and education program through building and fostering mutually beneficial partnerships that bridge the gap between scientists and the public.

  5. Toward Information Infrastructure Studies: Ways of Knowing in a Networked Environment

    NASA Astrophysics Data System (ADS)

    Bowker, Geoffrey C.; Baker, Karen; Millerand, Florence; Ribes, David

    This article presents Information Infrastructure Studies, a research area that takes up some core issues in digital information and organization research. Infrastructure Studies simultaneously addresses the technical, social, and organizational aspects of the development, usage, and maintenance of infrastructures in local communities as well as global arenas. While infrastructure is understood as a broad category referring to a variety of pervasive, enabling network resources such as railroad lines, plumbing and pipes, electrical power plants and wires, this article focuses on information infrastructure, such as computational services and help desks, or federating activities such as scientific data repositories and archives spanning the multiple disciplines needed to address such issues as climate warming and the biodiversity crisis. These are elements associated with the internet and, frequently today, associated with cyberinfrastructure or e-science endeavors. We argue that a theoretical understanding of infrastructure provides the context for needed dialogue between design, use, and sustainability of internet-based infrastructure services. This article outlines a research area and outlines overarching themes of Infrastructure Studies. Part one of the paper presents definitions for infrastructure and cyberinfrastructure, reviewing salient previous work. Part two portrays key ideas from infrastructure studies (knowledge work, social and political values, new forms of sociality, etc.). In closing, the character of the field today is considered.

  6. Multimillion Dollar Construction Project Completed in Glenn's Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Kevdzija, Susan L.

    2001-01-01

    Over the last year, the Glenn Research Center's Icing Research Tunnel (IRT) underwent a major $5.2 million rehabilitation project as part of the Construction of Facilities program. The scope of the project included redesign and replacement of the 55-yr-old heat exchanger, the addition of fan outlet guide vanes for flow conditioning downstream of the 25-ft-diameter fan, and redesign and replacement of the C and D corner-turning vanes. The purpose of the rehabilitation was to replace old portions of the infrastructure and to improve the aerodynamic flow quality in the tunnel.

  7. Harnessing the Risk-Related Data Supply Chain: An Information Architecture Approach to Enriching Human System Research and Operations Knowledge

    NASA Technical Reports Server (NTRS)

    Buquo, Lynn E.; Johnson-Throop, Kathy A.

    2011-01-01

    An Information Architecture facilitates the understanding and, hence, harnessing of the human system risk-related data supply chain which enhances the ability to securely collect, integrate, and share data assets that improve human system research and operations. By mapping the risk-related data flow from raw data to useable information and knowledge (think of it as a data supply chain), the Human Research Program (HRP) and Space Life Science Directorate (SLSD) are building an information architecture plan to leverage their existing, and often shared, IT infrastructure.

  8. KSC-2010-5709

    NASA Image and Video Library

    2010-11-16

    CAPE CANAVERAL, Fla. -- Japan Aerospace Exploration Agency and International Space Station Program Manager Tetsuro Yokoyama addresses attendees of the American Astronautical Society's 2010 National Conference held at the Radisson Resort at the Port in Cape Canaveral, Fla. The panel of speakers seated from left to right are, International Space Services President James Zimmerman; International Space Station Program Manager Michael Suffredini; Canadian Space Agency Director of Space Exploration Operations and Infrastructure Pierre Jean; European Space Agency Directorate of Human Spaceflight and International Space Station Programme Department Bernado Patti and Roskosmos Piloted Space Programs Department Director Alexey Krasnov. This year's conference was titled: International Space Station: The Next Decade - Utilization and Research. The conference was organized with the support of Kennedy and sponsored by The Boeing Company, Honeywell International Inc., Northrop Grumman Corp., Space Florida and the Universities Space Research Association (USRA). Photo credit: NASA/Jim Grossmann

  9. Development of Bioinformatics Infrastructure for Genomics Research.

    PubMed

    Mulder, Nicola J; Adebiyi, Ezekiel; Adebiyi, Marion; Adeyemi, Seun; Ahmed, Azza; Ahmed, Rehab; Akanle, Bola; Alibi, Mohamed; Armstrong, Don L; Aron, Shaun; Ashano, Efejiro; Baichoo, Shakuntala; Benkahla, Alia; Brown, David K; Chimusa, Emile R; Fadlelmola, Faisal M; Falola, Dare; Fatumo, Segun; Ghedira, Kais; Ghouila, Amel; Hazelhurst, Scott; Isewon, Itunuoluwa; Jung, Segun; Kassim, Samar Kamal; Kayondo, Jonathan K; Mbiyavanga, Mamana; Meintjes, Ayton; Mohammed, Somia; Mosaku, Abayomi; Moussa, Ahmed; Muhammd, Mustafa; Mungloo-Dilmohamud, Zahra; Nashiru, Oyekanmi; Odia, Trust; Okafor, Adaobi; Oladipo, Olaleye; Osamor, Victor; Oyelade, Jellili; Sadki, Khalid; Salifu, Samson Pandam; Soyemi, Jumoke; Panji, Sumir; Radouani, Fouzia; Souiai, Oussama; Tastan Bishop, Özlem

    2017-06-01

    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community. H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for downstream interpretation of prioritized variants. To provide support for these and other bioinformatics queries, an online bioinformatics helpdesk backed by broad consortium expertise has been established. Further support is provided by means of various modes of bioinformatics training. For the past 4 years, the development of infrastructure support and human capacity through H3ABioNet, have significantly contributed to the establishment of African scientific networks, data analysis facilities, and training programs. Here, we describe the infrastructure and how it has affected genomics and bioinformatics research in Africa. Copyright © 2017 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.

  10. Rapid assessment procedures in environmental sanitation research: a case study from the northern border of Mexico.

    PubMed

    Cifuentes, Enrique; Alamo, Urinda; Kendall, Tamil; Brunkard, Joan; Scrimshaw, Susan

    2006-01-01

    There is a need to enhance the quality and sustainability of environmental health programs in Mexico. What socio-cultural factors influenced the adoption or rejection of Clean Water in Homes programs in this population? We applied rapid appraisal procedures (RAP) to evaluate these community-based programs. Qualitative study conducted in communities along Mexico's northern border. We conducted informal dialogues, semi-structured interviews, field notes and observations. Home visits used a checklist to observe: sources of water, handwashing, as well as human waste and garbage disposal patterns. Data analysis was conducted using ATLAS.ti, which facilitated comparison and illustration of discrepancies, the elaboration of emerging issues and relationships between them. Community members perceived that the Clean Water program was a top-down intervention. Water is perceived as a political issue and a matter of corruption. Inequity also limits solidarity activities involved in environmental sanitation. Migration to the United States of America (US) contributes to community fragmentation, which in turn dilutes communal efforts to improve water and sanitation infrastructure. While targeting women as program "recipients", the Clean Water program did not take gendered spheres of decision-making into account. Community members and authorities discussed the main results in "assemblies", particularly addressing the needs of excluded groups. The oversight of not exploring community members' needs and priorities prior to program implementation resulted in interventions that did not address the structural (economic, infrastructure) and socio-cultural barriers faced by community members to undertake the health-promoting behaviour change, and provoked resentment.

