Science.gov

Sample records for ingaas quantum dot

  1. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  2. Chirped InGaAs quantum dot molecules for broadband applications

    PubMed Central

    2012-01-01

    Lateral InGaAs quantum dot molecules (QDMs) formed by partial-cap and regrowth technique exhibit two ground-state (GS) peaks controllable via the thicknesses of InAs seed quantum dots (x), GaAs cap (y), and InAs regrowth (z). By adjusting x/y/z in a stacked QDM bilayer, the GS peaks from the two layers can be offset to straddle, stagger, or join up with each other, resulting in multi-GS or broadband spectra. A non-optimized QDM bilayer with a 170-meV full-width at half-maximum is demonstrated. The temperature dependencies of the emission peak energies and intensities from the chirped QDM bilayers are well explained by Varshni's equation and thermal activation of carriers out of constituent quantum dots. PMID:22480323

  3. Strongly confined excitons in self-assembled InGaAs quantum dot clusters

    NASA Astrophysics Data System (ADS)

    Creasey, Megan; Li, Xiaoqin; Lee, Jihoon; Wang, Zhiming; Salamo, Gregory

    2011-03-01

    Quantum dot clusters (QDCs) consisting of regular geometric patterns of six InGaAs quantum dots (QD) are grown on a GaAs substrate using a hybrid growth method that combines droplet homoepitaxy and Stranski-Krastonov growth. These novel structures have potential applications as tunable single photon sources, entangled photon sources, or error corrected qubits - devices critical to the fields of secure optical communications and quantum computing We study the photoluminescence arising from a single cluster using both continuous wave and ultrafast spectroscopic techniques with variations in the sample temperature and excitation power. Our results suggest excitons (bound electron-hole pairs) are strongly confined within the individual QDs rather than loosely confined throughout the entire QDC. The work at Texas is supported financially by NSF, ARO, AFOSR, ONR, the Welch Foundation, and the Alfred Sloan Foundation. The work at Arkansas is supported by the NSF.

  4. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates

    SciTech Connect

    Lee, J. H.; Wang, Zh. M.; Strom, N. W.; Mazur, Yu. I.; Salamo, G. J.

    2006-11-13

    Several distinctive self-assembled InGaAs quantum dot molecules (QDMs) are studied. The QDMs self-assemble around nanoscale-sized GaAs moundlike templates fabricated by droplet homoepitaxy. Depending on the specific InAs monolayer coverage, the number of QDs per GaAs mound ranges from two to six (bi-QDMs to hexa-QDMs). The Ga contribution from the mounds is analyzed in determining the morphologies of the QDMs, with respect to the InAs coverages ranging between 0.8 and 2.4 ML. Optical characterization shows that the resulting nanostructures are high-quality nanocrystals.

  5. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.

    PubMed

    Bru-Chevallier, C; El Akra, A; Pelloux-Gervais, D; Dumont, H; Canut, B; Chauvin, N; Regreny, P; Gendry, M; Patriarche, G; Jancu, J M; Even, J; Noe, P; Calvo, V; Salem, B

    2011-10-01

    The aim of this study is to achieve homogeneous, high density and dislocation free InGaAs quantum dots grown by molecular beam epitaxy for light emission on silicon substrates. This work is part of a project which aims at overcoming the severe limitation suffered by silicon regarding its optoelectronic applications, especially efficient light emission device. For this study, one of the key points is to overcome the expected type II InGaAs/Si interface by inserting the InGaAs quantum dots inside a thin silicon quantum well in SiO2 fabricated on a SOI substrate. Confinement effects of the Si/SiO2 quantum well are expected to heighten the indirect silicon bandgap and then give rise to a type I interface with the InGaAs quantum dots. Band structure and optical properties are modeled within the tight binding approximation: direct energy bandgap is demonstrated in SiO2/Si/InAs/Si/SiO2 heterostructures for very thin Si layers and absorption coefficient is calculated. Thinned SOI substrates are successfully prepared using successive etching process resulting in a 2 nm-thick Si layer on top of silica. Another key point to get light emission from InGaAs quantum dots is to avoid any dislocations or defects in the quantum dots. We investigate the quantum dot size distribution, density and structural quality at different V/III beam equivalent pressure ratios, different growth temperatures and as a function of the amount of deposited material. This study was performed for InGaAs quantum dots grown on Si(001) substrates. The capping of InGaAs quantum dots by a silicon epilayer is performed in order to get efficient photoluminescence emission from quantum dots. Scanning transmission electronic microscopy images are used to study the structural quality of the quantum dots. Dislocation free In50Ga50As QDs are successfully obtained on a (001) silicon substrate. The analysis of QDs capped with silicon by Rutherford Backscattering Spectrometry in a channeling geometry is also presented.

  6. Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Poltavtsev, S. V.; Kapitonov, Yu. V.; Vondran, J.; Yakovlev, D. R.; Schneider, C.; Kamp, M.; Höfling, S.; Oulton, R.; Akimov, I. A.; Kavokin, A. V.; Bayer, M.

    2017-01-01

    We report on the coherent optical response from an ensemble of (In,Ga)As quantum dots (QDs) embedded in a planar Tamm-plasmon microcavity with a quality factor of approximately 100. Significant enhancement of the light-matter interaction is demonstrated under selective laser excitation of those quantum dots which are in resonance with the cavity mode. The enhancement is manifested through Rabi oscillations of the photon echo, demonstrating coherent control of excitons with picosecond pulses at intensity levels more than an order of magnitude smaller as compared with bare quantum dots. The decay of the photon echo transients is weakly changed by the resonator, indicating a small decrease of the coherence time T2 which we attribute to the interaction with the electron plasma in the metal layer located close (40 nm) to the QD layer. Simultaneously we see a reduction of the population lifetime T1, inferred from the stimulated photon echo, due to an enhancement of the spontaneous emission by a factor of 2, which is attributed to the Purcell effect, while nonradiative processes are negligible, as confirmed from time-resolved photoluminescence.

  7. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    SciTech Connect

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael

    2014-07-21

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  8. Optical Spin Noise of a Single Hole Spin Localized in an (InGa)As Quantum Dot

    NASA Astrophysics Data System (ADS)

    Dahbashi, Ramin; Hübner, Jens; Berski, Fabian; Pierz, Klaus; Oestreich, Michael

    2014-04-01

    We advance spin noise spectroscopy to the ultimate limit of single spin detection. This technique enables the measurement of the spin dynamic of a single heavy hole localized in a flat (InGa)As quantum dot. Magnetic field and light intensity dependent studies reveal even at low magnetic fields a strong magnetic field dependence of the longitudinal heavy hole spin relaxation time with an extremely long T1 of ≥180 μs at 31 mT and 5 K. The wavelength dependence of the spin noise power discloses for finite light intensities an inhomogeneous single quantum dot spin noise spectrum which is explained by charge fluctuations in the direct neighborhood of the quantum dot. The charge fluctuations are corroborated by the distinct intensity dependence of the effective spin relaxation rate.

  9. InGaP-based InGaAs quantum dot solar cells with GaAs spacer layer fabricated using solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sugaya, T.; Takeda, A.; Oshima, R.; Matsubara, K.; Niki, S.; Okano, Y.

    2012-09-01

    We report InGaP-based multistacked InGaAs quantum dot (QD) solar cells with GaAs spacer layers. We obtain a highly stacked and well-aligned InGaAs QD structure with GaAs spacer layers in an InGaP matrix grown by solid-source molecular beam epitaxy. The photoluminescence intensity of the InGaAs QDs in the InGaP matrix increases as the number of QD layers increases, which indicates the growth of a high-quality InGaP-based multistacked InGaAs QD structure. The short-circuit current density and the conversion efficiency of the InGaP-based QD solar cells increase as the number of InGaAs QD layers increases.

  10. Magnetically tunable singlet-triplet spin qubit in a four-electron InGaAs coupled quantum dot

    NASA Astrophysics Data System (ADS)

    Weiss, K. M.; Miguel-Sanchez, J.; Elzerman, J. M.

    2013-11-01

    A pair of self-assembled InGaAs quantum dots filled with two electrons can act as a singlet-triplet spin qubit that is robust against nuclear spin fluctuations as well as charge noise. This results in a T2* coherence time two orders of magnitude longer than that of a single electron, provided the qubit is operated at a particular ``sweet spot'' in gate voltage. However, at this fixed operating point the ground-state splitting can no longer be tuned into resonance with e.g. another qubit, limiting the options for coupling multiple qubits. Here, we propose using a four-electron coupled quantum dot to implement a singlet-triplet qubit that features a magnetically tunable level splitting. As a first step towards full experimental realization of this qubit design, we use optical spectroscopy to demonstrate the tunability of the four-electron singlet-triplet splitting in a moderate magnetic field.

  11. Carrier dynamics of strain-engineered InAs quantum dots with (In)GaAs surrounding material

    NASA Astrophysics Data System (ADS)

    Nasr, O.; Chauvin, N.; Alouane, M. H. Hadj; Maaref, H.; Bru-Chevallier, C.; Sfaxi, L.; Ilahi, B.

    2017-02-01

    The present study reports on the optical properties of epitaxially grown InAs quantum dots (QDs) inserted within an InGaAs strain-reducing layer (SRL). The critical energy states in such QD structures have been identified by combining photoluminescence (PL) and photoluminescence of excitation (PLE) measurements. Carrier lifetime is investigated by time-resolved photoluminescence (TRPL), allowing us to study the impact of the composition of the surrounding materials on the QD decay time. Results showed that covering the InAs QDs with, or embedding them within, an InGaAs SRL increases the carrier dynamics, while a shorter carrier lifetime has been observed when they are grown on top of an InGaAs SRL. Investigation of the dependence of carrier lifetime on temperature showed good stability of the decay time, deduced from the consequences of improved QD confinement. The findings suggest that embedding or capping the QDs with SRL exerts optimization of their room temperature optical properties.

  12. Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter

    NASA Technical Reports Server (NTRS)

    Forbes, David; Sinharoy, Samar; Raffalle, Ryne; Weizer, Victor; Homann, Natalie; Valko, Thomas; Bartos,Nichole; Scheiman, David; Bailey, Sheila

    2007-01-01

    Thermophotovoltaic (TPV) power conversion has to date demonstrated conversion efficiencies exceeding 20% when coupled to a heat source. Current III-V semiconductor TPV technology makes use of planar devices with bandgaps tailored to the heat source. The efficiency can be improved further by increasing the collection efficiency through the incorporation of InAs quantum dots. The use of these dots can provide sub-gap absorption and thus improve the cell short circuit current without the normal increase in dark current associated with lowering the bandgap. We have developed self-assembled InAs quantum dots using the Stranski-Krastanov growth mode on 0.74 eV In0.53GaAs lattice-matched to InP and also on lattice-mismatched 0.6 eV In0.69GaAs grown on InP through the use of a compositionally graded InPAsx buffer structure, by metalorganic vapor phase epitaxy (MOVPE). Atomic force microscopy (AFM) measurements showed that the most reproducible dot pattern was obtained with 5 monolayers of InAs grown at 450 C. The lattice mismatch between InAs and In0.69GaAs is only 2.1%, compared to 3.2% between InAs and In0.53GaAs. The smaller mismatch results in lower strain, making dot formation somewhat more complicated, resulting in quantum dashes, rather than well defined quantum dots in the lattice-mismatched case. We have fabricated 0.6 eV InGaAs planer TPV cells with and without the quantum dashes

  13. Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.

    PubMed

    Usman, Muhammad; Tan, Yui-Hong Matthias; Ryu, Hoon; Ahmed, Shaikh S; Krenner, Hubert J; Boykin, Timothy B; Klimeck, Gerhard

    2011-08-05

    Atomistic electronic structure calculations are performed to study the coherent inter-dot couplings of the electronic states in a single InGaAs quantum dot molecule. The experimentally observed excitonic spectrum by Krenner et al (2005) Phys. Rev. Lett. 94 057402 is quantitatively reproduced, and the correct energy states are identified based on a previously validated atomistic tight binding model. The extended devices are represented explicitly in space with 15-million-atom structures. An excited state spectroscopy technique is applied where the externally applied electric field is swept to probe the ladder of the electronic energy levels (electron or hole) of one quantum dot through anti-crossings with the energy levels of the other quantum dot in a two-quantum-dot molecule. This technique can be used to estimate the spatial electron-hole spacing inside the quantum dot molecule as well as to reverse engineer quantum dot geometry parameters such as the quantum dot separation. Crystal-deformation-induced piezoelectric effects have been discussed in the literature as minor perturbations lifting degeneracies of the electron excited (P and D) states, thus affecting polarization alignment of wavefunction lobes for III-V heterostructures such as single InAs/GaAs quantum dots. In contrast, this work demonstrates the crucial importance of piezoelectricity to resolve the symmetries and energies of the excited states through matching the experimentally measured spectrum in an InGaAs quantum dot molecule under the influence of an electric field. Both linear and quadratic piezoelectric effects are studied for the first time for a quantum dot molecule and demonstrated to be indeed important. The net piezoelectric contribution is found to be critical in determining the correct energy spectrum, which is in contrast to recent studies reporting vanishing net piezoelectric contributions.

  14. Time-resolved photoluminescence of type-II Ga(As)Sb/GaAs quantum dots embedded in an InGaAs quantum well.

    PubMed

    Tatebayashi, J; Liang, B L; Laghumavarapu, R B; Bussian, D A; Htoon, H; Klimov, V; Balakrishnan, G; Dawson, L R; Huffaker, D L

    2008-07-23

    Optical properties and carrier dynamics in type-II Ga(As)Sb/GaAs quantum dots (QDs) embedded in an InGaAs quantum well (QW) are reported. A large blueshift of the photoluminescence (PL) peak is observed with increased excitation densities. This blueshift is due to the Coulomb interaction between physically separated electrons and holes characteristic of the type-II band alignment, along with a band-filling effect of electrons in the QW. Low-temperature (4 K) time-resolved PL measurements show a decay time of [Formula: see text] ns from the transition between Ga(As)Sb QDs and InGaAs QW which is longer than that of the transition between Ga(As)Sb QDs and GaAs two-dimensional electron gas ([Formula: see text] ns).

  15. All-optical tomography of electron spins in (In,Ga)As quantum dots

    NASA Astrophysics Data System (ADS)

    Varwig, S.; René, A.; Economou, Sophia E.; Greilich, A.; Yakovlev, D. R.; Reuter, D.; Wieck, A. D.; Reinecke, T. L.; Bayer, M.

    2014-02-01

    We demonstrate the basic features of an all-optical spin tomography on picosecond time scale. The magnetization vector associated with a mode-locked electron spin ensemble in singly charged quantum dots is traced by ellipticity measurements using picosecond laser pulses. After optical orientation the spins precess about a perpendicular magnetic field. By comparing the dynamics of two interacting ensembles with the dynamics of a single ensemble we find buildup of a spin component along the magnetic field in the two-ensemble case. This component arises from a Heisenberg-like spin-spin interaction.

  16. Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission.

    PubMed

    Mao, Ming-Hua; Chien, Hao-Che; Hong, Jay-Zway; Cheng, Chih-Yi

    2011-07-18

    We fabricated current-injection InGaAs quantum-dot microdisk lasers with benzocyclobutene cladding in this work. The microdisk pedestal diameter is carefully designed to facilitate carrier injection and modal control. With this structure, low threshold current of 0.45 mA is achieved at room temperature from a device of 6.5 μm in diameter with single-mode emission from quantum-dot ground states. The negative characteristic temperature T0 of threshold current is observed between 80 K and 150 K. The transition temperature from negative T0 to positive T0 is 150 K which is higher than that of the edge-emitting lasers fabricated from the same wafer. This phenomenon indicates the lower loss level of our microdisk cavities. These microdisk lasers also show positive T0 significantly higher than that of the edge-emitting lasers from the same wafer.

  17. Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In,Ga)As quantum dots.

    PubMed

    Li, Yan; Sinitsyn, N; Smith, D L; Reuter, D; Wieck, A D; Yakovlev, D R; Bayer, M; Crooker, S A

    2012-05-04

    The problem of how single central spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying time scales and dynamical responses (exponential, power-law, gaussian, etc.). Here we detect the small random fluctuations of central spins in thermal equilibrium [holes in singly charged (In,Ga)As quantum dots] to reveal the time scales and functional form of bath-induced spin relaxation. This spin noise indicates long (400 ns) spin correlation times at a zero magnetic field that increase to ∼5  μs as dominant hole-nuclear relaxation channels are suppressed with small (100 G) applied fields. Concomitantly, the noise line shape evolves from Lorentzian to power law, indicating a crossover from exponential to slow [∼1/log(t)] dynamics.

  18. Electronic coupling of single lateral strained InGaAs quantum dot molecule based on nanohole structure

    NASA Astrophysics Data System (ADS)

    Parvizi, Roghaieh

    2016-02-01

    The electronic properties of laterally coupled InGaAs/GaAs quantum dot molecule are studied theoretically under in-plane electric field. The quantum dot molecule energy spectrum and envelope functions are calculated by solving one-band effective-mass Schrödinger equation with considering strain effect by employing finite element method in three dimensions. The obtained results indicate that the electron's coupling energy strongly depends on the In mole fractions of the nanohole, such that quantum dots act as a molecule in case that In mole fractions of dots are larger than that of nanohole. It can be also observed that electrons perceive the double-dots structure composing quantum dot molecule in close distances(less than 7 nm), while the holes discern two single dots structure. The effect of an in-plane electric field on the energy spectrum is investigated and it can be demonstrated that the coupling energy can be tuned by applying a low-intensity static electric field.

  19. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    NASA Astrophysics Data System (ADS)

    Kurtze, H.; Bayer, M.

    2016-07-01

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock-Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  20. Comparison of MOVPE grown GaAs, InGaAs and GaAsSb covering layers for different InAs/GaAs quantum dot applications

    NASA Astrophysics Data System (ADS)

    Zíková, Markéta; Hospodková, Alice; Pangrác, Jiří; Oswald, Jiří; Hulicius, Eduard

    2017-04-01

    InAs/GaAs quantum dot (QD) heterostructures with different covering layers (CLs) prepared by MOVPE are compared in this work. The recombination energy of a structure covered only by GaAs depends nonlinearly on CL thickness. Experimental data of photoluminescence (PL) were supported by theoretical simulations. These simulations prove that the strain plays a major role in the structures. InGaAs strain reducing layer (SRL) was studied as well. Due to the strain reduction, the recombination energy is decreased, so the structure has longer PL wavelength. By theoretical simulations it was shown that for high content of In in InGaAs covering layer (approximately 45% and more), the heterostructure is type II, which would normally be unreachable for flat layers. For the structure with GaAsSb SRL, the band alignment is highly dependent on the SRL composition. The type I/type II transition occurs for approximately 15% of Sb; this value also slightly depends on the QD size. All structures were also studied by HRTEM to show different behavior of the CLs on the interface with InAs which highly influences the structure quality.

  1. Broadband InGaAs quantum dot-in-a-well solar cells of p-type wells

    NASA Astrophysics Data System (ADS)

    Tzeng, T. E.; Chuang, K. Y.; Lay, T. S.; Chang, C. H.

    2013-09-01

    Broadband InxGa1-xAs quantum dot-in-a-well (DWell) solar cells are grown by stacking layers of composition-tailored InxGa1-xAs (x=1, 0.75, and 0.65) quantum dots on p-type In0.1Ga0.9As quantum wells (QWs). Doping concentration and growth temperature for the Be-doped quantum wells are optimized to enhance the conversion efficiency (η). The broadband DWell solar cell of Be: 2×1017 cm-3 QWs grown at 570 °C shows the best photovoltaic characteristics of η=10.86%, which is 3% higher than that of the GaAs baseline solar cell.

  2. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    PubMed

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  3. Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications.

    PubMed

    Mintairov, S A; Kalyuzhnyy, N A; Lantratov, V M; Maximov, M V; Nadtochiy, A M; Rouvimov, Sergei; Zhukov, A E

    2015-09-25

    Hybrid quantum well-dots (QWD) nanostructures have been formed by deposition of 7-10 monolayers of In0.4Ga0.6As on a vicinal GaAs surface using metal-organic chemical vapor deposition. Transmission electron microscopy, photoluminescence and photocurrent analysis have shown that such structures represent quantum wells comprising three-dimensional (quantum dot-like) regions of two kinds. At least 20 QWD layers can be deposited defect-free providing high gain/absorption in the 0.9-1.1 spectral interval. Use of QWD media in a GaAs solar cell resulted in a photocurrent increment of 3.7 mA cm(-2) for the terrestrial spectrum and by 4.1 mA cm(-2) for the space spectrum. Diode lasers based on QWD emitting around 1.1 μm revealed high saturated gain and low transparency current density of about 15 cm(-1) and 37 A cm(-2) per layer, respectively.

  4. Growth-temperature dependence of optical spin-injection dynamics in self-assembled InGaAs quantum dots

    SciTech Connect

    Yamamura, Takafumi; Kiba, Takayuki; Yang, Xiaojie; Takayama, Junichi; Subagyo, Agus; Sueoka, Kazuhisa; Murayama, Akihiro

    2014-09-07

    The growth-temperature dependence of the optical spin-injection dynamics in self-assembled quantum dots (QDs) of In{sub 0.5}Ga{sub 0.5}As was studied by increasing the sheet density of the dots from 2 × 10{sup 10} to 7 × 10{sup 10} cm{sup −2} and reducing their size through a decrease in growth temperature from 500 to 470 °C. The circularly polarized transient photoluminescence (PL) of the resulting QD ensembles was analyzed after optical excitation of spin-polarized carriers in GaAs barriers by using rate equations that take into account spin-injection dynamics such as spin-injection time, spin relaxation during injection, spin-dependent state-filling, and subsequent spin relaxation. The excitation-power dependence of the transient circular polarization of PL in the QDs, which is sensitive to the state-filling effect, was also examined. It was found that a systematic increase occurs in the degree of circular polarization of PL with decreasing growth temperature, which reflects the transient polarization of exciton spin after spin injection. This is attributed to strong suppression of the filling effect for the majority-spin states as the dot-density of the QDs increases.

  5. Modeling of quasi-supercontinuum laser linewidth and derivative characteristics of InGaAs quantum dot broadband laser

    NASA Astrophysics Data System (ADS)

    Tan, C. L.; Wang, Y.; Djie, H. S.; Dimas, C. E.; Ding, Y. H.; Hongpinyo, V.; Chen, C.; Ooi, B. S.

    2009-02-01

    We present the development of theoretical model based on multi-population rate equation to assess the broadband lasing emission in addition to the derivative optical gain and chirp characteristics from the supercontinuum InGaAs/GaAs self-assembled quantum-dot (QD) interband laser. The model incorporates the peculiar characteristics such as inhomogeneous broadening of the QD transition energies due to the size and composition fluctuation, homogeneous broadening due to the finite carrier lifetime in each confined energy states, and the presence of continuum states in wetting layer. We showed that the theoretical model agrees well with the experimental data of broadband QD laser. From the model, the broadband lasing characteristics can be ascribed to the large dispersion of QD with varying energy sub-bands and the change of de-phasing rate. These interesting characteristics can be attributed to the carrier localization in different dots that result in a system without a global Fermi function and thus an inhomogeneously broadened gain spectrum. Furthermore, our simulation results predict that the linewidth enhancement factor (α = 2) from the ground state (GS) in this new class of semiconductor lasers is slightly larger but in the same order of magnitude as the values obtained in conventional QD lasers. The calculated gain spectrum shows similar magnitude order of material differential gain (~10-16 cm2) and material differential refractive index (~10-20 cm3) as compared to conventional QD lasers. The comparable derivative characteristics of broadband QD laser shows its competency in providing low frequency chirping as well as a platform for monolithic integration operation.

  6. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  7. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot.

    PubMed

    Houel, J; Kuhlmann, A V; Greuter, L; Xue, F; Poggio, M; Gerardot, B D; Dalgarno, P A; Badolato, A; Petroff, P M; Ludwig, A; Reuter, D; Wieck, A D; Warburton, R J

    2012-03-09

    We probe local charge fluctuations in a semiconductor via laser spectroscopy on a nearby self-assembled quantum dot. We demonstrate that the quantum dot is sensitive to changes in the local environment at the single-charge level. By controlling the charge state of localized defects, we are able to infer the distance of the defects from the quantum dot with ±5  nm resolution. The results identify and quantify the main source of charge noise in the commonly used optical field-effect devices.

  8. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  9. 15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots

    SciTech Connect

    Stubenrauch, M. Stracke, G.; Arsenijević, D.; Bimberg, D.; Strittmatter, A.

    2014-07-07

    The static properties and large-signal modulation capabilities of directly modulated p-doped quantum-dot distributed-feedback lasers are presented. Based on pure index gratings the devices exhibit a side-mode-suppression ratio of 58 dB and optical output powers up to 34 mW. Assisted by a broad gain spectrum, which is typical for quantum-dot material, emission wavelengths from 1290 nm to 1310 nm are covered by the transversal and longitudinal single-mode lasers fabricated from the same single wafer. Thus, these lasers are ideal devices for on-chip wavelength division multiplexing within the original-band according to the IEEE802.3ba standard. 10 Gb/s data transmission across 30 km of single mode fiber is demonstrated. The maximum error-free data rate is found to be 15 Gb/s.

  10. InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells

    NASA Astrophysics Data System (ADS)

    Mintairov, S. A.; Kalyuzhnyy, N. A.; Maximov, M. V.; Nadtochiy, A. M.; Zhukov, A. E.

    2017-01-01

    MOCVD-grown GaAs single-junction solar cells (SC) with quantum well-dots (QWD) were fabricated and tested. The QWD were formed by the deposition of In0.4Ga0.6As layers separated with GaAs spacers. A remarkable improvement of photocurrent was achieved and the reduction of open-circuit voltage was partly suppressed by decreasing the spacers’ growth rate as well as increasing their thickness up to 40 nm. Based on the experimentally obtained characteristics of these single-junction SCs we estimated that using QWD media in the middle (GaAs-based) subcell can provide 1 abs. %, increasing the efficiency of the triple-junction GaInP/GaAs/Ge SCs.

  11. Patterned semiconductor inverted quantum dot photonic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.

    2016-03-01

    A novel inverted quantum dot structure is presented, which consists of an InGaAs quantum well that has been periodically perforated and then filled with the higher bandgap GaAs barrier material. This structure exhibits a unique quantized energy structure something like a planar atomic bond structure and formation of allowed and forbidden energy bands instead of highly localized, fully discrete states. We describe the growth, processing and characteristics of inverted quantum dot structures and outline interesting and potentially important effects arising from the introduction of nanoscale features (<50 nm) in the active medium.

  12. Metamorphic quantum dots: Quite different nanostructures

    SciTech Connect

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-09-15

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  13. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm

    NASA Astrophysics Data System (ADS)

    Kettler, Jan; Paul, Matthias; Olbrich, Fabian; Zeuner, Katharina; Jetter, Michael; Michler, Peter

    2016-03-01

    InAs quantum dots grown on a GaAs substrate have been one of the most successful semiconductor material systems to demonstrate single-photon-based quantum optical phenomena. In this context, we present the feasibility to extend the low-temperature photoluminescence emission range of In(Ga)As/GaAs quantum dots grown by metal-organic vapor-phase epitaxy from the typical window between 880 and 960 nm to wavelengths above 1.3 μm. A low quantum dot density can be obtained throughout this range, enabling the demonstration of single- and cascaded photon emission. We further analyze polarization-resolved micro-photoluminescence from a large number of individual quantum dots with respect to anisotropy and size of the underlying fine-structure splittings in the emission spectra. For samples with elevated emission wavelengths, we observe an increasing tendency of the emitted photons to be polarized along the main crystal axes.

  14. A Nanowire-Based Plasmonic Quantum Dot Laser.

    PubMed

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  15. Three-Dimensional Control of Self-Assembled Quantum Dot Configurations

    DTIC Science & Technology

    2010-06-17

    Lateral Quantum Dot Molecules Around Self-Assembled Nanoholes . Appl. Phys. Lett. 2003, 82, 2892–2894. 7. Alonso-Gonzalez, P.; Martin-Sanchez, J.; Gonzalez...Y.; Alen, B.; Fuster, D.; Gonzalez, L. Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes . Cryst. Growth Des. 2009, 9

  16. Quantum Dots: Theory

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  17. Quantum Dot Solar Cells

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  18. Annealing-induced change in quantum dot chain formation mechanism

    SciTech Connect

    Park, Tyler D.; Colton, John S.; Farrer, Jeffrey K.; Yang, Haeyeon; Kim, Dong Jun

    2014-12-15

    Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.

  19. Growing High-Quality InAs Quantum Dots for Infrared Lasers

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Uhl, David

    2004-01-01

    An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.

  20. Effect of spacer layer thickness on multi-stacked InGaAs quantum dots grown on GaAs (311)B substrate for application to intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Shoji, Yasushi; Narahara, Kohei; Tanaka, Hideharu; Kita, Takashi; Akimoto, Katsuhiro; Okada, Yoshitaka

    2012-04-01

    We have investigated the properties of multi-stacked layers of self-organized In0.4Ga0.6As quantum dots (QDs) on GaAs (311)B grown by molecular beam epitaxy. We found that a high degree of in-plane ordering of QDs structure with a six-fold symmetry was maintained though the growth has been performed at a higher growth rate than the conventional conditions. The dependence of photoluminescence characteristics on spacer layer thickness showed an increasing degree of electronic coupling between the stacked QDs for thinner spacer layers. The external quantum efficiency for an InGaAs/GaAs quantum dot solar cell (QDSC) with a thin spacer layer thickness increased in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. Furthermore, a photocurrent production by 2-step photon absorption has been observed at room temperature for the InGaAs/GaAs QDSC with a spacer layer thickness of 15 nm.

  1. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  2. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  3. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  4. Quantum Dot Sensitized Photoelectrodes

    PubMed Central

    Macdonald, Thomas J.; Nann, Thomas

    2011-01-01

    Quantum Dots (QDs) are promising alternatives to organic dyes as sensitisers for photocatalytic electrodes. This review article provides an overview of the current state of the art in this area. More specifically, different types of QDs with a special focus on heavy-metal free QDs and the methods for preparation and adsorption onto metal oxide electrodes (especially titania and zinc oxide) are discussed. Eventually, the key areas of necessary improvements are identified and assessed.

  5. Quantum transport in ballistic quantum dots

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Akis, R. A.; Pivin, D. P., Jr.; Bird, J. P.; Holmberg, N.; Badrieh, F.; Vasileska, D.

    1998-10-01

    Carriers in small 3D quantum boxes take us from unintentional qquantum dots in MOSFETs (arising from the doping fluctuations) tto single-electron quantum dots in semiconductor hheterostructures. In between these two extremes are the realm of oopen, ballistic quantum dots, in which the transport can be quite regular. Several issues must be considered in treating the transport in these dots, among which are: (1) phase coherence within the dot; (2) the transition between semi-classical and fully quantum transport, (3) the role of the contacts, vis-à-vis the fabricated boundaries, and (4) the actual versus internal boundaries. In this paper, we discuss these issues, including the primary observables in experiment, the intrinsic nature of oscillatory behavior in magnetic field and dot size, and the connection to semi-classical transport emphasizing the importance of the filtering by the input (and output) quantum point contacts.

  6. Emission redistribution from a quantum dot-bowtie nanoantenna

    NASA Astrophysics Data System (ADS)

    Regler, Armin; Schraml, Konrad; Lyamkina, Anna A.; Spiegl, Matthias; Müller, Kai; Vuckovic, Jelena; Finley, Jonathan J.; Kaniber, Michael

    2016-07-01

    We present a combined experimental and simulation study of a single self-assembled InGaAs quantum dot coupled to a nearby (˜25 nm) plasmonic antenna. Microphotoluminescence spectroscopy shows a ˜2.4× increase of intensity, which is attributed to spatial far-field redistribution of the emission from the quantum dot-antenna system. Power-dependent studies show similar saturation powers of 2.5 μW for both coupled and uncoupled quantum dot emission in polarization-resolved measurements. Moreover, time-resolved spectroscopy reveals the absence of Purcell enhancement of the quantum dot coupled to the antenna as compared with an uncoupled dot, yielding comparable exciton lifetimes of τ˜0.5 ns. This observation is supported by numerical simulations, suggesting only minor Purcell-effects of <2× for emitter-antenna separations >25 nm. The observed increased emission from a coupled quantum dot-plasmonic antenna system is found to be in good qualitative agreement with numerical simulations and will lead to a better understanding of light-matter coupling in such semiconductor-plasmonic hybrid systems.

  7. Quantum Dot Spins and Photons

    NASA Astrophysics Data System (ADS)

    Atature, Mete

    2012-02-01

    Self-assembled semiconductor quantum dots are interesting and rich physical systems. Their inherently mesoscopic nature leads to a multitude of interesting interaction mechanisms of confined spins with the solid state environment of spins, charges and phonons. In parallel, the relatively clean spin-dependent optical transitions make quantum dots strong candidates for stationary and flying qubits within the context of spin-based quantum information science. The recently observed quantum dot resonance fluorescence has become a key enabler for further progress in this context. I will first discuss the real-time optical detection (or single-shot readout) of quantum dot spins, and then I will discuss how resonance fluorescence allows coherent generation of single photons suitable (and tailored) for linear-optics quantum computation and for establishing a high-efficiency spin-photon quantum interface within a distributed quantum network.

  8. Scanning Quantum Dot Microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Green, Matthew F. B.; Leinen, Philipp; Deilmann, Thorsten; Krüger, Peter; Rohlfing, Michael; Temirov, Ruslan; Tautz, F. Stefan

    2015-07-01

    We introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with subnanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of an atomic force microscope operated at 5 K, equipped with a qPlus tuning fork, we image the quadrupole field of a single molecule. To demonstrate quantitative measurements, we investigate the dipole field of a single metal adatom adsorbed on a metal surface. We show that because of its high sensitivity the technique can probe electrostatic potentials at large distances from their sources, which should allow for the imaging of samples with increased surface roughness.

  9. Efficient quantum dot-quantum dot and quantum dot-dye energy transfer in biotemplated assemblies.

    PubMed

    Achermann, Marc; Jeong, Sohee; Balet, Laurent; Montano, Gabriel A; Hollingsworth, Jennifer A

    2011-03-22

    CdSe semiconductor nanocrystal quantum dots are assembled into nanowire-like arrays employing microtubule fibers as nanoscale molecular "scaffolds." Spectrally and time-resolved energy-transfer analysis is used to assess the assembly of the nanoparticles into the hybrid inorganic biomolecular structure. Specifically, we demonstrate that a comprehensive study of energy transfer between quantum dot pairs on the biotemplate and, alternatively, between quantum dots and molecular dyes embedded in the microtubule scaffold comprises a powerful spectroscopic tool for evaluating the assembly process. In addition to revealing the extent to which assembly has occurred, the approach allows determination of particle-to-particle (and particle-to-dye) distances within the biomediated array. Significantly, the characterization is realized in situ, without need for further sample workup or risk of disturbing the solution-phase constructs. Furthermore, we find that the assemblies prepared in this way exhibit efficient quantum dot-quantum dot and quantum dot-dye energy transfer that affords faster energy-transfer rates compared to densely packed quantum dot arrays on planar substrates and to small-molecule-mediated quantum dot-dye couples, respectively.

  10. New quantum dot sensors

    NASA Astrophysics Data System (ADS)

    Gun'ko, Y. K.; Moloney, M. M.; Gallagher, S.; Govan, J.; Hanley, C.

    2010-04-01

    Quantum dots (QDs) are fluorescent semiconductor (e.g. II-VI) nanocrystals, which have a strong characteristic spectral emission. This emission is tunable to a desired energy by selecting variable particle size, size distribution and composition of the nanocrystals. QDs have recently attracted enormous interest due to their unique photophysical properties and range of potential applications in photonics and biochemistry. The main aim of our work is develop new chiral quantum dots (QDs) and establish fundamental principles influencing their structure, properties and biosensing behaviour. Here we present the synthesis and characterisation of chiral CdSe semiconductor nanoparticles and their utilisation as new chiral biosensors. Penicillamine stabilised CdSe nanoparticles have shown both very strong and very broad luminescence spectra. Circular dichroism (CD) spectroscopy studies have revealed that the D- and Lpenicillamine stabilised CdSe QDs demonstrate circular dichroism and possess almost identical mirror images of CD signals. Studies of photoluminescence and CD spectra have shown that there is a clear relationship between defect emission and CD activity. We have also demonstrated that these new QDs can serve as fluorescent nanosensors for various chiral biomolecules including nucleic acids. These novel nanosensors can be potentially utilized for detection of various chiral biological and chemical species with the broad range of potential applications.

