Science.gov

Sample records for inhalable aerosol sampler

  1. Laboratory study of selected personal inhalable aerosol samplers.

    PubMed

    Görner, Peter; Simon, Xavier; Wrobel, Richard; Kauffer, Edmond; Witschger, Olivier

    2010-03-01

    Assessment of inhalable dust exposure requires reliable sampling methods in order to measure airborne inhalable particles' concentrations. Many inhalable aerosol samplers can be used but their performances widely vary and remain unknown in some cases. The sampling performance of inhalable samplers is strongly dependent on particle size and ambient air velocity. Five inhalable aerosol samplers have been studied in two laboratory wind tunnels using polydisperse glass-beads' test aerosol. Samplers tested were IOM sampler (UK), two versions of CIP 10-I sampler, v1 and v2 (F), 37-mm closed face cassette sampler (USA), 37-mm cassette fitted up with an ACCU-CAP insert (USA), and Button sampler (USA). Particle size-dependent sampling efficiencies were measured in a horizontal wind tunnel under a 1 m s(-1) wind velocity and in a vertical tunnel under calm air, using a specific method with Coulter(R) counter particle size number distribution determinations. Compared with CEN-ISO-ACGIH sampling criteria for inhalable dust, the experimental results show fairly high sampling efficiency for the IOM and CIP 10-I v2 samplers and slightly lower efficiencies for the Button and CIP 10-I v1 samplers. The closed face cassette (4-mm orifice) produced the poorest performances of all the tested samplers. This can be improved by using the ACCU-CAP internal capsule, which prevents inner wall losses inside the cassette. Significant differences between moving air and calm air sampling efficiency were observed for all the studied samplers.

  2. A Simple and Disposable Sampler for Inhalable Aerosol

    PubMed Central

    L’Orange, Christian; Anderson, Kimberly; Sleeth, Darrah; Anthony, T. Renée; Volckens, John

    2016-01-01

    The state-of-the-art for personal sampling for inhalable aerosol hazards is constrained by issues of sampler cost and complexity; these issues have limited the adoption and use of some samplers by practicing hygienists. Thus, despite the known health effects of inhalable aerosol hazards, personal exposures are routinely assessed for only a small fraction of the at-risk workforce. To address the limitations of current technologies for inhalable aerosol sampling, a disposable inhalable aerosol sampler was developed and evaluated in the laboratory. The new sampler is designed to be less expensive and simpler to use than existing technologies. The sampler incorporates a lightweight internal capsule fused to the sampling filter. This capsule-filter assembly allows for the inclusion of particles deposited on the internal walls and inlet, thus minimizing the need to wash or wipe the interior sampling cassette when conducting gravimetric analyses. Sampling efficiency and wall losses were tested in a low-velocity wind tunnel with particles ranging from 9.5 to 89.5 μm. The results were compared to the proposed low-velocity inhalability criterion as well as published data on the IOM sampler. Filter weight stability and time-to-equilibrium were evaluated as these factors affect the practicality of a design. Preliminary testing of the new sampler showed good agreement with both the IOM and the proposed low-velocity inhalability curve. The capsule and filter assemblies reached equilibrium within 25h of manufacturing when conditioned at elevated temperatures. After reaching equilibrium, the capsule-filter assemblies were stable within 0.01mg. PMID:26467335

  3. High efficiency CIP 10-I personal inhalable aerosol sampler

    NASA Astrophysics Data System (ADS)

    Görner, P.; Wrobel, R.; Simon, X.

    2009-02-01

    The CIP 10 personal aerosol sampler was first developed by Courbon for sampling the respirable fraction of mining dust. This respirable aerosol sampler was further improved by Fabries, then selectors for sampling thoracic and inhalable aerosols were designed. Kenny et al. evaluated the particle-size dependent sampling efficiency of the inhalable version in a large-scale wind tunnel using a life-size dummy. The authors found that the overall sampling efficiency decreases more rapidly than the CEN-ISO-ACGIH target efficiency curve. Görner and Witschger measured the aspiration efficiency of the CIP 10 omni-directional inlet. They found that the aspiration efficiency was high enough for inhalable aerosol sampling. This result led to the conclusion that the low sampling efficiency is due to some internal losses of the aspirated particles before they reach the final sampling stage, namely the CIP 10 rotating filter. Based on the assumption that the inhalable particles are selected at selector aspiration level, an experimental research project was conducted to improve particle transmission to the collection stage of the sampler. Two different inhalable selectors were designed by Görner and tested in a laboratory wind tunnel. The transmission efficiency of both models was measured by Roger following an experimental protocol described by Witschger. The T-shaped air flow circuit was finally adopted to draw the aspirated particles into the final collection stage of the CIP 10. Actually, in this selector, the almost horizontally aspirated particles should be conducted vertically to the rotating cup. In two previous prototypes, particles could be deposited in certain places by inertia (where the aerosol was forced to deviate drastically) or by sedimentation (where the aerosol decelerated). The aerodynamic behaviour of the adopted solution causes the particles to accelerate radially between two horizontal plates before they enter a vertical tube. This acceleration avoids the

  4. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.

    PubMed

    Witschger, O; Grinshpun, S A; Fauvel, S; Basso, G

    2004-06-01

    While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 micro m in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger

  5. Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler.

    PubMed

    Stewart, Justin; Sleeth, Darrah K; Handy, Rod G; Pahler, Leon F; Anthony, T Renee; Volckens, John

    2017-03-01

    A newly designed, low-cost, disposable inhalable aerosol sampler was developed to assess workers personal exposure to inhalable particles. This sampler was originally designed to operate at 10 L/min to increase sample mass and, therefore, improve analytical detection limits for filter-based methods. Computational fluid dynamics modeling revealed that sampler performance (relative to aerosol inhalability criteria) would not differ substantially at sampler flows of 2 and 10 L/min. With this in mind, the newly designed inhalable aerosol sampler was tested in a wind tunnel, simultaneously, at flows of 2 and 10 L/min flow. A mannequin was equipped with 6 sampler/pump assemblies (three pumps operated at 2 L/min and three pumps at 10 L/min) inside a wind tunnel, operated at 0.2 m/s, which has been shown to be a typical indoor workplace wind speed. In separate tests, four different particle sizes were injected to determine if the sampler's performance with the new 10 L/min flow rate significantly differed to that at 2 L/min. A comparison between inhalable mass concentrations using a Wilcoxon signed rank test found no significant difference in the concentration of particles sampled at 10 and 2 L/min for all particle sizes tested. Our results suggest that this new aerosol sampler is a versatile tool that can improve exposure assessment capabilities for the practicing industrial hygienist by improving the limit of detection and allowing for shorting sampling times.

  6. Performance study of personal inhalable aerosol samplers at ultra-low wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2012-03-01

    The assessment of personal inhalable aerosol samplers in a controlled laboratory setting has not previously been carried out at the ultra-low wind speed conditions that represent most modern workplaces. There is currently some concern about whether the existing inhalable aerosol convention is appropriate at these low wind speeds and an alternative has been suggested. It was therefore important to assess the performance of the most common personal samplers used to collect the inhalable aerosol fraction, especially those that were designed to match the original curve. The experimental set-up involved use of a hybrid ultra-low speed wind tunnel/calm air chamber and a rotating, heating breathing mannequin to measure the inhalable fraction of aerosol exposure. The samplers that were tested included the Institute of Occupational Medicine (IOM), Button, and GSP inhalable samplers as well as the closed-face cassette sampler that has been (and still is) widely used by occupational hygienists in many countries. The results showed that, down to ∼0.2 m s(-1), the samplers matched the current inhalability criterion relatively well but were significantly greater than this at the lowest wind speed tested. Overall, there was a significant effect of wind speed on sampling efficiency, with lower wind speeds clearly associated with an increase in sampling efficiency.

  7. A field comparison of the IOM inhalable aerosol sampler and a modified 37-mm cassette.

    PubMed

    Clinkenbeard, R E; England, E C; Johnson, D L; Esmen, N A; Hall, T A

    2002-09-01

    This research focused on comparing a modified 37-mm (Mod37) sampling cassette with an IOM inhalable dust sampler. Paired IOM and Mod37 breathing-zone air samples were collected for workers engaged in corrosion control maintenance operations on several types of aircraft at several U.S. Air Force bases in the United States. Sampled operations included hand and power sanding, blow-down and wipe-down to remove dust, and spray finishing. The cassettes' interior surfaces were swabbed and the swabs combined with the filters for chromium analysis by NIOSH Method 7300. This approach utilized total chromium as a sensitive surrogate indicator of total aspirated mass. The influences of work location, work type, sample duration, and sampler type on measured concentration were evaluated using analysis of variance techniques. Only work type (process) was found to be a statistically significant predictor of measured concentration. The relationship between IOM- and Mod37-measured values for paired samples was evaluated by work type using linear regression techniques. Linear regressions showed that the modified 37-mm cassette over-samples aerosol by 35 percent compared to the IOM when a wide range of aerosol concentrations and compositions for divergent work tasks in multiple field locations are sampled. Interpretation of these results in light of previous results involving filter-only Mod37 analyses suggests that while the Mod37 has a higher aspiration efficiency than the IOM, substantial Mod37 wall losses result in underestimation of exposure when only the 37-mm filter is analyzed rather than filters plus wall swabs.

  8. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments.

    PubMed

    Schmees, Darrah K; Wu, Yi-Hsuan; Vincent, James H

    2008-12-01

    Most previous experiments of aerosol inhalability as it relates to particle aerodynamic diameter were conducted in wind tunnels for windspeeds greater than 0.5 m s(-1). While that body of work was used to establish an inhalable aerosol convention, results from studies in calm air chambers (for essentially zero windspeed) are being discussed as the basis of a modified criterion. Meanwhile, however, information is lacking for windspeeds in the intermediate range, which--it so happens--pertain to most actual workplaces. With this in mind, we have developed a new experimental system to assess inhalability and personal sampler performance for aerosols with particle aerodynamic diameter within the range from 6 to 90 microm for ultra-low windspeed environments from about 0.1 to 0.5 m s(-1). In this range of conditions for particle size and windspeed, controlled aerosol experiments are very difficult to perform, most notably with respect to the problem of achieving uniform spatial distributions of both test aerosols and air velocity. In the work reported in this paper, we have addressed these difficulties in a new, custom-designed experimental facility. It is a novel wind tunnel design that provides stable and controllable low-turbulence air movement, and allows for the delivery of test aerosol to the working section both from upstream (as in conventional wind tunnel experiments) and from above (as in calm air studies). In this system, losses by elutriation of particles that are being convected in the horizontal aerosol flow are compensated by particles entering from above by gravitational settling. An important feature of the new facility is the life-size, breathing mannequin that contains physical means to achieve any combination of mouth and nasal inspiration and expiration, and allows any desired relevant breathing flowrate and pattern by means of an external computer-controlled breathing simulator. Special steps were taken in the detailed design to ensure that

  9. Performance of the Button Personal Inhalable Sampler for the measurement of outdoor aeroallergens

    NASA Astrophysics Data System (ADS)

    Adhikari, Atin; Martuzevicius, Dainius; Reponen, Tiina; Grinshpun, Sergey A.; Cho, Seung-Hyun; Sivasubramani, Satheesh K.; Zhong, Wei; Levin, Linda; Kelley, Anna L.; St. Clair, Harry G.; LeMasters, Grace

    No personal aerosol sampler has been evaluated for monitoring aeroallergens in outdoor field conditions and compared to conventional stationary aerobiological samplers. Recently developed Button Personal Inhalable Aerosol Sampler has demonstrated high sampling efficiency for non-biological particles and low sensitivity to the wind direction and velocity. The aim of the present study was to evaluate the Button Sampler for the measurement of outdoor pollen grains and fungal spores side-by-side with the widely used Rotorod Sampler. The sampling was performed for 8 months (spring, summer and fall) at a monitoring station on the roof of a two-storied office building located in the center of the city of Cincinnati. Two identical Button Samplers, one oriented towards the most prevalent wind and the other towards the opposite wind and a Rotorod Sampler were placed side-by-side. The total fungal spore concentration ranged from 129 to 12,980 spores m -3 (number per cubic meter of air) and the total pollen concentration from 4 to 4536 pollen m -3. The fungal spore concentrations obtained with the two Button Samplers correlated well ( r=0.95; p<0.0001). The pollen data also showed positive correlation. These findings strongly support the results of earlier studies conducted with non-biological aerosol particles, which demonstrated a low wind dependence of the performance of the Button Sampler compared to other samplers. The Button Sampler's inlet efficiency was found to be more dependent on wind direction when sampling larger sized Pinaceae pollen grains (aerodynamic diameter ≈65 μm). Compared to Rotorod, both Button Samplers measured significantly higher total fungal spore concentrations. For total pollen count, the Button Sampler facing the prevalent wind showed concentrations levels comparable to that of the Rotorod, but the Button Sampler oriented opposite to the prevalent wind demonstrated lower concentration levels. Overall, it was concluded that the Button Sampler is

  10. Air sampling methodology for asphalt fume in asphalt production and asphalt roofing manufacturing facilities: total particulate sampler versus inhalable particulate sampler.

    PubMed

    Calzavara, Thomas S; Carter, Charles M; Axten, Charles

    2003-05-01

    In 2000, the American Conference of Governmental Industrial Hygienists (ACGIH(R)) changed its 1971 threshold limit value (TLV) for 8-hour time-weighted average (TWA) exposure to asphalt from 5 mg/m(3) total particulate (generally < or =40 micrometer [microm] diameter) to 0.5 mg/m(3) inhalable particulate (< or =100 microm aerodynamic diameter) as benzene-soluble aerosol. To date, no inhalable particulate sampling method has been standardized and validated for asphalt fume. Furthermore, much of the historical data were collected using total particulate samplers, and the comparability of total versus inhalable size fractions of asphalt fume is not known. Therefore, the present study compared results from two types of asphalt fume samplers: 1) a traditional total particulate sampler with a 37-mm filter in a closed-face cassette with a 4-mm orifice (NIOSH 5042) versus (2) an inhalable particulate sampler designed by the IOM with a 15-mm orifice. A total of 75 simultaneous pairs of samples were collected, including personal and area samples from 19 roofing and asphalt production facilities operated by 7 different manufacturers. Each sample was analyzed for total mass collected and for benzene-soluble mass. Data from the two sampling methods (total versus inhalable) were comparable for asphalt fumes up to an aerosol concentration of 10 mg/m(3). However, we conclude that the traditional total particulate method is preferable, for this reason: The vast majority of asphalt fume particles are <12.5 microm in diameter. The traditional sampler is designed to collect primarily particles < or =40 microm, while the IOM sampler is optimized for collecting particles < or =100 microm. Thus, the traditional sampler is less likely than the IOM sampler to collect the larger-size fraction of airborne particles, most of which are non-asphalt dust.

  11. Determining particle size distributions in the inhalable size range for wood dust collected by air samplers.

    PubMed

    Harper, Martin; Muller, Brian S; Bartolucci, Al

    2002-10-01

    In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.

  12. Size analysis of suspension inhalation aerosols by inertial separation methods.

    PubMed

    Hallworth, G W; Andrews, U G

    1976-12-01

    The particle size distribution of beclomethasone dipropionate (BDP) aerosols delivered from pressurized metered dose suspension inhalers has been measured with three cascaded inertial separation instruments, the Casella Cascade Impactor, Multistage Liquid Impinger and Cascade Centripeter. Various methods for collecting the emitted aerosol before measurement have been examined. A bent glass tubular 'throat', used as a simulated oro-pharynx, collects 35-60% of the emitted dose by impingement of the wet spray cone in the throat. The aerosol passing through the throat has a similar but somewhat finer size distribution to that collected by firing directly into a large flask. The three cascaded instruments give similar results which in the Multistage Liquid Impinger also resemble those given by a salbutamol inhaler. The mass fraction (35-60%) emitted from the oral adaptor which is of a size capable of deep lung penetration ( less than 4 mum) is much higher than the fraction (10-16%) found in the lungs of dogs after inhalation of aerosol. The size distributions resemble those determined by microscopy and are expressed as aerodynamic sizes, thus showing that the particles approximate to unit density spheres. The performance of two simpler devices, Kirk's apparatus and the Harwell size selective air sampler are also assessed, the latter shows some promise for the simple evaluation of the respirable fraction of inhalation aerosols.

  13. Characteristics and Sampling Efficiencies of OMNI 3000 Aerosol Samplers

    DTIC Science & Technology

    2006-10-01

    they impact on walls and on the slit and not reaching the inside of the contactor, compared to PSL particles that bounce off surfaces. The Omni...SAMPLING EFFICIENCIES OF OMNI 3000 AEROSOL SAMPLERS Jana S. Kesavan RESEARCH AND TECHNOLOGY DIRECTORATE Deborah R. Schepers MITRETEK SYSTEMS, INC. Falls...2006 Final Feb 2006 - Mar 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characteristics and Sampling Efficiencies of Omni 3000 Aerosol Samplers 5b

  14. Development of a sampler for total aerosol deposition in the human respiratory tract.

    PubMed

    Koehler, Kirsten A; Clark, Phillip; Volckens, John

    2009-10-01

    Studies that seek to associate reduced human health with exposure to occupational and environmental aerosols are often hampered by limitations in the exposure assessment process. One limitation involves the measured exposure metric itself. Current methods for personal exposure assessment are designed to estimate the aspiration of aerosol into the human body. Since a large proportion of inhaled aerosol is subsequently exhaled, a portion of the aspirated aerosol will not contribute to the dose. This leads to variable exposure misclassification (for heterogenous exposures) and increased uncertainty in health effect associations. Alternatively, a metric for respiratory deposition would provide a more physiologically relevant estimate of risk. To address this challenge, we have developed a method to estimate the deposition of aerosol in the human respiratory tract using a sampler engineered from polyurethane foam. Using a semi-empirical model based on inertial, gravitational, and diffusional particle deposition, a foam was engineered to mimic aerosol total deposition in the human respiratory tract. The sampler is comprised of commercially available foam with fiber diameter = 49.5 microm (equivalent to industry standard 100 PPI foam) of 8 cm thickness operating at a face velocity of 1.3 m s(-1). Additionally, the foam sampler yields a relatively low-pressure drop, independent of aerosol loading, providing uniform particle collection efficiency over time.

  15. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    PubMed

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.

  16. Efficiency tests of samplers for microbiological aerosols, a review

    NASA Technical Reports Server (NTRS)

    Henningson, E.; Faengmark, I.

    1984-01-01

    To obtain comparable results from studies using a variety of samplers of microbiological aerosols with different collection performances for various particle sizes, methods reported in the literature were surveyed, evaluated, and tabulated for testing the efficiency of the samplers. It is concluded that these samplers were not thoroughly tested, using reliable methods. Tests were conducted in static air chambers and in various outdoor and work environments. Results are not reliable as it is difficult to achieve stable and reproducible conditions in these test systems. Testing in a wind tunnel is recommended.

  17. Applicability of a modified MCE filter method with Button Inhalable Sampler for monitoring personal bioaerosol inhalation exposure.

    PubMed

    Xu, Zhenqiang; Xu, Hong; Yao, Maosheng

    2013-05-01

    In this study, a "modified" mixed cellulose ester (MCE) filter culturing method (directly placing filter on agar plate for culturing without extraction) was investigated in enumerating airborne culturable bacterial and fungal aerosol concentration and diversity both in different environments. A Button Inhalable Sampler loaded with a MCE filter was operated at a flow rate of 5 L/min to collect indoor and outdoor air samples using different sampling times: 10, 20, and 30 min in three different time periods of the day. As a comparison, a BioStage impactor, regarded as the gold standard, was operated in parallel at a flow rate of 28.3 L/min for all tests. The air samples collected by the Button Inhalable Sampler were directly placed on agar plates for culturing, and those collected by the BioStage impactor were incubated directly at 26 °C. The colony forming units (CFUs) were manually counted and the culturable concentrations were calculated both for bacterial and fungal aerosols. The bacterial CFUs developed were further washed off and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. For fungal CFUs, microscopy method was applied to studying the culturable fungal diversity obtained using different methods. Experimental results showed that the performance of two investigated methods varied with sampling environments and microbial types (culturable bacterial and fungal aerosols). For bacterial aerosol sampling, both methods were shown to perform equally well, and in contrast the "modified" MCE filter method was demonstrated to enumerate more culturable fungal aerosols than the BioStage impactor. In general, the microbial species richness (number of gel bands) was observed to increase with increasing collection time. For both methods, the DGGE gel patterns were observed to vary with sampling time and environment despite of similar number of gel bands. In addition, an increase in sampling time from 20 to 30 min

  18. Solid versus liquid particle sampling efficiency of three personal aerosol samplers when facing the wind.

    PubMed

    Koehler, Kirsten A; Anthony, T Renee; Van Dyke, Michael; Volckens, John

    2012-03-01

    The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min(-1) of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies

  19. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.

    PubMed

    Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R

    2016-03-07

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  20. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler

    PubMed Central

    Sleeth, Darrah K.; Balthaser, Susan A.; Collingwood, Scott; Larson, Rodney R.

    2016-01-01

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET1) and the posterior nasal and oral passages (ET2). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device. PMID:26959046

  1. Field and wind tunnel comparison of four aerosol samplers using agricultural dusts.

    PubMed

    Reynolds, Stephen J; Nakatsu, Jason; Tillery, Marvin; Keefe, Thomas; Mehaffy, John; Thorne, Peter S; Donham, Kelley; Nonnenmann, Matthew; Golla, Vijay; O'shaughnessy, Patrick

    2009-08-01

    Occupational lung disease is a significant problem among agricultural workers exposed to organic dusts. Measurements of exposure in agricultural environments in the USA have traditionally been conducted using 37-mm closed-face cassettes (CFCs) and respirable Cyclones. Inhalable aerosol samplers offer significant improvement for dose estimation studies to reduce respiratory disease. The goals of this study were to determine correction factors between the inhalable samplers (IOM and Button) and the CFC and Cyclone for dusts sampled in livestock buildings and to determine whether these factors vary among livestock types. Determination of these correction factors will allow comparison between inhalable measurements and historical measurements. Ten sets of samples were collected in swine, chicken, turkey, and dairy facilities in both Colorado and Iowa. Pairs of each sampling device were attached to the front and back of a rotating mannequin. Laboratory studies using a still-air chamber and a wind tunnel provided information regarding the effect of wind speed on sampler performance. Overall, the IOM had the lowest coefficient of variation (best precision) and was least affected by changes in wind speed. The performance of the Button was negatively impacted in poultry environments where larger (feather) particulates clogged the holes in the initial screen. The CFC/IOM ratios are important for comparisons between newer and older studies. Wind speed and dust type were both important factors affecting ratios. Based on the field studies (Table 6), a ratio of 0.56 is suggested as a conversion factor for the CFC/IOM (average for all environments because of no statistical difference). Suggested conversion factors for the Button/IOM are swine (0.57), chicken (0.80), turkey (0.53), and dairy (0.67). Any attempt to apply a conversion factor between the Cyclone and inhalable samplers is not recommended.

  2. Field and Wind Tunnel Comparison of Four Aerosol Samplers Using Agricultural Dusts

    PubMed Central

    Reynolds, Stephen J.; Nakatsu, Jason; Tillery, Marvin; Keefe, Thomas; Mehaffy, John; Thorne, Peter S.; Donham, Kelley; Nonnenmann, Matthew; Golla, Vijay; O'shaughnessy, Patrick

    2009-01-01

    Occupational lung disease is a significant problem among agricultural workers exposed to organic dusts. Measurements of exposure in agricultural environments in the USA have traditionally been conducted using 37-mm closed-face cassettes (CFCs) and respirable Cyclones. Inhalable aerosol samplers offer significant improvement for dose estimation studies to reduce respiratory disease. The goals of this study were to determine correction factors between the inhalable samplers (IOM and Button) and the CFC and Cyclone for dusts sampled in livestock buildings and to determine whether these factors vary among livestock types. Determination of these correction factors will allow comparison between inhalable measurements and historical measurements. Ten sets of samples were collected in swine, chicken, turkey, and dairy facilities in both Colorado and Iowa. Pairs of each sampling device were attached to the front and back of a rotating mannequin. Laboratory studies using a still-air chamber and a wind tunnel provided information regarding the effect of wind speed on sampler performance. Overall, the IOM had the lowest coefficient of variation (best precision) and was least affected by changes in wind speed. The performance of the Button was negatively impacted in poultry environments where larger (feather) particulates clogged the holes in the initial screen. The CFC/IOM ratios are important for comparisons between newer and older studies. Wind speed and dust type were both important factors affecting ratios. Based on the field studies (Table 6), a ratio of 0.56 is suggested as a conversion factor for the CFC/IOM (average for all environments because of no statistical difference). Suggested conversion factors for the Button/IOM are swine (0.57), chicken (0.80), turkey (0.53), and dairy (0.67). Any attempt to apply a conversion factor between the Cyclone and inhalable samplers is not recommended. PMID:19443852

  3. Filter and electrostatic samplers for semivolatile aerosols: physical artifacts.

    PubMed

    Volckens, John; Leith, David

    2002-11-01

    Adsorptive and evaporative artifacts often bias measurements of semivolatile aerosols. Adsorption occurs when the sampling method disrupts the gas-particle partitioning equilibrium. Evaporation occurs because concentrations of semivolatiles are rarely constant over time. Filtration is subject to both adsorptive and evaporative artifacts. By comparison, electrostatic precipitation reduces these artifacts by minimizing the surface area of collected particles without substantially disrupting the gas-particle equilibrium. The extent of these artifacts was determined for filter samplers and electrostatic precipitator samplers for semivolatile alkane aerosols in the laboratory. Adsorption of gas-phase semivolatiles was lower in electrostatic precipitators by factors of 5-100 compared to the filter method. Particle evaporation from the electrostatic sampler was 2.3 times lower than that from TFE-coated glass-fiber filters. Use of a backup filter to correct for compound-specific adsorption artifacts can introduce positive or negative errors to the measured particle-phase concentration due to competition among the adsorbates for available adsorption sites. Adsorption of evaporated particles from the front filter onto the backup filter increased the measured evaporative artifact by a factor of 1.5-2.

  4. Numerical determination of personal aerosol sampler aspiration efficiency.

    PubMed

    Lo Savio, Simone; Paradisi, Paolo; Tampieri, Francesco; Belosi, Franco; Morigi, Maria Pia; Agostini, Sergio

    2003-04-01

    In this work the determination of the aspiration efficiency of personal aerosol samplers, commonly used in occupational exposure assessment, is investigated by means of CFD techniques. Specifically, it will be described a code to calculate the particle trajectories in a given flow field. At the present state the code considers only the effects of the mean flow field on the particle motion, whereas the turbulent diffusion effects are neglected. Comparisons with experimental measurements are also given in the framework of a research contract, supported by the European Community, with several experimental contributions from the participants. The main objective of the European research is to develop a new approach to experimentation with airborne particle flows, working on a reduced scale. This methodology has the advantage of allowing real-time aerosol determination and use of small wind tunnels, with a better experimental control. In this article we describe how the methodology has been verified using computational fluid dynamics. Experimental and numerical aspiration efficiencies have been compared and the influence of gravity and turbulence intensity in full and reduced scale has been investigated. The numerical techniques described here are in agreement with previous similar research and allow at least qualitative predictions of aspiration efficiency for real samplers, taking care of orientation from the incoming air flow. The major discrepancies among predicted and experimental results may be a consequence of bounce effects, which are very difficult to eliminate also by greasing the sampler surface.

  5. Development and evaluation of an ultrasonic personal aerosol sampler.

    PubMed

    Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D

    2017-03-01

    Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM2.5 across a broad range of concentrations.

  6. The Gillings Sampler – An Electrostatic Air Sampler as an Alternative Method for Aerosol In Vitro Exposure Studies

    PubMed Central

    Zavala, Jose; Lichtveld, Kim; Ebersviller, Seth; Carson, Johnny L.; Walters, Glenn W.; Jaspers, Ilona; Jeffries, Harvey E.; Sexton, Kenneth G.; Vizuete, William

    2014-01-01

    There is growing interest in studying the toxicity and health risk of exposure to multi-pollutant mixtures found in ambient air, and the U.S. Environmental Protection Agency (EPA) is moving towards setting standards for these types of mixtures. Additionally, the Health Effects Institute's strategic plan aims to develop and apply next-generation multi-pollutant approaches to understanding the health effects of air pollutants. There's increasing concern that conventional in vitro exposure methods are not adequate to meet EPA's strategic plan to demonstrate a direct link between air pollution and health effects. To meet the demand for new in vitro technology that better represents direct air-to-cell inhalation exposures, a new system that exposes cells at the air-liquid interface was developed. This new system, named the Gillings Sampler, is a modified two-stage electrostatic precipitator that provides a viable environment for cultured cells. Polystyrene latex spheres were used to determine deposition efficiencies (38-45%), while microscopy and imaging techniques were used to confirm uniform particle deposition. Negative control A549 cell exposures indicated the sampler can be operated for up to 4 hours without inducing any significant toxic effects on cells, as measured by lactate dehydrogenase (LDH) and interleukin-8 (IL-8). A novel positive aerosol control exposure method, consisting of a p-tolualdehyde (TOLALD) impregnated mineral oil aerosol (MOA), was developed to test this system. Exposures to the toxic MOA at a 1 ng/cm2 dose of TOLALD yielded a reproducible 1.4 and 2 fold increase in LDH and IL-8 mRNA levels over controls. This new system is intended to be used as an alternative research tool for aerosol in vitro exposure studies. While further testing and optimization is still required to produce a “commercially ready” system, it serves as a stepping-stone in the development of cost-effective in vitro technology that can be made accessible to researchers

  7. Design, fabrication and testing of ambient aerosol sampler inlets. Final report May 79-Oct 80

    SciTech Connect

    Wedding, J.B.; Weigand, M.A.

    1982-04-01

    Data are presented on the wind tunnel performances of two prototype Inhalable Particulate Matter (IPM) inlets designed for use with a dichotomous sampler. One was developed at the Aerosol Science Laboratory (ASL) Colorado State University, while the other was developed in an independent effort at the University of Minnesota (UM) and Lawrence Berkeley Laboratory (LBL). The ASL inlet is based on a unique omnidirectional cyclone fractionator, described in detail. Over the range of wind speeds from 0.5 - 24 km/hr, its measured 50% cutpoint was virtually invariant, 14.4 - 13.7 micrometers--well within the presently proposed IPM 50% cutpoint requirement. The UMLBL inlet results indicated near compliance with the IPM performance envelope, but there remain some small differences in data generated by UM and ASL personnel. Enrichment is apparent for both inlets in the 1 - 10 micrometers particle size range at the highest wind speed.

  8. The orientation-averaged aspiration efficiency of IOM-like personal aerosol samplers mounted on bluff bodies.

    PubMed

    Paik, Samuel Y; Vincent, James H

    2004-01-01

    This paper describes two sets of experiments that were intended to characterize the orientation-averaged aspiration efficiencies of IOM samplers mounted on rotating bluff bodies. IOM samplers were mounted on simplified, three-dimensional rectangular bluff bodies that were rotated horizontally at a constant rate. Orientation-averaged aspiration efficiencies (A360) were measured as a function of Stokes' number (St), velocity ratio (R) and dimension ratio (r). Aspiration efficiency (A) is the efficiency with which particles are transported from the ambient air into the body of a sampler, and A360 is A averaged over all orientations to the wind. St is a dimensionless variable that represents particle inertia, R is the ratio of the air velocity in the freestream and that at the plane of the sampler's entry orifice, and r is the ratio of the sampler's orifice diameter and the bluff body's width. The first set of experiments were instrumental in establishing a hierarchy of effects on orientation-averaged A. It was clear that compared to r, St had a much larger influence on A. It was also clear, however, that the effects of St were overpowered by the effects of R in many cases. As concluded in previous studies, R and St were considered the most important factors in determining A, even for A360. The second set of experiments investigated A360 of IOM samplers for a much wider range of r than examined in previous research. Two important observations were made from the experimental results. One was that the A360 of IOM samplers, as a function of St, did not change for an r-range of 0.066-0.4. This meant that an IOM sampler mounted on a near life-size mannequin would measure the same aerosol concentration as one not mounted on anything. The second observation was that the aspiration efficiency curve of the IOM sampler was close to the inhalability curve. This gave further evidence that the bluff body did not play a major role in influencing A360, as the IOM samplers, in these

  9. Design and computational fluid dynamics investigation of a personal, high flow inhalable sampler.

    PubMed

    Anthony, T Renée; Landázuri, Andrea C; Van Dyke, Mike; Volckens, John

    2010-06-01

    The objective of this research was to develop an inlet to meet the inhalable sampling criterion at 10 l min(-1) flow using the standard, 37-mm cassette. We designed a porous head for this cassette and evaluated its performance using computational fluid dynamics (CFD) modeling. Particle aspiration efficiency was simulated in a wind tunnel environment at 0.4 m s(-1) freestream velocity for a facing-the-wind orientation, with sampler oriented at both 0 degrees (horizontal) and 30 degrees down angles. The porous high-flow sampler oriented 30 degrees downward showed reasonable agreement with published mannequin wind tunnel studies and humanoid CFD investigations for solid particle aspiration into the mouth, whereas the horizontal orientation resulted in oversampling. Liquid particles were under-aspirated in all cases, however, with 41-84% lower aspiration efficiencies relative to solid particles. A sampler with a single central 15-mm pore at 10 l min(-1) was also investigated and was found to match the porous sampler's aspiration efficiency for solid particles; the single-pore sampler is expected to be more suitable for liquid particle use.

  10. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air flow splitting components that may be used in a Class I candidate equivalent method sampler such... candidate samplers in which the aerosol flow path (the flow path through which sample air passes upstream of... through which sample air is flowing during performance of this test. (3) A no-flow filter is a...

  11. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air flow splitting components that may be used in a Class I candidate equivalent method sampler such... candidate samplers in which the aerosol flow path (the flow path through which sample air passes upstream of... through which sample air is flowing during performance of this test. (3) A no-flow filter is a...

  12. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air flow splitting components that may be used in a Class I candidate equivalent method sampler such... candidate samplers in which the aerosol flow path (the flow path through which sample air passes upstream of... through which sample air is flowing during performance of this test. (3) A no-flow filter is a...

  13. Improved large-volume sampler for the collection of bacterial cells from aerosol.

    PubMed

    White, L A; Hadley, D J; Davids, D E; Naylor, R

    1975-03-01

    A modified large-volume sampler was demonstrated to be an efficient device for the collection of mono-disperse aerosols of rhodamine B and poly-disperse aerosols of bacterial cells. Absolute efficiency for collection of rhodamine B varied from 100% with 5-mum particles to about 70% with 0.5-mum particles. The sampler concentrated the particles from 950 liters of air into a flow of between 1 and 2 ml of collecting fluid per min. Spores of Bacillus subtilis var. niger were collected at an efficiency of about 82% compared to the collection in the standard AGI-30 sampler. In the most desirable collecting fluids tested, aerosolized cells of Serratia marcescens, Escherichia coli, and Aerobacter aerogenes were collected at comparative efficiencies of approximately 90, 80, and 90%, respectively. The modified sampler has practical application in the study of aerosol transmission of respiratory pathogens.

  14. Evaluation of the commercial bacterial air samplers by the new bacterial aerosol generator.

    PubMed

    Furuhashi, M; Miyamae, T

    1981-03-01

    Of late microbiological air samplers of various types have been developed in monitoring the critical areas in the hospitals and pharmaceutical plants. It has not been clarified, however, that a commercial air sampler is the most suitable for such a purpose. The present studies were conducted to investigate the bacterial collection efficiency of these air samplers. The new experimental apparatus basically consists of a bacterial aerosol generator and an isokinetic sampling steel air duct. Serratia marcescens was used as the test bacteria, and then the bacterial collection efficiency of the three kinds of commercial air samplers (Andersen air sampler, Pin-hole air sampler and M/G air sampler) was examined. It was found that in these experiments these three air samplers had a high bacterial collection efficiency. All except 0.3 to 2.0% of the small bacterial particles (1 to 5 micrometer) were trapped by these tested air samplers. Furthermore, in these three air samplers it was also confirmed that for collecting the hospital airborne bacteria the bacterial collection efficiency was more than 99.9%. The authors' findings showed that these three air samplers were designed according to Ranz and Wong's theoretical and experimental results.

  15. Introduction: Aerosol Delivery of Orally Inhaled Agents

    PubMed Central

    Devadason, Sunalene G.; Kuehl, Philip J.

    2012-01-01

    Abstract Deposition scintigraphy methods have been used extensively to provide qualitative and quantitative data on aerosol drug deposition in the lungs. However, differences in methodology among the different centers performing these studies have limited the application of these techniques, especially in regulatory roles. As an introduction to the standardized techniques developed by the International Society for Aerosols in Medicine (ISAM) Regulatory Affairs Networking Group, we present potential advantages of the use of standard techniques for deposition scintigraphy. Specifically, we propose that standardized techniques would allow for better comparisons between labs and would facilitate multicenter studies. They would allow for improved methods of establishing equivalence and could be better utilized to establish dosing for new medications. They would allow for the performance of more accurate dose ranging or multidose studies and complement pharmacokinetic studies of new inhaled medications. Standardized techniques could help to establish the relationship between the deposition of drug in the lungs and clinical effect, and may also facilitate clinical measurements of deposited dose for medications with narrow therapeutic indices. In the sections that follow, we discuss the best techniques used to perform deposition scintigraphy through planar, single-photon emission computed tomography, and positron emission tomography modalities and propose a detailed set of standardized methods for each. These include methods for radiolabel validation, radiolabel accountability and mass balance, and imaging acquisition and analysis. PMID:23215846

  16. Site comparison of selected aerosol samplers in the wood industry.

    PubMed

    Kauffer, Edmond; Wrobel, Richard; Görner, Peter; Rott, Christelle; Grzebyk, Michel; Simon, Xavier; Witschger, Olivier

    2010-03-01

    Several samplers (IOM, CIP 10-I v1, ACCU-CAP, and Button) were evaluated at various wood industry companies using the CALTOOL system. The results obtained show that compared to the CALTOOL mouth, which can be considered to be representative of the exposure of a person placed at the same location under the same experimental conditions, the concentrations measured by the IOM, CIP 10-I v1, and ACCU-CAP samplers are not significantly different (respectively, 1.12, 0.94, and 0.80 compared to 1.00), the Button sampler (0.86) being close to the ACCU-CAP sampler. Comparisons of dust concentrations measured using both a closed-face cassette (CFC) and one of the above samplers were also made. In all, 235 sampling pairs (sampler + CFC) taken at six companies provided us with a comparison of concentrations measured using IOM, CIP 10-I v1, ACCU-CAP, and Button samplers with concentrations measured using a CFC. All the studied samplers collected systematically more dust than the CFC (2.0 times more for the IOM sampler, 1.84 times more for the CIP 10-I v1 sampler, 1.68 times more for the ACCU-CAP sampler, and 1.46 times more for the Button sampler). The literature most frequently compares the IOM sampler with the CFC: published results generally show larger differences compared with the CFC than those found during our research. There are several explanations for this difference, one of which involves CFC orientation during sampling. It has been shown that concentrations measured using a CFC are dependent on its orientation. Different CFC positions from one sampling session to another are therefore likely to cause differences during CFC-IOM sampler comparisons.

  17. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler

    PubMed Central

    Fabian, P.; McDevitt, J. J.; Houseman, E. A.; Milton, D. K.

    2013-01-01

    As a first step in conducting studies of airborne influenza transmission, we compared the collection performance of an SKC Biosampler, a compact cascade impactor (CCI), Teflon filters, and gelatin filters by collecting aerosolized influenza virus in a one-pass aerosol chamber. Influenza virus infectivity was determined using a fluorescent focus assay and influenza virus nucleic acid (originating from viable and non-viable viruses) was measured using quantitative PCR. The results showed that the SKC Biosampler recovered and preserved influenza virus infectivity much better than the other samplers – the CCI, Teflon, and gelatin filters recovered only 7–22% of infectious viruses compared with the Biosampler. Total virus collection was not significantly different among the SKC Biosampler, the gelatin, and Teflon filters, but was significantly lower in the CCI. Results from this study show that a new sampler is needed for virus aerosol sampling, as commercially available samplers do not efficiently collect and conserve virus infectivity. Applications for a new sampler include studies of airborne disease transmission and bioterrorism monitoring. Design parameters for a new sampler include high collection efficiency for fine particles and liquid sampling media to preserve infectivity. PMID:19689447

  18. Generation and characterization of aerosols and vapors for inhalation experiments.

    PubMed Central

    Tillery, M I; Wood, G O; Ettinger, H J

    1976-01-01

    Control of aerosol and vapor characteristics that affect the toxicity of inhaled contaminants often determines the methods of generating exposure atmospheres. Generation methods for aerosols and vapors are presented. The characteristics of the resulting exposure atmosphere and the limitations of the various generation methods are discussed. Methods and instruments for measuring the airborne contaminant with respect to various charcteristics are also described. PMID:797565

  19. Hospital washbasin water: risk of Legionella-contaminated aerosol inhalation.

    PubMed

    Cassier, P; Landelle, C; Reyrolle, M; Nicolle, M C; Slimani, S; Etienne, J; Vanhems, P; Jarraud, S

    2013-12-01

    The contamination of aerosols by washbasin water colonized by Legionella in a hospital was evaluated. Aerosol samples were collected by two impingement technologies. Legionella was never detected by culture in all the (aerosol) samples. However, 45% (18/40) of aerosol samples were positive for Legionella spp. by polymerase chain reaction, with measurable concentrations in 10% of samples (4/40). Moreover, immunoassay detected Legionella pneumophila serogroup 1 and L. anisa, and potentially viable bacteria were seen on viability testing. These data suggest that colonized hospital washbasins could represent risks of exposure to Legionella aerosol inhalation, especially by immunocompromised patients.

  20. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria.

    PubMed

    Jensen, P A; Todd, W F; Davis, G N; Scarpino, P V

    1992-10-01

    The need to quantify airborne microorganisms in the commercial microbiology industry (biotechnology) and during evaluations of indoor air quality, infectious disease outbreaks, and agriculture health investigations has shown there is a major technological void in bioaerosol sampling techniques to measure and identify viable and nonviable aerosols. As commercialization of microbiology increases and diversifies, it is increasingly necessary to assess occupational exposure to bioaerosols. Meaningful exposure estimates, by using area or environmental samplers, can only be ensured by the generation of data that are both precise and accurate. The Andersen six-stage viable (microbial) particle sizing sampler (6-STG) and the Ace Glass all-glass impinger-30 (AGI-30) have been suggested as the samplers of choice for the collection of viable microorganisms by the International Aerobiology Symposium and the American Conference of Governmental Industrial Hygienists. Some researchers consider these samplers inconvenient for evaluating industrial bioprocesses and indoor or outdoor environments. Alternative samplers for the collection of bioaerosols are available; however, limited information has been reported on their collection efficiencies. A study of the relative sampling efficiencies of eight bioaerosol samplers has been completed. Eight samplers were individually challenged with a bioaerosol, created with a Collison nebulizer, of either Bacillus subtilis or Escherichia coli. The samplers were evaluated under controlled conditions in a horizontal bioaerosol chamber. During each experimental run, simultaneous samples were collected with a reference AGI-30 to verify the concentration of microorganisms in the chamber from run to run and day to day.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.

    PubMed

    Bian, Xiaojun; Lan, Ying; Wang, Bing; Zhang, Yu Shrike; Liu, Baohong; Yang, Pengyuan; Zhang, Weijia; Qiao, Liang

    2016-12-06

    The early warning capability of the presence of biological aerosol threats is an urgent demand in ensuing civilian and military safety. Efficient and rapid air sample collection in relevant indoor or outdoor environment is a key step for subsequent analysis of airborne microorganisms. Herein, we report a portable battery-powered sampler that is capable of highly efficient bioaerosol collection. The essential module of the sampler is a polydimethylsiloxane (PDMS) microfluidic chip, which consisted of a 3-loop double-spiral microchannel featuring embedded herringbone and sawtooth wave-shaped structures. Vibrio parahemolyticus (V. parahemolyticus) as a model microorganism, was initially employed to validate the bioaerosol collection performance of the device. Results showed that the sampling efficacy reached as high as >99.9%. The microfluidic sampler showed greatly improved capturing efficiency compared with traditional plate sedimentation methods. The high performance of our device was attributed to the horizontal inertial centrifugal force and the vertical turbulence applied to airflow during sampling. The centrifugation field and turbulence were generated by the specially designed herringbone structures when air circulated in the double-spiral microchannel. The sawtooth wave-shaped microstructure created larger specific surface area for accommodating more aerosols. Furthermore, a mixture of bacterial aerosols formed by V. parahemolyticus, Listeria monocytogenes, and Escherichia coli was extracted by the microfluidic sampler. Subsequent integration with mass spectrometry conveniently identified the multiple bacterial species captured by the sampler. Our developed stand-alone and cable-free sampler shows clear advantages comparing with conventional strategies, including portability, easy-to-use, and low cost, indicating great potential in future field applications.

  2. Improvement and characterization of an automatic aerosol sampler for remote (glacier) sites

    NASA Astrophysics Data System (ADS)

    Preunkert, Susanne; Wagenbach, Dietmar; Legrand, Michel

    An automatic prototype aerosol sampler has been specifically revised to gain reliable year round data sets of the chemical aerosol composition at high Alpine ice core drill sites. An unattended deployment of the new aerosol sampler at the Vallot Observatory (4361 m a.s.l., French Alps) showed that previous shortcoming such as sensitivity to lightning activities and strong passive sampling effects were successfully overcome. The latter effect was almost eliminated, leading to an improvement of the detection limits by up to a factor of 30. Detailed investigations of the blank variability and sampling characteristics revealed that the new sampler allows to quantify the aerosol species NH 4+, SO 42-, K +, oxalate as well as total Cl - and total NO 3-. In addition records of Na +, Mg 2+ and Ca 2+ can be provided though systematically underestimated. On the other hand unreliable results are derived for formate, acetate and SO 2. Considering a bi-weekly sampling interval, detection limits range from 0.2 to 2 ng m -3 STP (except for Na +: 16 ng m -3 STP). Such a detection limit is also accessible for Na + if PTFE filters are used. The aerosol data set gained at Vallot Observatory allowed preliminary estimates of mean firn/air ratios for NH 4+, SO 42- and total NO 3-. The air/firn relationship appeared to be consistent compared to other high elevation ice core drilling sites. With the improved detection limits at still minimized energy consumption, a year round deployment of the automatic aerosol sampler appears now to be feasible even at polar glacier sites.

  3. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies.

    PubMed

    Madsen, Anne Mette; Larsen, Søren T; Koponen, Ismo K; Kling, Kirsten I; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-04-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition.

  4. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies

    PubMed Central

    Larsen, Søren T.; Koponen, Ismo K.; Kling, Kirsten I.; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-01-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107 CFU of fungi/m3 air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, Aspergillus versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, Penicillium camemberti, Penicillium chrysogenum, Penicillium commune, Penicillium glabrum, Penicillium olsonii, Penicillium rugulosum, Stachybotrys chartarum, and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  5. A CAM (continuous air monitor) sampler for collecting and assessing alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Bethel, E.L.; Ortiz, C.A.; Stanke, J.G. )

    1991-07-01

    A new continuous air monitor (CAM) sampler for assessing alpha-emitting transuranic aerosol particles has been developed. The system has been designed to permit collection of particles that can potentially penetrate into the thoracic region of the human respiratory system. Wind tunnel testing of the sampler has been used to characterize the penetration of aerosol to the collection filter. Results show that greater than or equal to 50% of 10-micrograms aerodynamic equivalent diameter (AED) particles are collected by the filter at wind speeds of 0.3 to 2 m s-1 and at sampling flow rates of 28 to 113 L min-1 (1 to 4 cfm). The deposition of 10-microns AED particles takes place primarily in the center of the filter, where the counting efficiency of the detector is highest.