  11. Advanced Concepts Research for Flywheel Technology Applications

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Wagner, Robert

    2004-01-01

    The Missile Defense Agency (MDA) (formerly the Ballistic Missile Defense Organization) is embarking on a program to employ the use of High Altitude Airships (HAAs) for surveillance of coastal areas as a part of homeland defense. It is envisioned that these HAAs will fly at 70,000 feet continuously for at least a year, therefore requiring a regenerative electric power system. As part of a program to entice the MDA to utilize the NASA GRC expertise in electric power and propulsion as a means of risk reduction, an internal study program was performed to examine possible configurations that may be employed on a HAA to meet a theoretical surveillance need. This entailed the development of a set of program requirements which were flowed down to system and subsystem level requirements as well as the identification of environmental and infrastructure constraints. Such infrastructure constraints include the ability to construct a reasonably sized HAA within existing airship hangers, as the size of such vehicles could reach in excess of 600 ft. The issues regarding environments at this altitude are similar to those that would be imposed on satellite in Low Earth Orbit. Additionally, operational constraints, due to high winds at certain times of the year were also examined to determine options that could be examined to allow year round coverage of the US coast.

  12. Department of Energy Arm Facilities on the North Slope of Alaska and Plans for a North Slope "Mega-Site"

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Verlinde, J.

    2014-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The Atmospheric Radiation Measurement (ARM) Climate Research Facility is implementing "mega-sites" at the Southern Great Plains and North Slope of Alaska sites. Two workshops were held to gather input from the scientific community on these mega-sites. The NSA workshop was held September 10 and 11 in the Washington DC area. The workshops included discussions of additional profiling remote sensors, detailed measurements of the land-atmosphere interface, aerial operations to link the Barrow and Oliktok sites, unmanned aerial system measurements, and routine large eddy simulation model runs. The "mega-sites" represent a significant new scientific and infrastructure investment by DOE Office of Science, Office of Biological and Environmental Research. This poster will present information on plans for a North Slope "Megasite" as well as new opportunities for members of the arctic research community to make atmospheric measurements using unmanned aerial systems or tethered balloons in conjunction with the DOE ARM facilities on the North Slope of Alaska.

  13. SBDN: an information portal on small bodies and interplanetary dust inside the Europlanet Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; de Sanctis, Maria Cristina; Carraro, Francesco; Fonte, Sergio; Giacomini, Livia; Politi, Romolo

    In the framework of the Sixth Framework Programme (FP6) for Research and Technological Development of the European Community, the Europlanet project started the Integrated and Distributed Information Service (IDIS) initiative. The goal of this initiative was to "...offer to the planetary science community a common and user-friendly access to the data and infor-mation produced by the various types of research activities: earth-based observations, space observations, modelling and theory, laboratory experiments...". Four scientific nodes, repre-sentative of a significant fraction of the scientific themes covered by planetary sciences, were created: the Interiors and Surfaces node, the Atmospheres node, the Plasma node and the Small Bodies and Dust node. The original Europlanet program evolved into the Europlanet Research Infrastructure project, funded by the Seventh Framework Programme (FP7) for Research and Technological Development, and the IDIS initiative has been renewed with the addiction of a new scientific node, the Planetary Dynamics node. Here we present the Small Bodies and Dust node (SBDN) and the services it already provides to the scientific community, i.e. a searchable database of resources related to its thematic domains, an online and searchable cat-alogue of emission lines observed in the visible spectrum of comet 153P/2002 C1 Ikeya-Zhang supplemented by a visualization facility, a set of models of the simulated evolution of comet 67P/Churyumov-Gerasimenko with a particular focus on the effects of the distribution of dust and a information system on meteors through the Virtual Meteor Observatory. We will also introduce the new services that will be implemented and made available in the course of the Europlanet Research Infrastructure project.

  14. Green Infrastructure Research at EPA's Edison Environmental Center

    EPA Science Inventory

    The presentation outline includes: (1) Green infrastructure research objectives (2) Introduction to ongoing research projects - Aspects of design, construction, and maintenence that affect function - Real-world applications of GI research

  15. 78 FR 41192 - Publication of General License Related to the Zimbabwe Sanctions Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Development Bank of Zimbabwe and Infrastructure Development Bank of Zimbabwe, subject to certain limitations... Infrastructure Development Bank of Zimbabwe, subject to certain limitations. At the time of its issuance on April... and Infrastructure Development Bank of Zimbabwe (a) Effective April 24, 2013, all transactions...

  16. The European Network of Analytical and Experimental Laboratories for Geosciences

    NASA Astrophysics Data System (ADS)

    Freda, Carmela; Funiciello, Francesca; Meredith, Phil; Sagnotti, Leonardo; Scarlato, Piergiorgio; Troll, Valentin R.; Willingshofer, Ernst

    2013-04-01

    Integrating Earth Sciences infrastructures in Europe is the mission of the European Plate Observing System (EPOS).The integration of European analytical, experimental, and analogue laboratories plays a key role in this context and is the task of the EPOS Working Group 6 (WG6). Despite the presence in Europe of high performance infrastructures dedicated to geosciences, there is still limited collaboration in sharing facilities and best practices. The EPOS WG6 aims to overcome this limitation by pushing towards national and trans-national coordination, efficient use of current laboratory infrastructures, and future aggregation of facilities not yet included. This will be attained through the creation of common access and interoperability policies to foster and simplify personnel mobility. The EPOS ambition is to orchestrate European laboratory infrastructures with diverse, complementary tasks and competences into a single, but geographically distributed, infrastructure for rock physics, palaeomagnetism, analytical and experimental petrology and volcanology, and tectonic modeling. The WG6 is presently organizing its thematic core services within the EPOS distributed research infrastructure with the goal of joining the other EPOS communities (geologists, seismologists, volcanologists, etc...) and stakeholders (engineers, risk managers and other geosciences investigators) to: 1) develop tools and services to enhance visitor programs that will mutually benefit visitors and hosts (transnational access); 2) improve support and training activities to make facilities equally accessible to students, young researchers, and experienced users (training and dissemination); 3) collaborate in sharing technological and scientific know-how (transfer of knowledge); 4) optimize interoperability of distributed instrumentation by standardizing data collection, archive, and quality control standards (data preservation and interoperability); 5) implement a unified e-Infrastructure for data analysis, numerical modelling, and joint development and standardization of numerical tools (e-science implementation); 6) collect and store data in a flexible inventory database accessible within and beyond the Earth Sciences community(open access and outreach); 7) connect to environmental and hazard protection agencies, stakeholders, and public to raise consciousness of geo-hazards and geo-resources (innovation for society). We will inform scientists and industrial stakeholders on the most recent WG6 achievements in EPOS and we will show how our community is proceeding to design the thematic core services.