  11. Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field.

    PubMed

    Beirne, G J; Hermannstädter, C; Wang, L; Rastelli, A; Schmidt, O G; Michler, P

    2006-04-07

    Lateral quantum coupling between two self-assembled (In,Ga)As quantum dots has been observed. Photon statistics measurements between the various excitonic and biexcitonic transitions of these lateral quantum dot molecules display strong antibunching confirming the presence of coupling. Furthermore, we observe an anomalous exciton Stark shift with respect to static electric field. A simple model indicates that the lateral coupling is due to electron tunneling between the dots when the ground states are in resonance. The electron probability can then be shifted to either dot and the system can be used to create a wavelength-tunable single-photon emitter by simply applying a voltage.

  12. Guest Editorial: Quantum Dots

    DTIC Science & Technology

    2009-06-24

    cost of infrared imaging systems by enabling cryogenic dewars and Stirling cooling systems to be replaced by thermo-electric coolers . The QDIP...and moderate to high bandwidth semiconductor lasers in the 0.85- to 1.5-mm wavelength range mainly based on the InGaAs system . Advances such as

  13. On-chip interference of single photons from an embedded quantum dot and an external laser

    NASA Astrophysics Data System (ADS)

    Prtljaga, N.; Bentham, C.; O'Hara, J.; Royall, B.; Clarke, E.; Wilson, L. R.; Skolnick, M. S.; Fox, A. M.

    2016-06-01

    In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler. This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.

  14. Low Threshold Quantum Dot Lasers.

    PubMed

    Iyer, Veena Hariharan; Mahadevu, Rekha; Pandey, Anshu

    2016-04-07

    Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam.

  15. Photoconductivity Relaxation Mechanisms of InGaAs/GaAs Quantum Dot Chain Structures

    NASA Astrophysics Data System (ADS)

    Kondratenko, Serhiy V.; Iliash, Sviatoslav A.; Vakulenko, Oleg V.; Mazur, Yuriy I.; Benamara, Mourad; Marega, Euclydes; Salamo, Gregory J.

    2017-03-01

    An experimental study of the photoconductivity time decay in InGaAs/GaAs quantum dot chain structures is reported. Different photoconductivity relaxations resulting from spectrally selecting photoexcitation of InGaAs QWR or QDs as well as GaAs spacers were measured. The photoconductivity relaxation after excitation of 650 nm follows a stretched exponent with decay constant dependent on morphology of InGaAs epitaxial layers. Kinetics with 980 nm excitation are successfully described by equation that takes into account the linear recombination involving Shockley-Read centers in the GaAs spacers and bimolecular recombination via quantum-size states of InGaAs QWRs or QDs.

  16. Hydrophobin-Encapsulated Quantum Dots.

    PubMed

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  17. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  18. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  19. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  20. Chiral Graphene Quantum Dots.

    PubMed

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  1. Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars

    SciTech Connect

    Czerniuk, T. Tepper, J.; Akimov, A. V.; Unsleber, S.; Schneider, C.; Kamp, M.; Höfling, S.; Yakovlev, D. R.; Bayer, M.

    2015-01-26

    We use a picosecond acoustics technique to modulate the laser output of electrically pumped GaAs/AlAs micropillar lasers with InGaAs quantum dots. The modulation of the emission wavelength takes place on the frequencies of the nanomechanical extensional and breathing (radial) modes of the micropillars. The amplitude of the modulation for various nanomechanical modes is different for every micropillar which is explained by a various elastic contact between the micropillar walls and polymer environment.

  2. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  3. Nanoscale quantum-dot supercrystals

    NASA Astrophysics Data System (ADS)

    Baimuratov, Anvar S.; Turkov, Vadim K.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory allowing one to calculate the energy spectra and wave functions of collective excitations in twoand three-dimensional quantum-dot supercrystals. We derive analytical expressions for the energy spectra of twodimensional supercrystals with different Bravias lattices, and use them to analyze the possibility of engineering the supercrystals' band structure. We demonstrate that the variation of the supercrystal's parameters (such as the symmetry of the periodic lattice and the properties of the quantum dots or their environment) enables an unprecedented control over its optical properties, thus paving a way towards the development of new nanophotonics materials.

  4. Quantum optics in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Garrido, Mauricio

    Coupled quantum dots present an active field of study, both at the fundamental and applied level, due to their atomic and molecular-like energy structure and the ability to design and tune their parameters. Being single-photon emitters, they are systems that behave fully according to the laws of quantum mechanics. The work presented here involved the experimental study of the electro-optical properties of Indium Arsenide, coupled quantum dots. Initial experiments involved the use of spectroscopic methods such as photoluminescence and photoluminescence excitation (PLE). Through such techniques, the top dot's hole energy level structure was mapped and different types of resonant absorption were identified. The characterization of these excited states and the knowledge of how to resonantly excite into them is an integral part of the development of certain controlled spin gates in quantum computation. Additionally, a shift of the spectra in the electric field was observed with varying excitation wavelength through and above the wetting layer, which allowed for direct measurement of the optically-created electric field within the device. This extends the quantum dots' capabilities to using them as electric-field nano-probes and opens up the possibility of an all-optical, fast switching mechanism. In the course of these studies, a novel data visualization method for PLE in this type of system was developed. Finally, to study correlated photon effects, a Hanbury Brown - Twiss experiment was built which revealed bunching and antibunching signals typical of quantum statistics in biexciton cascade emissions. This is an important step towards the experimental investigation of entangled states in coupled quantum dots.

  5. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  6. Quantum dot behavior in graphene nanoconstrictions.

    PubMed

    Todd, Kathryn; Chou, Hung-Tao; Amasha, Sami; Goldhaber-Gordon, David

    2009-01-01

    Graphene nanoribbons display an imperfectly understood transport gap. We measure transport through nanoribbon devices of several lengths. In long (>/=250 nm) nanoribbons we observe transport through multiple quantum dots in series, while shorter (quantum dots. New measurements indicate that dot size may scale with constriction width. We propose a model where transport occurs through quantum dots that are nucleated by background disorder potential in the presence of a confinement gap.

  7. Calculation of metamorphic two-dimensional quantum energy system: Application to wetting layer states in InAs/InGaAs metamorphic quantum dot nanostructures

    SciTech Connect

    Seravalli, L.; Trevisi, G.; Frigeri, P.

    2013-11-14

    In this work, we calculate the two-dimensional quantum energy system of the In(Ga)As wetting layer that arises in InAs/InGaAs/GaAs metamorphic quantum dot structures. Model calculations were carried on the basis of realistic material parameters taking in consideration their dependence on the strain relaxation of the metamorphic buffer; results of the calculations were validated against available literature data. Model results confirmed previous hypothesis on the extrinsic nature of the disappearance of wetting layer emission in metamorphic structures with high In composition. We also show how, by adjusting InGaAs metamorphic buffer parameters, it could be possible: (i) to spatially separate carriers confined in quantum dots from wetting layer carriers, (ii) to create an hybrid 0D-2D system, by tuning quantum dot and wetting layer levels. These results are interesting not only for the engineering of quantum dot structures but also for other applications of metamorphic structures, as the two design parameters of the metamorphic InGaAs buffer (thickness and composition) provide additional degrees of freedom to control properties of interest.

  8. Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells

    SciTech Connect

    Cilibrizzi, Pasquale; Askitopoulos, Alexis Silva, Matteo; Lagoudakis, Pavlos G.; Bastiman, Faebian; Clarke, Edmund; Zajac, Joanna M.; Langbein, Wolfgang

    2014-11-10

    The investigation of intrinsic interactions in polariton condensates is currently limited by the photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated planar GaAs/AlAs{sub 0.98}P{sub 0.02} microcavity with embedded InGaAs quantum wells having a reduced cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging under non-resonant optical excitation, we observe polariton condensation and a second threshold marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime. Condensation in a structure with suppressed photonic disorder is a necessary step towards the implementation of periodic lattices of interacting condensates, providing a platform for on chip quantum simulations.

  9. Carrier capture dynamics of single InGaAs/GaAs quantum-dot layers

    SciTech Connect

    Chauhan, K. N.; Riffe, D. M.; Everett, E. A.; Kim, D. J.; Yang, H.; Shen, F. K.

    2013-05-28

    Using 800 nm, 25-fs pulses from a mode locked Ti:Al{sub 2}O{sub 3} laser, we have measured the ultrafast optical reflectivity of MBE-grown, single-layer In{sub 0.4}Ga{sub 0.6}As/GaAs quantum-dot (QD) samples. The QDs are formed via two-stage Stranski-Krastanov growth: following initial InGaAs deposition at a relatively low temperature, self assembly of the QDs occurs during a subsequent higher temperature anneal. The capture times for free carriers excited in the surrounding GaAs (barrier layer) are as short as 140 fs, indicating capture efficiencies for the InGaAs quantum layer approaching 1. The capture rates are positively correlated with initial InGaAs thickness and annealing temperature. With increasing excited carrier density, the capture rate decreases; this slowing of the dynamics is attributed to Pauli state blocking within the InGaAs quantum layer.

  10. Polarization-Dependent Interference of Coherent Scattering from Orthogonal Dipole Moments of a Resonantly Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Chen, Disheng; Lander, Gary R.; Solomon, Glenn S.; Flagg, Edward B.

    2017-01-01

    Resonant photoluminescence excitation (RPLE) spectra of a neutral InGaAs quantum dot show unconventional line shapes that depend on the detection polarization. We characterize this phenomenon by performing polarization-dependent RPLE measurements and simulating the measured spectra with a three-level quantum model. The spectra are explained by interference between fields coherently scattered from the two fine structure split exciton states, and the measurements enable extraction of the steady-state coherence between the two exciton states.

  11. Brightness-equalized quantum dots

    PubMed Central

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-01-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices. PMID:26437175

  12. Brightness-equalized quantum dots.

    PubMed

    Lim, Sung Jun; Zahid, Mohammad U; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S; Condeelis, John; Smith, Andrew M

    2015-10-05

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  13. Designing quantum dots for solotronics

    PubMed Central

    Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

  14. Strain-induced g -factor tuning in single InGaAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Tholen, H. M. G. A.; Wildmann, J. S.; Rastelli, A.; Trotta, R.; Pryor, C. E.; Zallo, E.; Schmidt, O. G.; Koenraad, P. M.; Silov, A. Yu.

    2016-12-01

    The tunability of the exciton g factor in InGaAs quantum dots using compressive biaxial stress applied by piezoelectric actuators is investigated. We find a clear relation between the exciton g factor and the applied stress. A linear decrease of the g factor with compressive biaxial strain is observed consistently in all investigated dots. A connection is established between the response of the exciton g factor to the voltage applied to the piezoelectric actuator and the response of the quantum dot emission energy. We employ a numerical model based on eight-band k .p theory to calculate the exciton g factor of a typical dot as a function of strain and a good agreement with our experiments is found. Our calculations reveal that the change in exciton g factor is dominated by the contribution of the valence band and originates from increased heavy hole light hole splitting when applying external stress.

  15. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    SciTech Connect

    Xu, Ming Jaffré, Alexandre Alvarez, José Kleider, Jean-Paul Boutchich, Mohamed; Jittrong, Apichat; Chokamnuai, Thitipong; Panyakeow, Somsak; Kanjanachuchai, Songphol

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  16. Sharp exciton emission from single InAs quantum dots in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Panev, Nikolay; Persson, Ann I.; Sköld, Niklas; Samuelson, Lars

    2003-09-01

    We have performed photoluminescence spectroscopy on single GaAs nanowires with InAs quantum dots in the form of thin slices of InAs, possibly alloyed with Ga as InGaAs, incorporated into the GaAs. The nanowires were grown by chemical beam epitaxy using gold nanoparticles as catalysts. The photoluminescence measurements showed rich spectra consisting of sharp lines with energies and excitation power dependency behavior very similar to that observed for Stranski-Krastanow-grown InAs/GaAs quantum dots. By reducing the excitation power density we were able to obtain a quantum dot spectrum consisting of only one single sharp line—the exciton line.

  17. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N.; Röhm, A.; Lingnau, B.; Lüdge, K.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  18. Quantitative multiplexed quantum dot immunohistochemistry

    SciTech Connect

    Sweeney, E.; Ward, T.H.; Gray, N.; Womack, C.; Jayson, G.; Hughes, A.; Dive, C.; Byers, R.

    2008-09-19

    Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8 h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.

  19. Quantum Dot Detectors with Plasmonic Structures

    DTIC Science & Technology

    2015-05-15

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0102 TR-2015-0102 QUANTUM DOT DETECTORS WITH PLASMONIC STRUCTURES Sanjay Krishna University of...SUBTITLE Quantum Dot Detectors with Plasmonic Structures 5a. CONTRACT NUMBER FA9453-12-1-0131 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63401F 6...characterization, of multi-spectral quantum dots-in-a-double well (DDWELL) infrared detectors, by the integration of a surface Plasmon (SP) assisted resonant

  20. Barrier Engineered Quantum Dot Infrared Photodetectors

    DTIC Science & Technology

    2015-06-01

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0111 TR-2015-0111 BARRIER ENGINEERED QUANTUM DOT INFRARED PHOTODETECTORS Sanjay Krishna Center for High Technology...2011 – 22 May 2012 4. TITLE AND SUBTITLE Barrier Engineered Quantum Dot Infrared Photodetectors 5a. CONTRACT NUMBER FA9453-12-1-0336 5b. GRANT...is Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT To investigate barrier engineered designs to reduce the dark current in quantum dot infrared

  1. Synthetic Developments of Nontoxic Quantum Dots.

    PubMed

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems.

  2. Laterally Coupled Quantum-Dot Distributed-Feedback Lasers

    NASA Technical Reports Server (NTRS)

    Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke

    2003-01-01

    InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.

  3. Path-dependent initialization of a single quantum dot exciton spin in a nanophotonic waveguide

    NASA Astrophysics Data System (ADS)

    Coles, R. J.; Price, D. M.; Royall, B.; Clarke, E.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2017-03-01

    We demonstrate a scheme for in-plane initialization of a single exciton spin in an InGaAs quantum dot (QD) coupled to a GaAs nanobeam waveguide. The chiral coupling of the QD and the optical mode of the nanobeam enables spin initialization fidelity approaching unity in magnetic field B =1 T and >0.9 without the field. We further show that this in-plane excitation scheme is independent of the incident excitation laser polarization and depends solely on the excitation direction. This scheme provides a robust in-plane spin excitation basis for a photon-mediated spin network for quantum information applications.

  4. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  5. The statistical theory of quantum dots

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.

    2000-10-01

    A quantum dot is a sub-micron-scale conducting device containing up to several thousand electrons. Transport through a quantum dot at low temperatures is a quantum-coherent process. This review focuses on dots in which the electron's dynamics are chaotic or diffusive, giving rise to statistical properties that reflect the interplay between one-body chaos, quantum interference, and electron-electron interactions. The conductance through such dots displays mesoscopic fluctuations as a function of gate voltage, magnetic field, and shape deformation. The techniques used to describe these fluctuations include semiclassical methods, random-matrix theory, and the supersymmetric nonlinear σ model. In open dots, the approximation of noninteracting quasiparticles is justified, and electron-electron interactions contribute indirectly through their effect on the dephasing time at finite temperature. In almost-closed dots, where conductance occurs by tunneling, the charge on the dot is quantized, and electron-electron interactions play an important role. Transport is dominated by Coulomb blockade, leading to peaks in the conductance that at low temperatures provide information on the dot's ground-state properties. Several statistical signatures of electron-electron interactions have been identified, most notably in the dot's addition spectrum. The dot's spin, determined partly by exchange interactions, can also influence the fluctuation properties of the conductance. Other mesoscopic phenomena in quantum dots that are affected by the charging energy include the fluctuations of the cotunneling conductance and mesoscopic Coulomb blockade.

  6. Photovoltaic Current in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Switkes, M.; Marcus, C. M.; Campman, K.; Gossard, A. C.

    1998-03-01

    We investigate the DC photovoltaic current, I_pv, due to coherent ``pumping'' in open ( g >= e^2/h ) quantum dots with radio-frequency modulation of the confining potential(B. Spivak, F. Zhou, and M. T. Beal Monod, Phys. Rev. B 51), p. 13226 (1995). I_pv is on the order of 20 pA≈ 10ef for a modulation frequency f = 15 MHz. The photovoltaic current exhibits mesoscopic fluctuations with magnetic field and with the static shape of the confining potential which do not appear to be correlated with fluctuations in the conductance of the dot. The photovoltaic current induced by pumping with two independent shape distortion gates depends on their relative phase; the relationship of this phase to time reversal symmetry is investigated with a view toward defining a generalized Landauer-Büttiker relation.

  7. Energy states, transport, and magnetotransport in diluted magnetic semiconductor (Ga, Mn)As with quantum well InGaAs.

    PubMed

    Shchurova, L Yu; Kulbachinskii, V A

    2011-03-01

    We investigate energy levels, thermodynamic, transport and magnetotransport properties of holes in GaAs structure with quantum well InGaAs delta-doped by C and Mn. We present self-consistent calculations for energy levels in the quantum well for different degrees of ionization of Mn impurity. The magnetoresistance of holes in the quantum well is calculated. We explain observed negative magnetoresistance by the reduction of spin-flip scattering on magnetic ions due to aligning of spins with magnetic field.

  8. Charge state hysteresis in semiconductor quantum dots

    SciTech Connect

    Yang, C. H.; Rossi, A. Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.

    2014-11-03

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.

  9. A quantum dot in topological insulator nanofilm.

    PubMed

    Herath, Thakshila M; Hewageegana, Prabath; Apalkov, Vadym

    2014-03-19

    We introduce a quantum dot in topological insulator nanofilm as a bump at the surface of the nanofilm. Such a quantum dot can localize an electron if the size of the dot is large enough, ≳5 nm. The quantum dot in topological insulator nanofilm has states of two types, which belong to two ('conduction' and 'valence') bands of the topological insulator nanofilm. We study the energy spectra of such defined quantum dots. We also consider intraband and interband optical transitions within the dot. The optical transitions of the two types have the same selection rules. While the interband absorption spectra have multi-peak structure, each of the intraband spectra has one strong peak and a few weak high frequency satellites.

  10. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  11. Research on Self-Assembling Quantum Dots.

    DTIC Science & Technology

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  12. STED nanoscopy with fluorescent quantum dots

    NASA Astrophysics Data System (ADS)

    Hanne, Janina; Falk, Henning J.; Görlitz, Frederik; Hoyer, Patrick; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.

    2015-05-01

    The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775 nm STED laser light. A resolution of presently ~50 nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging.

  13. Optically active quantum-dot molecules.

    PubMed

    Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2017-02-20

    Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

  14. Thick-shell nanocrystal quantum dots

    DOEpatents

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  15. Excitonic quantum interference in a quantum dot chain with rings.

    PubMed

    Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang

    2008-04-16

    We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.

  16. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  17. Biocompatible Quantum Dots for Biological Applications

    SciTech Connect

    Rosenthal, Sandra; Chang, Jerry; Kovtun, Oleg; McBride, James; Tomlinson, Ian

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.

  18. Quantum-dot supercrystals for future nanophotonics

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-01-01

    The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave functions of the supercrystals' collective excitations through the variation of different structural and material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon alterations in the quantum dot arrangement. This feature offers unprecedented control over the supercrystal's electromagnetic properties and enables the development of new nanophotonics materials and devices.

  19. Tailoring Magnetism in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zutic, Igor; Abolfath, Ramin; Hawrylak, Pawel

    2007-03-01

    We study magnetism in magnetically doped quantum dots as a function of particle numbers, temperature, confining potential, and the strength of Coulomb interaction screening. We show that magnetism can be tailored by controlling the electron-electron Coulomb interaction, even without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at substantially higher temperatures than in the non-interacting case or in the bulk-like dilute magnetic semiconductors. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations. Cond-mat/0612489. [1] R. Abolfath, P. Hawrylak, I. Zuti'c, preprint.

  20. Optophononics with coupled quantum dots.

    PubMed

    Kerfoot, Mark L; Govorov, Alexander O; Czarnocki, Cyprian; Lu, Davis; Gad, Youstina N; Bracker, Allan S; Gammon, Daniel; Scheibner, Michael

    2014-01-01

    Modern technology is founded on the intimate understanding of how to utilize and control electrons. Next to electrons, nature uses phonons, quantized vibrations of an elastic structure, to carry energy, momentum and even information through solids. Phonons permeate the crystalline components of modern technology, yet in terms of technological utilization phonons are far from being on par with electrons. Here we demonstrate how phonons can be employed to render a single quantum dot pair optically transparent. This phonon-induced transparency is realized via the formation of a molecular polaron, the result of a Fano-type quantum interference, which proves that we have accomplished making typically incoherent and dissipative phonons behave in a coherent and non-dissipative manner. We find the transparency to be widely tunable by electronic and optical means. Thereby we show amplification of weakest coupling channels. We further outline the molecular polaron's potential as a control element in phononic circuitry architecture.

  1. Quantum dot spectroscopy using cavity quantum electrodynamics.

    PubMed

    Winger, Martin; Badolato, Antonio; Hennessy, Kevin J; Hu, Evelyn L; Imamoğlu, Ataç

    2008-11-28

    We show how cavity quantum electrodynamics using a tunable photonic crystal nanocavity in the strong-coupling regime can be used for single quantum dot spectroscopy. From the distinctive avoided crossings observed in the strongly coupled system we can identify the neutral and single positively charged exciton as well as the biexciton transitions. Moreover we are able to investigate the fine structure of those transitions and to identify a novel cavity mediated mixing of bright and dark exciton states, where the hyperfine interactions with lattice nuclei presumably play a key role. These results are enabled by a deterministic coupling scheme which allowed us to achieve unprecedented coupling strengths in excess of 150 microeV.

  2. Quantum dots in aperiodic order

    NASA Astrophysics Data System (ADS)

    Hörnquist, Michael; Ouchterlony, Thomas

    1998-12-01

    We study numerically with a Green-function technique one-dimensional arrays of quantum dots with two different models. The arrays are ordered according to the Fibonacci, the Thue-Morse, and the Rudin-Shapiro sequences. As a comparison, results from a periodically ordered chain and also from a random chain are included. The focus is on how the conductance (calculated within the Landauer-Büttiker formalism) depends on the Fermi level. In the first model, we find that in some cases rather small systems (≈60 dots) behave in the same manner as very large systems (>16,000 dots) and this makes it possible in these cases to interpret our results for the small systems in terms of the spectral properties of the infinite systems. In particular, we find that it is possible to see some consequences of the singular continuous spectra that some of the systems possess, at least for temperatures up to 100 mK. In the second model, we study the phenomenon ohmic addition, i.e. when the resistances of the constrictions add up to the total resistance. It results that of the systems studied, it is only the Rudin-Shapiro system that has this behaviour for large structures, while the resistances of the Fibonacci and the Thue-Morse systems might reach a limiting value (as a periodic system does).

  3. Biodetection using fluorescent quantum dots

    NASA Astrophysics Data System (ADS)

    Speckman, Donna M.; Jennings, Travis L.; LaLumondiere, Steven D.; Klimcak, Charles M.; Moss, Steven C.; Loper, Gary L.; Beck, Steven M.

    2002-07-01

    Multi-pathogen biosensors that take advantage of sandwich immunoassay detection schemes and utilize conventional fluorescent dye reporter molecules are difficult to make into extremely compact and autonomous packages. The development of a multi-pathogen, immunoassay-based, fiber optic detector that utilizes varying sized fluorescent semiconductor quantum dots (QDs) as the reporter labels has the potential to overcome these problems. In order to develop such a quantum dot-based biosensor, it is essential to demonstrate that QDs can be attached to antibody proteins, such that the specificity of the antibody is maintained. We have been involved in efforts to develop a reproducible method for attaching QDs to antibodies for use in biodetection applications. We have synthesized CdSe/ZnS core-shell QDs of differing size, functionalized their surfaces with several types of organic groups for water solubility, and covalently attached these functionalized QDs to rabbit anti-ovalbumin antibody protein. We also demonstrated that these labeled antibodies exhibit selective binding to ovalbumin antigen. We characterized the QDs at each step in the overall synthesis by UV-VIS absorption spectroscopy and by picosecond (psec) transient photoluminescence (TPL) spectroscopy. TPL spectroscopy measurements indicate that QD lifetime depends on the size of the QD, the intensity of the optical excitation source, and whether or not they are functionalized and conjugated to antibodies. We describe details of these experiments and discuss the impact of our results on our biosensor development program.

  4. Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles

    DTIC Science & Technology

    2014-11-07

    SECURITY CLASSIFICATION OF: Optical studies of semiconductor quantum dots (SQDs), metal nanoparticles (MNPs), and their hybrid nanomaterials are...Distribution Unlimited Final Report: Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles The views, opinions and/or findings...Semiconductor Quantum Dots and Metal Nanoparticles Report Title Optical studies of semiconductor quantum dots (SQDs), metal nanoparticles (MNPs), and their

  5. Electrical and Optical Gain Lever Effects in InGaAs Double Quantum Well Diode Lasers

    SciTech Connect

    Pocha, M D; Goddard, L L; Bond, T C; Nikolic, R J; Vernon, S P; Kallman, J S; Behymer, E M

    2007-01-03

    In multisection laser diodes, the amplitude or frequency modulation (AM or FM) efficiency can be improved using the gain lever effect. To study gain lever, InGaAs double quantum well (DQW) edge emitting lasers have been fabricated with integrated passive waveguides and dual sections providing a range of split ratios from 1:1 to 9:1. Both the electrical and the optical gain lever have been examined. An electrical gain lever with greater than 7 dB enhancement of AM efficiency was achieved within the range of appropriate DC biasing currents, but this gain dropped rapidly outside this range. We observed a 4 dB gain in the optical AM efficiency under non-ideal biasing conditions. This value agreed with the measured gain for the electrical AM efficiency under similar conditions. We also examined the gain lever effect under large signal modulation for digital logic switching applications. To get a useful gain lever for optical gain quenched logic, a long control section is needed to preserve the gain lever strength and a long interaction length between the input optical signal and the lasing field of the diode must be provided. The gain lever parameter space has been fully characterized and validated against numerical simulations of a semi-3D hybrid beam propagation method (BPM) model for the coupled electron-photon rate equation. We find that the optical gain lever can be treated using the electrical injection model, once the absorption in the sample is known.

  6. On-chip quantum optics with quantum dot microcavities.

    PubMed

    Stock, E; Albert, F; Hopfmann, C; Lermer, M; Schneider, C; Höfling, S; Forchel, A; Kamp, M; Reitzenstein, S

    2013-02-06

    A novel concept for on-chip quantum optics using an internal electrically pumped microlaser is presented. The microlaser resonantly excites a quantum dot microcavity system operating in the weak coupling regime of cavity quantum electrodynamics. This work presents the first on-chip application of quantum dot microlasers, and also opens up new avenues for the integration of individual microcavity structures into larger photonic networks.

  7. Quantum dots with single-atom precision.

    PubMed

    Fölsch, Stefan; Martínez-Blanco, Jesús; Yang, Jianshu; Kanisawa, Kiyoshi; Erwin, Steven C

    2014-07-01

    Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.

  8. Towards hybrid circuit quantum electrodynamics with quantum dots

    NASA Astrophysics Data System (ADS)

    Viennot, Jérémie J.; Delbecq, Matthieu R.; Bruhat, Laure E.; Dartiailh, Matthieu C.; Desjardins, Matthieu M.; Baillergeau, Matthieu; Cottet, Audrey; Kontos, Takis

    2016-08-01

    Cavity quantum electrodynamics allows one to study the interaction between light and matter at the most elementary level. The methods developed in this field have taught us how to probe and manipulate individual quantum systems like atoms and superconducting quantum bits with an exquisite accuracy. There is now a strong effort to extend further these methods to other quantum systems, and in particular hybrid quantum dot circuits. This could turn out to be instrumental for a noninvasive study of quantum dot circuits and a realization of scalable spin quantum bit architectures. It could also provide an interesting platform for quantum simulation of simple fermion-boson condensed matter systems. In this short review, we discuss the experimental state of the art for hybrid circuit quantum electrodynamics with quantum dots, and we present a simple theoretical modeling of experiments.

  9. Hybrid semiconductor quantum dot-metal nanocrystal structures prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Urbańczyk, A.; Hamhuis, G. J.; Nötzel, R.

    2011-05-01

    We report the formation of In nanocrystals and their alignment near dilute InAs quantum dots (QDs) on GaAs (0 0 1) by molecular beam epitaxy. The In nanocrystals exhibit surface plasmon resonances in the near-infrared range, which can be matched with the emission wavelength of In(Ga)As QDs. The alignment of the In nanocrystals near the InAs QDs is due to the strain-driven migration yielding single isolated QD-metal nanocrystal pairs and isolated QD-metal nanocrystal dimer structures, representing the basic hybrid QD-metal nanocrystal plasmonic nanostructures.

  10. Fluorescent Quantum Dots for Biological Labeling

    NASA Technical Reports Server (NTRS)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  11. Electronic properties of aperiodic quantum dot chains

    NASA Astrophysics Data System (ADS)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2012-04-01

    The electronic spectral and transport properties of aperiodic quantum dot chains are investigated. The systems with singular continuous energy spectrum are considered: Thue-Morse chain, double-periodic chain, Rudin-Shapiro chain. The influence of electronic energy in quantum dot on the spectral properties, band structure, density of states and spectral resistivity, is discussed. Low resistivity regions correspond to delocalized states and these states could be current states. Also we discuss the magnetic field application as the way to tune electronic energy in quantum dot and to obtain metallic or insulating conducting states of the systems.

  12. Quantum dot-based theranostics

    NASA Astrophysics Data System (ADS)

    Ho, Yi-Ping; Leong, Kam W.

    2010-01-01

    Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The high surface-to-volume ratio of QDs enables the construction of a ``smart'' multifunctional nanoplatform, where the QDs serve not only as an imaging agent but also a nanoscaffold catering for therapeutic and diagnostic (theranostic) modalities. This mini review highlights the emerging applications of functionalized QDs as fluorescence contrast agents for imaging or as nanoscale vehicles for delivery of therapeutics, with special attention paid to the promise and challenges towards QD-based theranostics.

  13. Single to quadruple quantum dots with tunable tunnel couplings

    SciTech Connect

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K.; Otsuka, T.; Tarucha, S.

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  14. Fast electron spin resonance controlled manipulation of spin injection into quantum dots

    SciTech Connect

    Merz, Andreas Siller, Jan; Schittny, Robert; Krämmer, Christoph; Kalt, Heinz; Hetterich, Michael

    2014-06-23

    In our spin-injection light-emitting diodes, electrons are spin-polarized in a semimagnetic ZnMnSe spin aligner and then injected into InGaAs quantum dots. The resulting electron spin state can be read out by measuring the circular polarization state of the emitted light. Here, we resonantly excite the Mn 3d electron spin system with microwave pulses and perform time-resolved measurements of the spin dynamics. We find that we are able to control the spin polarization of the injected electrons on a microsecond timescale. This electron spin resonance induced spin control could be one of the ingredients required to utilize the quantum dot electrons or the Mn spins as qubits.

  15. Quantum Dots Investigated for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  16. Spin Dynamics of Charged Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stern, N. P.

    2005-03-01

    Colloidal semiconductor quantum dots are promising structures for controlling spin phenomena because of their highly size- tunable physical properties, ease of manufacture, and nanosecond-scale spin lifetimes at room temperature. Recent experiments have succeeded in controlling the charging of the lowest electronic state of colloidal quantum dots ootnotetextC. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem B 108, 9027 (2004).. Here we use time-resolved Faraday rotation measurements in the Voigt geometry to investigate the spin dynamics of colloidal CdSe quantum dot films in both a charged and uncharged state at room temperature. The charging of the film is controlled by applying a voltage in an electrochemical cell and is confirmed by absorbance measurements. Significant changes in the spin precession are observed upon charging, reflecting the voltage- controlled electron occupation of the quantum dot states and filling of surface states.

  17. Teleportation on a quantum dot array.

    PubMed

    de Pasquale, F; Giorgi, G; Paganelli, S

    2004-09-17

    We present a model of quantum teleportation protocol based on a double quantum dot array. The unknown qubit is encoded using a pair of quantum dots, with one excess electron, coupled by tunneling. It is shown how to create a maximally entangled state using an adiabatically increasing Coulomb repulsion between different dot pairs. This entangled state is exploited to perform teleportation again using an adiabatic coupling between itself and the incoming unknown state. Finally, a sudden separation of Bob's qubit allows a time evolution of Alice's, which amounts to a modified version of standard Bell measurement. A transmission over a long distance could be obtained by considering the entangled state of a chain of N coupled double quantum dots. The system is shown to be increasingly robust with N against decoherence due to phonons.

  18. Submonolayer Quantum Dot Infrared Photodetector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  19. First principle thousand atom quantum dot calculations

    SciTech Connect

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  20. Noninvasive detection of charge rearrangement in a quantum dot

    NASA Astrophysics Data System (ADS)

    Fricke, C.; Rogge, M. C.; Harke, B.; Reinwald, M.; Wegscheider, W.; Hohls, F.; Haug, R. J.

    2007-04-01

    We demonstrate new results on electron redistribution on a single quantum dot caused by magnetic field. A quantum point contact is used to detect changes in the quantum dot charge. We are able to measure both the change of the quantum dot charge and also changes of the electron configuration at constant number of electrons on the quantum dot. These features are used to exploit the quantum dot in a high magnetic field where transport through the quantum dot displays the effects of Landau shells and spin blockade.

  1. Semiconductor Quantum Dots with Photoresponsive Ligands.

    PubMed

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  2. Positioning of quantum dots on metallic nanostructures.

    PubMed

    Kramer, R K; Pholchai, N; Sorger, V J; Yim, T J; Oulton, R; Zhang, X

    2010-04-09

    The capability to position individual emitters, such as quantum dots, near metallic nanostructures is highly desirable for constructing active optical devices that can manipulate light at the single photon level. The emergence of the field of plasmonics as a means to confine light now introduces a need for high precision and reliability in positioning any source of emission, which has thus far been elusive. Placing an emission source within the influence of plasmonic structures now requires accuracy approaching molecular length scales. In this paper we report the ability to reliably position nanoscale functional objects, specifically quantum dots, with sub-100-nm accuracy, which is several times smaller than the diffraction limit of a quantum dot's emission light. Electron beam lithography-defined masks on metallic surfaces and a series of surface chemical functionalization processes allow the programmed assembly of DNA-linked colloidal quantum dots. The quantum dots are successfully functionalized to areas as small as (100 nm)(2) using the specific binding of thiolated DNA to Au/Ag, and exploiting the streptavidin-biotin interaction. An analysis of the reproducibility of the process for various pattern sizes shows that this technique is potentially scalable to the single quantum dot level with 50 nm accuracy accompanied by a moderate reduction in yield.

  3. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging.

    PubMed

    Biju, Vasudevanpillai; Itoh, Tamitake; Ishikawa, Mitsuru

    2010-08-01

    Bioconjugated nanomaterials offer endless opportunities to advance both nanobiotechnology and biomedical technology. In this regard, semiconductor nanoparticles, also called quantum dots, are of particular interest for multimodal, multifunctional and multiplexed imaging of biomolecules, cells, tissues and animals. The unique optical properties, such as size-dependent tunable absorption and emission in the visible and NIR regions, narrow emission and broad absorption bands, high photoluminescence quantum yields, large one- and multi-photon absorption cross-sections, and exceptional photostability are the advantages of quantum dots. Multimodal imaging probes are developed by interfacing the unique optical properties of quantum dots with magnetic or radioactive materials. Besides, crystalline structure of quantum dots adds scope for high-contrast X-ray and TEM imaging. Yet another unique feature of a quantum dot is its spacious and flexible surface which is promising to integrate multiple ligands and antibodies and construct multi-functional probes for bioimaging. In this critical review, we will summarize recent advancements in the preparation of biocompatible quantum dots, bioconjugation of quantum dots, and applications of quantum dots and their bioconjugates for targeted and nonspecific imaging of extracellular and intracellular proteins, organelles and functions (181 references).

  4. Zeeman transitions in spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Yakar, Y.; ćakır, B.; Yılmazer, F.; Özmen, A.

    2017-02-01

    In this study, the effects of external magnetic field on the energy states of a spherical quantum dot with infinite potential barrier have been investigated by using Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method. Linear Zeeman states and Zeeman transition energies are calculated as a function of dot radius and magnetic field strength. We also carry out the effect of external magnetic field on the ground state binding energy. The results show that the impurity energy states, binding energy and Zeeman transition energies are strongly affected by magnetic field strength and dot radius.