  6. A Comparison of Gravimetric and Photometric Aerosol Samplers

    DTIC Science & Technology

    2009-03-24

    crushing, pulverizing, blasting, drilling, and grinding. Dusts are also produced in dry material preparations and packaging processes. Dusts can create...and ice crystals. They participate in various chemical cycles, and absorb or scatter solar radiation to influence the Earth’s radiation budget (NASA...surrounding and within the sampling area are critical issues when assessing the sampling characteristics of the device. It is imperative that aerosol

  7. Aerodynamic design of gas and aerosol samplers for aircraft

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Hazen, Nathan L.; Brune, William H.

    1991-01-01

    The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed.

  8. Performance evaluation of modified Semi-continuous Elements in Aerosol Sampler-III

    NASA Astrophysics Data System (ADS)

    Pancras, Joseph Patrick; Landis, Matthew S.

    2011-12-01

    A field study was conducted to evaluate the performance of a Semi-continuous Elements in Aerosol Sampler-III (SEAS-III), designed to collect ambient PM 2.5 aerosol samples at a time resolution of 30 min for elemental concentration measurements. Two identical but modified SEAS-III samplers were operated for four continuous weeks in Dearborn, MI, during July-August 2007. A total of 2308 samples were collected from the two samplers. Sampling completeness from the primary and duplicate samplers was 90% and 84%, respectively. All of the collected samples were analyzed for dilute acid-extractable trace metal concentrations using HR-ICPMS. A total of 878 collection time-matched sample pairs were available to evaluate whole-system uncertainty from collocated concentration measurements. The collocated precision for the 27 studied elements (Al, As, Ba, Ca, Cd, Ce, Cs, Cu, Fe, Ge, K, La, Mg, Mn, Mo, Na, P, Pb, Rb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) varied between 9% and 40%. Twenty elements showed precision better than 25%. Uncertainty estimates from propagation of errors compared well with the whole-system uncertainty values for all minor aerosol elements studied. SEAS-III measurements of As, Cd, Ge, K, La, Mn, Mo, Na, Rb, Se, Sb, Sr, Ti, V, and Zn correlated well ( r > 0.8) with a FRM equivalent PM 2.5 integrated filter sampling method. Based on these measurements, collection efficiency of SEAS-III was estimated to be 87 ± 16%. Solubility of particles in the collection medium (water) was identified as a possible reason for low recovery of Al, Fe, Pb, Sb, and Sn.

  9. Design of a personal annular denuder sampler to measure atmospheric aerosols and gases

    NASA Astrophysics Data System (ADS)

    Koutrakis, P.; Fasano, A. M.; Slater, J. L.; Spengler, J. D.; McCarthy, J. F.; Leaderer, B. P.

    A personal sampling device has been designed to measure atmospheric gases and particles. This sampling system includes a glass impactor, an annular denuder and a filter pack. The glass impactor consists of an entrance section containing the inlet tube, the acceleration jet, and the impaction plate which is mounted at the entrance to the annular denuder. The impaction plate is a removable porous glass disk which can be impregnated with mineral oil to avoid bounce-off of the collected particles during sampling. The impactor has been designed to have a 50% aerodynamic particle cut-off point of 2.5μm, at flow rates of 4 and 2 ℓ min -1. For each flow, a different inlet has been designed with acceleration jet diameter of 0.250 and 0.190 mm, respectively. The annular denuder can be coated with citric acid to collect NH 3 and nicotine vapors. Also collection of SO 2, HNO 3 and HNO 2 is possible by coating the denuder with sodium carbonate. The last component of the designed personal sampler is a filter pack containing a 37-mm Teflon filter which is used to measure fine particle mass, aerosol strong acidity, sulfates and nitrates. The Teflon filter can be followed by a citric acid coated glass fiber filter used to collect nicotine which originates from the volatilization of the particle-phase nicotine collected on the Teflon filter. The ability of the personal sampler to collect fine particles was examined by conducting indoor aerosol sampling experiments. Also, ammonia collection efficiency tests were performed to characterize the personal denuder. The findings of these experiments showed that the designed personal sampler can be adequate for measuring human exposures to acid aerosols. In addition, the performance evaluation of the sampler to collect environmental tobacco smoke was investigated by conducting chamber tests.

  10. Improvement of drug delivery with a breath actuated pressurised aerosol for patients with poor inhaler technique.

    PubMed Central

    Newman, S P; Weisz, A W; Talaee, N; Clarke, S W

    1991-01-01

    BACKGROUND The metered dose inhaler is difficult to use correctly, synchronising actuation with inhalation being the most important problem. A breath actuated pressurised inhaler, designed to help patients with poor inhaler technique, was compared with a conventional metered dose inhaler in terms of aerosol deposition and bronchodilator response. METHODS Radioaerosol deposition and bronchodilator response to 100 micrograms salbutamol were measured in 18 asthmatic patients, who inhaled from a conventional metered dose inhaler by their own chosen metered dose inhaler technique, from a conventional metered dose inhaler by a taught metered dose inhaler technique, and from a breath actuated pressured inhaler (Autohaler). RESULTS In the 10 patients who could coordinate actuation and inhalation of the inhaler on their own deposition of aerosol in the lungs and bronchodilator response were equivalent on the three study days. By contrast, in the eight patients who could not coordinate the mean (SEM) percentage of the dose deposited in the lungs with their own inhaler technique (7.2% (3.4%] was substantial lower than those attained by the taught metered dose inhaler technique (22.8% (2.5%] and by Autohaler (20.8% (1.7%]. CONCLUSION Although of little additional benefit to asthmatic patients with good coordination, the Autohaler is potentially a valuable aid to those with poor coordination, and should be considered in preference to a conventional metered dose inhaler in any patient whose inhaler technique is not known to be satisfactory. Images PMID:1750017

  11. Gold nanoparticle aerosols for rodent inhalation and translocation studies

    NASA Astrophysics Data System (ADS)

    Möller, Winfried; Gibson, Neil; Geiser, Marianne; Pokhrel, Suman; Wenk, Alexander; Takenaka, Shinji; Schmid, Otmar; Bulgheroni, Antonio; Simonelli, Federica; Kozempel, Jan; Holzwarth, Uwe; Wigge, Christoph; Eigeldinger-Berthou, Sylvie; Mädler, Lutz; Kreyling, Wolfgang G.

    2013-04-01

    The intensive use of nano-sized particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of nanoparticles (NP) with biological systems after various routes of exposure needs to be investigated using well-characterized NP. We report here on the generation of gold-NP (Au-NP) aerosols for inhalation studies with the spark ignition technique, and their characterization in terms of chemical composition, physical structure, morphology, and specific surface area, and on interaction with lung tissues and lung cells after 1 h inhalation by mice. The originally generated agglomerated Au-NP were converted into compact spherical Au-NP by thermal annealing at 600 °C, providing particles of similar mass, but different size and specific surface area. Since there are currently no translocation data available on inhaled Au-NP in the 10-50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation in rodents. For anticipated in vivo systemic translocation and dosimetry analyses, radiolabeled Au-NP were created by proton irradiating the gold electrodes of the spark generator, thus forming gamma ray emitting 195Au with 186 days half-life, allowing long-term biokinetic studies. The dissolution rate of 195Au from the NP was below detection limits. The highly concentrated, polydisperse Au-NP aerosol (1-2 × 107 NP/cm3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation and number concentration. After collection on filters particles can be re-suspended and used for instillation or ingestion studies.

  12. A wind tunnel test of newly developed personal bioaerosol samplers.

    PubMed

    Su, Wei-Chung; Tolchinsky, Alexander D; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-07-01

    In this study the performance of two newly developed personal bioaerosol samplers was evaluated. The two test samplers are cyclone-based personal samplers that incorporate a recirculating liquid film. The performance evaluations focused on the physical efficiencies that a personal bioaerosol sampler could provide, including aspiration, collection, and capture efficiencies. The evaluation tests were carried out in a wind tunnel, and the test personal samplers were mounted on the chest of a full-size manikin placed in the test chamber of the wind tunnel. Monodisperse fluorescent aerosols ranging from 0.5 to 20 microm were used to challenge the samplers. Two wind speeds of 0.5 and 2.0 m/sec were employed as the test wind speeds in this study. The test results indicated that the aspiration efficiency of the two test samplers closely agreed with the ACGIH inhalable convention within the size range of the test aerosols. The aspiration efficiency was found to be independent of the sampling orientation. The collection efficiency acquired from these two samplers showed that the 50% cutoff diameters were both around 0.6 microm. However the wall loss of these two test samplers increased as the aerosol size increased, and the wall loss of PAS-4 was considerably higher than that of PAS-5, especially in the aerosol size larger than 5 microm, which resulted in PAS-4 having a relatively lower capture efficiency than PAS-5. Overall, the PAS-5 is considered a better personal bioaerosol sampler than the PAS-4.

  13. Inhalation toxicity of lithium combustion aerosols in rats

    SciTech Connect

    Greenspan, B.J.; Allen, M.D.; Rebar, A.H.

    1986-01-01

    Studies of the acute inhalation toxicity of lithium combustion aerosols were undertaken to aid in evaluating the health hazards associated with the proposed use of lithium metal in fusion reactors. Male and female F344/Lov rats, 9-12 wk of age, were exposed once for 4 h to concentrations of 2600, 2300, 1400, or 620 mg/m/sup 3/ of aerosol (MMAD = 0.69 ..mu..m, sigma/sub g/ = 1.45) that was approximately 80% lithium carbonate and 20% lithium hydroxide to determine the acute toxic effects. Fourteen-day LC50 values (with 95% confidence limits) of 1700 (1300-2000) mg/m/sup 3/ for the male rats and 2000 (1700-2400) mg/m/sup 3/ for the female rate were calculated. Clinical signs of anorexia, dehydration, respiratory difficulty, and perioral and perinasal encrustation were observed. Body weights were decreased the first day after exposure in relation to the exposure concentration. In animals observed for an additional 2 wk, body weights, organ weights, and clinical signs began to return to pre-exposure values. Histopathologic examination of the respiratory tracts from the animals revealed ulcerative or necrotic laryngitis, focal to segmental ulcerative rhinitis often accompanied by areas of squamous metaplasia, and, in some cases, a suppurative bronchopneumonia or aspiration pneumonia, probably secondary to the laryngeal lesions. The results of these studies indicate the moderate acute toxicity of lithium carbonate aerosols and will aid in the risk analysis of accidental releases of lithium combustion aerosols.

  14. Challenges in validating CFD-derived inhaled aerosol deposition predictions.

    PubMed

    Oldham, Michael J

    2006-09-01

    Computational fluid dynamic (CFD) techniques have provided unprecedented opportunity for investigating inhaled particle deposition in realistic human airway geometries. Several recent articles describing local aerosol deposition predictions based upon "validated" CFD models have highlighted the challenges in validating local aerosol deposition predictions. These challenges include: (1) defining what is meant by validation; (2) defining appropriate experimental data for validation; and (3) determining when the agreement is not fortuitous. The term validation has numerous meanings, depending on the field and context in which it is used. For example, in computer programming it means the code executes as intended, to the experimentalist it means predicted results agree with matched experimental measurements, and to the risk assessor it implies that predictions using new parameters can be trusted. Based on the current literature it is not clear that a consensus exists for what constitutes a validated CFD model. It is also not clear what types of experimental data are needed or how closely the CFD input values and experimental conditions should be matched (similar or identical airway geometries, entrance airflow, or aerosol profiles) to validate CFD derived predictions. Due to the complexity of CFD computer codes and the multiplicity of deposition mechanisms, it is possible that total aerosol deposition may be accurately predicted and the resulting local particle deposition patterns are incorrect, or vice versa. Specific examples and suggestions for several challenges to experimentalists and modelers are presented.

  15. Comparison of the aerosol velocity and spray duration of Respimat Soft Mist inhaler and pressurized metered dose inhalers.

    PubMed

    Hochrainer, Dieter; Hölz, Hubert; Kreher, Christoph; Scaffidi, Luigi; Spallek, Michael; Wachtel, Herbert

    2005-01-01

    Apart from particle size distribution, spray velocity is one of the most important aerosol characteristics that influence lung deposition of inhaled drugs. The time period over which the aerosol is released (spray duration) is also important for coordination of inhalation. Respimat Soft Mist Inhaler (SMI) is a new generation, propellant-free inhaler that delivers drug to the lung much more efficiently than pressurised metered dose inhalers (pMDIs). The objective of this study was to compare the velocity and spray duration of aerosol clouds produced by Respimat SMI with those from a variety of chlorofluorocarbon (CFC) and hydrofluoroalkane (HFA) pMDIs. All inhalers contained solutions or suspensions of bronchodilators. A videorecording method was used to determine the aerosol velocity. For spray duration, the time for generation of the Soft Mist by Respimat SMI was initially determined using three different methods (videorecording [techniques A and B], laser light diffraction and rotating disc). Videorecording was then used to compare the spray duration of Respimat SMI with those from the other inhalers. The Soft Mist produced by Respimat SMI moved much more slowly and had a more prolonged duration than aerosol clouds from pMDIs (mean velocity at a 10-cm distance from the nozzle: Respimat SMI, 0.8 m/sec; pMDIs, 2.0-8.4 m/sec; mean duration: Respimat SMI, 1.5 sec; pMDIs, 0.15-0.36 sec). These characteristics should result in improved lung and reduced oropharyngeal deposition, and are likely to simplify coordination of inhaler actuation and inhalation compared with pMDIs.

  16. Engineering Upgrades to the Radionuclide Aerosol Sampler/Analyzer for the CTBT International Monitoring System

    SciTech Connect

    Forrester, Joel B.; Carty, Fitz; Comes, Laura; Hayes, James C.; Miley, Harry S.; Morris, Scott J.; Ripplinger, Mike D.; Slaugh, Ryan W.; Van Davelaar, Peter

    2013-05-13

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory in the 1990’s and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The utility of such an automated system is the reduction of human intervention and the production of perfectly uniform results. However, maintainability and down time issues threaten this utility, even for systems with over 90% data availability. Engineering upgrades to the RASA are currently being pursued to address these issues, as well as Fukushima lessons learned. Current work includes a new automation control unit, and other potential improvements such as alternative detector cooling and sampling options are under review. This paper presents the current state of upgrades and improvements under investigation

  17. Distribution of 125Iricin in mice following aerosol inhalation exposure

    SciTech Connect

    Doebler, J.A.; Wiltshire, N.D.; Mayer, T.W.; Estep, J.E.; Moeller, R.B.

    1995-12-31

    Studies were conducted to examine the uptake and redistribution of 251Iricin from the lungs of mice following nose-only aerosol inhalation exposure. Radiolabelled contents were measured in lung and various extra-pulmonary tissues 15 min through 30 h following 10 min aerosol exposures. Pharmacokinetic analyses were performed on whole organ data obtained for lungs, stomach, liver and spleen. Radioactivity within the lungs, maximal at 15 min post-exposure, was eliminated in a biexponential fashion with a long Beta half-life (approx. 40 h). Large amounts of radiolabel were also found within the gastrointestinal tract. Radiolabel within the stomach exhibited an absorption phase and two-compartment elimination. Radiolabel content of many other tissues, including known accumulation sites for intravenously administered toxin, was significantly (p < 0,05) increased (relative to 15 min post-exposure) in association with the early elimination of radiolabel from the lungs, but levels in these tissues were very low and did not increase after 4 h post-exposure. The only exception was our sample of trachea, which showed delayed elevations in radiolabel (peak at 24 h); this pattern was attributable to the contained thyroid (not removed at necropsy) and its trapping of free (125I released) upon tissue 125Iricin degradation. The overall data indicate that ricin administered by aerosol inhalation is delivered to both respiratory and gastrointestinal tracts; however, it is not extensively transported from either tract to other potential target sites. Ricin delivered to the lungs is primarily sequestered within the lungs until degradation. Only small amounts of ricin delivered to the gastrointestinal tract are absorbed into the circulation.

  18. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  19. [Inhalation therapy: inhaled corticosteroids in ENT, development and technical challenges of powder inhalers, nebulisers synchronized with breathing and aerosol size distribution. GAT aerosolstorming, Paris 2012].

    PubMed

    Le Guen, P; Peron, N; Durand, M; Pourchez, J; Cavaillon, P; Reychler, G; Vecellio, L; Dubus, J-C

    2013-10-01

    The working group on aerosol therapy (GAT) of the Société de Pneumologie de Langue Française (SPLF) has organized its third Aerosolstorming in 2012. During one single day, different aspects of inhaled therapies have been treated and are detailed in two articles, this one being the second. This text deals with the indications of inhaled corticosteroids in ENT, the development and technical challenges of powder inhalers, the advantages and disadvantages of each type of technologies to measure the particle sizes of inhaled treatments.

  20. ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...

  1. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions

    PubMed Central

    Stacey, Peter; Thorpe, Andrew; Echt, Alan

    2016-01-01

    It is thought that the performance of respirable samplers may vary when exposed to dust aerosols with different particle sizes and wind speeds. This study investigated the performance of the GK 4.16 (RASCAL), GK 2.69, PPI 8, and FSP 10, high flow rate personal samplers when exposed to aerosols of mineral dust in a wind tunnel at two different wind speeds (1 and 2 m s−1) and orientations (towards and side-on to the source of emission). The mass median aerodynamic diameter of four aerosolized test dusts ranged from 8 to 25 µm with geometric standard deviations from 1.6 to 2 µm. The performance of each sampler type was compared with that of the SIMPEDS (Higgins–Dewell design) sampler. There was slight evidence to suggest that the performance of the FSP 10 is affected by the direction of the inlet relative to the air flow, although this was not significant when most respirable dust concentrations were compared, possibly due to the variability of paired dust concentration results. The GK 2.69, RASCAL, and PPI 8 samplers had similar performances, although the results when side-on to the emission source were generally slightly lower than the SIMPEDS. Despite slight differences between respirable dust concentrations the respirable crystalline silica values were not significantly different from the SIMPEDS. The GK family of cyclones obtained most precise results and more closely matched the SIMPEDS. A comparison with dust concentration results from previous calm air chamber studies (where wind speeds were < 0.4 m s−1) found that the relative performance between samplers was similar to those observed in this work indicating consistent performance relative to the SIMPEDS in both calm and moving air. PMID:26865560

  2. CFD analysis of the aerosolization of carrier-based dry powder inhaler formulations

    NASA Astrophysics Data System (ADS)

    Zhou, Qi (Tony); Tong, Zhenbo; Tang, Patricia; Yang, Runyu; Chan, Hak-Kim

    2013-06-01

    This study applied computational fluid dynamics (CFD) analysis to investigate the role of device design on the aerosolization of a carrier-based dry powder inhaler (DPI). The inhaler device was modified by reducing the inlet size, decreasing the mouthpiece length and increasing the mesh grid voidage. The flow patterns in the inhaler device were examined. It was observed that there was no significant influence on the aerosol performance with the reduced mouthpiece. When the inlet size was reduced to one third of the original one, the fine particle fraction (FPF), defined as mount of inhalable fine particles below 5μm in the aerosol, was improved significantly from 17.7% to 24.3%. The CFD analysis indicated that the increase in FPF was due to increasing air velocity for the smaller inlet. No significant difference was shown in FPF when the grid voidage was increased, but more drugs deposited in the mouthpiece and throat.

  3. Evaluating the applicability of a semi-continuous aerosol sampler to measure Asian dust particles.

    PubMed

    Son, Se-Chang; Park, Seung Shik

    2015-03-01

    A Korean prototype semi-continuous aerosol sampler was used to measure Asian dust particles. During two dust-storm periods, concentrations of crustal and trace elements were significantly enriched. Dust storms are one of the most significant natural sources of air pollution in East Asia. The present study aimed to evaluate use of a Korean semi-continuous aerosol sampler (K-SAS) in observation of mineral dust particles during dust storm events. Aerosol slurry samples were collected at 60 min intervals using the K-SAS, which was operated at a sampling flow rate of 16.7 L min(-1) through a PM10 cyclone inlet. The measurements were made during dust storm events at an urban site, Gwangju in Korea, between April 30 and May 5, 2011. The K-SAS uses particle growth technology as a means of collecting atmospheric aerosol particles. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, and Se) were determined off-line in the collected slurry samples by inductively coupled plasma-mass spectrometry (ICP-MS). The sampling periods were classified into two types, based on the source regions of the dust storms and the transport pathways of the air masses reaching the sampling site. The first period "A" was associated with dust particles with high Ca content, originating from the Gobi desert regions of northern China and southern Mongolia. The second period "B" was associated with dust particles with low Ca content, originating from northeastern Chinese sandy deserts. The results from the K-SAS indicated noticeable differences in concentrations of crustal and trace elements in the two sampling periods, as a result of differences in the source regions of the dust storms, the air mass transport pathways, and the impact of smoke from forest fires. The concentrations of the crustal (Al, Ca, Ti, Mn, and Fe) and anthropogenic trace elements (Vi, Ni, Cu, Zn, As, Se, and Pb) were enriched significantly during the two dust storm periods. However, the

  4. Production of Inhalable Submicrometer Aerosols from Conventional Mesh Nebulizers for Improved Respiratory Drug Delivery.

    PubMed

    Longest, P Worth; Spence, Benjamin M; Holbrook, Landon T; Mossi, Karla M; Son, Yoen-Ju; Hindle, Michael

    2012-09-01

    Submicrometer and nanoparticle aerosols may significantly improve the delivery efficiency, dissolution characteristics, and bioavailability of inhaled pharmaceuticals. The objective of this study was to explore the formation of submicrometer and nanometer aerosols from mesh nebulizers suitable for respiratory drug delivery using experiments and computational fluid dynamics (CFD) modeling. Mesh nebulizers were coupled with add-on devices to promote aerosol drying and the formation of submicrometer particles, as well as to control the inhaled aerosol temperature and relative humidity. Cascade impaction experiments were used to determine the initial mass median aerodynamic diameters of 0.1% albuterol aerosols produced by the AeroNeb commercial (4.69 μm) and lab (3.90 μm) nebulizers and to validate the CFD model in terms of droplet evaporation. Through an appropriate selection of flow rates, nebulizers, and model drug concentrations, submicrometer and nanometer aerosols could be formed with the three devices considered. Based on CFD simulations, a wire heated design was shown to overheat the airstream producing unsafe conditions for inhalation if the aerosol was not uniformly distributed in the tube cross-section or if the nebulizer stopped producing droplets. In comparison, a counter-flow heated design provided sufficient thermal energy to produce submicrometer particles, but also automatically limited the maximum aerosol outlet temperature based on the physics of heat transfer. With the counter-flow design, submicrometer aerosols were produced at flow rates of 5, 15, and 30 LPM, which may be suitable for various forms of oral and nasal aerosol delivery. Thermodynamic conditions of the aerosol stream exiting the counter-flow design were found be in a range of 21-45 °C with relative humidity greater than 40% in some cases, which was considered safe for direct inhalation and advantageous for condensational growth delivery.

  5. Production of Inhalable Submicrometer Aerosols from Conventional Mesh Nebulizers for Improved Respiratory Drug Delivery

    PubMed Central

    Longest, P. Worth; Spence, Benjamin M.; Holbrook, Landon T.; Mossi, Karla M.; Son, Yoen-Ju; Hindle, Michael

    2012-01-01

    Submicrometer and nanoparticle aerosols may significantly improve the delivery efficiency, dissolution characteristics, and bioavailability of inhaled pharmaceuticals. The objective of this study was to explore the formation of submicrometer and nanometer aerosols from mesh nebulizers suitable for respiratory drug delivery using experiments and computational fluid dynamics (CFD) modeling. Mesh nebulizers were coupled with add-on devices to promote aerosol drying and the formation of submicrometer particles, as well as to control the inhaled aerosol temperature and relative humidity. Cascade impaction experiments were used to determine the initial mass median aerodynamic diameters of 0.1% albuterol aerosols produced by the AeroNeb commercial (4.69 μm) and lab (3.90 μm) nebulizers and to validate the CFD model in terms of droplet evaporation. Through an appropriate selection of flow rates, nebulizers, and model drug concentrations, submicrometer and nanometer aerosols could be formed with the three devices considered. Based on CFD simulations, a wire heated design was shown to overheat the airstream producing unsafe conditions for inhalation if the aerosol was not uniformly distributed in the tube cross-section or if the nebulizer stopped producing droplets. In comparison, a counter-flow heated design provided sufficient thermal energy to produce submicrometer particles, but also automatically limited the maximum aerosol outlet temperature based on the physics of heat transfer. With the counter-flow design, submicrometer aerosols were produced at flow rates of 5, 15, and 30 LPM, which may be suitable for various forms of oral and nasal aerosol delivery. Thermodynamic conditions of the aerosol stream exiting the counter-flow design were found be in a range of 21-45 °C with relative humidity greater than 40% in some cases, which was considered safe for direct inhalation and advantageous for condensational growth delivery. PMID:22707794

  6. Size-separated sampling and analysis of isocyanates in workplace aerosols. Part I. Denuder--cascade impactor sampler.

    PubMed

    Dahlin, Jakob; Spanne, Mårten; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2008-07-01

    Isocyanates in the workplace atmosphere are typically present both in gas and particle phase. The health effects of exposure to isocyanates in gas phase and different particle size fractions are likely to be different due to their ability to reach different parts in the respiratory system. To reveal more details regarding the exposure to isocyanate aerosols, a denuder-impactor (DI) sampler for airborne isocyanates was designed. The sampler consists of a channel-plate denuder for collection of gaseous isocyanates, in series with three-cascade impactor stages with cut-off diameters (d(50)) of 2.5, 1.0 and 0.5 mum. An end filter was connected in series after the impactor for collection of particles smaller than 0.5 mum. The denuder, impactor plates and the end filter were impregnated with a mixture of di-n-butylamine (DBA) and acetic acid for derivatization of the isocyanates. During sampling, the reagent on the impactor plates and the end filter is continuously refreshed, due to the DBA release from the impregnated denuder plates. This secures efficient derivatization of all isocyanate particles. The airflow through the sampler was 5 l min(-1). After sampling, the samples containing the different size fractions were analyzed using liquid chromatography-mass spectrometry (LC-MS)/MS. The DBA impregnation was stable in the sampler for at least 1 week. After sampling, the DBA derivatives were stable for at least 3 weeks. Air sampling was performed in a test chamber (300 l). Isocyanate aerosols studied were thermal degradation products of different polyurethane polymers, spraying of isocyanate coating compounds and pure gas-phase isocyanates. Sampling with impinger flasks, containing DBA in toluene, with a glass fiber filter in series was used as a reference method. The DI sampler showed good compliance with the reference method, regarding total air levels. For the different aerosols studied, vast differences were revealed in the distribution of isocyanate in gas and

  7. Proposed modification to the inhalable aerosol convention applicable to realistic workplace wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2011-06-01

    The current convention for sampling inhalable aerosols was based on several mannequin studies performed in wind tunnels at wind speeds between 0.5 and 4 m s(-1). In reality, as we now know, the wind speed in most modern indoor working environments is generally at or below ∼0.2 m s(-1). Inhalability studies performed in calm air aerosol chambers have shown that human aspiration efficiency at essentially zero wind speed is not consistent with the existing inhalable aerosol convention, calling into question the universal applicability of the current standard. More recently, experiments were carried out in a new hybrid wind tunnel-calm air chamber at more representative workplace wind speeds, between ∼0.1 and 0.5 m s(-1), to fill in this knowledge gap. Comparing these new data to both the existing inhalable aerosol convention and a recently proposed alternative for low wind movement suggests that, while the existing inhalable aerosol convention remains appropriate for wind speeds above ∼0.2 m s(-1), the modified version is more appropriate for the range below ∼0.2 m s(-1).

  8. ANALYSIS OF FLOW THROUGH A HUMAN ORAL MODEL FOR USE IN INHALATION TOXICOLOGY AND AEROSOL THERAPY PROTOCOLS

    EPA Science Inventory


    RATIONALE
    Understanding the transport and deposition of inhaled aerosols is of fundamental importance to inhalation toxicology and aerosol therapy. Herein, we focus on the development of a computer based oral morphology and related computational fluid dynamics (CFD) studi...

  9. Dynamics of aerosol size during inhalation: hygroscopic growth of commercial nebulizer formulations.

    PubMed

    Haddrell, Allen E; Davies, James F; Miles, Rachael E H; Reid, Jonathan P; Dailey, Lea Ann; Murnane, Darragh

    2014-03-10

    The size of aerosol particles prior to, and during, inhalation influences the site of deposition within the lung. As such, a detailed understanding of the hygroscopic growth of an aerosol during inhalation is necessary to accurately model the deposited dose. In the first part of this study, it is demonstrated that the aerosol produced by a nebulizer, depending on the airflows rates, may experience a (predictable) wide range of relative humidity prior to inhalation and undergo dramatic changes in both size and solute concentration. A series of sensitive single aerosol analysis techniques are then used to make measurements of the relative humidity dependent thermodynamic equilibrium properties of aerosol generated from four common nebulizer formulations. Measurements are also reported of the kinetics of mass transport during the evaporation or condensation of water from the aerosol. Combined, these measurements allow accurate prediction of the temporal response of the aerosol size prior to and during inhalation. Specifically, we compare aerosol composed of pure saline (150 mM sodium chloride solution in ultrapure water) with two commercially available nebulizer products containing relatively low compound doses: Breath®, consisting of a simple salbutamol sulfate solution (5 mg/2.5 mL; 1.7 mM) in saline, and Flixotide® Nebules, consisting of a more complex stabilized fluticasone propionate suspension (0.25 mg/mL; 0.5 mM in saline. A mimic of the commercial product Tobi© (60 mg/mL tobramycin and 2.25 mg/mL NaCl, pH 5.5-6.5) is also studied, which was prepared in house. In all cases, the presence of the pharmaceutical was shown to have a profound effect on the magnitude, and in some cases the rate, of the mass flux of water to and from the aerosol as compared to saline. These findings provide physical chemical evidence supporting observations from human inhalation studies, and suggest that using the growth dynamics of a pure saline aerosol in a lung inhalation model

  10. Computer-automated silica aerosol generator and animal inhalation exposure system

    PubMed Central

    McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G.

    2015-01-01

    Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20mg/m3, for durations lasting up to 8h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m3 of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles. PMID:23796015

  11. Computer-automated silica aerosol generator and animal inhalation exposure system.

    PubMed

    McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G

    2013-06-01

    Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20 mg/m(3), for durations lasting up to 8 h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m(3) of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10 min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles.

  12. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED AMBIENT AEROSOLS FOR DIFFERENT DOSE METRICS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED AMBIENT AEROSOLS FOR DIFFERENT DOSE METRICS.
    Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *South...

  13. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    PubMed

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

  14. Deposition of Particles in the Alveolar Airways: Inhalation and Breath-Hold with Pharmaceutical Aerosols

    PubMed Central

    Khajeh-Hosseini-Dalasm, Navvab; Longest, P. Worth

    2014-01-01

    Previous studies have demonstrated that factors such as airway wall motion, inhalation waveform, and geometric complexity influence the deposition of aerosols in the alveolar airways. However, deposition fraction correlations are not available that account for these factors in determining alveolar deposition. The objective of this study was to generate a new space-filling model of the pulmonary acinus region and implement this model to develop correlations of aerosol deposition that can be used to predict the alveolar dose of inhaled pharmaceutical products. A series of acinar models was constructed containing different numbers of alveolar duct generations based on space-filling 14-hedron elements. Selected ventilation waveforms were quick-and-deep and slow-and-deep inhalation consistent with the use of most pharmaceutical aerosol inhalers. Computational fluid dynamics simulations were used to predict aerosol transport and deposition in the series of acinar models across various orientations with gravity where ventilation was driven by wall motion. Primary findings indicated that increasing the number of alveolar duct generations beyond 3 had a negligible impact on total acinar deposition, and total acinar deposition was not affected by gravity orientation angle. A characteristic model containing three alveolar duct generations (D3) was then used to develop correlations of aerosol deposition in the alveolar airways as a function of particle size and particle residence time in the geometry. An alveolar deposition parameter was determined in which deposition correlated with d2t over the first half of inhalation followed by correlation with dt2, where d is the aerodynamic diameter of the particles and t is the potential particle residence time in the alveolar model. Optimal breath-hold times to allow 95% deposition of inhaled 1, 2, and 3 μm particles once inside the alveolar region were approximately >10, 2.7, and 1.2 s, respectively. Coupling of the deposition

  15. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  16. Characterization of amphotericin B aerosols for inhalation treatment of pulmonary aspergillosis.

    PubMed

    Roth, C; Gebhart, J; Just-Nübling, G; von Eisenhart-Rothe, B; Beinhauer-Reeb, I

    1996-01-01

    In recent years, the incidence of invasive pulmonary aspergillosis has increased in patients receiving immunosuppressive therapy and/or organ transplantation. For prophylaxis against Aspergillus infections, amphotericin B may be a useful drug when inhaled as aerosol. In this study, the aerosolization of amphotericin B was investigated using eight different medical nebulizers under various operating conditions and with different amphotericin B concentrations in the solution. The output of each nebulizer was characterized by the mass flow of spray (drug) leaving the mouthpiece and by the size distribution of the droplets. An effective prevention of pulmonary aspergillosis via amphotericin B inhalation requires a high pulmonary deposition of the drug within an acceptable time of administration associated with a low deposition in the oropharyngeal region. To evaluate the dosages of drug delivered by various types of nebulizers to different regions of the respiratory tract, a semi-empirical deposition model was applied which is based on experimental aerosol deposition data from over 20 normal adults. The main results of the study are: Solutions with amphotericin B concentrations up to 10 mg/ml can be converted into sprays by means of medical nebulizers without any problems. For most nebulizers, the slight foaming of the amphotericin B solution has no effect on the production of the aerosol. To optimize amphotericin B treatment of the lungs via inhalation, sprays with mass flows above 100 mg/min and with mass median aerodynamic diameters (MMAD) below 3 microns should be slowly inhaled by the subject. Applying these criteria to the nebulizers investigated, three out of eight devices have proved suitable for amphotericin B treatment via inhalation.

  17. Quantitative assessment of inhalation exposure and deposited dose of aerosol from nanotechnology-based consumer sprays†

    PubMed Central

    Nazarenko, Yevgen; Lioy, Paul J.; Mainelis, Gediminas

    2015-01-01

    This study provides a quantitative assessment of inhalation exposure and deposited aerosol dose in the 14 nm to 20 μm particle size range based on the aerosol measurements conducted during realistic usage simulation of five nanotechnology-based and five regular spray products matching the nano-products by purpose of application. The products were also examined using transmission electron microscopy. In seven out of ten sprays, the highest inhalation exposure was observed for the coarse (2.5–10 μm) particles while being minimal or below the detection limit for the remaining three sprays. Nanosized aerosol particles (14–100 nm) were released, which resulted in low but measurable inhalation exposures from all of the investigated consumer sprays. Eight out of ten products produced high total deposited aerosol doses on the order of 101–103 ng kg−1 bw per application, ~85–88% of which were in the head airways, only <10% in the alveolar region and <8% in the tracheobronchial region. One nano and one regular spray produced substantially lower total deposited doses (by 2–4 orders of magnitude less), only ~52–64% of which were in the head while ~29–40% in the alveolar region. The electron microscopy data showed nanosized objects in some products not labeled as nanotechnology-based and conversely did not find nano-objects in some nano-sprays. We found no correlation between nano-object presence and abundance as per the electron microscopy data and the determined inhalation exposures and deposited doses. The findings of this study and the reported quantitative exposure data will be valuable for the manufacturers of nanotechnology-based consumer sprays to minimize inhalation exposure from their products, as well as for the regulators focusing on protecting the public health. PMID:25621175

  18. The effect of ozone exposure on the dispersion of inhaled aerosol boluses in healthy human subjects

    SciTech Connect

    Keefe, M.J.; Bennett, W.D.; DeWitt, P.; Seal, E.; Strong, A.A.; Gerrity, T.R. )

    1991-07-01

    Acute exposure of humans to low levels of ozone are known to cause decreases in FVC and increases in SRaw. These alterations in lung function do not, however, elucidate the potential for acute small airway responses. In this study we employed a test of aerosol dispersion to examine the potential effects of ozone on small airways in humans. Twenty-two healthy nonsmoking male volunteers were exposed to 0.4 ppm ozone for 1 h while exercising at 20 L/min/m2 body surface area. Before and immediately after exposure, tests of spirometry (FVC, FEV1, and FEF25-75) and plethysmography (Raw and SRaw) were performed. Subjects also performed an aerosol dispersion test before and after exposure. Each test involved a subject inhaling five to seven breaths of a 300-ml bolus of a 0.5 micron triphenyl phosphate aerosol injected into a 2-L tidal volume. The bolus was injected into the tidal breath at three different depths: at Depth A the bolus was injected after 1.6 L of clean air were inhaled from FRC, at Depth B after 1.2 L, and at Depth C after 1.2 L but with inhalation beginning from RV. The primary measure of bolus dispersion was the expired half-width (HW). Secondary measures were the ratio (expressed as percent) of peak exhaled aerosol concentration to peak inhaled concentration (PR), shift in the median bolus volume between inspiration and expiration (VS), and percent of total aerosol recovered (RC). Changes in pulmonary function after ozone exposure were consistent with previous findings.

  19. Combined scanning electron microscopy and image analysis to investigate airborne submicron particles: a comparison between personal samplers.

    PubMed

    Zamengo, L; Barbiero, N; Gregio, M; Orrù, G

    2009-07-01

    The main objectives of this study were: (i) to compare commonly used personal samplers and verify their collection efficiency with regards to submicron particles; (ii) to investigate how the submicron particles deposit onto the filter surface in order to assess the homogeneity of the deposition; (iii) to estimate the biases which could affect results when number concentration values have to be determined by particle counting. A method based on image analysis (IA) and scanning electron microscopy (SEM) is developed and adopted to investigate a large numbers of particles. Four different personal samplers were tested: the IOM sampler, the Button sampler and the German GSP for the inhalable aerosol fraction; the PEM sampler for the thoracic aerosol fraction. In order to investigate how particles distribute on the filters surface, the area of each filter was virtually divided into circular concentric areas or deposition zones (DZ). Results from different DZ of the same filter were compared. Uniformity of deposition was mostly observed for three of the four tested samplers. A significant radial distribution was observed only for the GSP sampler. The major homogeneity was found for the Button sampler. In order to estimate the relative collection efficiency between samplers, particles number concentrations determined by particle counting were compared. The GSP sampler provided the greatest concentrations but also the greatest variability. The PEM sampler provided the lowest concentrations. The homogeneity of particle deposition on the filter surface mostly affected results when counting is performed on localized areas of the filter.

  20. Inhalants

    MedlinePlus

    ... place a chemical- soaked rag in their mouth. Abusers may also inhale fumes from a balloon or ... by inhalants usually lasts just a few minutes, abusers often try to prolong it by continuing to ...

  1. Inhalants

    MedlinePlus

    ... Drug Facts Chat Day: Inhalants Drug Facts Chat Day: Inhalants Print Can you get high off of ... Cool Order Free Materials National Drugs & Alcohol Chat Day Newsletter Sign up to receive National Drug & Alcohol ...

  2. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers.

    PubMed

    Buttini, Francesca; Miozzi, Michele; Balducci, Anna Giulia; Royall, Paul G; Brambilla, Gaetano; Colombo, Paolo; Bettini, Ruggero; Forbes, Ben

    2014-04-25

    Solution composition alters the dynamics of beclomethasone diproprionate (BDP) particle formation from droplets emitted by pressurised metered dose inhalers (pMDIs). The hypothesis that differences in inhaler solutions result in different solid particle physical chemistry was tested using a suite of complementary calorimetric techniques. The atomisation of BDP-ethanol solutions from commercial HFA-pMDI produced aerodynamically-equivalent solid particle aerosols. However, differences in particle physico-chemistry (morphology and solvate/clathrate formation) were detected by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and supported by hot stage microscopy (HSM). Increasing the ethanol content of the formulation from 8 to 12% (w/w), which retards the evaporation of propellant and slows the increase in droplet surface viscosity, enhanced the likelihood of particles drying with a smooth surface. The dissolution rate of BDP from the 12% (w/w) ethanol formulation-derived particles (63% dissolved over 120 min) was reduced compared to the 8% (w/w) ethanol formulation-derived particles (86% dissolved over 120 min). The addition of 0.01% (w/w) formoterol fumarate or 1.3% (w/w) glycerol to the inhaler solution modified the particles and reduced the BDP dissolution rate further to 34% and 16% dissolved in 120 min, respectively. These data provide evidence that therapeutic aerosols from apparently similar inhaler products, including those with similar aerodynamic performance, may behave non-equivalently after deposition in the lungs.

  3. Near-fatal methemoglobinemia after recreational inhalation of amyl nitrite aerosolized with a compressed gas blower.

    PubMed

    Lin, Chih-Hao; Fang, Cheng-Chung; Lee, Chien-Chang; Ko, Patrick Chow-In; Chen, Wen-Jone

    2005-11-01

    Adverse effects associated with recreational inhalation of nitrites are usually mild and rarely life-threatening. We report a rare case of near-fatal methemoglobinemia after inhalation of amyl nitrite after aerosolizing the liquid using a compressed gas blower designed to clean photographic equipment that employed hydrofluoroalkane-134a as a propellant. A 31-year-old previously healthy male became dyspneic and fainted soon after the recreational inhalation of amyl nitrite aerosolized using a compressed gas blower. He was brought to the emergency department with severe cyanotic appearance and profound shock. Oxygen saturation was 82%, unresponsive to oxygen supply. His methemoglobin blood level was 52.2%. After 100 mg of methylene blue (2 mg/kg body weight) was administered intravenously, he recovered consciousness, and dyspnea and cyanosis subsided gradually. This case illustrates the extraordinary hazard of the use of a compressed gas blower in the recreational inhalation of nitrites. Prompt recognition and rapid antidotal treatment may adequately correct near-fatal overdose associated with recreational use of amyl nitrite.

  4. Recent Updates on Electronic Cigarette Aerosol and Inhaled Nicotine Effects on Periodontal and Pulmonary Tissues.

    PubMed

    Javed, Fawad; Kellesarian, Sergio V; Sundar, Isaac K; Romanos, Georgios E; Rahman, Irfan

    2017-02-06

    E-cigarette derived inhaled nicotine may contribute to the pathogenesis of periodontal and pulmonary diseases in particular via lung inflammation, injurious and dysregulated repair responses. Nicotine is shown to have anti-proliferative properties and affects fibroblasts in vitro, which may interfere in tissue myofibroblast differentiation in e-cig users. This will affect the ability to heal wounds by decreasing wound contraction. In periodontics, direct exposure to e-vapor has been shown to produce harmful effects in periodontal ligament and gingival fibroblasts in culture. This is due to the generation of reactive oxygen species/aldehydes/carbonyls from e-cig aerosol, leading to protein carbonylation of extracellular matrix and DNA adducts/damage. A limited number of studies regarding the effects of e-cig in oral and lung health are available. However, no reports are available to directly link the deleterious effects on e-cigs, inhaled nicotine, and flavorings aerosol on oral periodontal and pulmonary health in particular to identify the risk of oral diseases by e-cigarettes and nicotine aerosols. This mini-review summarizes the recent perspectives on e-cigarettes including inhaled nicotine effects on several pathophysiological events, such as oxidative stress, DNA damage, innate host response, inflammation, cellular senescence, pro-fibrogenic and dysregulated repair, leading to lung remodeling, oral submucous fibrosis and periodontal diseases. This article is protected by copyright. All rights reserved.

  5. Efficient Nose-to-Lung (N2L) Aerosol Delivery with a Dry Powder Inhaler

    PubMed Central

    Golshahi, Laleh; Behara, Srinivas R.B.; Tian, Geng; Farkas, Dale R.; Hindle, Michael

    2015-01-01

    Abstract Purpose: Delivering aerosols to the lungs through the nasal route has a number of advantages, but its use has been limited by high depositional loss in the extrathoracic airways. The objective of this study was to evaluate the nose-to-lung (N2L) delivery of excipient enhanced growth (EEG) formulation aerosols generated with a new inline dry powder inhaler (DPI). The device was also adapted to enable aerosol delivery to a patient simultaneously receiving respiratory support from high flow nasal cannula (HFNC) therapy. Methods: The inhaler delivered the antibiotic ciprofloxacin, which was formulated as submicrometer combination particles containing a hygroscopic excipient prepared by spray-drying. Nose-to-lung delivery was assessed using in vitro and computational fluid dynamics (CFD) methods in an airway model that continued through the upper tracheobronchial region. Results: The best performing device contained a 2.3 mm flow control orifice and a 3D rod array with a 3-4-3 rod pattern. Based on in vitro experiments, the emitted dose from the streamlined nasal cannula had a fine particle fraction <5 μm of 95.9% and mass median aerodynamic diameter of 1.4 μm, which was considered ideal for nose-to-lung EEG delivery. With the 2.3-343 device, condensational growth in the airways increased the aerosol size to 2.5–2.7 μm and extrathoracic deposition was <10%. CFD results closely matched the in vitro experiments and predicted that nasal deposition was <2%. Conclusions: The developed DPI produced high efficiency aerosolization with significant size increase of the aerosol within the airways that can be used to enable nose-to-lung delivery and aerosol administration during HFNC therapy. PMID:25192072

  6. Evaluation of a novel personal nanoparticle sampler.

    PubMed

    Zhou, Yue; Irshad, Hammad; Tsai, Chuen-Jinn; Hung, Shao-Ming; Cheng, Yung-Sung

    2014-02-01

    This work investigated the performance in terms of collection efficiency and aspiration efficiency of a personal sampler capable of collecting ultrafine particles (nanoparticles) in the occupational environment. This sampler consists of a cyclone for respirable particle classification, micro-orifice impactor stages with an acceleration nozzle to achieve nanoparticle classification and a backup filter to collect nanoparticles. Collection efficiencies of the cyclone and impactor stages were determined using monodisperse polystyrene latex and silver particles, respectively. Calibration of the cyclone and impactor stages showed 50% cut-off diameters of 3.95 μm and 94.7 nm meeting the design requirements. Aspiration efficiencies of the sampler were tested in a wind tunnel with wind speeds of 0.5, 1.0, and 1.5 m s(-1). The test samplers were mounted on a full size mannequin with three orientations toward the wind direction (0°, 90°, and 180°). Monodisperse oleic acid aerosols tagged with sodium fluorescein in the size range of 2 to 10 μm were used in the test. For particles smaller than 2 μm, the fluorescent polystyrene latex particles were generated by using nebulizers. For comparison of the aspiration efficiency, a NIOSH two-stage personal bioaerosol sampler was also tested. Results showed that the orientation-averaged aspiration efficiency for both samplers was close to the inhalable fraction curve. However, the direction of wind strongly affected the aspiration efficiency. The results also showed that the aspiration efficiency was not affected by the ratio of free-stream velocity to the velocity through the sampler orifice. Our evaluation showed that the current design of the personal sampler met the designed criteria for collecting nanoparticles ≤100 nm in occupational environments.