  17. Influences on Faculty Willingness to Mentor Undergraduate Students from Another University as Part of an Interinstitutional Research Training Program

    PubMed Central

    Morales, Danielle X.; Grineski, Sara E.; Collins, Timothy W.

    2016-01-01

    In 2014, the National Institutes of Health invested $31 million in 10 primary institutions across the United States through the Building Undergraduate Infrastructure Leading to Diversity (BUILD) program; one requirement of BUILD is sending undergraduate trainees from those primary institutions to partner institutions for research experiences. Mechanisms like BUILD are designed to broaden research opportunities for students, especially those from underrepresented backgrounds. However, to our knowledge, no studies have examined faculty willingness to mentor undergraduates from other institutions through structured training programs. Survey data from 536 faculty members at 13 institutions were collected in Fall 2013 and analyzed using multiple statistical techniques. Results show that faculty who valued the opportunity to increase diversity in the academy and those who believed that mentoring undergraduates benefited their own research expressed greater willingness to serve as research mentors to visiting undergraduates, and faculty who perceived that they did not have the ability to accommodate additional students expressed less willingness to do so. Most respondents viewed student and faculty incentives as motivating factors in their willingness to mentor, but their perspectives on different types of incentives varied based on faculty career stage, discipline, and research funding status. Results have important implications for designing multi-institutional undergraduate research training programs. PMID:27521237

  18. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.« less

  19. How Funding and Policy Affect Access to and Modernization of Major Air Force Ground Test Infrastructure Assets

    DTIC Science & Technology

    2017-04-06

    center’s wind tunnels, gas turbine sea level and altitude test cells, space chambers, altitude rocket cells, ballistic ranges, arc heaters and other...number of programs, and the difficulty getting new programs approved, the services are reluctant to delay or cancel programs. Performance problems in...manpower as an indirect cost would alleviate problems with maintaining expertise. The indirect costs provide for security, base infrastructure

  20. The researchers have left the building: what contributes to sustaining school-based interventions following the conclusion of formal research support?

    PubMed

    Friend, Sarah; Flattum, Colleen F; Simpson, Danielle; Nederhoff, Dawn M; Neumark-Sztainer, Dianne

    2014-05-01

    This study examined the sustainability of New Moves, a school-based program aimed at decreasing weight-related problems in adolescent girls. The National Cancer Institute recognizes New Moves as a research-tested intervention program that produced positive behavioral and psychosocial outcomes. Ten schools participated in the sustainability study. Teachers completed a survey and interview, and research staff observed 1 physical education (PE) class within 2 years of the study's completion. Qualitative data were grouped by themes. Frequencies were calculated using quantitative data. All schools continued all-girls PE classes using New Moves components following the study period. Fewer schools continued the nutrition and social support classroom modules and individual coaching sessions while no schools continued lunch get-togethers. Program components were sustained in both New Moves intervention schools and control schools. Programs are most likely to be sustained if they (1) fit into the current school structure, (2) receive buy-in by teachers, and (3) require minimal additional funds or staff time. Providing control schools with minimal training and intervention resources was sufficient to continue program components if staff perceived the program was important for students' health and compatible within the school's existing infrastructure. © 2014, American School Health Association.

  1. National Institutes of Health eliminates funding for national architecture linking primary care research.

    PubMed

    Peterson, Kevin A

    2007-01-01

    With the ending of the National Electronic Clinical Trial and Research Network (NECTAR) pilot programs and the abridgement of Clinical Research Associate initiative, the National Institutes of Health Roadmap presents a strategic shift for practice-based research networks from direct funding of a harmonized national infrastructure of cooperating research networks to a model of local engagement of primary care clinics performing practice-based research under the aegis of regional academic health centers through Clinical and Translational Science Awards. Although this may present important opportunities for partnering between community practices and large health centers, for primary care researchers, the promise of a transformational change that brings a unified national primary care community into the clinical research enterprise seems likely to remain unfulfilled.

  2. Scholarly Activities of Family Medicine Faculty: Results of a National Survey.

    PubMed

    Hinojosa, Jose; Benè, Kristen L; Hickey, Colleen; Marvel, Kim

    2006-12-01

    This survey examined how family medicine residency programs define scholarly activity, the productivity of programs, and perceived barriers to scholarly work. Five types of residency programs are compared: university-based, community-based (unaffiliated, university-affiliated, university-administered), and military. A 13 item web-based questionnaire was sent to all 455 U. S. family medicine residency programs. The survey solicited demographic information as well as program expectations of faculty, presence of a research coordinator/director, activities considered scholarly, productivity, and perceived barriers. A total of 177 surveys were completed for a response rate of 38%, similar to response rates of web-based surveys in the literature. 67.6% of programs encouraged, but did not require scholarly activity, and 44.5% indicated their program had no research coordinator/ director. University-based programs had the highest levels of productivity compared to other program types. Primary barriers to scholarly activity noted were lack of time (73/138, 53%) and lack of supportive infrastructure (37/138, 27%). While interpretations are limited by the response rate of the survey, results provide an increased understanding of how programs define scholarly activity as well as reference points for faculty productivity. This information can help program directors when setting criteria for scholarly work.

  3. Translating research into practice: speeding the adoption of innovative health care programs.

    PubMed

    Bradley, Elizabeth H; Webster, Tashonna R; Baker, Dorothy; Schlesinger, Mark; Inouye, Sharon K; Barth, Michael C; Lapane, Kate L; Lipson, Debra; Stone, Robyn; Koren, Mary Jane

    2004-07-01

    For this study, the authors conducted case studies of four varied clinical programs to learn key factors influencing the diffusion and adoption of evidence-based innovations in health care. They found that the success and speed of the adoption/diffusion process depend on: the roles of senior management and clinical leadership; the generation of credible supportive data; an infrastructure dedicated to translating the innovation from research into practice; the extent to which changes in organizational culture are required; and the amount of coordination needed across departments or disciplines. The translation process also depends on the characteristics and resources of the adopting organization, and on the degree to which people believe that the innovation responds to immediate and significant pressures in their environment.

  4. Exploring perceptions and experiences of Bolivian health researchers with research ethics.

    PubMed

    Sullivan, Sarah; Aalborg, Annette; Basagoitia, Armando; Cortes, Jacqueline; Lanza, Oscar; Schwind, Jessica S

    2015-04-01

    In Bolivia, there is increasing interest in incorporating research ethics into study procedures, but there have been inconsistent application of research ethics practices. Minimal data exist regarding the experiences of researchers concerning the ethical conduct of research. A cross-sectional study was administered to Bolivian health leaders with research experience (n = 82) to document their knowledge, perceptions, and experiences of research ethics committees and infrastructure support for research ethics. Results showed that 16% of respondents reported not using ethical guidelines to conduct their research and 66% indicated their institutions did not consistently require ethics approval for research. Barriers and facilitators to incorporate research ethics into practice were outlined. These findings will help inform a comprehensive rights-based research ethics education program in Bolivia. © The Author(s) 2015.