  5. Spin Polarization of Carriers in InGaAs Self-Assembled Quantum Rings Inserted in GaAs-AlGaAs Resonant Tunneling Devices

    NASA Astrophysics Data System (ADS)

    Orsi Gordo, V.; Gobato, Y. Galvão; Galeti, H. V. A.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2017-03-01

    In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs' PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs.

  6. Advancements in the Field of Quantum Dots

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  7. Imaging Quantum Confinement in Multiple Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wong, Dillon; Velasco, Jairo; Lee, Juwon; Rodriguez-Nieva, Joaquin; Kahn, Salman; Vo, Phong; Tsai, Hsinzon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid; Crommie, Michael

    Quantum dots provide a useful means for controlling the electronic and spin degrees of freedom of mesoscale and nanoscale materials. Here we demonstrate a new method for fabricating interacting graphene quantum dots that is compatible with electrostatic gating and visualization by way of scanning tunneling microscopy (STM). Using this new technique we have created and spatially characterized systems of two or more interacting quantum dots. Our results show that it is possible to engineer electronic wave functions in graphene with a high degree of spatial control.

  8. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  9. (In,Mn)As multilayer quantum dot structures

    SciTech Connect

    Bouravleuv, Alexei; Sapega, Victor; Nevedomskii, Vladimir; Khrebtov, Artem; Samsonenko, Yuriy; Cirlin, George

    2014-12-08

    (In,Mn)As multilayer quantum dots structures were grown by molecular beam epitaxy using a Mn selective doping of the central parts of quantum dots. The study of the structural and magneto-optical properties of the samples with three and five layers of (In,Mn)As quantum dots has shown that during the quantum dots assembly, the out-diffusion of Mn from the layers with (In,Mn)As quantum dots can occur resulting in the formation of the extended defects. To produce a high quality structures using the elaborated technique of selective doping, the number of (In,Mn)As quantum dot layers should not exceed three.

  10. Quantum dots as active material for quantum cascade lasers: comparison to quantum wells

    NASA Astrophysics Data System (ADS)

    Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian

    2016-03-01

    We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.

  11. Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications

    DTIC Science & Technology

    2013-12-01

    AFRL-RY-WP-TR-2013-0168 QUANTUM DOT DETECTOR ENHANCEMENT FOR NARROW BAND MULTISPECTRAL APPLICATIONS John Derov and Neda Mojaverian... QUANTUM DOT DETECTOR ENHANCEMENT FOR NARROW BAND MULTISPECTRAL APPLICATIONS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...enhancement of quantum dot photodetectors was also investigated. 15. SUBJECT TERMS quantum dot, quantum well, photodetectors, plasmonics 16

  12. Multi-color tunneling quantum dot infrared photodetectors operating at room temperature

    NASA Astrophysics Data System (ADS)

    Ariyawansa, G.; Perera, A. G. U.; Su, X. H.; Chakrabarti, S.; Bhattacharya, P.

    2007-04-01

    Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.

  13. Electromechanical transition in quantum dots

    NASA Astrophysics Data System (ADS)

    Micchi, G.; Avriller, R.; Pistolesi, F.

    2016-09-01

    The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nanomechanical oscillator may lead to a transition towards a mechanically bistable and blocked-current state. Its observation is at reach in carbon-nanotube state-of-art experiments. In a recent publication [Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802] we have shown that this transition is characterized by pronounced signatures on the oscillator mechanical properties: the susceptibility, the displacement fluctuation spectrum, and the ring-down time. These properties are extracted from transport measurements, however the relation between the mechanical quantities and the electronic signal is not always straightforward. Moreover the dependence of the same quantities on temperature, bias or gate voltage, and external dissipation has not been studied. The purpose of this paper is to fill this gap and provide a detailed description of the transition. Specifically we find (i) the relation between the current-noise and the displacement spectrum; (ii) the peculiar behavior of the gate-voltage dependence of these spectra at the transition; (iii) the robustness of the transition towards the effect of external fluctuations and dissipation.

  14. Quantum analysis of plasmonic coupling between quantum dots and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, SalmanOgli

    2016-10-01

    In this study, interaction between core-shells nanoparticles and quantum dots is discussed via the full-quantum-theory method. The electromagnetic field of the nanoparticles is derived by the quasistatic approximation method and the results for different regions of the nanoparticles are quantized from the time-harmonic to the wave equation. Utilizing the optical field quantization, the nanoparticles' and quantum dots' deriving amplitudes contributing to the excitation waves are determined. In the current model, two counterpropagating waves with two different frequencies are applied. We derived the Maxwell-Bloch equations from the Heisenberg-Langevin equations; thus the nanoparticles-quantum dots interaction is perused. Moreover, by full quantum analyzing of the analytical expression, the quantum-plasmonic coupling relation and the Purcell factor are achieved. We show that the spontaneous emission of quantum dots can be dramatically manipulated by engineering the plasmon-plasmon interaction in the core-shells nanoparticles. This issue is a very attractive point for designing a wide variety of quantum-plasmonic sensors. Through the investigation of the nanoparticle plasmonic interaction effects on absorbed power, the results show that the nanoparticles' and quantum dots' absorption saturation state can be switched to each other just by manipulation of their deriving amplitudes. In fact, we manage the interference between the two waves' deriving amplitudes just by the plasmonic interactions effect.

  15. Quantum dots for light emitting diodes.

    PubMed

    Qasim, Khan; Lei, Wei; Li, Qing

    2013-05-01

    In this article we discuss the development and key advantages of quantum dot based light emitting diode (QD-LED) and other applications based on their color purity, stability, and solution processibility. Analysis of quantum dot based LEDs and the main challenges faced in this field, such as the QD luminescence quenching, QD charging in thin films, and external quantum efficiency are discussed in detail. The description about how different optical down-conversion and structures enabled researchers to overcome these challenges and to commercialize the products. The recent developments about how to overcome these difficulties have also been discussed in this article.

  16. Origins and optimization of entanglement in plasmonically coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Otten, Matthew; Larson, Jeffrey; Min, Misun; Wild, Stefan M.; Pelton, Matthew; Gray, Stephen K.

    2016-08-01

    A system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.

  17. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    PubMed

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

  18. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  19. Theoretical issues in silicon quantum dot qubits

    NASA Astrophysics Data System (ADS)

    Koh, Teck Seng

    Electrically-gated quantum dots in semiconductors is an excellent architecture on which to make qubits for quantum information processing. Silicon is attractive because of the potential for excellent manipulability, scalability, and for integration with classical electronics. This thesis describes several aspects of the theoretical issues related to quantum dot qubits in silicon. It may be broadly divided into three parts — (1) the hybrid qubit and quantum gates, (2) decoherence and (3) charge transport. In the first part, we present a novel architecture for a double quantum dot spin qubit, which we term the hybrid qubit, and demonstrate that implementing this qubit in silicon is feasible. Next, we consider both AC and DC quantum gating protocols and compare the optimal fidelities for these protocols that can be achieved for both the hybrid qubit and the more traditional singlet-triplet qubit. In the second part, we present evidence that silicon offers superior coherence properties by analyzing experimental data from which charge dephasing and spin relaxation times are extracted. We show that the internal degrees of freedom of the hybrid qubit enhance charge coherence, and demonstrate tunable spin loading of a quantum dot. In the last part, we explain three key features of spin-dependent transport — spin blockade, lifetime-enhanced transport and spin-flip cotunneling. We explain how these features arise in the conventional two-electron as well as the unconventional three-electron regimes, using a theoretical model that captures the key characteristics observed in the data.

  20. Quantum efficiency of a double quantum dot microwave photon detector

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Vavilov, Maxim

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we study charge transfer through a double quantum dot (DQD) capacitively coupled to a superconducting cavity subject to a microwave field. We analyze the DQD current response using input-output theory and determine the optimal parameter regime for complete absorption of radiation and efficient conversion of microwave photons to electric current. For experimentally available DQD systems, we show that the cavity-coupled DQD operates as a photon-to-charge converter with quantum efficiencies up to 80% C.W. acknowledges support by the Intelligence Community Postdoctoral Research Fellowship Program.

  1. Quantum Hall ferrimagnetism in lateral quantum dot molecules.

    PubMed

    Abolfath, Ramin M; Hawrylak, Pawel

    2006-11-03

    We demonstrate the existence of ferrimagnetic and ferromagnetic phases in a spin phase diagram of coupled lateral quantum dot molecules in the quantum Hall regime. The spin phase diagram is determined from the Hartree-Fock configuration interaction method as a function of electron number N and magnetic field B. The quantum Hall ferrimagnetic phase corresponds to spatially imbalanced spin droplets resulting from strong interdot coupling of identical dots. The quantum Hall ferromagnetic phases correspond to ferromagnetic coupling of spin polarization at filling factors between nu=2 and nu=1.

  2. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  3. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  4. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    SciTech Connect

    Paul, Matthias Kettler, Jan; Zeuner, Katharina; Clausen, Caterina; Jetter, Michael; Michler, Peter

    2015-03-23

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  5. Quantum-dot-based cell motility assay.

    PubMed

    Gu, Weiwei; Pellegrino, Teresa; Parak, Wolfgang J; Boudreau, Rosanne; Le Gros, Mark A; Gerion, Daniele; Alivisatos, A Paul; Larabell, Carolyn A

    2005-06-28

    Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.

  6. Angiogenic Profiling of Synthesized Carbon Quantum Dots.

    PubMed

    Shereema, R M; Sruthi, T V; Kumar, V B Sameer; Rao, T P; Shankar, S Sharath

    2015-10-20

    A simple method was employed for the synthesis of green luminescent carbon quantum dots (CQDs) from styrene soot. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy. The prepared carbon quantum dots did not show cellular toxicity and could successfully be used for labeling cells. We also evaluated the effects of carbon quantum dots on the process of angiogenesis. Results of a chorioallantoic membrane (CAM) assay revealed the significant decrease in the density of branched vessels after their treatment with CQDs. Further application of CQDs significantly downregulated the expression levels of pro-angiogenic growth factors like VEGF and FGF. Expression of VEGFR2 and levels of hemoglobin were also significantly lower in CAMs treated with CQDs, indicating that the CQDs inhibit angiogenesis. Data presented here also show that CQDs can selectively target cancer cells and therefore hold potential in the field of cancer therapy.

  7. Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities.

    PubMed

    Heuff, Romey F; Swift, Jody L; Cramb, David T

    2007-04-28

    Semiconductor nanocrystals (quantum dots) have been increasingly employed in measuring the dynamic behavior of biomacromolecules using fluorescence correlation spectroscopy. This poses a challenge, because quantum dots display their own dynamic behavior in the form of intermittent photoluminescence, also known as blinking. In this review, the manifestation of blinking in correlation spectroscopy will be explored, preceded by an examination of quantum dot blinking in general.

  8. Potential clinical applications of quantum dots.

    PubMed

    Medintz, Igor L; Mattoussi, Hedi; Clapp, Aaron R

    2008-01-01

    The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous examples are provided in several key areas including cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. We also explore toxicity issues surrounding these materials and speculate about the future uses of quantum dots in a clinical setting.

  9. Deep level centers and their role in photoconductivity transients of InGaAs/GaAs quantum dot chains

    SciTech Connect

    Kondratenko, S. V. Vakulenko, O. V.; Mazur, Yu. I. Dorogan, V. G.; Marega, E.; Benamara, M.; Ware, M. E.; Salamo, G. J.

    2014-11-21

    The in-plane photoconductivity and photoluminescence are investigated in quantum dot-chain InGaAs/GaAs heterostructures. Different photoconductivity transients resulting from spectrally selecting photoexcitation of InGaAs QDs, GaAs spacers, or EL2 centers were observed. Persistent photoconductivity was observed at 80 K after excitation of electron-hole pairs due to interband transitions in both the InGaAs QDs and the GaAs matrix. Giant optically induced quenching of in-plane conductivity driven by recharging of EL2 centers is observed in the spectral range from 0.83 eV to 1.0 eV. Conductivity loss under photoexcitation is discussed in terms of carrier localization by analogy with carrier distribution in disordered media.

  10. Deep level centers and their role in photoconductivity transients of InGaAs/GaAs quantum dot chains

    NASA Astrophysics Data System (ADS)

    Kondratenko, S. V.; Vakulenko, O. V.; Mazur, Yu. I.; Dorogan, V. G.; Marega, E.; Benamara, M.; Ware, M. E.; Salamo, G. J.

    2014-11-01

    The in-plane photoconductivity and photoluminescence are investigated in quantum dot-chain InGaAs/GaAs heterostructures. Different photoconductivity transients resulting from spectrally selecting photoexcitation of InGaAs QDs, GaAs spacers, or EL2 centers were observed. Persistent photoconductivity was observed at 80 K after excitation of electron-hole pairs due to interband transitions in both the InGaAs QDs and the GaAs matrix. Giant optically induced quenching of in-plane conductivity driven by recharging of EL2 centers is observed in the spectral range from 0.83 eV to 1.0 eV. Conductivity loss under photoexcitation is discussed in terms of carrier localization by analogy with carrier distribution in disordered media.

  11. 1.59 {mu}m room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates

    SciTech Connect

    Seravalli, L.; Frigeri, P.; Trevisi, G.; Franchi, S.

    2008-05-26

    We present design, preparation by molecular beam epitaxy, and characterization by photoluminescence of long-wavelength emitting, strain-engineered quantum dot nanostructures grown on GaAs, with InGaAs confining layers and additional InAlAs barriers embedding InAs dots. Quantum dot strain induced by metamorphic lower confining layers is instrumental to redshift the emission, while a-few-nanometer thick InAlAs barriers allow to significantly increase the activation energy of carriers' thermal escape. This approach results in room temperature emission at 1.59 {mu}m and, therefore, is a viable method to achieve efficient emission in the 1.55 {mu}m window and beyond from quantum dots grown on GaAs substrates.

  12. Spatially correlated structural and optical characterization of a single InGaAs quantum well fin selectively grown on Si by microscopy and cathodoluminescence techniques

    NASA Astrophysics Data System (ADS)

    David, S.; Roque, J.; Rochat, N.; Bernier, N.; Piot, L.; Alcotte, R.; Cerba, T.; Martin, M.; Moeyaert, J.; Bogumilowizc, Y.; Arnaud, S.; Bertin, F.; Bassani, F.; Baron, T.

    2016-05-01

    Structural and optical properties of InGaAs quantum well fins (QWFs) selectively grown on Si using the aspect ratio trapping (ART) method in 200 nm deep SiO2 trenches are studied. A new method combining cathodoluminescence, transmission electron microscopy, and precession electron diffraction techniques is developed to spatially correlate the presence of defects and/or strain with the light emission properties of a single InGaAs QWF. Luminescence losses and energy shifts observed at the nanoscale along InGaAs QWF are correlated with structural defects. We show that strain distortions measured around threading dislocations delimit both high and low luminescent areas. We also show that trapped dislocations on SiO2 sidewalls can also result in additional distortions. Both behaviors affect optical properties of QWF at the nanoscale. Our study highlights the need to improve the ART growth method to allow integration of new efficient III-V optoelectronic components on Si.

  13. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    ASSIGNED DISTRIBUTION STATEMENT. FOR THE DIRECTOR: / S / PAUL ALSING Work Unit Manager / S / MARK H. LINDERMAN Technical Advisor...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques . The approach is based on...15. SUBJECT TERMS Quantum Dots, ultrafast optical techniques , Coulomb blockade, two-photon (Raman) transitions 16. SECURITY CLASSIFICATION OF: 17

  14. Trapping of an electron in coupled quantum dots in graphene

    NASA Astrophysics Data System (ADS)

    Hewageegana, Prabath; Apalkov, Vadym

    2009-03-01

    Due to Klein’s tunneling the electronic states of a quantum dot in graphene have finite widths and an electron in quantum dot has a finite trapping time. This property introduces a special type of interdot coupling in a system of many quantum dots in graphene. The interdot coupling is realized not as a direct tunneling between quantum dots but as coupling through the continuum states of graphene. As a result the interdot coupling modifies both the positions and the widths of the energy levels of the quantum dot system. We study the system of quantum dots in graphene theoretically by analyzing the complex energy spectra of the quantum dot system. We show that in a double-dot system some energy levels become strongly localized with an infinite trapping time. Such strongly localized states are achieved only at one value of the interdot separation. We also study a periodic array of quantum dots in graphene within a tight-binding mode for a quantum dot system. The values of the hopping integrals in the tight-binding model are found from the expression for the energy spectra of the double quantum dot system. In the array of quantum dots the states with infinitely large trapping time are realized at all values of interdot separation smaller than some critical value. Such states have nonzero wave vectors.

  15. Probing silicon quantum dots by single-dot techniques

    NASA Astrophysics Data System (ADS)

    Sychugov, Ilya; Valenta, Jan; Linnros, Jan

    2017-02-01

    Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.

  16. Quantum criticality in a double-quantum-dot system.

    PubMed

    Zaránd, Gergely; Chung, Chung-Hou; Simon, Pascal; Vojta, Matthias

    2006-10-20

    We discuss the realization of the quantum-critical non-Fermi-liquid state, originally discovered within the two-impurity Kondo model, in double-quantum-dot systems. Contrary to common belief, the corresponding fixed point is robust against particle-hole and various other asymmetries and is unstable only to charge transfer between the two dots. We propose an experimental setup where such charge transfer processes are suppressed, allowing a controlled approach to the quantum-critical state. We also discuss transport and scaling properties in the vicinity of the critical point.

  17. Quantum-confined Stark effects in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wen, G. W.; Lin, J. Y.; Jiang, H. X.; Chen, Z.

    1995-08-01

    Quantum-confined Stark effects (QCSE) on excitons, i.e., the influence of a uniform electric field on the confined excitons in semiconductor quantum dots (QD's), have been studied by using a numerical matrix-diagonalization scheme. The energy levels and the wave functions of the ground and several excited states of excitons in CdS and CdS1-xSex quantum dots as functions of the size of the quantum dot and the applied electric field have been obtained. The electron and hole distributions and wave function overlap inside the QD's have also been calculated for different QD sizes and electric fields. It is found that the electron and hole wave function overlap decreases under an electric field, which implies an increased exciton recombination lifetime due to QCSE. The energy level redshift and the enhancement of the exciton recombination lifetime are due to the polarization of the electron-hole pair under the applied electric field.

  18. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.

    PubMed

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-02-07

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.

  19. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field

    PubMed Central

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-01-01

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72±0.05. PMID:22314357

  20. Full-colour quantum dot displays fabricated by transfer printing

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Eun Kyung; Lee, Sang Jin; Chae, Jungseok; Kim, Jung Woo; Kim, Do Hwan; Kwon, Jang-Yeon; Amaratunga, Gehan; Lee, Sang Yoon; Choi, Byoung Lyong; Kuk, Young; Kim, Jong Min; Kim, Kinam

    2011-03-01

    Light-emitting diodes with quantum dot luminophores show promise in the development of next-generation displays, because quantum dot luminophores demonstrate high quantum yields, extremely narrow emission, spectral tunability and high stability, among other beneficial characteristics. However, the inability to achieve size-selective quantum dot patterning by conventional methods hinders the realization of full-colour quantum dot displays. Here, we report the first demonstration of a large-area, full-colour quantum dot display, including in flexible form, using optimized quantum dot films, and with control of the nano-interfaces and carrier behaviour. Printed quantum dot films exhibit excellent morphology, well-ordered quantum dot structure and clearly defined interfaces. These characteristics are achieved through the solvent-free transfer of quantum dot films and the compact structure of the quantum dot networks. Significant enhancements in charge transport/balance in the quantum dot layer improve electroluminescent performance. A method using plasmonic coupling is also suggested to further enhance luminous efficiency. The results suggest routes towards creating large-scale optoelectronic devices in displays, solid-state lighting and photovoltaics.

  1. Magnetic control of dipolaritons in quantum dots.

    PubMed

    Rojas-Arias, J S; Rodríguez, B A; Vinck-Posada, H

    2016-12-21

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure.

  2. Theory of a double-quantum-dot spaser

    SciTech Connect

    Andrianov, E S; Pukhov, A A; Dorofeenko, A V; Vinogradov, A P; Lisyansky, A A

    2015-03-31

    We consider the influence of the number of quantum dots on spaser operation. It is shown that even in the presence of only two quantum dots, the spaser behaviour is qualitatively different from that of the previously studied spaser consisting of a nanoparticle and a single quantum dot. In particular, for nonzero detuning of resonant frequencies of a nanoparticle and quantum dots, an increase in the interaction constant between quantum dots first leads to a decrease in the spasing threshold and then to its growth and even the spasing breakdown. (nanostructures)

  3. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    SciTech Connect

    Singh, Neetu Kapoor, Avinashi; Kumar, Vinod; Mehra, R. M.

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  4. Slow Electron Cooling in Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pandey, Anshu; Guyot-Sionnest, Philippe

    2008-11-01

    Hot electrons in semiconductors lose their energy very quickly (within picoseconds) to lattice vibrations. Slowing this energy loss could prove useful for more efficient photovoltaic or infrared devices. With their well-separated electronic states, quantum dots should display slow relaxation, but other mechanisms have made it difficult to observe. We report slow intraband relaxation (>1 nanosecond) in colloidal quantum dots. The small cadmium selenide (CdSe) dots, with an intraband energy separation of ~0.25 electron volts, are capped by an epitaxial zinc selenide (ZnSe) shell. The shell is terminated by a CdSe passivating layer to remove electron traps and is covered by ligands of low infrared absorbance (alkane thiols) at the intraband energy. We found that relaxation is markedly slowed with increasing ZnSe shell thickness.

  5. Producing Quantum Dots by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

    2006-01-01

    An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

  6. Quantum-dot infrared photodetectors: a review

    NASA Astrophysics Data System (ADS)

    Stiff-Roberts, Adrienne D.

    2009-04-01

    Quantum-dot infrared photodetectors (QDIPs) are positioned to become an important technology in the field of infrared (IR) detection, particularly for high-temperature, low-cost, high-yield detector arrays required for military applications. High-operating temperature (>=150 K) photodetectors reduce the cost of IR imaging systems by enabling cryogenic dewars and Stirling cooling systems to be replaced by thermo-electric coolers. QDIPs are well-suited for detecting mid-IR light at elevated temperatures, an application that could prove to be the next commercial market for quantum dots. While quantum dot epitaxial growth and intraband absorption of IR radiation are well established, quantum dot non-uniformity remains as a significant challenge. Nonetheless, state-of-the-art mid-IR detection at 150 K has been demonstrated using 70-layer InAs/GaAs QDIPs, and QDIP focal plane arrays are approaching performance comparable to HgCdTe at 77 K. By addressing critical challenges inherent to epitaxial QD material systems (e.g., controlling dopant incorporation), exploring alternative QD systems (e.g., colloidal QDs), and using bandgap engineering to reduce dark current and enhance multi-spectral detection (e.g. resonant tunneling QDIPs), the performance and applicability of QDIPs will continue to improve.

  7. New small quantum dots for neuroscience

    NASA Astrophysics Data System (ADS)

    Selvin, Paul

    2014-03-01

    In "New Small Quantum Dots for Neuroscience," Paul Selvin (University of Illinois, Urbana-Champaign) notes how the details of synapsis activity in the brain involves chemical receptors that facilitate the creation of the electrical connection between two nerves. In order to understand the details of this neuroscience phenomenon you need to be able to "see" what is happening at the scale of these receptors, which is around 10 nanometers. This is smaller than the diffraction limit of normal microscopy and it takes place on a 3 dimensional structure. Selvin describes the development of small quantum dots (on the order of 6-9 microns) that are surface-sensitized to interact with the receptors. This allows the application of photo-activated localized microscopy (PALM), a superresolution microscopy that can be scanned through focus to develop a 3D map on a scale that is the same size as the emitter, which in this case are the small quantum dots. The quantum dots are stable in time and provide access to the receptors which allows the imaging of the interactions taking place at the synoptic level.

  8. Nanocomposites of POC and quantum dots

    NASA Astrophysics Data System (ADS)

    Borriello, C.; Concilio, S.; Minarini, C.; Iannelli, P.; Di Luccio, T.

    2012-07-01

    New luminescent polymer nanocomposites were synthesized combining carbazole/oxadiazole copolymer (POC) and CdSe/ZnS quantum dots (QDs) surface passivated by ionic liquids. Ionic liquid ligands improve the photostability of QDs and their compatibility with polymer allowing the deposition of homogeneous nanocomposites films. The nanocomposites were characterized by UV and photoluminescence spectroscopy.

  9. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  10. Optical properties of quantum-dot-doped liquid scintillators

    NASA Astrophysics Data System (ADS)

    Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.

    2013-10-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  11. Optical properties of quantum-dot-doped liquid scintillators.

    PubMed

    Aberle, C; Li, J J; Weiss, S; Winslow, L

    2013-10-14

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  12. Experimental demonstration of hot-carrier photo-current in an InGaAs quantum well solar cell

    SciTech Connect

    Hirst, L. C.; Walters, R. J.; Führer, M. F.; Ekins-Daukes, N. J.

    2014-06-09

    An unambiguous observation of hot-carrier photocurrent from an InGaAs single quantum well solar cell is reported. Simultaneous photo-current and photoluminescence measurements were performed for incident power density 0.04–3 kW cm{sup −2}, lattice temperature 10 K, and forward bias 1.2 V. An order of magnitude photocurrent increase was observed for non-equilibrium hot-carrier temperatures >35 K. This photocurrent activation temperature is consistent with that of equilibrium carriers in a lattice at elevated temperature. The observed hot-carrier photo-current is extracted from the well over an energy selective GaAs barrier, thus integrating two essential components of a hot-carrier solar cell: a hot-carrier absorber and an energy selective contact.

  13. Gain-switched pulses from InGaAs ridge-quantum-well lasers limited by intrinsic dynamical gain suppression.

    PubMed

    Chen, Shaoqiang; Yoshita, Masahiro; Ito, Takashi; Mochizuki, Toshimitsu; Akiyama, Hidefumi; Yokoyama, Hiroyuki

    2013-03-25

    Gain-switched pulses of InGaAs double-quantum-well lasers fabricated from identical epitaxial laser wafers were measured under both current injection and optical pumping conditions. The shortest output pulse widths were nearly identical (about 40 ps) both for current injection and optical pumping; this result attributed the dominant pulse-width limitation factor to the intrinsic gain properties of the lasers. We quantitatively compared the experimental results with theoretical calculations based on rate equations incorporating gain nonlinearities. Close consistency between the experimental data and the calculations was obtained only when we assumed a dynamically suppressed gain value deviated from the steady-state gain value supported by standard microscopic theories.

  14. Sensitivity and noise of micro-Hall magnetic sensors based on InGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Chenaud, B.; Segovia-Mera, A.; Delgard, A.; Feltin, N.; Hoffmann, A.; Pascal, F.; Zawadzki, W.; Mailly, D.; Chaubet, C.

    2016-01-01

    We study the room-temperature performance of micro-Hall magnetic sensors based on pseudomorphic InGaAs quantum wells. Active areas of our sensors range from 1 to 80 μm. We focus on the smallest detectable magnetic fields in small sensors and perform a systematic study of noise at room temperature in the frequency range between 1 Hz and 100 kHz. Our data are interpreted by the mobility fluctuation model. The Hooge parameter is determined for the applied technology. We show that, independently of the experimental frequency, the ratio of sensitivity to noise is proportional to characteristic length of the sensor. The resolution of 1 mG/√{Hz } is achievable in a 3 μm sensor at room temperature.

  15. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  16. Innovative Ge Quantum Dot Functional Sensing/Metrology Devices

    DTIC Science & Technology

    2015-05-20

    QDs of desired size with high addressability In order to fully exert quantum mechanics effects arising from zero-dimensional quantum -dot structures...Final 3. DATES COVERED (From - To) 20140507 - 20150506 4. TITLE AND SUBTITLE Innovative Ge Quantum Dot Functional Sensing/Metrology...distinctive Coulomb blockade and quantum confinement effects onto nanometer-scaled QD structures, inducing size-tunable electronic structure

  17. Reconstruction of nuclear quadrupole interaction in (In,Ga)As/GaAs quantum dots observed by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Sokolov, P. S.; Petrov, M. Yu.; Mehrtens, T.; Müller-Caspary, K.; Rosenauer, A.; Reuter, D.; Wieck, A. D.

    2016-01-01

    A microscopic study of the individual annealed (In,Ga)As/GaAs quantum dots is done by means of high-resolution transmission electron microscopy. The Cauchy-Green strain-tensor component distribution and the chemical composition of the (In,Ga)As alloy are extracted from the microscopy images. The image processing allows for the reconstruction of the strain-induced electric-field gradients at the individual atomic columns extracting thereby the magnitude and asymmetry parameter of the nuclear quadrupole interaction. Nuclear magnetic resonance absorption spectra are analyzed for parallel and transverse mutual orientations of the electric-field gradient and a static magnetic field.

  18. Efficient Luminescence from Perovskite Quantum Dot Solids.

    PubMed

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F; Sargent, Edward H

    2015-11-18

    Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  19. Sensitivity of quantum-dot semiconductor lasers to optical feedback.

    PubMed

    O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V

    2004-05-15

    The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

  20. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  1. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots

    PubMed Central

    Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2011-01-01

    Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers. PMID:21931483

  2. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  3. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots.

    PubMed

    Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2011-01-01

    Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.

  4. Principles of conjugating quantum dots to proteins via carbodiimide chemistry

    NASA Astrophysics Data System (ADS)

    Song, Fayi; Chan, Warren C. W.

    2011-12-01

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein-quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  5. Principles of conjugating quantum dots to proteins via carbodiimide chemistry.

    PubMed

    Song, Fayi; Chan, Warren C W

    2011-12-09

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein-quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  6. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    PubMed

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  7. Silicon Quantum Dots for Quantum Information Processing

    DTIC Science & Technology

    2013-11-01

    Systems relaxes through SOC [40, 41, 42]. With the combination of SOC and the Zeeman effect , the typical dependency of a spin lifetime can be expressed as...diagram showing the effect of the 3-level pulse sequence on the electro-chemical potential of the dot. Energy levels in the QD are Zeeman split according...dependent on the valley splitting energy, with a dramatic rate enhancement (or hot-spot) when the Zeeman and valley splittings coincided, a process

  8. Nanoscale optimization of quantum dot solar sells

    NASA Astrophysics Data System (ADS)

    Li, Yanshu; Sergeev, Andrei; Vagidov, Nizami; Mitin, Vladimir; Sablon, Kimberly; State Univ of NY-Buffalo Team; Army Research Laboratory Team

    2015-03-01

    Quantum dots (QDs) offer possibilities for nanoscale control of photoelectron processes via engineering the band structure and potential profile. Nanoscale potential profile (potential barriers) and nanoscale band engineering (AlGaAs atomically thin barriers) effectively suppress the photoelectron capture to QDs. QDs also increase conversion efficiency of the above-bandgap photons due to extraction of electrons from QDs via Coulomb interaction with hot electrons that excited by high-energy photons. To study the effects of the band structure engineering and nanoscale potential barriers on the photovoltaic performance we fabricated 3- μm base GaAs devices with various InAs quantum dot media and selective doping. All quantum dot devices show improvement in conversion efficiency compared with the reference cell. Quantum efficiency measurements allow us to associate the spectral characteristics of photoresponse enhancement with nanoscale structure of QD media. The dark current analysis provides valuable information about recombination in QD solar cells. The two-diode model well fit the scope of data and recovers the measured open circuit voltage.

  9. Probing relaxation times in graphene quantum dots

    PubMed Central

    Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph

    2013-01-01

    Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294

  10. Catastrophic facet and bulk degradation in high power multi-mode InGaAs strained quantum well single emitters

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Foran, Brendan; Ives, Neil; Moss, Steven C.

    2009-02-01

    Extensive investigations by a number of groups have identified catastrophic sudden degradation as the main failure mode in both single-mode and multi-mode InGaAs-AlGaAs strained quantum well (QW) lasers. Significant progress made in performance characteristics of broad-area InGaAs strained QW single emitters in recent years has led to an optical output power of over 20W and a power conversion efficiency of over 70% under CW operation. However, unlike 980nm single-mode lasers that have shown high reliability operation under a high optical power density of ~50MW/cm2, broad-area lasers have not achieved the same level of reliability even under a much lower optical power density of ~5MW/cm2. This paper investigates possible mechanisms that prevent broad-area lasers from achieving high reliability operation by performing accelerated lifetests of these devices and in-depth failure mode analyses of degraded devices with various destructive and non-destructive techniques including EBIC, FIB, and HR-TEM techniques. The diode lasers that we have investigated are commercial MOCVD-grown broad-area strained InGaAs single QW lasers at ~975nm. Both passivated and unpassivated broad-area lasers were studied that yielded catastrophic failures at the front facet and also in the bulk. To investigate the role that generation and propagation of defects plays in degradation processes via recombination enhanced defect reaction (REDR), EBIC was employed to study dark line defects in degraded lasers, failed under different stress conditions, and the correlation between DLDs and stress levels is reported. FIB was then employed to prepare TEM samples from the DLD areas for cross-sectional HR-TEM analysis.

  11. Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming

    2006-01-01

    The figure depicts a proposed semiconductor laser, based on In(As)Sb quantum dots on a (001) InP substrate, that would operate in the wavelength range between 1.8 and 2.3 m. InSb and InAsSb are the smallest-bandgap conventional III-V semiconductor materials, and the present proposal is an attempt to exploit the small bandgaps by using InSb and InAsSb nanostructures as midinfrared emitters. The most closely related prior III-V semiconductor lasers are based, variously, on strained InGaAs quantum wells and InAs quantum dots on InP substrates. The emission wavelengths of these prior devices are limited to about 2.1 m because of critical quantum-well thickness limitations for these lattice mismatched material systems. The major obstacle to realizing the proposed laser is the difficulty of fabricating InSb quantum dots in sufficient density on an InP substrate. This difficulty arises partly because of the weakness of the bond between In and Sb and partly because of the high temperature needed to crack metalorganic precursor compounds during the vapor-phase epitaxy used to grow quantum dots: The mobility of the weakly bound In at the high growth temperature is so high that In adatoms migrate easily on the growth surface, resulting in the formation of large InSb islands at a density, usually less than 5 x 10(exp 9) cm(exp -2), that is too low for laser operation. The mobility of the In adatoms could be reduced by introducing As atoms to the growth surface because the In-As bond is about 30 percent stronger than is the In-Sb bond. The fabrication of the proposed laser would include a recently demonstrated process that involves the use of alternative supplies of precursors to separate group-III and group-V species to establish local non-equilibrium process conditions, so that In(As)Sb quantum dots assemble themselves on a (001) InP substrate at a density as high as 4 x 10(exp 10) cm(exp -2). Room-temperature photoluminescence spectra of quantum dots formed by this process

  12. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    SciTech Connect

    Wu, Jiang; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelength infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.

  13. The ground state properties of In(Ga)As/GaAs low strain quantum dots

    NASA Astrophysics Data System (ADS)

    Pieczarka, Maciej; Sęk, Grzegorz

    2016-08-01

    We present theoretical studies on the confined states in low-strain In(Ga)As quantum dots (QDs). The 8-band k·p model together with the continuum elasticity theory and piezoelectric fields were employed to calculate the potential and confined electron and hole eigenstates. We focused on low-indium-content QDs with distinct in-plane asymmetry, which are naturally formed in the low strain regime of the Stranski-Krastanow growth mode. It has been found that the naturally thick wetting layer together with piezoelectric potential affect the total confinement potential to such extent that the hole eigenstates can get the spatial in-plane orientation orthogonal to the main axis of the dot elongation. This can influence both, qualitatively and quantitatively, many of the electronic and optical properties, as e.g. the polarization selection rules for the optical transition or the transitions oscillator strength. Eventually, importance of the degree of the shape asymmetry or the dots' size, and differences between the low-strain (low-In-content) QDs and pure InAs dots formed in high strain conditions are discussed.

  14. Photon-number discrimination using a semiconductor quantum dot, optically gated, field-effect transistor

    NASA Astrophysics Data System (ADS)

    Gansen, Eric J.; Rowe, Mary A.; Greene, Marion B.; Rosenberg, Danna; Harvey, Todd E.; Su, Mark Y.; Nam, Sae Woo; Mirin, Richard P.

    2007-09-01

    We demonstrate photon-number discrimination using a novel semiconductor detector that utilizes a layer of self-assembled InGaAs quantum dots (QDs) as an optically addressable floating gate in a GaAs/AlGaAs δ-doped field-effect transistor. When the QDOGFET (quantum dot, optically gated, field-effect transistor) is illuminated, the internal gate field directs the holes generated in the dedicated absorption layer of the structure to the QDs, where they are trapped. The positively charged holes are confined to the dots and screen the internal gate field, causing a persistent change in the channel current that is proportional to the total number of holes trapped in the QD ensemble. We use highly attenuated laser pulses to characterize the response of the QDOGFET cooled to 4 K. We demonstrate that different photon-number states produce well resolved changes in the channel current, where the responses of the detector reflect the Poisson statistics of the laser light. For a mean photon number of 1.1, we show that decision regions can be defined such that the QDOGFET determines the number (0, 1, 2, or >=3) of detected photons with a probability of accuracy >=83 % in a single-shot measurement.