  7. Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel

    PubMed Central

    Sriram, Krishnan; Jefferson, Amy M.; Lin, Gary X.; Afshari, Aliakbar; Zeidler-Erdely, Patti C.; Meighan, Terence G.; McKinney, Walter; Jackson, Mark; Cumpston, Amy; Cumpston, Jared L.; Leonard, Howard D.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson’s disease (PD). Some applications in manufacturing industry employ a variant welding technology known as “weld-bonding” that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague–Dawley rats were exposed (25 mg/m3 targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood–brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings

  8. Aerodynamics and deposition effects of inhaled submicron drug aerosol in airway diseases.

    PubMed

    Faiyazuddin, Md; Mujahid, Md; Hussain, Talib; Siddiqui, Hefazat H; Bhatnagar, Aseem; Khar, Roop K; Ahmad, Farhan J

    2013-01-01

    Particle engineering is the prime focus to improve pulmonary drug targeting with the splendor of nanomedicines. In recent years, submicron particles have emerged as prettyful candidate for improved fludisation and deposition. For effective deposition, the particle size must be in the range of 0.5-5 μm. Inhalers design for the purpose of efficient delivery of powders to lungs is again a crucial task for pulmonary scientists. A huge number of DPI devices exist in the market, a significant number are awaiting FDA approval, some are under development and a large number have been patented or applied for patent. Even with superior design, the delivery competence is still deprived, mostly due to fluidisation problems which cause poor aerosol generation and deposition. Because of the cohesive nature and poor flow characteristics, they are difficult to redisperse upon aerosolization with breath. These problems are illustrious in aerosol research, much of which is vastly pertinent to pulmonary therapeutics. A technical review is presented here of advances that have been utilized in production of submicron drug particles, their in vitro/in vivo evaluations, aerosol effects and pulmonary fate of inhaled submicron powders.

  9. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry.

    PubMed

    Parkhomchuk, E V; Gulevich, D G; Taratayko, A I; Baklanov, A M; Selivanova, A V; Trubitsyna, T A; Voronova, I V; Kalinkin, P N; Okunev, A G; Rastigeev, S A; Reznikov, V A; Semeykina, V S; Sashkina, K A; Parkhomchuk, V V

    2016-09-01

    Accelerator mass spectrometry (AMS) was shown to be applicable for studying the penetration of organic aerosols, inhaled by laboratory mice at ultra-low concentration ca. 10(3) cm(-3). We synthesized polystyrene (PS) beads, composed of radiocarbon-labeled styrene, for testing them as model organic aerosols. As a source of radiocarbon we used methyl alcohol with radioactivity. Radiolabeled polystyrene beads were obtained by emulsifier-free emulsion polymerization of synthesized (14)C-styrene initiated by K2S2O8 in aqueous media. Aerosol particles were produced by pneumatic spraying of diluted (14)C-PS latex. Mice inhaled (14)C-PS aerosol consisting of the mix of 10(3) 225-nm particles per 1 cm(3) and 5·10(3) 25-nm particles per 1 cm(3) for 30 min every day during five days. Several millions of 225-nm particles deposited in the lungs and slowly excreted from them during two weeks of postexposure. Penetration of particles matter was also observed for liver, kidneys and brain, but not for a heart.

  10. Evaluation of bronchodilation from aerosol beta 2 agonists delivered by the Inhal-Aid device to young children.

    PubMed

    Huntley, W; Weinberger, M

    1984-01-01

    The Inhal-Aid is a device that combines a reservoir aerosol delivery system, two one-way valves, and an incentive spirometer to assist in the delivery of medication from metered-dose inhalers. It appears to result in bronchodilatory effect that is similar to that obtained from (9) compressed air driven nebulizer. Further data are needed to determine if the therapeutic advantages of an aerosol receiving chamber with metered-dose inhalers are matched by clinically important consequences for the patient with adequate coordination. For the patient unable to utilize metered-dose inhalers because of inability to coordinate inspiration with activation, however, the Inhal-Aid provides an effective means to conveniently deliver clinically important antiasthmatic medication.

  11. Characteristics of Twenty-Nine Aerosol Samplers Tested at U.S. Army Edgewood Chemical Biological Center (2000-2006)

    DTIC Science & Technology

    2011-02-01

    Particles 7 3. Summary of Samplers that use Impingement or Impaction in Liquid to Collect Particles 7 4. Summary of Samplers that use Impaction on a...wetted surfaces. Impaction is the mechanism used in air samplers to remove unneeded large particles from the air. Particle deposition by interception...These sampler characteristics are given in Appendixes 6-7 and Table 2. c. Samplers that use impingement and/or impaction onto a wetted surface: SKC

  12. Lung Deposition Analyses of Inhaled Toxic Aerosols in Conventional and Less Harmful Cigarette Smoke: A Review

    PubMed Central

    Kleinstreuer, Clement; Feng, Yu

    2013-01-01

    Inhaled toxic aerosols of conventional cigarette smoke may impact not only the health of smokers, but also those exposed to second-stream smoke, especially children. Thus, less harmful cigarettes (LHCs), also called potential reduced exposure products (PREPs), or modified risk tobacco products (MRTP) have been designed by tobacco manufacturers to focus on the reduction of the concentration of carcinogenic components and toxicants in tobacco. However, some studies have pointed out that the new cigarette products may be actually more harmful than the conventional ones due to variations in puffing or post-puffing behavior, different physical and chemical characteristics of inhaled toxic aerosols, and longer exposure conditions. In order to understand the toxicological impact of tobacco smoke, it is essential for scientists, engineers and manufacturers to develop experiments, clinical investigations, and predictive numerical models for tracking the intake and deposition of toxicants of both LHCs and conventional cigarettes. Furthermore, to link inhaled toxicants to lung and other diseases, it is necessary to determine the physical mechanisms and parameters that have significant impacts on droplet/vapor transport and deposition. Complex mechanisms include droplet coagulation, hygroscopic growth, condensation and evaporation, vapor formation and changes in composition. Of interest are also different puffing behavior, smoke inlet conditions, subject geometries, and mass transfer of deposited material into systemic regions. This review article is intended to serve as an overview of contributions mainly published between 2009 and 2013, focusing on the potential health risks of toxicants in cigarette smoke, progress made in different approaches of impact analyses for inhaled toxic aerosols, as well as challenges and future directions. PMID:24065038

  13. Reaction of alveolar macrophages to inhaled metal aerosols.

    PubMed Central

    Camner, P; Johansson, A

    1992-01-01

    For more than a decade we have exposed rabbits to different metals, usually in soluble form, and investigated the effects on the lungs. The metal concentrations have been around 1 mg/m3,i.e., not more than a factor of 10 above occupational threshold limit values. The exposure periods have been 1-8 months (6 hr/day, 5 days/week). We have studied especially the morphology and function of alveolar macrophages (AM), the morphology of alveolar type I and type II epithelial cells, and analyzed lung phospholipids. Several metals produce specific, complex effects. For example, metallic and soluble nickel (NiCl2) increase both number and size of the type II cells, increase the production of surfactant, and affect morphology and function of AM. Cobalt (CoCl2) induces a different effect on type II cells from nickel, causing the formation of nodules in these cells. Trivalent chromium [Cr(NO3)3] does not affect either type II cells or the amount of surfactant significantly, but markedly affects AM. The administered metals affect AM both directly and indirectly. For example, nickel induces an increased production of surfactant, resulting in overfed AM with an increased metabolic activity. However, nickel also induces a direct decrease in the release of lysozyme activity by AM. Our results emphasize the complexity of the effects on the lungs of inhaled agents, which can act both directly and indirectly on AM. PMID:1396456

  14. Quantification of Aerosol Hydrofluoroalkane HFA-134a Elimination in the Exhaled Human Breath Following Inhaled Corticosteroids Administration

    PubMed Central

    Shin, Hye-Won; Barletta, Barbara; Yoonessi, Leila; Meinardi, Simone; Leu, Szu-Yun; Radom-Aizik, Shlomit; Randhawa, Inderpal; Nussbaum, Eliezer; Blake, Donald R.; Cooper, Dan M.

    2015-01-01

    Inhaled corticosteroids (ICS) and β2-agonists are the primary pharmacotherapies of asthma management. However, suboptimal medication compliance is common in asthmatics and is associated with increased morbidity. We hypothesized that exhaled breath measurements of the aerosol used in the inhaled medications might prove useful as surrogate marker for asthma medication compliance. To explore this, ten healthy controls were recruited and randomly assigned to inhaled corticosteroids (Flovent HFA) or short acting bronchodilators (Proventil HFA). Both inhalers contain HFA-134a as aerosol propellant. Exhaled breath sampling and pulmonary function tests were performed prior to the inhaler medication dispersion, immediately after inhalation, then at 2, 4, 6, 8, 24, and 48 hours post administration. At baseline, mean (SD) levels of HFA-134a in the breath were 252 (156) pptv. Immediately after inhalation, HFA-134a breath levels increased to 300 X106 pptv and were still well above ambient levels 24 hours post administration. The calculated ratio of forced expiratory volume in 1 s over forced vital capacity (FEV1/FVC) did not change over time following inhaler administration. This study demonstrates, for the first time, that breath HFA-134a levels can be used to assess inhaler medication compliance. It may also be used to evaluate how effectively the medicine is delivered. PMID:26155923

  15. Influence of elastase-induced emphysema and the inhalation of an irritant aerosol on deposition and retention of an inhaled insoluble aerosol in Fischer-344 rats

    SciTech Connect

    Damon, E.G.; Mokler, B.V.; Jones, R.K.

    1983-01-01

    The purpose of this study was to assess the effects of elastase-induced pulmonary emphysema and the inhalation of an irritant aerosol (Triton X-100, a nonionic surfactant similar to those used in a number of pressurized consumer products) on pulmonary deposition and retention of an insoluble test aerosol, /sup 59/FE-labeled Fe/sub 2/O/sub 3/. Untreated rats or rats pretreated by intratracheal in stillation with elastase were exposed to an aerosol of /sup 59/Fe-labeled Fe/sub 2/O/sub 3/ either 18 hr or 7 days after exposure to aerosslized Triton X-100 which was administered in doses of 20, 100, or 200 ..mu..g/g of lung. Rats pretreated with elastase had significantly lower pulmonary deposition of /sup 59/Fe than the untreated controls (p < 0.005). Pulmonary deposition of Fe/sub 2/O/sub 3/ was unaffected by pretreatment with Triton X-100. Elastase treatment alone had no effect on retention of Fe/sub 2/O/sub 3/. Triton X-100 administered 18 hr prior to exposure of rats to Fe/sub 2/O/sub 3/ aerosol resulted in dose-related increases in whole-body retention of /sup 59/Fe. When rats were exposed to Triton X-100 7 days before exposure to Fe/sub 2/O/sub 3/, increased retention of /sup 59/Fe was noted only in those treated at the highest Triton X-100 dose level (200 ..mu..g/g). 20 references, 5 tables.

  16. Inhalation of U aerosols from UO2 fuel element fabrication.

    PubMed

    Schieferdecker, H; Dilger, H; Doerfel, H; Rudolph, W; Anton, R

    1985-01-01

    Publication No. 30 of the International Commission on Radiological Protection (ICRP) assigns the uranium oxides UO2 and U3O8 to transportability class Y, i.e. the half-life of these compounds in the lungs is about 500 days. This assignment seemed not to be in accordance with our experience resulting from incorporation surveillance during UO2 fuel element fabrication. Persons who worked in atmospheres containing UO2 aerosols with activity concentrations significantly above the derived air concentrations (DAC) for class Y U showed much lower activity in the lungs than would be expected according to the ICRP. To understand this discrepancy, aerosol concentrations and aerosol particle-size distributions at work places with the possibility of UO2 incorporation, the activity of urine and feces and the lung activity of persons working at these places were measured in an investigation program. The results are only consistent with the ICRP lung model if one uses a measured biological half-life in the lungs of 109 days and a measured AMAD of 8.2 micron instead of the ICRP standard assumptions of 500 days and 1.0 micron, respectively. ICRP Publication No. 30 recommends application of specific parameters for health physics instead of standard model values. For the special conditions in our UO2 fuel fabrication plant we therefore derive limits of air concentrations, lung activities and fecal and urinary activity concentrations by applying our measured particle-size and lung-retention parameters to the ICRP model. Our special derived limits in comparison to class Y limits for U after ICRP Publication No. 30 for a 1-micron AMAD and 500-day half-life (in brackets) are: (a) annual limit of intake: 6 X 10(4) Bq/y (1 X 10(3) Bq/y); (b) derived air concentration: 20 Bq/m3 (0.6 Bq/m3); (c) derived lung activity: 1.6 X 10(3) Bq; (d) derived fecal activity: 14 Bq/day; and (e) derived urine activity: 8.9 Bq/day. The committed dose equivalents calculated from our measured data and from our

  17. Fluticasone Oral Inhalation

    MedlinePlus

    ... aerosol inhaler while you are near an open flame or a heat source. The inhaler may explode ... inhaler near a heat source or an open flame. Protect the inhaler from freezing and direct sunlight. ...

  18. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery.

    PubMed

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug - cyclosporine A - for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters.

  19. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  20. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy.

    PubMed

    Gaspar, Marisa C; Sousa, João J S; Pais, Alberto A C C; Cardoso, Olga; Murtinho, Dina; Serra, M Elisa S; Tewes, Frédéric; Olivier, Jean-Christophe

    2015-10-01

    The aim of this work was the development of innovative levofloxacin-loaded swellable microspheres (MS) for the dry aerosol therapy of pulmonary chronicPseudomonas aeruginosainfections in Cystic Fibrosis patients. In a first step, a factorial design was applied to optimize formulations of chitosan-based MS with glutaraldehyde as crosslinker. After optimization, other crosslinkers (genipin, glutaric acid and glyceraldehyde) were tested. Analyses of MS included aerodynamic and swelling properties, morphology, drug loading, thermal and chemical characteristics,in vitroantibacterial activity and drug release studies. The prepared MS presented a drug content ranging from 39.8% to 50.8% of levofloxacin in an amorphous or dispersed state, antibacterial activity and fast release profiles. The highest degree of swelling was obtained for MS crosslinked with glutaric acid and genipin. These formulations also presented satisfactory aerodynamic properties, making them a promising alternative, in dry-powder inhalers, to levofloxacin solution for inhalation.

  1. Aerosolized scopolamine protects against microinstillation inhalation toxicity to sarin in guinea pigs.

    PubMed

    Che, Magnus M; Chanda, Soma; Song, Jian; Doctor, Bhupendra P; Rezk, Peter E; Sabnekar, Praveena; Perkins, Michael W; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2011-07-01

    Sarin is a volatile nerve agent that has been used in the Tokyo subway attack. Inhalation is predicted to be the major route of exposure if sarin is used in war or terrorism. Currently available treatments are limited for effective postexposure protection against sarin under mass casualty scenario. Nasal drug delivery is a potential treatment option for mass casualty under field conditions. We evaluated the efficacy of endotracheal administration of muscarinic antagonist scopolamine, a secretion blocker which effectively crosses the blood-brain barrier for protection against sarin inhalation toxicity. Age and weight matched male Hartley guinea pigs were exposed to 677.4 mg/m³ or 846.5 mg/ m³ (1.2 × LCt₅₀) sarin by microinstillation inhalation exposure for 4 min. One minute later, the animals exposed to 846.5 mg/ m³ sarin were treated with endotracheally aerosolized scopolamine (0.25 mg/kg) and allowed to recover for 24 h for efficacy evaluation. The results showed that treatment with scopolamine increased the survival rate from 20% to 100% observed in untreated sarin-exposed animals. Behavioral symptoms of nerve agent toxicity including, convulsions and muscular tremors were reduced in sarin-exposed animals treated with scopolamine. Sarin-induced body weight loss, decreased blood O₂ saturation and pulse rate were returned to basal levels in scopolamine-treated animals. Increased bronchoalveolar lavage (BAL) cell death due to sarin exposure was returned to normal levels after treatment with scopolamine. Taken together, these data indicate that postexposure treatment with aerosolized scopolamine prevents respiratory toxicity and protects against lethal inhalation exposure to sarin in guinea pigs.

  2. Physico-chemical qualification of a universal portable sampler for aerosols and water-soluble gases

    NASA Astrophysics Data System (ADS)

    Roux, Jean-Maxime; Sarda-Estève, Roland

    2015-10-01

    Developing a universal portable air sampler based on electrostatic precipitation. The challenge is to collect micro and nanoparticles, microorganisms as well as toxic molecules with a portable device. Electrostatic precipitation is an efficient and gentle method to collect airborne microorganisms and preserve their cultivability. But the collection of toxic gases required is not possible in such a device. The collection of such gases requires a liquid into which they have to be solubilized. Two concepts are being evaluated. The first one is based on electrospray. The goal is to investigate the collection efficiency of water-soluble gases. The second concept is based on the semi-humid electrostatic precipitator. Their high collection efficiencies for particles were already demonstrated. In the present study they are both tested with water-soluble gases. Concentrations are measured in the liquid solution by Ion Chromatography and in the gas phase by Proton Transfer Reaction Mass Spectrometry.

  3. Prediction of Asbestos Exposure Resulting From Asbestos Aerosolization Determined Using the Releasable Asbestos Field Sampler (RAFS)

    EPA Science Inventory

    Activity-based sampling (ABS) used to evaluate breathing zone exposure to a contaminant present in soil resulting from various activities, involves breathing zone sampling for contaminants while that activity is performed. A probabilistic model based upon aerosol physics and flui...

  4. Inhalants

    MedlinePlus

    ... Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription Drugs & Cold ... Notes Articles Adolescent Cigarette, Alcohol Use Declines as Marijuana Use Rises ( February 2013 ) Program Helps Troubled Boys ...

  5. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants.

    PubMed

    Chaemfa, Chakra; Wild, Edward; Davison, Brian; Barber, Jonathan L; Jones, Kevin C

    2009-06-01

    Polyurethane foam disks are a cheap and versatile tool for sampling persistent organic pollutants (POPs) from the air in ambient, occupational and indoor settings. This study provides important background information on the ways in which the performance of these commonly used passive air samplers may be influenced by the key environmental variables of wind speed and aerosol entrapment. Studies were performed in the field, a wind tunnel and with microscopy techniques, to investigate deployment conditions and foam density influence on gas phase sampling rates (not obtained in this study) and aerosol trapping. The study showed: wind speed inside the sampler is greater on the upper side of the sampling disk than the lower side and tethered samplers have higher wind speeds across the upper and lower surfaces of the foam disk at a wind speed > or = 4 m/s; particles are trapped on the foam surface and within the body of the foam disk; fine (<1 um) particles can form clusters of larger size inside the foam matrix. Whilst primarily designed to sample gas phase POPs, entrapment of particles ensures some 'sampling' of particle bound POPs species, such as higher molecular weight PAHs and PCDD/Fs. Further work is required to investigate how quantitative such entrapment or 'sampling' is under different ambient conditions, and with different aerosol sizes and types.

  6. The suitability of the IOM foam sampler for bioaerosol sampling in Occupational Environments.

    PubMed

    Haatainen, Susanna; Laitinen, Juha; Linnainmaa, Markku; Reponen, Tiina; Kalliokoski, Pentti

    2010-01-01

    Concurrent samples were collected with Andersen and IOM foam samplers to determine whether if the IOM foam sampler can be applied to collect culturable microorganisms. Two different kinds of aerosols were studied: peat dust in a power plant and mist from coolant fluid aerosolized during grinding of blades and rollers in a paper mill. In the power plant, the concentrations of fungi were 2-3 times higher in the IOM samples than in the Andersen samples. However, more fungal genera were identified in the latter case. The methods yielded similar concentrations of bacteria and actinobacteria in the power plant. On the other hand, the performance of the IOM foam sampler was very poor in the paper mill, where stress-sensitive gram-negative bacteria dominated; low concentration of bacteria was detected in only one IOM sample even though the concentration of bacteria often exceeded even the upper detection limit in the Andersen impactor samples. It could be concluded that the IOM foam sampler performs quite well for collecting inhalable fungi and actinobacteria. However, the Andersen sampler provides better information on fungal genera and concentrations of gram-negative bacteria. Personal sampling with the IOM foam sampler provided an important benefit in the power plant, where the concentration ratio of personal to stationary samples was much higher for bacteria than for inhalable or respirable dust.

  7. Influence of formulation and preparation process on ambroxol hydrochloride dry powder inhalation characteristics and aerosolization properties.

    PubMed

    Ren, Yachao; Yu, Chaoqun; Meng, Kangkang; Tang, Xing

    2008-09-01

    The objective of this study is to evaluate the influence of formulation and preparation process on ambroxol hydrochloride (AH) dry powder inhalation (DPI) characteristics and aerosolization properties. Spray-dried samples of AH, AH/leucine, and AH/leucine/mannitol were prepared from their corresponding water solutions under the same conditions to study the influence of the composition, and the AH/leucine/mannitol (2.5/0.5/1 by weight) formulation was used for investigation of the effect of the preparation process. Following spray-drying, the resulting powders were characterized using scanning electron microscopy, laser diffraction, tapped density, and angle of repose measurements, and the aerosolization performance was determined using a twin-stage liquid impinger. AH/leucine/mannitol (2.5/0.5/1 by weight) obtained by cospray-drying improved the AH aerosolization properties. The AH/leucine/mannitol (2.5/0.5/1 by weight) preparation exhibited the following properties: 62.34% yield, 0.34 g/cm(3) tap density, 2.71 microm d(ae), 33.45 degrees angle of repose, and 30.93% respirable fraction. The influence of the preparation process on DPI characteristics and aerosolization properties was relatively small, but the influence of the composition was relatively large. Optimization of DPI can be achieved by selecting the most appropriate formulation and preparation process.

  8. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    PubMed Central

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  9. A fatal case of n-butane poisoning after inhaling anti-perspiration aerosol deodorant.

    PubMed

    Ago, Mihoko; Ago, Kazutoshi; Ogata, Mamoru

    2002-06-01

    We report a case of sudden death due to n-butane poisoning after the inhalation of anti-perspiration aerosol deodorant. The deceased was a 15-year-old boy who was found unresponsive on the road, and was pronounced dead after 1.25h. A spray can of anti-perspiration deodorant and vinyl bags were found in a thicket near the scene. An autopsy revealed pulmonary edema, cerebral edema and congestion of the organs. Using qualitative gas chromatography/mass spectrometry, the existence of n-butane was ascertained. The concentration of n-butane (in microl/ml or microl/g) was estimated to be 15.3 in the blood, 13.3 in the brain, 26.6 in the liver, 7.5 in the lung, and 13.6 in the kidney. These n-butane levels in the blood and in the tissues were higher than those of previous reports of death associated with n-butane inhalation. We concluded that the cause of death was n-butane poisoning and presumed that n-butane in the can of anti-perspiration aerosol deodorant induced fatal cardiac arrhythmia.

  10. [Specific parameters for the calculation of dose after aerosol inhalation of transuranium elements].

    PubMed

    Ramounet-Le Gall, B; Fritsch, P; Abram, M C; Rateau, G; Grillon, G; Guillet, K; Baude, S; Bérard, P; Ansoborlo, E; Delforge, J

    2002-07-01

    A review on specific parameter measurements to calculate doses per unit of incorporation according to recommendations of the International Commission of Radiological Protection has been performed for inhaled actinide oxides. Alpha activity distribution of the particles can be obtained by autoradiography analysis using aerosol sampling filters at the work places. This allows us to characterize granulometric parameters of "pure" actinide oxides, but complementary analysis by scanning electron microscopy is needed for complex aerosols. Dissolution parameters with their standard deviation are obtained after rat inhalation exposure, taking into account both mechanical lung clearance and actinide transfer to the blood estimated from bone retention. In vitro experiments suggest that the slow dissolution rate might decrease as a function of time following exposure. Dose calculation software packages have been developed to take into account granulometry and dissolution parameters as well as specific physiological parameters of exposed individuals. In the case of poorly soluble actinide oxides, granulometry and physiology appear as the main parameters controlling dose value, whereas dissolution only alters dose distribution. Validation of these software packages are in progress.

  11. Primary liver tumors in beagle dogs exposed by inhalation to aerosols of plutonium-238 dioxide.

    PubMed Central

    Gillett, N. A.; Muggenburg, B. A.; Mewhinney, J. A.; Hahn, F. F.; Seiler, F. A.; Boecker, B. B.; McClellan, R. O.

    1988-01-01

    Primary liver tumors developed in Beagle dogs exposed by inhalation to aerosols of 238PuO2. Initial deposition of 238PuO2 in the respiratory tract was followed by translocation of a portion of the 238Pu to the liver and skeleton, which resulted in a large dose commitment and tumor risk to all three tissues. In a population of 144 dogs exposed to 238PuO2, 112 dogs died or were killed 4000 days after 238Pu exposure, 100 dogs had osteosarcoma, and 28 dogs had lung cancers. At increasing times after exposure, however, liver lesions have become more pronounced. Ten primary liver tumors in nine animals were diagnosed in the dogs dying before 4000 days after exposure. An additional five primary liver tumors in three dogs occurred in 9 animals killed after 4000 days after exposure. The majority of these tumors have been fibrosarcomas. The liver tumors were usually not the cause of death, and rarely metastasized. The occurrence of liver tumors in this study indicates that 238Pu is an effective hepatic carcinogen. Liver carcinogenesis is assuming an increasing importance in this study at late times after inhalation exposure. These results suggest that the liver may be an important organ at risk for the development of neoplasia in humans at time periods long after inhalation of 238Pu. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:3142267

  12. An experimental study quantifying pulmonary ventilation on inhalation of aerosol under steady and episodic emission.

    PubMed

    Poon, Carmen K M; Lai, Alvin C K

    2011-09-15

    Estimating inhalation dose accurately under realistic conditions can enhance the accuracy of risk assessment. Conventional methods to quantify aerosol concentration that susceptible victims in contaminated environments are exposed to use real time particle counters to measure concentrations in environments without occupancy. Breathing-induced airflow interacts and influences concentration around nostrils or mouth and alter the ultimate exposure. This subject has not yet been systematically studied, particularly under transient emission. In this work, an experimental facility comprising two manikins was designed and fabricated. One of them mimicked realistic breathing, acting as a susceptible victim. Both steady and episodic emissions were generated in an air-conditioned environmental chamber in which two different ventilation schemes were tested. The scaled-dose of the victim under different expiratory velocities and pulmonary ventilation was measured. Inferring from results obtained from comprehensive tests, it can be concluded that breathing has very significant influence on the ultimate dose compared with that without breathing. Majority of results show that breathing reduces inhalation quantity and the reduction magnitude increases with breathing rate. This is attributed to the fact that the exhalation process plays a more significant role in reducing the dose level than the enhanced effect during inhalation period. The higher the breathing rate, the sharper the decline of the resultant concentration would be leading to lower dose. Nevertheless, under low pulmonary ventilation, results show that breathing increases dose marginally. Results also reveals that ventilation scheme also affects the exposure.

  13. Creation of a protective pulmonary bioshield against inhaled organophosphates using an aerosolized bioscavenger.

    PubMed

    Rosenberg, Yvonne J; Fink, James B

    2016-06-01

    In addition to the global use of organophosphate (OP) pesticides for agriculture, OP nerve agents and pesticides have been employed on battlefields and by terrorists (e.g., a recent sarin attack in Syria). These occurrences highlight the need for an effective countermeasure against OP exposure. Human butyrylcholinesterase (HuBChE) is a leading candidate, but injection of the high doses required for protection present pharmacokinetic challenges. An aerosolized recombinant form (aer-rHuBChE) that can neutralize inhaled OPs at the portal of entry has been assessed for its efficacy in protecting macaques against respiratory toxicity following inhalation exposure to the pesticide paraoxon (aer-Px). While protection in macaques has been demonstrated using the MicroSprayer® delivery device, administration to humans will likely employ a vibrating mesh nebulizer (VMN). Compared to the 50-70% lung deposition achieved in adult humans with a VMN, deposition in macaques is <5%, an initial major obstacle to demonstrating protection. Such problems have been partly overcome by using a more efficient modified VMN and proportionally higher doses, which together generate an effective rHuBChE pulmonary bioshield and protect against high levels of inhaled Px.

  14. Mode shift of an inhaled aerosol bolus is correlated with flow sequencing in the human lung

    NASA Technical Reports Server (NTRS)

    Mills, Christopher N.; Darquenne, Chantal; Prisk, G. Kim; West, J. B. (Principal Investigator)

    2002-01-01

    We studied the effects on aerosol bolus inhalations of small changes in convective inhomogeneity induced by posture change from upright to supine in nine normal subjects. Vital capacity single-breath nitrogen washout tests were used to determine ventilatory inhomogeneity change between postures. Relative to upright, supine phase III slope was increased 33 +/- 11% (mean +/- SE, P < 0.05) and phase IV height increased 25 +/- 11% (P < 0.05), consistent with an increase in convective inhomogeneity likely due to increases in flow sequencing. Subjects also performed 0.5-microm-particle bolus inhalations to penetration volumes (V(p)) between 150 and 1,200 ml during a standardized inhalation from residual volume to 1 liter above upright functional residual capacity. Mode shift (MS) in supine posture was more mouthward than upright at all V(p), changing by 11.6 ml at V(p) = 150 ml (P < 0.05) and 38.4 ml at V(p) = 1,200 ml (P < 0.05). MS and phase III slope changes correlated positively at deeper V(p). Deposition did not change at any V(p), suggesting that deposition did not cause the MS change. We propose that the MS change results from increased sequencing in supine vs. upright posture.

  15. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system.

    PubMed

    Guilleminault, L; Azzopardi, N; Arnoult, C; Sobilo, J; Hervé, V; Montharu, J; Guillon, A; Andres, C; Herault, O; Le Pape, A; Diot, P; Lemarié, E; Paintaud, G; Gouilleux-Gruart, V; Heuzé-Vourc'h, N

    2014-12-28

    Monoclonal antibodies (mAbs) are usually delivered systemically, but only a small proportion of the drug reaches the lung after intravenous injection. The inhalation route is an attractive alternative for the local delivery of mAbs to treat lung diseases, potentially improving tissue concentration and exposure to the drug while limiting passage into the bloodstream and adverse effects. Several studies have shown that the delivery of mAbs or mAb-derived biopharmaceuticals via the airways is feasible and efficient, but little is known about the fate of inhaled mAbs after the deposition of aerosolized particles in the respiratory system. We used cetuximab, an anti-EGFR antibody, as our study model and showed that, after its delivery via the airways, this mAb accumulated rapidly in normal and cancerous tissues in the lung, at concentrations twice those achieved after intravenous delivery, for early time points. The spatial distribution of cetuximab within the tumor was heterogeneous, as reported after i.v. injection. Pharmacokinetic (PK) analyses were carried out in both mice and macaques and showed aerosolized cetuximab bioavailability to be lower and elimination times shorter in macaques than in mice. Using transgenic mice, we showed that FcRn, a key receptor involved in mAb distribution and PK, was likely to make a greater contribution to cetuximab recycling than to the transcytosis of this mAb in the airways. Our results indicate that the inhalation route is potentially useful for the treatment of both acute and chronic lung diseases, to boost and ensure the sustained accumulation of mAbs within the lungs, while limiting their passage into the bloodstream.

  16. Aerosol deposition in the human lung following administration from a microprocessor controlled pressurised metered dose inhaler.

    PubMed Central

    Farr, S. J.; Rowe, A. M.; Rubsamen, R.; Taylor, G.

    1995-01-01

    BACKGROUND--Gamma scintigraphy was employed to assess the deposition of aerosols emitted from a pressurised metered dose inhaler (MDI) contained in a microprocessor controlled device (SmartMist), a system which analyses an inspiratory flow profile and automatically actuates the MDI when predefined conditions of flow rate and cumulative inspired volume coincide. METHODS--Micronised salbutamol particles contained in a commercial MDI (Ventolin) were labelled with 99m-technetium using a method validated by the determination of (1) aerosol size characteristics of the drug and radiotracer following actuation into an eight stage cascade impactor and (2) shot potencies of these non-volatile components as a function of actuation number. Using nine healthy volunteers in a randomised factorial interaction design the effect of inspiratory flow rate (slow, 30 l/min; medium, 90 l/min; fast, 270 l/min) combined with cumulative inspired volume (early, 300 ml; late, 3000 ml) was determined on total and regional aerosol lung deposition using the technique of gamma scintigraphy. RESULTS--The SmartMist firing at the medium/early setting (medium flow and early in the cumulative inspired volume) resulted in the highest lung deposition at 18.6 (1.42)%. The slow/early setting gave the second highest deposition at 14.1 (2.06)% with the fast/late setting resulting in the lowest (7.6 (1.15)%). Peripheral lung deposition obtained for the medium/early (9.1 (0.9)%) and slow/early (7.5 (1.06)%) settings were equivalent but higher than those obtained with the other treatments. This reflected the lower total lung deposition at these other settings as no difference in regional deposition, expressed as a volume corrected central zone:peripheral zone ratio, was apparent for all modes of inhalation studied. CONCLUSIONS--The SmartMist device allowed reproducible actuation of an MDI at a preprogrammed point during inspiration. The extent of aerosol deposition in the lung is affected by a change in

  17. AEROSOL DEPOSITION EFFICIENCIES AND UPSTREAM RELEASE POSITIONS FOR DIFFERENT INHALATION MODES IN AN UPPER BRONCHIAL AIRWAY MODELS

    EPA Science Inventory

    Aerosol Deposition Efficiencies and Upstream Release Positions for Different Inhalation Modes in an Upper Bronchial Airway Model

    Zhe Zhang, Clement Kleinstreuer, and Chong S. Kim

    Center for Environmental Medicine and Lung Biology, University of North Carolina at Ch...

  18. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-02-14

    The purpose of this study was to systematically design pure antibiotic drug dry powder inhalers (DPIs) for targeted antibiotic pulmonary delivery in the treatment of pulmonary infections and comprehensively correlate the physicochemical properties in the solid-state and spray-drying conditions effects on aerosol dispersion performance as dry powder inhalers (DPIs). The two rationally chosen model antibiotic drugs, tobramycin (TOB) and azithromycin (AZI), represent two different antibiotic drug classes of aminoglycosides and macrolides, respectively. The particle size distributions were narrow, unimodal, and in the microparticulate/nanoparticulate size range. The SD particles possessed relatively spherical particle morphology, smooth surface morphology, low residual water content, and the absence of long-range molecular order. The emitted dose (ED%), fine particle fraction (FPF%) and respirable fraction (RF%) were all excellent. The MMAD values were in the inhalable range (<10 μm) with smaller MMAD values for SD AZI powders in contrast to SD TOB powders. Positive linear correlations were observed between the aerosol dispersion performance parameter of FPF with increasing spray-drying pump rates and also with the difference between thermal parameters expressed as Tg-To (i.e. the difference between the glass transition temperature and outlet temperature) for SD AZI powders. The aerosol dispersion performance for SD TOB appeared to be influenced by its high water vapor sorption behavior (hygroscopicity) and pump rates or To. Aerosol dispersion performance of SD powders were distinct for both antibiotic drug aerosol systems and also between different pump rates for each system.

  19. A correlation equation for the mass median aerodynamic diameter of the aerosol emitted by solution metered dose inhalers.

    PubMed

    Ivey, James W; Lewis, David; Church, Tanya; Finlay, Warren H; Vehring, Reinhard

    2014-04-25

    A correlation equation for the mass median aerodynamic diameter (MMAD) of the aerosol emitted by solution metered dose inhalers (MDIs) is presented. A content equivalent diameter is defined and used to describe aerosols generated by evaporating metered dose inhaler sprays. A large set of cascade impaction data is analyzed, and the MMAD and geometric standard deviation is calculated for each datum. Using dimensional analysis, the mass median content equivalent diameter is correlated with formulation variables. Based on this correlation in combination with mass balance considerations and the definition of the aerodynamic diameter, an equation for prediction of the MMAD of an inhaler given the pressure of the propellant in the metering chamber of the MDI valve and the surface tension of the propellant is derived. The accuracy of the correlation equation is verified by comparison with literature results. The equation is applicable to both HFA (hydrofluoroalkane) propellants 134a and 227ea, with varying levels of co-solvent ethanol.

  20. Modeling Deposition of Inhaled Particles

    EPA Science Inventory

    The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeutic dose delivered by inhaled pharmacological drugs. Howeve...

  1. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization.

    PubMed

    Parumasivam, Thaigarajan; Leung, Sharon S Y; Quan, Diana Huynh; Triccas, Jamie A; Britton, Warwick J; Chan, Hak-Kim

    2016-06-10

    Inhaled delivery of drugs incorporated into poly (lactic-co-glycolic acid) (PLGA) microparticles allows a sustained lung concentration and encourages phagocytosis by alveolar macrophages that harboring Mycobacterium tuberculosis. However, limited data are available on the effects of physicochemical properties of PLGA, including the monomer ratio (lactide:glycide) and molecular weight (MW) on the aerosol performance, macrophage uptake, and toxicity profile. The present study aims to address this knowledge gap, using PLGAs with monomer ratios of 50:50, 75:25 and 85:15, MW ranged 24 - 240kDa and an anti-tuberculosis (TB) drug, rifapentine. The PLGA-rifapentine powders were produced through a solution spray drying technique. The particles were spherical with a smooth surface and a volume median diameter around 2μm (span ~2). When the powders were dispersed using an Osmohaler(®) at 100L/min for 2.4s, the fine particle fraction (FPFtotal, wt.% particles in aerosol <5μm relative to the total recovered drug mass) was ranged between 52 and 57%, with no significant difference between the formulations. This result suggests that the monomer ratio and MW are not crucial parameters for the aerosol performance of PLGA. The phagocytosis analysis was performed using Thp-1 monocyte-derived macrophages. The highest rate of uptake was observed in PLGA 85:15 followed by 75:25 and 50:50 with about 90%, 80% and 70%, respectively phagocytosis over 4h of exposure. Furthermore, the cytotoxicity analysis on Thp-1 and human lung adenocarcinoma epithelial cells demonstrated that PLGA concentration up to 1.5mg/mL, regardless of the monomer composition and MW, were non-toxic. In conclusion, the monomer ratio and MW are not crucial in determining the aerosol performance and cytotoxicity profile of PLGA however, the particles with high lactide composition have a superior tendency for macrophage uptake.

  2. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery.

    PubMed

    Sweeney, Lyle G; Wang, Zhaolin; Loebenberg, Raimar; Wong, Jonathan P; Lange, Carlos F; Finlay, Warren H

    2005-11-23

    Spray-freeze drying was utilized to manufacture a liposomal powder formulation containing ciprofloxacin as a model active component. The powder forms liposomally encapsulated ciprofloxacin when wetted. Aerosol properties of this formulation were assessed using a new passive inhaler, in which the powder was entrained at a flow rate of 60l/min. A mass median aerodynamic diameter (MMAD) of 2.8 microm was achieved for this formulation. Using the experimental dispersion testing data, ciprofloxacin concentration in the airway surface liquid (ASL) was calculated using a Lagrangian deposition model. The reconstitution of the powder in various aqueous media gave drug encapsulation efficiencies as follows: 50% in water, 93.5% in isotonic saline, 80% in bovine mucin, 75% in porcine mucus and 73% in five-fold-diluted ex vivo human cystic fibrosis patient sputum.

  3. Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies

    NASA Astrophysics Data System (ADS)

    Kreyling, Wolfgang G.; Biswas, Pratim; Messing, Maria E.; Gibson, Neil; Geiser, Marianne; Wenk, Alexander; Sahu, Manoranjan; Deppert, Knut; Cydzik, Izabela; Wigge, Christoph; Schmid, Otmar; Semmler-Behnke, Manuela

    2011-02-01

    The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10-50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3-6 × 106 cm-3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.

  4. Validation of radiolabeling of drug formulations for aerosol deposition assessment of orally inhaled products.

    PubMed

    Devadason, Sunalene G; Chan, Hak-Kim; Haeussermann, Sabine; Kietzig, Claudius; Kuehl, Philip J; Newman, Stephen; Sommerer, Knut; Taylor, Glyn

    2012-12-01

    Radiolabeling of inhaler formulations for imaging studies is an indirect method of determining lung deposition and regional distribution of drug in human subjects. Hence, ensuring that the radiotracer and drug exhibit similar aerodynamic characteristics when aerosolized, and that addition of the radiotracer has not significantly altered the characteristics of the formulation, are critical steps in the development of a radiolabeling method. The validation phase should occur during development of the radiolabeling method, prior to commencement of in vivo studies. The validation process involves characterization of the aerodynamic particle size distribution (APSD) of drug in the reference formulation, and of both drug and radiotracer in the radiolabeled formulation, using multistage cascade impaction. We propose the adoption of acceptance criteria similar to those recommended by the EMA and ISAM/IPAC-RS for determination of therapeutic equivalence of orally inhaled products: (a) if only total lung deposition is being quantified, the fine particle fraction ratio of both radiolabeled drug and radiotracer to that of the reference drug should fall between 0.85 and 1.18, and (b) if regional lung deposition (e.g., outer and inner lung regions) is to be quantified, the ratio of both radiolabeled drug and radiotracer to reference drug on each impactor stage or group of stages should fall between 0.85 and 1.18. If impactor stages are grouped together, at least four separate groups should be provided. In addition, while conducting in vivo studies, measurement of the APSD of the inhaler used on each study day is recommended to check its suitability for use in man.

  5. Behaviordelia Sampler.

    ERIC Educational Resources Information Center

    Malott, Richard W., Ed.

    Behaviordelia Sampler is based on the same principle as a candy sampler or record sampler. It compiles excerpts from a variety of texts which Behaviordelia is now publishing. It is intended as a supplementary book of readings for courses in psychology and related fields and also as a catalog of their materials. Much of the sampler uses a comic…

  6. An evaluation of the "GGP" personal samplers under semi-volatile aerosols: sampling losses and their implication on occupational risk assessment.

    PubMed

    Dragan, George C; Breuer, Dietmar; Blaskowitz, Morten; Karg, Erwin; Schnelle-Kreis, Jürgen; Arteaga-Salas, Jose M; Nordsieck, Hermann; Zimmermann, Ralf

    2015-02-01

    Semi-volatile (SV) aerosols still represent an important challenge to occupational hygienists due to toxicological and sampling issues. Particularly problematic is the sampling of hazardous SV that are present in both particulate and vapour phases at a workplace. In this study we investigate the potential evaporation losses of SV aerosols when using off-line filter-adsorber personal samplers. Furthermore, we provide experimental data showing the extent of the evaporation loss that can bias the workplace risk assessment. An experimental apparatus consisting of an aerosol generator, a flow tube and an aerosol monitoring and sampling system was set up inside a temperature controlled chamber. Aerosols from three n-alkanes were generated, diluted with nitrogen and sampled using on-line and off-line filter-adsorber methods. Parallel measurements using the on-line and off-line methods were conducted to quantify the bias induced by filter sampling. Additionally, two mineral oils of different volatility were spiked on filters and monitored for evaporation depending on the samplers flow rate. No significant differences between the on-line and off-line methods were detected for the sum of particles and vapour. The filter-adsorber method however tended to underestimate up to 100% of the particle mass, especially for the more volatile compounds and lower concentrations. The off-line sampling method systematically returned lower particle and higher vapour values, an indication for particle evaporation losses. We conclude that using only filter sampling for the assessment of semi-volatiles may considerably underestimate the presence of the particulate phase due to evaporation. Thus, this underestimation can have a negative impact on the occupational risk assessment if the evaporated particle mass is no longer quantified.

  7. Deposition of corticosteroid aerosol in the human lung by Respimat Soft Mist inhaler compared to deposition by metered dose inhaler or by Turbuhaler dry powder inhaler.

    PubMed

    Pitcairn, Gary; Reader, Sandie; Pavia, Demetri; Newman, Steve

    2005-01-01

    Fourteen mild-to-moderate asthmatic patients completed a randomized four-way crossover scintigraphic study to determine the lung deposition of 200 microg budesonide inhaled from a Respimat Soft Mist Inhaler (Respimat SMI), 200 microg budesonide inhaled from a Turbuhaler dry powder inhaler (Turbuhaler DPI, used with fast and slow peak inhaled flow rates), and 250 microg beclomethasone dipropionate inhaled from a pressurized metered dose inhaler (Becloforte pMDI). Mean (range) whole lung deposition of drug from the Respimat SMI (51.6 [46-57]% of the metered dose) was significantly (p < 0.001) greater than that from the Turbuhaler DPI used with both fast and slow inhaled flow rates (28.5 [24-33]% and 17.8 [14-22]%, respectively) or from the Becloforte pMDI (8.9 [6-12]%). The deposition pattern within the lungs was more peripheral for Respimat SMI than for Turbuhaler DPI. The results of this study showed that Respimat SMI deposited corticosteroid more efficiently in the lungs than either of two widely used inhaler devices, Turbuhaler DPI or Becloforte pMDI.

  8. Changing the dose metric for inhalation toxicity studies: short-term study in rats with engineered aerosolized amorphous silica nanoparticles.

    PubMed

    Sayes, Christie M; Reed, Kenneth L; Glover, Kyle P; Swain, Keith A; Ostraat, Michele L; Donner, E Maria; Warheit, David B

    2010-03-01

    Inhalation toxicity and exposure assessment studies for nonfibrous particulates have traditionally been conducted using particle mass measurements as the preferred dose metric (i.e., mg or microg/m(3)). However, currently there is a debate regarding the appropriate dose metric for nanoparticle exposure assessment studies in the workplace. The objectives of this study were to characterize aerosol exposures and toxicity in rats of freshly generated amorphous silica (AS) nanoparticles using particle number dose metrics (3.7 x 10(7) or 1.8 x 10(8) particles/cm(3)) for 1- or 3-day exposures. In addition, the role of particle size (d(50) = 37 or 83 nm) on pulmonary toxicity and genotoxicity endpoints was assessed at several postexposure time points. A nanoparticle reactor capable of producing, de novo synthesized, aerosolized amorphous silica nanoparticles for inhalation toxicity studies was developed for this study. SiO(2) aerosol nanoparticle synthesis occurred via thermal decomposition of tetraethylorthosilicate (TEOS). The reactor was designed to produce aerosolized nanoparticles at two different particle size ranges, namely d(50) = approximately 30 nm and d(50) = approximately 80 nm; at particle concentrations ranging from 10(7) to 10(8) particles/cm(3). AS particle aerosol concentrations were consistently generated by the reactor. One- or 3-day aerosol exposures produced no significant pulmonary inflammatory, genotoxic, or adverse lung histopathological effects in rats exposed to very high particle numbers corresponding to a range of mass concentrations (1.8 or 86 mg/m(3)). Although the present study was a short-term effort, the methodology described herein can be utilized for longer-term inhalation toxicity studies in rats such as 28-day or 90-day studies. The expansion of the concept to subchronic studies is practical, due, in part, to the consistency of the nanoparticle generation method.

  9. Inhaled clemastine, an H1 antihistamine inhibits airway narrowing caused by aerosols of non-isotonic saline.

    PubMed

    Rodwell, L T; Anderson, S D; Seale, J P

    1991-10-01

    Asthmatic subjects were challenged with aerosols of hyper- and hypotonic saline 15 min (Group A) and 90 min (Group B) after inhaling clemastine. Measurements were made of forced expiratory volume in one second (FEV1) before and after medication and after challenge. When the FEV1 values (% predicted) were compared on the active and placebo days they were higher 15 min after clemastine (p less than 0.05) for both challenges and higher 90 min after clemastine inhalation (p less than 0.05) for the hypertonic challenge. The % fall in FEV1 was compared after the same concentration of saline aerosol had been given on both active and placebo days. In Group A the % fall in FEV1 on the clemastine day was reduced after challenge with hypertonic (p less than 0.02) and hypotonic (p less than 0.03) aerosol. In Group B there was a reduction in the % fall in FEV1 on the clemastine day only after hypertonic challenge (p less than 0.04). The protective effect afforded by clemastine was unrelated to change in baseline lung function. We conclude that histamine is an important mediator of the airway response to non-isotonic aerosols and suggest that the aerosol route of administration may be useful for delivering antihistamines.