  5. Plug-in Hybrid Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supplymore » Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.« less

  6. Nonstationarities in Catchment Response According to Basin and Rainfall Characteristics: Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Kim, Jin-Guk; Jung, Il-Won

    2015-04-01

    It must be acknowledged that application of rainfall-runoff models to simulate rainfall-runoff processes are successful in gauged watershed. However, there still remain some issues that will need to be further discussed. In particular, the quantitive representation of nonstationarity issue in basin response (e.g. concentration time, storage coefficient and roughness) along with ungauged watershed needs to be studied. In this regard, this study aims to investigate nonstationarity in basin response so as to potentially provide useful information in simulating runoff processes in ungauged watershed. For this purpose, HEC-1 rainfall-runoff model was mainly utilized. In addition, this study combined HEC-1 model with Bayesian statistical model to estimate uncertainty of the parameters which is called Bayesian HEC-1 (BHEC-1). The proposed rainfall-runofall model is applied to various catchments along with various rainfall patterns to understand nonstationarities in catchment response. Further discussion about the nonstationarity in catchment response and possible regionalization of the parameters for ungauged watershed are discussed. KEYWORDS: Nonstationary, Catchment response, Uncertainty, Bayesian Acknowledgement This research was supported by a Grant (13SCIPA01) from Smart Civil Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA).

  7. Building the scholarly society infrastructure in physics in interwar America

    NASA Astrophysics Data System (ADS)

    Scheiding, Tom

    2013-11-01

    Starting in the interwar years both the quantity and quality of physics research conducted within the United States increased dramatically. To accommodate these increases there needed to be significant changes to the infrastructure within the scholarly society and particularly to the organization's ability to publish and distribute scholarly journals. Significant changes to the infrastructure in physics in the United States began with the formation of the American Institute of Physics as an umbrella organization for the major scholarly societies in American physics in 1931. The American Institute of Physics played a critical role in bringing about an expansion in the size of and breadth of coverage within scholarly journals in physics. The priority the American Institute of Physics placed on establishing a strong publication program and the creation of the American Institute of Physics itself were stimulated by extensive involvement and financial investments from the Chemical Foundation. It was journals of sufficient size and providing an appropriate level of coverage that were essential after World War II as physicists made use of increased patronage and public support to conduct even more research. The account offered here suggests that in important respects the significant government patronage that resulted from World War II accelerated changes that were already underway.

  8. The Implementation of the California Community Colleges Telecommunications and Technology Infrastructure Program, 2000-2001.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    This is the sixth report on the status and progress of the Telecommunications and Technology Infrastructure Program (TTIP), submitted by the California Community Colleges. In California, familiarity with and use of computers is fundamental to economic success. California is home to many of the major companies involved in creating the future of the…

  9. Technography and Design-Actuality Gap-Analysis of Internet Computer Technologies-Assisted Education: Western Expectations and Global Education

    ERIC Educational Resources Information Center

    Greenhalgh-Spencer, Heather; Jerbi, Moja

    2017-01-01

    In this paper, we provide a design-actuality gap-analysis of the internet infrastructure that exists in developing nations and nations in the global South with the deployed internet computer technologies (ICT)-assisted programs that are designed to use internet infrastructure to provide educational opportunities. Programs that specifically…

  10. Evaluation of an online continuing education program from the perspective of new graduate nurses.

    PubMed

    Karaman, Selcuk; Kucuk, Sevda; Aydemir, Melike

    2014-05-01

    The aim of this study is to evaluate the online continuing education program from the perspectives of new graduate nurses. An evaluation framework includes five factors (program and course structure, course materials, technology, support services and assessment). In this study, descriptive research methods were used. Participants of the study included 2.365 registered nurses enrolled in the first online nursing bachelor completion degree program in the country. Data were collected by survey. The findings indicated that students were mostly satisfied with this program. The results of this study suggest that well designed asynchronous online education methods can be effective and appropriate for registered nurses. However, the provision of effective support and technological infrastructure is as vital as the quality of teaching for online learners. © 2013.

  11. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less

  12. Rutgers Young Horse Teaching and Research Program: undergraduate student outcomes.

    PubMed

    Ralston, Sarah L

    2012-12-01

    Equine teaching and research programs are popular but expensive components of most land grant universities. External funding for equine research, however, is limited and restricts undergraduate research opportunities that enhance student learning. In 1999, a novel undergraduate teaching and research program was initiated at Rutgers University, New Brunswick, NJ. A unique aspect of this program was the use of young horses generally considered "at risk" and in need of rescue but of relatively low value. The media interest in such horses was utilized to advantage to obtain funding for the program. The use of horses from pregnant mare urine (PMU) ranches and Bureau of Land Management (BLM) mustangs held the risks of attracting negative publicity, potential of injury while training previously unhandled young horses, and uncertainty regarding re-sale value; however, none of these concerns were realized. For 12 years the Young Horse Teaching and Research Program received extensive positive press and provided invaluable learning opportunities for students. Over 500 students, at least 80 of which were minorities, participated in not only horse management and training but also research, event planning, public outreach, fund-raising, and website development. Public and industry support provided program sustainability with only basic University infrastructural support despite severe economic downturns. Student research projects generated 25 research abstracts presented at national and international meetings and 14 honors theses. Over 100 students went on to veterinary school or other higher education programs, and more than 100 others pursued equine- or science-related careers. Laudatory popular press articles were published in a wide variety of breed/discipline journals and in local and regional newspapers each year. Taking the risk of using "at risk" horses yielded positive outcomes for all, especially the undergraduate students.