  15. Comparative optical study of epitaxial InGaAs quantum rods grown with As{sub 2} and As{sub 4} sources

    SciTech Connect

    Nedzinskas, Ramūnas; Čechavičius, Bronislovas; Kavaliauskas, Julius; Karpus, Vytautas; Valušis, Gintaras; Li, Lianhe; Khanna, Suraj P.; Linfield, Edmund H.

    2013-12-04

    Photoreflectance and photoluminescence (PL) spectroscopies are used to examine the optical properties and electronic structure of InGaAs quantum rods (QRs), embedded within InGaAs quantum well (QW). The nanostructures studied were grown by molecular beam epitaxy using As{sub 2} or As{sub 4} sources. The impact of As source on spectral features associated with interband optical transitions in the QRs and the surrounding QW are demonstrated. A red shift of the QR- and a blue shift of the QW-related optical transitions, along with a significant increase in PL intensity, have been observed if an As{sub 4} source is used. The changes in optical properties are attributed mainly to carrier confinement effects caused by variation of In content contrast between the QR material and the surrounding well.

  16. Spin thermopower in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Rejec, Tomaž; Žitko, Rok; Mravlje, Jernej; Ramšak, Anton

    2012-02-01

    Using analytical arguments and the numerical renormalization group method, we investigate the spin thermopower of a quantum dot in a magnetic field. In the particle-hole-symmetric situation, the temperature difference applied across the dot drives a pure spin current without accompanying charge current. For temperatures and fields at or above the Kondo temperature, but of the same order of magnitude, the spin-Seebeck coefficient is large, of the order of kB/|e|. Via a mapping, we relate the spin-Seebeck coefficient to the charge-Seebeck coefficient of a negative-U quantum dot where the corresponding result was recently reported by Andergassen [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.241107 84, 241107 (2011)]. For several regimes, we provide simplified analytical expressions. In the Kondo regime, the dependence of the spin-Seebeck coefficient on the temperature and the magnetic field is explained in terms of the shift of the Kondo resonance due to the field and its broadening with the temperature and the field. We also consider the influence of breaking the particle-hole symmetry and show that a pure spin current can still be realized, provided a suitable electric voltage is applied across the dot. Then, except for large asymmetries, the behavior of the spin-Seebeck coefficient remains similar to that found in the particle-hole-symmetric point.

  17. Planar Dirac electrons in magnetic quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Zhu, Jia-Lin

    2012-05-01

    In this paper, we explore the size- and mass-dependent energy spectra and the electronic correlation of two- and three-electron graphene magnetic quantum dots. It is found that only the magnetic dots with large size can well confine the electrons. For large graphene magnetic dots with massless (ultra-relativity) electrons, the energy level structures of two Dirac electrons and even the ground state spin and angular momentum of three electrons are quite different from those of the usual semiconductor quantum dots. Also we reveal that such differences are not due to the magnetic confinement but originate from the character of the Coulomb interaction of two-component electronic wavefunctions in graphene. We reveal that the increase of the mass leads to both the crossover of the energy spectrum structures from the ultra-relativity to non-relativity ones and the increasing of the crystallization. The results are helpful for the understanding of the mass and size effects and may be useful in controlling the few-electron states in graphene-based nanodevices.

  18. Optically injected quantum-dot lasers.

    PubMed

    Erneux, T; Viktorov, E A; Kelleher, B; Goulding, D; Hegarty, S P; Huyet, G

    2010-04-01

    The response of an optically injected quantum-dot semiconductor laser (SL) is studied both experimentally and theoretically. In particular, the nature of the locking boundaries is investigated, revealing features more commonly associated with Class A lasers rather than conventional Class B SLs. Experimentally, two features stand out; the first is an absence of instabilities resulting from relaxation oscillations, and the second is the observation of a region of bistability between two locked solutions. Using rate equations appropriate for quantum-dot lasers, we analytically determine the stability diagram in terms of the injection rate and frequency detuning. Of particular interest are the Hopf and saddle-node locking boundaries that explain how the experimentally observed phenomena appear.

  19. Temperature-dependent modulated reflectance of InAs/InGaAs/GaAs quantum dots-in-a-well infrared photodetectors

    SciTech Connect

    Nedzinskas, R. Čechavičius, B.; Rimkus, A.; Pozingytė, E.; Kavaliauskas, J.; Valušis, G.; Li, L. H.; Linfield, E. H.

    2015-04-14

    We present a photoreflectance (PR) study of multi-layer InAs quantum dot (QD) photodetector structures, incorporating InGaAs overgrown layers and positioned asymmetrically within GaAs/AlAs quantum wells (QWs). The influence of the back-surface reflections on the QD PR spectra is explained and a temperature-dependent photomodulation mechanism is discussed. The optical interband transitions originating from the QD/QW ground- and excited-states are revealed and their temperature behaviour in the range of 3–300 K is established. In particular, we estimated the activation energy (∼320 meV) of exciton thermal escape from QD to QW bound-states at high temperatures. Furthermore, from the obtained Varshni parameters, a strain-driven partial decomposition of the InGaAs cap layer is determined.

  20. Ultralow Noise Monolithic Quantum Dot Photonic Oscillators

    DTIC Science & Technology

    2013-10-28

    HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...New Mexico , Albuquerque, NM 87131-0001 Air Force Office of Scientific Research 875 N. Randolph St., Rm 3112 Arlington, VA 22203-1954 patricia.bell...Report 06/01/2010 - 05/31/2013 Professor Luke F. Lester, PI, University of New Mexico Contact address: Center for High Technology Materials

  1. Carbon Nanotube Quantum Dots as THz Detectors

    DTIC Science & Technology

    2012-12-14

    devices that are viable for wafer -scale production. We recently started testing fabrication processes using epitaxial graphene on SiC in collaboration... laser sources at four different Fig. 4 Top: Drain current versus the gate voltage for different THz field intensities. Bottom: Temperature dependence...research. The first was the small coupling between the quantum dot and the powerful (10 mW) laser source. The second was the difficulty to reproduce the

  2. Nanoscale Imaging with a Single Quantum Dot

    DTIC Science & Technology

    2011-12-19

    not require the use of macroscopic manipulators. We use this technique to image the surface plasmon polariton (SPP) mode of a silver nanowire with...technique to image the surface plasmon polariton (SPP) mode of a silver nanowire with resolution as fine as 10 nm by monitoring the coupling...a single quantum dot (QD) by utilizing the enhanced electromagnetic interactions between the QD and the surface plasmon polariton (SPP) mode of a

  3. Multifunctional magnetic quantum dots for cancer theranostics.

    PubMed

    Singh, Surinder P

    2011-02-01

    The development of an innovative platform for cancer theranostics that will be capable of noninvasive imaging and treatment of cancerous tumors using biocompatible and multifunctional Fe3O4-ZnO core-shell magnetic quantum dots (M-QDs) is being explored. This multi-functional approach will facilitate deep tumor targeting using a combination of a specific cancer marker and an external magnetic field will simultaneously provide therapy that may evolve as a new paradigm in cancer theranostics.

  4. Intrinsic spin dynamics in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Valín-Rodríguez, Manuel

    2005-12-01

    We investigate the characteristic spin dynamics corresponding to semiconductor quantum dots within the multiband envelope function approximation (EFA). By numerically solving an 8 × 8 k·p Hamiltonian we treat systems based on different III-V semiconductor materials. It is shown that, even in the absence of an applied magnetic field, these systems show intrinsic spin dynamics governed by intraband and interband transitions leading to characteristic spin frequencies ranging from THz to optical frequencies.

  5. Single molecule study of silicon quantum dots

    NASA Astrophysics Data System (ADS)

    So, Woong Young; Li, Qi; Jin, Rongchao; Peteanu, Linda

    2016-09-01

    Recently, fluorescent Silicon (Si) Quantum Dots (QDs) have attracted much interest due to their high quantum yield, use of non-toxic and environmentally-benign chemicals, and water-solubility. However, more research is necessary to understand the energy level characteristics and single molecule behavior to enable their development for imaging applications. Therefore, single molecule time-resolved fluorescence spectroscopy of fluorescent Si QDs (cyan, green, and yellow) is needed. A rigorous analysis of time-resolved photon correlation spectroscopy and fluorescence lifetime data on single Si QDs at room temperature is presented.

  6. Relaxation dynamics in correlated quantum dots

    SciTech Connect

    Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.

    2014-12-04

    We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.

  7. High temperature laser diode based on a single sheet of quantum dots

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Shernyakov, Yu M.; Payusov, A. S.; Gordeev, N. Yu; Rouvimov, S. S.

    2015-10-01

    A single sheet of high-density InGaAs quantum dots (QDs) is used as a gain medium of InGaAs-GaAs-AlGaAs lasers. The devices operate at high power in the continuous mode beyond 160 °C with an emission wavelength up to ˜1.27 μm. At short cavity lengths a strong broadening (>300 nm) of the electroluminescence spectrum is observed at high current densities, permitting light sources for broadly wavelength tuneable and multi-wavelength infrared lasers based on a single gain chip, and related frequency conversion devices for the whole visible spectrum range. High power cw operation (>2 W) limited by catastrophic optical mirror damage is realized.

  8. Detuning-dependent Mollow triplet of a coherently-driven single quantum dot.

    PubMed

    Ulhaq, Ata; Weiler, Stefanie; Roy, Chiranjeeb; Ulrich, Sven Marcus; Jetter, Michael; Hughes, Stephen; Michler, Peter

    2013-02-25

    We present both experimental and theoretical investigations of a laser-driven quantum dot (QD) in the dressed-state regime of resonance fluorescence. We explore the role of phonon scattering and pure dephasing on the detuning-dependence of the Mollow triplet and show that the triplet sidebands may spectrally broaden or narrow with increasing detuning. Based on a polaron master equation approach, which includes electron-phonon interaction nonperturbatively, we derive a fully analytical expression for the spectrum. With respect to detuning dependence, we identify a crossover between the regimes of spectral sideband narrowing or broadening. We also predict regimes of phonon-induced squeezing and anti-squeezing of the spectral resonances. A comparison of the theoretical predictions to detailed experimental studies on the laser detuning-dependence of Mollow triplet resonance emission from single In(Ga)As QDs reveals excellent agreement.

  9. Aluminum gallium arsenide-gallium arsenide-indium gallium arsenide-indium arsenide quantum dot coupled to quantum well heterostructure lasers by low-pressure metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chung, Theodore

    The Stranski-Krastanow growth mechanism of self-assembled InAs and InGaAs quantum dots on a GaAs substrate is examined. The atomic force microscopy (AFM) pictures show that the V/III ratio is the most important growth parameter in controlling the formation of three-dimensional islands, second only to the growth temperature. To adjust the arsine overpressure precisely on the epitaxial surface, a new gas switching sequence is designed and the use of hydrogen shroud flow as a means to change the surface kinetics is studied. With the new improved growth condition, InA quantum dot + quantum well lasers are demonstrated. In order to achieve lower V/III ratio in material deposition, a new arsenic bubbler source, Tertiarybutylarsine (TBA), is installed. Further experimentation shows the photoluminescence of the discrete energy transitions of a layer of InGaAs quantum dots embedded in a GaAs waveguide with a wavelength as long as 1.219 mum with the use of submonolayer cycled deposition. However, the self-annealing effect is determined to be the major factor in limiting the realization of high-quality InGaAs QD lasers. Data are presented showing that, besides the improvement in carrier collection, it is advantageous to locate strain-matching auxiliary InGaAs layers [quantum wells (QWs)] within tunneling distance of a single-quantum-dot (QD) layer of an AlGaAs-GaAs-InGaAs-InAs QD heterostructure laser to realize also smaller size QDs of greater density and uniformity. The QD density is changed from 2 x 1010/cm2 for a 50-A GaAs coupling barrier (QW to QD) to 3 x 1010/cm2 for a 5-A barrier. The improved QD density and uniformity, as well as improved carrier collection, make possible room-temperature continuous-wave (cw) QD + QW laser operation (a single InAs QD layer) at reasonable diode length (˜1 mm), current density 586 A/cm2, and wavelength 1057 nm. QW-assisted single-layer InAs QD laser, a QD + QW laser, is demonstrated that operates cw (300 K), and at diode length 150

  10. Near-field magnetoabsorption of quantum dots

    NASA Astrophysics Data System (ADS)

    Simserides, Constantinos; Zora, Anna; Triberis, Georgios

    2006-04-01

    We investigate the effect of an external magnetic field of variable orientation and magnitude (up to 20T ) on the linear near-field optical absorption spectra of single and coupled III-V semiconductor quantum dots. We focus on the spatial as well as on the magnetic confinement, varying the dimensions of the quantum dots and the magnetic field. We show that the ground-state exciton binding energy can be manipulated utilizing the spatial and magnetic confinement. The effect of the magnetic field on the absorption spectra, increasing the near-field illumination spot, is also investigated. The zero-magnetic-field “structural” symmetry can be destroyed varying the magnetic field orientation and this affects the near-field spectra. The asymmetry induced (except for specific orientations along symmetry axes) by the magnetic field can be revealed in the near-field but not in the far-field spectra. We predict that near-field magnetoabsorption experiments, of realistic spatial resolution, will be in the position to bring to light the quantum dot symmetry. This exceptional symmetry-resolving power of the near-field magnetoabsorption is lost in the far field. The influence of the Coulomb interactions on the absorption spectra is also discussed. Finally, we show that certain modifications of the magnetoexcitonic structure can be uncovered using a realistically acute near-field probe of ≈20nm .

  11. Si, Ge, and SiGe quantum wires and quantum dots

    NASA Astrophysics Data System (ADS)

    Pearsall, T. P.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses Si, Ge, and SiGe quantum wire and quantum dot structures, the synthesis of quantum wires and quantum dots, and applications of SiGe quantum-dot structures as photodetectors, light-emitting diodes, for optical amplification and as Si quantum-dot memories.

  12. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    SciTech Connect

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-01

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.

  13. UV Nano-Lights: Nonlinear Quantum Dot-Plasmon Coupling

    DTIC Science & Technology

    2014-08-01

    Final 3. DATES COVERED (From - To) 11-Mar-2013 to 10-Mar-2014 4. TITLE AND SUBTITLE UV Nano-Lights: Nonlinear Quantum Dot- Plasmon ...Nonlinear Quantum Dot- Plasmon Coupling 5a. CONTRACT NUMBER FA2386-13-1-4016 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Eric...nonlinear emission from Quantum Dots through Plasmon Coupling PERIOD OF PERFORMANCE 11 March 2013 - 11 March 2014 RECIPIENT PRINCIPAL

  14. Molecular Profiling of Prostate Cancer Specimens Using Multicolor Quantum Dots

    DTIC Science & Technology

    2009-02-01

    0117 TITLE: Molecular profiling of prostate cancer specimens using Multicolor Quantum Dots PRINCIPAL INVESTIGATOR: Xiaohu Gao...profiling of prostate cancer specimens using Multicolor Quantum Dots 5a. CONTRACT NUMBER W81XWH-07-1-0117 5b. GRANT NUMBER PC061345 5c...based on the biology of their tumors. We proposed to develop oligonucleotide tagged quantum dots and antibodies for multiplexed imaging of prostate

  15. Two-colour spin noise spectroscopy and fluctuation correlations reveal homogeneous linewidths within quantum-dot ensembles.

    PubMed

    Yang, Luyi; Glasenapp, P; Greilich, A; Reuter, D; Wieck, A D; Yakovlev, D R; Bayer, M; Crooker, S A

    2014-09-15

    'Spin noise spectroscopy' is an optical technique for probing electron and hole spin dynamics that is based on detecting their intrinsic fluctuations while in thermal equilibrium. Here we show that fluctuation correlations can be further exploited in multi-probe noise studies to reveal information that in general cannot be accessed by conventional linear optical spectroscopy, such as the underlying homogeneous linewidths of individual constituents within inhomogeneously broadened systems. This is demonstrated in singly charged (In,Ga)As quantum-dot ensembles using two weak probe lasers: When the lasers have similar wavelengths, they probe the same quantum dots in the ensemble and show correlated spin fluctuations. In contrast, mutually detuned probe lasers measure different subsets of quantum dots, giving uncorrelated fluctuations. The noise correlation versus laser detuning directly reveals the quantum dot homogeneous linewidth even in the presence of a strong inhomogeneous broadening. Such noise-based correlation techniques are not limited to semiconductor spin systems, but are applicable to any system with measurable intrinsic fluctuations.

  16. Quantum transport through an array of quantum dots.

    PubMed

    Chen, Shuguang; Xie, Hang; Zhang, Yu; Cui, Xiaodong; Chen, Guanhua

    2013-01-07

    The transient current through an array of as many as 1000 quantum dots is simulated with two newly developed quantum mechanical methods. To our surprise, upon switching on the bias voltage, the current increases linearly with time before reaching its steady state value. And the time required for the current to reach its steady state value is proportional to the length of the array, and more interestingly, is exactly the time for a conducting electron to travel through the array at the Fermi velocity. These quantum phenomena can be understood by a simple analysis on the energetics of an equivalent classical circuit. An experimental design is proposed to confirm the numerical findings.

  17. Quantum interface between light and nuclear spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Schwager, Heike; Cirac, J. Ignacio; Giedke, Géza

    2010-01-01

    The coherent coupling of flying photonic qubits to stationary matter-based qubits is an essential building block for quantum-communication networks. We show how such a quantum interface can be realized between a traveling-wave optical field and the polarized nuclear spins in a singly charged quantum dot strongly coupled to a high-finesse optical cavity. By adiabatically eliminating the electron a direct effective coupling is achieved. Depending on the laser field applied, interactions that enable either write-in or read-out are obtained.

  18. Quantum transport through an array of quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Shuguang; Xie, Hang; Zhang, Yu; Cui, Xiaodong; Chen, Guanhua

    2012-12-01

    The transient current through an array of as many as 1000 quantum dots is simulated with two newly developed quantum mechanical methods. To our surprise, upon switching on the bias voltage, the current increases linearly with time before reaching its steady state value. And the time required for the current to reach its steady state value is proportional to the length of the array, and more interestingly, is exactly the time for a conducting electron to travel through the array at the Fermi velocity. These quantum phenomena can be understood by a simple analysis on the energetics of an equivalent classical circuit. An experimental design is proposed to confirm the numerical findings.

  19. Tuning the quantum critical crossover in quantum dots

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    2005-03-01

    Quantum dots with large Thouless number g embody a regime where both disorder and interactions can be treated nonperturbatively using large-N techniques (with N=g) and quantum phase transitions can be studied. Here we focus on dots where the noninteracting Hamiltonian is drawn from a crossover ensemble between two symmetry classes, where the crossover parameter introduces a new, tunable energy scale independent of and much smaller than the Thouless energy. We show that the quantum critical regime, dominated by collective critical fluctuations, can be accessed at the new energy scale. The nonperturbative physics of this regime can only be described by the large-N approach, as we illustrate with two experimentally relevant examples. G. Murthy, PRB 70, 153304 (2004). G. Murthy, R. Shankar, D. Herman, and H. Mathur, PRB 69, 075321 (2004)

  20. Reduced linewidth enhancement factor due to excited state transition of quantum dot lasers.

    PubMed

    Xu, Peng-Fei; Ji, Hai-Ming; Xiao, Jin-Long; Gu, Yong-Xian; Huang, Yong-Zhen; Yang, Tao

    2012-04-15

    The carrier induced refractive index change and linewidth enhancement factor α due to ground-state (GS) and excited-state (ES) transitions have been compared by measuring the optical gain spectra from an InAs/GaAs quantum dot (QD) laser structure. It is shown that the ES transition exhibits a reduced α-factor compared to the value due to the GS transition. This result can be explained by the α-factor due to the ES transition having a smaller increase from the non-resonant carriers in the combined state of the wetting layer and InGaAs strain reducing layer than the α-factor increase due to the GS transition, since the relaxation time for carriers from the combined state of the wetting layer and InGaAs strain reducing layer to the ES is shorter than to the GS. The result reported here shows another advantage of using ES QD lasers for optical communication, in addition to their higher modulation speed.

  1. Tolerance of Intrinsic Defects in PbS Quantum Dots.

    PubMed

    Zherebetskyy, Danylo; Zhang, Yingjie; Salmeron, Miquel; Wang, Lin-Wang

    2015-12-03

    Colloidal quantum dots exhibit various defects and deviations from ideal structures due to kinetic processes, although their band gap frequently remains open and clean. In this Letter, we computationally investigate intrinsic defects in a real-size PbS quantum dot passivated with realistic Cl-ligands. We show that the colloidal intrinsic defects are ionic in nature. Unlike previous computational results, we find that even nonideal, atomically nonstoichiometric quantum dots have a clean band gap without in-gap-states provided that quantum dots satisfy electronic stoichiometry.

  2. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    NASA Astrophysics Data System (ADS)

    See, Gloria G.; Xu, Lu; Sutanto, Erick; Alleyne, Andrew G.; Nuzzo, Ralph G.; Cunningham, Brian T.

    2015-08-01

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  3. Realizing Rec. 2020 color gamut with quantum dot displays.

    PubMed

    Zhu, Ruidong; Luo, Zhenyue; Chen, Haiwei; Dong, Yajie; Wu, Shin-Tson

    2015-09-07

    We analyze how to realize Rec. 2020 wide color gamut with quantum dots. For photoluminescence, our simulation indicates that we are able to achieve over 97% of the Rec. 2020 standard with quantum dots by optimizing the emission spectra and redesigning the color filters. For electroluminescence, by optimizing the emission spectra of quantum dots is adequate to render over 97% of the Rec. 2020 standard. We also analyze the efficiency and angular performance of these devices, and then compare results with LCDs using green and red phosphors-based LED backlight. Our results indicate that quantum dot display is an outstanding candidate for achieving wide color gamut and high optical efficiency.

  4. Terahertz transmission through rings of quantum dots-nanogap

    NASA Astrophysics Data System (ADS)

    Tripathi, Laxmi-Narayan; Bahk, Young-Mi; Choi, Geunchang; Han, Sanghoon; Park, Namkyoo; Kim, Dai-Sik

    2016-03-01

    We report resonant funneling of terahertz (THz) waves through (9 ± 1) nm wide quantum dots-nanogap of cadmium selenide quantum dots silver nanogap metamaterials. We observed a giant THz intensity enhancement (∼104) through the quantum dots-nanogap at the resonant frequency. We, further report the experimentally measured effective mode indices for these metamaterials. A finite difference time domain simulation of the nanogap enabled by the quantum dots supports the experimentally measured THz intensity enhancement across the nanogap. We propose that these low effective mode index terahertz resonators will be useful as bio/chemical sensors, gain-enhanced antennas, and wave guides.

  5. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    SciTech Connect

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  6. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    PubMed

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  7. Silicon quantum dots: fine-tuning to maturity.

    PubMed

    Morello, Andrea

    2015-12-18

    Quantum dots in semiconductor heterostructures provide one of the most flexible platforms for the study of quantum phenomena at the nanoscale. The surging interest in using quantum dots for quantum computation is forcing researchers to rethink fabrication and operation methods, to obtain highly tunable dots in spin-free host materials, such as silicon. Borselli and colleagues report in Nanotechnology the fabrication of a novel Si/SiGe double quantum dot device, which combines an ultra-low disorder Si/SiGe accumulation-mode heterostructure with a stack of overlapping control gates, ensuring tight confining potentials and exquisite tunability. This work signals the technological maturity of silicon quantum dots, and their readiness to be applied to challenging projects in quantum information science.

  8. Single-electron Spin Resonance in a Quadruple Quantum Dot

    NASA Astrophysics Data System (ADS)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-08-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

  9. Single-electron Spin Resonance in a Quadruple Quantum Dot

    PubMed Central

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-01-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible. PMID:27550534

  10. Design optimization for two-step photon absorption in quantum dot solar cells by using infrared photocurrent spectroscopy

    NASA Astrophysics Data System (ADS)

    Tamaki, R.; Shoji, Y.; Okada, Y.

    2016-03-01

    Multi-stacked quantum dot solar cell (QDSC) is a promising candidate for intermediate band solar cell, which can exceed thermodynamic efficiency limit of single-junction solar cells. In recent years, lots of effort has been made to evaluate and understand the photo-carrier response of two-step photon absorption in QDSCs. One crucial issue is to suppress thermal excitation of photo-carriers out of QDs, which obscures the QD filling under quasi-equilibrium at operation conditions. We have investigated infrared photocurrent spectra of the QD states to conduction band (CB) transition by using Fourier transform infrared (FTIR) spectroscopy. Multi-stacked In(Ga)As QDSCs with different barrier materials, such as GaAs, GaNAs, GaAsSb, and AlGaAs, were investigated. The IR absorption edge of the QD to CB transition was evaluated at low temperature by analyzing the low energy tail of the FTIR spectra. The threshold temperature of the two-step photon absorption in In(Ga)As QDSCs was determined by observing temperature dependence of the IR photo-response. A universal linear relationship between the threshold temperature and the IR absorption edge was obtained in In(Ga)As QDSCs with varied barrier materials. The threshold temperature of 295 K was predicted for the absorption edge at 0.459 eV by extrapolating the linear relationship. It reveals strategy for cell optimization to achieve efficient two-step photon absorption at ambient conditions.

  11. GaAsSb/InAs/(In)GaAs type II quantum dots for solar cell applications

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jan; Hospodková, Alice; Petříček, Otto; Pangrác, Jiří; Zíková, Markéta; Oswald, Jiří; Vetushka, Aliaksei

    2017-04-01

    We focused on design of suitable underlying and covering layers of InAs/GaAs quantum dots (QDs) with the aim to increase the carrier extraction rate in the QD solar cell structures. Covering QDs by a GaAsSb strain reducing layer (SRL) with type II band alignment significantly improves photogenerated carrier extraction from InAs QDs. An additional thin InGaAs SRL below InAs QDs further enhances the extraction of photogenerated carriers. Properties of QD structures without any SRL, with GaAsSb covering SRL, and with combination of thin below-QDs InGaAs and GaAsSb covering SRLs are compared and the mechanism of carrier extraction is discussed. We showed that thin below-QDs InGaAs SRL together with increasing profile of antimony concentration in covering GaAsSb SRL can significantly improve the resulting properties of solar cell structures with InAs QDs.

  12. Nanoscale patterning of colloidal quantum dots for surface plasmon generation

    NASA Astrophysics Data System (ADS)

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2013-03-01

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing, and microcontact printing of quantum dots, have limits in fabrication resolution, positioning and the variation of structural shapes. Herein, we present an adaptation of a conventional liftoff method for patterning colloidal quantum dots. This simple method is easy and requires no complicated processes. Using this method, we formed straight lines, rings, and dot patterns of colloidal quantum dots on metallic substrates. Notably, patterned lines approximately 10 nm wide were fabricated. The patterned structures display high resolution, accurate positioning, and well-defined sidewall profiles. To demonstrate the applicability of our method, we present a surface plasmon generator elaborated from quantum dots.

  13. InP-based lattice-matched InGaAsP and strain-compensated InGaAs /InGaAs quantum well cells for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rohr, Carsten; Abbott, Paul; Ballard, Ian; Connolly, James P.; Barnham, Keith W. J.; Mazzer, Massimo; Button, Chris; Nasi, Lucia; Hill, Geoff; Roberts, John S.; Clarke, Graham; Ginige, Ravin

    2006-12-01

    Quantum well cells (QWCs) for thermophotovoltaic (TPV) applications are demonstrated in the InGaAsP material system lattice matched to the InP substrate and strain-compensated InGaAs /InGaAs QWCs also on InP substrates. We show that lattice-matched InGaAsP QWCs are very well suited for TPV applications such as with erbia selective emitters. QWCs with the same effective band gap as a bulk control cell show a better voltage performance in both wide and erbialike emission. We demonstrate a QWC with enhanced efficiency in a narrow-band spectrum compared to a bulk heterostructure control cell with the same absorption edge. A major advantage of QWCs is that the band gap can be engineered by changing the well thickness and varying the composition to the illuminating spectrum. This is relatively straightforward in the lattice-matched InGaAsP system. This approach can be extended to longer wavelengths by using strain-compensation techniques, achieving band gaps as low as 0.62eV that cannot be achieved with lattice-matched bulk material. We show that strain-compensated QWCs have voltage performances that are at least as good as, if not better than, expected from bulk control cells.

  14. Optophononics with Coupled Quantum Dots

    DTIC Science & Technology

    2014-02-18

    the molecular polaron can be used as an efficient and tunable coherent coupler for quantum states in spatially separated low-dimensional structures...The molecular polaron’s power as a tunable coherent coupler can be seen as follows. In Fig. 4d–f we compare the two tunnel QDM Electric field 21 Ω Ω v...full sequence of layers deposited on top of the GaAs substrate was 500 nm nþ -GaAs buffer , 80 nm i-GaAs, 2.5 nm InAs QDs, 4 nm GaAs barrier, 2.5 nm

  15. Amphoteric CdSe nanocrystalline quantum dots.

    PubMed

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  16. Thermoelectrics with Coulomb-coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Thierschmann, Holger; Sánchez, Rafael; Sothmann, Björn; Buhmann, Hartmut; Molenkamp, Laurens W.

    2016-12-01

    In this article we review the thermoelectric properties of three terminal devices with Coulomb-coupled quantum dots (QDs) as observed in recent experiments [1,2]. The system we consider consists of two Coulomb-blockade QDs, one of which can exchange electrons with only a single reservoir (heat reservoir), while the other dot is tunnel coupled with two reservoirs at a lower temperature (conductor). The heat reservoir and the conductor interact only via the Coulomb coupling of the quantum dots. It has been found that two regimes have to be considered. In the first one, the heat flow between the two systems is small. In this regime, thermally driven occupation fluctuations of the hot QD modify the transport properties of the conductor system. This leads to an effect called thermal gating. Experiments have shown how this can be used to control charge flow in the conductor by means of temperature in a remote reservoir. We further substantiate the observations with model calculations, and implications for the realisation of an all-thermal transistor are discussed. In the second regime, the heat flow between the two systems is relevant. Here the system works as a nanoscale heat engine, as proposed recently (Sánchez and Büttiker [3]). We review the conceptual idea, its experimental realisation and the novel features arising in this new kind of thermoelectric device such as decoupling of heat and charge flow. xml:lang="fr"

  17. Adiabatic Spin Pumping with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Mucciolo, Eduardo R.

    Electronic transport in mesoscopic systems has been intensively studied for more the last three decades. While there is a substantial understanding of the stationary regime, much less is know about phase-coherent nonequilibrium transport when pulses or ac perturbations are used to drive electrons at low temperatures and at small length scales. However, about 20 years ago Thouless proposed to drive nondissipative currents in quantum systems by applying simultaneously two phase-locked external perturbations. The so-called adiabatic pumping mechanism has been revived in the last few years, both theoretically and experimentally, in part because of the development of lateral semiconductor quantum dots. Here we will explain how open dots can be used to create spin-polarized currents with little or no net charge transfer. The pure spin pump we propose is the analog of a charge battery in conventional electronics and may provide a needed circuit element for spin-based electronics. We will also discuss other relevant issues such as rectification and decoherence and point out possible extensions of the mechanism to closed dots.

  18. Nonrenewal statistics in transport through quantum dots

    NASA Astrophysics Data System (ADS)

    Ptaszyński, Krzysztof

    2017-01-01

    The distribution of waiting times between successive tunneling events is an already established method to characterize current fluctuations in mesoscopic systems. Here, I investigate mechanisms generating correlations between subsequent waiting times in two model systems, a pair of capacitively coupled quantum dots and a single-level dot attached to spin-polarized leads. Waiting time correlations are shown to give insight into the internal dynamics of the system; for example they allow distinction between different mechanisms of the noise enhancement. Moreover, the presence of correlations breaks the validity of the renewal theory. This increases the number of independent cumulants of current fluctuation statistics, thus providing additional sources of information about the transport mechanism. I also propose a method for inferring the presence of waiting time correlations based on low-order current correlation functions. This method gives a way to extend the analysis of nonrenewal current fluctuations to the systems for which single-electron counting is not experimentally feasible. The experimental relevance of the findings is also discussed; for example reanalysis of previous results concerning transport in quantum dots is suggested.

  19. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  20. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    PubMed

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.

  1. Electrostatically defined silicon quantum dots with counted antimony donor implants

    SciTech Connect

    Singh, M. Luhman, D. R.; Lilly, M. P.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S.

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  2. Energy levels of bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Farias, G. A.; Peeters, F. M.

    2015-09-01

    Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB- (Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.

  3. 1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser.

    PubMed

    Zhang, Z Y; Oehler, A E H; Resan, B; Kurmulis, S; Zhou, K J; Wang, Q; Mangold, M; Süedmeyer, T; Keller, U; Weingarten, K J; Hogg, R A

    2012-01-01

    High pulse repetition rate (≥ 10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ∼2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices.

  4. Optimization and Characterization of Indium Arsenide Quantum Dots for Application in III-V Material Solar Cells

    NASA Astrophysics Data System (ADS)

    Podell, Adam P.

    and 6° misorientation, respectively. The second focus of this study was on the OMVPE growth of InAs quantum dots in a large-area commercial reactor. Quantum dot growth parameters require careful balancing in the large-scale reactor due to different thermodynamic and flow profiles compared with smaller- area reactors. The goal of the work was to control the growth process in order to produce high densities of uniform quantum dots for inclusion in double and triple junction III - V material solar cells. Initial growth proved unsuccessful due to lack of familiarity with the process but through balancing of injector flows of alkyl gasses, coherent and optically active quantum dots were able to first be formed at low densities (0.5 - 0.7 x 1010 cm-2). Further optimization included increased quantum dot growth times leading to number densities in the (2.1-2.7x10 10cm-2 with improved optical performance as measured by photoluminescence (PL) spectroscopy. Finally, an investigation of GaAs spacer layer thickness for improved optical coupling was performed, indicating that a combined low temperature and high temperature GaAs thickness of 9.3nm led to strong PL intensity indicating good optical coupling of QD layers. Ge/(In)GaAs double junction solar cells were grown and fabricated with and without quantum dots in the (In)GaAs cell to investigate the effect of quantum dot inclusion on device performance. AM 0 measurements showed an average increase of 1.0mA/cm 2 in short-circuit current for these devices. Integrated spectral response measurements revealed a contribution to short-circuit current of 0.02mA/cm2/QDlayer which is consistent with reports seen in literature. The current improvement for the double junction solar cells motivated the investigation of quantum dot inclusion in the (In)GaAs junction of a Ge/(In)GaAs/InGaP triple junction solar cell. AM0 measurements on these cells did not reveal any increase in current for quantum dot enhanced devices over a baseline device

  5. Nano-laser on silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Liu, Shi-Rong; Qin, Chao-Jian; Lü, Quan; Xu, Li

    2011-04-01

    A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d < 3 nm) can make the localized states into band gap. The emission energy of nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.

  6. Performance analysis of quantum dots infrared photodetector

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Zhang, Fangfang; Zhang, Jianqi; He, Guojing

    2011-08-01

    Performance analysis of the quantum dots infrared photodetector(QDIP), which can provide device designers with theoretical guidance and experimental verification, arouses a wide interest and becomes a hot research topic in the recent years. In the paper, in comparison with quantum well infrared photodetector(QWIP) characteristic, the performance of QDIP is mainly discussed and summarized by analyzing the special properties of quantum dots material. To be specific, the dark current density and the detectivity in the normalized incident phenomenon are obtained from Phillip performance model, the carrier lifetime and the dark current of QDIP are studied by combing with the "photon bottleneck" effect, and the detectivity of QDIP is theoretically derived from considering photoconduction gain under the influence of the capture probability. From the experimental results, a conclusion is made that QDIP can not only receive the normal incidence light, but also has the advantages of the long carrier life, the big photoconductive gain, the low dark current and so on, and it further illustrates a anticipated superiority of QDIP in performance and a wide use of QDIP in many engineering fields in the future.

  7. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    NASA Astrophysics Data System (ADS)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-07-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  8. Energy transfer in hybrid systems quantum dot-plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Chaplik, A. V.

    2016-06-01

    Radiationless relaxation in hybrid systems quantum dot (QD)-plasmonic nanostructure is considered. For the system QD-2D plasma the relaxation rate extremely steeply depends on the radius of quantum dot while in the pair QD-cylindrical wire contacting each other this dependence is logarithmic weak.