  10. Evaluation of IOM personal sampler at different flow rates.

    PubMed

    Zhou, Yue; Cheng, Yung-Sung

    2010-02-01

    The Institute of Occupational Medicine (IOM) personal sampler is usually operated at a flow rate of 2.0 L/min, the rate at which it was designed and calibrated, for sampling the inhalable mass fraction of airborne particles in occupational environments. In an environment of low aerosol concentrations only small amounts of material are collected, and that may not be sufficient for analysis. Recently, a new sampling pump with a flow rate up to 15 L/min became available for personal samplers, with the potential of operating at higher flow rates. The flow rate of a Leland Legacy sampling pump, which operates at high flow rates, was evaluated and calibrated, and its maximum flow was found to be 10.6 L/min. IOM samplers were placed on a mannequin, and sampling was conducted in a large aerosol wind tunnel at wind speeds of 0.56 and 2.22 m/s. Monodisperse aerosols of oleic acid tagged with sodium fluorescein in the size range of 2 to 100 microm were used in the test. The IOM samplers were operated at flow rates of 2.0 and 10.6 L/min. Results showed that the IOM samplers mounted in the front of the mannequin had a higher sampling efficiency than those mounted at the side and back, regardless of the wind speed and flow rate. For the wind speed of 0.56 m/s, the direction-averaged (the average value of all orientations facing the wind direction) sampling efficiency of the samplers operated at 2.0 L/min was slightly higher than that of 10.6 L/min. For the wind speed of 2.22 m/s, the sampling efficiencies at both flow rates were similar for particles < 60 microm. The results also show that the IOM's sampling efficiency at these two different flow rates follows the inhalable mass curve for particles in the size range of 2 to 20 microm. The test results indicate that the IOM sampler can be used at higher flow rates.

  11. Differences in aerosolization of Rift Valley fever virus resulting from choice of inhalation exposure chamber: implications for animal challenge studies

    PubMed Central

    Bethel, Laura M.; Powell, Diana S.; Caroline, Amy L.; Hartman, Amy L.

    2014-01-01

    Abstract The aerosol characteristics of Rift Valley fever virus (RVFV) were evaluated to achieve reproducible infection of experimental animals with aerosolized RVFV suitable for animal efficacy studies. Spray factor (SF), the ratio between the concentrations of the aerosolized agent to the agent in the aerosol generator, is used to compare performance differences between aerosol exposures. SF indicates the efficiency of the aerosolization process; a higher SF means a lower nebulizer concentration is needed to achieve a desired inhaled dose. Relative humidity levels as well as the duration of the exposure and choice of exposure chamber all impacted RVFV SF. Differences were also noted between actual and predicted minute volumes for different species of nonhuman primates. While NHP from Old World species (Macaca fascicularis, M. mulatta, Chlorocebus aethiops) generally had a lower actual minute volume than predicted, the actual minute volume for marmosets (Callithrix jacchus) was higher than predicted (150% for marmosets compared with an average of 35% for all other species examined). All of these factors (relative humidity, chamber, duration, and minute volume) impact the ability to reliably and reproducibly deliver a specific dose of aerosolized RVFV. The implications of these findings for future pivotal efficacy studies are discussed. PMID:24532259

  12. Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats.

    PubMed

    Peng, Xinqi; Perkins, Michael W; Simons, Jannitt; Witriol, Alicia M; Rodriguez, Ashley M; Benjamin, Brittany M; Devorak, Jennifer; Sciuto, Alfred M

    2014-06-01

    This study evaluated acute toxicity and pulmonary injury in rats at 3, 6 and 24 h after an inhalation exposure to aerosolized O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX). Anesthetized male Sprague-Dawley rats (250-300 g) were incubated with a glass endotracheal tube and exposed to saline or VX (171, 343 and 514 mg×min/m³ or 0.2, 0.5 and 0.8 LCt₅₀, respectively) for 10 min. VX was delivered by a small animal ventilator at a volume of 2.5 ml × 70 breaths/minute. All VX-exposed animals experienced a significant loss in percentage body weight at 3, 6, and 24 h post-exposure. In comparison to controls, animals exposed to 514 mg×min/m³ of VX had significant increases in bronchoalveolar lavage (BAL) protein concentrations at 6 and 24 h post-exposure. Blood acetylcholinesterase (AChE) activity was inhibited dose dependently at each of the times points for all VX-exposed groups. AChE activity in lung homogenates was significantly inhibited in all VX-exposed groups at each time point. All VX-exposed animals assessed at 20 min and 3, 6 and 24 h post-exposure showed increases in lung resistance, which was prominent at 20 min and 3 h post-exposure. Histopathologic evaluation of lung tissue of the 514 mg×min/m³ VX-exposed animals at 3, 6 and 24 h indicated morphological changes, including perivascular inflammation, alveolar exudate and histiocytosis, alveolar septal inflammation and edema, alveolar epithelial necrosis, and bronchiolar inflammatory infiltrates, in comparison to controls. These results suggest that aerosolization of the highly toxic, persistent chemical warfare nerve agent VX results in acute pulmonary toxicity and lung injury in rats.

  13. Investigation on the aerosol performance of dry powder inhalation hypromellose capsules with different lubricant levels.

    PubMed

    Saleem, I Y; Diez, F; Jones, B E; Kayali, N; Polo, L

    2015-08-15

    HPMC capsules are made by a dipping process and a surface lubricant for the mould pins is an essential processing aid for removing dried capsules shells. For the purpose of this study, the level was determined by quantifying methyloleate (MO) a component found in the lubricant but not in the hypromellose capsules. Here we investigated the influence of the lubricant, low (10.81 μg/capsule=60 mg/kg MO), medium (15.97 μg/capsule=90 mg/kg MO) and high (23.23 μg/capsule=127 mg/kg MO) content on powder (binary mixture of salbutamol: lactose, 1:50 w/w) aerosolization properties was investigated. Results indicated significantly lower emitted dose from capsules with 60 mg/kg MO. Furthermore, the 90 and 127 mg/kg MO level of lubricant capsules produced almost double the Fine Particle Dose & Fine Particle Fraction compared with the low level of lubricant. The data indicates that lubricant level within capsules has an influence on deposition profiles and amount of drug remaining in capsule and inhaler device after actuation. It is suggested lubricant levels greater than 60 mg/kg MO per capsule are required to minimise powder retention within capsules and maximise deposition profiles. AFM (atomic force microscopy) data suggest that internal surface roughness may be related with this phenomena.

  14. Rapid clearance of inhaled aerosols of Technetium-99M DTPA in patients with pneumocystis carinii pneumonia

    SciTech Connect

    Mason, G.R.; Duane, G.B.; Effros, R.M.; Mena, I.

    1985-05-01

    Because infection with Pheumocystis carinii pneumonia (PCP) causes alteration of the type I epithelial cells as the primary event, the authors studied patients with PCP to determine if PCP causes rapid clearance of Tc-99m DTPA. Twenty normal non-smoking subjects and 7 non-smoking patients with histologically proven PCP were studied. Serial studies were obtained in three patients. Following a two-minute inhalation of 1.6 ..mu..m aerosol particles of Tc-99m DTPA in saline, the activity over three peripheral regions of interest (ROI) of each lung was monitored for the next 7 minutes. The rate of decline of activity over each ROI was expressed as per cent decline/min. In 7 patients with PCP, the average clearance was 7.5 +- 3.6% min., normal, 1.3 +- 0.6% min.(SD). Three patients studied from 5 to 38 days following therapy had improvement in the rate of clearance. This has been demonstrated to be persistent even after clinical recovery of the patient. The ability to quantitate injury to the pulmonary epithelium may directly reflect the ability of Pneumocystis carinii to invade the lung. The authors conclude that Tc-99m DTPA clearance may be a useful test to help diagnosis and monitor the activity of PCP infections.

  15. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

    PubMed

    Park, Chun-Woong; Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Zwischenberger, Joseph B; Park, Eun-Seok; Mansour, Heidi M

    2013-10-15

    Respirable microparticles/nanoparticles of the antibiotics vancomycin (VCM) and clarithromycin (CLM) were successfully designed and developed by novel organic solution advanced spray drying from methanol solution. Formulation optimization was achieved through statistical experimental design of pump feeding rates of 25% (Low P), 50% (Medium P) and 75% (High P). Systematic and comprehensive physicochemical characterization and imaging were carried out using scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Karl Fischer titration (KFT), laser size diffraction (LSD), gravimetric vapor sorption (GVS), confocal Raman microscopy (CRM) and spectroscopy for chemical imaging mapping. These novel spray-dried (SD) microparticulate/nanoparticulate dry powders displayed excellent aerosol dispersion performance as dry powder inhalers (DPIs) with high values in emitted dose (ED), respirable fraction (RF), and fine particle fraction (FPF). VCM DPIs displayed better aerosol dispersion performance compared to CLM DPIs which was related to differences in the physicochemical and particle properties of VCM and CLM. In addition, organic solution advanced co-spray drying particle engineering design was employed to successfully produce co-spray-dried (co-SD) multifunctional microparticulate/nanoparticulate aerosol powder formulations of VCM and CLM with the essential lung surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPC), for controlled release pulmonary nanomedicine delivery as inhalable dry powder aerosols. Formulation optimization was achieved through statistical experimental design of molar ratios of co-SD VCM:DPPC and co-SD CLM:DPPC. XRPD and DSC confirmed that the phospholipid bilayer structure in the solid-state was preserved following spray drying. Co-SD VCM:DPPC and co-SD CLM:DPPC dry powder aerosols demonstrated controlled release of antibiotic drug that was fitted to various

  16. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  17. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications

    PubMed Central

    Labiris, N R; Dolovich, M B

    2003-01-01

    Research in the area of pulmonary drug delivery has gathered momentum in the last several years, with increased interest in using the lung as a means of delivering drugs systemically. Advances in device technology have led to the development of more efficient delivery systems capable of delivering larger doses and finer particles into the lung. As more efficient pulmonary delivery devices and sophisticated formulations become available, physicians and health professionals will have a choice of a wide variety of device and formulation combinations that will target specific cells or regions of the lung, avoid the lung's clearance mechanisms and be retained within the lung for longer periods. It is now recognized that it is not enough just to have inhalation therapy available for prescribing; physicians and other healthcare providers need a basic understanding of aerosol science, inhaled formulations, delivery devices, and bioequivalence of products to prescribe these therapies optimally. PMID:14616419

  18. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria.

    PubMed

    Ravva, Subbarao V; Hernlem, Bradley J; Sarreal, Chester Z; Mandrell, Robert E

    2012-02-01

    Airborne transmission of bacterial pathogens from point sources (e.g., ranches, dairy waste treatment facilities) to areas of food production (farms) has been suspected. Determining the incidence, transport and viability of extremely low levels of pathogens require collection of high volumes of air and characterization of live bacteria from aerosols. We monitored the numbers of culturable bacteria in urban aerosols on 21 separate days during a 9 month period using high volume cyclonic samplers at an elevation of 6 m above ground level. Culturable bacteria in aerosols fluctuated from 3 CFU to 6 million CFU/L of air per hour and correlated significantly with changes in seasonal temperatures, but not with humidity or wind speed. Concentrations of viable bacteria determined by fluorescence staining and flow cytometry correlated significantly with culturable bacteria. Members of the phylum Proteobacteria constituted 98% of the bacterial community, which was characterized using 16S rRNA gene sequencing using DNA from aerosols. Aquabacterium sp., previously characterized from aquatic environments, represented 63% of all clones and the second most common were Burkholderia sp; these are ubiquitous in nature and some are potential human pathogens. Whole genome amplification prior to sequencing resulted in a substantial decrease in species diversity compared to characterizing culturable bacteria sorted by flow cytometry based on scatter signals. Although 27 isolated colonies were characterized, we were able to culture 38% of bacteria characterized by sequencing. The whole genome amplification method amplified DNA preferentially from Phyllobacterium myrsinacearum, a minor member of the bacterial communities, whereas Variovorax paradoxus dominated the cultured organisms.

  19. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    PubMed

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  20. Use of the integrated organic gas and particle sampler to improve the characterization of carbonaceous aerosol in the near-road environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dabek-Zlotorzynska, Ewa; Liggio, John; Stroud, Craig A.; Charland, Jean-Pierre; Brook, Jeffrey R.

    2016-02-01

    Particle phase organic carbon (OC), elemental carbon (EC) and particle phase semi-volatile organic carbon were measured simultaneously at two distances downwind of a highway using an integrated organic gas and particle sampler. This method reduces sampling artifacts associated with OC measurement. On average, artifact-corrected OC (referred to as OCT) was 2.4 μg/m3 and the positive and negative artifacts were significant at 0.8 and 1.0 μg/m3 respectively. Close to the highway negative artifacts are potentially dominant over positive artifacts indicating that traditional integrated filter-based sampling for OC and fine particles (PM2.5) may be biased low. Decreases in OCT between the near and far site ranged from 25 to 44% while the decreases observed for EC, which reflects the impact of dispersion, were larger at 42-84%. The nature of the OCT changed between sites becoming less volatile and having a greater content of pyrolized organic carbon. Collectively, these results suggest that secondary organic aerosol (SOA) formed downwind of the highway from vehicle-related emissions and was detectable within the 15 min transit time between the highway and the far site. These results highlight the need for improvements in understanding the processes influencing organic aerosols in locations directly impacted by motor vehicle emissions in order to realistically predict PM2.5 using air quality models.

  1. Albuterol Oral Inhalation

    MedlinePlus

    Albuterol is used to prevent and treat difficulty breathing, wheezing, shortness of breath, coughing, and chest tightness ... for oral inhalation is also used to prevent breathing difficulties during exercise. Albuterol inhalation aerosol (Proair HFA, ...

  2. Spinning-disk generation and drying of monodisperse solid aerosols with output concentrations sufficient for single-breath inhalation studies.

    PubMed

    Byron, P R; Hickey, A J

    1987-01-01

    The air-driven spinning-disk aerosol generator was modified to allow the production of monodisperse dry spherical aerosols of disodium fluorescein (as model solute) in high output concentrations. Output concentrations were determined by filtration. Optical and aerodynamic size distributions were determined microscopically (after electrostatic precipitation) and by cascade impaction. The generator housing allowed the entrainment of 25-microns primary aqueous solution droplets in a 10-L X min-1 downward flow of dry, filtered air. Internal equipment surfaces were machined flush and polished to minimize aerosol losses. Primary droplets were dried within a stainless steel pipe encased in a tube furnace. Water vapor was removed by diffusion drying. Disk-driven air, satellite droplets, and additional dilution air were vented to waste without using a vacuum. Generator yields were increased by reducing the size of the satellite droplet extraction gap. Aerosols were generated reproducibly by delivering aqueous solutions at a rate of 0.2 mL X min-1 to the center of the disk and spinning at 1000 rps. Dry aerosols, with mass median aerodynamic diameters of 2, 4.9, and 9 microns, were produced in concentrations of 0.89, 5.48, and 54.6 micrograms X L-1 from aqueous solutions containing 0.0374, 0.584, and 3.4% solute by weight. Geometric standard deviations were less than 1.2 in all cases. Concentrations are several times higher than others in the literature and are suitable for single-breath inhalation studies of therapeutic aerosol deposition and effect.

  3. CHANGES IN OPERATING PROCEDURES FOR AEROSOL CONCENTRATION UNIFORMITY FOR PM2.5 AND PM10 SAMPLER TESTING

    EPA Science Inventory

    This technical note documents changes in the standard operating procedures used at the Environmental Protection Agency's (U.S. EPA) aerosol testing wind tunnel facility for testing of particulate matter monitoring methods of PM2.5 and PM10. These changes are relative to the op...

  4. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.
    Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...

  5. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...

  6. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: evidence for biodegradability of inhaled fibrils.

    PubMed

    Warheit, D B; Kellar, K A; Hartsky, M A

    1992-10-01

    Previous chronic inhalation studies have shown that high concentrations of Kevlar fibrils produced fibrosis and cystic keratinizing tumors in rats following 2-year inhalation exposures. The current studies were undertaken to evaluate mechanisms and to assess the toxicity of inhaled Kevlar fibrils relative to other reference materials. Rats were exposed to ultrafine Kevlar fibers (fibrils) for 3 or 5 days at concentrations ranging from 600-1300 fibers/cc (gravimetric concentrations ranging from 2-13 mg/m3). A complete characterization of the fiber aerosol and dose was carried out. These measurements included gravimetric concentrations, mass median aerodynamic diameter, fiber number, and count median lengths and diameters of the aerosol. Following exposures, cells and fluids from groups of sham- and fiber-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, lactate dehydrogenase (LDH), protein, and N-acetyl glucosaminidase (NAG) values were measured in BAL fluids at several time points postexposure. Alveolar macrophages were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy. The lungs of additional exposed animals were processed for deposition, cell labeling, retained dose, and lung clearance studies, as well as fiber dimensions (from digested lung tissue), histopathology, and transmission electron microscopy. Five-day exposures to Kevlar fibrils elicited a transient granulocytic inflammatory response with concomitant increases in BAL fluid levels of alkaline phosphatase, NAG, LDH, and protein. Unlike the data from silica and asbestos exposures where inflammation persisted, biochemical parameters returned to control levels at time intervals between 1 week and 1 month postexposure. Macrophage function in Kevlar-exposed alveolar macrophages was not significantly different from sham controls at any time period. Cell labeling studies were carried out immediately after exposure, as well as 1

  7. Direct gravimetric measurements of the mass of the antarctic aerosol collected by high volume sampler: PM10 summer seasonal variation at Terra Nova Bay.

    PubMed

    Truzzi, Cristina; Lambertucci, Luca; Illuminati, Silvia; Annibaldi, Anna; Scarponi, Giuseppe

    2005-01-01

    An on-site procedure was set up for direct gravimetric measurement of the mass of aerosol collected using high volume impactors (aerodynamic size cut point of 10 microm, PM10); this knowledge has hitherto been unavailable. Using a computerized microbalance in a clean chemistry laboratory, under controlled temperature (+/-0.5 degrees C) and relative humidity (+/-1%), continuous, long time filter mass measurements (hours) were carried out before and after exposure, after a 48 h minimun equilibration at the laboratory conditions. The effect of the electrostatic charge was exhausted in 30-60 min, after which stable measurements were obtained. Measurements of filters exposed for 7-11 days (1.13 m3 min(-1)) in a coastal site near Terra Nova Bay (December 2000 - February 2001), gave results for aerosol mass in the order of 10-20 mg (SD approximately 2 mg), corresponding to atmospheric concentrations of 0.52-1.27 microg m(-3). Data show a seasonal behaviour in the PM10 content with an increase during December - early January, followed by a net decrease. The above results compare well with estimates obtained from proxy data for the Antarctic Peninsula (0.30 microg m(-3)), the Ronne Ice Shelf (1.49 microg m(-3)), and the South Pole (0.18 microg m(-3), summer 1974-1975, and 0.37 microg m(-3), average summer seasons 1975-1976 and 1977-1978), and from direct gravimetric measurements recently obtained from medium volume samplers at McMurdo station (downwind 3.39 microg m(-3), upwind 4.15 microg m(-3)) and at King George Island (2.5 microg m(-3), summer, particle diameter <20 microm). This finding opens the way to the direct measurement of the chemical composition of the Antarctic aerosol and, in turn, to a better knowledge of the snow/air relationships as required for the reconstruction of the chemical composition of past atmospheres from deep ice core data.

  8. Methods used to calculate doses resulting from inhalation of Capstone depleted uranium aerosols.

    PubMed

    Miller, Guthrie; Cheng, Yung Sung; Traub, Richard J; Little, Tom T; Guilmette, Raymond A

    2009-03-01

    The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a U.S. Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions are described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size-resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus the backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described.

  9. Inhalation Exposure and Lung Dose Analysis of Multi-mode Complex Ambient Aerosols

    EPA Science Inventory

    Rationale: Ambient aerosols are complex mixture of particles with different size, shape and chemical composition. Although they are known to cause health hazard, it is not fully understood about causal mechanisms and specific attributes of particles causing the effects. Internal ...

  10. Chronic inhalation studies of man-made vitreous fibres: characterization of fibres in the exposure aerosol and lungs.

    PubMed

    Hesterberg, T W; Miiller, W C; Thevenaz, P; Anderson, R

    1995-10-01

    Inhalation studies were conducted to determine the chronic biological effects in rodents of respirable fractions of different man-made vitreous fibres (MMVFs), including refractory ceramic fibre (RCF), fibrous glass, rock (stone) wool and slag wool. Animals were exposed nose-only, 6 h per day, 5 days per week, for 18 months (hamsters) or 24 months (rats). Exposure to 10 mg m-3 of crocidolite or chrysotile asbestos induced pulmonary fibrosis, lung tumours and mesothelioma in rats, thus validating the inhalation model with known human carcinogenic fibres. Exposure of rats to 30 mg m-3 of refractory ceramic fibres (RCF) also resulted in pulmonary fibrosis as well as significant increases in lung tumours and mesothelioma. In hamsters, 30 mg m-3 of RCF induced a 41% incidence of mesotheliomas. Exposure of rats to 30 mg m-3 of fibre glasses (MMVF 10 or 11) or of slag wool (MMVF 22) was associated with an inflammatory response, but no mesotheliomas or significant increase in the lung tumours were observed. Rock wool (stone wool: MMVF 21) at the same exposure level resulted in minimal lung fibrosis, but no mesotheliomas or significant increase in the lung tumours were observed. Fibre numbers (WHO fibres) and dimensions in the aerosols and lungs of exposed animals were comparable in this series of inhalation studies. Differences in lung fibre burdens and lung clearance rates could not explain the differences observed in the toxicologic effects of the MMVFs. These findings indicate that dose, dimension and durability may not be the only determinants of fibre toxicity. Chemical composition and the surface physico-chemical properties of the fibres may also play an important role.

  11. Inhaler technique: facts and fantasies. A view from the Aerosol Drug Management Improvement Team (ADMIT)

    PubMed Central

    Levy, Mark L; Dekhuijzen, P N R; Barnes, P J; Broeders, M; Corrigan, C J; Chawes, B L; Corbetta, L; Dubus, J C; Hausen, Th; Lavorini, F; Roche, N; Sanchis, J; Usmani, Omar S; Viejo, J; Vincken, W; Voshaar, Th; Crompton, G K; Pedersen, Soren

    2016-01-01

    Health professionals tasked with advising patients with asthma and chronic obstructive pulmonary disease (COPD) how to use inhaler devices properly and what to do about unwanted effects will be aware of a variety of commonly held precepts. The evidence for many of these is, however, lacking or old and therefore in need of re-examination. Few would disagree that facilitating and encouraging regular and proper use of inhaler devices for the treatment of asthma and COPD is critical for successful outcomes. It seems logical that the abandonment of unnecessary or ill-founded practices forms an integral part of this process: the use of inhalers is bewildering enough, particularly with regular introduction of new drugs, devices and ancillary equipment, without unnecessary and pointless adages. We review the evidence, or lack thereof, underlying ten items of inhaler ‘lore’ commonly passed on by health professionals to each other and thence to patients. The exercise is intended as a pragmatic, evidence-informed review by a group of clinicians with appropriate experience. It is not intended to be an exhaustive review of the literature; rather, we aim to stimulate debate, and to encourage researchers to challenge some of these ideas and to provide new, updated evidence on which to base relevant, meaningful advice in the future. The discussion on each item is followed by a formal, expert opinion by members of the ADMIT Working Group. PMID:27098045

  12. Inhaler technique: facts and fantasies. A view from the Aerosol Drug Management Improvement Team (ADMIT).

    PubMed

    Levy, Mark L; Dekhuijzen, P N R; Barnes, P J; Broeders, M; Corrigan, C J; Chawes, B L; Corbetta, L; Dubus, J C; Hausen, Th; Lavorini, F; Roche, N; Sanchis, J; Usmani, Omar S; Viejo, J; Vincken, W; Voshaar, Th; Crompton, G K; Pedersen, Soren

    2016-04-21

    Health professionals tasked with advising patients with asthma and chronic obstructive pulmonary disease (COPD) how to use inhaler devices properly and what to do about unwanted effects will be aware of a variety of commonly held precepts. The evidence for many of these is, however, lacking or old and therefore in need of re-examination. Few would disagree that facilitating and encouraging regular and proper use of inhaler devices for the treatment of asthma and COPD is critical for successful outcomes. It seems logical that the abandonment of unnecessary or ill-founded practices forms an integral part of this process: the use of inhalers is bewildering enough, particularly with regular introduction of new drugs, devices and ancillary equipment, without unnecessary and pointless adages. We review the evidence, or lack thereof, underlying ten items of inhaler 'lore' commonly passed on by health professionals to each other and thence to patients. The exercise is intended as a pragmatic, evidence-informed review by a group of clinicians with appropriate experience. It is not intended to be an exhaustive review of the literature; rather, we aim to stimulate debate, and to encourage researchers to challenge some of these ideas and to provide new, updated evidence on which to base relevant, meaningful advice in the future. The discussion on each item is followed by a formal, expert opinion by members of the ADMIT Working Group.

  13. Effects of single and repeated inhalation exposure of Syrian hamsters to aerosols of /sup 144/CeO/sub 2/

    SciTech Connect

    Lundgren, D.L.; Hahn, F.F.; McClellan, R.O.

    1982-05-01

    Male Syrian hamsters (84 days old at the time of the initial exposure) were repeatedly exposed by inhalation at approximately 60-day intervals for 1 year (seven exposures) to aerosols of /sup 144/CeO/sub 2/ to reestablish lung burdens of 0.4, 2.0, or 10 ..mu..Ci of /sup 144/Ce. Other hamsters were exposed once when either 84, 220, or 360 days old to achieve similar initial lung burdens. Primary lung tumors were observed in 7 of 197 hamsters repeatedly exposed to /sup 144/CeO/sub 2/ that died between 177 and 685 days after the initial inhalation exposure. The cumulative adsorbed ..beta..-radiation doses to the lungs of these hamsters were 14,000 to 50,000 rad. Primary lung tumors also were observed in 6 of 153 hamsters exposed once to /sup 144/CeO/sub 2/ when 84 or 220 days old that died between 270 and 695 days after exposure. The cumulative ..beta..-radiation doses to the lungs of these hamsters were 6000 to 21,000 rad. Lung tumors were not observed in hamsters exposed when 360 days old or in control hamsters. The incidences of primary lung tumors were more dependent on the cumulative dose to the lung than the radiation dose pattern that resulted in the cumulative dose.

  14. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  15. Performance evaluation of two personal bioaerosol samplers.

    PubMed

    Tolchinsky, Alexander D; Sigaev, Vladimir I; Varfolomeev, Alexander N; Uspenskaya, Svetlana N; Cheng, Yung S; Su, Wei-Chung

    2011-01-01

    In this study, the performance of two newly developed personal bioaerosol samplers for monitoring the level of environmental and occupational airborne microorganisms was evaluated. These new personal bioaerosol samplers were designed based on a swirling cyclone with recirculating liquid film. The performance evaluation included collection efficiency tests using inert aerosols, the bioaerosol survival test using viable airborne microorganism, and the evaluation of using non-aqueous collection liquid for long-period sampling. The test results showed that these two newly developed personal bioaerosol samplers are capable of doing high efficiency, aerosol sampling (the cutoff diameters are around 0.7 μm for both samplers), and have proven to provide acceptable survival for the collected bioaerosols. By using an appropriate non-aqueous collection liquid, these two personal bioaerosol samplers should be able to permit continuous, long-period bioaerosol sampling with considerable viability for the captured bioaerosols.

  16. Sinonasal inhalation of tobramycin vibrating aerosol in cystic fibrosis patients with upper airway Pseudomonas aeruginosa colonization: results of a randomized, double-blind, placebo-controlled pilot study

    PubMed Central

    Mainz, Jochen G; Schädlich, Katja; Schien, Claudia; Michl, Ruth; Schelhorn-Neise, Petra; Koitschev, Assen; Koitschev, Christiane; Keller, Peter M; Riethmüller, Joachim; Wiedemann, Baerbel; Beck, James F

    2014-01-01

    Rationale In cystic fibrosis (CF), the paranasal sinuses are sites of first and persistent colonization by pathogens such as Pseudomonas aeruginosa. Pathogens subsequently descend to the lower airways, with P. aeruginosa remaining the primary cause of premature death in patients with the inherited disease. Unlike conventional aerosols, vibrating aerosols applied with the PARI Sinus™ nebulizer deposit drugs into the paranasal sinuses. This trial assessed the effects of vibrating sinonasal inhalation of the antibiotic tobramycin in CF patients positive for P. aeruginosa in nasal lavage. Objectives To evaluate the effects of sinonasal inhalation of tobramycin on P. aeruginosa quantification in nasal lavage; and on patient quality of life, measured with the Sino-Nasal Outcome Test (SNOT-20), and otologic and renal safety and tolerability. Methods Patients were randomized to inhalation of tobramycin (80 mg/2 mL) or placebo (2 mL isotonic saline) once daily (4 minutes/nostril) with the PARI Sinus™ nebulizer over 28 days, with all patients eligible for a subsequent course of open-label inhalation of tobramycin for 28 days. Nasal lavage was obtained before starting and 2 days after the end of each treatment period by rinsing each nostril with 10 mL of isotonic saline. Results Nine patients participated, six initially receiving tobramycin and three placebo. Sinonasal inhalation was well tolerated, with serum tobramycin <0.5 mg/L and stable creatinine. P. aeruginosa quantity decreased in four of six (67%) patients given tobramycin, compared with zero of three given placebo (non-significant). SNOT-20 scores were significantly lower in the tobramycin than in the placebo group (P=0.033). Conclusion Sinonasal inhalation of vibrating antibiotic aerosols appears promising for reducing pathogen colonization of paranasal sinuses and for control of symptoms in patients with CF. PMID:24596456

  17. MODELING DEPOSITION OF INHALED PARTICLES

    EPA Science Inventory

    Modeling Deposition of Inhaled Particles: ABSTRACT

    The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeut...

  18. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection

    PubMed Central

    Marriott, Anthony C.; Dennis, Mike; Kane, Jennifer A.; Gooch, Karen E.; Hatch, Graham; Sharpe, Sally; Prevosto, Claudia; Leeming, Gail; Zekeng, Elsa-Gayle; Staples, Karl J.; Hall, Graham; Ryan, Kathryn A.; Bate, Simon; Moyo, Nathifa; Whittaker, Catherine J.; Hallis, Bassam; Silman, Nigel J.; Lalvani, Ajit; Wilkinson, Tom M.; Hiscox, Julian A.; Stewart, James P.; Carroll, Miles W.

    2016-01-01

    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections. PMID

  19. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection.

    PubMed

    Marriott, Anthony C; Dennis, Mike; Kane, Jennifer A; Gooch, Karen E; Hatch, Graham; Sharpe, Sally; Prevosto, Claudia; Leeming, Gail; Zekeng, Elsa-Gayle; Staples, Karl J; Hall, Graham; Ryan, Kathryn A; Bate, Simon; Moyo, Nathifa; Whittaker, Catherine J; Hallis, Bassam; Silman, Nigel J; Lalvani, Ajit; Wilkinson, Tom M; Hiscox, Julian A; Stewart, James P; Carroll, Miles W

    2016-01-01

    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections.

  20. Operating manual for Ford's Farm Range air samplers

    SciTech Connect

    Glissmeyer, J.A.; Halverson, M.A.

    1980-10-01

    An air-sampling program was designed for a target enclosure at the Ford's Farm Range, Aberdeen Proving Ground, Maryland, where the Army test-fires tungsten and depleted-uranium armor penetrators. The primary potential particle inhalation hazard is depleted uranium. The sampling program includes workplace and filtered exhaust air sampling. Conventional isokinetic stack sampling was employed for the filtered exhaust air. Because of the need for rapid monitor response to concentration increases and decreases, conventional radioactive particle monitors were not used. Instead, real-time aerosol monitors employing a light-scattering technique were used for monitors requiring a fast response. For other monitoring functions, piezoelectric and beta-attenuation respirable-particle sampling techniques were used. The application of these technologies to the monitoring of airborne radioactive contaminants is addressed. Sampler installation and operation are detailed.

  1. Hypoadrenocorticism in beagles exposed to aerosols of plutonium-238 dioxide by inhalation

    SciTech Connect

    Weller, R.E.; Buschbom, R.L.; Dagle, G.E.

    1996-12-01

    Hypoadrenocorticism, known as Addison`s disease in humans, was diagnosed in six beagles after inhalation of at least 1.7 kBq/g lung of {sup 238}PuO{sub 2}. Histological examination of adrenal gland specimens obtained at necropsy revealed marked adrenal cortical atrophy in all cases. Autoadiographs showed only slight {alpha}-particle activity. Although the pathogenesis of adrenal cortical atrophy in these dogs is unclear, there is evidence to suggest an automimmune disorder linked to damage resulting from {alpha}-particle irradiation to the lymphatic system.

  2. Calibration of PM2.5 mass concentrations used in the Pittsburgh Aerosol Research and Inhalation Epidemiology Study

    NASA Astrophysics Data System (ADS)

    Bilonick, Richard A.; Connell, Daniel P.; Talbott, Evelyn O.; Xue, Tao; Rager, Judith R.

    2015-08-01

    Fifteen different types of PM2.5 mass concentration samplers were used by seven different monitoring networks at 47 locations in the Pittsburgh, Pennsylvania, region from 1999 to 2008. The samplers included Federal Reference Method (FRM) samplers, speciation samplers, tapered element oscillating microbalance (TEOM) samplers, and others. The different measurement principles used in these designs tended to lead to systematic differences (biases) when measuring the same quantity, and to differences in the typical size of random errors (imprecision) introduced by each type of sampler. Bias can take different forms either as a constant bias or as a non-constant (scale) bias, which depends on the size of the quantity being measured. The objective of the work presented here was to simultaneously calibrate the measurements made by these different samplers to remove relative biases (both constant and non-constant) so that all of the available PM2.5 data could be used interchangeably to develop exposure estimates for a retrospective epidemiology study. In order to accomplish this, we used linked temperature-stratified structural equation models, nonlinear regression models, and nonlinear mixed effects models. Applying these methods we constructed a comprehensive measurement error model that included both systematic error and random error components, and derived calibration equations that can be applied to place all of the PM2.5 mass concentration measurements on the same scale. The FRM sampler was used as the reference scale although the parameter estimates are invariant to this choice. Results showed that: (1) 50 °C TEOM samplers tended to show a large downward bias relative to the FRM sampler at low temperatures, and the magnitude of this bias decreased according to a nonlinear (sigmoidal) pattern with increasing temperature, (2) speciation samplers and other integrated samplers generally showed smaller biases relative to the FRM sampler that were not temperature

  3. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer.

    PubMed

    Meenach, Samantha A; Anderson, Kimberly W; Zach Hilt, J; McGarry, Ronald C; Mansour, Heidi M

    2013-07-16

    Pulmonary inhalation chemotherapeutic drug delivery offers many advantages for lung cancer patients in comparison to conventional systemic chemotherapy. Inhalable particles are advantageous in their ability to deliver drug deep in the lung by utilizing optimally sized particles and higher local drug dose delivery. In this work, spray-dried and co-spray dried inhalable lung surfactant-mimic PEGylated lipopolymers as microparticulate/nanoparticulate dry powders containing paclitaxel were rationally designed via organic solution advanced spray drying (no water) in closed-mode from dilute concentration feed solution. Dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) with varying PEG chain length were mixed with varying amounts of paclitaxel in methanol to produce co-spray dried microparticles and nanoparticles. Scanning electron microscopy showed the spherical particle morphology of the inhalable particles. Thermal analysis and X-ray powder diffraction confirmed the retention of the phospholipid bilayer structure in the solid-state following spray drying, the degree of solid-state molecular order, and solid-state phase transition behavior. The residual water content of the particles was very low as quantified analytically Karl Fisher titration. The amount of paclitaxel loaded into the particles was quantified which indicated high encapsulation efficiencies (43-99%). Dry powder aerosol dispersion performance was measured in vitro using the Next Generation Impactor (NGI) coupled with the Handihaler dry powder inhaler device and showed mass median aerodynamic diameters in the range of 3.4-7 μm. These results demonstrate that this novel microparticulate/nanoparticulate chemotherapeutic PEGylated phospholipid dry powder inhalation aerosol platform has great potential in lung cancer drug delivery.

  4. [Bronchial hyperreactivity to the inhalation of hypo- and hyperosmolar aerosols and its correction by halotherapy].

    PubMed

    Gorbenko, P P; Adamova, I V; Sinitsyna, T M

    1996-01-01

    18 bronchial asthma (BA) patients (12 with mild and 6 with moderate disease) were examined before and after halotherapy (HT) for airways reactivity using provocative tests with ultrasonic inhalations of purified water (UIPW) and hypertonic salt solution (HSS). Bronchial hyperreactivity (BHR) to UIPW and HSS before treatment occurred in 13 and 11 patients (72 and 69%, respectively). HT reduced BHR in 2/3 and 1/2 of the patients, respectively. In the rest patients BHR was unchanged or increased, being so to UIPW only in patients with atopic asthma in attenuating exacerbation. Clinical efficacy of HT and initial BHR to UIPW correlated (r = 0.56; p < 0.05). No correlation was found between HT efficacy and initial BHR to HSS.

  5. Evaluation of Inhaled Cidofovir as Postexposure Prophylactic in an Aerosol Rabbitpox Model

    PubMed Central

    Verreault, Daniel; Sivasubramani, Satheesh K.; Talton, James D.; Doyle, Lara A.; Reddy, Joseph D.; Killeen, Stephanie Z.; Didier, Peter J.; Marx, Preston A.; Roy, Chad J.

    2012-01-01

    Smallpox is considered a biological threat based upon the possibility of deliberate reintroduction into the population, creating an urgent need for effective antivirals. The antiviral drug cidofovir (Cr) has shown to be effective against poxviruses, although route-specific nephrotoxicity has hampered its development for emergency post-exposure prophylaxis (PEP). In this study, we use a micronized dry powder formulation of pharmaceutical-grade Cr (NanoFOVIR™; Nf) to treat rabbits exposed to aerosolized rabbitpox virus (RPXV) to further evaluate the effectiveness of direct drug delivery to the lung. Naïve rabbits were infected with RPXV by aerosol; three subsets received aerosolized Nf at 0.5, 1.0 or 1.75 mg/kg daily for 3 days post-exposure, positive and negative control groups received intravenous (IV) Cr treatments and no treatment respectively. Nf groups showed an antiviral-dose associated survival of 50% (0.5 mg/kg), 80% (1.0 mg/kg) and 100% (1.75 mg/kg). All animals (100%) from the IV-Cr treatment group and none (0%) from the untreated controls survived. Nf (1.75) protected rabbits from RPX at approximately 10% of the equivalent IV-Cr dose. A dose-related effect was observed in clinical development of RPX disease in Nf groups. Significant reduction of RPX-induced pathological changes was observed in Nf (1.75) and IV-Cr groups. Results suggest that Nf may be a viable antiviral for emergency post-exposure prophylaxis and should be evaluated in other models of poxviral disease. PMID:22146565

  6. Evaluation of inhaled cidofovir as postexposure prophylactic in an aerosol rabbitpox model.

    PubMed

    Verreault, Daniel; Sivasubramani, Satheesh K; Talton, James D; Doyle, Lara A; Reddy, Joseph D; Killeen, Stephanie Z; Didier, Peter J; Marx, Preston A; Roy, Chad J

    2012-01-01

    Smallpox is considered a biological threat based upon the possibility of deliberate reintroduction into the population, creating an urgent need for effective antivirals. The antiviral drug cidofovir (Cr) has shown to be effective against poxviruses, although route-specific nephrotoxicity has hampered its development for emergency post-exposure prophylaxis (PEP). In this study, we use a micronized dry powder formulation of pharmaceutical-grade Cr (NanoFOVIRTM; Nf) to treat rabbits exposed to aerosolized rabbitpox virus (RPXV) to further evaluate the effectiveness of direct drug delivery to the lung. Naïve rabbits were infected with RPXV by aerosol; three subsets received aerosolized Nf at 0.5, 1.0 or 1.75mg/kg daily for 3days post-exposure, positive and negative control groups received intravenous (IV) Cr treatments and no treatment, respectively. Nf groups showed an antiviral-dose associated survival of 50% (0.5mg/kg), 80% (1.0mg/kg) and 100% (1.75mg/kg). All animals (100%) from the IV-Cr treatment group and none (0%) from the untreated controls survived. Nf (1.75) protected rabbits from RPX at approximately 10% of the equivalent IV-Cr dose. A dose-related effect was observed in clinical development of RPX disease in Nf groups. Significant reduction of RPX-induced pathological changes was observed in Nf (1.75) and IV-Cr groups. Results suggest that Nf may be a viable antiviral for emergency post-exposure prophylaxis and should be evaluated in other models of poxviral disease.

  7. NASA's Aerosol Sampling Experiment Summary

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  8. Influence of surface characteristics of modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization performance.

    PubMed

    Zellnitz, Sarah; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-01-01

    The aim of this work is to investigate the effect of surface characteristics (surface roughness and specific surface area) of surface-modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization, and thus, the in vitro respirable fraction often referred to as fine particle fraction (FPF). By processing glass beads in a ball mill with different grinding materials (quartz and tungsten carbide) and varying grinding time (4 h and 8 h), and by plasma etching for 1 min, glass beads with different shades of surface roughness and increased surface area were prepared. Compared with untreated glass beads, the surface-modified rough glass beads show increased FPFs. The drug detachment from the modified glass beads is also more reproducible than from untreated glass beads indicated by lower standard deviations for the FPFs of the modified glass beads. Moreover, the FPF of the modified glass beads correlates with their surface characteristics. The higher the surface roughness and the higher the specific surface area of the glass beads the higher is the FPF. Thus, surface-modified glass beads make an ideal carrier for tailoring the performance of DPIs in the therapy of asthma and chronically obstructive pulmonary diseases.

  9. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments.

    PubMed

    Su, Wei-Chung; Tolchinsky, Alexander D; Chen, Bean T; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-09-01

    The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.

  10. Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and validation.

    PubMed

    Ravi Kannan, Ravishekar; Przekwas, A J; Singh, Narender; Delvadia, Renishkumar; Tian, Geng; Walenga, Ross

    2017-04-01

    This study uses Computational Fluid Dynamics (CFD) to predict, analyze and validate the deposition patterns in a human lung for a Budesonide drug delivered from the Novolizer Dry Powder Inhaler device. We used a test case of known deposition patterns to validate our computational Euler Lagrangian-based deposition predictions. Two different lung models are used: (i) a basic ring-less trachea model and (ii) an advanced Human Zygote5 model. Unlike earlier attempts, the current simulations do not include the device in the computational domain. This greatly reduces the computational effort. To mimic the device, we model the inlet particle jet stream from the device as a spray entering the mouth in a conical fashion. Deposition studies in the various lung regions were performed. We were able to computationally predict and then demonstrate the enhanced deposition in the tracheal and first generation rings/ridges. The enhanced vorticity creation due to the ring structure and the geometrical design contributes to larger deposition in the Zygote5 model. These are in accord with existing data, unlike the ring-less model. Our validated results indicate the need to (i) introduce the ridges in the experimental casts and the CFD surface meshes to be anatomically consistent and obtain physiologically consistent depositions; (ii) introduce a factor to account for the recirculating lighter particles in empirical models.

  11. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols.

    PubMed

    Meenach, Samantha A; Vogt, Frederick G; Anderson, Kimberly W; Hilt, J Zach; McGarry, Ronald C; Mansour, Heidi M

    2013-01-01

    Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the

  12. Long-term safety of a non-chlorofluorocarbon-containing triamcinolone acetonide inhalation aerosol in patients with asthma. Azmacort HFA Study Group.

    PubMed

    Nelson, H S; Kane, R E; Petillo, J; Banerji, D

    2000-04-01

    In response to environmental concerns regarding chlorofluorocarbon (CFC), two new triamcinolone acetonide (TAA) inhalation aerosol (Azmacort Inhalation Aerosol) formulations have been developed using a more environmentally favorable propellant, HFA-134a (1,1,1,2-tetrafluoroethane). This multicenter, open-label study evaluated the safety of switching asthma patients from TAA-CFC to one of two TAA-HFA formulations. After a 2- or 4-week baseline period during which patients received only CFC-containing TAA Inhaler, 552 patients were randomized to receive TAA-HFA 75 or 225 microg for 6 or 12 months. A total of 493 patients completed treatment. Seven patients discontinued because of adverse events and two because of ineffective asthma control. The incidence of adverse events was similar in the two treatment groups, and most events were mild to moderate in severity and were not considered related to study medication. No clinically relevant suppression of the hypophyseal-pituitary-adrenal (HPA) axis was observed. Pulmonary function tests were not adversely affected by use of either study medication, and improvements were noted in forced expiratory volume in 1 sec (FEV1) and forced expiratory flow between 25% and 75% of forced vital capacity (FEF25%-75%) throughout the course of treatment. This study confirms that TAA-HFA provides effective, long-term asthma control and can safely be substituted for the currently marketed CFC-containing TAA product.

  13. Sludge sampler

    DOEpatents

    Ward, R.C.

    1981-06-25

    The disclosure relates to a sludge sampler comprising an elongated generally cylindrical housing containing a baffle containing an aperture. Connected to the aperture is a flexible tubing having a valve for maintaining and releasing pressure in the lower end of the housing and exiting the upper end of the housing. The lower end of the housing contains a ball check valve maintained in closed position by pressure. When the lower end of the device contacts the sludge bed, the pressure valve is opened, enabling sludge to enter the lower end of the housing. After the sample is collected the valve is closed. An upsetting pin opens the valve to empty a sludge sample after the sample is removed from the fluid.

  14. Sludge sampler

    DOEpatents

    Ward, Ralph C.

    1983-01-01

    The disclosure relates to a sludge sampler comprising an elongated generally cylindrical housing containing a baffle containing an aperture. Connected to the aperture is a flexible tubing having a valve for maintaining and releasing pressure in the lower end of the housing and exiting the upper end of the housing. The lower end of the housing contains a ball check valve maintained in closed position by pressure. When the lower end of the device contacts the sludge bed, the pressure valve is opened, enabling sludge to enter the lower end of the housing. After the sample is collected the valve is closed. An upsetting pin opens the valve to empty a sludge sample after the sample is removed from the fluid.

  15. Lessons learned from case studies of inhalation exposures of workers to radioactive aerosols

    SciTech Connect

    Hoover, M.D.; Fencl, A.F.; Newton, G.J.

    1995-12-01

    Various Department of Energy requirements, rules, and orders mandate that lessons learned be identified, evaluated, shared, and incorporated into current practices. The recently issued, nonmandatory DOE standard for Development of DOE Lessons Learned Program states that a DOE-wide lessons learned program will {open_quotes}help to prevent recurrences of negative experiences, highlight best practices, and spotlight innovative ways to solve problems or perform work more safely, efficiently, and cost effectively.{close_quotes} Additional information about the lessons learned program is contained in the recently issued DOE handbook on Implementing U.S. Department of Energy Lessons Learned Programs and in October 1995 DOE SAfety Notice on Lessons Learned Programs. This report summarizes work in progress at ITRI to identify lessons learned for worker exposures to radioactive aerosols, and describes how this work will be incorporated into the DOE lessons learned program, including a new technical guide for measuring, modeling, and mitigating airborne radioactive particles. Follow-on work is focusing on preparation of {open_quotes}lessons learned{close_quotes} training materials for facility designers, managers, health protection professionals, line supervisors, and workers.

  16. [Inhaled therapy in asthma].

    PubMed

    Plaza Moral, Vicente; Giner Donaire, Jordi

    2016-04-01

    Because of its advantages, inhaled administration of aerosolized drugs is the administration route of choice for the treatment of asthma and COPD. Numerous technological advances in the devices used in inhaled therapy in recent decades have boosted the appearance of multiple inhalers and aerosolized drugs. However, this variety also requires that the prescribing physician is aware of their characteristics. The main objective of the present review is to summarize the current state of knowledge on inhalers and inhaled drugs commonly used in the treatment of asthma. The review ranges from theoretical aspects (fundamentals and available devices and drugs) to practical and relevant aspects for asthma care in the clinical setting (therapeutic strategies, education, and adherence to inhalers).