  13. Support increased adoption of green infrastructure into ...

    EPA Pesticide Factsheets

    This project will provide technical assistance to support implementation of GI in U.S. communities and information on best practices for GI approaches that protect ground water supplies. Case studies that can be more broadly applied to other communities will be conducted. The project will provide program and regional offices with guidance on GI planning, implementation, and maintenance for stormwater management and capture/aquifer storage. To share information on SSWR research projects

  14. Critical Infrastructure: Control Systems and the Terrorist Threat

    DTIC Science & Technology

    2004-01-20

    Congressional Research Service ˜ The Library of Congress CRS Report for Congress Received through the CRS Web Order Code RL31534 Critical...http://www.pnl.gov/main/sectors/homeland.html]. 68 Rolf Carlson, “Sandia SCADA Program High-Security SCADA LDRD Final Report ,” Sandia Report SAND2002...and Industry Division Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to

  15. Critical Infrastructure: Control Systems and the Terrorist Threat

    DTIC Science & Technology

    2003-07-14

    Congressional Research Service ˜ The Library of Congress CRS Report for Congress Received through the CRS Web Order Code RL31534 Critical...available online at [http://www.pnl.gov/main/sectors/homeland.html]. 56 Rolf Carlson, “Sandia SCADA Program High-Security SCADA LDRD Final Report ...Industry Division Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to

  16. Assessing an Effort to Promote Safe Parks, Streets and Schools in Washington Heights/Inwood: Assessing Urban Infrastructure Conditions as Determinants of Physical Activity. Program Results

    ERIC Educational Resources Information Center

    Nakashian, Mary

    2008-01-01

    Researchers from the Mailman School of Public Health at Columbia University prepared a case study of CODES (Community Outreach and Development Efforts Save). CODES is a coalition of 35 people and organizations in northern Manhattan committed to promoting safe streets, parks and schools. The case study analyzed the factors that prompted CODES'…

  17. A Framework to Assess Programs for Building Partnerships

    DTIC Science & Technology

    2009-01-01

    available from www.rand.org as a public service of the RAND Corporation . 6Jump down to document THE ARTS CHILD POLICY CIVIL JUSTICE EDUCATION ENERGY...ABUSE TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE WORKFORCE AND WORKPLACE The RAND Corporation is a nonprofit research...6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Rand Corporation ,1776

  18. Institutional Infrastructure for Broader Impacts Engagement - Showcasing Effective Strategies and Approaches from a Large Research Institute

    NASA Astrophysics Data System (ADS)

    Gold, A. U.; Sullivan, S. B.; Smith, L. K.; Lynds, S. E.

    2014-12-01

    The need for robust scientific and especially climate literacy is increasing. Funding agencies mandate that scientists make their findings and data publically available. Ideally, this mandate is achieved by scientists and educators working together to translate research findings into common knowledge. The Cooperative Institute for Research in Environmental Sciences (CIRES) is the largest research institute at the University of Colorado and home institute to over 500 scientists. CIRES provides an effective organizational infrastructure to support its scientists in broadening their research impact. Education specialists provide the necessary experience, connections, logistical support, and evaluation expertise to develop and conduct impactful education and outreach efforts. Outreach efforts are tailored to the project needs and the scientists' interests. They span from deep engagement efforts with a high time commitment by the scientist thus a high dosage to short presentations by the scientists that reach many people without stimulating a deep engagement and have therefore a low dosage. We use three examples of current successful programs to showcase these different engagement levels and report on their impact: i) deep transformative and time-intensive engagement through a Research Experience for Community College students program, ii) direct engagement during a teacher professional development workshop centered around a newly developed curriculum bringing authentic climate data into secondary classrooms, iii) short-time engagement through a virtual panel discussion about the state of recent climate science topics, the recordings of which were repurposed in a Massive Open Online Course (MOOC). In this presentation, we discuss the challenges and opportunities of broader impacts work. We discuss successful strategies that we developed, stress the importance of robust impact evaluation, and summarize different avenues of funding outreach efforts.

  19. Building Evidence-Based Tobacco Treatment in the Eastern Mediterranean Region: Lessons Learned by the Syrian Center for Tobacco Studies

    PubMed Central

    Asfar, Taghrid; Ward, Kenneth D.; Al-Ali, Radwan; Maziak, Wasim

    2016-01-01

    The tobacco epidemic in Syria is characterized by high rates of cigarettes smoking in men and dramatic reemergence of waterpipe smoking, especially among youths and women. The Syrian Center for Tobacco Studies (SCTS), an NIH-funded pioneer research and capacity building institution, has developed a research infrastructure and conducted three randomized clinical trials to develop and rigorously test culturally-appropriate tobacco treatment programs integrated into primary healthcare (PHC) centers. This review aimed to discuss challenges and lessons learned from the Syrian experience. Addressing these challenges may inform future cessation research activities in Syria and other developing countries. To develop a research infrastructure, the SCTS has established Syria’s first IRB and trained physicians/medical students in both tobacco treatment and research methods. Main challenges to conduct the cessation trials were difficulties of coordination between the local and international collaborators; high Smoking Rates among PHC providers; lack of pharmacological agents used in tobacco treatment; and difficulties of conducting research in a politically volatile region. Strategies to overcome these challenges were ensuring an active and regular involvement of all investigator; and advocating for a national smoking-cessation plan that involves training health care providers in smoking cessation treatment and make pharmacological agents used in smoking cessation available. PMID:27563356

  20. Structure and Functions of Pediatric Aerodigestive Programs: A Consensus Statement.

    PubMed

    Boesch, R Paul; Balakrishnan, Karthik; Acra, Sari; Benscoter, Dan T; Cofer, Shelagh A; Collaco, Joseph M; Dahl, John P; Daines, Cori L; DeAlarcon, Alessandro; DeBoer, Emily M; Deterding, Robin R; Friedlander, Joel A; Gold, Benjamin D; Grothe, Rayna M; Hart, Catherine K; Kazachkov, Mikhail; Lefton-Greif, Maureen A; Miller, Claire Kane; Moore, Paul E; Pentiuk, Scott; Peterson-Carmichael, Stacey; Piccione, Joseph; Prager, Jeremy D; Putnam, Philip E; Rosen, Rachel; Rutter, Michael J; Ryan, Matthew J; Skinner, Margaret L; Torres-Silva, Cherie; Wootten, Christopher T; Zur, Karen B; Cotton, Robin T; Wood, Robert E

    2018-02-07

    Aerodigestive programs provide coordinated interdisciplinary care to pediatric patients with complex congenital or acquired conditions affecting breathing, swallowing, and growth. Although there has been a proliferation of programs, as well as national meetings, interest groups and early research activity, there is, as of yet, no consensus definition of an aerodigestive patient, standardized structure, and functions of an aerodigestive program or a blueprint for research prioritization. The Delphi method was used by a multidisciplinary and multi-institutional panel of aerodigestive providers to obtain consensus on 4 broad content areas related to aerodigestive care: (1) definition of an aerodigestive patient, (2) essential construct and functions of an aerodigestive program, (3) identification of aerodigestive research priorities, and (4) evaluation and recognition of aerodigestive programs and future directions. After 3 iterations of survey, consensus was obtained by either a supermajority of 75% or stability in median ranking on 33 of 36 items. This included a standard definition of an aerodigestive patient, level of participation of specific pediatric disciplines in a program, essential components of the care cycle and functions of the program, feeding and swallowing assessment and therapy, procedural scope and volume, research priorities and outcome measures, certification, coding, and funding. We propose the first consensus definition of the aerodigestive care model with specific recommendations regarding associated personnel, infrastructure, research, and outcome measures. We hope that this may provide an initial framework to further standardize care, develop clinical guidelines, and improve outcomes for aerodigestive patients. Copyright © 2018 by the American Academy of Pediatrics.