  9. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  10. Quantum-dot cluster-state computing with encoded qubits

    SciTech Connect

    Weinstein, Yaakov S.; Hellberg, C. Stephen; Levy, Jeremy

    2005-08-15

    A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection.

  11. Quantum model for mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, W.; Uhrig, Götz S.; Anders, Frithjof B.

    2016-12-01

    Quantum dots in GaAs/InGaAs structures have been proposed as a candidate system for realizing quantum computing. The short coherence time of the electronic quantum state that arises from coupling to the nuclei of the substrate is dramatically increased if the system is subjected to a magnetic field and to repeated optical pulsing. This enhancement is due to mode locking: oscillation frequencies resonant with the pulsing frequencies are enhanced, while off-resonant oscillations eventually die out. Because the resonant frequencies are determined by the pulsing frequency only, the system becomes immune to frequency shifts caused by the nuclear coupling and by slight variations between individual quantum dots. The effects remain even after the optical pulsing is terminated. In this work, we explore the phenomenon of mode locking from a quantum mechanical perspective. We treat the dynamics using the central-spin model, which includes coupling to 10-20 nuclei and incoherent decay of the excited electronic state, in a perturbative framework. Using scaling arguments, we extrapolate our results to realistic system parameters. We estimate that the synchronization to the pulsing frequency needs time scales in the order of 1 s .

  12. Mesoscopic admittance of a double quantum dot

    SciTech Connect

    Cottet, Audrey; Mora, Christophe; Kontos, Takis

    2011-03-15

    We calculate the mesoscopic admittance G({omega}) of a double quantum dot (DQD), which can be measured directly using microwave techniques. This quantity reveals spectroscopic information on the DQD and is also directly sensitive to a Pauli spin blockade effect. We then discuss the problem of a DQD coupled to a high quality photonic resonator. When the photon correlation functions can be developed along a random-phase-approximation-like scheme, the response of the resonator gives an access to G({omega}).

  13. Electron scattering in intrananotube quantum dots.

    PubMed

    Buchs, G; Bercioux, D; Ruffieux, P; Gröning, P; Grabert, H; Gröning, O

    2009-06-19

    Intratube quantum dots showing particle-in-a-box-like states with level spacings up to 200 meV are realized in metallic single-walled carbon nanotubes by means of low dose medium energy Ar(+) irradiation. Fourier-transform scanning tunneling spectroscopy compared to results of a Fabry-Perot electron resonator model yields clear signatures for inter- and intravalley scattering of electrons confined between consecutive irradiation-induced defects (interdefects distance

  14. Quantum dot intermixing using excimer laser irradiation

    SciTech Connect

    Djie, H. S.; Ooi, B. S; Gunawan, O.

    2006-08-21

    The authors report a spatial control of the band gap in InGaAs/GaAs quantum dots (QDs) using the combined effects of pulsed excimer laser irradiation and impurity-free dielectric cap induced intermixing technique. A large band gap shift of up to 180 meV has been obtained under laser irradiation of 480 mJ/cm{sup 2} and 150 pulses to the SiO{sub 2} capped shallow QD structure, while the nonirradiated SiO{sub 2} and Si{sub x}N{sub y} capped QDs only exhibit band gap shifts of 18 and 91 meV, respectively.

  15. Quantum Dots for Molecular Diagnostics of Tumors

    PubMed Central

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imagingin vivo. We also point out the essential problems that require resolution in order to clinically promote QD, and we indicate innovative approaches to oncology which are implementable using QD. PMID:22649672

  16. Trion decay in colloidal quantum dots.

    PubMed

    Jha, Praket P; Guyot-Sionnest, Philippe

    2009-04-28

    Using charged films of colloidal CdSe/CdS core/shell quantum dots of approximately 3.5 to 4.5 nm core diameters and 0.6 to 1.2 nm thick CdS shells, the radiative and nonradiative decay of the negatively charged exciton, the trion T-, are measured. The T- radiative rate is faster than the exciton by a factor of 2.2 +/- 0.4 and estimated at approximately 10 ns. The T- lifetime is approximately 0.7-1.5 ns for the samples measured and is longer than the biexciton lifetime by a factor or 7.5 +/- 1.7.

  17. A hybrid silicon evanescent quantum dot laser

    NASA Astrophysics Data System (ADS)

    Jang, Bongyong; Tanabe, Katsuaki; Kako, Satoshi; Iwamoto, Satoshi; Tsuchizawa, Tai; Nishi, Hidetaka; Hatori, Nobuaki; Noguchi, Masataka; Nakamura, Takahiro; Takemasa, Keizo; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2016-09-01

    We report the first demonstration of a hybrid silicon quantum dot (QD) laser, evanescently coupled to a silicon waveguide. InAs/GaAs QD laser structures with thin AlGaAs lower cladding layers were transferred by direct wafer bonding onto silicon waveguides defining cavities with adiabatic taper structures and distributed Bragg reflectors. The laser operates at temperatures up to 115 °C under pulsed current conditions, with a characteristic temperature T 0 of 303 K near room temperature. Furthermore, by reducing the width of the GaAs/AlGaAs mesa down to 8 µm, continuous-wave operation is realized at 25 °C.

  18. Luminescence studies of individual quantum dot photocatalysts.

    PubMed

    Amirav, Lilac; Alivisatos, A Paul

    2013-09-04

    Using far-field optical microscopy we report the first measurements of photoluminescence from single nanoparticle photocatalysts. Fluence-dependent luminescence is investigated from metal-semiconductor heterojunction quantum dot catalysts exposed to a variety of environments, ranging from gaseous argon to liquid water containing a selection of hole scavengers. The catalysts each exhibit characteristic nonlinear fluence dependence. From these structurally and environmentally sensitive trends, we disentangle the separate rate-determining steps in each particle across the very wide range of time scales, which follow the initial light absorption process. This information will significantly benefit the design of effective artificial photocatalytic systems for renewable direct solar-to-fuel energy conversion.

  19. Quantum dots confined in nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2006-09-01

    CdSe /ZnS core/shell quantum dots (QDs) were filled into porous alumina membranes (PAMs) by dip coating. The deposition of QDs induced changes in the refractive index of the PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of the PAMs.

  20. Spin-dependent shot noise enhancement in a quantum dot

    NASA Astrophysics Data System (ADS)

    Ubbelohde, Niels; Fricke, Christian; Hohls, Frank; Haug, Rolf J.

    2013-07-01

    The spin-dependent dynamical blockade was investigated in a lateral quantum dot in a magnetic field. Spin-polarized edge channels in the two-dimensional leads and the spatial distribution of Landau orbitals in the dot modulate the tunnel coupling of the quantum dot level spectrum. In a measurement of the electron shot noise we observe a pattern of super-Poissonian noise which is correlated to the spin-dependent competition between different transport channels.

  1. Hyper-parallel photonic quantum computation with coupled quantum dots

    PubMed Central

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-01-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

  2. Quantum Dots in Diagnostics and Detection: Principles and Paradigms

    PubMed Central

    Pisanic, T. R.; Zhang, Y.; Wang, T. H.

    2014-01-01

    Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection. PMID:24770716

  3. Quantum dots in diagnostics and detection: principles and paradigms.

    PubMed

    Pisanic, T R; Zhang, Y; Wang, T H

    2014-06-21

    Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection.

  4. Interaction of porphyrins with CdTe quantum dots.

    PubMed

    Zhang, Xing; Liu, Zhongxin; Ma, Lun; Hossu, Marius; Chen, Wei

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  5. Combinatorial Approach to Studying Metal Enhanced Fluorescence from Quantum Dots

    NASA Astrophysics Data System (ADS)

    Le, Nguyet; Corrigan, Timothy; Norton, Michael; Neff, David

    2013-03-01

    Fluorescence is extensively used in biochemistry for determining the concentration or purity of molecules in a biological environment. In metal-enhanced fluorescence (MEF), the fluorescence molecules separated from a metal surface by several nanometers can be enhanced. The fluorescent enhancement is dependent on the size and spacing of the nanoparticles, as has been shown previously for a number of fluorophore molecules. Fluorescence from quantum dots is of particular interest because the quantum dots do not lose fluorescence ability when exposed to light and they have higher intensity of fluorescence. The purpose of this study is to determine the effect of size and spacing on fluorescence intensity when coupling gold nano-particles with quantum dots. We employ a combinatorial approach, depositing gold particles ranging in diameter from 30 nm to 130 nm with varied spacings onto the substrate, followed by a protein spacer-layer and quantum dots. The fluorescence signal from the metal enhanced quantum dots were determined by confocal microscopy.

  6. Quantum dots find their stride in single molecule tracking

    PubMed Central

    Bruchez, Marcel P.

    2011-01-01

    Thirteen years after the demonstration of quantum dots as biological imaging agents, and nine years after the initial commercial introduction of bioconjugated quantum dots, the brightness and photostability of the quantum dots has enabled a range of investigations using single molecule tracking. These materials are being routinely utilized by a number of groups to track the dynamics of single molecules in reconstituted biophysical systems and on living cells, and are especially powerful for investigations of single molecules over long timescales with short exposure times and high pointing accuracy. New approaches are emerging where the quantum dots are used as “hard-sphere” probes for intracellular compartments. Innovations in quantum dot surface modification are poised to substantially expand the utility of these materials. PMID:22055494

  7. Non-blinking quantum dot with a plasmonic nanoshell resonator

    NASA Astrophysics Data System (ADS)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  8. Numerical simulation of optical feedback on a quantum dot lasers

    SciTech Connect

    Al-Khursan, Amin H.; Ghalib, Basim Abdullattif; Al-Obaidi, Sabri J.

    2012-02-15

    We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.

  9. Biosensing with Luminescent Semiconductor Quantum Dots

    PubMed Central

    Sapsford, Kim E.; Pons, Thomas; Medintz, Igor L.; Mattoussi, Hedi

    2006-01-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recently developed class of nanomaterial whose unique photophysical properties are helping to create a new generation of robust fluorescent biosensors. QD properties of interest for biosensing include high quantum yields, broad absorption spectra coupled to narrow size-tunable photoluminescent emissions and exceptional resistance to both photobleaching and chemical degradation. In this review, we examine the progress in adapting QDs for several predominantly in vitro biosensing applications including use in immunoassays, as generalized probes, in nucleic acid detection and fluorescence resonance energy transfer (FRET) - based sensing. We also describe several important considerations when working with QDs mainly centered on the choice of material(s) and appropriate strategies for attaching biomolecules to the QDs.

  10. Silicon quantum dots for biological applications.

    PubMed

    Chinnathambi, Shanmugavel; Chen, Song; Ganesan, Singaravelu; Hanagata, Nobutaka

    2014-01-01

    Semiconductor nanoparticles (or quantum dots, QDs) exhibit unique optical and electronic properties such as size-controlled fluorescence, high quantum yields, and stability against photobleaching. These properties allow QDs to be used as optical labels for multiplexed imaging and in drug delivery detection systems. Luminescent silicon QDs and surface-modified silicon QDs have also been developed as potential minimally toxic fluorescent probes for bioapplications. Silicon, a well-known power electronic semiconductor material, is considered an extremely biocompatible material, in particular with respect to blood. This review article summarizes existing knowledge related to and recent research progress made in the methods for synthesizing silicon QDs, as well as their optical properties and surface-modification processes. In addition, drug delivery systems and in vitro and in vivo imaging applications that use silicon QDs are also discussed.

  11. Semiconductor quantum dot-sensitized solar cells.

    PubMed

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  12. Semiconductor quantum dot-sensitized solar cells

    PubMed Central

    Tian, Jianjun; Cao, Guozhong

    2013-01-01

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178

  13. Electron states in semiconductor quantum dots

    SciTech Connect

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  14. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.

    PubMed

    Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

    2013-07-19

    Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively.

  15. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    NASA Astrophysics Data System (ADS)

    Cipro, R.; Baron, T.; Martin, M.; Moeyaert, J.; David, S.; Gorbenko, V.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-01

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO2 cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  16. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  17. Colloidal quantum dot light-emitting devices.

    PubMed

    Wood, Vanessa; Bulović, Vladimir

    2010-01-01

    Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Förster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  18. Competing interactions in semiconductor quantum dots

    SciTech Connect

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

  19. Competing interactions in semiconductor quantum dots

    DOE PAGES

    van den Berg, R.; Brandino, G. P.; El Araby, O.; ...

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  20. Charge-extraction strategies for colloidal quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Lan, Xinzheng; Masala, Silvia; Sargent, Edward H.

    2014-03-01

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p- and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction.

  1. Open quantum dots in graphene: Scaling relativistic pointer states

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Huang, L.; Yang, R.; Lai, Y.-C.; Akis, R.

    2010-04-01

    Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not "washed out" through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.

  2. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    SciTech Connect

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.

    2013-07-15

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  3. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode.

    PubMed

    Kuhlmann, Andreas V; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D; Warburton, Richard J

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10(7) and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  4. Leveraging Crystal Anisotropy for Deterministic Growth of InAs Quantum Dots with Narrow Optical Linewidths

    DTIC Science & Technology

    2013-08-29

    spin qubit for quantum information. KEYWORDS: Quantum dot , InAs, molecular beam epitaxy, site...removes a major obstacle toward sophisticated quantum dot complexes such as a quantum network of spin qubits . Methods. Substrate Patterning. Lines and...controlled, quantum information, single photon source Epitaxial quantum dots (QDs) have atom-like electronicproperties, including long coherence

  5. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  6. Luminescent properties of cadmium selenide quantum dots in fluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Lipatova, Zh. O.; Kolobkova, E. V.; Babkina, A. N.

    2016-11-01

    The optical properties of fluorophosphate glasses with CdSe quantum dots are studied. Secondary heat treatment at a temperature exceeding the glass transition temperature resulted in the formation of quantum dots with sizes of 3.7-6.2 nm. The influence of the semiconductor component concentration on the spectral-luminescent characteristics of glasses is shown. It is experimentally demonstrated that glasses with a lower CdSe concentration have a higher absolute luminescence quantum yield.

  7. On-chip quantum optics with quantum dots and superconducting resonators

    NASA Astrophysics Data System (ADS)

    Deng, Guang-Wei; Guo, Guo-Ping; Guo, Guang-Can

    2016-11-01

    Benefit from the recent nanotechnology process, people can integrate different nanostructures on a single chip. Particularly, quantum dots (QD), which behave as artificial atoms, have been shown to couple with a superconducting resonator, indicating that quantum-dot based quantum chip has a highly scalable possibility. Here we show a quantum chip architecture by combining graphene quantum dots and superconducting resonators together. A double quantum dot (DQD) and a microwave hybrid system can be described by the Jaynes-Cummings model, while a multi-quantum-dots system is conformed to the Tavis-Cummings model. These simple quantum optics models are experimentally realized in our device, providing a compelling platform for both graphene study and potential applications.

  8. Quantum Monte Carlo finite temperature electronic structure of quantum dots

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Rantala, Tapio T.

    2002-08-01

    Quantum Monte Carlo methods allow a straightforward procedure for evaluation of electronic structures with a proper treatment of electronic correlations. This can be done even at finite temperatures [1]. We test the Path Integral Monte Carlo (PIMC) simulation method [2] for one and two electrons in one and three dimensional harmonic oscillator potentials and apply it in evaluation of finite temperature effects of single and coupled quantum dots. Our simulations show the correct finite temperature excited state populations including degeneracy in cases of one and three dimensional harmonic oscillators. The simulated one and two electron distributions of a single and coupled quantum dots are compared to those from experiments and other theoretical (0 K) methods [3]. Distributions are shown to agree and the finite temperature effects are discussed. Computational capacity is found to become the limiting factor in simulations with increasing accuracy. Other essential aspects of PIMC and its capability in this type of calculations are also discussed. [1] R.P. Feynman: Statistical Mechanics, Addison Wesley, 1972. [2] D.M. Ceperley, Rev.Mod.Phys. 67, 279 (1995). [3] M. Pi, A. Emperador and M. Barranco, Phys.Rev.B 63, 115316 (2001).

  9. Laser synthesis and size tailor of carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Hu, Shengliang; Liu, Jun; Yang, Jinlong; Wang, Yanzhong; Cao, Shirui

    2011-12-01

    Carbon quantum dots (C-dots) with average sizes of about 3, 8, and 13 nm were synthesized by laser irradiation of graphite flakes in polymer solution. The obtained C-dots display size and excitation wavelength dependent photoluminescence behavior. The size control of C-dots can be realized by tuning laser pulse width. The original reason could be the effects of laser pulse width on the conditions of nucleation and growth of C-dots. Compared with short-pulse-width laser, the long-pulse-width laser would be better fitted to the size and morphology control of nanostructures in the different material systems.

  10. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    NASA Astrophysics Data System (ADS)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  11. A triple quantum dot based nano-electromechanical memory device

    SciTech Connect

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  12. The transfer matrix approach to circular graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Chau Nguyen, H.; Nguyen, Nhung T. T.; Nguyen, V. Lien

    2016-07-01

    We adapt the transfer matrix (T-matrix) method originally designed for one-dimensional quantum mechanical problems to solve the circularly symmetric two-dimensional problem of graphene quantum dots. Similar to one-dimensional problems, we show that the generalized T-matrix contains rich information about the physical properties of these quantum dots. In particular, it is shown that the spectral equations for bound states as well as quasi-bound states of a circular graphene quantum dot and related quantities such as the local density of states and the scattering coefficients are all expressed exactly in terms of the T-matrix for the radial confinement potential. As an example, we use the developed formalism to analyse physical aspects of a graphene quantum dot induced by a trapezoidal radial potential. Among the obtained results, it is in particular suggested that the thermal fluctuations and electrostatic disorders may appear as an obstacle to controlling the valley polarization of Dirac electrons.

  13. Gate-controlled electromechanical backaction induced by a quantum dot.

    PubMed

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-04-11

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

  14. Gate-controlled electromechanical backaction induced by a quantum dot

    PubMed Central

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-01-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter. PMID:27063939

  15. Full counting statistics of quantum dot resonance fluorescence

    PubMed Central

    Matthiesen, Clemens; Stanley, Megan J.; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  16. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, Z. B.; Lei, W.; Chen, B.; Wang, Y. B.; Liao, X. Z.; Tan, H. H.; Zou, J.; Ringer, S. P.; Jagadish, C.

    2014-01-01

    Droplet epitaxy is an important method to produce epitaxial semiconductor quantum dots (QDs). Droplet epitaxy of III-V QDs comprises group III elemental droplet deposition and the droplet crystallization through the introduction of group V elements. Here, we report that, in the droplet epitaxy of InAs/GaAs(001) QDs using metal-organic chemical vapor deposition, significant elemental diffusion from the substrate to In droplets occurs, resulting in the formation of In(Ga)As crystals, before As flux is provided. The supply of As flux suppresses the further elemental diffusion from the substrate and promotes surface migration, leading to large island formation with a low island density.

  17. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition

    SciTech Connect

    Chen, Z. B.; Chen, B.; Wang, Y. B.; Liao, X. Z.; Lei, W.; Tan, H. H.; Jagadish, C.; Zou, J.; Ringer, S. P.

    2014-01-13

    Droplet epitaxy is an important method to produce epitaxial semiconductor quantum dots (QDs). Droplet epitaxy of III-V QDs comprises group III elemental droplet deposition and the droplet crystallization through the introduction of group V elements. Here, we report that, in the droplet epitaxy of InAs/GaAs(001) QDs using metal-organic chemical vapor deposition, significant elemental diffusion from the substrate to In droplets occurs, resulting in the formation of In(Ga)As crystals, before As flux is provided. The supply of As flux suppresses the further elemental diffusion from the substrate and promotes surface migration, leading to large island formation with a low island density.

  18. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors.

    PubMed

    Reithmaier, G; Lichtmannecker, S; Reichert, T; Hasch, P; Müller, K; Bichler, M; Gross, R; Finley, J J

    2013-01-01

    We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems.

  19. Hybrid Circuit QED with Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Petta, Jason

    2014-03-01

    Cavity quantum electrodynamics explores quantum optics at the most basic level of a single photon interacting with a single atom. We have been able to explore cavity QED in a condensed matter system by placing a double quantum dot (DQD) inside of a high quality factor microwave cavity. Our results show that measurements of the cavity field are sensitive to charge and spin dynamics in the DQD.[2,3] We can explore non-equilibrium physics by applying a finite source-drain bias across the DQD, which results in sequential tunneling. Remarkably, we observe a gain as large as 15 in the cavity transmission when the DQD energy level detuning is matched to the cavity frequency. These results will be discussed in the context of single atom lasing.[4] I will also describe recent progress towards reaching the strong-coupling limit in cavity-coupled Si DQDs. In collaboration with Manas Kulkarni, Yinyu Liu, Karl Petersson, George Stehlik, Jacob Taylor, and Hakan Tureci. We acknowledge support from the Sloan and Packard Foundations, ARO, DARPA, and NSF.

  20. Energy levels in self-assembled quantum arbitrarily shaped dots.

    PubMed

    Tablero, C

    2005-02-08

    A model to determine the electronic structure of self-assembled quantum arbitrarily shaped dots is applied. This model is based principally on constant effective mass and constant potentials of the barrier and quantum dot material. An analysis of the different parameters of this model is done and compared with those which take into account the variation of confining potentials, bands, and effective masses due to strain. The results are compared with several spectra reported in literature. By considering the symmetry, the computational cost is reduced with respect to other methods in literature. In addition, this model is not limited by the geometry of the quantum dot.

  1. Graphene mediated Stark shifting of quantum dot energy levels

    NASA Astrophysics Data System (ADS)

    Kinnischtzke, Laura; Goodfellow, Kenneth M.; Chakraborty, Chitraleema; Lai, Yi-Ming; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Vamivakas, A. Nick

    2016-05-01

    We demonstrate an optoelectronic device comprised of single InAs quantum dots in an n-i-Schottky diode where graphene has been used as the Schottky contact. Deterministic electric field tuning is shown using Stark-shifted micro-photoluminescence from single quantum dots. The extracted dipole moments from the Stark shifts are comparable to conventional devices where the Schottky contact is a semi-transparent metal. Neutral and singly charged excitons are also observed in the well-known Coulomb-blockade plateaus. Our results indicate that graphene is a suitable replacement for metal contacts in quantum dot devices which require electric field control.

  2. Plasmonic quantum dot solar cells for enhanced infrared response

    NASA Astrophysics Data System (ADS)

    Feng Lu, Hao; Mokkapati, Sudha; Fu, Lan; Jolley, Greg; Hoe Tan, Hark; Jagadish, Chennupati

    2012-03-01

    Enhanced near infrared photoresponse in plasmonic InGaAs/GaAs quantum dot solar cells (QDSC) is demonstrated. Long wavelength light absorption in the wetting-layer and quantum-dot region of the quantum dot solar cell is enhanced through scattering of light by silver nanoparticles deposited on the solar cell surface. Plasmonic light trapping results in simultaneous increase in short-circuit current density by 5.3% and open circuit voltage by 0.9% in the QDSC, leading to an overall efficiency enhancement of 7.6%.

  3. Semiconductor Quantum Dots in Chemical Sensors and Biosensors

    PubMed Central

    Frasco, Manuela F.; Chaniotakis, Nikos

    2009-01-01

    Quantum dots are nanometre-scale semiconductor crystals with unique optical properties that are advantageous for the development of novel chemical sensors and biosensors. The surface chemistry of luminescent quantum dots has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids or small-molecule ligands. This review overviews the design of sensitive and selective nanoprobes, ranging from the type of target molecules to the optical transduction scheme. Representative examples of quantum dot-based optical sensors from this fast-moving field have been selected and are discussed towards the most promising directions for future research. PMID:22423206

  4. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  5. Quantum dots microstructured optical fiber for x-ray detection

    NASA Astrophysics Data System (ADS)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2016-02-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  6. What Quantum Dots Can Do for You

    NASA Astrophysics Data System (ADS)

    Salamo, Gregory

    2008-03-01

    Recent clever techniques for fabricating nanosize materials, one-atomic-layer-at-a-time, have simultaneously opened a door to a fantastic adventure at the frontier of physics, chemistry, biology, and engineering. Nanosize materials simply do not behave as the bulk. Indeed, the rules that govern the growth and behavior of these tiny structures are unexplored. In this talk we will discuss our recent efforts to be the architect of their shape, size, density, and position of nanostructures and along the way, the interactions between them that lead to their optical and electrical behavior. While self-assembly is providing exciting quantum dot (QD) structures to explore, like the QD molecules shown here, it is equally exciting to try to use the rules we uncover to encourage QD formation to take a desired path. Can we understand the formation of faceted nanostructures? Can we encourage or seed dot structures to form specific arrays? Is it possible to engineer greater homogeneity of dot shape and size? Can we design both the optical and electrical behavior of either individual or arrays of nanostructures to mimic those we find in nature? In this talk we will review our progress to answer these questions and discuss the possibilities and challenges ahead. For example, we will discuss the formation of individual faceted nanostructures as well as the fabrication of a vertically and laterally ordered QD stacks forming three-dimensional QD arrays. As another example, we will discuss the importance of surfaces with high Miller indices, as a template to the formation of nanostructures as well as their potential role in determining the shape and increased size uniformity of the confined structures. Importantly, these observations lead to an even more basic question of when and why high index surfaces are stable. Indeed, we have found that in order to understand the origin of high index surfaces that bound nanostructures we have to study them directly.

  7. PREFACE: Quantum dots as probes in biology

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2013-05-01

    The recent availability of nanostructured materials has resulted in an explosion of research focused on their unique optical, thermal, mechanical and magnetic properties. Optical imagining, magnetic enhancement of contrast and drug delivery capabilities make the nanoparticles of special interest in biomedical applications. These materials have been involved in the development of theranostics—a new field of medicine that is focused on personalized tests and treatment. It is likely that multimodal nanomaterials will be responsible for future diagnostic advances in medicine. Quantum dots (QD) are nanoparticles which exhibit luminescence either through the formation of three-dimensional excitons or excitations of the impurities. The excitonic luminescence can be tuned by changing the size (the smaller the size, the higher the frequency). QDs are usually made of semiconducting materials. Unlike fluorescent proteins and organic dyes, QDs resist photobleaching, allow for multi-wavelength excitations and have narrow emission spectra. The techniques to make QDs are cheap and surface modifications and functionalizations can be implemented. Importantly, QDs could be synthesized to exhibit useful optomagnetic properties and, upon functionalization with an appropriate biomolecule, directed towards a pre-selected target for diagnostic imaging and photodynamic therapy. This special issue on Quantum dots in Biology is focused on recent research in this area. It starts with a topical review by Sreenivasan et al on various physical mechanisms that lead to the QD luminescence and on using wavelength shifts for an improvement in imaging. The next paper by Szczepaniak et al discusses nanohybrids involving QDs made of CdSe coated by ZnS and combined covalently with a photosynthetic enzyme. These nanohybrids are shown to maintain the enzymatic activity, however the enzyme properties depend on the size of a QD. They are proposed as tools to study photosynthesis in isolated

  8. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays

    NASA Astrophysics Data System (ADS)

    Geissler, Daniel; Hildebrandt, Niko; Charbonnière, Loïc J.; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2009-02-01

    Homogeneous immunoassays have the benefit that they do not require any time-consuming separation steps. FRET is one of the most sensitive homogeneous methods used for immunoassays. Due to their extremely strong absorption over a broad wavelength range the use of quantum dots as FRET acceptors allows for large Foerster radii, an important advantage for assays in the 5 to 10 nm distance range. Moreover, because of their size-tunable emission, quantum dots of different sizes can be used with a single donor for the detection of different analytes (multiplexing). As the use of organic dyes with short fluorescence decay times as donors is known to be inefficient with quantum dot acceptors, lanthanide complexes with long luminescence decays are very efficient alternatives. In this contribution we present the application of commercially available biocompatible CdSe/ZnS core/shell quantum dots as multiplexing FRET acceptors together with a single terbium complex as donor in a homogeneous immunoassay system. Foerster radii of 10 nm and FRET efficiencies of 75 % are demonstrated. The high sensitivity of the terbium-toquantum dot FRET assay is shown by sub-100-femtomolar detection limits for two different quantum dots (emitting at 605 and 655 nm) within the same biotin-streptavidin assay. Direct comparison to the FRET immunoassay "gold standard" (FRET from Eu-TBP to APC) yields a three orders of magnitude sensitivity improvement, demonstrating the big advantages of quantum dots not only for multiplexing but also for highly sensitive nanoscale analysis.

  9. Quantum dots: synthesis, bioapplications, and toxicity

    PubMed Central

    2012-01-01

    This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials. PMID:22929008

  10. Highly Fluorescent Noble Metal Quantum Dots

    PubMed Central

    Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.

    2009-01-01

    Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412

  11. Phonon Overlaps in Molecular Quantum Dot Systems

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Sethna, James

    2004-03-01

    We model the amplitudes and frequencies of the vibrational sidebands for the new molecular quantum dot systems. We calculate the Franck-Condon phonon overlaps in the 3N-dimensional configuration sapce. We solve the general case where the vibrational frequencies and eigenmodes change during the transition. We perform PM3 and DFT calculations for the case of the dumb bell-shaped C140 molecule. We find that the strongest amplitudes are associated with the 11 meV stretch mode, in agreement with experiment. The experimental amplitudes vary from molecule to molecule; indicating that the molecular overlaps are environment dependent. We explore overlaps in the presence of external electric fields from image charges and counter ions.

  12. Monolithic mode-locked quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Penty, R. V.; Thompson, M. G.; White, I. H.

    2008-02-01

    Monolithic mode-locked laser diodes based on QD active regions are regarded as potentially suitable for a large range of photonic applications due to their compactness, mechanical stability and robustness, high potential repetition rates and low potential jitter. Their inherent properties, such as high differential gain, low chirp and fast saturable absorption have led to demonstration of improved performance over their QW equivalents. Low background loss and the relatively long lengths of quantum dot laser devices also have encouraged studies of mode-locking at repetition rates previously not explored in monolithic devices. Applications include biomedicine, high-speed data transmission, clock signal generation and electro-optic sampling. This paper reviews some of the work at Cambridge on the realization of such devices.

  13. Andreev Conductance of a Chaotic Quantum Dot

    NASA Astrophysics Data System (ADS)

    Clerk, A. A.; Brouwer, P. W.; Ambegaokar, V.

    2000-03-01

    Using random matrix theory, we study the full magnetic field (B) and voltage (V) dependence of the Andreev conductance of a chaotic quantum dot coupled via point contacts to both a normal metal and a superconductor. We recover previous results in the zero and large B,V limits, but also observe interesting non-monotonic behaviour in the crossover regime. Our results demonstrate that the induced superconductivity effect previously seen in calculations of the density of states (J.A. Melsen, P.W. Brouwer, K.M. Frahm and C.W.J. Beenakker, Europhys. Lett., 35), 7 (1996). can also have a pronounced signature in the conductance; this may explain certain anomalous features observed in recent experiments on metallic normal-superconducting point contacts (P. Chalsani, S.K. Uphadyay, R.A. Buhrman, unpublished.).

  14. Correlation energy of anisotropic quantum dots

    SciTech Connect

    Zhao Yan; Loos, Pierre-Francois; Gill, Peter M. W.

    2011-09-15

    We study the D-dimensional high-density correlation energy E{sub c} of the singlet ground state of two electrons confined by a harmonic potential with Coulombic repulsion. We allow the harmonic potential to be anisotropic and examine the behavior of E{sub c} as a function of the anisotropy {alpha}{sup -1}. In particular, we are interested in the limit where the anisotropy goes to infinity ({alpha}{yields}0) and the electrons are restricted to a lower-dimensional space. We show that tuning the value of {alpha} from 0 to 1 allows a smooth dimensional interpolation and we demonstrate that the usual model, in which a quantum dot is treated as a two-dimensional system, is inappropriate. Finally, we provide a simple function which reproduces the behavior of E{sub c} over the entire range of {alpha}.

  15. Quantum Dots Confined in Nanoporous Alumina Membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2007-03-01

    Precise control over the dispersion and lateral distribution of quantum dots (QDs) within nanoscopic porous media provides a unique route to manipulate the optical and/or electronic properties of QDs in a very simple and controllable manner for applications related to light emitting, optoelectronic, and sensor devices. Here we filled nanoporous alumina membranes (PAMs) with CdSe/ZnS core/shell QDs by dip coating. The deposition of QDs induced changes in the refractive index of PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of PAMs.

  16. Quantum dots as a possible oxygen sensor

    NASA Astrophysics Data System (ADS)

    Ziółczyk, Paulina; Kur-Kowalska, Katarzyna; Przybyt, Małgorzata; Miller, Ewa

    Results of studies on optical properties of low toxicity quantum dots (QDs) obtained from copper doped zinc sulfate are discussed in the paper. The effect of copper admixture concentration and solution pH on the fluorescence emission intensity of QDs was investigated. Quenching of QDs fluorescence by oxygen was reported and removal of the oxygen from the environment by two methods was described. In the chemical method oxygen was eliminated by adding sodium sulfite, in the other method oxygen was removed from the solution using nitrogen gas. For elimination of oxygen by purging the solution with nitrogen the increase of fluorescence intensity with decreasing oxygen concentration obeyed Stern-Volmer equation indicating quenching. For the chemical method Stern-Volmer equation was not fulfilled. The fluorescence decays lifetimes were determined and the increase of mean lifetimes at the absence of oxygen support hypothesis that QDs fluorescence is quenched by oxygen.

  17. Nanosecond colloidal quantum dot lasers for sensing.

    PubMed

    Guilhabert, B; Foucher, C; Haughey, A-M; Mutlugun, E; Gao, Y; Herrnsdorf, J; Sun, H D; Demir, H V; Dawson, M D; Laurand, N

    2014-03-24

    Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors' knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting lasers is as low as 0.5 mJ/cm² for a 610 nm emission and the typical linewidth is below 0.3 nm. The emission wavelength of the lasers can be set at the design stage and laser operation between 605 nm and 616 nm, while using the exact same CQD gain material, is shown. In addition, the potential of such CQD lasers for refractive index sensing in solution is demonstrated by immersion in water.

  18. Selenium quantum dots: Preparation, structure, and properties

    NASA Astrophysics Data System (ADS)

    Qian, Fuli; Li, Xueming; Tang, Libin; Lai, Sin Ki; Lu, Chaoyu; Lau, Shu Ping

    2017-01-01

    An interesting class of low-dimensional nanomaterials, namely, selenium quantum dots (SeQDs), which are composed of nano-sized selenium particles, is reported in this study. The SeQDs possess a hexagonal crystal structure. They can be synthesized in large quantity by ultrasound liquid-phase exfoliation using NbSe2 powders as the source material and N-Methyl-2-pyrrolidone (NMP) as the dispersant. During sonication, the Nb-Se bonds dissociate; the SeQDs are formed, while niobium is separated by centrifugation. The SeQDs have a narrow diameter distribution from 1.9 to 4.6 nm and can be dispersed with high stability in NMP without the need for passivating agents. They exhibit photoluminescence properties that are expected to find useful applications in bioimaging, optoelectronics, as well as nanocomposites.

  19. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  20. Resonant intersubband plasmon induced current in InGaAs quantum wells on GaAs

    SciTech Connect

    Holzbauer, Martin Klang, Pavel; Detz, Hermann; Maxwell Andrews, Aaron; Strasser, Gottfried; Gornik, Erich; Bakshi, Pradip

    2014-03-24

    We present measurements of the current enhancement due to the coupling of two intersubband plasmons in In{sub 0.05}Ga{sub 0.95}As quantum wells. With changing bias, an emissive and an absorptive intersubband plasmon mode cross attractively and trapped electrons in the ground state gain enough energy from the plasma wave to be lifted up to the second subband, where they can contribute to the current. This effect can be directly observed as an increase of 33% in the current. A magnetic field applied parallel to the growth direction allows a control of the strength of the intersubband plasmon coupling up to a quenching.

  1. Shot noise at the quantum point contact in InGaAs heterostructure

    SciTech Connect

    Nishihara, Yoshitaka; Nakamura, Shuji; Ono, Teruo; Kobayashi, Kensuke; Kohda, Makoto; Nitta, Junsaku

    2013-12-04

    We study the shot noise at a quantum point contact (QPC) fabricated in an InGaAs/InGaAsP heterostructure, whose conductance can be electrically tuned by the gate voltages. Shot noise suppression is observed at the conductance plateau of N(2e{sup 2}/h) (N = 4,5,and 6), which indicates the coherent quantized channel formation in the QPC. The electron heating effect generated at the QPC explains the deviation of the observed Fano factor from the theory.