  17. Effects of acute inhalation of aerosols generated during resistance spot welding with mild-steel on pulmonary, vascular and immune responses in rats.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Fedan, Jeffrey S; Thompson, Janet A; Bilgesu, Suzan; Waugh, Stacey; Anderson, Stacey; Marshall, Nikki B; Afshari, Aliakbar; McKinney, Walter; Frazer, David G; Antonini, James M

    2014-10-01

    Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m³ to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (R(L)) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline R(L) was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased R(L) and result in endothelial dysfunction, but otherwise had minor effects on the lung.

  18. Laboratory evaluation of the CIP 10 personal dust sampler.

    PubMed

    Gero, A; Tomb, T

    1988-06-01

    The "capteur individuel de poussiere" CIP 10 personal dust sampler--developed by the Centre d'Etudes et Recherches de Charbonnages de France (CERCHAR) research organization--is a small, quiet, lightweight unit which samples at a flow rate of 10 L/min. It is a three-stage sampler, using two stages to remove nonrespirable dust particles and one stage to collect the respirable fraction. Airflow through the sampler is induced by the third stage, which is a rotating collector cup that contains a fine grade sponge. Laboratory tests were conducted in a dust chamber using aerosols of Arizona road dust, coal dust and silica dust. Aerosol concentrations measured with the CIP 10 were compared to those measured with the coal mine dust personal sampler unit used in the United States. The results of this study showed that aerosol concentrations measured with the CIP 10 were linearly related to those obtained with the coal mine dust personal sampler. The relationship, however, was dependent on preselector configuration and aerosol characteristics. The collection medium allows some small particles (less than 3 microns) to pass through the sampler without being collected. As much as 13% (by weight) of the aerosol that penetrated through the preseparating stages was exhausted from the sampler.

  19. Investigation of dry powder inhaler (DPI) resistance and aerosol dispersion timing on emitted aerosol aerodynamic particle sizing by multistage cascade impactor when sampled volume is reduced from compendial value of 4 L.

    PubMed

    Mohammed, Hlack; Arp, Jan; Chambers, Frank; Copley, Mark; Glaab, Volker; Hammond, Mark; Solomon, Derek; Bradford, Kerry; Russell, Theresa; Sizer, Yvonne; Nichols, Steven C; Roberts, Daryl L; Shelton, Christopher; Greguletz, Roland; Mitchell, Jolyon P

    2014-10-01

    Compendial methods determining dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distribution (APSD) collect a 4-L air sample containing the aerosol bolus, where the flow, which propagates through the cascade impactor (CI) measurement system from the vacuum source, is used to actuate the inhaler. A previous article described outcomes with two CIs (Andersen eight-stage cascade impactor (ACI) and Next-Generation Pharmaceutical Impactor (NGI)) when the air sample volume was ≤4 L with moderate-resistance DPIs. This article extends that work, examining the hypothesis that DPI flow resistance may be a factor in determining outcomes. APSD measurements were made using the same CI systems with inhalers representing low and high flow resistance extremes (Cyclohaler® and HandiHaler® DPIs, respectively). The ratio of sample volume to internal dead space (normalized volume (V*)) was varied from 0.25 to 1.98 (NGI) and from 0.43 to 3.46 (ACI). Inhaler resistance was a contributing factor to the rate of bolus transfer; the higher resistance DPI completing bolus relocation to the NGI pre-separator via the inlet when V* was as small as 0.25, whereas only ca. 50% of the bolus mass was collected at this condition with the Cyclohaler® DPI. Size fractionation of the bolus from either DPI was completed within the ACI at smaller values of V* than within the NGI. Bolus transfer from the Cyclohaler® capsule and from the HandiHaler® to the ACI system were unaffected by the different flow rise time observed in the two different flow controller systems, and the effects the ACI-based on APSD measurements were marginal.

  20. The effect of excipients on the stability and aerosol performance of salmon calcitonin dry powder inhalers prepared via the spray freeze drying process.

    PubMed

    Poursina, Narges; Vatanara, Alireza; Rouini, Mohammad Reza; Gilani, Kambiz; Najafabadi, Abdolhossein Rouholamini

    2016-06-01

    Spray freeze drying was developed to produce dry powders suitable for applications such as inhalation delivery. In the current study, the spray freeze drying technique was employed to produce inhalable salmon calcitonin microparticles. Effects of the carrier type, concentration of hydroxyl propyl-β-cyclodextrin and the presence of Tween 80 on the chemical and structural stability, as well as on the aerosol performance of the particles were investigated. The results indicated that hydroxyl propyl-β-cyclodextrin had the most important effect on the chemical stability of the powder and strongly increased its stability by increasing its concentration in the formulation. Chemically stable formulations (over 90 % recovery) were selected for further examinations. Fluorescence spectroscopy and circular dichroism suggested that the formulations were structurally stable. Aerosol performance showed that the Tween-free powders produced higher fine particle fraction values than the formulations containing Tween (53.7 vs. 41.92 % for trehalose content and 52.85 vs. 43.06 % for maltose content).

  1. USE OF PASSIVE SAMPLERS IN THE DEARS

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) employs a number of passive diffusion-based samplers for the collection of select gaseous air pollutants. These pollutants include criteria gases such as ozone, carbonyls such as acrolein, and volatile organics such as 1-3, ...

  2. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  3. Using structural equation modeling to construct calibration equations relating PM2.5 mass concentration samplers to the federal reference method sampler

    NASA Astrophysics Data System (ADS)

    Bilonick, Richard A.; Connell, Daniel P.; Talbott, Evelyn O.; Rager, Judith R.; Xue, Tao

    2015-02-01

    The objective of this study was to remove systematic bias among fine particulate matter (PM2.5) mass concentration measurements made by different types of samplers used in the Pittsburgh Aerosol Research and Inhalation Epidemiology Study (PARIES). PARIES is a retrospective epidemiology study that aims to provide a comprehensive analysis of the associations between air quality and human health effects in the Pittsburgh, Pennsylvania, region from 1999 to 2008. Calibration was needed in order to minimize the amount of systematic error in PM2.5 exposure estimation as a result of including data from 97 different PM2.5 samplers at 47 monitoring sites. Ordinary regression often has been used for calibrating air quality measurements from pairs of measurement devices; however, this is only appropriate when one of the two devices (the "independent" variable) is free from random error, which is rarely the case. A group of methods known as "errors-in-variables" (e.g., Deming regression, reduced major axis regression) has been developed to handle calibration between two devices when both are subject to random error, but these methods require information on the relative sizes of the random errors for each device, which typically cannot be obtained from the observed data. When data from more than two devices (or repeats of the same device) are available, the additional information is not used to inform the calibration. A more general approach that often has been overlooked is the use of a measurement error structural equation model (SEM) that allows the simultaneous comparison of three or more devices (or repeats). The theoretical underpinnings of all of these approaches to calibration are described, and the pros and cons of each are discussed. In particular, it is shown that both ordinary regression (when used for calibration) and Deming regression are particular examples of SEMs but with substantial deficiencies. To illustrate the use of SEMs, the 7865 daily average PM2.5 mass

  4. Evaluation of the TSI aerosol impactor 3306/3321 system using a redesigned impactor stage with solution and suspension metered-dose inhalers.

    PubMed

    Harris, Julie A; Stein, Stephen W; Myrdal, Paul B

    2006-03-01

    The purpose of this research was to evaluate a redesigned impactor stage for the TSI Model 3306 Impactor Inlet with nozzles adjusted to obtain a target cut-point of 4.7 μm. It has been determined that the previous cut-point used in the Model 3306 was nominally closer to 4.14 μm, thus potentially impacting the characterization of aerosol mass. The reassessment of the Model 3306 was performed on 4 solution and 2 suspension metered-dose inhaler (MDI) formulations. The redesigned impactor stage resulted in a 5% to 6% increase in aerosol mass when compared with the previous impactor stage for the products Ventolin-HFA, Proventil-HFA, and 2 cyclosporin solution formulations with high ethanol concentrations (15% wt/wt). For the formulations with low ethanol concentrations (3% wt/wt), minimal differences were observed between the 2 cut-points. In addition, this study reevaluated the requirement of a vertical inlet extension length when using the TSI 3306/3321 system with the redesigned cut-point. It was shown that the use of a 20-cm extension provides mass and aerosol size distributions that are comparable to the Andersen 8-stage Cascade Impactor, for both solution and suspension MDIs. This work indicates that the TSI 3306/3321 system is suitable for preformulation studies of both suspension and solution MDI systems.

  5. Evaluation of the TSI aerosol impactor 3306/3321 system using a redesigned impactor stage with solution and suspension metered-dose inhalers.

    PubMed

    Harris, Julie A; Stein, Stephen W; Myrdal, Paul B

    2006-03-10

    The purpose of this research was to evaluate a redesigned impactor stage for the TSI Model 3306 Impactor Inlet with nozzles adjusted to obtain a target cut-point of 4.7 microm. It has been determined that the previous cut-point used in the Model 3306 was nominally closer to 4.14 microm, thus potentially impacting the characterization of aerosol mass. The reassessment of the Model 3306 was performed on 4 solution and 2 suspension metered-dose inhaler (MDI) formulations. The redesigned impactor stage resulted in a 5% to 6% increase in aerosol mass when compared with the previous impactor stage for the products Ventolin-HFA, Proventil-HFA, and 2 cyclosporin solution formulations with high ethanol concentrations (15% wt/wt). For the formulations with low ethanol concentrations (3% wt/wt), minimal differences were observed between the 2 cut-points. In addition, this study reevaluated the requirement of a vertical inlet extension length when using the TSI 3306/3321 system with the redesigned cut-point. It was shown that the use of a 20-cm extension provides mass and aerosol size distributions that are comparable to the Andersen 8-stage Cascade Impactor, for both solution and suspension MDIs. This work indicates that the TSI 3306/3321 system is suitable for preformulation studies of both suspension and solution MDI systems.

  6. Inhalational anthrax (Ames aerosol) in naïve and vaccinated New Zealand rabbits: characterizing the spread of bacteria from lung deposition to bacteremia.

    PubMed

    Gutting, Bradford W; Nichols, Tonya L; Channel, Stephen R; Gearhart, Jeffery M; Andrews, George A; Berger, Alan E; Mackie, Ryan S; Watson, Brent J; Taft, Sarah C; Overheim, Katie A; Sherwood, Robert L

    2012-01-01

    There is a need to better understand inhalational anthrax in relevant animal models. This understanding could aid risk assessment, help define therapeutic windows, and provide a better understanding of disease. The aim here was to characterize and quantify bacterial deposition and dissemination in rabbits following exposure to single high aerosol dose (> 100 LD(50)) of Bacillus anthracis (Ames) spores immediately following exposure through 36 h. The primary goal of collecting the data was to support investigators in developing computational models of inhalational anthrax disease. Rabbits were vaccinated prior to exposure with the human vaccine (Anthrax Vaccine Adsorbed, AVA) or were sham-vaccinated, and were then exposed in pairs (one sham and one AVA) so disease kinetics could be characterized in equally-dosed hosts where one group is fully protected and is able to clear the infection (AVA-vaccinated), while the other is susceptible to disease, in which case the bacteria are able to escape containment and replicate uncontrolled (sham-vaccinated rabbits). Between 4-5% of the presented aerosol dose was retained in the lung of sham- and AVA-vaccinated rabbits as measured by dilution plate analysis of homogenized lung tissue or bronchoalveolar lavage (BAL) fluid. After 6 and 36 h, >80% and >96%, respectively, of the deposited spores were no longer detected in BAL, with no detectable difference between sham- or AVA-vaccinated rabbits. Thereafter, differences between the two groups became noticeable. In sham-vaccinated rabbits the bacteria were detected in the tracheobronchial lymph nodes (TBLN) 12 h post-exposure and in the circulation at 24 h, a time point which was also associated with dramatic increases in vegetative CFU in the lung tissue of some animals. In all sham-vaccinated rabbits, bacteria increased in both TBLN and blood through 36 h at which point in time some rabbits succumbed to disease. In contrast, AVA-vaccinated rabbits showed small numbers of CFU in

  7. Understanding the Different Effects of Inhaler Design on the Aerosol Performance of Drug-Only and Carrier-Based DPI Formulations. Part 1: Grid Structure.

    PubMed

    Leung, Cassandra Ming Shan; Tong, Zhenbo; Zhou, Qi Tony; Chan, John Gar Yan; Tang, Patricia; Sun, Siping; Yang, Runyu; Chan, Hak-Kim

    2016-09-01

    The design of a dry powder inhaler device has significant influence on aerosol performance; however, such influence may be different between the drug-only and carrier-based formulations. The present study aims to examine the potential difference on the dispersion between these distinct types of formulations, using Aerolizer(®) as a model inhaler with the original or modified (cross-grid) designs. A coupled CFD-discrete element method analysis was employed to determine the flow characteristics and particle impaction. Micronized salbutamol sulphate as a drug-only formulation and three lactose carrier-based formulations with various drug-to-carrier weight ratios 1:5, 1:10 and 1:100 were used. The in vitro aerosolization performance was assessed by a next-generation impactor operating at 100 L/min. Using the original device, FPFloaded was reduced from 47.5 ± 3.8% for the drug-only formulation to 31.8 ± 0.7%, 32.1 ± 0.7% and 12.9 ± 1.0% for the 1:5, 1:10 and 1:100 formulations, respectively. With the cross-grid design, powder-mouthpiece impaction was increased, which caused not only powder deagglomeration but also significant drug retention (doubling or more) in the mouthpiece, and the net result is a significant decrease in FPFloaded to 36.8 ± 1.2%, 20.9 ± 2.6% and 21.9 ± 1.5% for the drug-only, 1:5 and 1:10 formulations, respectively. In contrast, the FPFloaded of the 1:100 formulation remained the same at 12.1 ± 1.3%, indicating the increased mouthpiece drug retention was compensated by increased drug detachment from carriers caused by increased powder-mouthpiece impaction. In conclusion, this study has elucidated different effects and the mechanism on the aerosolization of varied dry powder inhaler formulations due to the grid design.

  8. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols.

    PubMed

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  9. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols

    PubMed Central

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  10. Exposure of F344 rats to aerosols of {sup 239}PuO{sub 2} and chronically inhaled cigarette smoke

    SciTech Connect

    Finch, G.L.; Nikula, K.J.; Barr, E.B.; Bechtold, W.E.; Chen, B.T.; Griffith, W.C.; Hobbs, C.H.; Hoover, M.D.; Mauderly, J.L.

    1994-11-01

    Nuclear workers may be accidently exposed to radioactive materials such as {sup 239}PuO{sub 2} by inhalation, and thus have increased risk for lung cancer compared to the general population. Of additional concern is the possibility that interactions between radionuclides and other carcinogens may increase the risk of cancer induction. An important and common lung carcinogen is cigarette smoke. This study is being conducted to better determine the combined effects of inhaled {sup 239}PuO{sub 2} and cigarette smoke on the induction of lung cancer in rats.

  11. Personal exposure to aerosolized red tide toxins (brevetoxins).

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Naar, Jerome; Irvin, C Mitch; Su, Wei-Chung; Fleming, Lora E; Kirkpatrick, Barbara; Pierce, Richard H; Backer, Lorraine C; Baden, Daniel G

    2010-06-01

    Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.

  12. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  13. Spatial and Temporal Variability of Outdoor Coarse Particulate Matter Mass Concentrations Measured with a New Coarse Particulate Sampler during the Detroit Exposure and Aerosol Research Study

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10-2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spa...

  14. Characterization of Aerosols Containing Microcystin

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Irvin, C. Mitch; Kirkpatrick, Barbara; Backer, Lorraine C.

    2007-01-01

    Toxic blooms of cyanobacteria are ubiquitous in both freshwater and brackish water sources throughout the world. One class of cyanobacterial toxins, called microcystins, is cyclic peptides. In addition to ingestion and dermal, inhalation is a likely route of human exposure. A significant increase in reporting of minor symptoms, particularly respiratory symptoms was associated with exposure to higher levels of cyanobacteria during recreational activities. Algae cells, bacteria, and waterborne toxins can be aerosolized by a bubble-bursting process with a wind-driven white-capped wave mechanism. The purposes of this study were to: evaluate sampling and analysis techniques for microcystin aerosol, produce aerosol droplets containing microcystin in the laboratory, and deploy the sampling instruments in field studies. A high-volume impactor and an IOM filter sampler were tried first in the laboratory to collect droplets containing microcystins. Samples were extracted and analyzed for microcystin using an ELISA method. The laboratory study showed that cyanotoxins in water could be transferred to air via a bubble-bursting process. The droplets containing microcystins showed a bimodal size distribution with the mass median aerodynamic diameter (MMAD) of 1.4 and 27.8 μm. The sampling and analysis methods were successfully used in a pilot field study to measure microcystin aerosol in situ. PMID:18463733

  15. Inhaled Steroids

    MedlinePlus

    ... Medications Long-Term Control Medications Inhaled Steroids Inhaled Steroids Make an Appointment Ask a Question Refer Patient ... more about steroids? What are some common inhaled steroids? Common inhaled steroids include: Asmanex ® (mometasone) Alvesco ® (ciclesonide) ...

  16. Design, characterization, and aerosol dispersion performance modeling of advanced co-spray dried antibiotics with mannitol as respirable microparticles/nanoparticles for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-09-01

    Dry powder inhalation aerosols of antibiotic drugs (a first-line aminoglycoside, tobramycin, and a first-line macrolide, azithromycin) and a sugar alcohol mucolytic agent (mannitol) as co-spray dried (co-SD) particles at various molar ratios of drug:mannitol were successfully produced by organic solution advanced co-spray drying from dilute solute concentration. These microparticulate/nanoparticulate aerosols consisting of various antibiotic drug:mannitol molar ratios were rationally designed with a narrow and unimodal primary particle size distribution, spherical particle shape, relatively smooth particle surface, and very low residual water content to minimize the interparticulate interactions and enhance in vitro aerosolization. These microparticulate/nanoparticulate inhalation powders were high-performing aerosols as reflected in the aerosol dispersion performance parameters of emitted dose, fine particle fraction (FPF), respirable fraction (RF), and mass median aerodynamic diameter (MMAD). The glass transition temperature (Tg) values were significantly above room temperature, which indicated that the co-SD powders were all in the amorphous glassy state. The Tg values for co-SD tobramycin:mannitol powders were significantly lower than those for co-SD azithromycin:mannitol powders. The interplay between aerosol dispersion performance parameters and Tg was modeled where higher Tg values (i.e., more ordered glass) were correlated with higher values in FPF and RF and lower values in MMAD.

  17. Solid sorbent air sampler

    NASA Astrophysics Data System (ADS)

    Galen, T. J.

    1986-04-01

    A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.

  18. Solid sorbent air sampler

    NASA Technical Reports Server (NTRS)

    Galen, T. J. (Inventor)

    1986-01-01

    A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.

  19. Aerosolized alpha-tocopherol ameliorates acute lung injury following combined burn and smoke inhalation injury in sheep.

    PubMed

    Morita, Naoki; Traber, Maret G; Enkhbaatar, Perenlei; Westphal, Martin; Murakami, Kazunori; Leonard, Scott W; Cox, Robert A; Hawkins, Hal K; Herndon, David; Traber, Lillian D; Traber, Daniel L

    2006-03-01

    Victims of fire accidents who sustain both thermal injury to the skin and smoke inhalation have gross evidence of oxidant injury. Therefore, we hypothesized that delivery of vitamin E, an oxygen superoxide scavenger, directly into the airway would attenuate acute lung injury postburn and smoke inhalation. Sheep (N = 17 female, 35 +/- 5 kg) were divided into 3 groups: (1) injured, then nebulized with vitamin E (B&S, Vitamin E, n = 6); (2) injured, nebulized with saline (B&S, Saline, n = 6); and (3) not injured, not treated (Sham, n = 5). While under deep anesthesia with isoflurane, the sheep were subjected to a flame burn (40% total body surface area, 3rd degree) and inhalation injury (48 breaths of cotton smoke, <40 degrees C). All groups were resuscitated with Ringer lactate solution (4 mL/kg/%burn/24 h) and placed on a ventilator [positive end-expiratory pressure (PEEP) = 5 cm H2O, tidal volume = 15 mL/kg] for 48 h. B&S injury halved the lung alpha-tocopherol concentrations (0.9 +/- 0.1 nmol/g) compared with sham-injured animals (1.5 +/- 0.3), whereas vitamin E treatment elevated the lung alpha-tocopherol concentrations (7.40 +/- 2.61) in the injured animals. B&S injury decreased pulmonary gas exchange (PaO2/FiO2 ratios) from 517 +/- 15 at baseline to 329 +/- 49 at 24 h and to 149 +/- 32 at 48 h compared with sham ratios of 477 +/- 14, 536 +/- 48, and 609 +/- 49, respectively. Vitamin E treatment resulted in a significant improvement of pulmonary gas exchange; ratios were 415 +/- 34 and 283 +/- 42 at 24 and 48 h, respectively. Vitamin E nebulization therapy improved the clinical responses to burn and smoke inhalation-induced acute lung injury.

  20. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells.

    PubMed

    Aquino, R P; Prota, L; Auriemma, G; Santoro, A; Mencherini, T; Colombo, G; Russo, P

    2012-04-15

    The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period.

  1. Stimulation of interferons and endorphins/enkephalins by electro-aerosol inhalation? An experimental approach for testing an expanded hypothesis

    NASA Astrophysics Data System (ADS)

    Wehner, A. P.

    1984-03-01

    The biological effects of endorphins/enkephalins and of interferons closely resemble those attributed to air ions and electro-aerosols. Air ions/electro-aerosols have been reported to affect brain functions and feelings of “well-being”; to have sedative and analgesic effects; to be therapeutically effective in certain viral (e.g., upper respiratory) infections; and to have tumor-attenuating effects. It is, therefore, conceivable that endorphins/enkephalins and interferons might be the mediators of these air ion/electro-aerosol effects. An experimental approach for testing this hypothesis is described. It calls for mice to be challenged with a suitable agent and to be exposed under appropriate conditions to a negatively charged aerosol of physiological saline 6 hours/day for up to 3 weeks; for the serial sacrifice of subgroups of these mice; for collecting blood and brains of the sacrificed animals; for the bioassay of the sera for interferon; and for radioimmunoassays of brains for endorphins/enkephalins. Special considerations, necessitated by the nature of the experiment, are discussed.

  2. Environmental Curiosity Sampler.

    ERIC Educational Resources Information Center

    Stehney, Virginia A.

    The Sampler is designed to stimulate teachers, parents, students, and groups to look at various types of open spaces and facilities as resources for environmental study. Written for use with children, but adaptable to older groups, the Sampler tries to engage the feelings as well as intellects of its users in the process of inquiry. It locates…

  3. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers.

    PubMed

    Stanley, Nicholas J; Kuehn, Thomas H; Kim, Seung Won; Raynor, Peter C; Anantharaman, Senthilvelan; Ramakrishnan, M A; Goyal, Sagar M

    2008-04-01

    Background culturable bacteria aerosols were collected and identified in two large public buildings located in Minneapolis, Minnesota and Seattle, Washington over a period of 5 months and 3 months, respectively. The installed particulate air filters in the ventilation systems were used as the aerosol sampling devices at each location. Both pre and final filters were collected from four air handing units at each site to determine the influence of location within the building, time of year, geographical location and difference between indoor and outdoor air. Sections of each loaded filter were eluted with 10 ml of phosphate buffered saline (PBS). The resulting solutions were cultured on blood agar plates and incubated for 24 h at 36 degrees C. Various types of growth media were then used for subculturing, followed by categorization using a BioLog MicroStation (Biolog, Hayward, CA, USA) and manual observation. Environmental parameters were gathered near each filter by the embedded on-site environmental monitoring systems to determine the effect of temperature, humidity and air flow. Thirty nine different species of bacteria were identified, 17 found only in Minneapolis and 5 only in Seattle. The hardy spore-forming genus Bacillus was the most commonly identified and showed the highest concentrations. A significant decrease in the number of species and their concentration occurred in the Minneapolis air handling unit supplying 100% outdoor air in winter, however no significant correlations between bacteria concentration and environmental parameters were found.

  4. The effect of nonideal cascade impactor stage collection efficiency curves on the interpretation of the size of inhaler-generated aerosols.

    PubMed

    Roberts, D L; Mitchell, J P

    2013-06-01

    Cascade impactors, operating on the principle of inertial size separation in (ideally) laminar flow, are used to determine aerodynamic particle size distributions (APSDs) of orally inhaled product (OIP) aerosols because aerodynamic diameter can be related to respiratory tract deposition. Each stage is assumed typically to be an ideal size fractionator. Thus, all particles larger than a certain size are considered collected and all finer particles are treated as penetrating to the next stage (a step function stage efficiency curve). In reality, the collection efficiency of a stage smoothly increases with particle size as an "S-shaped" curve, from approximately 0% to 100%. Consequently, in some cases substantial overlap occurs between neighboring stages. The potential for bias associated with the step-function assumption has been explored, taking full resolution and two-stage abbreviated forms of the Andersen eight-stage nonviable impactor (ACI) and the next-generation pharmaceutical impactor (NGI) as example apparatuses. The behavior of unimodal, log-normal APSDs typical of OIP-generated aerosols has been investigated, comparing known input values to calculated values of central tendency (mass median aerodynamic diameter) and spread (geometric standard deviation, GSD). These calculations show that the error introduced by the step change assumption is larger for the ACI than for the NGI. However, the error is sufficiently small to be inconsequential unless the APSD in nearly monodisperse (GSD ≤1.2), a condition that is unlikely to occur with realistic OIPs. Account may need to be taken of this source of bias only for the most accurate work with abbreviated ACI systems.

  5. Short term inhalation toxicity of a liquid aerosol of glutaraldehyde-coated CdS/Cd(OH)2 core shell quantum dots in rats.

    PubMed

    Ma-Hock, L; Farias, P M A; Hofmann, T; Andrade, A C D S; Silva, J N; Arnaud, T M S; Wohlleben, W; Strauss, V; Treumann, S; Chaves, C R; Gröters, S; Landsiedel, R; van Ravenzwaay, B

    2014-02-10

    Quantum dots exhibit extraordinary optical and mechanical properties, and the number of their applications is increasing. In order to investigate a possible effect of coating on the inhalation toxicity of previously tested non-coated CdS/Cd(OH)2 quantum dots and translocation of these very small particles from the lungs, rats were exposed to coated quantum dots or CdCl2 aerosol (since Cd(2+) was present as impurity), 6h/d for 5 consecutive days. Cd content was determined in organs and excreta after the end of exposure and three weeks thereafter. Toxicity was determined by examination of broncho-alveolar lavage fluid and microscopic evaluation of the entire respiratory tract. There was no evidence for translocation of particles from the respiratory tract. Evidence of a minimal inflammatory process was observed by examination of broncho-alveolar lavage fluid. Microscopically, minimal to mild epithelial alteration was seen in the larynx. The effects observed with coated quantum dots, non-coated quantum dots and CdCl2 were comparable, indicating that quantum dots elicited no significant effects beyond the toxicity of the Cd(2+) ion itself. Compared to other compounds with larger particle size tested at similarly low concentrations, quantum dots caused much less pronounced toxicological effects. Therefore, the present data show that small particle sizes with corresponding high surfaces are not the only factor triggering the toxic response or translocation.

  6. The Gibbs Centroid Sampler.

    PubMed

    Thompson, William A; Newberg, Lee A; Conlan, Sean; McCue, Lee Ann; Lawrence, Charles E

    2007-07-01

    The Gibbs Centroid Sampler is a software package designed for locating conserved elements in biopolymer sequences. The Gibbs Centroid Sampler reports a centroid alignment, i.e. an alignment that has the minimum total distance to the set of samples chosen from the a posteriori probability distribution of transcription factor binding-site alignments. In so doing, it garners information from the full ensemble of solutions, rather than only the single most probable point that is the target of many motif-finding algorithms, including its predecessor, the Gibbs Recursive Sampler. Centroid estimators have been shown to yield substantial improvements, in both sensitivity and positive predictive values, to the prediction of RNA secondary structure and motif finding. The Gibbs Centroid Sampler, along with interactive tutorials, an online user manual, and information on downloading the software, is available at: http://bayesweb.wadsworth.org/gibbs/gibbs.html.

  7. Variable percentage sampler

    DOEpatents

    Miller, Jr., William H.

    1976-01-01

    A remotely operable sampler is provided for obtaining variable percentage samples of nuclear fuel particles and the like for analyses. The sampler has a rotating cup for a sample collection chamber designed so that the effective size of the sample inlet opening to the cup varies with rotational speed. Samples of a desired size are withdrawn from a flowing stream of particles without a deterrent to the flow of remaining particles.

  8. Measuring Aerosols Generated Inside Armoured Vehicles Perforated by Depleted Uranium Ammunition

    SciTech Connect

    Parkhurst, MaryAnn )

    2003-01-01

    In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), the U.S. Department of Defense initiated a study designed to provide an improved scientific basis for assessment of possible health effects of soldiers in vehicles struck by these munitions. As part of this study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterized. A robust sampling system was designed to collect aerosols in this difficult environment and to monitor continuously the sampler flow rates. Interior aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. These data will provide input for future prospective and retrospective dose and health risk assessments of inhaled or ingested DU aerosols. This paper briefly discusses the target vehicles, firing trajectories, aerosol samplers and instrumentation control systems, and the types of analyses conducted on the samples.

  9. Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume.

    PubMed

    Moreno, T; Querol, X; Pey, J; Minguillón, M C; Pérez, N; Alastuey, A; Bernabé, R M; Blanco, S; Cárdenas, B; Eichinger, W; Salcido, A; Gibbons, W

    2008-03-01

    We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.

  10. Test report -- Prototype core sampler

    SciTech Connect

    Linschooten, C.G.

    1995-01-17

    The purpose of this test is to determine the adequacy of the prototype sampler, provided to Westinghouse Hanford Company (WHC) by DOE-RL. The sampler was fabricated for DOE-RL by the Concord Company by request of DOE-RL. This prototype sampler was introduced as a technology that can be easily deployed (similar to the current auger system) and will reliably collect representative samples. The sampler is similar to the Universal Sampler i.e., smooth core barrel and piston with an O-ring seal, but lacks a rotary valve near the throat of the sampler. This makes the sampler inappropriate for liquid sampling, but reduces the outside diameter of the sampler considerably, which should improve sample recovery. Recovery testing was performed with the supplied sampler in three different consistencies of Kaolin sludge simulants.

  11. Evaluation of particulate air samplers for airborne aflatoxin B1

    SciTech Connect

    Silas, J.C.; Harrison, M.A.; Carpenter, J.A.

    1986-01-01

    Five air samplers (Millipore, all-glass impinger, centrifugal, Andersen, and absorbent cotton) were evaluated for their ability to collect airborne grain particles contaminated with aflatoxin B1. Corn dust containing 100 micrograms aflatoxin B1/g was aerosolized within a containment system. Each device sampled 100 I air, thus exchanging the air in the chamber two times. Aflatoxin B1 was extracted from all sampling matrices and was detected and quantitated with thin-layer chromatography and scanning fluorodensitometry. The highest efficiency was obtained with the Millipore sampler, while the efficiencies of the centrifugal and the cotton samplers were almost identical. Efficiency of an Andersen was less, with no toxin recovered from an all-glass impinger. Measurement of particle size was accomplished with the Andersen sampler.

  12. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems.

    PubMed

    Benami, Maya; Busgang, Allison; Gillor, Osnat; Gross, Amit

    2016-08-15

    Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) - a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0-9.7×10(4)CFUm(-2)h(-1)) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1m away from the GW systems. At the 5m distance amounts of these bacteria were not statistically different (p>0.05) from background concentrations tested over 50m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques to provide more accurate

  13. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  14. Beryllium Concentrations at European Workplaces: Comparison of 'Total' and Inhalable Particulate Measurements.

    PubMed

    Kock, Heiko; Civic, Terence; Koch, Wolfgang

    2015-07-01

    A field study was carried out in order to derive a factor for the conversion of historic worker exposure data on airborne beryllium (Be) obtained by sampling according to the 37-mm closed faced filter cassette (CFC) 'total' particulate method into exposure concentration values to be expected when sampling using the 'Gesamtstaubprobenahmesystem' (GSP) inhalable sampling convention. Workplaces selected to represent the different copper Be work processing operations that typically occur in Germany and the EU were monitored revealing a broad spectrum of prevailing Be size distributions. In total, 39 personal samples were taken using a 37-mm CFC and a GSP worn side by side for simultaneous collection of the 'total' dust and the inhalable particulates, respectively. In addition, 20 static general area measurements were carried out using GSP, CFC, and Respicon samplers in parallel, the latter one providing information on the extra-thoracic fraction of the workplace aerosol. The study showed that there is a linear relationship between the concentrations measured with the CFC and those measured with the GSP sampler. The geometric mean value of the ratios of time-weighted average concentrations determined from GSP and CFC samples of all personal samples was 2.88. The individual values covered a range between 1 and 17 related to differences in size distributions of the Be-containing particulates. This was supported by the area measurements showing that the conversion factor increases with increasing values of the extra-thoracic fraction covering a range between 0 and 79%.

  15. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.

    PubMed

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Shur, Jagdeep; Price, Robert

    2014-08-01

    The effect of milled and micronized lactose fines on the fluidization and in vitro aerosolization properties of dry powder inhaler (DPI) formulations was investigated, and the suitability of static and dynamic methods for characterizing general powder flow properties of these blends was assessed. Lactose carrier pre-blends were prepared by adding different lactose fines (Lactohale® (LH) 300, 230 and 210) with coarse carrier lactose (Lactohale100) at 2.5, 5, 10 and 20 wt% concentrations. Powder flow properties of lactose pre-blends were characterized using the Freeman Technology FT4 and Schulze RST-XS ring shear tester. A strong correlation was found between the basic flow energy (BFENorm) measured using the Freeman FT4 Rheometer and the flowability number (ffc) measured on Schulze RST-XS. These data indicate that both static and dynamic methods are suitable for characterizing general powder flow properties of lactose carriers. Increasing concentration of fines corresponded with an increase in the normalized fluidization energy (FENorm). The inclusion of fine particles of lactose resulted in a significant (p < 0.05) increase in fine particle delivery of budesonide and correlated with FENorm. This trend was strongest for lactose containing up to 10 wt% LH300. A similar trend was found for the milled lactose grades LH230 and LH210. However, the increase in FENorm upon addition of milled fines only corresponded to a very slight improvement in the performance. These data suggest that whilst the fluidization energy correlated with fine particle delivery, this relationship is specific to lactose grades of similar particle size.

  16. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  17. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  18. Breathing zone air sampler

    SciTech Connect

    Tobin, J.

    1989-08-22

    A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  19. Size distribution of chromate paint aerosol generated in a bench-scale spray booth.

    PubMed

    Sabty-Daily, Rania A; Hinds, William C; Froines, John R

    2005-01-01

    Spray painters are potentially exposed to aerosols containing hexavalent chromium [Cr(VI)] via inhalation of chromate-based paint sprays. Evaluating the particle size distribution of a paint spray aerosol, and the variables that may affect this distribution, is necessary to determine the site and degree of respiratory deposition and the damage that may result from inhaled Cr(VI)-containing paint particles. This study examined the effect of spray gun atomization pressure, aerosol generation source and aerosol aging on the size distribution of chromate-based paint overspray aerosols generated in a bench-scale paint spray booth. The study also determined the effect of particle bounce inside a Marple personal cascade impactor on measured size distributions of paint spray aerosols. Marple personal cascade impactors with a modified inlet were used for sample collection. The data indicated that paint particle bounce did not occur inside the cascade impactors sufficiently to affect size distribution when using uncoated stainless steel or PVC substrate sampling media. A decrease in paint aerosol mass median aerodynamic diameter (MMAD) from 8.2 to 7.0 mum was observed as gun atomization pressure increased from 6 to 10 psi. Overspray aerosols were sampled at two locations in the spray booth. A downstream sampling position simulated the exposure of a worker standing between the painted surface and exhaust, a situation encountered in booths with multiple workers. The measured mean MMAD was 7.2 mum. The distance between the painted surface and sampler was varied to sample oversprays of varying ages between 2.8 and 7.7 s. Age was not a significant factor for determining MMAD. Overspray was sampled at a 90 degrees position to simulate a worker standing in front of the surface being painted with air flowing to the worker's side, a common situation in field applications. The resulting overspray MMAD averaged 5.9 mum. Direct-spray aerosols were sampled at ages from 5.3 to 11.7 s

  20. Inhalation Injuries

    MedlinePlus

    ... you can inhale that can cause acute internal injuries. Particles in the air from fires and toxic ... and lung diseases worse. Symptoms of acute inhalation injuries may include Coughing and phlegm A scratchy throat ...

  1. Asthma Inhalers

    MedlinePlus

    ... an inhaler into the lungs. But CFCs are ozone-depleting substances (ODSs) that hurt the environment. Manufacturers ... inhalers, that do not rob the atmosphere of ozone. “The FDA [Food and Drug Administration] and various ...

  2. Inhalant Abuse

    MedlinePlus

    ... Who may be abusing inhalants?The most common abusers of inhalants are teenagers, especially those who are ... to your child about the dangers of trying drugs can help him or her make the right ...

  3. Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI).

    PubMed

    Tong, H-J; Fitzgerald, C; Gallimore, P J; Kalberer, M; Kuimova, M K; Seville, P C; Ward, A D; Pope, F D

    2014-12-21

    Individual micron-sized solid particles from a Salamol® pharmaceutical inhaler are stably captured in air using an optical trap for the first time. Raman spectroscopy of the levitated particles allows online interrogation of composition and deliquescent phase change within a high humidity environment that mimics the particle's travel from inhaler to lung.

  4. Development of the releasable asbestos field sampler.

    PubMed

    Kominsky, John R; Thornburg, Jonathan W; Shaul, Glenn M; Barrett, William M; Hall, Fred D; Konz, James J

    2010-03-01

    The releasable asbestos field sampler (RAFS) was developed as an alternative to activity-based sampling (ABS; personal breathing zone sampling during a simulated activity). The RAFS utilizes a raking motion to provide the energy that releases particulate material from the soil and aerosolizes the asbestos fibers. A gentle airflow laterally transports the generated aerosol inside of a tunnel to one end where filter sampling cassettes or real-time instruments are used to measure asbestos and particulate release. The RAFS was tested in a series of laboratory experiments to validate its performance and then was deployed for field trials in asbestos-contaminated soil at multiple geographical locations. Laboratory data showed the RAFS generated repeatable and representative aerosol particulate concentrations. Field tests showed the RAFS aerosolized asbestos concentrations were statistically correlated with total particle concentrations. Field tests also showed the RAFS aerosolized asbestos concentrations were statistically correlated with asbestos concentrations measured by multiple ABS tests with different activities, different soil/environmental conditions, and at different geographical locations. RAFS provides a direct measurement of asbestos emission from soil in situ without consideration of meteorology and personal activity on the asbestos transport to the breathing zone.

  5. Variable depth core sampler

    DOEpatents

    Bourgeois, Peter M.; Reger, Robert J.

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  6. High speed transient sampler

    DOEpatents

    McEwan, T.E.

    1995-11-28

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  7. High speed transient sampler

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  8. Effect of sampling volume on dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distributions (APSDs) measured by the Next-Generation Pharmaceutical Impactor (NGI) and the Andersen eight-stage cascade impactor (ACI).

    PubMed

    Mohammed, Hlack; Roberts, Daryl L; Copley, Mark; Hammond, Mark; Nichols, Steven C; Mitchell, Jolyon P

    2012-09-01

    Current pharmacopeial methods for testing dry powder inhalers (DPIs) require that 4.0 L be drawn through the inhaler to quantify aerodynamic particle size distribution of "inhaled" particles. This volume comfortably exceeds the internal dead volume of the Andersen eight-stage cascade impactor (ACI) and Next Generation pharmaceutical Impactor (NGI) as designated multistage cascade impactors. Two DPIs, the second (DPI-B) having similar resistance than the first (DPI-A) were used to evaluate ACI and NGI performance at 60 L/min following the methodology described in the European and United States Pharmacopeias. At sampling times ≥2 s (equivalent to volumes ≥2.0 L), both impactors provided consistent measures of therapeutically important fine particle mass (FPM) from both DPIs, independent of sample duration. At shorter sample times, FPM decreased substantially with the NGI, indicative of incomplete aerosol bolus transfer through the system whose dead space was 2.025 L. However, the ACI provided consistent measures of both variables across the range of sampled volumes evaluated, even when this volume was less than 50% of its internal dead space of 1.155 L. Such behavior may be indicative of maldistribution of the flow profile from the relatively narrow exit of the induction port to the uppermost stage of the impactor at start-up. An explanation of the ACI anomalous behavior from first principles requires resolution of the rapidly changing unsteady flow and pressure conditions at start up, and is the subject of ongoing research by the European Pharmaceutical Aerosol Group. Meanwhile, these experimental findings are provided to advocate a prudent approach by retaining the current pharmacopeial methodology.

  9. Substance use - inhalants

    MedlinePlus

    Substance abuse - inhalants; Drug abuse - inhalants; Drug use - inhalants; Glue - inhalants ... symptoms and may include: Strong cravings for the drug Having mood swings from feeling depressed to agitated ...

  10. 40 CFR Table F-1 to Subpart F of... - Performance Specifications for PM 2.5 Class II Equivalent Samplers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... II Equivalent Samplers Performance test Specifications Acceptance criteria § 53.62 Full Wind Tunnel... Results: 95% ≤ Rc ≤ 105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2...

  11. Toxicity of aerosols of nicotine and pyruvic acid (separate and combined) in Sprague-Dawley rats in a 28-day OECD 412 inhalation study and assessment of systems toxicology.

    PubMed

    Phillips, Blaine; Esposito, Marco; Verbeeck, Jan; Boué, Stéphanie; Iskandar, Anita; Vuillaume, Gregory; Leroy, Patrice; Krishnan, Subash; Kogel, Ulrike; Utan, Aneli; Schlage, Walter K; Bera, Monali; Veljkovic, Emilija; Hoeng, Julia; Peitsch, Manuel C; Vanscheeuwijck, Patrick

    2015-01-01

    Toxicity of nebulized nicotine (Nic) and nicotine/pyruvic acid mixtures (Nic/Pyr) was characterized in a 28-day Organization for Economic Co-operation and Development 412 inhalation study with additional transcriptomic and lipidomic analyses. Sprague-Dawley rats were nose-only exposed, 6 h/day, 5 days/week to filtered air, saline, nicotine (50 µg/l), sodium pyruvate (NaPyr, 33.9 µg/l) or equimolar Nic/Pyr mixtures (18, 25 and 50 µg nicotine/l). Saline and NaPyr caused no health effects, but rats exposed to nicotine-containing aerosols had decreased body weight gains and concentration-dependent increases in liver weight. Blood neutrophil counts were increased and lymphocyte counts decreased in rats exposed to nicotine; activities of alkaline phosphatase and alanine aminotransferase were increased, and levels of cholesterol and glucose decreased. The only histopathologic finding in non-respiratory tract organs was increased liver vacuolation and glycogen content. Respiratory tract findings upon nicotine exposure (but also some phosphate-buffered saline aerosol effects) were observed only in the larynx and were limited to adaptive changes. Gene expression changes in the lung and liver were very weak. Nic and Nic/Pyr caused few significant changes (including Cyp1a1 gene upregulation). Changes were predominantly related to energy metabolism and fatty acid metabolism but did not indicate an obvious toxicity-related response. Nicotine exposure lowered plasma lipids, including cholesteryl ester (CE) and free cholesterol and, in the liver, phospholipids and sphingolipids. Nic, NaPyr and Nic/Pyr decreased hepatic triacylglycerol and CE. In the lung, Nic and Nic/Pyr increased CE levels. These data suggest that only minor biologic effects related to inhalation of Nic or Nic/Pyr aerosols were observed in this 28-day study.

  12. Inhalation Toxicity Of Single Materials and Mixtures. Phase 4. Thirteen-Week Inhalation Toxicity Study With Aerosol Mixtures of Fog Oil and Graphite Particles in F344/N Male Rate

    DTIC Science & Technology

    1992-07-14

    that the difficult and complex task of maintaining good control over the exposure concentrations of the individual components in the PBL/graphite aerosol...Gibbons, the biostatistical consultant to the program. Because of the complex experimental design mandated by the RFP and the physical limitations...aerosol atmospheres of PBL or graphite only, the difficult and complex task of maintaining good control over the exposure concentra- tions of the

  13. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  14. Development of a personal bioaerosol sampler based on a conical cyclone with recirculating liquid film.

    PubMed

    Tolchinsky, Alexander D; Sigaev, Vladimir I; Sigaev, Genneday I; Varfolomeev, Alexander N; Zvyagina, Ekaterina V; Brasel, Trevor; Cheng, Yung Sung

    2010-03-01

    This article describes the development of a novel, high-performance personal aerosol sampler intended to monitor occupational air pollution, specifically, microbial constituents. This prototype sampler has a horizontally positioned conical cyclone with recirculating liquid film and an ejection supply of adsorptive liquid into the inlet nozzle. Airborne pollutants were collected in the adsorptive liquid, thus improving the survivability of microbiological aerosol samples. Experimental modules of different dimensions were first evaluated. Based on the test results, a prototype sampler was fabricated and tested. Evaluation of the collection efficiency of the prototype unit indicated a higher than 90% collection efficiency for particles > 1.0 microm. The 50% cutoff diameter was between 0.70-0.75 microm. For assessment of the sampling process effect on the collected microorganisms, Bacillus thuringiensis was tested at a concentration of about 1.0 x 10(6) cells per cm(3). The viability in the prototype sampler decreased to 78% after 60 min of operation.

  15. Polyport atmospheric gas sampler

    DOEpatents

    Guggenheim, S. Frederic

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  16. Improved high volume air sampler

    NASA Technical Reports Server (NTRS)

    King, R. B.

    1974-01-01

    Sampler permits size separations of particles by directing sampled air through cross-sectional area sufficiently large that air velocity is reduced to point where particles or larger size will settle out. Sampler conducts air downward and through slots around periphery of unit into relatively open interior of house.

  17. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  18. Parallel optical sampler

    DOEpatents

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  19. Multispectral Resource Sampler Workshop

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The utility of the multispectral resource sampler (MRS) was examined by users in the following disciplines: agriculture, atmospheric studies, engineering, forestry, geology, hydrology/oceanography, land use, and rangelands/soils. Modifications to the sensor design were recommended and the desired types of products and number of scenes required per month were indicated. The history, design, capabilities, and limitations of the MRS are discussed as well as the multilinear spectral array technology which it uses. Designed for small area inventory, the MRS can provide increased temporal, spectral, and spatial resolution, facilitate polarization measurement and atmospheric correction, and test onboard data compression techniques. The advantages of using it along with the thematic mapper are considered.

  20. Waveform Sampler CAMAC Module

    SciTech Connect

    Freytag, D.R.; Haller, G.M.; Kang, H.; Wang, J.

    1985-09-01

    A Waveform Sampler Module (WSM) for the measurement of signal shapes coming from the multi-hit drift chambers of the SLAC SLC detector is described. The module uses a high speed, high resolution analog storage device (AMU) developed in collaboration between SLAC and Stanford University. The AMU devices together with high speed TTL clocking circuitry are packaged in a hybrid which is also suitable for mounting on the detector. The module is in CAMAC format and provides eight signal channels, each recording signal amplitude versus time in 512 cells at a sampling rate of up to 360 MHz. Data are digitized by a 12-bit ADC with a 1 ..mu..s conversion time and stored in an on-board memory accessible through CAMAC.