  1. Leveraging geospatial data, technology, and methods for improving the health of communities: priorities and strategies from an expert panel convened by the CDC.

    PubMed

    Elmore, Kim; Flanagan, Barry; Jones, Nicholas F; Heitgerd, Janet L

    2010-04-01

    In 2008, CDC convened an expert panel to gather input on the use of geospatial science in surveillance, research and program activities focused on CDC's Healthy Communities Goal. The panel suggested six priorities: spatially enable and strengthen public health surveillance infrastructure; develop metrics for geospatial categorization of community health and health inequity; evaluate the feasibility and validity of standard metrics of community health and health inequities; support and develop GIScience and geospatial analysis; provide geospatial capacity building, training and education; and, engage non-traditional partners. Following the meeting, the strategies and action items suggested by the expert panel were reviewed by a CDC subcommittee to determine priorities relative to ongoing CDC geospatial activities, recognizing that many activities may need to occur either in parallel, or occur multiple times across phases. Phase A of the action items centers on developing leadership support. Phase B focuses on developing internal and external capacity in both physical (e.g., software and hardware) and intellectual infrastructure. Phase C of the action items plan concerns the development and integration of geospatial methods. In summary, the panel members provided critical input to the development of CDC's strategic thinking on integrating geospatial methods and research issues across program efforts in support of its Healthy Communities Goal.

  2. "Dancing on the edge of research" - What is needed to build and sustain research capacity within the massage therapy profession? A formative evaluation.

    PubMed

    Kania-Richmond, Ania; Menard, Martha B; Barberree, Beth; Mohring, Marvin

    2017-04-01

    Conducting research on massage therapy (MT) continues to be a significant challenge. To explore and identify the structures, processes, and resources required to enable viable, sustainable and high quality MT research activities in the Canadian context. Academically-based researchers and MT professionals involved in research. Formative evaluation and a descriptive qualitative approach were applied. Five main themes regarding the requirements of a productive and sustainable MT research infrastructure in Canada were identified: 1) core components, 2) variable components, 3) varying perspectives of stakeholder groups, 4) barriers to creating research infrastructure, and 5) negative metaphors. In addition, participants offered a number of recommendations on how to develop such an infrastructure. While barriers exist that require attention, participants' insights suggest there are various pathways through which a productive and sustainable MT research infrastructure can be achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. An ET-CURE Pilot Project Supporting Undergraduate Training in Cancer Research, Emerging Technology, and Health Disparities

    PubMed Central

    Wilson, Danyell S.; Fang, Bin; Dalton, William S.; Meade, Cathy; Koomen, John M.

    2012-01-01

    The National Cancer Institute’s Center to Reduce Cancer Health Disparities has created pilot training opportunities under the “Continuing Umbrella of Research Experiences” (CURE) program that focus on emerging technologies (ET). In this pilot project, an eighteen month cancer biology research internship was reinforced with: instruction in an emerging technology (proteomics), a transition from the undergraduate laboratory to a research setting, education in cancer health disparities, and community outreach activities. A major goal was to provide underrepresented undergraduates with hands-on research experiences that are rarely encountered at the undergraduate level, including mentoring, research presentations, and participation in local and national meetings. These opportunities provided education and career development for the undergraduates, and they have given each student the opportunity to transition from learning to sharing their knowledge and from being mentored to mentoring others. Here, we present the concepts, curriculum, infrastructure, and challenges for this training program along with evaluations by both the students and their mentors. PMID:22528637

  4. An ET-CURE pilot project supporting undergraduate training in cancer research, emerging technology, and health disparities.

    PubMed

    Wilson, Danyell S; Fang, Bin; Dalton, William S; Meade, Cathy D; Koomen, John M

    2012-06-01

    The National Cancer Institute's Center to Reduce Cancer Health Disparities has created pilot training opportunities under the "Continuing Umbrella of Research Experiences" program that focus on emerging technologies. In this pilot project, an 18-month cancer biology research internship was reinforced with: instruction in an emerging technology (proteomics), a transition from the undergraduate laboratory to a research setting, education in cancer health disparities, and community outreach activities. A major goal was to provide underrepresented undergraduates with hands-on research experiences that are rarely encountered at the undergraduate level, including mentoring, research presentations, and participation in local and national meetings. These opportunities provided education and career development for the undergraduates, and they have given each student the opportunity to transition from learning to sharing their knowledge and from being mentored to mentoring others. Here, we present the concepts, curriculum, infrastructure, and challenges for this training program along with evaluations by both the students and their mentors.

  5. Emergency Medicine Resources within the Clinical Translational Science Institutes: A Cross-Sectional Study

    PubMed Central

    Meurer, William J.; Quinn, James; Lindsell, Christopher; Schneider, Sandra; Newgard, Craig D.

    2016-01-01

    Background The Clinical and Translational Science Award (CTSA) program aims to strengthen and support translational research by accelerating the process of translating laboratory discoveries into treatments for patients, training a new generation of clinical and translational researchers, and engaging communities in clinical research efforts. Yet, little is known about how emergency care researchers have interacted with and utilized the resources of academic institutions with CTSAs. Objective The purpose of this survey was to describe how emergency care researchers use local CTSA resources, to ascertain what proportion of CTSA consortium members have active emergency care research programs, and to solicit participation in a national CTSA-associated emergency care translational research network. Methods Survey of all emergency departments affiliated with a CTSA. Results Of the 65 CTSA consortium members, three had no emergency care research program and we obtained responses from 46 of the remaining 62 (74% response rate). The interactions with and resources used by emergency care researchers varied widely. Methodology and biostatistics support was most frequently accessed (77%), followed closely by education and training programs (60%). Several emergency care research programs (76%) had submitted for funding through CTSAs, with 71% receiving awards. Most CTSA consortium members had an active emergency care research infrastructure: 21 (46%) had 24/7 availability to recruit and screen for research, 21 (46%) had less than 24/7 research recruitment. A number of emergency care research programs participated in NIH research networks with the Neurological Emergencies Treatment Trials network most highly represented with 23 (59%) sites. Most emergency care research programs (96%) were interested in participating in a CTSA-based emergency care translational research network. Conclusions Despite little initial involvement in development of the CTSA program, there has been moderate interaction between CTSAs and emergency care. There is considerable interest in participating in a CTSA consortium based emergency care translational research network. PMID:26826059

  6. Integrating thematic web portal capabilities into the NASA Earthdata Web Infrastructure

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; McLaughlin, B. D.; Huang, T.; Baynes, K.