  2. Wavy growth onset in strain-balanced InGaAs multi-quantum wells

    NASA Astrophysics Data System (ADS)

    Nasi, L.; Ferrari, C.; Lanzi, A.; Lazzarini, L.; Balboni, R.; Clarke, G.; Mazzer, M.; Rohr, C.; Abbott, P.; Barnham, K. W. J.

    2005-01-01

    Different strain-balanced InGaAs/InGaAs multi-quantum wells (MQWs) were grown on (0 0 1) InP to be used as active layers of thermophotovoltaic devices. Transmission electron microscopy (TEM) and high-resolution X-ray diffraction (HRXRD) were performed to correlate the evolution of the layer interfaces from planar to wavy and the consequent nucleation of extended defects with the well and barrier compositions and thicknesses and the growth temperature. The existence of a critical elastic energy density for the wavy growth onset has been experimentally confirmed by changing both the well and barrier misfit and the multi-quantum well layer thickness. A decrease of the growth temperature shifts the critical energy to higher values. An empirical model to predict the maximum number of layers that can be grown without modulations as a function of the strain energy stored in the MQW period and the growth temperature is presented and successfully applied for the growth of high quality 40 repetitions MQWs with a well misfit of about 1.5%.

  3. Effect of growth temperature and quantum structure on InAs/GaAs quantum dot solar cell.

    PubMed

    Park, M H; Kim, H S; Park, S J; Song, J D; Kim, S H; Lee, Y J; Choi, W J; Park, J H

    2014-04-01

    InGaAs-capped InAs quantum dots (QDs) and InAs QDs were adopted for the study of the effects through growth temperature and the band structure of InAs QDs on the performance of GaAs-based QD solar cell. It has been shown that the defects due to low temperature growth resulted in the decrease of Voc, Jsc and external quantum efficiency for GaAs bulk solar cell and QD embedded solar cells. It has been also found that InAs QDs act as defects by trapping photo-generated carries which affect the carrier transport in QD solar cell. The QD solar cell with InGaAs-capped InAs QDs showed higher performance than the QD solar cell with only InAs QDs. Such result has been explained by photo-generated carrier trapping and tunneling through InGaAs QW state in InGaAs-capped InAs QDs.

  4. Long-distance coherent coupling in a quantum dot array.

    PubMed

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.

  5. Ultrafast optical spin echo in a single quantum dot

    NASA Astrophysics Data System (ADS)

    Press, David; de Greve, Kristiaan; McMahon, Peter L.; Ladd, Thaddeus D.; Friess, Benedikt; Schneider, Christian; Kamp, Martin; Höfling, Sven; Forchel, Alfred; Yamamoto, Yoshihisa

    2010-06-01

    Many proposed photonic quantum networks rely on matter qubits to serve as memory elements. The spin of a single electron confined in a semiconductor quantum dot forms a promising matter qubit that may be interfaced with a photonic network. Ultrafast optical spin control allows gate operations to be performed on the spin within a picosecond timescale, orders of magnitude faster than microwave or electrical control. One obstacle to storing quantum information in a single quantum dot spin is the apparent nanosecond-timescale dephasing due to slow variations in the background nuclear magnetic field. Here we use an ultrafast, all-optical spin echo technique to increase the decoherence time of a single quantum dot electron spin from nanoseconds to several microseconds. The ratio of decoherence time to gate time exceeds 105, suggesting strong promise for future photonic quantum information processors and repeater networks.

  6. Optical properties of few layered graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Pratap Choudhary, Raghvendra; Shukla, Shobha; Vaibhav, Kumar; Bhagwan Pawar, Pranav; Saxena, Sumit

    2015-09-01

    Quantum dots provide a unique opportunity to study the confinement effects of electronic wave function on the properties of materials. We have investigated the optical properties of graphene quantum dots synthesized using ultra-fast light-matter interactions followed by one step reduction process. Atomic-scale morphological information suggests the presence of both zigzag and armchair edges in these quantum dots. Optical characterizations were performed using absorption, photoluminescence, and infrared spectroscopy. A shift in the emission spectrum and disappearance of n → π* transition in the absorption spectrum on reduction of the ablated samples confirmed the formation of graphene quantum dots. First principles calculations are in good agreement with the experimentally reported infrared data.

  7. Majorana dc Josephson current mediated by a quantum dot.

    PubMed

    Xu, Luting; Li, Xin-Qi; Sun, Qing-Feng

    2017-05-17

    The Josephson supercurrent through a hybrid Majorana-quantum dot-Majorana junction is investigated. We particularly analyze the effect of spin-selective coupling between the Majorana and quantum dot states, which only emerges in the topological phase and will influence the current through bent junctions and/or in the presence of magnetic fields in the quantum dot. We find that the characteristic behavior of the supercurrent through this system is quite counterintuitive, differing remarkably from the resonant tunneling, e.g. through the similar (normal phase) superconductor-quantum dot-superconductor junction. Our analysis is carried out under the influence of the full set-up parameters and for both the [Formula: see text] and [Formula: see text] periodic currents. The present study is expected to be relevant to the future exploration of applications of Majorana-nanowire circuits.

  8. Heterovalent cation substitutional doping for quantum dot homojunction solar cells

    PubMed Central

    Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

    2013-01-01

    Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%. PMID:24346430

  9. Energy levels of hybrid monolayer-bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Ketabi, S. A.; da Costa, D. R.; Peeters, F. M.

    2016-04-01

    Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.

  10. Engineering multifunctional magnetic-quantum dot barcodes by flow focusing.

    PubMed

    Giri, Supratim; Li, Dawei; Chan, Warren C W

    2011-04-14

    A simple one-step flow focusing method was used to embed both magnetic nanoparticles and quantum dots in microbeads in controlled ratios to generate a large library of molecular barcodes for biological applications.

  11. Probing of Unembedded Metallic Quantum Dots with Positrons

    SciTech Connect

    Fischer, C G; Denison, A B; Weber, M H; Wilcoxon, J P; Woessner, S; Lynn, K G

    2003-08-01

    We employed the two detector coincident Doppler Broadening Technique (coPAS) to investigate Ag, Au and Ag/Au alloy quantum dots of varying sizes which were deposited in thin layers on glass slides. The Ag quantum dots range from 2 to 3 nm in diameter, while the Ag/Au alloy quantum dots exhibit Ag cores of 2 nm and 3 nm and Au shells of varying thickness. We investigate the possibility of positron confinement in the Ag core due to positron affinity differences between Ag and Au. We describe the results and their significance to resolving the issue of whether positrons annihilate within the quantum dot itself or whether surface and positron escape effects play an important role.

  12. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  13. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  14. Fundamental and applied aspects of luminescence of colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Razumov, V. F.

    2017-03-01

    The spectral luminescent characteristics of colloidal quantum dots as a new class of luminophores are discussed and state-of-the-art investigations, problems, and prospects for their applications are considered.

  15. Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.

    2016-12-01

    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.

  16. Coherent radiation by quantum dots and magnetic nanoclusters

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.

    2014-03-01

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins.

  17. Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Saqri, Noor alhuda Al; Felix, Jorlandio F.; Aziz, Mohsin; Kunets, Vasyl P.; Jameel, Dler; Taylor, David; Henini, Mohamed; Abd El-sadek, Mahmmoud S.; Furrow, Colin; Ware, Morgan E.; Benamara, Mourad; Mortazavi, Mansour; Salamo, Gregory

    2017-01-01

    InGaAs quantum wire (QWr) intermediate-band solar cell-based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current-voltage (I-V) and capacitance-voltage (C-V) techniques, were found to change with temperature over a wide range of 20-340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the traps detected in the QWr-doped devices are directly or indirectly related to the insertion of the Si δ-layer used to dope the wires. In addition, in the QWr-doped devices, the decrease of the solar conversion efficiencies at low temperatures and the associated decrease of the integrated external quantum efficiency through InGaAs could be attributed to detected traps E1QWR_D, E2QWR_D, and E3QWR_D with activation energies of 0.0037, 0.0053, and 0.041 eV, respectively.

  18. Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy technique.

    PubMed

    Al Saqri, Noor Alhuda; Felix, Jorlandio F; Aziz, Mohsin; Kunets, Vasyl P; Jameel, Dler; Taylor, David; Henini, Mohamed; Abd El-Sadek, Mahmmoud S; Furrow, Colin; Ware, Morgan E; Benamara, Mourad; Mortazavi, Mansour; Salamo, Gregory

    2017-01-27

    InGaAs quantum wire (QWr) intermediate-band solar cell-based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current-voltage (I-V) and capacitance-voltage (C-V) techniques, were found to change with temperature over a wide range of 20-340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the traps detected in the QWr-doped devices are directly or indirectly related to the insertion of the Si δ-layer used to dope the wires. In addition, in the QWr-doped devices, the decrease of the solar conversion efficiencies at low temperatures and the associated decrease of the integrated external quantum efficiency through InGaAs could be attributed to detected traps E1QWR_D, E2QWR_D, and E3QWR_D with activation energies of 0.0037, 0.0053, and 0.041 eV, respectively.

  19. Colloidal quantum dot materials for infrared optoelectronics

    NASA Astrophysics Data System (ADS)

    Arinze, Ebuka S.; Nyirjesy, Gabrielle; Cheng, Yan; Palmquist, Nathan; Thon, Susanna M.

    2015-09-01

    Colloidal quantum dots (CQDs) are an attractive material for optoelectronic applications because they combine flexible, low-cost solution-phase synthesis and processing with the potential for novel functionality arising from their nanostructure. Specifically, the bandgap of films composed of arrays of CQDs can be tuned via the quantum confinement effect for tailored spectral utilization. PbS-based CQDs can be tuned throughout the near and mid-infrared wavelengths and are a promising materials system for photovoltaic devices that harvest non-visible solar radiation. The performance of CQD solar cells is currently limited by an absorption-extraction compromise, whereby photon absorption lengths in the near infrared spectral regime exceed minority carrier diffusion lengths in the bulk films. Several light trapping strategies for overcoming this compromise and increasing the efficiency of infrared energy harvesting will be reviewed. A thin-film interference technique for creating multi-colored and transparent solar cells will be presented, and a discussion of designing plasmonic nanomaterials based on earth-abundant materials for integration into CQD solar cells is developed. The results indicate that it should be possible to achieve high absorption and color-tunability in a scalable nanomaterials system.

  20. Optical Studies of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Yükselici, H.; Allahverdi, Ç.; Aşıkoğlu, A.; Ünlü, H.; Baysal, A.; Çulha, M.; İnce, R.; İnce, A.; Feeney, M.; Athalin, H.

    Optical absorption (ABS), steady-state photoluminescence (PL), resonant Raman, and photoabsorption (PA) spectroscopies are employed to study quantum-size effects in II-VI semiconductor quantum dots (QDs) grown in glass samples. We observe a size-dependent shift in the energetic position of the first exciton peak and have examined the photoinduced evolution of the differential absorption spectra. The Raman shifts of the phonon modes are employed to monitor stoichiometric changes in the composition of the QDs during growth. Two sets of glass samples were prepared from color filters doped with CdS x Se1 - x and Zn x Cd1 - x Te. We analyze the optical properties of QDs through the ABS, PL, resonant Raman, and PA spectroscopies. The glass samples were prepared from commercially available semiconductor doped filters by a two-step thermal treatment. The average size of QDs is estimated from the energetic position of the first exciton peak in the ABS spectrum. A calculation based on a quantized-state effective mass model in the strong confinement regime predicts that the average radius of QDs in the glass samples ranges from 2.9 to 4.9 nm for CdTe and from 2.2 to 9.3 nm for CdS0. 08Se0. 92. We have also studied the nonlinear optical properties of QDs by reviewing the results of size-dependent photoinduced modulations in the first exciton band of CdTe QDs studied by PA spectroscopy.

  1. Optical nuclear spin polarization in quantum dots

    NASA Astrophysics Data System (ADS)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2016-10-01

    Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time. Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805).

  2. Los Alamos Quantum Dots for Solar, Display Technology

    SciTech Connect

    Klimov, Victor

    2015-04-13

    Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.

  3. Quantized charge pumping through a carbon nanotube double quantum dot

    NASA Astrophysics Data System (ADS)

    Chorley, S. J.; Frake, J.; Smith, C. G.; Jones, G. A. C.; Buitelaar, M. R.

    2012-04-01

    We demonstrate single-electron pumping in a gate-defined carbon nanotube double quantum dot. By periodic modulation of the potentials of the two quantum dots, we move the system around charge triple points and transport exactly one electron or hole per cycle. We investigate the pumping as a function of the modulation frequency and amplitude and observe good current quantization up to frequencies of 18 MHz where rectification effects cause the mechanism to break down.

  4. Ultrafast optical properties of lithographically defined quantum dot amplifiers

    SciTech Connect

    Miaja-Avila, L.; Verma, V. B.; Mirin, R. P.; Silverman, K. L.; Coleman, J. J.

    2014-02-10

    We measure the ultrafast optical response of lithographically defined quantum dot amplifiers at 40 K. Recovery of the gain mostly occurs in less than 1 picosecond, with some longer-term transients attributable to carrier heating. Recovery of the absorption proceeds on a much longer timescale, representative of relaxation between quantum dot levels and carrier recombination. We also measure transparency current-density in these devices.

  5. Resonant Scattering of Surface Plasmon Polaritons by Dressed Quantum Dots

    DTIC Science & Technology

    2014-06-23

    Resonant scattering of surface plasmon polaritons by dressed quantum dots Danhong Huang,1 Michelle Easter,2 Godfrey Gumbs,3 A. A. Maradudin,4 Shawn... polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In con- trast to...induced polarization field, treated as a source term9 arising from photo-excited electrons, allows for a resonant scattering of surface plasmon- polariton

  6. Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes

    PubMed Central

    2010-01-01

    To fabricate quantum dot arrays with programmable periodicity, functionalized DNA origami nanotubes were developed. Selected DNA staple strands were biotin-labeled to form periodic binding sites for streptavidin-conjugated quantum dots. Successful formation of arrays with periods of 43 and 71 nm demonstrates precise, programmable, large-scale nanoparticle patterning; however, limitations in array periodicity were also observed. Statistical analysis of AFM images revealed evidence for steric hindrance or site bridging that limited the minimum array periodicity. PMID:20681601

  7. Stability and Tolerance to Optical Feedback of Quantum Dot Lasers

    DTIC Science & Technology

    2012-01-01

    Analytical approach to modulation properties of quantum dot lasers, K. Lüdge, E. Schöll, E. Viktorov, and T. Erneux, J. Appl. Physics , 109, 103112...Huyet, Optics Letters 35, 937- 939 (2010) 2. Analytical approach to modulation properties of quantum dot lasers, K. Lüdge, E. Schöll, E. Viktorov, and T...Erneux, J. Appl. Physics , 109, 103112 (2011) 3. Dimensional signature on noise-induced excitable statistics in an op- tically injected semiconductor

  8. Los Alamos Quantum Dots for Solar, Display Technology

    ScienceCinema

    Klimov, Victor

    2016-07-12

    Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.

  9. Dynamical symmetries in Kondo tunneling through complex quantum dots.

    PubMed

    Kuzmenko, T; Kikoin, K; Avishai, Y

    2002-10-07

    Kondo tunneling reveals hidden SO(n) dynamical symmetries of evenly occupied quantum dots. As is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible values n=3,4,5,7 can be easily tuned by gate voltages. Following construction of the corresponding o(n) algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group for a magnetic field induced anisotropic Kondo tunneling is SU(2) or SO(4).

  10. Whispering-gallery mode microcavity quantum-dot lasers

    SciTech Connect

    Kryzhanovskaya, N V; Maximov, M V; Zhukov, A E

    2014-03-28

    This review examines axisymmetric-cavity quantum-dot microlasers whose emission spectrum is determined by whisperinggallery modes. We describe the possible designs, fabrication processes and basic characteristics of the microlasers and demonstrate the possibility of lasing at temperatures above 100 °C. The feasibility of creating multichannel optical sources based on a combination of a broadband quantum-dot laser and silicon microring modulators is discussed. (review)

  11. Optimal excitation conditions for indistinguishable photons from quantum dots

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Predojević, Ana; Föger, Daniel; Solomon, Glenn; Weihs, Gregor

    2015-12-01

    In this paper, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong-Ou-Mandel interference of consecutive photons from the spontaneous emission of an InAs quantum dot state under various excitation schemes and different excitation conditions and give a comparison.

  12. Coupling capacitance between double quantum dots tunable by the number of electrons in Si quantum dots

    SciTech Connect

    Uchida, Takafumi Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira

    2015-02-28

    Tunability of capacitive coupling in the Si double-quantum-dot system is discussed by changing the number of electrons in quantum dots (QDs), in which the QDs are fabricated using pattern-dependent oxidation (PADOX) of a Si nanowire and multi-fine-gate structure. A single QD formed by PADOX is divided into multiple QDs by additional oxidation through the gap between the fine gates. When the number of electrons occupying the QDs is large, the coupling capacitance increases gradually and almost monotonically with the number of electrons. This phenomenon is attributed to the gradual growth in the effective QD size due to the increase in the number of electrons in the QDs. On the other hand, when the number of electrons changes in the few-electron regime, the coupling capacitance irregularly changes. This irregularity can be observed even up to 40 electrons. This behavior is attributable the rough structure of Si nano-dots made by PADOX. This roughness is thought to induce complicated change in the electron wave function when an electron is added to or subtracted from a QD.

  13. Interaction of solitons with a string of coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Kumar, Vijendra; Swami, O. P.; Taneja, S.; Nagar, A. K.

    2016-05-01

    In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.

  14. Direct Imaging of Electron States in Open Quantum Dots

    NASA Astrophysics Data System (ADS)

    Aoki, N.; Brunner, R.; Burke, A. M.; Akis, R.; Meisels, R.; Ferry, D. K.; Ochiai, Y.

    2012-03-01

    We use scanning gate microscopy to probe the ballistic motion of electrons within an open GaAs/AlGaAs quantum dot. Conductance maps are recorded by scanning a biased tip over the open quantum dot while a magnetic field is applied. We show that, for specific magnetic fields, the measured conductance images resemble the classical transmitted and backscattered trajectories and their quantum mechanical analogue. In addition, we prove experimentally, with this direct measurement technique, the existence of pointer states. The demonstrated direct imaging technique is essential for the fundamental understanding of wave function scarring and quantum decoherence theory.

  15. Silicon/silicon-germanium quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Simmons, Christine B.

    Gate-defined quantum dots are tunable devices that are capable of trapping individual electrons. This thesis presents measurements of gate-defined quantum dots formed in Si/SiGe semiconductor heterostuctures. The motivation for this work is the development of a solid state electron spin qubit for quantum information processing. The fundamental properties of silicon make it an attractive option for spin qubit development, because electron spins are weakly coupled to the material. In particular, the coherence time for electron spins in silicon is expected to be long because of relatively weak spin-orbit coupling and the natural abundance of 28Si, a spin-zero nuclear isotope. The results presented in this thesis demonstrate significant advances in the manipulation and measurement of electrons in Si/SiGe quantum dots, including the first demonstration of a single electron quantum dot. An integrated quantum point contact is utilized as a local sensor to detect charge transitions on the neighboring quantum dot and to determine the absolute number of electrons on the dot. Gated control of the dot tunnel barriers enables tuning of the tunnel coupling to the leads and to other dots. Careful tuning of the tunnel rate to the leads in combination with fast, pulsed-gate manipulation of individual electrons enables a spectroscopy technique to identify electronic excited states. Using this technique, the Zeeman split spin qubit levels were observed. A 3-level voltage pulse sequence was utilized to perform single-shot readout of the spin state of individual electrons, to demonstrate tunable spin-selective loading, and to measure the spin relaxation time T1 . Double quantum dots are important for achieving two-qubit operations. Here, charge sensing measurements on a double dot are demonstrated. Analysis of the interdot transfer of a single electron is used to measure the tunnel coupling between the dots, and control of a single gate voltage is used to tune this coupling by over an

  16. Quantum computation: algorithms and implementation in quantum dot devices

    NASA Astrophysics Data System (ADS)

    Gamble, John King

    In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques

  17. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    SciTech Connect

    Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A.; Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J.; Schwagmann, Andre; Brody, Yarden

    2014-03-10

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device–scale arrays of quantum dots are formed by a two–step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12% ± 5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  18. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel G.; Singh, Mahi R.

    2014-03-01

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  19. Long-Term Retention of Fluorescent Quantum Dots In Vivo

    NASA Astrophysics Data System (ADS)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan; Eructiez, Marcel P.; Lagerholm, B. Christoffer; Waggoner, Alan S.

    Quantum dots that emit in the near-infrared can be used in vivo to follow circulation, to target the reticuloendothelial system, and to map lymphatic drainage from normal tissues and tumors. We have explored the role of surface charge and passivation by polyethylene glycol in determining circulating lifetimes and sites of deposition. Use of long polyethylene glycol polymers increases circulating lifetime. Changing surface charge can partially direct quantum dots to the liver and spleen, or the lymph nodes. Quantum dots are cleared in the order liver > spleen > bone marrow > lymph nodes. Quantum dots retained by lymph nodes maintained fluorescence for two years, suggesting either that the coating is extremely stable or that some endosomes preserve quantum dot function. We also explored migration from tumors to sentinel lymph nodes using tumor models in mice; surface charge and size make little difference to transport from tumors. Antibody and Fab-conjugates of polymer-coated quantum dots failed to target tumors in vivo, probably because of size.

  20. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    PubMed

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10(5) cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines.

  1. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    SciTech Connect

    Cundiff, Steven T.

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  2. Growth and Characterization of III-V Nitride Quantum Dots and Quantum Wires

    DTIC Science & Technology

    2010-03-26

    REPORT Growth and Characterization of III - V Nitride Quantum Dots and Quantum Wires 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Our research program...ANSI Std. Z39.18 - 14-Sep-2009 Final report Growth and Characterization of III - V Nitride Quantum Dots and Quantum Wires Statement of the...has two interrelated components: the growth of GaN nanowires and the fabrication of electronic devices, including gas sensors, on these nanowires . A

  3. Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen

    2016-12-01

    Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  4. Single-Photon Superradiance from a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tighineanu, Petru; Daveau, Raphaël S.; Lehmann, Tau B.; Beere, Harvey E.; Ritchie, David A.; Lodahl, Peter; Stobbe, Søren

    2016-04-01

    We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a fivefold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.

  5. Hole-Nuclear Spin Interaction in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Eble, B.; Testelin, C.; Desfonds, P.; Bernardot, F.; Balocchi, A.; Amand, T.; Miard, A.; Lemaître, A.; Marie, X.; Chamarro, M.

    2009-04-01

    We have measured the carrier spin dynamics in p-doped InAs/GaAs quantum dots by pump-probe and time-resolved photoluminescence experiments. We obtained experimental evidence of the hyperfine interaction between hole and nuclear spins. In the absence of an external magnetic field, our calculations based on dipole-dipole coupling between the hole and the quantum dot nuclei lead to a hole-spin dephasing time for an ensemble of dots of 14 ns, in close agreement with experiments.

  6. Coupled Landau-Zener-Stückelberg quantum dot interferometers

    NASA Astrophysics Data System (ADS)

    Gallego-Marcos, Fernando; Sánchez, Rafael; Platero, Gloria

    2016-02-01

    We investigate the interplay between long-range and direct photon-assisted transport in a triple quantum dot chain where local ac voltages are applied to the outer dots. We propose the phase difference between the two ac voltages as an external parameter, which can be easily tuned to manipulate the current characteristics. For gate voltages in phase opposition we find quantum destructive interferences analogous to the interferences in closed-loop undriven triple dots. As the voltages oscillate in phase, interferences between multiple paths give rise to dark states. Those totally cancel the current, and could be experimentally resolved.

  7. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.

  8. Theory of spin blockade in a triple quantum dots

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Hawrylak, Pawel

    2011-03-01

    We present a theory of electronic properties and spin blockade in a linear triple quantum dots. We use micoroscopic LCHO-CI and double-band Hubbard model to analyze the electronic and spin properties of a triple quantum dots near a symmetrical quadruple point involving the (1,1,1) configuration which is essential for implementing quantum information processing with electron spin. We calculate spectral functions and relate them via the rate equation, including coupling with a phonon bath, to current as a function of applied bias. We show that the spin blockade in a triple quantum dots can serve as a spectroscopic tool to distinguish spin polarized states from spin depolarized states. We also show that a spin blockade is developed only at high bias when an onsite triplet state on the edge quantum dot connected to the source lead becomes accessible in the transport window. In contradiction to the case of double quantum dot molecule, the onsite triplet is not only essential for lifting spin blockade but also important for building up spin polarisation and spin blockade in the system. The authors would like to acknowledge financial support from NSERC, OGS, and QuantumWorks.

  9. Origins of interlayer formation and misfit dislocation displacement in the vicinity of InAs/GaAs quantum dots

    SciTech Connect

    Huang, S.; Kim, S. J.; Pan, X. Q.; Goldman, R. S.

    2014-07-21

    We have examined the origins of interlayer formation and misfit dislocation (MD) displacement in the vicinity of InAs/GaAs quantum dots (QDs). For QDs formed by the Stranski-Krastanov mode, regularly spaced MDs nucleate at the interface between the QD and the GaAs buffer layer. In the droplet epitaxy case, both In island formation and In-induced “nano-drilling” of the GaAs buffer layer are observed during In deposition. Upon annealing under As flux, the In islands are converted to InAs QDs, with an InGaAs interlayer at the QD/buffer interface. Meanwhile, MDs nucleate at the QD/interlayer interface.

  10. Toward quantitatively fluorescent carbon-based "quantum" dots.

    PubMed

    Anilkumar, Parambath; Wang, Xin; Cao, Li; Sahu, Sushant; Liu, Jia-Hui; Wang, Ping; Korch, Katerina; Tackett, Kenneth N; Parenzan, Alexander; Sun, Ya-Ping

    2011-05-01

    Carbon-based "quantum" dots (or "carbon dots") are generally defined as surface-passivated small carbon nanoparticles that are brightly fluorescent. Apparently, the carbon particle surface passivation in carbon dots is critical to their fluorescence performance. An effective way to improve the surface passivation is to dope the surface of the precursor carbon nanoparticles with an inorganic salt, followed by the typical functionalization with organic molecules. In this work we passivated small carbon nanoparticles by a combination of the surface-doping with nanoscale semiconductors and the organic functionalization, coupled with gel column fractionation to harvest the most fluorescent carbon dots, which exhibited fluorescence emission quantum yields of up to 78%. Experimental and mechanistic issues relevant to potentially further improve the performance of carbon dots toward their being quantitatively fluorescent are discussed.

  11. Optically active quantum dots in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Srivastava, Ajit; Sidler, Meinrad; Allain, Adrien V.; Lembke, Dominik S.; Kis, Andras; Imamoğlu, A.

    2015-06-01

    Semiconductor quantum dots have emerged as promising candidates for the implementation of quantum information processing, because they allow for a quantum interface between stationary spin qubits and propagating single photons. In the meantime, transition-metal dichalcogenide monolayers have moved to the forefront of solid-state research due to their unique band structure featuring a large bandgap with degenerate valleys and non-zero Berry curvature. Here, we report the observation of zero-dimensional anharmonic quantum emitters, which we refer to as quantum dots, in monolayer tungsten diselenide, with an energy that is 20-100 meV lower than that of two-dimensional excitons. Photon antibunching in second-order photon correlations unequivocally demonstrates the zero-dimensional anharmonic nature of these quantum emitters. The strong anisotropic magnetic response of the spatially localized emission peaks strongly indicates that radiative recombination stems from localized excitons that inherit their electronic properties from the host transition-metal dichalcogenide. The large ˜1 meV zero-field splitting shows that the quantum dots have singlet ground states and an anisotropic confinement that is most probably induced by impurities or defects. The possibility of achieving electrical control in van der Waals heterostructures and to exploit the spin-valley degree of freedom renders transition-metal-dichalcogenide quantum dots interesting for quantum information processing.

  12. Thermoelectric study of dissipative quantum-dot heat engines

    NASA Astrophysics Data System (ADS)

    De, Bitan; Muralidharan, Bhaskaran

    2016-10-01

    This paper examines the thermoelectric response of a dissipative quantum-dot heat engine based on the Anderson-Holstein model in two relevant operating limits, (i) when the dot phonon modes are out of equilibrium, and (ii) when the dot phonon modes are strongly coupled to a heat bath. In the first case, a detailed analysis of the physics related to the interplay between the quantum-dot level quantization, the on-site Coulomb interaction, and the electron-phonon coupling on the thermoelectric performance reveals that an n -type heat engine performs better than a p -type heat engine. In the second case, with the aid of the dot temperature estimated by incorporating a thermometer bath, it is shown that the dot temperature deviates from the bath temperature as electron-phonon interaction in the dot becomes stronger. Consequently, it is demonstrated that the dot temperature controls the direction of phonon heat currents, thereby influencing the thermoelectric performance. Finally, the conditions on the maximum efficiency with varying phonon couplings between the dot and all the other macroscopic bodies are analyzed in order to reveal the nature of the optimum junction.

  13. Compact Interconnection Networks Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  14. Carbon nanotube quantum dots as highly sensitive THz spectrometers

    NASA Astrophysics Data System (ADS)

    Rinzan, Mohamed; Jenkins, Greg; Drew, Dennis; Shafranjuk, Serhii; Barbara, Paola

    2012-02-01

    We show that carbon nanotube quantum dots (CNT-Dots) coupled to antennas are extremely sensitive, broad-band, terahertz quantum detectors. Their response is due to photon-assisted single-electron tunneling (PASET)[1], but cannot be fully understood with orthodox PASET models[2]. We consider intra-dot excitations and non-equilibrium cooling to explain the anomalous response. REFERENCES: [1] Y. Kawano, S. Toyokawa, T. Uchida and K. Ishibashi, THz photon assisted tunneling in carbon-nanotube quantum dots, Journal of Applied Physics 103, 034307 (2008). [2] P. K. Tien and J. P. Gordon, Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films, Phys. Rev. 129, 647 (1963).

  15. Cooper pair splitting in parallel quantum dot Josephson junctions

    PubMed Central

    Deacon, R. S.; Oiwa, A.; Sailer, J.; Baba, S.; Kanai, Y.; Shibata, K.; Hirakawa, K.; Tarucha, S.

    2015-01-01

    Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair. PMID:26130172

  16. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    SciTech Connect

    Korenev, V. V. Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2013-10-15

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

  17. Analysis of the efficiency of intermediate band solar cells based on quantum dot supercrystals

    SciTech Connect

    Heshmati, S; Golmohammadi, S; Abedi, K; Taleb, H

    2014-03-28

    We have studied the influence of the quantum-dot (QD) width and the quantum-dot conduction band (QD-CB) offset on the efficiency of quantum-dot intermediate band solar cells (QD-IBSCs). Simulation results demonstrate that with increasing QD-CB offset and decreasing QD width, the maximum efficiency is achieved. (laser applications and other topics in quantum electronics)

  18. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    DOE PAGES

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-01

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less

  19. Quantum Hall effect in semiconductor systems with quantum dots and antidots

    SciTech Connect

    Beltukov, Ya. M.; Greshnov, A. A.

    2015-04-15

    The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.

  20. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  1. 2 Micrometers InAsSb Quantum-dot Lasers

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Uhl, David; Keo, Sam

    2004-01-01

    InAsSb quantum-dot lasers near 2 micrometers were demonstrated in cw operation at room temperature with a threshold current density of 733 A,/cm(sup 2), output power of 3 mW/facet and a differential quantum efficiency of 13%.

  2. Quantum dots: Time to get the nukes out

    NASA Astrophysics Data System (ADS)

    Schroer, Michael D.; Petta, Jason R.

    2008-07-01

    The ability to electrically control spin dynamics in quantum dots makes them one of the most promising platforms for solid-state quantum-information processing. Minimizing the influence of the nuclear spin environment is an important step towards realizing such promise.

  3. Size-Minimized Quantum Dots for Molecular and Cellular Imaging

    NASA Astrophysics Data System (ADS)

    Smith, Andrew M.; Wen, Mary M.; Wang, May D.; Nie, Shuming

    Semiconductor quantum dots, tiny light-emitting particles on thenanometer scale, are emerging as a new class of fluorescent labels for a broad range of molecular and cellular applications. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties such as size-tunable light emission, intense signal brightness, resistance to photobleaching, and broadband absorption for simultaneous excitation of multiple fluorescence colors. Here we report new advances in minimizing the hydrodynamic sizes of quantum dots using multidentate and multifunctional polymer coatings. A key finding is that a linear polymer containing grafted amine and thiol coordinating groups can coat nanocrystals and lead to a highly compact size, exceptional colloidal stability, strong resistance to photobleaching, and high fluorescence quantum yields. This has allowed a new generation of bright and stable quantum dots with small hydrodynamic diameters between 5.6 and 9.7 nm with tunable fluorescence emission from the visible (515 nm) to the near infrared (720 nm). These quantum dots are well suited for molecular and cellular imaging applications in which the nanoparticle hydrodynamic size needs to be minimized. Together with the novel properties of new strain-tunable quantum dots, these findings will be especially useful for multicolor and super-resolution imaging at the single-molecule level.

  4. Sunlight assisted photodegradation by tin oxide quantum dots

    NASA Astrophysics Data System (ADS)

    Shajira, P. S.; Prabhu, V. Ganeshchandra; Bushiri, M. Junaid

    2015-12-01

    Rutile phase of SnO2 quantum dots of average size of 2.5 nm were synthesized at a growth temperature of 70 °C and characterized with XRD, TEM, FTIR and Raman analysis. The effective strain within the lattice of SnO2 quantum dots was calculated by Williamson-Hall method. The broad peaks in XRD as well as Raman spectra and the presence of Raman bands at 569 and 432 cm-1 are due to lower crystallinity of nanoparticles. The optical band gap of SnO2 quantum dots was increased to 3.75 eV attributed to the quantum size effect. SnO2 quantum dots were annealed in air atmosphere and the crystallite size of the particles increased with annealing temperature. Sunlight assisted photodegration property of SnO2 quantum dots was investigated with vanillin as a model system and it shows the photodegradation efficiency of 87%. The photoluminescence and photodegradation efficiency of nanocrystallite SnO2 decreases with increase of crystallite size contributed to the reduction in population of defects and surface area.

  5. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  6. Quantum dot mediated imaging of atherosclerosis

    NASA Astrophysics Data System (ADS)

    Jayagopal, Ashwath; Su, Yan Ru; Blakemore, John L.; Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

    2009-04-01

    The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE-/- mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.

  7. Single-quantum-dot-based DNA nanosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yang; Yeh, Hsin-Chih; Kuroki, Marcos T.; Wang, Tza-Huei

    2005-11-01

    Rapid and highly sensitive detection of DNA is critical in diagnosing genetic diseases. Conventional approaches often rely on cumbersome, semi-quantitative amplification of target DNA to improve detection sensitivity. In addition, most DNA detection systems (microarrays, for example), regardless of their need for target amplification, require separation of unhybridized DNA strands from hybridized stands immobilized on a solid substrate, and are thereby complicated by solution-surface binding kinetics. Here, we report an ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) capable of detecting low concentrations of DNA in a separation-free format. This system uses quantum dots (QDs) linked to DNA probes to capture DNA targets. The target strand binds to a dye-labelled reporter strand thus forming a FRET donor-acceptor ensemble. The QD also functions as a concentrator that amplifies the target signal by confining several targets in a nanoscale domain. Unbound nanosensors produce near-zero background fluorescence, but on binding to even a small amount of target DNA (~50 copies or less) they generate a very distinct FRET signal. A nanosensor-based oligonucleotide ligation assay has been demonstrated to successfully detect a point mutation typical of some ovarian tumours in clinical samples.

  8. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-07-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.

  9. Graphene quantum dots derived from carbon fibers.

    PubMed

    Peng, Juan; Gao, Wei; Gupta, Bipin Kumar; Liu, Zheng; Romero-Aburto, Rebeca; Ge, Liehui; Song, Li; Alemany, Lawrence B; Zhan, Xiaobo; Gao, Guanhui; Vithayathil, Sajna Antony; Kaipparettu, Benny Abraham; Marti, Angel A; Hayashi, Takuya; Zhu, Jun-Jie; Ajayan, Pulickel M

    2012-02-08

    Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating optical and electronic properties. These have been synthesized either by nanolithography or from starting materials such as graphene oxide (GO) by the chemical breakdown of their extended planar structure, both of which are multistep tedious processes. Here, we report that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts. The as-produced GQDs, in the size range of 1-4 nm, show two-dimensional morphology, most of which present zigzag edge structure, and are 1-3 atomic layers thick. The photoluminescence of the GQDs can be tailored through varying the size of the GQDs by changing process parameters. Due to the luminescence stability, nanosecond lifetime, biocompatibility, low toxicity, and high water solubility, these GQDs are demonstrated to be excellent probes for high contrast bioimaging and biosensing applications.