  1. Differential atmospheric tritium sampler

    DOEpatents

    Griesbach, Otto A.; Stencel, Joseph R.

    1990-01-01

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  2. Differential atmospheric tritium sampler

    DOEpatents

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  3. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  4. Releasable Asbestos Field Sampler

    EPA Science Inventory

    Asbestos aerosolization (or releasability) is the potential for fibrous asbestos structures that are present in a material or on a solid surface to become airborne when the source is disturbed by human activities or natural forces. In turn, the magnitude of the airborne concentra...

  5. Quartz measurement in coal dust with high-flow rate samplers: laboratory study.

    PubMed

    Lee, Taekhee; Lee, Eun Gyung; Kim, Seung Won; Chisholm, William P; Kashon, Michael; Harper, Martin

    2012-05-01

    A laboratory study was performed to measure quartz in coal dust using high-flow rate samplers (CIP10-R, GK2.69 cyclone, and FSP10 cyclone) and low-flow rate samplers [10-mm nylon and Higgins-Dewell type (BGI4L) cyclones] and to determine whether an increased mass collection from high-flow rate samplers would affect the subsequent quartz measurement by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analytical procedures. Two different sizes of coal dusts, mass median aerodynamic diameter 4.48 μm (Coal Dust A) and 2.33 μm (Coal Dust B), were aerosolized in a calm air chamber. The mass of coal dust collected by the samplers was measured gravimetrically, while the mass of quartz collected by the samplers was determined by FTIR (NIOSH Manual of Analytical Method 7603) and XRD (NIOSH Manual of Analytical Method 7500) after one of two different indirect preparations. Comparisons between high-flow rate samplers and low-flow rate samplers were made by calculating mass concentration ratios of coal dusts, net mass ratios of coal dusts, and quartz net mass. Mass concentrations of coal dust from the FSP10 cyclone were significantly higher than those from other samplers and mass concentrations of coal dust from 10-mm nylon cyclone were significantly lower than those from other samplers, while the CIP10-R, GK2.69, and BGI4L samplers did not show significant difference in the comparison of mass concentration of coal dusts. The BGI4L cyclone showed larger mass concentration of ∼9% compared to the 10-mm nylon cyclone. All cyclones provided dust mass concentrations that can be used in complying with the International Standard Organization standard for the determination of respirable dust concentration. The amount of coal dust collected from the high-flow rate samplers was found to be higher with a factor of 2-8 compared to the low-flow rate samplers but not in direct proportion of increased flow rates. The high-flow rate samplers collected more quartz compared to

  6. [Inhalation therapy: inhaled generics, inhaled antidotes, the future of anti-infectives and the indications of inhaled pentamidine. GAT aerosolstorming, Paris 2012].

    PubMed

    Peron, N; Le Guen, P; Andrieu, V; Bardot, S; Ravilly, S; Oudyi, M; Dubus, J-C

    2013-12-01

    The working group on aerosol therapy (GAT) of the Société de pneumologie de langue française (SPLF) organized its third "Aerosolstorming" in 2012. During the course of one day, different aspects of inhaled therapy were discussed, and these will be treated separately in two articles, this one being the first. Inhaled products represent a large volume of prescriptions both in the community and in hospital settings and they involve various specialties particularly ENT and respiratory care. Technical aspects of the development of these products, their mode of administration and compliance with their indications are key elements for the effective therapeutic use of inhaled treatments. In this first article, we will review issues concerning generic inhaled products, the existence of inhaled antidotes, new anti-infective agents and indications for inhaled pentamidine.

  7. Inhalation Anthrax (Ames aerosol) in Naive and Vaccinated New Zealand Rabbits: Characterizing the Spread of Bacteria from Lung Deposition to Bacteremia

    DTIC Science & Technology

    2012-06-28

    Grinberg et al., 2001; Mock and Fouet, 2001; Frazier et al., 2006). In humans, exposure results from contact, ingestion or inhalation of spores lead- ing to...CLEARANCE FROM THE AIRWAYS The number of bacteria in the airways over time was deter- mined by dilution plate analysis of BAL using methods identical ...Henderson et al., 1956; Brachman et al., 1966; Grinberg et al., 2001). However, more recent studies using attenuated strains suggested germination occurred in

  8. Trench Left By Sampler Scoop

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A shallow 12-inch-long trench was dug by Viking 2 s surface sampler scoop yesterday (September 12) on Mars. The trench is difficult to see in this photo because it is in the shadow of a rock (out of view to the right). The sampler scoop stopped operating sometime after soil was excavated from the trench and delivered to Viking 2 s biology instrument.

  9. High speed sampler and demultiplexer

    DOEpatents

    McEwan, T.E.

    1995-12-26

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as ``strobe kickout``. The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition. 16 figs.

  10. High speed sampler and demultiplexer

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as "strobe kickout". The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition.

  11. Beryllium Concentrations at European Workplaces: Comparison of ‘Total’ and Inhalable Particulate Measurements

    PubMed Central

    Kock, Heiko; Civic, Terence; Koch, Wolfgang

    2015-01-01

    A field study was carried out in order to derive a factor for the conversion of historic worker exposure data on airborne beryllium (Be) obtained by sampling according to the 37-mm closed faced filter cassette (CFC) ‘total’ particulate method into exposure concentration values to be expected when sampling using the ‘Gesamtstaubprobenahmesystem’ (GSP) inhalable sampling convention. Workplaces selected to represent the different copper Be work processing operations that typically occur in Germany and the EU were monitored revealing a broad spectrum of prevailing Be size distributions. In total, 39 personal samples were taken using a 37-mm CFC and a GSP worn side by side for simultaneous collection of the ‘total’ dust and the inhalable particulates, respectively. In addition, 20 static general area measurements were carried out using GSP, CFC, and Respicon samplers in parallel, the latter one providing information on the extra-thoracic fraction of the workplace aerosol. The study showed that there is a linear relationship between the concentrations measured with the CFC and those measured with the GSP sampler. The geometric mean value of the ratios of time-weighted average concentrations determined from GSP and CFC samples of all personal samples was 2.88. The individual values covered a range between 1 and 17 related to differences in size distributions of the Be-containing particulates. This was supported by the area measurements showing that the conversion factor increases with increasing values of the extra-thoracic fraction covering a range between 0 and 79%. PMID:25808693

  12. Variable depth core sampler

    SciTech Connect

    Bourgeois, P.M.; Reger, R.J.

    1994-12-31

    This invention relates to a sampling means, more particularly to a device to sample hard surfaces at varying depths. Often it is desirable to take samples of a hard surface wherein the samples are of the same diameter but of varying depths. Current practice requires that a full top-to-bottom sample of the material be taken, using a hole saw, and boring a hole from one end of the material to the other. The sample thus taken is removed from the hole saw and the middle of said sample is then subjected to further investigation. This paper describes a variable depth core sampler comprimising a circular hole saw member, having longitudinal sections that collapse to form a point and capture a sample, and a second saw member residing inside the first hole saw member to support the longitudinal sections of the first member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside the the first hole saw member.

  13. Ciclesonide Oral Inhalation

    MedlinePlus

    ... ciclesonide inhaler while you are near an open flame or a heat source. The inhaler may explode ... inhaler near a heat source or an open flame. Protect the inhaler from freezing and direct sunlight. ...

  14. Flunisolide Oral Inhalation

    MedlinePlus

    ... flunisolide inhaler while you are near an open flame or a heat source. The inhaler may explode ... inhaler near a heat source or an open flame. Protect the inhaler from freezing and direct sunlight. ...

  15. A pilot study comparing the antispasmodic effects of inhaled salmeterol, salbutamol and ipratropium bromide using different aerosol devices on muscarinic bronchoconstriction in healthy cats.

    PubMed

    Leemans, Jérôme; Kirschvink, Nathalie; Bernaerts, Frédérique; Clercx, Cécile; Cambier, Carole; Gustin, Pascal

    2009-05-01

    This study compared the duration and magnitude of the antispasmodic effects of salmeterol (SLM), salbutamol (SAL), ipratropium bromide (IB) and the combination of SAL and IB (SAL/IB) against carbachol-induced bronchoconstriction in healthy cats, and investigated the gain in efficacy using a two or fourfold increase in drug dosages. The drug regimens used were: (1) SLM 25 microg, SAL 100 microg, IB 20 microg and SAL/IB 100 microg/20 microg for bronchodilators delivered by a metered-dose inhaler (MDI); (2) SAL 3.75 mg and IB 62.5 microg for nebulised (NEB) medications. To monitor the bronchodilator effect, airway responsiveness was assessed at different time points using barometric whole-body plethysmography and calculation of the concentration of inhaled carbachol inducing a 300% increase of baseline Penh (enhanced pause), an estimator of airflow limitation. Maximum C-Penh300 was recorded 15 min after NEB SAL, IB MDI, NEB IB and 1h after SAL MDI and 4h after SLM MDI, respectively. C-Penh300 was significantly different from control values (without treatment) up to 24h for SLM MDI, 8h for IB MDI and 4h for other drugs. In terms of efficacy, SAL/IB MDI showed a synergistic antispasmodic effect at 15 min, 4h and 8h after administration. A fourfold increase of the initial dose of IB MDI and NEB IB significantly increased C-Penh300. Despite a fourfold dose increase, SLM displayed the weakest degree of bronchoprotection compared to other bronchodilators. The study provides evidence that inhaled bronchodilators are efficient at preventing muscarinic-induced bronchospasm in healthy cats and that SAL and IB appear to be short-acting bronchodilators in contrast to SLM.

  16. A new airborne sampler for interstitial particles in ice and liquid clouds

    NASA Astrophysics Data System (ADS)

    Moharreri, A.; Craig, L.; Rogers, D. C.; Brown, M.; Dhaniyala, S.

    2011-12-01

    In-situ measurements of cloud droplets and aerosols using aircraft platforms are required for understanding aerosol-cloud processes and aiding development of improved aerosol-cloud models. A variety of clouds with different temperature ranges and cloud particle sizes/phases must be studied for comprehensive knowledge about the role of aerosols in the formation and evolution of cloud systems under different atmospheric conditions. While representative aerosol measurements are regularly made from aircrafts under clear air conditions, aerosol measurements in clouds are often contaminated by the generation of secondary particles from the high speed impaction of ice particles and liquid droplets on the surfaces of the aircraft probes/inlets. A new interstitial particle sampler, called the blunt-body aerosol sampler (BASE) has been designed and used for aerosol sampling during two recent airborne campaigns using NCAR/NSF C-130 aircraft: PLOWS (2009-2010) and ICE-T (2011). Central to the design of the new interstitial inlet is an upstream blunt body housing that acts to shield/deflect large cloud droplets and ice particles from an aft sampling region. The blunt-body design also ensures that small shatter particles created from the impaction of cloud-droplets on the blunt-body are not present in the aft region where the interstitial inlet is located. Computational fluid dynamics (CFD) simulations along with particle transport modeling and wind tunnel studies have been utilized in different stages of design and development of this inlet. The initial flights tests during the PLOWS campaign showed that the inlet had satisfactory performance only in warm clouds and when large precipitation droplets were absent. In the presence of large droplets and ice, the inlet samples were contaminated with significant shatter artifacts. These initial results were reanalyzed in conjunction with a computational droplet shatter model and the numerical results were used to arrive at an

  17. Checklists for the Assessment of Correct Inhalation Therapy.

    PubMed

    Knipel, V; Schwarz, S; Magnet, F S; Storre, J H; Criée, C P; Windisch, W

    2017-02-01

    Introduction For the long-term treatment of obstructive lung diseases inhalation therapy with drugs being delivered directly to the lungs as an aerosol has become the method of choice. However, patient-related mistakes in inhalation techniques are frequent and recognized to be associated with reduced disease control. Since the assessment of patient-mistakes in inhalation has yet not been standardized, the present study was aimed at developing checklists for the assessment of correct inhalation. Methods Checklists were developed in German by an expert panel of pneumologists and professionally translated into English following back-translation procedures. The checklists comparably assessed three major steps of inhalation: 1) inhalation preparation, 2) inhalation routine, and 3) closure of inhalation. Results Checklists for eight frequently used inhalers were developed: Aerolizer, Breezhaler, Diskus (Accuhaler), metered-dose inhaler, Handihaler, Novolizer, Respimat, Turbohaler. Each checklist consists of ten items: three for inhalation preparation, six for inhalation routine, and one for closure of inhalation. Discussion Standardized checklists for frequently used inhalers are available in German and English. These checklists can be used for clinical routines or for clinical trials. All checklists can be downloaded free of charge for non-profit application from the homepage of the German Airway League (Deutsche Atemwegsliga e. V.): www.atemwegsliga.de.

  18. On the efficiency and correction of vertically oriented blunt bioaerosol samplers in moving air.

    PubMed

    Michel, Dominik; Rotach, Mathias W; Gehrig, Regula; Vogt, Roland

    2012-11-01

    The aspiration efficiency of vertical and wind-oriented Air-O-Cell samplers was investigated in a field study using the pollen of hazel, sweet chestnut and birch. Collected pollen numbers were compared to measurements of a Hirst-type Burkard spore trap. The discrepancy between pollen counts is substantial in the case of vertical orientation. The results indicate a strong influence of wind velocity and inlet orientation relative to the freestream on the aspiration efficiency. Various studies reported on inertial effects on aerosol motion as function of wind velocity. The measurements were compared to a physically based model for the limited case of vertical blunt samplers. Additionally, a simple linear model based on pollen counts and wind velocity was developed. Both correction models notably reduce the error of vertically oriented samplers, whereas only the physically based model can be used on independent datasets. The study also addressed the precision error of the instruments used, which was substantial for both sampler types.

  19. On the efficiency and correction of vertically oriented blunt bioaerosol samplers in moving air

    NASA Astrophysics Data System (ADS)

    Michel, Dominik; Rotach, Mathias W.; Gehrig, Regula; Vogt, Roland

    2012-11-01

    The aspiration efficiency of vertical and wind-oriented Air-O-Cell samplers was investigated in a field study using the pollen of hazel, sweet chestnut and birch. Collected pollen numbers were compared to measurements of a Hirst-type Burkard spore trap. The discrepancy between pollen counts is substantial in the case of vertical orientation. The results indicate a strong influence of wind velocity and inlet orientation relative to the freestream on the aspiration efficiency. Various studies reported on inertial effects on aerosol motion as function of wind velocity. The measurements were compared to a physically based model for the limited case of vertical blunt samplers. Additionally, a simple linear model based on pollen counts and wind velocity was developed. Both correction models notably reduce the error of vertically oriented samplers, whereas only the physically based model can be used on independent datasets. The study also addressed the precision error of the instruments used, which was substantial for both sampler types.

  20. FACTORS AFFECTING THE DEPOSITION OF INHALED POROUS DRUG PARTICLES

    EPA Science Inventory

    Abstract
    Recent findings indicate that the inhalation of large manufactured porous particles may be particularly effective for drug delivery. In this study, a mathematical model was employed to systematically investigate the effects of particle size, particle density, aerosol ...

  1. Animal model of sensitization by inhalation.

    PubMed Central

    Barboriak, J J; Knoblock, H W; Hensley, G T; Gombas, O F; Fink, J N

    1976-01-01

    Groups of rats exposed to daily inhalation challenge with aerosolized pigeon serum developed precipitating antibody within 2 weeks and definitive granulomatous inflammatory changes in the lung after 7 weeks of exposure. The dissociation of the two responses to an inhalation challenge indicate that the rat model may serve for screening of the various inhalant antigens for their sensitizing potential, and for investigation of the contributory role of some of the factors involved in the pathogenesis of hypersensitivity pneumonitis. Images FIG. 1 FIG. 2 PMID:939055

  2. Advanced Aerosol Sampling Technologies For Point Biodetection

    DTIC Science & Technology

    2004-11-17

    Impaction Aerosol Particle Behavior TAKE-HOME MESSAGE: Aerosols are NOT gases. Their inertia gives us a handle on them. Their inertia can confound...tubing to collector without wall losses0 25 50 75 100 0 2 4 6 8 10 Particle Size (m) S a m p l i n g E f f i c i e n c y , % Typical sampler ...efficiency data 10 Aerosol Sampler Technology Challenges Description Goals • High efficiency inlets for 1-10 micron particles and wind speeds

  3. Inhalation Injury.

    DTIC Science & Technology

    1994-01-01

    alpha,-antitrypsin resulting cur most often as the result of tracheal in prolonged action of proteases such as or laryngeal damage from the endotra... curs is determined by physicochemical Turbulent airflow, such as at bifurca- properties of the inhaled substance, its tions of the airway, separates

  4. Active Hydrazine Vapor Sampler (AHVS)

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Mcbrearty, Charles F.; Curran, Daniel J.

    1993-01-01

    The Active Hydrazine Vapor Sampler (AHVS) was developed to detect vapors of hydrazine (HZ) and monomethylhydrazine (MMH) in air at parts-per-billion (ppb) concentration levels. The sampler consists of a commercial personal pump that draws ambient air through paper tape treated with vanillin (4-hydroxy-3-methoxybenzaldehyde). The paper tape is sandwiched in a thin cardboard housing inserted in one of the two specially designed holders to facilitate sampling. Contaminated air reacts with vanillin to develop a yellow color. The density of the color is proportional to the concentration of HZ or MMH. The AHVS can detect 10 ppb in less than 5 minutes. The sampler is easy to use, low cost, and intrinsically safe and contains no toxic material. It is most beneficial for use in locations with no laboratory capabilities for instrumentation calibration. This paper reviews the development, laboratory test, and field test of the device.

  5. Induction of Food Allergy in Mice by Allergen Inhalation

    DTIC Science & Technology

    2014-10-01

    14. ABSTRACT The purpose of this project is to test the hypothesis that food allergy may develop in response to antigen inhalation. Studies in a...relative timing of antigen ingestion vs. antigen inhalation to lead to food allergy development. We are also testing whether exposure to aerosolized...antigen will reverse or exacerbate established food allergy to that antigen. Studies in year 1 of this project demonstrate that: 1) initial inhalation

  6. Aerosol therapy in the equine species.

    PubMed

    Duvivier, D H; Votion, D; Vandenput, S; Lekeux, P

    1997-11-01

    Inhalation therapy plays an increasing role in the management of equine respiratory disorders. This alternative to systematic treatment permits a high concentration of medication to act locally while minimizing side effects and residues. In human medicine, literature in this field is prolific and continuously renewed, whereas in veterinary medicine, applications of aerosol therapy are less extensive. This review considers the principles of action of the different types of devices used for inhalation, i.e., nebulization, metered-dose inhalation and dry powder inhalation, describes the technical and practical requirements for their use in the equine species and considers the advantages and disadvantages of each inhalation device. The pharmacological agents currently administered to horses by inhalation are also discussed. Perspectives of aerosol therapy in the equine species, including aerosols already used in human medicine and their potential applications for horses are described.

  7. A High Volume Stack Sampler

    NASA Technical Reports Server (NTRS)

    Boubel, Richard W.

    1971-01-01

    The stack sampler described in this paper has been developed to overcome the difficulties of particulate sampling with presently available equipment. Its use on emissions from hog fuel fired boilers, back-fired incinerators, wigwam burners, asphalt plants, and seed cleaning cyclones is reported. The results indicate that the sampler is rapid and reliable in its use. It is relatively simple and inexpensive to operate. For most sources it should be considered over the more complicated and expensive sampling trains being used and specified.

  8. Solid-Sorbent Air Sampler

    NASA Technical Reports Server (NTRS)

    Galen, T. J.

    1986-01-01

    Portable unit takes eight 24-hour samples. Volatile organic compounds in air collected for analysis by portable, self-contained sampling apparatus. Sampled air drawn through sorbent material, commercial porous polymer of 2, 3-diphenyl-p-phenylene oxide. High-boiling-point organic compounds adsorbed onto polymer, while low-boiling-point organics pass through and returned to atmosphere. Sampler includes eight sample tubes filled with polymeric sorbent. Organic compounds in atmosphere absorbed when air pumped through sorbent. Designed for checking air in spacecraft, sampler adaptable to other applications as leak detection, gas-mixture analysis, and ambient-air monitoring.

  9. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1-34) prepared as a dry powder for inhalation.

    PubMed

    Shoyele, Sunday A; Sivadas, Neeraj; Cryan, Sally-Ann

    2011-03-01

    Pulmonary delivery of therapeutic peptides and proteins has many advantages including high relative bioavailability, rapid systemic absorption and onset of action and a non-invasive mode of administration which improves patient compliance. In this study, we investigated the effect of spray-drying (SD) and spray freeze-drying processes on the stability and aerosol performance of parathyroid hormone (PTH) (1-34) microparticles. In this study, the stabilisation effect of trehalose (a non-reducing sugar) and Brij 97 (a non-ionic surfactant) on spray-dried PTH particles was assessed using analytical techniques including circular dichroism (CD), fluorescence spectroscopy, modulated differential scanning calorimetry and an in vitro bioactivity assay. Physical characterisation also included electron microscopy, tap density measurement and laser light diffraction. The aerosol aerodynamic performance of the formulations was assessed using the Andersen cascade impactor. Based on these studies, a formulation for spray freeze-drying was selected and the effects of the two particle engineering techniques on the biophysical stability and aerosol performance of the resulting powders was determined. CD, fluorescence spectroscopy and bioactivity data suggest that trehalose when used alone as a stabilising excipient produces a superior stabilising effect than when used in combination with a non-ionic surfactant. This highlights the utility of CD and fluorescence spectroscopy studies for the prediction of protein bioactivity post-processing. Therefore, a method and formulation suitable for the preparation of PTH as a dry powder was developed based on spray-drying PTH with trehalose as a stabiliser with the bioactivity of SD PTH containing trehalose being equivalent to that of unprocessed PTH.

  10. Wood dust sampling: field evaluation of personal samplers when large particles are present.

    PubMed

    Lee, Taekhee; Harper, Martin; Slaven, James E; Lee, Kiyoung; Rando, Roy J; Maples, Elizabeth H

    2011-03-01

    Recent recommendations for wood dust sampling include sampling according to the inhalable convention of International Organization for Standardization (ISO) 7708 (1995) Air quality--particle size fraction definitions for health-related sampling. However, a specific sampling device is not mandated, and while several samplers have laboratory performance approaching theoretical for an 'inhalable' sampler, the best choice of sampler for wood dust is not clear. A side-by-side field study was considered the most practical test of samplers as laboratory performance tests consider overall performance based on a wider range of particle sizes than are commonly encountered in the wood products industry. Seven companies in the wood products industry of the Southeast USA (MS, KY, AL, and WV) participated in this study. The products included hardwood flooring, engineered hardwood flooring, door skins, shutter blinds, kitchen cabinets, plywood, and veneer. The samplers selected were 37-mm closed-face cassette with ACCU-CAP™, Button, CIP10-I, GSP, and Institute of Occupational Medicine. Approximately 30 of each possible pairwise combination of samplers were collected as personal sample sets. Paired samplers of the same type were used to calculate environmental variance that was then used to determine the number of pairs of samples necessary to detect any difference at a specified level of confidence. Total valid sample number was 888 (444 valid pairs). The mass concentration of wood dust ranged from 0.02 to 195 mg m(-3). Geometric mean (geometric standard deviation) and arithmetic mean (standard deviation) of wood dust were 0.98 mg m(-3) (3.06) and 2.12 mg m(-3) (7.74), respectively. One percent of the samples exceeded 15 mg m(-3), 6% exceeded 5 mg m(-3), and 48% exceeded 1 mg m(-3). The number of collected pairs is generally appropriate to detect a 35% difference when outliers (negative mass loadings) are removed. Statistical evaluation of the nonsimilar sampler pair results

  11. A modified siphon sampler for shallow water

    USGS Publications Warehouse

    Diehl, Timothy H.

    2008-01-01

    A modified siphon sampler (or 'single-stage sampler') was developed to sample shallow water at closely spaced vertical intervals. The modified design uses horizontal rather than vertical sample bottles. Previous siphon samplers are limited to water about 20 centimeters (cm) or more in depth; the modified design can sample water 10 cm deep. Several mounting options were used to deploy the modified siphon sampler in shallow bedrock streams of Middle Tennessee, while minimizing alteration of the stream bed. Sampling characteristics and limitations of the modified design are similar to those of the original design. Testing showed that the modified sampler collects unbiased samples of suspended silt and clay. Similarity of the intake to the original siphon sampler suggests that the modified sampler would probably take downward-biased samples of suspended sand. Like other siphon samplers, it does not sample isokinetically, and the efficiency of sand sampling can be expected to change with flow velocity. The sampler needs to be located in the main flow of the stream, and is subject to damage from rapid flow and floating debris. Water traps were added to the air vents to detect the flow of water through the sampler, which can cause a strong upward bias in sampled suspended-sediment concentration. Water did flow through the sampler, in some cases even when the top of the air vent remained above water. Air vents need to be extended well above maximum water level to prevent flow through the sampler.

  12. Cyanide Antidotes for Mass Casualties: Comparison of Intramuscular Injector by Autoinjector, Intraosseous Injection, and Inhalational Delivery

    DTIC Science & Technology

    2013-10-01

    held high- throughput ultrasonic monodisperse aerosol inhalers for detoxification of massive CN poisoning. IV. CONCLUSIONS Significant effect of...Comparison of Intramuscular Injector by Autoinjector, Intraosseous Injection, and Inhalational Delivery PRINCIPAL INVESTIGATOR: Gerry R...Antidotes for Mass Casualties: Comparison of Intramuscular Injector by Autoinjector, Intraosseous Injection, and Inhalational Delivery 5a. CONTRACT

  13. TARGETED DELIVERY OF INHALED PHARMACEUTICALS USING AN IN SILICO DOSIMETRY MODEL

    EPA Science Inventory

    We present an in silico dosimetry model which can be used for inhalation toxicology (risk assessment of inhaled air pollutants) and aerosol therapy ( targeted delivery of inhaled drugs). This work presents scientific and clinical advances beyond the development of the original in...

  14. A Sampler of Ethnic Crafts.

    ERIC Educational Resources Information Center

    Donley, Susan K.; And Others

    This curriculum guide provides a sampler of the wide variety of expression practiced by cultural groups all over the world. The guide was developed to help fill the need for multicultural art resources that are respectful of both modern art education philosophy and of authentic, sensitive representation of other cultures. The types of materials…

  15. The MAGIC meteoric smoke particle sampler

    NASA Astrophysics Data System (ADS)

    Hedin, Jonas; Giovane, Frank; Waldemarsson, Tomas; Gumbel, Jörg; Blum, Jürgen; Stroud, Rhonda M.; Marlin, Layne; Moser, John; Siskind, David E.; Jansson, Kjell; Saunders, Russell W.; Summers, Michael E.; Reissaus, Philipp; Stegman, Jacek; Plane, John M. C.; Horányi, Mihály

    2014-10-01

    Between a few tons to several hundred tons of meteoric material enters the Earth's atmosphere each day, and most of this material is ablated and vaporized in the 70-120 km altitude region. The subsequent chemical conversion, re-condensation and coagulation of this evaporated material are thought to form nanometre sized meteoric smoke particles (MSPs). These smoke particles are then subject to further coagulation, sedimentation and global transport by the mesospheric circulation. MSPs have been proposed as a key player in the formation and evolution of ice particle layers around the mesopause region, i.e. noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). MSPs have also been implicated in mesospheric heterogeneous chemistry to influence the mesospheric odd oxygen/odd hydrogen (Ox/HOx) chemistry, to play an important role in the mesospheric charge balance, and to be a significant component of stratospheric aerosol and enhance the depletion of O3. Despite their apparent importance, little is known about the properties of MSPs and none of the hypotheses can be verified without direct evidence of the existence, altitude and size distribution, shape and elemental composition. The aim of the MAGIC project (Mesospheric Aerosol - Genesis, Interaction and Composition) was to develop an instrument and analysis techniques to sample for the first time MSPs in the mesosphere and return them to the ground for detailed analysis in the laboratory. MAGIC meteoric smoke particle samplers have been flown on several sounding rocket payloads between 2005 and 2011. Several of these flights concerned non-summer mesosphere conditions when pure MSP populations can be expected. Other flights concerned high latitude summer conditions when MSPs are expected to be contained in ice particles in the upper mesosphere. In this paper we present the MAGIC project and describe the MAGIC MSP sampler, the measurement procedure and laboratory analysis. We also present the attempts to

  16. Repeated inhalation exposure of rats to an anionic high molecular weight polymer aerosol: application of prediction models to better understand pulmonary effects and modes of action.

    PubMed

    Pauluhn, Jürgen

    2014-08-01

    Opposed to the wealth of information available for kinetic lung overload-related effects of poorly-soluble, low-toxicity particles (PSP), only limited information is available on biodegradable high molecular weight (HMW) organic polymers (molecular weight >20,000 Da). It is hypothesized that such types of polymers may exert a somewhat similar volume displacement-related mode of action in alveolar macrophages as PSP; however, with a differing biokinetics of the material retained in the lung. This polyurethane polymer was examined in single and 2-/13-week repeated exposure rat inhalation bioassays. The design of studies was adapted to that commonly applied for PSP. Rats were nose-only exposed for 6h/day for the respective study duration, followed by 1-, 2- and 4-week postexposure periods in the single, 2- and 13-week studies, respectively. While the findings in bronchoalveolar lavage (BAL) and histopathology were consistent with those typical of PSP, they appear to be superimposed by pulmonary phospholipidosis and a much faster reversibility of pulmonary inflammation. Kinetic modeling designed to estimate the accumulated lung burden of biopersistent PSP was also suitable to simulate the overload-dependent outcomes of this biodegradable polymer as long as the faster than normal elimination kinetics was observed and an additional 'void space volume' was added to adjust for the phagocytosed additional fraction of pulmonary phospholipids. The changes observed following repeated inhalation exposure appear to be consistent with a retention-related etiopathology (kinetic overload). In summary, this study did not reveal evidence of any polymer-specific pulmonary irritation or parenchymal injury. Taking all findings into account, 7 mg polymer/m(3) (exposure 6h/day, 5-days/week on 13 consecutive weeks) constitutes the point of departure for lower respiratory tract findings that represent a transitional state from effects attributable to an overload-dependent pulmonary

  17. Computational modeling as part of alternative testing strategies in the respiratory and cardiovascular systems: inhaled nanoparticle dose modeling based on representative aerosol measurements and corresponding toxicological analysis.

    PubMed

    Pilou, Marika; Mavrofrydi, Olga; Housiadas, Christos; Eleftheriadis, Kostas; Papazafiri, Panagiota

    2015-05-01

    The objectives of modeling in this work were (a) the integration of two existing numerical models in order to connect external exposure to nanoparticles (NPs) with internal dose through inhalation, and (b) to use computational fluid-particle dynamics (CFPD) to analyze the behavior of NPs in the respiratory and the cardiovascular system. Regarding the first objective, a lung transport and deposition model was combined with a lung clearance/retention model to estimate NPs dose in the different regions of the human respiratory tract and some adjacent tissues. On the other hand, CFPD was used to estimate particle transport and deposition of particles in a physiologically based bifurcation created by the third and fourth lung generations (respiratory system), as well as to predict the fate of super-paramagnetic particles suspended in a liquid under the influence of an external magnetic field (cardiovascular system). All the above studies showed that, with proper refinement, the developed computational models and methodologies may serve as an alternative testing strategy, replacing transport/deposition experiments that are expensive both in time and resources and contribute to risk assessment.

  18. Levalbuterol Oral Inhalation

    MedlinePlus

    Levalbuterol comes as a solution (liquid) to inhale by mouth using a nebulizer (machine that turns medication into a mist that can be inhaled), a concentrated solution to be mixed with normal saline and inhaled ...

  19. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats.

    PubMed

    Gaté, Laurent; Disdier, Clémence; Cosnier, Frédéric; Gagnaire, François; Devoy, Jérôme; Saba, Wadad; Brun, Emilie; Chalansonnet, Monique; Mabondzo, Aloise

    2017-01-04

    The increasing industrial use of nanoparticles (NPs) has raised concerns about their impact on human health. Since aging and exposure to environmental factors are linked to the risk for developing pathologies, we address the question of TiO2 NPs toxicokinetics in the context of a realistic occupational exposure. We report the biodistribution of titanium in healthy young adults (12-13-week-old) and in elderly rats (19-month-old) exposed to 10mg/m(3) of a TiO2 nanostructured aerosol 6h/day, 5days/week for 4 weeks. We measured Ti content in major organs using inductively coupled plasma mass spectrometry immediately and up to 180days after the end of exposure. Large amounts of titanium were initially found in lung which were slowly cleared during the post-exposure period. From day 28, a small increase of Ti was found in the spleen and liver of exposed young adult rats. Such an increase was however never found in their blood, kidneys or brain. In the elderly group, translocation to extra-pulmonary organs was significant at day 90. Ti recovered from the spleen and liver of exposed elderly rats was higher than in exposed young adults. These data suggest that TiO2 NPs may translocate from the lung to extra-pulmonary organs where they could possibly promote systemic health effects.

  20. Inhalation drug delivery devices: technology update

    PubMed Central

    Ibrahim, Mariam; Verma, Rahul; Garcia-Contreras, Lucila

    2015-01-01

    The pulmonary route of administration has proven to be effective in local and systemic delivery of miscellaneous drugs and biopharmaceuticals to treat pulmonary and non-pulmonary diseases. A successful pulmonary administration requires a harmonic interaction between the drug formulation, the inhaler device, and the patient. However, the biggest single problem that accounts for the lack of desired effect or adverse outcomes is the incorrect use of the device due to lack of training in how to use the device or how to coordinate actuation and aerosol inhalation. This review summarizes the structural and mechanical features of aerosol delivery devices with respect to mechanisms of aerosol generation, their use with different formulations, and their advantages and limitations. A technological update of the current state-of-the-art designs proposed to overcome current challenges of existing devices is also provided. PMID:25709510

  1. Generation of aerosolized drugs.

    PubMed

    Wolff, R K; Niven, R W

    1994-01-01

    The expanding use of inhalation therapy has placed demands on current aerosol generation systems that are difficult to meet with current inhalers. The desire to deliver novel drug entities such as proteins and peptides, as well as complex formulations including liposomes and microspheres, requires delivery systems of improved efficiency that will target the lung in a reproducible manner. These efforts have also been spurred by the phase out of chlorofluorocarbons (CFCs) and this has included a directed search for alternative propellants. Consequently, a variety of new aerosol devices and methods of generating aerosols are being studied. This includes the use of freon replacement propellants, dry powder generation systems, aqueous unit spray systems and microprocessor controlled technologies. Each approach has advantages and disadvantages depending upon each principle of action and set of design variables. In addition, specific drugs may be better suited for one type of inhaler device vs. another. The extent to which aerosol generation systems achieve their goals is discussed together with a summary of selected papers presented at the recent International Congress of Aerosols in Medicine.

  2. Development of a high-volume air sampler for nanoparticles.

    PubMed

    Hata, M; Thongyen, T; Bao, L; Hoshino, A; Otani, Y; Ikeda, T; Furuuchi, M

    2013-02-01

    As a tool to evaluate the characteristics of aerosol nano-particles, a high-volume air sampler for the collection of nano-particles was developed based on the inertial filter technology. Instead of the webbed fiber geometry of the existing inertial filter, wire mesh screens alternately layered using spacing sheets with circular holes aligned to provide multi-circular nozzles were newly devised and the separation performance of the filter was investigated experimentally. The separation performance was evaluated for a single-nozzle inertial filter at different filtration velocities. A webbed stainless steel fiber mat attached on the inlet surface of the developed inertial filter was discussed as a pre-separator suppressing the bouncing of particles on meshes. The separation performance of a triple-nozzle inertial filter was also discussed to investigate the influence of scale-up on the separation performance of a multi-nozzle inertial filter. The influence of particle loading on the pressure drop and separation performance was discussed. A supplemental inlet for the nano-particle collection applied to an existing portable high-volume air sampler was devised and the consistency with other types of existing samplers was discussed based on the sampling of ambient particles. The layered-mesh inertial filter with a webbed stainless steel fiber mat as a pre-separator showed good performance in the separation of particles with a d p50 ranging from 150 to 190 nm keeping the influence of loaded particles small. The developed layered-mesh inertial filter was successfully applied to the collection of particles at a d p50∼ 190 nm that was consistent with the results from existing samplers.

  3. Neptunium-237 inhalation in rats.

    PubMed

    Sullivan, M F; Ruemmler, P S; Buschbom, R L

    1986-12-01

    Groups of rats were exposed to aerosols of 237Np nitrate to determine clearance rates, retention and distribution at various intervals after inhalation. Initial lung burdens (ILB) after 237Np inhalation by three treatment groups were 0.12, 0.19 and 0.37 mu Ci/kg, respectively. Radiochemical analyses of animals killed at 4, 8, 14, 28 and 90 d, as well as data for others maintained until they became moribund, showed that their lung clearance followed a three-compartment model, clearance half-times for which were 1, 35, and 10,000 d, respectively. Only 3% of the ILB was retained after 90 d; 12% of that burden had translocated to the skeleton at 750 d; the half-time for skeletal retention was 2500 d. A single tumor was the only malignancy detected in the lungs of the 35 animals allowed to survive the early phase of the study.

  4. Sodium cromoglycate: spincaps or metered dose aerosol.

    PubMed Central

    Robson, R A; Taylor, B J; Taylor, B

    1981-01-01

    1 Sodium cromoglycate administered as a dry powder inhalation (20 mg/dose) via the Spinhaler was compared with a metered dose aerosol (2 mg/dose) in an eight week double dummy double blind crossover trial in 29 asthmatic children. 2 The powder formulation was associated with significantly less symptoms (night wheeze, night cough, day wheeze, day cough, activity) and bronchodilator intake; and significantly greater weight gain than aerosol therapy. There were no significant differences in morning or evening peak flow measurements on the two treatments. 3 The powder may be more effectively inhaled than the aerosol or the dose of the aerosol may not be large enough. PMID:6789851

  5. Particle inhalability at low wind speeds.

    PubMed

    Brown, James S

    2005-12-15

    Accurate quantification of the dose delivered by aerosol exposures is essential for estimating the risk of potential adverse health effects. The fraction of airborne particles that can enter the nose or mouth during inhalation is referred to as the inspirable particulate mass fraction. This inhalable fraction is equivalent to delivered dose for particles greater than approximately 25 microm (aerodynamic particle diameter, d(ae)), which deposit completely and almost exclusively in the extrathoracic airways. Particle inhalability at high wind speeds (1-9 m/s) has been well characterized. However, there is a paucity of data describing the inhalability of particles at low wind speeds (< or =0.3 m/s), which are typical of indoor environments. High-wind-speed criteria poorly describe inhalability at low wind speeds. Based on the aspiration efficiencies of blunt and sharp-edged inlets, a function was developed for oral inhalability, P(I(O)), of particles at low wind speeds. This function predicts a slow decline in P(I(O)) from 0.95 at d(ae)= 8 microm, to 0.5 at d(ae) = 74 microm, and 0.1 at d(ae)= 175 microm. Data available from the literature for inhalability at relatively low wind speeds during oral breathing are well described by this logistic function (r(2)= 0.69).

  6. Re-aerosolization of Bacillus thuringiensis spores from concrete and turf.

    PubMed

    Bishop, A H; O'Sullivan, C M; Lane, A; Butler Ellis, M C; Sellors, W J

    2017-03-03

    Spores of Bacillus anthracis deposited on surfaces can become airborne again as a result of air currents and mechanical forces. As such they are a potential source of infection by inhalation. Spores of Bacillus thuringiensis were used to quantify this phenomenon in a simulation of outdoor conditions. Concrete and turf surfaces were inoculated by aerosol to produce high spore densities (greater than 1 x 10(9) CFU m(-2) ) which were then subjected to the passage of air at 10 ms(-1) with and without simulated walking. Re-aerosolized spores were sampled by wetted wall cyclone air samplers. The mean total re-aerosolization rate from concrete (m(-2) min(-1) ) was 1.16 x 10(-3) for wind alone and 3.2 x 10(-3) for wind and simulated walking while for turf the respective values were 2.7 x 10(-4) and 6.7 x 10(-4) . This article is protected by copyright. All rights reserved.

  7. Use of Respimat Soft Mist inhaler in COPD patients.

    PubMed

    Anderson, Paula

    2006-01-01

    Events of the past decade have stimulated development of new drug formulations and delivery devices that have improved the efficiency, ease of use, and environmental impact of inhaled drug therapy. Respimat Soft Mist Inhaler is a novel, multidose, propellant-free, hand-held, liquid inhaler that represents a new category of inhaler devices. The aerosol cloud generated by Respimat contains a higher fraction of fine particles than most pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs), and the aerosol spray exits the inhaler more slowly and for a longer duration than with pMDIs. This translates into higher lung drug deposition and lower oropharyngeal deposition, making it possible to give lower nominal doses of delivered drugs without lowering efficacy. In clinical trials in patients with COPD, bronchodilator drugs delivered from Respimat were equally effective at half of the dose delivered from a pMDI. In one study of inhaler preference, Respimat was preferred over the pMDI by patients with COPD and other obstructive lung diseases. Respimat is a valuable addition to the range of inhaler devices available to the patient with COPD.

  8. A rotating bluff-body disc for reduced variability in wind tunnel aerosol studies.

    PubMed

    Koehler, Kirsten A; Anthony, T Renee; van Dyke, Michael; Volckens, John

    2011-01-01

    A rotating bluff-body disc (RBD) was developed to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. The RBD is designed to rotate eight personal aerosol samplers around a circular path in a forward-facing plane aligned with the wind tunnel cross section. Rotation of the RBD allows each sampler to traverse an identical path about the wind tunnel cross section, which reduces the effects of spatial heterogeneity associated with dispersing supermicron aerosol in low-velocity wind tunnels. Samplers are positioned on the face of the RBD via sampling ports, which connect to an air manifold on the back of the disc. Flow through each sampler was controlled with a critical orifice or needle valve, allowing air to be drawn through the manifold with a single pump. A metal tube, attached to this manifold, serves as both the axis of rotation and the flow conduction path (between the samplers and the vacuum source). Validation of the RBD was performed with isokinetic samplers and 37-mm cassettes. For facing-the-wind tests, the rotation of the RBD significantly decreased intra-sampler variability when challenged with particle diameters from 1 to 100 μm. The RBD was then employed to determine the aspiration efficiency of Institute of Occupational Medicine (IOM) personal samplers under a facing-the-wind condition. Operation of IOM samplers on the RBD reduced the between-sampler variability for all particle sizes tested.

  9. Demonstration/Validation of the Snap Sampler

    DTIC Science & Technology

    2011-06-01

    low-flow sampling. 5. Carefully selecting a sampling order that reduces sampler impacts on subsequent sam- pling events. 5.1.2 Baseline...flow sampling.  Carefully selecting a sampling order that reduces sampler impacts on subsequent sam- pling events. 5.2.2 Baseline Characterization...ER D C/ CR R EL T R -1 1 -1 1 Project ER-063 Demonstration/Validation of the Snap Sampler Cost and Performance: Final Report C ol d R eg

  10. Design of an air sampler for a small unmanned aerial vehicle.

    PubMed

    Peräjärvi, K; Lehtinen, J; Pöllänen, R; Toivonen, H

    2008-01-01

    In the aftermath of a nuclear accident or malevolent act, it is of paramount importance to have the capability to monitor airborne radioactive substances by collecting air samples. For potentially dangerous missions, the Radiation and Nuclear Safety Authority of Finland (STUK) has developed an air sampler to be used on a small unmanned aerial vehicle. When a Petrianov or Fluoropore filter is used in the sampler and the air velocity is 71 km h(-1), the air flow rate through the filter is 0.73 m(3) h(-1) or 0.23 m(3) h(-1), respectively. The present article introduces the developed air sampler using fluid dynamic simulations and wind tunnel data. The operation of the system was validated by collecting airborne radioactive aerosols from air.

  11. Grooved impactor and inertial trap for sampling inhalable particulate matter

    DOEpatents

    Loo, Billy W.

    1984-01-01

    An inertial trap and grooved impactor for providing a sharp cutoff for particles over 15 microns from entering an inhalable particulate sampler. The impactor head has a tapered surface and is provided with V-shaped grooves. The tapered surface functions for reducing particle blow-off or reentrainment while the grooves prevent particle bounce. Water droplets and any resuspended material over the 15 micron size are collected by the inertial trap and deposited in a reservoir associated with the impactor.

  12. Comparison of particle size distribution data obtained with cascade impaction samplers and from Voulter counter analysis of total dust samples

    SciTech Connect

    Treaftis, H.N.; Kacsmar, P.; Suppers, K., Tomb, T.F.

    1986-02-01

    The paper discusses the results of a study conducted to evaluate two different methods used to measure the particle size distribution of an aerosol. Comparative samples were collected in the laboratory with Sierra's Models 260 and 298 cascade impaction samplers and a sampler consisting of a pump and filter using coal and limestone aerosols of varying particle size distributions. The particle size distributions determined from each of the impaction samples were compared to each other as well as to the particle size distribution determined from data obtained from a Coulter Counter analysis of the total dust sample collected on the filter. The results of the laboratory study are discussed and compared to a limited amount of similar data obtained from samples collected with the impaction samplers in underground coal mines.

  13. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions.

    PubMed

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Bartley, David L; Slaven, James E; Andrew, Michael E

    2007-11-01

    This paper concludes a five-year program on research into the use of a portable X-ray fluorescence (XRF) analyzer for analyzing lead in air sampling filters from different industrial environments, including mining, manufacturing and recycling. The results from four of these environments have already been reported. The results from two additional metal processes are presented here. At both of these sites, lead was a minor component of the total airborne metals and interferences from other elements were minimal. Nevertheless, only results from the three sites where lead was the most abundant metal were used in the overall calculation of method accuracy. The XRF analyzer was used to interrogate the filters, which were then subjected to acid digestion and analysis by inductively-coupled plasma optical-emission spectroscopy (ICP-OES). The filter samples were collected using different filter-holders or "samplers" where the size (diameter), depth and homogeneity of aerosol deposit varied from sampler to sampler. The aerosol collection efficiencies of the samplers were expected to differ, especially for larger particles. The distribution of particles once having entered the sampler was also expected to differ between samplers. Samplers were paired to allow the between-sampler variability to be addressed, and, in some cases, internal sampler wall deposits were evaluated and compared to the filter catch. It was found, rather surprisingly, that analysis of the filter deposits (by ICP-OES) of all the samplers gave equivalent results. It was also found that deposits on some of the sampler walls, which in some protocols are considered part of the sample, could be significant in comparison to the filter deposit. If it is concluded that wall-deposits should be analyzed, then XRF analysis of the filter can only give a minimum estimate of the concentration. Techniques for the statistical analysis of field data were also developed as part of this program and have been reported

  14. Design Optimization of a Portable Thermophoretic Precipitator Nanoparticle Sampler

    PubMed Central

    Miller, Art; Marinos, Alek; Wendel, Chris; King, Grant; Bugarski, Aleksandar

    2015-01-01

    Researchers at the National Institute for Occupational Safety and Health (NIOSH) are developing methods for characterizing diesel particulate matter in mines. Introduction of novel engine and exhaust after treatment technologies in underground mines is changing the nature of diesel emissions, and metrics alternative to the traditional mass-based measurements are being investigated with respect to their ability to capture changes in the properties of diesel aerosols. The emphasis is given to metrics based on measurement of number and surface area concentrations, but analysis of collected particles using electron microscopy (EM) is also employed for detailed particle characterization. To collect samples for EM analysis at remote workplaces, including mining and manufacturing facilities, NIOSH is developing portable particle samplers capable of collecting airborne nano-scale particles. This paper describes the design, construction, and testing of a prototype thermophoretic precipitator (TP) particle sampler optimized for collection of particles in the size range of 1–300 nm. The device comprises heated and cooled metal plates separated by a 0.8 mm channel through which aerosol is drawn by a pump. It weighs about 2 kg, has a total footprint of 27 × 22 cm, and the collection plate size is approximately 4 × 8 cm. Low power consumption and enhanced portability were achieved by using moderate flow rates (50–150 cm3/min) and temperature gradients (10–50 K/mm with ΔT between 8 K and 40 K). The collection efficiency of the prototype, measured with a condensation particle counter using laboratory-generated polydisperse submicrometer NaCl aerosols, ranged from 14–99%, depending on temperature gradient and flow rate. Analysis of transmission electron microscopy images of samples collected with the TP confirmed that the size distributions of collected particles determined using EM are in good agreement with those determined using a Fast Mobility Particle Sizer. PMID

  15. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  16. Quantitative organic vapor-particle sampler

    DOEpatents

    Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  17. 7 CFR 29.20 - Sampler.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sampler. 29.20 Section 29.20 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Definitions § 29.20 Sampler. Person employed, licensed, or authorized by the...