    2015-12-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. To assist the scientific community and general public in achieving a greater understanding of the interdisciplinary nature of Earth science and of key environmental and climate change topics, the NASA Earthdata web infrastructure is integrating new methods of presenting and providing access to Earth science information, data, research and results. This poster will present the process of integrating thematic web portal capabilities into the NASA Earthdata web infrastructure, with examples from the Sea Level Change Portal. The Sea Level Change Portal will be a source of current NASA research, data and information regarding sea level change. The portal will provide sea level change information through articles, graphics, videos and animations, an interactive tool to view and access sea level change data and a dashboard showing sea level change indicators. Earthdata is a part of the Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools.

  7. Research infrastructure support to address ecosystem dynamics

    NASA Astrophysics Data System (ADS)

    Los, Wouter

    2014-05-01

    Predicting the evolution of ecosystems to climate change or human pressures is a challenge. Even understanding past or current processes is complicated as a result of the many interactions and feedbacks that occur within and between components of the system. This talk will present an example of current research on changes in landscape evolution, hydrology, soil biogeochemical processes, zoological food webs, and plant community succession, and how these affect feedbacks to components of the systems, including the climate system. Multiple observations, experiments, and simulations provide a wealth of data, but not necessarily understanding. Model development on the coupled processes on different spatial and temporal scales is sensitive for variations in data and of parameter change. Fast high performance computing may help to visualize the effect of these changes and the potential stability (and reliability) of the models. This may than allow for iteration between data production and models towards stable models reducing uncertainty and improving the prediction of change. The role of research infrastructures becomes crucial is overcoming barriers for such research. Environmental infrastructures are covering physical site facilities, dedicated instrumentation and e-infrastructure. The LifeWatch infrastructure for biodiversity and ecosystem research will provide services for data integration, analysis and modeling. But it has to cooperate intensively with the other kinds of infrastructures in order to support the iteration between data production and model computation. The cooperation in the ENVRI project (Common operations of environmental research infrastructures) is one of the initiatives to foster such multidisciplinary research.

  8. LIBS-LIF-Raman: a new tool for the future E-RIHS

    NASA Astrophysics Data System (ADS)

    Detalle, Vincent; Bai, Xueshi; Bourguignon, Elsa; Menu, Michel; Pallot-Frossard, Isabelle

    2017-07-01

    France is one of the countries involved in the future E-RIHS - European Research Infrastructure for Heritage Science. The research infrastructure dedicated to the study of materials of cultural and natural heritage will provide transnational access to state-of-the-art technologies (synchrotron, ion beams, lasers, portable methods, etc.) and scientific archives. E-RIHS addresses the experimental problems of knowledge and conservation of heritage materials (collections of art and natural museums, monuments, archaeological sites, archives, libraries, etc.). The cultural artefacts are characterized by complementary methods at multi-scales. The variety and the hybrid are specific of these artefacts and induce complex problems that are not expected in traditional Natural Science: paints, ceramics and glasses, metals, palaeontological specimens, lithic materials, graphic documents, etc. E-RIHS develops in that purpose transnational access to distributed platforms in many European countries. Five complementary accesses are in this way available: FIXLAB (access to fixed platforms for synchrotron, neutrons, ion beams, lasers, etc.), MOLAB (access to mobile examination and analytical methods to study the works in situ), ARCHLAB (access to scientific archives kept in the cultural institutions), DIGILAB (access to a digital infrastructure for the processing of quantitative data, implementing a policy on (re)use of data, choice of data formats, etc.) and finally EXPERTLAB (panels of experts for the implementation of collaborative and multidisciplinary projects for the study, the analysis and the conservation of heritage works).Thus E-RIHS is specifically involved in complex studies for the development of advanced high-resolution analytical and imaging tools. The privileged field of intervention of the infrastructure is that of the study of large corpora, collections and architectural ensembles. Based on previous I3 European program, and especially IPERION-CH program that support the creation of new mobile instrumentation, the French institutions are involved in the development of LIBS/LIF/RAMAN portable instrumentation. After a presentation of the challenge and the multiple advantages in building the European Infrastructure and of the French E-RIHS hub, the major interests of associating the three lasers based on analytical methods for a more global and precise characterization of the heritage objects taking into account their precious characters and their specific constraints. Lastly some preliminary results will be presented in order to give a first idea of the power of this analytical tool.

  9. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. Themore » second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference management cost ceiling in the Conference Management Tool.« less

  10. Infrastructure and Resources of Private Schools in Cali and the Implementation of the Bilingual Colombia Program

    ERIC Educational Resources Information Center

    Miranda, Norbella; Echeverry, Ángela Patricia

    2010-01-01

    Institutional factors affect the implementation of educational policies. Physical school infrastructure and the availability of resources determine to a certain extent whether a policy may be successfully transformed into practice. This article provides a description and analysis of school infrastructure and resources of private institutions of…

  11. The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.

    2005-12-01

    The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy-to-use system for constructing SHA computations, a browser-based workflow assembly web portal has been developed. Users can compose complex SHA calculations, specifying SCEC/CME data sets as inputs to calculations, and calling SCEC/CME computational programs to process the data and the output. Knowledge-based software tools have been implemented that utilize ontological descriptions of SHA software and data can validate workflows created with this pathway assembly tool. Data visualization software developed by the collaboration supports analysis and validation of data sets. Several programs have been developed to visualize SCEC/CME data including GMT-based map making software for PSHA codes, 4D wavefield propagation visualization software based on OpenGL, and 3D Geowall-based visualization of earthquakes, faults, and seismic wave propagation. The SCEC/CME Project also helps to sponsor the SCEC UseIT Intern program. The UseIT Intern Program provides research opportunities in both Geosciences and Information Technology to undergraduate students in a variety of fields. The UseIT group has developed a 3D data visualization tool, called SCEC-VDO, as a part of this undergraduate research program.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    Hybrid programming models for beyond-CMOS technologies will prove critical for integrating new computing technologies alongside our existing infrastructure. Unfortunately the software infrastructure required to enable this is lacking or not available. XACC is a programming framework for extreme-scale, post-exascale accelerator architectures that integrates alongside existing conventional applications. It is a pluggable framework for programming languages developed for next-gen computing hardware architectures like quantum and neuromorphic computing. It lets computational scientists efficiently off-load classically intractable work to attached accelerators through user-friendly Kernel definitions. XACC makes post-exascale hybrid programming approachable for domain computational scientists.

  13. Exercise and Fall Prevention: Narrowing the Research-to-Practice Gap and Enhancing Integration of Clinical and Community Practice.

    PubMed

    Li, Fuzhong; Eckstrom, Elizabeth; Harmer, Peter; Fitzgerald, Kathleen; Voit, Jan; Cameron, Kathleen A

    2016-02-01

    Falls in older adults are a global public health crisis, but mounting evidence from randomized controlled trials shows that falls can be reduced through exercise. Public health authorities and healthcare professionals endorse the use of evidence-based, exercise-focused fall interventions, but there are major obstacles to translating and disseminating research findings into healthcare practice, including lack of evidence of the transferability of efficacy trial results to clinical and community settings, insufficient local expertise to roll out community exercise programs, and inadequate infrastructure to integrate evidence-based programs into clinical and community practice. The practical solutions highlighted in this article can be used to address these evidence-to-practice challenges. Falls and their associated healthcare costs can be reduced by better integrating research on exercise intervention into clinical practice and community programs. © 2016 The Authors. The Journal of the American Geriatrics Society published by Wiley Periodicals, Inc. on behalf of The American Geriatrics Society.