  10. Photodynamic antibacterial effect of graphene quantum dots.

    PubMed

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD.

  11. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    PubMed Central

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  12. Toxicity of carbon group quantum dots

    NASA Astrophysics Data System (ADS)

    Hanada, Sanshiro; Fujioka, Kouki; Hoshino, Akiyoshi; Manabe, Noriyoshi; Hirakuri, Kenji; Yamamoto, Kenji

    2009-02-01

    Carbon group quantum dots (QDs) such as carbon, silicon and germanium, have potential for biomedical applications such as bio-imaging markers and drug delivery systems and are expected to demonstrate several advantages over conventional fluorescent QDs such as CdSe, especially in biocompatibility. We assessed biocompatibility of newly manufactured silicon QDs (Si-QDs), by means of both MTT assay and LDH assay for HeLa cells in culture and thereby detected the cellular toxicity by administration of high concentration of Si-QD (>1000 μg/mL), while we detected the high toxicity by administration of over 100 μg/mL of CdSe-QDs. As a hypothesis for the cause of the cellular toxicity, we measured oxy-radical generation from the QDs by means of luminol reaction method. We detected generation of oxy-radicals from the Si-QDs and those were decreased by radical scavenger such as superoxide dismutase (SOD) and N-acetyl cysteine (NAC). We concluded that the Si-QD application to cultured cells in high concentration led cell membrane damage by oxy-radicals and combination usage with radical scavenger is one of the answers.

  13. Hole transfer from single quantum dots.

    PubMed

    Song, Nianhui; Zhu, Haiming; Jin, Shengye; Lian, Tianquan

    2011-11-22

    Photoinduced hole transfer dynamics from single CdSe/CdS(3ML)/CdZnS(2ML)/ZnS(2ML) core/multishell quantum dots (QDs) to phenothiazine (PTZ) molecules were studied by single QD fluorescence spectroscopy to investigate the static and dynamic heterogeneities of the hole transfer process as well as its effect on the blinking dynamics of QDs. Ensemble-averaged transient absorption and fluorescence decay measurements show that excitons in QDs dissociate by transferring the valence band hole to PTZ with a time constant of 50 ns for the 1:1 PTZ-QD complex, and the subsequent charge recombination process (i.e., electron transfer from the conduction band of the reduced QD to oxidized PTZ to regenerate the complex in the ground state) occurs mainly on the 100 to 1000 ns time scale. Single QD-PTZ complexes show pronounced correlated fluctuations of fluorescence intensity and lifetime with time. In addition to the dynamic fluctuation, there are considerable heterogeneities of average hole transfer rate among different QD-PTZ complexes. The hole transfer process has little effect on the statistics of the off-states, which is often believed to be positively charged QDs with a valence band hole. Instead, it increases the probability of weakly emissive or "gray" states.

  14. Immune cells tracing using quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Kawamura, Yuki I.; Toyama-Sorimachi, Noriko; Yasuhara, Masato; Dohi, Taeko; Yamamoto, Kenji

    2006-02-01

    Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. Here we report an example of labeling immune cells by QDs. We collected splenic CD4 + T-lymphocyte and peritoneal macrophages from mice. Then cells were labeled with QDs. QDs are incorporated into the T-lymphocyte and macrophages immediately after addition and located in the cytoplasm via endocytosis pathway. The fluorescence of QDs held in the endosomes was easily detected for more than a week. In addition, T-lymphocytes labeled with QDs were stable and cell proliferation or cytokine production including IL-2 and IFN-γ was not affected. When QD-labeled T-lymphocytes were adoptively transferred intravenously to mice, they remained in the peripheral blood and spleen up to a week. Using QD-labeled peritoneal macrophages, we studied cell traffic during inflammation on viscera in peritoneum cavity. QD-labeled macrophages were transplanted into the peritoneum of the mouse, and colitis was induced by intracolonic injection of a hapten, trinitrobenzensulfonic acid. With the aid of stong signals of QDs, we found that macrophage accumuled on the inflammation site of the colon. These results suggested that fluorescent probes of QDs might be useful as bioimaging tools for tracing target cells in vivo.

  15. Asymmetric shape transitions of epitaxial quantum dots

    NASA Astrophysics Data System (ADS)

    Wei, Chaozhen; Spencer, Brian J.

    2016-06-01

    We construct a two-dimensional continuum model to describe the energetics of shape transitions in fully faceted epitaxial quantum dots (strained islands) via minimization of elastic energy and surface energy at fixed volume. The elastic energy of the island is based on a third-order approximation, enabling us to consider shape transitions between pyramids, domes, multifaceted domes and asymmetric intermediate states. The energetics of the shape transitions are determined by numerically calculating the facet lengths that minimize the energy of a given island type of prescribed island volume. By comparing the energy of different island types with the same volume and analysing the energy surface as a function of the island shape parameters, we determine the bifurcation diagram of equilibrium solutions and their stability, as well as the lowest barrier transition pathway for the island shape as a function of increasing volume. The main result is that the shape transition from pyramid to dome to multifaceted dome occurs through sequential nucleation of facets and involves asymmetric metastable transition shapes. We also explicitly determine the effect of corner energy (facet edge energy) on shape transitions and interpret the results in terms of the relative stability of asymmetric island shapes as observed in experiment.

  16. Qubit protection in nuclear-spin quantum dot memories.

    PubMed

    Kurucz, Z; Sørensen, M W; Taylor, J M; Lukin, M D; Fleischhauer, M

    2009-07-03

    We present a mechanism to protect quantum information stored in an ensemble of nuclear spins in a semiconductor quantum dot. When the dot is charged the nuclei interact with the spin of the excess electron through the hyperfine coupling. If this coupling is made off-resonant, it leads to an energy gap between the collective storage states and all other states. We show that the energy gap protects the quantum memory from local spin-flip and spin-dephasing noise. Effects of nonperfect initial spin polarization and inhomogeneous hyperfine coupling are discussed.

  17. Excitation spectra of circular, few-electron quantum dots

    PubMed

    Kouwenhoven; Oosterkamp; Danoesastro; Eto; Austing; Honda; Tarucha

    1997-12-05

    Studies of the ground and excited states in semiconductor quantum dots containing 1 to 12 electrons showed that the quantum numbers of the states in the excitation spectra can be identified and compared with exact calculations. A magnetic field induces transitions between the ground and excited states. These transitions were analyzed in terms of crossings between single-particle states, singlet-triplet transitions, spin polarization, and Hund's rule. These impurity-free quantum dots allow "atomic physics" experiments to be performed in magnetic field regimes not accessible for atoms.

  18. Studies of electron spin in GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Craft, Daniel; Colton, John; Park, Tyler; White, Phil

    2013-03-01

    We have studied electron spins in GaAs quantum dots with a pump-probe technique that normally yields the T1 spin lifetime, the time required for initially polarized electrons to relax and randomize. Using a circularly polarized laser tuned to the wavelength response of the quantum dot we can ``pump'' the spins into alignment. After aligning the spins we can detect them using a second, linearly polarized ``probe'' laser. By changing the delay between the two lasers we can trace out the spin response over time. In contrast with other samples (bulk GaAs and a GaAs quantum well), where the spin response decayed exponentially with time, initial data on the quantum dots has shown an unexpected, oscillating behavior which dies out on the order of 700 ns, independent of both temperature and magnetic field.

  19. Detection of CdSe quantum dot photoluminescence for security label on paper

    SciTech Connect

    Isnaeni, Sugiarto, Iyon Titok; Bilqis, Ratu; Suseno, Jatmiko Endro

    2016-02-08

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  20. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    SciTech Connect

    Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  1. Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm

    SciTech Connect

    Goldmann, Elias Jahnke, Frank; Paul, Matthias; Kettler, Jan; Jetter, Michael; Michler, Peter; Krause, Florian F.; Müller, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2014-10-13

    A combined experimental and theoretical study of InGaAs/GaAs quantum dots (QDs) emitting at 1.3 μm under the influence of a strain-reducing InGaAs quantum well is presented. We demonstrate a red shift of 20–40 nm observed in photoluminescence spectra due to the quantum well. The InGaAs/GaAs QDs grown by metal organic vapor phase epitaxy show a bimodal height distribution (1 nm and 5 nm) and indium concentrations up to 90%. The emission properties are explained with combined tight-binding and configuration-interaction calculations of the emission wavelengths in conjunction with high-resolution scanning transmission electron microscopy investigations of QD geometry and indium concentrations in the QDs, which directly enter the calculations. QD geometries and concentration gradients representative for the ensemble are identified.

  2. InAsP quantum dot lasers grown by MOVPE.

    PubMed

    Karomi, Ivan; Smowton, Peter M; Shutts, Samuel; Krysa, Andrey B; Beanland, Richard

    2015-10-19

    We report on InAsP quantum dot lasers grown by MOVPE for 730-780 nm wavelength emission and compare performance with InP dot samples grown under similar conditions and with similar structures. 1-4 mm long, uncoated facet InAsP dot lasers emit between 760 and 775 nm and 2 mm long lasers with uncoated facets have threshold current density of 260 Acm(-2), compared with 150 Acm(-2) for InP quantum dot samples, which emit at shorter wavelengths, 715-725 nm. Pulsed lasing is demonstrated for InAsP dots up to 380 K with up to 200 mW output power. Measured absorption spectra indicate the addition of Arsenic to the dots has shifted the available transitions to longer wavelengths but also results in a much larger degree of spectral broadening. These spectra and transmission electron microscopy images indicate that the InAsP dots have a much larger degree of inhomogeneous broadening due to dot size variation, both from layer to layer and within a layer.

  3. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  4. Ultrafast optical control of individual quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Press, David; McMahon, Peter L.; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a ‘flying’ photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is

  5. Quantum coherence in semiconductor nanostructures for improved lasers and detectors.

    SciTech Connect

    Chow, Weng Wah Dr.; Lyo, Sungkwun Kenneth; Cederberg, Jeffrey George; Modine, Normand Arthur; Biefeld, Robert Malcolm

    2006-02-01

    The potential for implementing quantum coherence in semiconductor self-assembled quantum dots has been investigated theoretically and experimentally. Theoretical modeling suggests that coherent dynamics should be possible in self-assembled quantum dots. Our experimental efforts have optimized InGaAs and InAs self-assembled quantum dots on GaAs for demonstrating coherent phenomena. Optical investigations have indicated the appropriate geometries for observing quantum coherence and the type of experiments for observing quantum coherence have been outlined. The optical investigation targeted electromagnetically induced transparency (EIT) in order to demonstrate an all optical delay line.

  6. Physical optimization of quantum error correction circuits with spatially separated quantum dot spins.

    PubMed

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2013-05-20

    We propose an efficient protocol for optimizing the physical implementation of three-qubit quantum error correction with spatially separated quantum dot spins via virtual-photon-induced process. In the protocol, each quantum dot is trapped in an individual cavity and each two cavities are connected by an optical fiber. We propose the optimal quantum circuits and describe the physical implementation for correcting both the bit flip and phase flip errors by applying a series of one-bit unitary rotation gates and two-bit quantum iSWAP gates that are produced by the long-range interaction between two distributed quantum dot spins mediated by the vacuum fields of the fiber and cavity. The protocol opens promising perspectives for long distance quantum communication and distributed quantum computation networks.

  7. Hard chaos, quantum billiards, and quantum dot computers

    SciTech Connect

    Mainieri, R.; Cvitanovic, P.; Hasslacher, B.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Research was performed in analytic and computational techniques for dealing with hard chaos, especially the powerful tool of cycle expansions. This work has direct application to the understanding of electrons in nanodevices, such as junctions of quantum wires, or in arrays of dots or antidots. We developed a series of techniques for computing the properties of quantum systems with hard chaos, in particular the flow of electrons through nanodevices. These techniques are providing the insight and tools to design computers with nanoscale components. Recent efforts concentrated on understanding the effects of noise and orbit pruning in chaotic dynamical systems. We showed that most complicated chaotic systems (not just those equivalent to a finite shift) will develop branch points in their cycle expansion. Once the singularity is known to exist, it can be removed with a dramatic increase in the speed of convergence of quantities of physical interest.

  8. Imaging electrostatically confined Dirac fermions in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Juwon; Wong, Dillon; Velasco, Jairo, Jr.; Rodriguez-Nieva, Joaquin F.; Kahn, Salman; Tsai, Hsin-Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid S.; Crommie, Michael F.

    2016-11-01

    Electrostatic confinement of charge carriers in graphene is governed by Klein tunnelling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at p-n junction boundaries. Reflection and transmission at these boundaries affect the quantum interference of electronic waves, enabling the formation of novel quasi-bound states. Here we report the use of scanning tunnelling microscopy to map the electronic structure of Dirac fermions confined in quantum dots defined by circular graphene p-n junctions. The quantum dots were fabricated using a technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer. Inside such graphene quantum dots we observe resonances due to quasi-bound states and directly visualize the quantum interference patterns arising from these states. Outside the quantum dots Dirac fermions exhibit Friedel oscillation-like behaviour. Bolstered by a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield insights into the spatial behaviour of electrostatically confined Dirac fermions.

  9. Periodic scarred States in open quantum dots as evidence of quantum Darwinism.

    PubMed

    Burke, A M; Akis, R; Day, T E; Speyer, Gil; Ferry, D K; Bennett, B R

    2010-04-30

    Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.

  10. Periodic Scarred States in Open Quantum Dots as Evidence of Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Burke, A. M.; Akis, R.; Day, T. E.; Speyer, Gil; Ferry, D. K.; Bennett, B. R.

    2010-04-01

    Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.

  11. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOEpatents

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  12. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  13. Double Quantum Dots in Carbon Nanotubes

    DTIC Science & Technology

    2010-06-02

    occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by...of an additional val- ley degree of freedom, the two-electron eigenstates can be separated in an orbital part and a spin-valley part that are, to a...detuning, each dot is populated by a single electron and tunneling is sup- pressed because of Coulomb interactions. Thus, interdot coupling only occurs

  14. Data detection algorithms for multiplexed quantum dot encoding.

    PubMed

    Goss, Kelly C; Messier, Geoff G; Potter, Mike E

    2012-02-27

    A group of quantum dots can be designed to have a unique spectral emission by varying the size of the quantum dots (wavelength) and number of quantum dots (intensity). This technique has been previously proposed for biological tags and object identification. The potential of this system lies in the ability to have a large number of distinguishable wavelengths and intensity levels. This paper presents a communications system model for MxQDs including the interference between neighbouring QD colours and detector noise. An analytical model of the signal-to-noise ratio of a Charge-Coupled Device (CCD) spectrometer is presented and confirmed with experimental results. We then apply a communications system perspective and propose data detection algorithms that increase the readability of the quantum dots tags. It is demonstrated that multiplexed quantum dot barcodes can be read with 99.7% accuracy using the proposed data detection algorithms in a system with 6 colours and 6 intensity values resulting in 46,655 unique spectral codes.

  15. Temperature-dependent electron transport in quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Padilla, Derek J.

    Quantum dot photovoltaics have attracted much interest from researchers in recent years. They have the potential to address both costs and efficiencies of solar cells while simultaneously demonstrating novel physics. Thin-film devices inherently require less material than bulk crystalline silicon, and solution deposition removes the high energy used in fabrication processes. The ease of bandgap tunability in quantum dots through size control allows for simple graded bandgap structures, which is one method of breaking beyond the Shockley-Queisser limit. Power output can also be increased through the process of multiple exciton generation, whereby more than one electron participates in conduction after the absorption of a single photon. In this dissertation work, quantum dot photovoltaics are examined through a range of temperatures. Exploring the current-voltage-temperature parameter space provides insight into the dominant conduction mechanisms within these materials, which is largely not agreed upon. Beginning with PbS quantum dots, changes in device structure are examined by varying the capping ligand and nanoparticle size. This leads similar studies of new, germanium quantum dot devices. Through this understanding, further optimization of device structure can lead to enhanced device performance.

  16. Three Quantum Dots Embedded in Aharonov-Bohm Rings

    NASA Astrophysics Data System (ADS)

    Toonen, Ryan; Hãttel, Andreas; Goswami, Srijit; Eberl, Karl; Eriksson, Mark; van der Weide, Daniel; Blick, Robert

    2004-03-01

    Coherent coupling of two quantum dots embedded in a ring-geometry has been demonstrated by Holleitner et al.(A.W. Holleitner, H. Qin, C.R. Decker, K. Eberl, and R.H. Blick, phCoherent Coupling of Two Quantum Dots Embedded in an Aharonov-Bohm Ring), Phys. Rev. Lett. 87, 256802 (2001) Recording of the Aharonov-Bohm oscillations in such a circuit has proven that the phases of electron wave functions can be manipulated directly. We have since enhanced the complexity of this system by embedding three quantum dots in such a ring-geometry. As before, our quantum dots are formed by laterally constricting a two-dimensional electron gas (2DEG) in an Al_xGa_1-xAs/GaAs heterostructure. The new, essential ingredient of this experiment is an additional third port--added to the ring for individually addressing the third quantum dot. This circuit allows us to investigate phenomena associated with phase-switching between separate ports. We will discuss first results and give a simple model of circuit operation.

  17. Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy.

    PubMed

    Samia, Anna C S; Dayal, Smita; Burda, Clemens

    2006-01-01

    Quantum dots have emerged as an important class of material that offers great promise to a diverse range of applications ranging from energy conversion to biomedicine. Here, we review the potential of using quantum dots and quantum dot conjugates as sensitizers for photodynamic therapy (PDT). The photophysics of singlet oxygen generation in relation to quantum dot-based energy transfer is discussed and the possibility of using quantum dots as photosensitizer in PDT is assessed, including their current limitations to applications in biological systems. The biggest advantage of quantum dots over molecular photosensitizers that comes into perspective is their tunable optical properties and surface chemistries. Recent developments in the preparation and photophysical characterization of quantum dot energy transfer processes are also presented in this review, to provide insights on the future direction of quantum dot-based photosensitization studies from the viewpoint of our ongoing research.

  18. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  19. Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.

    PubMed

    Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun

    2014-12-04

    Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device.

  20. Interface trap density and mobility extraction in InGaAs buried quantum well metal-oxide-semiconductor field-effect-transistors by gated Hall method

    SciTech Connect

    Chidambaram, Thenappan; Madisetti, Shailesh; Greene, Andrew; Yakimov, Michael; Tokranov, Vadim; Oktyabrsky, Serge; Veksler, Dmitry; Hill, Richard

    2014-03-31

    In this work, we are using a gated Hall method for measurement of free carrier density and electron mobility in buried InGaAs quantum well metal-oxide-semiconductor field-effect-transistor channels. At room temperature, mobility over 8000 cm{sup 2}/Vs is observed at ∼1.4 × 10{sup 12} cm{sup −2}. Temperature dependence of the electron mobility gives the evidence that remote Coulomb scattering dominates at electron density <2 × 10{sup 11} cm{sup −2}. Spectrum of the interface/border traps is quantified from comparison of Hall data with capacitance-voltage measurements or electrostatic modeling. Above the threshold voltage, gate control is strongly limited by fast traps that cannot be distinguished from free channel carriers just by capacitance-based methods and can be the reason for significant overestimation of channel density and underestimation of carrier mobility from transistor measurements.

  1. Current-injection two-color lasing in a wafer-bonded coupled multilayer cavity with InGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Minami, Yasuo; Ota, Hiroto; Lu, Xiangmeng; Kumagai, Naoto; Kitada, Takahiro; Isu, Toshiro

    2017-04-01

    Current-injection two-color lasing has been demonstrated using a GaAs/AlGaAs coupled multilayer cavity that is a good candidate for novel terahertz-emitting devices based on difference-frequency generation (DFG) inside the structure. The coupled cavity structure was fabricated by the direct wafer bonding of (001)- and (113)B-oriented epitaxial wafers for the efficient DFG of two modes in the (113)B side cavity, and two types of InGaAs multiple quantum wells (MQWs) were introduced only in the (001) side cavity as optical gain materials. The threshold behavior was clearly observed in the current–light output curve even at room temperature. Two-color lasing was successfully observed when the gain peaks of MQWs were considerably tuned to the cavity modes by the operating temperature.

  2. Diamond LED substrate and novel quantum dots.

    PubMed

    Sung, James C; Sung, Michael

    2009-02-01

    Nitride LED (e.g., GaN) has become the mainstream of blue light source. The blue light can be converted to white light by exciting a phosphor (e.g., Nichia's YAG or Osram's TAG) with the complementary yellow emission. However, GaN is typically deposited on sapphire (Al2O3) substrates formed by crystal pulling or hexagonal (e.g., 4 H or 6 H) SiC wafers condensed from SiC vapor. In either case, the nitride lattice is ridden (e.g., 10(9)/cm2) with dislocations. The high dislocation density with sapphire is due to the large (>13%) lattice mismatch; and with hexagonal SiC, because of intrinsic defects. Cubic (beta) SiC may be deposited epitaxially using a CVD reactor onto silicon wafer by diffusing the interface and by chemical gradation. A reactive echant (e.g., hydrogen or fluorine) can be introduced periodically to gasify mis-aligned atoms. In this case, large single crystal wafers would be available for the manufacture of high bright LED with superb electro-optical efficiency. The SiC wafer may be coated with diamond film that can eliminate heat in real time. As a result of lower temperature, the nitride LED can be brighter and it will last longer. The blue light of GaN LED formed on SiC on Diamond (SiCON) LED may also be scattered by using novel quantum dots (e.g., 33 atom pairs of CdSe) to form a broad yellow light that blend in with the original blue light to form sunlight-like white light. This would be the ideal source for general illumination (e.g., for indoor) or backlighting (e.g., for LCD).

  3. Biosensing with quantum dots: a microfluidic approach.

    PubMed

    Vannoy, Charles H; Tavares, Anthony J; Noor, M Omair; Uddayasankar, Uvaraj; Krull, Ulrich J

    2011-01-01

    Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy.

  4. Silicon quantum dots for optical applications

    NASA Astrophysics Data System (ADS)

    Wu, Jeslin J.

    Luminescent silicon quantum dots (SiQDs) are emerging as attractive materials for optoelectronic devices, third generation photovoltaics, and bioimaging. Their applicability in the real world is contingent on their optical properties and long-term environmental stability; and in biological applications, factors such as water solubility and toxicity must also be taken into consideration. The aforementioned properties are highly dependent on the QDs' surface chemistry. In this work, SiQDs were engineered for the respective applications using liquid-phase and gas-phase functionalization techniques. Preliminary work in luminescent downshifting for photovoltaic systems are also reported. Highly luminescent SiQDs were fabricated by grafting unsaturated hydrocarbons onto the surface of hydrogen-terminated SiQDs via thermal and photochemical hydrosilylation. An industrially attractive, all gas-phase, nonthermal plasma synthesis, passivation (aided by photochemical reactions), and deposition process was also developed to reduce solvent waste. With photoluminescence quantum yields (PLQYs) nearing 60 %, the alkyl-terminated QDs are attractive materials for optical applications. The functionalized SiQDs also exhibited enhanced thermal stability as compared to their unfunctionalized counterparts, and the photochemically-hydrosilylated QDs further displayed photostability under UV irradiation. These environmentally-stable SiQDs were used as luminescent downshifting layers in photovoltaic systems, which led to enhancements in the blue photoresponse of heterojunction solar cells. Furthermore, the QD films demonstrated antireflective properties, improving the coupling efficiency of sunlight into the cell. For biological applications, oxide, amine, or hydroxyl groups were grafted onto the surface to create water-soluble SiQDs. Luminescent, water-soluble SiQDs were produced in by microplasma treating the QDs in water. Stable QYs exceeding 50 % were obtained. Radical-based and

  5. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    PubMed

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts.

  6. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes

    NASA Astrophysics Data System (ADS)

    Gromova, Yulia A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.

    2013-10-01

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.

  7. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes.

    PubMed

    Gromova, Yulia A; Orlova, Anna O; Maslov, Vladimir G; Fedorov, Anatoly V; Baranov, Alexander V

    2013-10-31

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.

  8. Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties

    NASA Technical Reports Server (NTRS)

    Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher

    1995-01-01

    One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.

  9. Quantum strain sensor with a topological insulator HgTe quantum dot

    PubMed Central

    Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674

  10. Quantum strain sensor with a topological insulator HgTe quantum dot.

    PubMed

    Korkusinski, Marek; Hawrylak, Pawel

    2014-05-09

    We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band k · p Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian.

  11. Magnetic quantum dot in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Li, Guo; Zhu, Jia-Lin; Yang, Ning

    2017-03-01

    Magnetic quantum dots in two-dimensional band and topological insulators are studied by solving the modified Dirac model under nonuniform magnetic fields. The Landau levels split into discrete states with certain angular momentum. The states splitting from the zero Landau levels lie in the energy gap for topological insulators but are out of the gap for band insulators. It is found that the ground states oscillate between the spin-up and spin-down states when the magnetic field or the dot size changes. The oscillation manifests itself as changes of sign and strength of charge currents near the dot's edge.

  12. Fluorescent carbon 'quantum' dots from thermochemical functionalization of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Rednic, Monica I.; Lu, Zhuomin; Wang, Ping; LeCroy, Gregory E.; Yang, Fan; Liu, Yun; Qian, Haijun; Terec, Anamaria; Veca, L. Monica; Lu, Fushen; Sun, Ya-Ping

    2015-10-01

    Fluorescent carbon 'quantum' dots are generally obtained by deliberate chemical functionalization of carbon nanoparticles or by 'one-pot' carbonization processing. For brightly fluorescent carbon dots with optoelectronic polymers, a hybrid approach was developed to use pre-processed and selected carbon nanoparticles as precursor for surface passivation by poly(9-vinylcarbazole) (PVK) in one-pot thermochemical processing, thus taking advantage of the more controllable feature from the deliberate functionalization and also the versatility associated with the one-pot synthesis. The PVK-carbon dots were characterized by optical spectroscopy, microscopy, and other techniques. The broad applicability of the hybrid approach is discussed.

  13. Spin degeneracy and conductance fluctuations in open quantum dots.

    PubMed

    Folk, J A; Patel, S R; Birnbaum, K M; Marcus, C M; Duruöz, C I; Harris, J S

    2001-03-05

    The dependence of conductance fluctuations on parallel magnetic field is used as a probe of spin degeneracy in open GaAs quantum dots. The variance of fluctuations at high parallel field is reduced from the low-field variance (with broken time-reversal symmetry) by factors ranging from roughly 2 in a 1 microm (2) dot to greater than 4 in 8 microm (2) dots. The factor of 2 is expected for Zeeman splitting of spin-degenerate channels. A possible explanation for the larger suppression based on field-dependent spin-orbit scattering is proposed.

  14. Noninvasive detection of charge rearrangement in a quantum dot in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Fricke, C.; Rogge, M. C.; Harke, B.; Reinwald, M.; Wegscheider, W.; Hohls, F.; Haug, R. J.

    2005-11-01

    We demonstrate electron redistribution caused by magnetic field on a single quantum dot measured by means of a quantum point contact as noninvasive detector. Our device, which is fabricated by local anodic oxidation, allows us to control independently the quantum point contact and all tunneling barriers of the quantum dot. Thus we are able to measure both the change of the quantum dot charge and also changes of the electron configuration at constant number of electrons on the quantum dot. We use these features to exploit the quantum dot in a high magnetic field where transport through the quantum dot displays the effects of Landau shells and spin blockade. We confirm the internal rearrangement of electrons as function of the magnetic field for a fixed number of electrons on the quantum dot.

  15. Highly sensitive humidity sensing properties of carbon quantum dots films

    SciTech Connect

    Zhang, Xing; Ming, Hai; Liu, Ruihua; Han, Xiao; Kang, Zhenhui; Liu, Yang; Zhang, Yonglai

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A humidity sensing device was fabricated based on carbon quantum dots (CQDs) films. ► The conductivity of the CQDs films shows a linear and rapid response to atmosphere humidity. ► The humidity sensing property was due to the hydrogen bonds between the functional groups on CQDs. -- Abstract: We reported the fabrication of a humidity sensing device based on carbon quantum dots (CQDs) film. The conductivity of the CQDs film has a linear and rapid response to relative humidity, providing the opportunity for the fabrication of humidity sensing devices. The mechanism of our humidity sensor was proposed to be the formation of hydrogen bonds between carbon quantum dots and water molecules in the humidity environment, which significantly promote the electrons migration. In a control experiment, this hypothesis was confirmed by comparing the humidity sensitivity of candle soot (i.e. carbon nanoparticles) with and without oxygen containing groups on the surfaces.

  16. Gradient-Doped Thermophotovoltaic Devices based on Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Fayaz Movahed, Hamidreza

    Electromagnetic radiation emitted from hot objects represents a sizeable supply of energy; however, even for relatively hot bodies, its flux peaks in the short-wavelength infrared between 1 and 3 mum, standing in the way of its photovoltaic harvest using the most widely-available optoelectronic materials such as Si and CdTe. Colloidal quantum dots combine low-cost solution-processing with bandgap tunability in this spectral region, thereby offering a route to harnessing thermal power photovoltaically. Here we report thermophotovoltaic devices constructed using colloidal quantum dots that harvest infrared radiation from an 800°C blackbody source. Only by constructing a gradient-doped colloidal quantum dot thermophotovoltaic device were we able to achieve thermophotovoltaic power generation with a power conversion efficiency of 0.39%. The device showed stable operation at ambient temperatures above 100°C.

  17. Dynamical cooling of nuclear spins in double quantum dots.

    PubMed

    Rudner, M S; Levitov, L S

    2010-07-09

    Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.

  18. Modeling interfacial charge transport of quantum dots using cyclic voltammetry

    NASA Astrophysics Data System (ADS)

    Tobias, Andrew K.; Jones, Marcus

    2011-10-01

    Quantum dot applications are numerous and range from photovoltaic devices and lasers, to bio labeling. Complexities in the electronic band structure of quantum dots create the necessity for analysis techniques that can accurately and reproducibly provide their absolute band energies. Cyclic voltammetry (CV) is a novel candidate for these studies and has the potential to become a useful tool in engineering new nanocrystal technology, by providing information necessary for predicting and modeling interfacial charge transfer to and from quantum dots. Advancing from previous reports of nanocrystal CV, a carbon paste electrode was utilized in an attempt to increase measured current by ensuring intimate contact between nanocrystals and the electrode. Our goal was to investigate band energies and model nanocrystal-molecule electron transfer systems.

  19. Gate-controlled electron spins in quantum dots

    SciTech Connect

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.

    2013-12-16

    In this paper we study the properties of anisotropic semiconductor quantum dots (QDs) formed in the conduction band in the presence of the magnetic field. The Kane-type model is formulated and is analyzed by using both analytical and finite element techniques. Among other things, we demonstrate that in such quantum dots, the electron spin states in the phonon-induced spin-flip rate can be manipulated with the application of externally applied anisotropic gate potentials. More precisely, such potentials enhance the spin flip rates and reduce the level crossing points to lower quantum dot radii. This happens due to the suppression of the g-factor towards bulk crystal. We conclude that the phonon induced spin-flip rate can be controlled through the application of spin-orbit coupling. Numerical examples are shown to demonstrate these findings.

  20. Electron nuclear spin transfer in quantum-dot networks

    NASA Astrophysics Data System (ADS)

    Prada, M.; Toonen, R. C.; Blick, R. H.; Harrison, P.

    2005-05-01

    We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of different geometries of a two-dimensional network of quantum dots and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalized to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in the presence of nuclear spin relaxation. We find that the gradual depolarization of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.

  1. Emerging application of quantum dots for drug delivery and therapy.

    PubMed

    Qi, Lifeng; Gao, Xiaohu

    2008-03-01

    Quantum dots have proven themselves as powerful fluorescent probes, especially for long-term, multiplexed, and quantitative imaging and detection. Newly engineered quantum dots with integrated targeting, imaging and therapeutic functionalities have become excellent material to study drug delivery in cells and small animals. This fluorescent 'prototype' will provide important information in the rational design of biocompatible drug carriers and will serve as a superior alternative to magnetic and radioactive imaging contrast agents in preclinical drug screening, validation and delivery research. This Editorial article is not intended to offer a comprehensive review on drug delivery, but to highlight the breakthroughs in the emerging applications of quantum dots in this field and to provide our perspective on future research.

  2. Colloidal quantum dot solids for solution-processed solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Mingjian; Liu, Mengxia; Sargent, Edward H.

    2016-03-01

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  3. Bioconjugate recognition molecules to quantum dots as tumor probes.

    PubMed

    Liu, Tian-Cai; Wang, Jian-Hao; Wang, Hai-Qiao; Zhang, Hai-Li; Zhang, Zhi-Hong; Hua, Xiao-Feng; Cao, Yuan-Cheng; Zhao, Yuan-Di; Luo, Qing-Ming

    2007-12-15

    Transferrin and mouse anti-human CD71 monoclonal antibody were respectively conjugated covalently to the core/shell CdSe/ZnS quantum dots with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydrocylsulfo-succinimide (Sulfo-NHS). The conjugation worked well and the bioactivities of these macromolecules still remained, which was verified by column filtration, sodium dodecyl sulfate polyacrylamide gel electrophoresis, absorption spectra, fluorescence spectra, and circular dichroism spectrometry. Thus, these two kinds of quantum dot conjugates were used to recognize the tumor cells involved. In case of pseudo positivity, FITC-labeling secondary antibody IgG was used, and the results showed that as-prepared fluorescent quantum dot bioprobes were highly specific to tumor cells.

  4. Charge transport and localization in atomically coherent quantum dot solids

    NASA Astrophysics Data System (ADS)

    Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.; Kourkoutis, Lena F.; Wise, Frank; Hanrath, Tobias

    2016-05-01

    Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.

  5. Pauli spin blockade in CMOS double quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kotekar-Patil, D.; Corna, A.; Maurand, R.; Crippa, A.; Orlov, A.; Barraud, S.; Hutin, L.; Vinet, M.; Jehl, X.; De Franceschi, S.; Sanquer, M.

    2017-03-01

    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.

  6. Probing electric and magnetic vacuum fluctuations with quantum dots.

    PubMed

    Tighineanu, P; Andersen, M L; Sørensen, A S; Stobbe, S; Lodahl, P

    2014-07-25

    The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this Letter we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.

  7. Preparation of carbon quantum dots based high photostability luminescent membranes.

    PubMed

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2016-11-21

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm(-1) disappeared but there was strong vibration at1687cm(-1) which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications.

  8. Quantum state measurement in double quantum dots with a radio-frequency quantum point contact

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Wang, Hai-Xia; Yin, Wen; Wang, Fang-Wei

    2014-02-01

    We study the dynamics of two electron spins in coupled quantum dots (CQDs) monitored by a quantum point contact (QPC) detector. Their quantum state can be measured by embedding the QPC in an LC circuit. We derive the Bloch-type rate equations of the reduced density matrix for CQDs. Special attention is paid to the numerical results for the weak measurement condintion under a strong Coulomb interaction. It is shown that the evolution of QPC current always follows that of electron occupation in the right dot. In addition, we find that the output voltage of the circuit can reflect the evolution of QPC current when the circuit and QPC are approximately equal in frequency. In particular, the wave shape of the output voltage can be improved by adjusting the circuit resonance frequency and bandwidth.

  9. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

    DTIC Science & Technology

    2011-12-01

    ELECTROLUMINESCENCE STUDIES ON LONG WAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS John C...11-46 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS...58 1 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE I

  10. Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment

    ERIC Educational Resources Information Center

    Rice, Charles V.; Giffin, Guinevere A.

    2008-01-01

    Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

  11. Self-organized formation of quantum dots of a material on a substrate

    DOEpatents

    Zhang, Zhenyu; Wendelken, John F.; Chang, Ming-Che; Pai, Woei Wu

    2001-01-01

    Systems and methods are described for fabricating arrays of quantum dots. A method for making a quantum dot device, includes: forming clusters of atoms on a substrate; and charging the clusters of atoms such that the clusters of atoms repel one another. The systems and methods provide advantages because the quantum dots can be ordered with regard to spacing and/or size.

  12. QCAD simulation and optimization of semiconductor double quantum dots

    SciTech Connect

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  13. Optical and electronic properties of quantum dots with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Govorov, Alexander O.