  18. A lightweight, high output soil sampler

    NASA Technical Reports Server (NTRS)

    Howard, E. A.; Imus, R. E.; Stockwell, D. W.

    1971-01-01

    Sampler is useful on or under earth's surface or on sea bottom. Larger sample amount is obtained relative to sampler size and weight and limited particle size sample material is continuously delivered. Silicone rubber linear in transport tube nearly eliminates grinding or particulate processing during sampling, and reduces required torque.

  19. Relationship between lead levels on painted surfaces and percent lead in the particles aerosolized during lead abatement.

    PubMed

    Choe, Kyoo T; Trunov, Mikhaylo; Menrath, William; Succop, Paul; Grinshpun, Sergey A

    2002-08-01

    Quantifying airborne lead on lead abatement work sites is critical in assessing worker lead exposures. Airborne lead levels depend on both the concentration of aerosolized particles and the percent lead in those particles. The lead level on the painted surface being abated may affect the percent lead in aerosolized particles. Experiments were performed in the University of Cincinnati Environmental Test Chamber (volume approximately 24.3 m3) using wood doors painted with lead-based paint. Three methods were used for paint removal: dry scraping, wet scraping, and dry machine sanding. Particles aerosolized during lead abatement activities were collected on filters using the Button Personal Inhalable Aerosol Samplers (SKC Inc., Eighty Four, PA) mounted in the workers' breathing zone. The filters were subsequently analyzed for percent lead in the particles. A portable X-ray fluorescence (XRF) instrument (NITON-700, NITON Inc., Bedford, MA) was used to measure surface lead levels of the doors. The accuracy of the XRF instrument was verified by testing standard reference materials prepared by the National Institute of Standards and Technology (NIST) and by Princeton Gamma Tech Inc. It was also verified by relating XRF results from painted door surfaces to laboratory lead analysis data obtained from paint chip samples taken from the same painted surfaces (r2 = 0.81, p < 0.001). A highly significant relationship (r2 = 0.83, p < 0.001) was found between the XRF readings and the percent lead in the particles aerosolized during dry scraping. No significant relationship was found for wet scraping (r2 = 0.09, p = 0.56) or dry machine sanding (r2 = 0.002, p = 0.92). The relationship between surface lead levels and percent lead in particles was found to be dependent on the paint removal method. This variation was attributed to the difference in water absorption property of the paint layers and the different particle aerosolization mechanisms inherent in each paint removal method.

  20. Measurements of stratospheric sulfate mixing ratio with a multi filter sampler

    NASA Astrophysics Data System (ADS)

    Gandrud, B. W.; Lazrus, A. L.

    1981-01-01

    A new multi filter sampler (MFS) was used to measure daily profiles of sulfate aerosol in Alaska during the period July 16 through July 19, 1979. During these 4 days, the variability is such that the percent standard deviation of an individual profile from the mean is as high as 23%. The results of these flights are compared with the Project Airstream results from the same time period.

  1. Inhalation Therapy in Horses.

    PubMed

    Cha, Mandy L; Costa, Lais R R

    2017-04-01

    This article discusses the benefits and limitations of inhalation therapy in horses. Inhalation drug therapy delivers the drug directly to the airways, thereby achieving maximal drug concentrations at the target site. Inhalation therapy has the additional advantage of decreasing systemic side effects. Inhalation therapy in horses is delivered by the use of nebulizers or pressured metered dose inhalers. It also requires the use of a muzzle or nasal mask in horses. Drugs most commonly delivered through inhalation drug therapy in horses include bronchodilators, antiinflammatories, and antimicrobials.

  2. A novel sulfur mustard (HD) vapor inhalation exposure system for accurate inhaled dose delivery

    PubMed Central

    Perry, Mark R.; Benson, Eric M.; Kohne, Jonathon W.; Plahovinsak, Jennifer L.; Babin, Michael C.; Platoff, Gennady E.; Yeung, David T.

    2014-01-01

    Introduction A custom designed HD exposure system was used to deliver controlled inhaled doses to an animal model through an endotracheal tube. Methods Target HD vapor challenges were generated by a temperature controlled bubbler/aerosol trap, while concentration was monitored near real-time by gas chromatography. Animal breathing parameters were monitored real-time by an in-line pneumotach, pressure transducer, and Buxco pulmonary analysis computer/software. For each exposure, the challenge atmosphere was allowed to stabilize at the desired concentration while the anesthetized animal was provided humidity controlled clean air. Once the target concentration was achieved and stable, a portion of the challenge atmosphere was drawn past the endotracheal tube, where the animal inhaled the exposure ad libitum. During the exposure, HD vapor concentration and animal weight were used to calculate the needed inhaled volume to achieve the target inhaled dose (μg/kg). The exposures were halted when the inhaled volume was achieved. Results The exposure system successfully controlled HD concentrations from 22.2 to 278 mg/m3 and accurately delivered inhaled doses between 49.3 and 1120 μg/kg with actual administered doses being within 4% of the target level. Discussion This exposure system administers specific HD inhaled doses to evaluate physiological effects and for evaluation of potential medical countermeasure treatments. PMID:25291290

  3. [Inhaled antibiotic therapy in cystic fibrosis].

    PubMed

    Girón Moreno, Rosa M; Salcedo Posadas, Antonio; Mar Gómez-Punter, Rosa

    2011-06-01

    Cystic fibrosis is the most frequent fatal genetically-transmitted disease among Caucasians. Chronic bronchial infection, especially by Pseudomonas aeruginosa, is the main cause of morbidity and mortality in this disease. Aerosolized antibiotic therapy achieves high drug concentrations in the airway with low toxicity, allowing chronic use. Currently, two antibiotics have been approved for inhalation therapy, tobramycin inhalation solution and colistimethate sodium aerosol. There is less evidence from clinical trials for the latter. The main indication for these drugs is chronic bronchial colonization by P. aeruginosa, although there is increasing evidence of the importance of the primary infection by this bacterium, whether treated by oral or intravenous antibiotics or not. More controversial is the use of aerosolized antibiotic therapy in bacterial prophylaxis or respiratory exacerbations. For many years, intravenous formulations of distinct antibiotics for aerosolized use have been employed, which are in distinct phases of research for use in nebulizer therapy. In addition to being used to treat P. aeruginosa infection, aerosolized antibiotics have been used to treat other pathogens such as methicillin-resistant Staphylococus aureus, Mycobacterium abscessus and Aspergillus fumigatus.

  4. Cardiomyopathy from 1,1-Difluoroethane Inhalation.

    PubMed

    Kumar, Suwen; Joginpally, Tejaswini; Kim, David; Yadava, Mrinal; Norgais, Konchok; Laird-Fick, Heather S

    2016-10-01

    Consumer aerosol products can be inhaled for their psychoactive effects, but with attendant adverse health effects including "sudden sniffing death." Cardiomyopathy has rarely been described in association with 1,1-difluoroethane (DFE), a common aerosol propellant. We report a 33-year-old male who developed acute myocardial injury and global hypokinesis along with rhabdomyolysis, acute kidney injury, and fulminant hepatitis after 2 days' nearly continuous huffing. Workup for other causes, including underlying coronary artery disease, was negative. His cardiac function improved over time. The exact mechanism of DFE's effects is uncertain but may include catecholamine-induced cardiomyopathy, coronary vasospasm, or direct cellular toxicity.

  5. METHODS OF CALCULATINAG LUNG DELIVERY AND DEPOSITION OF AEROSOL PARTICLES

    EPA Science Inventory


    Lung deposition of aerosol is measured by a variety of methods. Total lung deposition can be measured by monitoring inhaled and exhaled aerosols in situ by laser photometry or by collecting the aerosols on filters. The measurements can be performed accurately for stable monod...

  6. Inhalation Toxicology Research Institute annual report, October 1, 1993--September 30, 1994

    SciTech Connect

    Belinsky, S. A.; Hoover, M. D.; Bradley, P. L.

    1994-11-01

    This document from the Inhalation Toxicology Research Institute includes annual reports in the following general areas: (I) Aerosol Technology and Characterization of Airborne Materials; (II) Deposition, transport, and clearance of inhaled Toxicants; (III) Metabolism and Markers of Inhaled Toxicants; (IV) Carcinogenic Responses to Toxicants; (V) Mechanisms of carcinogenic response to Toxicants; (VI) Non carcinogenic responses to inhaled toxicants; (VII) Mechanisms of noncarcinogenic Responses to Inhaled Toxicants; (VIII) The application of Mathematical Modeling to Risk Estimates. 9 appendices are also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Formoterol Oral Inhalation

    MedlinePlus

    ... until you are ready to inhale your dose. Pull off the inhaler cover and twist the mouthpiece open in the direction shown by the arrow on the mouthpiece. Push the buttons on each side to be sure ...

  8. [Ventricular fibrillation following deodorant spray inhalation].

    PubMed

    Girard, F; Le Tacon, S; Maria, M; Pierrard, O; Monin, P

    2008-01-01

    We report one case of out-of-hospital cardiac arrest with ventricular fibrillation following butane poisoning after inhalation of antiperspiration aerosol. An early management using semi-automatic defibrillator explained the success of the resuscitation. The mechanism of butane toxicity could be an increased sensitivity of cardiac receptors to circulating catecholamines, responsible for cardiac arrest during exercise and for resuscitation difficulties. The indication of epinephrine is discussed.

  9. Inhaled Therapies for Pulmonary Hypertension.

    PubMed

    Hill, Nicholas S; Preston, Ioana R; Roberts, Kari E

    2015-06-01

    The inhaled route has a number of attractive features for treatment of pulmonary hypertension, including delivery of drug directly to the target organ, thus enhancing pulmonary specificity and reducing systemic adverse effects. It can also improve ventilation/perfusion matching by dilating vessels supplying ventilated regions, thus improving gas exchange. Furthermore, it can achieve higher local drug concentrations at a lower overall dose, potentially reducing drug cost. Accordingly, a number of inhaled agents have been developed to treat pulmonary hypertension. Most in current use are prostacyclins, including epoprostenol, which has been cleared for intravenous applications but is used off-label in acute care settings as a continuously nebulized medication. Aerosolized iloprost and treprostinil are both prostacyclins that have been cleared by the FDA to treat pulmonary arterial hypertension (PAH). Both require frequent administration (6 and 4 times daily, respectively), and both have a tendency to cause airway symptoms, including cough and wheeze, which can lead to intolerance. These agents cannot be used to substitute for the infused routes of prostacyclin because they do not permit delivery of medication at high doses. Inhaled nitric oxide (INO) is cleared for the treatment of primary pulmonary hypertension in newborns. It is also used off-label to test acute vasoreactivity in PAH during right-heart catheterization and to treat acute right-heart failure in hospitalized patients. In addition, some studies on long-term application of INO either have been recently completed with results pending or are under consideration. In the future, because of its inherent advantages in targeting the lung, the inhaled route is likely to be tested using a variety of small molecules that show promise as PAH therapies.

  10. Smoke inhalation injury

    NASA Astrophysics Data System (ADS)

    Birky, M.

    The cause of death by fires was studied. The present results and information are, however, not enough to reduce loss of life or inhalation injury. The magnitude and type of inhalation injury for civilians and firefighters represents the most inadequately defined human element of accidental fires. Little information is available on compounds other than carbon monoxide, which are responsible for respiration injury or toxicological syndrome. Effective treatment methods for inhalation victims and studies on fatalities, inhalation injury and animals are suggested.

  11. A comparison of two laboratories for the measurement of wood dust using button sampler and diffuse reflection infrared Fourier-transform spectroscopy (DRIFTS).

    PubMed

    Chirila, Madalina M; Sarkisian, Khachatur; Andrew, Michael E; Kwon, Cheol-Woong; Rando, Roy J; Harper, Martin

    2015-04-01

    The current measurement method for occupational exposure to wood dust is by gravimetric analysis and is thus non-specific. In this work, diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) for the analysis of only the wood component of dust was further evaluated by analysis of the same samples between two laboratories. Field samples were collected from six wood product factories using 25-mm glass fiber filters with the Button aerosol sampler. Gravimetric mass was determined in one laboratory by weighing the filters before and after aerosol collection. Diffuse reflection mid-infrared spectra were obtained from the wood dust on the filter which is placed on a motorized stage inside the spectrometer. The metric used for the DRIFTS analysis was the intensity of the carbonyl band in cellulose and hemicellulose at ~1735 cm(-1). Calibration curves were constructed separately in both laboratories using the same sets of prepared filters from the inhalable sampling fraction of red oak, southern yellow pine, and western red cedar in the range of 0.125-4 mg of wood dust. Using the same procedure in both laboratories to build the calibration curve and analyze the field samples, 62.3% of the samples measured within 25% of the average result with a mean difference between the laboratories of 18.5%. Some observations are included as to how the calibration and analysis can be improved. In particular, determining the wood type on each sample to allow matching to the most appropriate calibration increases the apparent proportion of wood dust in the sample and this likely provides more realistic DRIFTS results.

  12. Focus on Inhalants.

    ERIC Educational Resources Information Center

    Challenge: Safe, Disciplines, and Drug-Free Schools, 1994

    1994-01-01

    The use of inhalants is a major health concern among the school-age population. Information presented in this publication dispels the myths about inhalant use and presents common warning signs that alert teachers to a student's use. The short- and long-term effects of inhalant use are described to shed light on the health risks involved. Lesson…

  13. Probabilistic Algorithm for Sampler Siting (PASS)

    SciTech Connect

    Lorenzetti, David M.; Sohn, Michael D.

    2007-05-29

    PASS (Probabilistic Approach to Sampler Siting) optimizes the placement of samplers in buildings. The program exhaustively checks every sampler-network that can be formed, evaluating against user-supplied simulations of the possible release scenarios. The program identifies the networks that maximize the probablity of detecting a release from among the suite of user-supllied scenarios. The user may specify how many networks to report, in order to provide a number of choices in cases where many networks have very similar behavior.

  14. Aerosol Sampling and Analysis for the GEOTRACES Program

    NASA Astrophysics Data System (ADS)

    Landing, W. M.

    2008-12-01

    The GEOTRACES Science Plan emphasizes the importance of atmospheric deposition on the budgets and biogeochemistry of trace elements and isotopes in the world's oceans. With funding from the National Science Foundation, an aerosol and rainfall sampling program is being developed for use on future GEOTRACES cruises. This includes preparation and testing of dual high-volume TISCH 5170-VBL aerosol samplers for inorganic trace elements and isotopes, major ions, organic material, and isotopes of nitrogen and oxygen. A third 5170-VBL aerosol sampler is equipped with a 5-stage Sierra-style slotted impactor to collect size-fractionated aerosols for chemical measurements. The aerosol samplers will be operated using wind speed and wind sector control to avoid contamination from ship's exhaust. Duplicate automated rain samplers have also been developed to collect unfiltered and filtered rain samples. Rainfall will be filtered immediately (during collection) to avoid re-adsorption artifacts. Two intercalibration experiments are planned where aerosol and rainfall subsamples will be distributed to the community for testing and validation of analytical methods. The first experiment is being conducted in early September 2008 on the roof at RSMAS/University of Miami. Results from the GEOTRACES aerosol samplers will be compared to a multi-channel aerosol sampling system (using 47mm PCTE filters), and with ongoing aerosol collections at RSMAS. The second experiment is planned for the atmospheric sampling tower at Bellows AFB (Oahu, HI) in summer 2009. Details of the sampling equipment and sample collection methods will be discussed, along with preliminary results from the first intercalibration experiment. Community input will be solicited for planning the second intercalibration experiment.

  15. A passive sampler for atmospheric ozone

    SciTech Connect

    Grosjean, D.; Hisham, M.W.M. )

    1992-02-01

    A simple, cost-effective passive sampler has been developed for the determination of atmospheric ozone. This passive sampler is based on a colorant which fades upon reaction with ozone, whose concentration can be determined by reflectance measurement of the color change. Direct, on-site measurements are possible, and no chemical analyses are needed. Sampler design and validation studies have been carried out and included quantitative determination of color change vs exposure time (1-8 days), color change vs. ozone concentration (30-350 ppb), and response to changes in sampler configuration that modify the passive sampling rate. With indigo carmine as the colorant, the detection limits are 30 ppb. day and 120 ppb. day using a plastic grid and Teflon filter, respectively, as diffusion barriers. Interferences from nitrogen dioxide, formaldehyde and peroxyacetyl nitrate are 15, 4 and 16%, respectively, thus resulting in a negligible bias when measuring ozone in ambient air.

  16. A source of experimental underestimation of aerosol bolus deposition

    NASA Technical Reports Server (NTRS)

    Verbanck, S.; Darquenne, C.; Prisk, G. K.; Vincken, W.; Paiva, M.

    1999-01-01

    We examined the measurement error in inhaled and exhaled aerosol concentration resulting from the bolus delivery system when small volumes of monodisperse aerosols are inspired to different lung depths. A laser photometer that illuminated approximately 75% of the breathing path cross section recorded low inhaled bolus half-widths (42 ml) and negative deposition values for shallow bolus inhalation when the inhalation path of a 60-ml aerosol was straight and unobstructed. We attributed these results to incomplete mixing of the inhaled aerosol bolus over the breathing path cross section, on the basis of simultaneous recordings of the photometer with a particle-counter sampling from either the center or the edge of the breathing path. Inserting a 90 degrees bend into the inhaled bolus path increased the photometer measurement of inhaled bolus half-width to 57 ml and yielded positive deposition values. Dispersion, which is predominantly affected by exhaled bolus half-width, was not significantly altered by the 90 degrees bend. We conclude that aerosol bolus-delivery systems should ensure adequate mixing of the inhaled bolus to avoid error in measurement of bolus deposition.

  17. Extracellular killing of inhaled pneumococci in rats

    SciTech Connect

    Coonrod, J.D.; Marple, S.; Holmes, G.P.; Rehm, S.R.

    1987-12-01

    Early clearance of inhaled Staphylococcus aureus is believed to be caused by phagocytosis by alveolar macrophages. In murine models inhaled pneumococci are cleared even more rapidly than S. aureus. Conventional opsonins appear to play no role in this clearance, and recently it has been shown that murine alveolar lining material contains free fatty acids and other soluble factors that are directly bactericidal for pneumococci. To determine whether non-phagocytic factors are involved in pneumococcal clearance, we compared the site of killing of inhaled pneumococci and S. aureus in rats using histologic methods and bronchoalveolar lavage. Spontaneous lysis of pneumococci was prevented by use of autolysin-defective pneumococci or by substitution of ethanolamine for choline in the cell wall. Histologic studies showed that the percent of inhaled staphylococci associated with alveolar macrophages always exceeded the percent of staphylococci cleared, whereas there was little association of pneumococci with macrophages during clearance. Analysis of the intracellular or extracellular location of iron 59 in bronchoalveolar lavage fluid of rats that had inhaled aerosols of /sup 59/Fe-labeled bacteria suggested that staphylococci were killed predominantly in macrophages and pneumococci in the extracellular space. When /sup 59/Fe-labeled pneumococci or staphylococci were ingested and killed by macrophages in vitro, the /sup 59/Fe remained with the macrophages, suggesting that the extracellular location of /sup 59/Fe during pneumococcal killing in vivo was not caused by rapid turnover of /sup 59/Fe in macrophages. Studies of the site of killing of inhaled type 25 pneumococci labeled exclusively in the cell wall with carbon 14-ethanolamine confirmed the results obtained with /sup 59/Fe-labeled pneumococci. Thus, early killing of inhaled pneumococci, unlike staphylococci, appears to take place outside of macrophages.

  18. Field calibration of polyurethane foam disk passive air samplers for PBDEs.

    PubMed

    Chaemfa, Chakra; Barber, Jonathan L; Moeckel, Claudia; Gocht, Tilman; Harner, Tom; Holoubek, Ivan; Klanova, Jana; Jones, Kevin C

    2009-10-01

    A field study was performed to derive uptake rates of airborne polybrominated diphenyl ethers (PBDEs) to polyurethane foam (PUF) disk passive air samplers (PAS) and to investigate the influence of deployment location and device design. Data are presented on the gas-particle partitioning of PBDEs, since atmospheric phase distribution was considered to be a variable which could affect sampler performance. Uptake rates for these compounds were similar to those derived previously for other classes of persistent organic pollutants (POPs) (approximately 2-6 m(3)/day), with rates higher for the higher brominated species. Whilst other compound classes (e.g. polychlorinated biphenyls) are predominantly present in the air in the gas phase, heavier PBDEs have an association with particulates in the atmosphere at ambient temperatures. In this study, the PUF disk PAS therefore sampled PBDEs present in the gas phase and on fine aerosols with a similar sampling efficiency to those which are predominantly gas phase compounds. Compounds which are exclusively on particles are sampled less efficiently. A comparison of the three most commonly used PUF deployment configurations, used by different research groups, indicated little difference in uptake rates. The ranges of derived air concentrations for BDE-47, -99, and -183 between three sampler designs were 7.5-9.8, 7.4-12.4, and 4.7-6.6 pg/m(3), respectively. This suggests the robustness of this sampler in comparisons between regional and global campaigns where these three designs are employed.

  19. Evaluation of the Tobacco Heating System 2.2 (THS2.2). Part 5: microRNA expression from a 90-day rat inhalation study indicates that exposure to THS2.2 aerosol causes reduced effects on lung tissue compared with cigarette smoke.

    PubMed

    Sewer, Alain; Kogel, Ulrike; Talikka, Marja; Wong, Ee Tsin; Martin, Florian; Xiang, Yang; Guedj, Emmanuel; Ivanov, Nikolai V; Hoeng, Julia; Peitsch, Manuel C

    2016-11-30

    Modified-risk tobacco products (MRTP) are designed to reduce the individual risk of tobacco-related disease as well as population harm compared to smoking cigarettes. Experimental proof of their benefit needs to be provided at multiple levels in research fields. Here, we examined microRNA (miRNA) levels in the lungs of rats exposed to a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2) in a 90-day OECD TG-413 inhalation study. Our aim was to assess the miRNA response to THS2.2 aerosol compared with the response to combustible cigarettes (CC) smoke from the reference cigarette 3R4F. CC smoke exposure, but not THS2.2 aerosol exposure, caused global miRNA downregulation, which may be explained by the interference of CC smoke constituents with the miRNA processing machinery. Upregulation of specific miRNA species, such as miR-146a/b and miR-182, indicated that they are causal elements in the inflammatory response in CC-exposed lungs, but they were reduced after THS2.2 aerosol exposure. Transforming transcriptomic data into protein activity based on corresponding downstream gene expression, we identified potential mechanisms for miR-146a/b and miR-182 that were activated by CC smoke but not by THS2.2 aerosol and possibly involved in the regulation of those miRNAs. The inclusion of miRNA profiling in systems toxicology approaches increases the mechanistic understanding of the complex exposure responses.

  20. A novel ultrasonic aerosol generator.

    PubMed

    Davies, A; Hudson, N; Pirie, L

    1995-07-01

    An ultrasonic aerosol generator constructed from a domestic humidifier is described which has been used to produce liquid aerosols for physiological investigations. The instrument was constructed from a Pifco domestic humidifier modified to include an energy guide to direct the oscillations of the transducer through the coupling water, which would normally be aerosolized, onto a small membrane based sample chamber containing the liquid to be aerosolized. The size distribution of the aerosol produced was found to be between 2 and 6 mm, optimum for diffuse intrapulmonary deposition. Up to 4 ml/min of aqueous liquid was used; however the sample chamber could be made small enough to contain economic amounts of expensive material to administer by inhalation. The instrument has proved to be reliable over a period of three years.

  1. Patient preferences for inhaler devices in chronic obstructive pulmonary disease: experience with Respimat Soft Mist inhaler.

    PubMed

    Hodder, Richard; Price, David

    2009-01-01

    Current guidelines for the management of chronic obstructive pulmonary disease (COPD) recommend the regular use of inhaled bronchodilator therapy in order to relieve symptoms and prevent exacerbations. A variety of inhaler devices are currently available to COPD patients, and the choice of device is an important consideration because it can influence patients' adherence to treatment, and thus potentially affect the long-term outcome. The Respimat((R)) Soft Mist Inhaler (SMI) generates a slow-moving aerosol with a high fine particle fraction, resulting in deposition of a higher proportion of the dose in the lungs than pressurized metered-dose inhalers (pMDIs) or some dry powder inhalers (DPIs). We review clinical studies of inhaler satisfaction and preference comparing Respimat((R)) SMI against other inhalers in COPD patients. Using objective and validated patient satisfaction instruments, Respimat((R)) SMI was consistently shown to be well accepted by COPD patients, largely due to its inhalation and handling characteristics. In comparative studies with pMDIs, the patient total satisfaction score with Respimat((R)) SMI was statistically and clinically significantly higher than with the pMDI. In comparative studies with DPIs, the total satisfaction score was statistically significantly higher than for the Turbuhaler((R)) DPI, but only the performance domain of satisfaction was clinically significantly higher for Respimat((R)) SMI. Whether the observed higher levels of patient satisfaction reported with Respimat((R)) SMI might be expected to result in improved adherence to therapy and thus provide benefits consistent with those recently shown to be associated with sustained bronchodilator treatment in patients with COPD remains to be proven.

  2. A new passive sampler for collecting atmospheric tritiated water vapor

    NASA Astrophysics Data System (ADS)

    Feng, Bin; Chen, Bo; Zhuo, Weihai; Zhang, Weiyuan

    2017-04-01

    A new passive sampler was developed for collecting environmental tritiated water vapor. The construction of the sampler was improved according to computational fluid dynamics (CFD) simulations in which the influence on vapor collection by the turbulence inside the sampler was considered. Through changes in temperature from 5 °C to 35 °C and relative humidity from 45% to 90%, the new sampler revealed stable performance of the sampling rate. Compared with the previous samplers, the new sampler significantly lowered the effect of wind speed. Using the adsorption kinetic curve of the sampler provided in the co-comparison experiments, the quantitative relationship between the mass of adsorbed water and the cumulative absolute humidity exposure was established. Field applications in the vicinity of a nuclear power plant show that the data obtained by the new samplers is consistent with the active measurement. The sampler was preliminarily proven to be reliable and flexible for field investigation of HTO in the atmosphere.

  3. Statistical analysis of the DWPF prototypic sampler

    SciTech Connect

    Postles, R.L.; Reeve, C.P.; Jenkins, W.J.; Bickford, D.F.

    1991-12-31

    The DWPF process will be controlled using assay measurements on samples of feed slurry. These slurries are radioactive, and thus will be sampled remotely. A Hydraguard{trademark} pump-driven sampler system will be used as the remote sampling device. A prototype Hydraguard{trademark} sampler has been studied in a full-scale mock-up of a DWPF process vessel. Two issues were of dominant interest: (1) what accuracy and precision can be provided by such a pump-driven sampler in the face of the slurry rheology; and, if the Hydraguard{trademark} sample accurately represents the slurry in its local area, (2) is the slurry homogeneous enough throughout for it to represent the entire vessel? To determine Hydraguard{trademark} Accuracy, a Grab Sampler of simpler mechanism was used as reference. This (Low) Grab Sampler was located as near to the intake port of the Hydraguard{trademark} as could be arranged. To determine Homogeneity, a second (High) Grab Sampler was located above the first. The data necessary to these determinations comes from the measurement system, so its important variables also affect the results. Thus, the design of the test involved not just Sampling variables, but also some of the Measurement variables as well. However, the main concern was the Sampler and not the Measurement System, so the test design included only such measurement variables as could not be circumvented (Vials, Dissolution Method, and Aliquoting). The test was executed by, or under the direct oversight of, expert technologists. It thus did not explore the many important particulars of ``routine`` plant operations (such as Remote Sample Preparation or Laboratory Shift Operation).

  4. Statistical analysis of the DWPF prototypic sampler

    SciTech Connect

    Postles, R.L.; Reeve, C.P.; Jenkins, W.J.; Bickford, D.F.

    1991-01-01

    The DWPF process will be controlled using assay measurements on samples of feed slurry. These slurries are radioactive, and thus will be sampled remotely. A Hydraguard{trademark} pump-driven sampler system will be used as the remote sampling device. A prototype Hydraguard{trademark} sampler has been studied in a full-scale mock-up of a DWPF process vessel. Two issues were of dominant interest: (1) what accuracy and precision can be provided by such a pump-driven sampler in the face of the slurry rheology; and, if the Hydraguard{trademark} sample accurately represents the slurry in its local area, (2) is the slurry homogeneous enough throughout for it to represent the entire vessel To determine Hydraguard{trademark} Accuracy, a Grab Sampler of simpler mechanism was used as reference. This (Low) Grab Sampler was located as near to the intake port of the Hydraguard{trademark} as could be arranged. To determine Homogeneity, a second (High) Grab Sampler was located above the first. The data necessary to these determinations comes from the measurement system, so its important variables also affect the results. Thus, the design of the test involved not just Sampling variables, but also some of the Measurement variables as well. However, the main concern was the Sampler and not the Measurement System, so the test design included only such measurement variables as could not be circumvented (Vials, Dissolution Method, and Aliquoting). The test was executed by, or under the direct oversight of, expert technologists. It thus did not explore the many important particulars of routine'' plant operations (such as Remote Sample Preparation or Laboratory Shift Operation).

  5. Inhalation exposure to haloacetic acids and haloketones during showering.

    PubMed

    Xu, Xu; Weisel, Clifford P

    2003-02-01

    Inhalation exposure to haloacetic acids (HAAs) and haloketones (HKs) in contaminated drinking water occurs during showering. The size distribution of the aerosols generated by a shower was determined using an eight size-range particle counter, which measured particles from 0.1 to >2 microm. An exponential increase in aerosol numbers was observed while the shower water was on, while the aerosol numbers declined exponentially once the water was turned off. The half-lives of the shower aerosols were longer than 5 min after the shower water was turned off. Although the majority of the shower-generated aerosols were smaller than 0.3 microm, these aerosols only contributed approximately 2% to the measured total aerosol mass. The total shower-generated particulate HAA and HK concentrations collected on an open face filter were approximately 6.3 and 0.13 microg/m3, respectively, for shower water HAA and HK concentrations of 250 and 25 microg/L, respectively. The vapor-phase HK concentrations were 25-50 microg/m3. The estimate of the dose from inhalation exposure of disinfection byproducts (DBPs) in the particulate phase indicate that they represent less than 1% of the ingestion dose, so inhalation is not expected to be an important exposure route to nonvolatile water contaminants or the portion of volatile DBPs that stay in the particulate phase, unless the lung is the target organ. The vapor-phase levels of volatile HKs, though, are significantly higher and can contribute greater than 10% of the ingestion dose during a shower. Thus, risk assessment to the these DBPs needs to consider the inhalation route.

  6. 40 CFR 798.4350 - Inhalation developmental toxicity study.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to ensure that conditions throughout the exposure chamber are essentially the same. Test material... of the toxic characteristics of an inhalable material such as a gas, volatile substance, or aerosol... particles of the test substance. It is used to compare particles of different sizes, shapes, and...

  7. 40 CFR 798.4350 - Inhalation developmental toxicity study.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to ensure that conditions throughout the exposure chamber are essentially the same. Test material... of the toxic characteristics of an inhalable material such as a gas, volatile substance, or aerosol... particles of the test substance. It is used to compare particles of different sizes, shapes, and...

  8. 40 CFR 798.4350 - Inhalation developmental toxicity study.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to ensure that conditions throughout the exposure chamber are essentially the same. Test material... of the toxic characteristics of an inhalable material such as a gas, volatile substance, or aerosol... particles of the test substance. It is used to compare particles of different sizes, shapes, and...

  9. Inhalant allergies in children.

    PubMed

    Mims, James W; Veling, Maria C

    2011-06-01

    Children with chronic or recurrent upper respiratory inflammatory disease (rhinitis) should be considered for inhalant allergies. Risk factors for inhalant allergies in children include a first-degree relative with allergies, food allergy in infancy, and atopic dermatitis. Although inhalant allergies are rare in infancy, inhalant allergies are common in older children and impair quality of life and productivity. Differentiating between viral and allergic rhinitis can be challenging in children, but the child's age, history, and risk factors can provide helpful information. Allergic rhinitis is a risk factor for asthma, and if one is present, medical consideration of the other is warranted.

  10. Inhalant Abuse and Dextromethorphan.

    PubMed

    Storck, Michael; Black, Laura; Liddell, Morgan

    2016-07-01

    Inhalant abuse is the intentional inhalation of a volatile substance for the purpose of achieving an altered mental state. As an important, yet underrecognized form of substance abuse, inhalant abuse crosses all demographic, ethnic, and socioeconomic boundaries, causing significant morbidity and mortality in school-aged and older children. This review presents current perspectives on epidemiology, detection, and clinical challenges of inhalant abuse and offers advice regarding the medical and mental health providers' roles in the prevention and management of this substance abuse problem. Also discussed is the misuse of a specific "over-the-counter" dissociative, dextromethorphan.

  11. A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure

    SciTech Connect

    Carter, Colleen M.

    2012-05-09

    In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH) reduced the Beryllium (Be) 8-hr Time Weighted Average Threshold Limit Value (TLV-TWA) from 2.0 μg/m3 to 0.05 μg/m3 with an inhalable 'I' designation in accordance with ACGIH's particle size-selective criterion for inhalable mass. Currently, per the Department of Energy (DOE) requirements, the Lawrence Livermore National Laboratory (LLNL) is following the Occupational Health and Safety Administration (OSHA) Permissible Exposure Limit (PEL) of 2.0 μg/m3 as an 8-hr TWA, which is also the 2005 ACGIH TLV-TWA, and an Action Level (AL) of 0.2 μg/m3 and sampling is performed using the 37mm (total dust) sampling method. Since DOE is considering adopting the newer 2009 TLV guidelines, the goal of this study was to determine if the current method of sampling using the 37mm (total dust) sampler would produce results that are comparable to what would be measured using the IOM (inhalable) sampler specific to the application of high energy explosive work at LLNL's remote experimental test facility at Site 300. Side-by-side personal sampling using the two samplers was performed over an approximately two-week period during chamber re-entry and cleanup procedures following detonation of an explosive assembly containing Beryllium (Be). The average ratio of personal sampling results for the IOM (inhalable) vs. 37-mm (total dust) sampler was 1.1:1 with a P-value of 0.62, indicating that there was no statistically significant difference in the performance of the two samplers. Therefore, for the type of activity monitored during this study, the 37-mm sampling cassette would be considered a suitable alternative to the IOM sampler for collecting inhalable particulate matter, which is important given the many practical and economic advantages that it presents. However, similar comparison studies would be necessary for this conclusion to be applied to other types of

  12. A Gibbs Sampler for Learning DAGs

    PubMed Central

    Goudie, Robert J. B.; Mukherjee, Sach

    2017-01-01

    We propose a Gibbs sampler for structure learning in directed acyclic graph (DAG) models. The standard Markov chain Monte Carlo algorithms used for learning DAGs are random-walk Metropolis-Hastings samplers. These samplers are guaranteed to converge asymptotically but often mix slowly when exploring the large graph spaces that arise in structure learning. In each step, the sampler we propose draws entire sets of parents for multiple nodes from the appropriate conditional distribution. This provides an efficient way to make large moves in graph space, permitting faster mixing whilst retaining asymptotic guarantees of convergence. The conditional distribution is related to variable selection with candidate parents playing the role of covariates or inputs. We empirically examine the performance of the sampler using several simulated and real data examples. The proposed method gives robust results in diverse settings, outperforming several existing Bayesian and frequentist methods. In addition, our empirical results shed some light on the relative merits of Bayesian and constraint-based methods for structure learning.

  13. Use of Medical Metered Dose Inhalers for Functionality Testing of Bioaerosol Detection and Identification Systems

    DTIC Science & Technology

    2012-05-01

    sizing devices such as optical particle counters. 15. SUBJECT TERMS Puffers Metered dose inhalers PSL Biostimulants Bacillus subtilis 16...simulants for pathogenic Bacillus anthracis spores. For PSLs or spore aerosols with geometric mean sizes of approximately 1 µm, the geometric standard...24 4.4 Bacillus Spore Aerosols: Variability Considerations and Effects of Actuator Type and Storage Time

  14. Inhaled Antibiotics for Lower Airway Infections

    PubMed Central

    Quon, Bradley S.; Goss, Christopher H.

    2014-01-01

    Inhaled antibiotics have been used to treat chronic airway infections since the 1940s. The earliest experience with inhaled antibiotics involved aerosolizing antibiotics designed for parenteral administration. These formulations caused significant bronchial irritation due to added preservatives and nonphysiologic chemical composition. A major therapeutic advance took place in 1997, when tobramycin designed for inhalation was approved by the U.S. Food and Drug Administration (FDA) for use in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infection. Attracted by the clinical benefits observed in CF and the availability of dry powder antibiotic formulations, there has been a growing interest in the use of inhaled antibiotics in other lower respiratory tract infections, such as non-CF bronchiectasis, ventilator-associated pneumonia, chronic obstructive pulmonary disease, mycobacterial disease, and in the post–lung transplant setting over the past decade. Antibiotics currently marketed for inhalation include nebulized and dry powder forms of tobramycin and colistin and nebulized aztreonam. Although both the U.S. Food and Drug Administration and European Medicines Agency have approved their use in CF, they have not been approved in other disease areas due to lack of supportive clinical trial evidence. Injectable formulations of gentamicin, tobramycin, amikacin, ceftazidime, and amphotericin are currently nebulized “off-label” to manage non-CF bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Future inhaled antibiotic trials must focus on disease areas outside of CF with sample sizes large enough to evaluate clinically important endpoints such as exacerbations. Extrapolating from CF, the impact of eradicating organisms such as P. aeruginosa in non-CF bronchiectasis should also be evaluated. PMID:24673698

  15. The rapid and effective administration of a beta 2-agonist to horses with heaves using a compact inhalation device and metered-dose inhalers.

    PubMed Central

    Tesarowski, D B; Viel, L; McDonell, W N; Newhouse, M T

    1994-01-01

    The purpose of the study was to administer therapeutic aerosol generated by metered-dose inhalers to horses exhibiting clinical signs of heaves using a compact inhalation device developed for human medicine. It was fitted to a custom face mask in order to study the effect of an inhaled beta 2-agonist, fenoterol. Pulmonary function testing was performed on six horses following an acute exacerbation of heaves, characterized by tachypnea, wheezes, crackles, and spasmodic cough. Horses inhaled fenoterol in 1 mg increments administered as one 200 microgram puff every 5-10 s with the recording of data 5 min after the cessation of drug inhalation. A significant effect of fenoterol was shown for maximum change in transpulmonary pressure, dynamic compliance, lung resistance, and work of breathing, and the wheezes and crackles disappeared when auscultation was performed at the end of the test. This study demonstrates a novel, highly effective method for the rapid administration of inhaled medication in horses. PMID:8055432

  16. Cerium Oxide Nanoparticle Nose-Only Inhalation Exposures ...

    EPA Pesticide Factsheets

    There is a critical need to assess the health effects associated with exposure of commercially produced NPs across the size ranges reflective of that detected in the industrial sectors that are generating, as well as incorporating, NPs into products. Generation of stable and low concentrations of size-fractionated nanoscale aerosols in nose-only chambers can be difficult, and when the aerosol agglomerates during generation, the problems are significantly increased. One problem is that many nanoscale aerosol generators have higher aerosol output and/or airflow than can be accommodated by a nose-only inhalation chamber, requiring much of the generated aerosol to be diverted to exhaust. Another problem is that mixing vessels used to modulate the fluctuating output from aerosol generators can cause substantial wall losses, consuming much of the generated aerosol. Other available aerosol generation systems can produce nanoscale aerosols from nanoparticles (NPs), however these NPs are generated in real time and do not approximate the physical and chemical characteristics of NPs that are commercially produced exposing the workers and the public. The health effects associated with exposure to commercial NP production, which are more morphologically and size heterogeneous, is required for risk assessment. To overcome these problems, a low-consumption dry-particulate nanoscale aerosol generator was developed to deliver stable concentrations in the range of 10–5000 µg

  17. Coalescent genealogy samplers: windows into population history.

    PubMed

    Kuhner, Mary K

    2009-02-01

    Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, growth rate, patterns of gene flow or time of divergence from another population, based on samples of molecular data. Genealogy samplers are increasingly popular because of their potential to disentangle complex population histories. In the last decade they have been widely applied to systems ranging from humans to viruses. Findings include detection of unexpected reproductive inequality in fish, new estimates of historical whale abundance, exoneration of humans for the prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This review summarizes available genealogy-sampler software, including data requirements and limitations on the use of each program.

  18. Air pollution and asthma: clinical studies with sulfuric acid aerosols

    SciTech Connect

    Utell, M.J.; Frampton, M.W.; Morrow, P.E. )

    1991-11-01

    Until recently, acid deposition has been widely considered a serious ecological problem but not a threat to human health. The controlled clinical study is an important approach in linking acidic aerosol inhalation with respiratory effects. Asthmatic patients represent a subpopulation most responsive to sulfuric acid aerosols. In a series of studies with asthmatic volunteers, several factors have been identified that may modulate the intensity of the bronchoconstrictor response to inhaled acidic aerosols. We found (1) enhancement of the bronchoconstrictor response during exercise, (2) the more acidic aerosols provoke the greatest changes in lung function, and (3) mitigation of airway responses during sulfuric acid aerosol inhalation caused by high respiratory ammonia concentrations. Additional factors influencing responsiveness await identification.

  19. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler.

    PubMed

    Park, Ji-Woon; Park, Chul Woo; Lee, Sung Hwa; Hwang, Jungho

    2015-01-01

    A culture-based colony counting method is the most widely used analytical technique for monitoring bioaerosols in both indoor and outdoor environments. However, this method requires several days for colony formation. In this study, our goal was fast monitoring (Sampling: 3 min, Detection: < 1 min) of indoor bioaerosol concentrations with ATP bioluminescence assay using a bioaerosol sampler. For this purpose, a novel hand-held electrostatic rod-type sampler (110 mm wide, 115 mm long, and 200 mm tall) was developed and used with a commercial luminometer, which employs the Adenosine triphosphate (ATP) bioluminescence method. The sampler consisted of a wire-rod type charger and a cylindrical collector, and was operated with an applied voltage of 4.5 kV and a sampling flow rate of 150.7 lpm. Its performance was tested using Staphylococcus epidermidis which was aerosolized with an atomizer. Bioaerosol concentrations were measured using ATP bioluminescence method with our sampler and compared with the culture-based method using Andersen cascade impactor under controlled laboratory conditions. Indoor bioaerosol concentrations were also measured using both methods in various indoor environments. A linear correlation was obtained between both methods in lab-tests and field-tests. Our proposed sampler with ATP bioluminescence method may be effective for fast monitoring of indoor bioaerosol concentrations.

  20. Fast Monitoring of Indoor Bioaerosol Concentrations with ATP Bioluminescence Assay Using an Electrostatic Rod-Type Sampler

    PubMed Central

    Park, Ji-Woon; Park, Chul Woo; Lee, Sung Hwa; Hwang, Jungho

    2015-01-01

    A culture-based colony counting method is the most widely used analytical technique for monitoring bioaerosols in both indoor and outdoor environments. However, this method requires several days for colony formation. In this study, our goal was fast monitoring (Sampling: 3 min, Detection: < 1 min) of indoor bioaerosol concentrations with ATP bioluminescence assay using a bioaerosol sampler. For this purpose, a novel hand-held electrostatic rod-type sampler (110 mm wide, 115 mm long, and 200 mm tall) was developed and used with a commercial luminometer, which employs the Adenosine triphosphate (ATP) bioluminescence method. The sampler consisted of a wire-rod type charger and a cylindrical collector, and was operated with an applied voltage of 4.5 kV and a sampling flow rate of 150.7 lpm. Its performance was tested using Staphylococcus epidermidis which was aerosolized with an atomizer. Bioaerosol concentrations were measured using ATP bioluminescence method with our sampler and compared with the culture-based method using Andersen cascade impactor under controlled laboratory conditions. Indoor bioaerosol concentrations were also measured using both methods in various indoor environments. A linear correlation was obtained between both methods in lab-tests and field-tests. Our proposed sampler with ATP bioluminescence method may be effective for fast monitoring of indoor bioaerosol concentrations. PMID:25950929

  1. Nonthermal Inhalation Injury.

    DTIC Science & Technology

    1992-01-01

    understand the effects of the various byproducts of combustion on the human body. A thorough knowledge of the physiological mechanisms , relevant...as soon as possible. Overview of Smoke Inhalation Physiology The physiologic mechanisms of injury from smoke inhalation are multiple and complex...to breathe Lower airway obstruction Dyspnea, tachypnea, wheezing, rhonchi, carbonaceous sputum Parenchymal injury Dyspnea, tachypnea, rales Table 1

  2. Pathophysiology, management and treatment of smoke inhalation injury

    PubMed Central

    Rehberg, Sebastian; Maybauer, Marc O; Enkhbaatar, Perenlei; Maybauer, Dirk M; Yamamoto, Yusuke; Traber, Daniel L

    2009-01-01

    Smoke inhalation injury continues to increase morbidity and mortality in burn patients in both the third world and industrialized countries. The lack of uniform criteria for the diagnosis and definition of smoke inhalation injury contributes to the fact that, despite extensive research, mortality rates have changed little in recent decades. The formation of reactive oxygen and nitrogen species, as well as the procoagulant and antifibrinolytic imbalance of alveolar homeostasis, all play a central role in the pathogenesis of smoke inhalation injury. Further hallmarks include massive airway obstruction owing to cast formation, bronchospasm, the increase in bronchial circulation and transvascular fluid flux. Therefore, anticoagulants, antioxidants and bronchodilators, especially when administered as an aerosol, represent the most promising treatment strategies. The purpose of this review article is to provide an overview of the pathophysiological changes, management and treatment options of smoke inhalation injury based on the current literature. PMID:20161170

  3. Development of Respimat(®) Soft Mist™ Inhaler and its clinical utility in respiratory disorders.

    PubMed

    Dalby, Richard N; Eicher, Joachim; Zierenberg, Bernd

    2011-01-01

    The Respimat(®) Soft Mist™ Inhaler (SMI) (Boehringer Ingelheim International GmbH, Ingelheim, Germany) was developed in response to the need for a pocket-sized device that can generate a single-breath, inhalable aerosol from a drug solution using a patient-independent, reproducible, and environmentally friendly energy supply. This paper describes the design and evolution of this innovative device from a laboratory concept model and the challenges that were overcome during its development and scaleup to mass production. A key technical breakthrough was the uniblock, a component combining filters and nozzles and made of silicon and glass, through which drug solution is forced using mechanical power. This allows two converging jets of solution to collide at a controlled angle, generating a fine aerosol of inhalable droplets. The mechanical energy comes from a spring which is tensioned by twisting the base of the device before use. Additional features of the Respimat(®) SMI include a dose indicator and a lockout mechanism to avoid the problems of tailing-off of dose size seen with pressurized metered dose inhalers. The Respimat(®) SMI aerosol cloud has a unique range of technical properties. The high fine particle fraction allied with the low velocity and long generation time of the aerosol translate into a higher fraction of the emitted dose being deposited in the lungs compared with aerosols from pressurized metered dose inhalers and dry powder inhalers. These advantages are realized in clinical trials in adults and children with obstructive lung diseases, which have shown that the efficacy and safety of a pressurized metered dose inhaler formulation of a combination bronchodilator can be matched by a Respimat(®) SMI formulation containing only one half or one quarter of the dose delivered by a pressurized metered dose inhaler. Patient satisfaction with the Respimat(®) SMI is high, and the long duration of the spray is of potential benefit to patients who have

  4. Operability test report for 211BA flow proportional sampler

    SciTech Connect

    Weissenfels, R.D.