  14. Risk Management and Critical Infrastructure Protection: Assessing, Integrating, and Managing Threats, Vulnerabilities and Consequences

    DTIC Science & Technology

    2005-02-04

    Consequences 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...OSLGCP). The OSLGCP now administers the grants programs. 37 According to the guidance, threat assessment determines the relative likelihood of a...Preparedness (OSLGCP) administers two grant programs that give states the opportunity to identify critical infrastructure assets: the State Homeland Security

  15. Making Technology Ready: Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  16. Potential GLOF Hazards and Initiatives taken to minimize its Impacts on Downstream Communities and Infrastructures in Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Regmi, D.; Kargel, J. S.; Leonard, G. J.; Haritashya, U. K.; Karki, A.; Poudyal, S.

    2017-12-01

    With long-term temperature increases due to climate change, glacier lakes in several parts of the world are a fast-developing threat to infrastructure and downstream communities. There are more than 2000 glacier lakes in Nepal; while most pose no significant hazard to people, a comparative few are very dangerous, such as Tso Rolpa, Imja, Barun and Thulagi glacier lakes. The objectives of this study are to present 1) a review of prior glacier lake studies that have been carried out in the Nepal Himalaya; 2) recent research results, including bathymetric studies of the lakes; 3) a summary of possible infrastructure damages, especially multi-million-dollar hydropower projects, that are under threat of glacier lake outburst floods (GLOFs); 4) to present the outcome of the recently completed Imja lake lowering project, which is the highest altitude lake ever controlled by lowering the water level. This project is being undertaken as a response to a scientific ground-based bathymetric and geophysical survey funded by the United Nations Development Program and a satellite-based study of the long-term development of the lake (funded by NASA's SERVIR program, J. Kargel, PI). The objective of the Imja Lake GLOF mitigation project is to lower the water level by three meters to reduce the lake volume, increase the freeboard, and improve the safety of tourism, downstream communities, and the infrastructure of Nepal's Everest region. This GLOF mitigation step taken by Nepal's government to reduce the risk of an outburst flood is a good step to reduce the chances of a GLOF, and to reduce the magnitude of a disaster if a GLOF nonetheless occurs despite our best efforts. We will also present the prospects for the future of Imja Lake, including an outline of possible steps that could further reduce the hazards faced by downstream communities and infrastructure. Key words: Glacier Lakes; GLOF; Hydropower; Imja lake; lake lowering

  17. Toward Multi-Model Frameworks Addressing Multi-Sector Dynamics, Risks, and Resiliency

    NASA Astrophysics Data System (ADS)

    Moss, R. H.; Fisher-Vanden, K.; Barrett, C.; Kraucunas, I.; Rice, J.; Sue Wing, I.; Bhaduri, B. L.; Reed, P. M.

    2016-12-01

    This presentation will report on the findings of recent modeling studies and a series of workshops and other efforts convened under the auspices of the US Global Change Research Program (USGCRP) to improve integration of critical infrastructure, natural resources, integrated assessment, and human systems modeling. The focus is issues related to drought and increased variability of water supply at the energy-water-land nexus. One motivation for the effort is the potential for impact cascades across coupled built, natural, and socioeconomic systems stressed by social and environmental change. The design is for an adaptable modeling framework that will includes a repository of independently-developed modeling tools of varying complexity - from coarser grid, longer time-horizon to higher-resolution shorter-term models of socioeconomic systems, infrastructure, and natural resources. The models draw from three interlocking research communities: Earth system, impacts/adaptation/vulnerability, and integrated assessment. A key lesson will be explored, namely the importance of defining a clear use perspective to limit dimensionality, focus modeling, and facilitate uncertainty characterization and communication.

  18. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.; ELI-NP Team

    2015-10-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High Energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam, a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical and scientific status of the project as well as the applications of the gamma source will be discussed.

  19. Data discovery and data processing for environmental research infrastructures

    NASA Astrophysics Data System (ADS)

    Los, Wouter; Beranzoli, Laura; Corriero, Giuseppe; Cossu, Roberto; Fiore, Nicola; Hardisty, Alex; Legré, Yannick; Pagano, Pasquale; Puglisi, Giuseppe; Sorvari, Sanna; Turunen, Esa

    2013-04-01

    The European ENVRI project (Common operations of Environmental Research Infrastructures) is addressing common ICT solutions for the research infrastructures as selected in the ESFRI Roadmap. More specifically, the project is looking for solutions that will assist interdisciplinary users who want to benefit from the data and other services of more than a single research infrastructure. However, the infrastructure architectures, the data, data formats, scales and granularity are very different. Indeed, they deal with diverse scientific disciplines, from plate tectonics, the deep sea, sea and land surface up to atmosphere and troposphere, from the dead to the living environment, and with a variety of instruments producing increasingly larger amounts of data. One of the approaches in the ENVRI project is to design a common Reference Model that will serve to promote infrastructure interoperability at the data, technical and service levels. The analysis of the characteristics of the environmental research infrastructures assisted in developing the Reference Model, and which is also an example for comparable infrastructures worldwide. Still, it is for users already now important to have the facilities available for multi-disciplinary data discovery and data processing. The rise of systems research, addressing Earth as a single complex and coupled system is requiring such capabilities. So, another approach in the project is to adapt existing ICT solutions to short term applications. This is being tested for a few study cases. One of these is looking for possible coupled processes following a volcano eruption in the vertical column from deep sea to troposphere. Another one deals with volcano either human impacts on atmospheric and sea CO2 pressure and the implications for sea acidification and marine biodiversity and their ecosystems. And a third one deals with the variety of sensor and satellites data sensing the area around a volcano cone. Preliminary results on these studies will be reported. The common results will assist in shaping more generic solutions to be adopted by the appropriate research infrastructures.

  20. Status summary of chemical processing development in plutonium-238 supply program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D.; Benker, Dennis; Wham, Robert M.

    This document summarizes the status of development of chemical processing in the Plutonium-238 Supply Program (PSP) near the end of Demonstration 1. The objective of the PSP is “to develop, demonstrate, and document a production process that meets program objectives and to prepare for its operation” (Frazier et al. 2016). Success in the effort includes establishing capability using the current infrastructure to produce Np targets for irradiation in Department of Energy research reactors, chemically processing the irradiated targets to separate and purify the produced Pu and transferring the PuO 2 product to Los Alamos National Laboratory (LANL) at an averagemore » rate of 1.5 kg/y.« less

Top