    2008-10-01

    The article discusses some of the recent results on semiconductor quantum dots with magnetic impurities. A single Mn impurity incorporated in a quantum dot strongly changes the optical response of a quantum-dot system. A character of Mn-carrier interaction is very different for II-VI and III-V quantum dots (QDs). In the II-VI QDs, a Mn impurity influences mostly the spin-structure of an exciton. In the III-V dots, a spatial localization of hole by a Mn impurity can be very important, and ultimately yields a totally different spin structure. A Mn-doped QD with a variable number of mobile carriers represents an artificial magnetic atom. Due to the Mn-carrier interaction, the order of filling of electronic shells in the magnetic QDs can be very different to the case of the real atoms. The "periodic" table of the artificial magnetic atoms can be realized in voltage-tunable transistor structures. For the electron numbers corresponding to the regime of Hund's rule, the magnetic Mn-carrier coupling is especially strong and the magnetic-polaron states are very robust. Magnetic QD molecules are also very different to the real molecules. QD molecules can demonstrate spontaneous breaking of symmetry and phase transitions. Single QDs and QD molecules can be viewed as voltage-tunable nanoscale memory cells where information is stored in the form of robust magnetic-polaron states. To cite this article: A.O. Govorov, C. R. Physique 9 (2008).

  14. Are quantum dots in unexpected locations due to strain?

    NASA Astrophysics Data System (ADS)

    Zimmerman, Neil; Thorbeck, Ted

    It is a fairly common occurrence that, in top-gated Si quantum dots, the dots appear in reproducible but unexpected positions. For instance, sometimes a group will make gates in order to electrostatically generate tunnel barriers, but discover that the quantum dot is formed underneath the gate rather than between two barrier gates. We will discuss the possibility that such quantum dots arise from the mechanical strain induced by the gate. The model is simple: i) We simulate metal or polysilicon gates on top of a Si/SiO2 wafer, and calculate the stress and strain from differential thermal contraction of the materials; ii) Using the fact that the energy of the Si conduction band depends on strain through the deformation potential, we then convert the strain modulation to a potential energy modulation. As an example, we find that, for a single Al gate, there is a potential well directly underneath the gate with the size of a few meV, in agreement with recent experimental results. We also show that polysilicon gates will not produce such strain-induced quantum dots.

  15. Low Temperature Apertureless Near-field Scanning Optical Microscope for Optical Spectroscopy of Single Ge/Si Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhu, Henry; Patil, N. G.; Levy, Jeremy

    2001-03-01

    A low-temperature apertureless near-field scanning optical microscope has been designed and constructed for the purpose of investigating the optical properties of individual Ge/Si quantum dots. The microscope fits in the 37 mm bore of a Helium vapor magneto-optic cryostat, allowing operations down to liquid helium temperatures in magnetic fields up to 8 Tesla. An in situ microscope objective focuses light onto the sample, which is scanned in the three spatial directions using a compact modular stage. An AFM/STM tip resides on the top; feedback is achieved using a quartz tuning fork oscillator. Both tip and objective are attached to inertial sliding motors that can move in fine (10 nm) steps to achieve touchdown and focus. A femtosecond optical parametric oscillator is used to excite carriers in the quantum dots both resonantly and non-resonantly; scattered luminescence from the AFM/STM tip is collected and analyzed spectrally using a 1/2 meter imaging spectrometer and a LN_2-cooled InGaAs array. We gratefully acknowledge NSF (DMR-9701725, IMR-9802784) and DARPA (DAAD-16-99-C1036) for financial support of this work.

  16. Momentum Transfer Studies and Studies of Linear and Nonlinear Optical Properties of Metal Colloids and Semiconductor Quantum Dots

    NASA Technical Reports Server (NTRS)

    Collins, W. E.; Burger, A.; Dyer, K.; George, M.; Henderson, D.; Morgan, S.; Mu, R.; Shi, D.; Conner, D; Thompson, E.; Collins, L.; Curry, L.; Mattox, S.; Williams, G.

    1996-01-01

    Phase 1 of this work involved design work on a momentum transfer device. The progress on design and testing will be presented. Phase 2 involved the systematic study of the MPD thruster for dual uses. Though it was designed as a thruster for space vehicles, the characteristics of the plasma make it an excellent candidate for industrial applications. This project sought to characterize the system for use in materials processing and characterization. The surface modification on ZnCdTe, CdTe, and ZnTe will be presented. Phase 3 involved metal colloids and semiconductor quantum dots. One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantation for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga, and As. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb, and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. The results of some of this work will also be reported.

  17. Static gain saturation in quantum dot semiconductor optical amplifiers.

    PubMed

    Meuer, Christian; Kim, Jungho; Laemmlin, Matthias; Liebich, Sven; Capua, Amir; Eisenstein, Gadi; Kovsh, Alexey R; Mikhrin, Sergey S; Krestnikov, Igor L; Bimberg, Dieter

    2008-05-26

    Measurements of saturated amplified spontaneous emission-spectra of quantum dot semiconductor optical amplifiers demonstrate efficient replenishment of the quantum-dot ground state population from excited states. This saturation behavior is perfectly modeled by a rate equation model. We examined experimentally the dependence of saturation on the drive current and the saturating optical pump power as well as on the pump wavelength. A coherent noise spectral hole is observed with which we assess dynamical properties and propose optimization of the SOA operating parameters for high speed applications.

  18. Photoluminescence limiting of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Xi, H.; Wang, J. S.

    2016-02-01

    The exposure of colloidal 2 nm PbS quantum dots to growing continuous wave laser excitation at 532 nm increases the photoluminescence intensity with the square root of the optical stimulus. The results herein in conjunction with previous findings [B. Ullrich and H. Xi, Opt. Lett. 38, 4698 (2013)] advocate the square root trend to be the general limiting function for photo-carrier transport and emission of optically excited nano-sized materials. We further show that the excitation of one electron-hole pair per quantum dot defines the saturation threshold for photoluminescence intensity and dynamic band filling.

  19. Time scales and relaxation dynamics in quantum-dot lasers

    SciTech Connect

    Erneux, Thomas; Viktorov, Evgeny A.; Mandel, Paul

    2007-08-15

    We analyze a three-variable rate equation model that takes into account carrier capture and Pauli blocking in quantum dot semiconductor lasers. The exponential decay of the relaxation oscillations is analyzed from the linearized equations in terms of three key parameters that control the time scales of the laser. Depending on their relative values, we determine two distinct two-variable reductions of the rate equations in the limit of large capture rates. The first case leads to the rate equations for quantum well lasers, exhibiting relaxation oscillations dynamics. The second case corresponds to dots nearly saturated by the carriers and is characterized by the absence of relaxation oscillations.

  20. Quantum dot lasers with controllable spectral and modal characteristics

    NASA Astrophysics Data System (ADS)

    Zhukov, A. E.; Maximov, M. V.; Gordeev, N. Yu; Savelyev, A. V.; Livshits, D. A.; Kovsh, A. R.

    2011-01-01

    Simple analytical expressions for the shape and width of the multi-frequency lasing spectra of quantum dot lasers are derived by using a parabolic approximation of the gain spectrum. A giant nonlinear gain coefficient of 2.5 × 10-15 cm3 was estimated from the experimental dependence of the lasing spectrum width on the output power. A monolithic diffraction optical filter was used to suppress lasing of higher-order transverse modes in a quantum dot laser with a relatively broad ridge waveguide. Stable lasing on a fundamental transverse mode is observed with the maximum continuous wave (CW) single-spatial-mode power of 700 mW.

  1. Nonlinear optical susceptibilities of semiconductor quantum dot - metal nanoparticle hybrids

    NASA Astrophysics Data System (ADS)

    Terzis, A. F.; Kosionis, S. G.; Boviatsis, J.; Paspalakis, E.

    2016-03-01

    We theoretically study nonlinear optical effects of a semiconductor quantum dot and a spherical metal nanoparticle coupled via long-range Coulomb interaction. We solve the relevant density matrix equations in steady state and use proper perturbation theory to obtain closed-form analytical expressions for the nonlinear susceptibilities of the quantum dot, the metal nanoparticle, and the entire coupled system, up to fifth order. We also investigate the influence of the material of the semiconductor and the impact of the interparticle distance on the form of the spectra of the nonlinear susceptibilities.

  2. Quantum-dot based nanothermometry in optical plasmonic recording media

    SciTech Connect

    Maestro, Laura Martinez; Zhang, Qiming; Li, Xiangping; Gu, Min; Jaque, Daniel

    2014-11-03

    We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.

  3. Quantum dot-embedded microspheres for remote refractive index sensing

    PubMed Central

    Pang, Shuo; Beckham, Richard E.; Meissner, Kenith E.

    2008-01-01

    We present a refractometric sensor based on quantum dot-embedded polystyrene microspheres. Optical resonances within a microsphere, known as whispering-gallery modes (WGMs), produce narrow spectral peaks. For sensing applications, spectral shifts of these peaks are sensitive to changes in the local refractive index. In this work, two-photon excited luminescence from the quantum dots couples into several WGMs within the microresonator. By optimizing the detection area, the spectral visibility of the WGMs is improved. The spectral shifts are measured as the surrounding index of the refraction changes. The experimental sensitivity is about five times greater than that predicted by the Mie theory. PMID:19488403

  4. Engineering band structure in nanoscale quantum-dot supercrystals.

    PubMed

    Baimuratov, Anvar S; Rukhlenko, Ivan D; Fedorov, Anatoly V

    2013-07-01

    Supercrystals made of periodically arranged semiconductor quantum dots (QDs) are promising structures for nanophotonics applications due to almost unlimited degrees of freedom enabling fine tuning of their optical responses. Here we demonstrate broad engineering opportunities associated with the possibility of tailoring the energy bands of excitons in two-dimensional quantum-dot supercrystals through the alteration in the QD arrangement. These opportunities offer an unprecedented control over the optical properties of the supercrystals, which may be used as a versatile material base for advanced photonics devices on the nanoscale.

  5. Proposal for fast optical spin rotations in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Reinecke, T. L.

    2008-04-01

    A proposal for fast optical rotation of the spin of an electron in a quantum dot is presented. Hyperbolic secant pulses of appropriate polarization are employed to induce a relative phase between two spin basis states. This phase is the angle of spin rotation, and the polarization determines the direction of the spin. Varying both allows for the construction of arbitrary rotations. Simulations with typical parameters for InAs self-assembled quantum dots-including dissipative dynamics-show that the fidelity of the operations is at least 99%. The effect of deviation from the ideal pulse shape is also examined.

  6. Polaritons in a nonideal array of ultracold quantum dots

    NASA Astrophysics Data System (ADS)

    Rumyantsev, V. V.; Fedorov, S. A.; Gumennyk, K. V.

    2016-05-01

    We develop a numerical model for a defect-containing square lattice of microcavities with embedded ultracold atomic clusters (quantum dots). It is assumed that certain fractions of quantum dots and cavities are absent, which leads to transformation of polariton spectrum of the overall structure. The dispersion relations for polaritonic modes are derived as functions of defect concentrations and on this basis the band gap, the effective masses of lower and upper dispersion branch polaritons as well as their densities of states are evaluated.

  7. Interactions of quantum dots with donor blood erythrocytes in vitro.

    PubMed

    Pleskova, S N; Pudovkina, E E; Mikheeva, E R; Gorshkova, E N

    2014-01-01

    The effects of quantum dots CdSe/ZnS-mercaptopropionic acid, (CdSe/CdZnS)ZnS-polyT, and CdSeCdSZnS/polyT/SiO2-NH2 on human erythrocytes were studied. The nanomaterials reduced signifi cantly the erythrocyte sedimentation rate and modified the erythrocyte membrane resistance to induced (acid and hypo-osmotic) hemolysis. Evaluation of the erythrocyte morphology by atomic force microscopy in the control and after exposure to quantum dots showed significant differences in erythrocyte size and changes in their morphology as a result of exposure to the nanomaterials.

  8. Ultrafast electron trapping in ligand-exchanged quantum dot assemblies.

    PubMed

    Turk, Michael E; Vora, Patrick M; Fafarman, Aaron T; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R; Kikkawa, James M

    2015-02-24

    We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature optical properties of CdSe quantum dot solids after exchanging native aliphatic ligands for thiocyanate and subsequent thermal annealing. In contrast to trends established at room temperature, our data show that at low temperature the band-edge absorptive bleach is dominated by 1S3/2h hole occupation in the quantum dot interior. We find that our ligand treatments, which bring enhanced interparticle coupling, lead to faster surface state electron trapping, a greater proportion of surface-related photoluminescence, and decreased band-edge photoluminescence lifetimes.

  9. Spin qubit relaxation in a moving quantum dot

    NASA Astrophysics Data System (ADS)

    Huang, Peihao; Hu, Xuedong

    2013-08-01

    Long-range quantum communication for spin qubits is an important open problem. Here we study decoherence of an electron spin qubit that is being transported in a moving quantum dot. We focus on spin decoherence due to spin-orbit interaction and a random electric potential. We find that at the lowest order, the motion induces longitudinal spin relaxation, with a rate linear in the dot velocity. Our calculated spin relaxation time ranges from sub μs in GaAs to above ms in Si, making this relaxation a significant decoherence channel. Our results also give clear indications on how to reduce the decoherence effect of electron motion.

  10. Quantum Dots: Proteomics characterization of the impact on biological systems

    NASA Astrophysics Data System (ADS)

    Pozzi-Mucelli, Stefano; Boschi, F.; Calderan, L.; Sbarbati, A.; Osculati, F.

    2009-05-01

    Over the past few years, Quantum Dots have been tested in most biotechnological applications that use fluorescence, including DNA array technology, immunofluorescence assays, cell and animal biology. Quantum Dots tend to be brighter than conventional dyes, because of the compounded effects of extinction coefficients that are an order of magnitude larger than those of most dyes. Their main advantage resides in their resistance to bleaching over long periods of time (minutes to hours), allowing the acquisition of images that are crisp and well contrasted. This increased photostability is especially useful for three-dimensional (3D) optical sectioning, where a major issue is bleaching of fluorophores during acquisition of successive z-sections, which compromises the correct reconstruction of 3D structures. The long-term stability and brightness of Quantum Dots make them ideal candidates also for live animal targeting and imaging. The vast majority of the papers published to date have shown no relevant effects on cells viability at the concentration used for imaging applications; higher concentrations, however, caused some issues on embryonic development. Adverse effects are due to be caused by the release of cadmium, as surface PEGylation of the Quantum Dots reduces these issues. A recently published paper shows evidences of an epigenetic effect of Quantum Dots treatment, with general histones hypoacetylation, and a translocation to the nucleus of p53. In this study, mice treated with Quantum Dots for imaging purposes were analyzed to investigate the impact on protein expression and networking. Differential mono-and bidimensional electrophoresis assays were performed, with the individuation of differentially expressed proteins after intravenous injection and imaging analysis; further, as several authors indicate an increase in reactive oxygen species as a possible mean of damage due to the Quantum Dots treatment, we investigated the signalling pathway of APE1/Ref1, a

  11. Optical control of the emission direction of a quantum dot

    SciTech Connect

    Luxmoore, I. J.; Wasley, N. A.; Fox, A. M.; Skolnick, M. S.; Ramsay, A. J.; Thijssen, A. C. T.; Oulton, R.; Hugues, M.

    2013-12-09

    Using the helicity of a non-resonant excitation laser, control over the emission direction of an InAs/GaAs quantum dot is demonstrated. The quantum dot is located off-center in a crossed-waveguide structure, such that photons of opposite circular polarization are emitted into opposite waveguide directions. By preferentially exciting spin-polarized excitons, the direction of emission can therefore be controlled. The directional control is quantified by using the ratio of the intensity of the light coupled into the two waveguides, which reaches a maximum of ±35%.

  12. Probing lectin and sperm with carbohydrate-modified quantum dots.

    PubMed

    Robinson, Anandakathir; Fang, Jim-Min; Chou, Pi-Tai; Liao, Kuang-Wen; Chu, Rea-Min; Lee, Shyh-Jye

    2005-10-01

    We report the encapsulation of quantum dots with biologically important beta-N-acetylglucosamine (GlcNAc) in different ratios, together with studies of their specific/sensitive multivalent interactions with lectins and sperm by fluorimetry, transmission electron microscopy, dynamic light scattering microscopy, confocal imaging techniques, and flow cytometry. These GlcNAc-encapsulated quantum dots (QDGLNs) specifically bind to wheat germ agglutinin, and cause fluorescence quenching and aggregation. Further studies of QDGLNs and the mannose-encapsulated QDs (QDMANs) with sperm revealed site-specific interactions, in which QDGLNs bind to the head of the sperm, while QDMANs spread over the whole sperm body.

  13. Anticorrelation for conductance fluctuations in chaotic quantum dots.

    PubMed

    Barbosa, A L R; Hussein, M S; Ramos, J G G S

    2013-07-01

    We investigate the correlation functions of mesoscopic electronic transport in open chaotic quantum dots with finite tunnel barriers in the crossover between Wigner-Dyson ensembles. Using an analytical stub formalism, we show the emergence of a depletion and amplification of conductance fluctuations as a function of tunnel barriers for both parametric variations of electron energy and magnetoconductance fields. Furthermore, even for pure Dyson ensembles, correlation functions of conductance fluctuations in chaotic quantum dots can exhibit anticorrelation. Experimental support to our findings is pointed out.

  14. Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Waeber, A. M.; Hopkinson, M.; Farrer, I.; Ritchie, D. A.; Nilsson, J.; Stevenson, R. M.; Bennett, A. J.; Shields, A. J.; Burkard, G.; Tartakovskii, A. I.; Skolnick, M. S.; Chekhovich, E. A.

    2016-07-01

    One of the key challenges in spectroscopy is the inhomogeneous broadening that masks the homogeneous spectral lineshape and the underlying coherent dynamics. Techniques such as four-wave mixing and spectral hole-burning are used in optical spectroscopy, and spin-echo in nuclear magnetic resonance (NMR). However, the high-power pulses used in spin-echo and other sequences often create spurious dynamics obscuring the subtle spin correlations important for quantum technologies. Here we develop NMR techniques to probe the correlation times of the fluctuations in a nuclear spin bath of individual quantum dots, using frequency-comb excitation, allowing for the homogeneous NMR lineshapes to be measured without high-power pulses. We find nuclear spin correlation times exceeding one second in self-assembled InGaAs quantum dots--four orders of magnitude longer than in strain-free III-V semiconductors. This observed freezing of the nuclear spin fluctuations suggests ways of designing quantum dot spin qubits with a well-understood, highly stable nuclear spin bath.

  15. Doubly Resonant Photonic Antenna for Single Infrared Quantum Dot Imaging at Telecommunication Wavelengths.

    PubMed

    Xie, Zhihua; Lefier, Yannick; Suarez, Miguel Angel; Mivelle, Mathieu; Salut, Roland; Merolla, Jean-Marc; Grosjean, Thierry

    2017-03-24

    Colloidal quantum dots (CQDs) have drawn strong interest in the past for their high prospects in scientific, medical, and industrial applications. However, the full characterization of these quantum emitters is currently restricted to the visible wavelengths, and it remains a key challenge to optically probe single CQDs operating in the infrared spectral domain, which is targeted by a growing number of applications. Here, we report the first experimental detection and imaging at room temperature of single infrared CQDs operating at telecommunication wavelengths. Imaging was done with a doubly resonant bowtie nanoaperture antenna (BNA) written at the end of a fiber nanoprobe, whose resonances spectrally fit the CQD absorption and emission wavelengths. Direct near-field characterization of PbS CQDs reveal individual nanocrystals with a spatial resolution of 75 nm (λ/20) together with their intrinsic 2D dipolar free-space emission properties and exciton dynamics (blinking phenomenon). Because the doubly resonant BNA is strongly transmissive at both the CQD absorption and the emission wavelengths, we are able to perform all-fiber nanoimaging with a standard 20% efficiency InGaAs avalanche photodiode (APD). The detection efficiency is predicted to be 3000 fold larger than with a conventional circular aperture tip of the same transmission area. Double resonance BNA fiber probes thus offer the possibility of exploring extreme light-matter interaction in low band gap CQDs with current plug-and-play detection techniques, opening up new avenues in the fields of infrared light-emitting devices, photodetectors, telecommunications, bioimaging, and quantum information technology.

  16. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

    2014-06-01

    Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of

  17. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.

    PubMed

    Chou, Kenny F; Dennis, Allison M

    2015-06-05

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  18. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  19. Si quantum dots in silicon nitride: Quantum confinement and defects

    SciTech Connect

    Goncharova, L. V. Karner, V. L.; D'Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J.; Nguyen, P. H.

    2015-12-14

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiN{sub x}:H) matrix was examined over a broad range of stoichiometries from Si{sub 3}N{sub 2.08} to Si{sub 3}N{sub 4.14}, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiN{sub x} films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH{sub 4} and NH{sub 3} gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si{sub 3}N{sub x} compositions. There is a red-shift of the measured peaks from ∼2.3 eV to ∼1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (∼Si{sub 3}N{sub 3.15}) in which the maximum of light emission is observed.

  20. Field-emission from quantum-dot-in-perovskite solids

    NASA Astrophysics Data System (ADS)

    García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-01

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  1. Design strategy for terahertz quantum dot cascade lasers.

    PubMed

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  2. Monolithically integrated single quantum dots coupled to bowtie nanoantennas

    NASA Astrophysics Data System (ADS)

    Lyamkina, A. A.; Schraml, K.; Regler, A.; Schalk, M.; Bakarov, A. K.; Toropov, A. I.; Moshchenko, S. P.; Kaniber, Michael

    2016-12-01

    Deterministically integrating semiconductor quantum emitters with plasmonic nano-devices paves the way towards chip-scale integrable, true nanoscale quantum photonics technologies. For this purpose, stable and bright semiconductor emitters are needed, which moreover allow for CMOS-compatibility and optical activity in the telecommunication band. Here, we demonstrate strongly enhanced light-matter coupling of single near-surface ($<10\\,nm$) InAs quantum dots monolithically integrated into electromagnetic hot-spots of sub-wavelength sized metal nanoantennas. The antenna strongly enhances the emission intensity of single quantum dots by up to $\\sim16\\times$, an effect accompanied by an up to $3.4\\times$ Purcell-enhanced spontaneous emission rate. Moreover, the emission is strongly polarised along the antenna axis with degrees of linear polarisation up to $\\sim85\\,\\%$. The results unambiguously demonstrate the efficient coupling of individual quantum dots to state-of-the-art nanoantennas. Our work provides new perspectives for the realisation of quantum plasmonic sensors, step-changing photovoltaic devices, bright and ultrafast quantum light sources and efficent nano-lasers.

  3. Hybrid structures based on quantum dots and graphene nanobelts

    NASA Astrophysics Data System (ADS)

    Reznik, I. A.; Gromova, Yu. A.; Zlatov, A. S.; Baranov, M. A.; Orlova, A. O.; Moshkalev, S. A.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.

    2017-01-01

    Luminescence and photoelectric properties of hybrid structures based on CdSe/ZnS quantum dots (QDs) and multilayer graphene have been investigated. A correlation between the luminescence quantum yield of QDs and their photoelectric properties in hybrid structures is established. It is shown that a decrease in the QD luminescence quantum yield due to adsorption of 1-(2-pyridylazo)-2-naphtol azo dye molecules onto the QD surface and a photoinduced increase in the QD luminescence quantum yield are accompanied by a symbate change in the hybrid structure photoconductivity.

  4. Persistent Inter-Excitonic Quantum Coherence in CdSe Quantum Dots

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Fidler, Andrew F.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    The creation and manipulation of quantum superpositions is a fundamental goal for the development of materials with novel optoelectronic properties. In this letter, we report persistent (~80 fs lifetime) quantum coherence between the 1S and 1P excitonic states in zinc-blende colloidal CdSe quantum dots at room temperature, measured using Two-Dimensional Electronic Spectroscopy. We demonstrate that this quantum coherence manifests as an intradot phenomenon, the frequency of which depends on the size of the dot excited within the ensemble of QDs. We model the lifetime of the coherence and demonstrate that correlated interexcitonic fluctuations preserve relative phase between excitonic states. These observations suggest an avenue for engineering long-lived interexcitonic quantum coherence in colloidal quantum dots. PMID:24719679

  5. Persistent Inter-Excitonic Quantum Coherence in CdSe Quantum Dots.

    PubMed

    Caram, Justin R; Zheng, Haibin; Dahlberg, Peter D; Rolczynski, Brian S; Griffin, Graham B; Fidler, Andrew F; Dolzhnikov, Dmitriy S; Talapin, Dmitri V; Engel, Gregory S

    2014-01-02

    The creation and manipulation of quantum superpositions is a fundamental goal for the development of materials with novel optoelectronic properties. In this letter, we report persistent (~80 fs lifetime) quantum coherence between the 1S and 1P excitonic states in zinc-blende colloidal CdSe quantum dots at room temperature, measured using Two-Dimensional Electronic Spectroscopy. We demonstrate that this quantum coherence manifests as an intradot phenomenon, the frequency of which depends on the size of the dot excited within the ensemble of QDs. We model the lifetime of the coherence and demonstrate that correlated interexcitonic fluctuations preserve relative phase between excitonic states. These observations suggest an avenue for engineering long-lived interexcitonic quantum coherence in colloidal quantum dots.

  6. Growth technique and effect of post growth annealing on the optical properties of In(Ga)As/GaAs quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Panda, Debiprasad; Ahmad, Aijaz; Adhikary, Sourav; Ghadi, Hemant; Chakrabarti, Subhananda

    2016-09-01

    In this paper, we have proposed a technique to maintain the constant overgrowth percentage of quantum dots (QDs) in all layers of a multistacked heterostructure and hence the dot size uniformity is achieved. Two samples have been grown and compared in terms of their optical properties. Post growth annealing was carried out to observe the variation in their properties. The active layer of sample A is composed of 2.7 monolayer (ML) InAs QDs and the QD deposition amount is same for all the stacks. For the proposed sample B, 8ML In(Ga)As QDs were grown as seed layer, and the subsequent QD deposition is kept constant at 5ML. The overgrowth percentage in all QD layers were constant ( 40%) for this sample. Monomodal photoluminescence (PL) emission spectra was observed for the proposed sample B, whereas sample A has multimodal spectra. The samples were subjected to post growth annealing in argon atmosphere for 650, 700, 750, 800, 850, and 900°C. A negligible shift in the PL peak was observed for sample B up to 750°C, which confirms better thermal stability. The PL activation energy variation with respect to the annealed temperature was negligible for the proposed sample B ( 165 meV up to 750 °C). Hence the proposed growth mode of In(Ga)As multistacked QD heterostructure has better optical characteristics than the conventional structure in terms of PL spectra, FWHM, and also activation energy.

  7. Photonic Enhancement of Colloidal Quantum Dot Photovoltaics

    NASA Astrophysics Data System (ADS)

    Labelle, Andre Jean-Romeo Richard

    Colloidal quantum dots, nanocrystal semiconductors that can be cross-linked and assembled into absorbing thin films, are an attractive material for third-generation photovoltaic applications due to low-cost fabrication and bandgap tunability. As a result of their limited charge transport, these solution-processed thin films suffer from a mismatch in absorption length and charge extraction length. Concepts based on the interdigitation of n- and p-doped layers, approaches that reduce the distance photogenerated carriers must travel before extraction, offer promise on overcoming this limitation. In this thesis, I explore and develop techniques to address the absorption-extraction compromise in CQD materials by implementing nano- and micro-structuring techniques to enhance light absorption in the active film. First, I focus on the development of nanomaterials for light guiding/scattering enhancement in CQD films. For this, I develop a nanostructured gold reflector that, when suitably designed, guides light and traps it within the active film. I show that this yields enhanced broadband absorption with more than 4-fold improvement at the most improved wavelength, which translated into a 34% improvement in photocurrent in a working solar cell. I also show that periodic nanostructures employed for absorption enhancement can lead to improvements in solar cell performance. Limitations in device architecture and film formation, however, prevented significant performance advances for these nano-scale approaches. Regardless, these early results pointed me to a new and more impactful strategy. I focus in on realizing micron-scale structured electrodes to enhance absorption, which I show to be considerably more useful in view of the need to extract charge carriers with high efficiency. I discover that conformal film formation atop these structured electrodes is an absolute prerequisite to enhancing performance. These devices, which I term micro-pyramid CQD cells, provide a 24

  8. Radiation Effects in Nanostructures: Comparison of Proton Irradiation Induced Changes on Quantum Dots and Quantum Wells

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.

    2000-01-01

    Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.

  9. Carrier dynamics in InAs/AlAs quantum dots: lack in carrier transfer from wetting layer to quantum dots.

    PubMed

    Shamirzaev, T S; Abramkin, D S; Nenashev, A V; Zhuravlev, K S; Trojánek, F; Dzurnák, B; Malý, P

    2010-04-16

    Structures with self-assembled InAs quantum dots (QDs) embedded in an AlAs matrix have been studied by steady-state and transient photoluminescence. It has been shown that in contrast to InAs/GaAs QD systems carriers are mainly captured by quantum dots directly from the AlAs matrix, while transfer of carriers captured by the wetting layer far away from QDs to the QDs is suppressed. At low temperatures the carriers captured by the wetting layer are localized by potential fluctuations at the wetting layer interface, while at high temperatures the carriers are delocalized but captured by nonradiative centers located in the wetting layer.

  10. Coherent and incoherent charge transport in linear triple quantum dots.

    PubMed

    Contreras-Pulido, L Debora; Bruderer, Martin

    2017-03-15

    One of the fundamental questions in quantum transport is how charge transfer through complex nanostructures is influenced by quantum coherence. We address this issue for linear triple quantum dots by comparing a Lindblad density matrix description with a Pauli rate equation approach and analyze the corresponding zero-frequency counting statistics of charge transfer. The impact of decaying coherences of the density matrix due to dephasing is also studied. Our findings reveal that the sensitivity to coherence shown by shot noise and skewness, in particular in the limit of large coupling to the drain reservoir, can be used to unambiguously evidence coherent processes involved in charge transport across triple quantum dots. Our analytical results are obtained by using the characteristic polynomial approach to full counting statistics.

  11. Deterministic photonic cluster state generation from quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Economou, Sophia; Gimeno-Segovia, Mercedes; Rudolph, Terry

    2014-03-01

    Currently, the most promising approach for photon-based quantum information processing is measurement-based, or one-way, quantum computing. In this scheme, a large entangled state of photons is prepared upfront and the computation is implemented with single-qubit measurements alone. Available approaches to generating the cluster state are probabilistic, which makes scalability challenging. We propose to generate the cluster state using a quantum dot molecule with one electron spin per quantum dot. The two spins are coupled by exchange interaction and are periodically pulsed to produce photons. We show that the entanglement created by free evolution between the spins is transferred to the emitted photons, and thus a 2D photonic ladder can be created. Our scheme only utilizes single-spin gates and measurement, and is thus fully consistent with available technology.

  12. Spontaneous emission and optical control of spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.

    Quantum dots are attractive due to their potential technological applications and the opportunity they provide for study of fundamental physics in the mesoscopic scale. This dissertation studies optically controlled spins in quantum dots in connection to quantum information processing. The physical realization of the quantum bit (qubit) consists of the two spin states of an extra electron confined in a quantum dot. Spin rotations are performed optically, by use of an intermediate charged exciton (trion) state. The two spin states and the trion form a Λ-type system. The merits of this system for quantum information processing include integrability into a solid-state device, long spin coherence time, and fast and focused optical control. In this dissertation, we study the optical decay mechanisms of the trion state in the quantum dot. Using a master-equation approach, we derive microscopically the optical decay of the three-level system and find a novel term, the so-called spontaneously generated coherence (SGC). The latter, though predicted more than a decade ago for atomic Λ-systems satisfying certain conditions, had not been detected yet in any system. We found that in quantum dots, these conditions can be satisfied. We present the experiment which, in collaboration with our theory, constituted the first measurement of SGC. We establish the unification of SGC, polarization entanglement, and two-pathway decay. By keeping track of the spontaneously emitted photon dynamics, we find the conditions on the couplings that determine which effect will take place. We have thus placed SGC in a more quantum informational framework, characterizing it as lack of entanglement between the emitted photon and the three-level system. We develop a theory of ultrafast optical single-qubit rotations by use of 2pi pulses, which have the two-fold advantage of minimal trion excitation and negligible spin precession. The analytically solvable hyperbolic secant pulses of Rosen and Zener

  13. Investigation of the energy spectra and the electron-hole alignment of the InAs/GaAs quantum dots with an ultrathin cap layer

    NASA Astrophysics Data System (ADS)

    Gorshkov, Alexey P.; Volkova, Natalia S.; Istomin, Leonid A.; Zdoroveishev, Anton V.; Levichev, Sergey

    2016-08-01

    The effects of indium composition and the thickness of the combined InGaAs/GaAs thin cap layer on the energy spectra and relative electron-hole alignment of InAs quantum dots (QDs) grown by metal organic vapor phase epitaxy (MOVPE) are investigated by photoelectrical spectroscopy in a semiconductor/electrolyte system. In structures with InAs QDs and an InGaAs strain reducing layer, the shift of the hole's wave function to the QDs' top was revealed, which indicates In enrichment of the area near the top of QD'. In structures with an ultrathin GaAs cap layer a change of the sign of the built-in dipole moment was observed. This is explained by coupling effects of quantum-confined electrons with surface states.

  14. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.

    PubMed

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-12-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  15. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-05-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  16. Calculation of exchange interaction for modified Gaussian coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2017-03-01

    A system of two laterally coupled quantum dots with modified Gaussian potential has been considered. Each quantum dot has an electron under electric and magnetic field. The quantum dots have been considered as hydrogen-like atoms. The physical picture has translated into the Heisenberg spin Hamiltonian. The Schrödinger equation using finite element method has been numerically solved. The exchange energy factor has been calculated as a functions of electric field, magnetic field, and the separation distance between the centers of the dots (d). According to the results, it is found that there is the transition from anti-ferromagnetic to ferromagnetic for constant electric field. Also, the transition occurs from ferromagnetic to anti-ferromagnetic for constant magnetic field (B>1 T). With decreasing the distance between the centers of the dots and increasing magnetic field, the transition occurs from anti-ferromagnetic to ferromagnetic. It is found that a switching of exchange energy factor is presented without canceling the interactions of the electric and magnetic fields on the system.

  17. Characteristics and reliability of high power multi-mode InGaAs strained quantum well single emitters with CW output powers of over 5W

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Mason, Maribeth; Moss, Steven C.

    2006-02-01

    High-power multi-mode broad area InGaAs strained quantum well (QW) single emitters (λ ~ 920-980nm) have been mainly used for industrial applications. Recently, these broad area lasers with CW output powers >5W have also found applications in communications as pump lasers for Er-Yb co-doped fiber amplifiers. This application requires very demanding characteristics including higher reliability than industrial applications. In contrast to 980nm single mode InGaAs strained QW lasers that are widely employed in both terrestrial and submarine applications, the fact that multimode lasers have never been used in optical communications necessitates careful study of these lasers. We report investigations of performance characteristics, reliability, and failure modes of high-power multi-mode single emitters. The lasers studied were broad area strained InGaAs-GaAs single QW lasers grown either by MOCVD or MBE. Typical apertures were around 100μm wide and cavity lengths were <=4.2mm. AR-HR coated laser diode chips were mounted on carriers with junction down configuration to reduce thermal impedance. Laser thresholds were <=453mA at RT. At 6A injection current typical CW output powers were over 5W at 25°C with wall-plug efficiency of ~60%. Characteristics measured included thermal impedance and optical beam profiles that are critical in understanding performance and reliability. Automatic current control burn-in tests with different stress conditions were performed and log (I)-V characteristics were measured at RT to correlate degradation in optical output power and an increase in trap density estimated from the 2κ•T term in bulk recombination current. We also report initial analysis of lifetest results and failure modes from these lasers.

  18. A quantum dot spin qubit with thermal bias

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Cheng, Jie

    2015-02-01

    Temperature effect on the spin manipulation and spin injection in a quantum dot is investigated with the help of master equation method. Results show that the magnitude and the direction of the temperature difference between the source and drain leads have great impact on the spin store, writing, and reading processes. In practical devices, the thermal bias is quite general and then our results may be useful in quantum information processing and spintronics.

  19. Optical levitation of a microdroplet containing a single quantum dot.

    PubMed

    Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki

    2015-03-15

    We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.

  20. Zitterbewegung and quantum revivals in monolayer graphene quantum dots in magnetic fields

    NASA Astrophysics Data System (ADS)

    García, Trinidad; Cordero, Nicolás A.; Romera, Elvira

    2014-02-01

    The wave-packet evolution in graphene quantum dots in magnetic fields has been theoretically studied. By analyzing an effective Hamiltonian model we show the wave-packet dynamics exhibits three types of periodicities (Zitterbewegung, classical, and revival times). The influence of the size of the quantum dot and the strength of the external magnetic field in these periodicities has been considered. In addition, we have found that valley degeneracy breaking is shown by both classical and revival times.