    1995-01-01

    This operability report will verify that the 211-BA flow proportional sampler functions as intended by design. The sampler was installed by Project W-007H and is part of BAT/AKART for the BCE liquid effluent stream.

  5. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    PubMed Central

    Barnewall, Roy E.; Comer, Jason E.; Miller, Brian D.; Gutting, Bradford W.; Wolfe, Daniel N.; Director-Myska, Alison E.; Nichols, Tonya L.; Taft, Sarah C.

    2012-01-01

    Repeated low-level exposures to biological agents could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as B. anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU) of B. anthracis spores) and included a pilot feasibility characterization study, acute exposure study, and a multiple 15 day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses to rabbits. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 × 102, 1 × 103, 1 × 104, and 1 × 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 × 102, 1 × 103, and 1 × 104 CFU. In all studies, targeted inhaled doses remained consistent from rabbit-to-rabbit and day-to-day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and over multiple exposure days. PMID:22919662

  6. Inhalants in Peru.

    PubMed

    Lerner, R; Ferrando, D

    1995-01-01

    In Peru, the prevalence and consequences of inhalant abuse appear to be low in the general population and high among marginalized children. Inhalant use ranks third in lifetime prevalence after alcohol and tobacco. Most of the use appears to be infrequent. Among marginalized children, that is, children working in the streets but living at home or children living in the street, the problem of inhalant abuse is a serious problem. Among children working in the streets but living at home, the lifetime prevalence rate for inhalant abuse is high, ranging from 15 to 45 percent depending on the study being cited. For children living in the streets, the use of inhalant is even more severe. As mentioned earlier in this chapter, most of these street children use inhalants on a daily basis. The lack of research on the problem of inhalant abuse is a serious impediment to development of intervention programs and strategies to address this problem in Peru. Epidemiologic and ethnographic research on the nature and extent of inhalant abuse are obvious prerequisites to targeted treatment and preventive intervention programs. The urgent need for current and valid data is underscored by the unique vulnerability of the youthful population at risk and the undisputed harm that results from chronic abuse of inhalants. Nonetheless, it is important to mention several programs that work with street children. Some, such as the Information and Education Center for the Prevention of Drug Abuse, Generation, and Centro Integracion de Menores en Abandono have shelters where street children are offered transition to a less marginal lifestyle. Teams of street educators provide the children with practical solutions and gain their confidence, as well as offer them alternative socialization experiences to help them survive the streets and avoid the often repressive and counterproductive environments typical of many institutions. Most of the children who go through these programs tend to abandon

  7. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  8. 21 CFR 884.1560 - Fetal blood sampler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade...

  9. 21 CFR 884.1560 - Fetal blood sampler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade...

  10. 21 CFR 884.1560 - Fetal blood sampler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade...

  11. 21 CFR 884.1560 - Fetal blood sampler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade...

  12. A new sampler for stratified lagoon chemical and microbiological assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A water column sampler was needed to study stratification of nutrients and bacteria in a swine manure lagoon. Conventional samplers yielded shallow samples near the bank or required a boat. These limitations prompted development of a new sampler to collect at multiple depths with minimal disturbanc...

  13. 21 CFR 884.1560 - Fetal blood sampler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade...

  14. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  15. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  16. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  17. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  18. Student Sampler: Facts in Brief on North Carolina.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This information sampler was compiled to assist students in their study of North Carolina. Every year North Carolina students must complete a special project on their state. The sampler was designed to introduce students to the people, places, and events that have shaped North Carolina's history. Topics in the sampler include state symbols,…

  19. Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler

    NASA Astrophysics Data System (ADS)

    Markovic, Milos Z.; Prokop, Sebastian; Staebler, Ralf M.; Liggio, John; Harner, Tom

    2015-07-01

    The particle infiltration efficiencies (PIE) of three passive and one active air samplers were evaluated under field conditions. A wide-range particle spectrometer operating in the 250-4140 nm range was used to acquire highly temporally resolved particle-number and size distributions for the different samplers compared to ambient air. Overall, three of the four evaluated samplers were able to acquire a representative sample of ambient particles with PIEs of 91.5 ± 13.7% for the GAPS Network sampler, 103 ± 15.5% for the Lancaster University sampler, and 89.6 ± 13.4% for a conventional PS-1 high-volume active air sampler (Hi-Vol). Significantly (p = 0.05) lower PIE of 54 ± 8.0% was acquired for the passive sampler used under the MONET program. These findings inform the comparability and use of passive and active samplers for measuring particle-associated priority chemicals in air.

  20. Aerosol Sampling with Low Wind Sensitivity.

    NASA Astrophysics Data System (ADS)

    Kalatoor, Suresh

    Occupational exposure to airborne particles is generally evaluated by wearing a personal sampler that collects aerosol particles from the worker's breathing zone during the work cycle. The overall sampling efficiency of most currently available samplers is sensitive to wind velocity and direction. In addition, most samplers have internal losses due to gravitational settling, electrostatic interactions, and internal turbulence. A new sampling technique has been developed, theoretically and experimentally evaluated, and compared to existing techniques. The overall sampling efficiency of the protoype sampler was compared to that of a commonly used sampler, 25 mm closed-face cassette. Uranine was used as the challange aerosol with particle physical diameters 13.5, 20 and 30 mum. The wind velocity ranged from 100 to 300 cm s^ {-1}. It was found to have less internal losses and less dependence on wind velocity and direction. It also yielded better uniformity in the distribution of large particles on the filter surface, an advantage for several types of analysis. A new general equation for sharp-edged inlets was developed that predicts the sampling efficiency of sharp-edged (or thin-walled) inlets in most occupational environments that are weakly disturbed with air motions that cannot be strictly classified as calm-air or fast -moving air. Computational analysis was carried out using the new general equation and was applied to situations when the wind velocity vector is not steady, but fluctuates around predominant average values of its magnitude and orientation. Two sampling environments, horizontal aerosol flow (ambient atmosphere) and vertical aerosol flow (industrial stacks) have been considered. It was found, that even for small fluctuations in wind direction the sampling efficiency may be significantly less than that obtained for the mean wind direction. Time variations in wind magnitude at a fixed wind direction were found to affect the sampling efficiency to a

  1. Releasable Asbestos Field Sampler (RAFS) Operation Manual

    EPA Science Inventory

    The Releasable Asbestos Field Sampler (RAFS) is a field instrument that provides an in-situ measurement of asbestos releasability from consistent and reproducible mechanical agitation of the source material such as soil. The RAFS was designed to measure concentration (asbestos st...

  2. A personal nanoparticle respiratory deposition (NRD) sampler.

    PubMed

    Cena, Lorenzo G; Anthony, T Renée; Peters, Thomas M

    2011-08-01

    A lightweight (60 g), personal nanoparticle respiratory deposition (NRD) sampler was developed to selectively collect particles smaller than 300 nm similar to their typical deposition in the respiratory tract. The sampler operates at 2.5 Lpm and consists of a respirable cyclone fitted with an impactor and a diffusion stage containing mesh screens. The cut-point diameter of the impactor was determined to be 300 nm with a sharpness σ = 1.53. The diffusion stage screens collect particles with an efficiency that matches the deposition efficiency of particles smaller than 300 nm in the respiratory tract. Impactor separation performance was unaffected by loading at typical workplace levels (p-value = 0.26). With chemical analysis of the diffusion media, the NRD sampler can be used to directly assess exposures to nanoparticles of a specific composition apart from other airborne particles. The pressure drop of the NRD sampler is sufficiently low to permit its operation with conventional, belt-mounted sampling pumps.

  3. South Philadelphia Passive Sampler and Sensor Study

    EPA Science Inventory

    From June 2013 to March 2015, a total of 41 two-week duration passive sampler deployments were conducted at 17 sites in South Philadelphia, with results for benzene discussed here. Complementary time-resolved measurements with lower cost prototype fenceline sensors and an open-pa...

  4. Retained Gas Sampler Calibration and Simulant Tests

    SciTech Connect

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  5. Quantum Gibbs Samplers: The Commuting Case

    NASA Astrophysics Data System (ADS)

    Kastoryano, Michael J.; Brandão, Fernando G. S. L.

    2016-06-01

    We analyze the problem of preparing quantum Gibbs states of lattice spin Hamiltonians with local and commuting terms on a quantum computer and in nature. Our central result is an equivalence between the behavior of correlations in the Gibbs state and the mixing time of the semigroup which drives the system to thermal equilibrium (the Gibbs sampler). We introduce a framework for analyzing the correlation and mixing properties of quantum Gibbs states and quantum Gibbs samplers, which is rooted in the theory of non-commutative {mathbb{L}_p} spaces. We consider two distinct classes of Gibbs samplers, one of them being the well-studied Davies generator modelling the dynamics of a system due to weak-coupling with a large Markovian environment. We show that their spectral gap is independent of system size if, and only if, a certain strong form of clustering of correlations holds in the Gibbs state. Therefore every Gibbs state of a commuting Hamiltonian that satisfies clustering of correlations in this strong sense can be prepared efficiently on a quantum computer. As concrete applications of our formalism, we show that for every one-dimensional lattice system, or for systems in lattices of any dimension at temperatures above a certain threshold, the Gibbs samplers of commuting Hamiltonians are always gapped, giving an efficient way of preparing the associated Gibbs states on a quantum computer.

  6. 7 CFR 29.20 - Sampler.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sampler. 29.20 Section 29.20 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS...

  7. 7 CFR 29.20 - Sampler.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sampler. 29.20 Section 29.20 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS...

  8. Ohio Sampler: Outdoor and Environmental Education.

    ERIC Educational Resources Information Center

    Ballbach, Joann, Ed.

    This document provides practical suggestions and meaningful activities for implementing Ohio's model curriculum in science for instruction that emphasizes hands-on experience and diverse learning opportunities. It also includes a variety of nonscience activities that emphasize and utilize the outdoors. This Sampler lists activities by indoor or…

  9. South Philadelphia Passive Sampler and Sensor Study

    EPA Science Inventory

    Starting in June 2013, the United States Environmental Protection Agency (U.S. EPA) and the City of Philadelphia Air Measurements Services began collaborative research on the use of passive samplers (PSs) and stand-alone air measurement (SAM) systems to improve information on the...

  10. The History of Therapeutic Aerosols: A Chronological Review

    PubMed Central

    Thiel, Charles G.

    2017-01-01

    Abstract In 1956, Riker Laboratories, Inc., (now 3 M Drug Delivery Systems) introduced the first pressurized metered dose inhaler (MDI). In many respects, the introduction of the MDI marked the beginning of the modern pharmaceutical aerosol industry. The MDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern MDIs, dry powder inhalers, and nebulizer systems. The innovative inhalers and drugs discovered by the pharmaceutical aerosol industry, particularly since 1956, have improved the quality of life of literally hundreds of millions of people. Yet, the delivery of therapeutic aerosols has a surprisingly rich history dating back more than 3500 years to ancient Egypt. The delivery of atropine and related compounds has been a crucial inhalation therapy throughout this period and the delivery of associated structural analogs remains an important therapy today. Over the centuries, discoveries from many cultures have advanced the delivery of therapeutic aerosols. For thousands of years, therapeutic aerosols were prepared by the patient or a physician with direct oversight of the patient using custom-made delivery systems. However, starting with the Industrial Revolution, advancements in manufacturing resulted in the bulk production of therapeutic aerosol delivery systems produced by people completely disconnected from contact with the patient. This trend continued and accelerated in the 20th century with the mass commercialization of modern pharmaceutical inhaler products. In this article, we will provide a summary of therapeutic aerosol delivery from ancient times to the present along with a look to the

  11. Recent advances in the management of obstructive airways disease. Auxiliary MDI aerosol delivery systems.

    PubMed

    Sackner, M A; Kim, C S

    1985-08-01

    Aerosol delivered through metered-dose inhalers (MDI) offers a potentially convenient way to deliver bronchodilator agents and corticosteroids to the lungs of patients with asthma and COPD. Unfortunately, most patients are unable to coordinate satisfactorily their actuation with inhalation, a problem overcome by using auxiliary MDI aerosol delivery systems. Left to their own judgment, patients often inhale the aerosol with a high inspiratory flow rather than slowly to produce optimal aerosol deposition within the airways. This problem has been corrected by one of the auxiliary MDI aerosol delivery systems (InspirEase) through auditory, visual, and tactile feedback mechanisms. MDI devices release aerosol at a high jet velocity in large particle sizes, depositing most of the aerosol in the oropharynx which can lead to potential systemic absorption of adrenergic agonists with CNS and cardiovascular side effects, oral thrush, and suppression of adrenocortical activity. All the auxiliary MDI aerosol systems promote delivery of small aerosol particles and markedly diminish oropharyngeal impaction. Of all the systems, only InspirEase provides volume and flow feedback controls to ensure an optimal inhalation maneuver. Auxiliary MDI aerosol systems should always be used for aerosolized corticosteroid administration because they minimize oropharyngeal deposition and improve aerosol delivery efficiency.

  12. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose

    NASA Astrophysics Data System (ADS)

    Dickens, Colin; McGrath, Conor; Warren, Nigel; Biggs, Philip; McAughey, John

    2009-02-01

    Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of diameter 150 -- 250 nm CMD. Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, it was noted that particle deposition increased with increasing inhalation depth, and that smoke inhalation volumes were generally greater than normal tidal breathing volumes. A weak association was observed between particle diameter and puff flow, but no strong association between particle diameter and retention efficiency.

  13. Preclinical safety evaluation of inhaled cyclosporine in propylene glycol.

    PubMed

    Wang, Tao; Noonberg, Sarah; Steigerwalt, Ronald; Lynch, Maryellen; Kovelesky, Rosemary A; Rodríguez, Carlos A; Sprugel, Katherine; Turner, Nancy

    2007-01-01

    Cyclosporine inhalation solution has the potential to improve outcomes following lung transplantation by delivering high concentrations of an immunosuppressant directly to the allograft while minimizing systemic drug exposure and associated toxicity. The objective of these studies was to evaluate the potential toxicity of aerosolized cyclosporine formulated in propylene glycol when given by inhalation route to rats and dogs for 28 days. Sprague-Dawley rats received total inhaled doses of 0 (air), 0 (vehicle, propylene glycol), 7.4, 24.3, and 53.9 mg cyclosporine/kg/day. In a separate study, beagle dogs were exposed to 0, 4.4, 7.7, and 9.7 mg cyclosporine/kg/day. Endpoints used to evaluate potential toxicity of inhaled cyclosporine were clinical observations, body weight, food consumption, respiratory functions, toxicokinetics, and clinical/anatomic pathology. Daily administration of aerosolized cyclosporine did not result in observable accumulation of cyclosporine in blood or lung tissue. Toxicokinetic analysis from the rat study showed that the exposure of cyclosporine was approximately 18 times higher in the lung tissue compared to the blood. Systemic effects were consistent with those known for cyclosporine. There was no unexpected systemic toxicity or clinically limiting local respiratory toxicity associated with inhalation exposure to cyclosporine inhalation solution at exposures up to 2.7 times the maximum human exposure in either rats or dogs. There were no respiratory or systemic effects of high doses of propylene glycol relative to air controls. These preclinical studies demonstrate the safety of aerosolized cyclosporine in propylene glycol and support its continued clinical investigation in patients undergoing allogeneic lung transplantation.

  14. Atomization method for verifying size effects of inhalable particles on lung damage of mice.

    PubMed

    Tao, Chen; Tang, Yue; Zhang, Lan; Tian, Yonggang; Zhang, Yingmei

    2017-02-01

    To explore the size effects of inhalable particles on lung damage, aqueous aerosol containing cadmium was studied as a model to design a new type of two-stage atomization device that was composed of two adjustable parts with electronic ultrasonic atomization and pneumatic atomization. The working parameters and effectiveness of this device were tested with H2O atomization and CdCl2 inhalation, respectively. By gravimetrically detecting the mass concentrations of PM2.5 and PM10 and analysing the particle size with a laser sensor, we confirmed the particle size distribution of the aqueous aerosol produced by the new device under different working conditions. Then, we conducted experiments in male Kunming mice that inhaled CdCl2 to determine the size effects of inhalable particles on lung damage and to confirm the effectiveness of the device. The new device could effectively control the particle size in the aqueous aerosol. The inhaled CdCl2 entered and injured the lungs of the mice by causing tissue damage, oxidative stress, increasing endoplasmic reticulum stress and triggering an inflammatory response, which might be related to where the particles deposited. The smaller particles in the aqueous aerosol atomized by the new two-stage atomization device deposited deeper into lung causing more damage. This device could provide a new method for animal experiments involving inhalation with water-soluble toxins.

  15. Effects of inhaled sulfur dioxide (SO/sub 2/) on pulmonary function in healthy adolescents: exposure to SO/sub 2/ alone or SO/sub 2/ + sodium chloride droplet aerosol during rest and exercise

    SciTech Connect

    Koenig, J.Q.; Pierson, W.E.; Horike, M.; Frank, R.

    1982-01-01

    Statistically significant changes in pulmonary functional measurements in asthmatic adolescents exposed to sulfur dioxide (SO/sub 2/) at reset and during exercise were recently reported. To determine whether those results were due to the subjects' adolescence or to their asthma, the identical exposures were repeated in healthy adolescents. The healthy subjects showed small, statistically significant changes after exposure to SO/sub 2/, but these changes were slight compared to those seen in the asthmatic adolescents. It was concluded that asthmatic adolescents are much more sensitive to the effects of inhaled SO/sub 2/ than are healthy adolescents. (JMT)

  16. Evaluation of passive diffusion bag samplers, dialysis samplers, and nylon-screen samplers in selected wells at Andersen Air Force Base, Guam, March-April 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.

    2003-01-01

    During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.

  17. Budesonide Oral Inhalation

    MedlinePlus

    Budesonide is used to prevent difficulty breathing, chest tightness, wheezing, and coughing caused by asthma. Budesonide powder for oral inhalation (Pulmicort Flexhaler) is used in adults and children 6 ...

  18. Acetylcysteine Oral Inhalation

    MedlinePlus

    Acetylcysteine inhalation is used along with other treatments to relieve chest congestion due to thick or abnormal ... that causes problems with breathing, digestion, and reproduction). Acetylcysteine is in a class of medications called mucolytic ...

  19. Zanamivir Oral Inhalation

    MedlinePlus

    ... you use an inhaled medication to treat asthma, emphysema, or other breathing problems and you are scheduled ... the air passages that lead to the lungs); emphysema (damage to air sacs in the lungs); or ...

  20. Ipratropium Oral Inhalation

    MedlinePlus

    Ipratropium oral inhalation is used to prevent wheezing, shortness of breath, coughing, and chest tightness in people ... damage to the air sacs in the lungs). Ipratropium is in a class of medications called bronchodilators. ...

  1. Pirbuterol Acetate Oral Inhalation

    MedlinePlus

    ... mouth or throat irritation, rinse your mouth with water, chew gum, or suck sugarless hard candy after using pirbuterol.Inhalation devices require regular cleaning. Once a week, remove the mouthpiece cover, turn ...

  2. Umeclidinium Oral Inhalation

    MedlinePlus

    ... chest tightness caused by chronic obstructive pulmonary disease (COPD; a group of diseases that affect the lungs ... Do not use umeclidinium inhalation during a sudden COPD attack. Your doctor will prescribe a short-acting ( ...

  3. Olodaterol Oral Inhalation

    MedlinePlus

    ... chest tightness caused by chronic obstructive pulmonary disease (COPD; a group of diseases that affect the lungs ... Do not use olodaterol inhalation during a sudden COPD attack. Your doctor will prescribe a short-acting ( ...

  4. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  5. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  6. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments.

    PubMed

    Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  7. Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis

    PubMed Central

    Thomas, Richard J.; Davies, C.; Nunez, A.; Hibbs, S.; Eastaugh, L.; Harding, S.; Jordan, J.; Barnes, K.; Oyston, P.; Eley, S.

    2012-01-01

    Deposition of Burkholderia pseudomallei within either the lungs or nasal passages of the Balb/c murine model resulted in different infection kinetics. The infection resulting from the inhalation of B. pseudomallei within a 12 μm particle aerosol was prolonged compared to a 1 μm particle aerosol with a mean time-to-death (MTD) of 174.7 ± 14.9 h and 73.8 ± 11.3 h, respectively. Inhalation of B. pseudomallei within 1 μm or 12 μm particle aerosols resulted in a median lethal dose (MLD) of 4 and 12 cfu, respectively. The 12 μm particle inhalational infection was characterized by a marked involvement of the nasal mucosa and extension of bacterial colonization and inflammatory lesions from the olfactory epithelium through the olfactory nerves (or tracts) to the olfactory bulb (100%), culminating in abscessation of the brain (33%). Initial involvement of the upper respiratory tract lymphoid tissues (nasal-associated lymphoid tissue (NALT) and cervical lymph nodes) was observed in both the 1 and 12 μm particle inhalational infections (80–85%). Necrotising alveolitis and bronchiolitis were evident in both inhalational infections, however, lung pathology was greater after inhalation of the 1 μm particle aerosol with pronounced involvement of the mediastinal lymph node (50%). Terminal disease was characterized by bacteraemia in both inhalational infections with dissemination to the spleen, liver, kidneys, and thymus. Treatment with co-trimoxazole was more effective than treatment with doxycycline irrespective of the size of the particles inhaled. Doxycycline was more effective against the 12 μm particle inhalational infection as evidenced by increased time to death. However, both treatment regimes exhibited significant relapse when therapy was discontinued with massive enlargement and abscessation of the lungs, spleen, and cervical lymph nodes observed. PMID:22919690

  8. Pulmonary Deposition of Aerosols in Microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim

    1997-01-01

    The intrapulmonary deposition of airborne particles (aerosol) in the size range of 0.5 to 5 microns is primarily due to gravitational sedimentation. In the microgravity (muG) environment, sedimentation is no longer active, and thus there should be marked changes in the amount and site of the deposition of these aerosol. We propose to study the total intrapulmonary deposition of aerosol spanning the range 0.5 to 5 microns in the KC-135 at both muG and at 1.8-G. This will be followed by using boli of 1.0 micron aerosol, inhaled at different points in a breath to study aerosol dispersion and deposition as a function of inspired depth. The results of these studies will have application in better understanding of pulmonary diseases related to inhaled particles (pneumoconioses), in studying drugs delivered by inhalation, and in understanding the consequence of long-term exposure to respirable aerosols in long-duration space flight.

  9. Post-accident inhalation exposure and experience with plutonium

    SciTech Connect

    Shinn, J

    1998-06-01

    This paper addresses the issue of inhalation exposure immediately afterward and for a long time following a nuclear accident. For the cases where either a nuclear weapon burns or explodes prior to nuclear fission, or at locations close to a nuclear reactor accident containing fission products, a major concern is the inhalation of aerosolized plutonium (Pu) particles producing alpha-radiation. We have conducted field studies of Pu- contaminated real and simulated accident sites at Bikini, Johnston Atoll, Tonopah (Nevada), Palomares (Spain), Chernobyl, and Maralinga (Australia).

  10. Computer controlled multi-walled carbon nanotube inhalation exposure system.

    PubMed

    McKinney, Walter; Chen, Bean; Frazer, Dave

    2009-10-01

    Inhalation exposure systems are necessary tools for determining the dose-response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this project was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of airborne multi-walled carbon nanotubes (MWCNT). An aerosol generator was developed which was capable of suspending a respirable fraction of multi-walled carbon nanotubes from bulk material. The output of the generator was used to expose small laboratory animals to constant aerosol concentrations up to 12 mg/m(3). Particle distribution and morphology of the MWCNT aerosol delivered to the exposure chamber were measured and compared to samples previously taken from air inside a facility that produces MWCNT. The comparison showed the MWCNT generator was producing particles similar in size and shape to those found in a work environment. The inhalation exposure system combined air flow controllers, particle monitors, data acquisition devices, and custom software with automatic feedback control to achieve constant and repeatable exposure chamber temperature, relative humidity, pressure, aerosol concentration, and particle size distribution. The automatic control algorithm was capable of maintaining the mean aerosol concentration to within 0.1 mg/m(3) of the selected target value, and it could reach 95% of the target value in less than 10 minutes during the start-up of an inhalation exposure. One of the major advantages of this system was that once the exposure parameters were selected, a minimum amount of operator intervention was required over the exposure period.

  11. Rapid detection of airborne viruses by personal bioaerosol sampler combined with the PCR device

    NASA Astrophysics Data System (ADS)

    Agranovski, I. E.; Safatov, A. S.; Sergeev, A. A.; Pyankov, O. V.; Petrishchenko, V. A.; Mikheev, M. V.; Sergeev, A. N.

    A new personal sampler had been previously developed and verified for monitoring of viable airborne viruses. The aims of this project were to investigate a possibility of the utilization of the polymerase chain reaction (PCR) method to speed up the time consuming analytical procedures and to evaluate a lower detection limit of the combined (sampler-PCR) device. Tenfold serial dilutions of the initial suspension of the Vaccinia virus were aerosolized in the chamber and airborne viruses were monitored by two simultaneously operating samplers. The results of monitoring were successfully obtained by a standard plaque assay (live microbes) and by the PCR method (total DNA). The corresponding calculations to identify the minimal detectable concentration in the ambient air were then performed. It was found that the minimal detectable concentration of airborne viruses in the ambient air depends on the sampling time. As demonstrated, such concentration should be at least 125×10 3 PFU m -3 for a sampling time of as short as 1 min. The detectable concentration decreases with the increase of the sampling time and reaches 25×10 3 and 10×10 3 PFU m -3 for 5 and 12.5 min of sampling respectively.

  12. Bioaerosol sampling by a personal rotating cup sampler CIP 10-M.

    PubMed

    Görner, Peter; Fabriès, Jean-François; Duquenne, Philippe; Witschger, Olivier; Wrobel, Richard

    2006-01-01

    High concentrations of bioaerosols containing bacterial, fungal and biotoxinic matter are encountered in many workplaces, e.g. solid waste treatment plants, waste water treatment plants and sewage networks. A personal bioaerosol sampler, the CIP 10-M (M-microbiologic), has been developed to measure worker exposure to airborne biological agents. This sampler is battery operated; it is light and easy to wear and offers full work shift autonomy. It can sample much higher concentrations than biological impactors and limits the mechanical stress on the microorganisms. Biological particles are collected in 2 ml of liquid medium inside a rotating cup fitted with radial vanes to maintain an air flow rate of 10 l min(-1) at a rotational speed of approximately 7,000 rpm. The rotating cup is made of sterilisable material. The sampled particles follow a helicoidal trajectory as they are pushed to the surface of the liquid by centrifugal force, which creates a thin vertical liquid layer. Sterile water or another collecting liquid can be used. Three particle size selectors allow health-related aerosol fractions to be sampled according to international conventions. The sampled microbiological particles can be easily recovered for counting, incubation or further biochemical analysis, e.g., for airborne endotoxins. Its physical sampling efficiency was laboratory tested and field trials were carried out in industrial waste management conditions. The results indicate satisfactory collection efficiency, whilst experimental application has demonstrated the usefulness of the CIP 10-M personal sampler for individual bioaerosol exposure monitoring.

  13. Inhalation a significant exposure route for chlorinated organophosphate flame retardants.

    PubMed

    Schreder, Erika D; Uding, Nancy; La Guardia, Mark J

    2016-05-01

    Chlorinated organophosphate flame retardants (ClOPFRs) are widely used as additive flame retardants in consumer products including furniture, children's products, building materials, and textiles. Tests of indoor media in homes, offices, and other environments have shown these compounds are released from products and have become ubiquitous indoor pollutants. In house dust samples from Washington State, U.S.A., ClOPFRs were the flame retardants detected in the highest concentrations. Two ClOPFRs, tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP) and tris(2-chloroethyl)phosphate (TCEP), have been designated as carcinogens, and there is growing concern about the toxicity of the homologue tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP). In response to concerns about exposure to these compounds, the European Union and a number of U.S. states have taken regulatory action to restrict their use in certain product categories. To better characterize exposure to ClOPFRs, inhalation exposure was assessed using active personal air samplers in Washington State with both respirable and inhalable particulate fractions collected to assess the likelihood particles penetrate deep into the lungs. Concentrations of ∑ClOPFRs (respirable and inhalable) ranged from 97.1 to 1190 ng m(-3) (mean 426 ng m(-3)), with TCPP detected at the highest concentrations. In general, higher levels were detected in the inhalable particulate fraction. Total intake of ClOPFRs via the inhalation exposure route was estimated to exceed intake via dust ingestion, indicating that inhalation is an important route that should be taken into consideration in assessments of these compounds.

  14. Inhaled human insulin.

    PubMed

    Strack, Thomas R

    2006-04-01

    The benefit of subcutaneous insulin therapy in patients with diabetes is frequently limited due to difficulty in convincing patients of the importance of multiple daily insulin injections to cope effectively with meal-associated glycemic changes. Thus, the aim of achieving tight glycemic control, which is critical for reducing the risk of long-term diabetes-related complications, frequently remains elusive. The successful development of an inhalable insulin as a noninvasive alternative promises to change the management of diabetes. The first product to become available to patients is inhaled human insulin, a dry-powder formulation packaged into discrete blisters containing 1 or 3 mg of dry-powder human insulin and administered via a unique pulmonary inhaler device. It has recently been approved in both the United States and the European Union for the control of hyperglycemia in adult patients with type 1 or type 2 diabetes. The pharmacokinetic profile of inhaled human insulin closely mimics the natural pattern of insulin secretion, and resembles that of rapid-acting subcutaneous analogs. Similarly to rapid-acting subcutaneous analogs, inhaled human insulin has a more rapid onset of glucose-lowering activity compared to subcutaneous regular insulin, allowing it to be administered shortly before meals. It has a duration of glucose-lowering activity comparable to subcutaneous regular insulin and longer than rapid-acting insulin analogs. Inhaled human insulin effectively controls postprandial glucose concentrations in patients with type 1 or type 2 diabetes without increasing the risk of hypoglycemia, and even improves fasting glucose levels compared to subcutaneous insulin. Inhaled human insulin has an overall favorable safety profile. There are small reductions in lung function (1-1.5% of total lung forced expiratory volume in the first second [FEV1] capacity) after onset of treatment that are reversible in most patients if treatment is discontinued. Inhaled human

  15. Three-Wheel Brush-Wheel Sampler

    NASA Technical Reports Server (NTRS)

    Duckworth, Geoffrey A.; Liu, Jun; Brown, Mark G.

    2010-01-01

    A new sampler is similar to a common snow blower, but is robust and effective in sample collection. The brush wheels are arranged in a triangle shape, each driven by a brushless DC motor and planetary gearhead embedded in the wheel shaft. Its speed can be varied from 800 - 2,000 rpm, depending on the surface regolith resistance. The sample-collecting flow path, and internal features, are designed based on flow dynamics, and the sample-collecting rates have consistently exceeded the requirement under various conditions that span the range of expected surface properties. The brush-wheel sampler (BWS) is designed so that the flow channel is the main body of the apparatus, and links the brush-wheel assembly to the sample canister. The combination of the three brush wheels, the sample flow path, and the canister location make sample collection, storage, and transfer an easier task.

  16. Dual-Sampler Processor Digitizes CCD Output

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1986-01-01

    Circuit for processing output of charge-coupled device (CCD) imager provides increased time for analog-to-digital conversion, thereby reducing bandwidth required for video processing. Instead of one sampleand-hold circuit of conventional processor, improved processor includes two sample-and-hold circuits alternated with each other. Dual-sampler processor operates with lower bandwidth and with timing requirements less stringent than those of single-sample processor.

  17. Collection efficiencies of high flow rate personal respirable samplers when measuring Arizona road dust and analysis of quartz by x-ray diffraction.

    PubMed

    Stacey, Peter; Lee, Taekhee; Thorpe, Andrew; Roberts, Paul; Frost, Gillian; Harper, Martin

    2014-05-01

    Prolonged exposure to respirable crystalline silica (RCS) causes silicosis and is also considered a cause of cancer. To meet emerging needs for precise measurements of RCS, from shorter sampling periods (<4 h) and lower air concentrations, collaborative work was done to assess the differences between personal respirable samplers at higher flow rates. The performance of FSP10, GK2.69, and CIP 10 R samplers were compared with that of the Safety In Mines Personal Dust Sampler (SIMPEDS) sampler as a reference, which is commonly used in the UK for the measurement of RCS. In addition, the performance of the FSP10 and GK 2.69 samplers were compared; at the nominal flow rates recommended by the manufacturers of 10 and 4.2 l · min(-1) and with flow rates proposed by the National Institute for Occupational Safety and Health of 11.2 and 4.4 l · min(-1). Samplers were exposed to aerosols of ultrafine and medium grades of Arizona road dust (ARD) generated in a calm air chamber. All analyses for RCS in this study were performed at the Health and Safety Laboratory. The difference in flow rates for the GK2.69 is small and does not result in a substantial difference in collection efficiency for the dusts tested, while the performance of the FSP10 at 11.2 l · min(-1) was more comparable with samples from the SIMPEDS. Conversely, the GK2.69 collected proportionately more crystalline silica in the respirable dust than other samplers, which then produced RCS results most comparable with the SIMPEDS. The CIP 10 R collected less ultrafine ARD than other samplers, as might be expected based on earlier performance evaluations. The higher flow rate for the FSP10 should be an added advantage for task-specific sampling or when measuring air concentrations less than current occupational exposure limits.

  18. Experimental investigation of design parameters on dry powder inhaler performance.

    PubMed

    Ngoc, Nguyen Thi Quynh; Chang, Lusi; Jia, Xinli; Lau, Raymond

    2013-11-30

    The study aims to investigate the impact of various design parameters of a dry powder inhaler on the turbulence intensities generated and the performance of the dry powder inhaler. The flow fields and turbulence intensities in the dry powder inhaler are measured using particle image velocimetry (PIV) techniques. In vitro aerosolization and deposition a blend of budesonide and lactose are measured using an Andersen Cascade Impactor. Design parameters such as inhaler grid hole diameter, grid voidage and chamber length are considered. The experimental results reveal that the hole diameter on the grid has negligible impact on the turbulence intensity generated in the chamber. On the other hand, hole diameters smaller than a critical size can lead to performance degradation due to excessive particle-grid collisions. An increase in grid voidage can improve the inhaler performance but the effect diminishes at high grid voidage. An increase in the chamber length can enhance the turbulence intensity generated but also increases the powder adhesion on the inhaler wall.

  19. Inhalation of two putative Gulf War toxins by mice.

    PubMed

    Repine, John E; Wilson, Paul; Elkins, Nancy; Klawitter, Jelena; Christians, Uwe; Peters, Ben; Smith, Dwight M

    2016-01-01

    We employed our inhalation methodology to examine whether biomarkers of inflammation and oxidative stress would be produced in mice following inhalation of aerosols containing carbonaceous particles or the vapor of pesticides prevalent during the first Gulf War. Exposure to two putative Gulf War Illness toxins, fine airborne particles and the pesticide malathion, increased biomarkers of inflammation and oxidative stress in Friend virus B (FVB) female mice. Mice inhaling particles 24 h before had increased lung lavage and plasma Leukotriene B4 (LTB4) (a biomarker of inflammation) and PGF2α (a biomarker of oxidative stress) levels, lung lavage protein and lung lavage lactic dehydrogenase (LDH) levels. These changes were a function of particle density and exposure time. Compared to particle inhalation, mice inhaling malathion 24 h before had small increase in plasma LTB4 and PGF2α levels but no increase in lung lavage LTB4, lung lavage protein, lung lavage LDH, and lung lavage alveolar macrophage (AM) levels compared to unexposed control mice. AM from particle-exposed mice contained phagocytosed particles, while AM from malathion-exposed mice showed no abnormalities. Our results indicate that inhaling particles or malathion can alter inflammatory and oxidative biomarkers in mice and raise the possibility that these toxins may have altered inflammation and oxidative stress biomarkers in Gulf War-exposed individuals.

  20. Ambient Ammonia Monitoring in the Central United States Using Passive Diffusion Samplers

    NASA Astrophysics Data System (ADS)

    Caughey, M.; Gay, D.; Sweet, C.

    2008-12-01

    Environmental scientists and governmental authorities are increasingly aware of the need for more comprehensive measurements of ambient ammonia in urban, rural and remote locations. As the predominant alkaline gas, ammonia plays a critical role in atmospheric chemistry by reacting readily with acidic gases and particles. Ammonium salts often comprise a major portion of the aerosols that impair visibility, not only in urban areas, but also in national parks and other Class I areas. Ammonia is also important as a plant nutrient that directly or indirectly affects terrestrial and aquatic biomes. Successful computer simulations of important environmental processes require an extensive representative data set of ambient ammonia measurements in the range of 0.1 ppbv or greater. Generally instruments with that level of sensitivity are not only expensive, but also require electrical connections, an enclosed shelter and, in many instances, frequent attention from trained technicians. Such requirements significantly restrict the number and locations of ambient ammonia monitors that can be supported. As an alternative we have employed simple passive diffusion samplers to measure ambient ammonia at 9 monitoring sites in the central U.S. over the past 3 years. Passive samplers consist of a layer of an acidic trapping medium supported at a fixed distance behind a microporous barrier for which the diffusive properties are known. Ammonia uptake rates are determined by the manufacturer under controlled laboratory conditions. (When practical, field results are compared against those from collocated conventional samplers, e.g., pumped annular denuders.) After a known exposure time at the sampling site, the sampler is resealed in protective packaging and shipped to the analytical laboratory where the ammonia captured in the acidic medium is carefully extracted and quantified. Because passive samplers are comparatively inexpensive and do not require electricity or other facilities they

  1. Formed Core Sampler Hydraulic Conductivity Testing

    SciTech Connect

    Miller, D. H.; Reigel, M. M.

    2012-09-25

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

  2. Thin layer chromatography residue applicator sampler

    DOEpatents

    Nunes, Peter J.; Kelly, Fredrick R.; Haas, Jeffrey S.; Andresen, Brian D.

    2007-07-24

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  3. FACTORS AFFECTING THE DEPOSITION OF AEROSOLIZED INSULIN

    EPA Science Inventory

    Abstract
    Background
    The inhalation of insulin for absorption into the bloodstream via the lung seems to be a promising technique for the treatment of diabetes mellitus. A fundamental issue to be resolved in the development of such insulin aerosol delivery systems is their...

  4. Therapy and prophylaxis of inhaled biological toxins.

    PubMed

    Paddle, Brian M

    2003-01-01

    This review highlights the current lack of therapeutic and prophylactic treatments for use against inhaled biological toxins, especially those considered as potential biological warfare (BW) or terrorist threats. Although vaccine development remains a priority, the use of rapidly deployable adjunctive therapeutic or prophylactic drugs could be life-saving in severe cases of intoxication or where vaccination has not been possible or immunity not established. The current lack of such drugs is due to many factors. Thus, methods involving molecular modelling are limited by the extent to which the cellular receptor sites and mode of action and structure of a toxin need to be known. There is also our general lack of knowledge of what effect individual toxins will have when inhaled into the lungs - whether and to what extent the action will be cell specific and cytotoxic or rather an acute inflammatory response requiring the use of immunomodulators. Possible sources of specific high-affinity toxin antagonists being investigated include monoclonal antibodies, selected oligonucleotides (aptamers) and derivatized dendritic polymers (dendrimers). The initial selection of suitable agents of these kinds can be made using cytotoxicity assays involving cultured normal human lung cells and a range of suitable indicators. The possibility that a mixture of selected antibody, aptamer or dendrimer-based materials for one or more toxins could be delivered simultaneously as injections or as inhaled aerosol sprays should be investigated.

  5. Exposure to inhalable flour dust in Canadian flour mills.

    PubMed

    Karpinski, Eva A

    2003-12-01

    In 1999, the American Conference of Governmental Industrial Hygienists (ACGIH(R)) proposed a Threshold Limit Value (TLV(R)) of 0.5 mg/m(3) for flour dust with a sensitization notation. The Labour Program of the Department of Human Resources Development Canada (HRDC), following notice of the intention to set a TLV, conducted a study of the levels of exposure to flour dust in flour mills across Canada to verify existing conditions, as well as to decide whether to adopt the proposed TLV or reference some other value. As part of the study, a relationship between flour dust concentrations obtained by using Institute of Occupational Medicine (IOM) samplers and closed-face 37-mm cassettes was examined and the literature on the health effects of exposure to flour dust was reviewed. A total of 104 millers, packers, sweepers, bakery mix operators, and others (mixed tasks) from 14 flour mills were sampled over an 8-hour work shift using IOM samplers. The results indicate that 101 employees (97.1%) were exposed to levels exceeding 0.5 mg/m(3), 66 employees (67.3%) to levels exceeding 5 mg/m(3), and 44 employees (42.3%) to levels exceeding 10 mg/m(3). For comparison purposes, flour dust measurements were also taken in a highly automated flour mill using state-of-the-art technology. The results suggest that even with the most up-to-date technology and proper cleaning operations in place, the flour milling industry may not be able to reduce the flour dust levels to below the TLV of 0.5 mg/m(3). According to the measurements of inhalable and total dust concentrations, the IOM sampler appears to be a more efficient collector of inhalable airborne particles up to 100 microm than the closed-face 37-mm cassette.

  6. Aerosolization of Respirable Droplets from a Domestic Spa Pool and the Use of MS-2 Coliphage and Pseudomonas aeruginosa as Markers for Legionella pneumophila

    PubMed Central

    Hewitt, Matthew; Stevenson, David; Walker, Jimmy T.; Bennett, Allan M.

    2014-01-01

    Legionnaires' disease can result when droplets or aerosols containing legionella bacteria are inhaled and deposited in the lungs. A number of outbreaks have been associated with the use of a spa pool where aeration, a high water temperature, and a large and variable organic load make disinfectant levels difficult to maintain. Spa pool ownership is increasing, and the aim of this study, using two surrogate organisms (MS-2 coliphage and Pseudomonas aeruginosa [a natural contaminant]), was to assess the potential risk to domestic users when disinfection fails. A representative “entry level” domestic spa pool was installed in an outdoor courtyard. The manufacturer's instructions for spa pool maintenance were not followed. A cyclone sampler was used to sample the aerosols released from the spa pool with and without activation of the air injection system. Samples were taken at increasing heights and distances from the pool. An aerodynamic particle sizer was used to measure the water droplet size distribution at each sample point. When the air injection system was inactivated, neither surrogate organism was recovered from the air. On activation of the air injection system, the mean mass of droplets within the respirable range (10 cm above the water line) was 36.8 μg cm−3. This corresponded to a mean air concentration of P. aeruginosa of 350 CFU m−3. From extrapolation from animal data, the estimated risk of infection from aerosols contaminated with similar concentrations of Legionella pneumophila was 0.76 (males) and 0.65 (females). At 1 m above and/or beyond the pool, the mean aerosol mass decreased to 0.04 μg cm−3 and corresponded to a 100-fold reduction in mean microbial air concentration. The estimated risk of infection at this distance was negligible. PMID:25381233

  7. A miniature flexible sampler for subsurface lunar exploration

    NASA Astrophysics Data System (ADS)

    Ling, Yun; Lu, Wei; Xiong, Pengwen; Song, Aiguo

    2016-06-01

    Lunar subsurface sampling is one of the critical technologies in the advancement of space exploration, and a lunar sampler with low weight, small volume, and low power consumption would significantly reduce the cost of space exploration. Thus, this paper proposes a novel miniature lunar sampler which adopts a flexible tape spring as its sampling arm. Compared with existing rigid-arm samplers, the proposed sampler has the merits of very low weight, reduced volume, and little power consumption. The mechanical design is illustrated in detail, the corresponding flexible kinematics model is built by considering flexibility compensation, and the working space of the sampler is depicted. The performance, e.g. the maximum acceleration, the maximum load capacity, and the sampling depth of the flexible arm, is analyzed through experiments, and each limit is established. In addition, the sampling process is demonstrated with the lab-based experiments, and the feasibility of the sampler is verified.

  8. Evaluation of three portable samplers for monitoring airborne fungi

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Airborne fungi were monitored at five sample sites with the Burkard portable, the RCS Plus, and the SAS Super 90 air samplers; the Andersen 2-stage impactor was used for comparison. All samplers were calibrated before being used simultaneously to collect 100-liter samples at each site. The Andersen and Burkard samplers retrieved equivalent volumes of airborne fungi; the SAS Super 90 and RCS Plus measurements did not differ from each other but were significantly lower than those obtained with the Andersen or Burkard samplers. Total fungal counts correlated linearly with Cladosporium and Penicillium counts. Alternaria species, although present at all sites, did not correlate with total count or with amounts of any other fungal genera. Sampler and location significantly influenced fungal counts, but no interactions between samplers and locations were found.

  9. Behavioral-Physiological Effects of Red Phosphorus Smoke Inhalation on Two Wildlife Species

    DTIC Science & Technology

    1990-01-01

    characterize the effects of RP/BR-aerosol exposure on the visual startle responses of rock doves. Based upon previous drug studies (e.g., Davis, 1980; Ison...Inspection Denver Federal Center Service Denver, CO 80225-0266 ID BEHAVIORAL-PHYSIOLOGICAL EFFECTS OF RED PHOSPHORUS (0 SMOKE INHALATION ON TWO WILDLIFE...TITLE (Include Securnty Clawf icatson) (U) Behavioral-Physiological Effects of Red Phosphorus Smoke Inhalation on Two Wildlife Species 12. PERSONAL

  10. Acute Inhalation Injury

    PubMed Central

    Gorguner, Metin; Akgun, Metin

    2010-01-01

    Inhaled substances may cause injury in pulmonary epithelium at various levels of respiratory tract, leading from simple symptoms to severe disease. Acute inhalation injury (AII) is not uncommon condition. There are certain high risk groups but AII may occur at various places including home or workplace. Environmental exposure is also possible. In addition to individual susceptibility, the characteristics of inhaled substances such as water solubility, size of substances and chemical properties may affect disease severity as well as its location. Although AII cases may recover in a few days but AII may cause long-term complications, even death. We aimed to discuss the effects of short-term exposures (minutes to hours) to toxic substances on the lungs. PMID:25610115

  11. Inhalation exposure methodology.

    PubMed Central

    Phalen, R F; Mannix, R C; Drew, R T

    1984-01-01

    Modern man is being confronted with an ever-increasing inventory of potentially toxic airborne substances. Exposures to these atmospheric contaminants occur in residential and commercial settings, as well as in the workplace. In order to study the toxicity of such materials, a special technology relating to inhalation exposure systems has evolved. The purpose of this paper is to provide a description of the techniques which are used in exposing laboratory subjects to airborne particles and gases. The various modes of inhalation exposure (whole body, head only, nose or mouth only, etc.) are described at length, including the advantages and disadvantages inherent to each mode. Numerous literature citations are included for further reading. Among the topics briefly discussed are the selection of appropriate animal species for toxicological testing, and the types of inhalation studies performed (acute, chronic, etc.). PMID:6383799

  12. The role of inhalant food allergens in occupational asthma.

    PubMed

    Cartier, André

    2010-09-01

    Workers handling food products and derivatives are at increased risk of developing occupational asthma. Exposure to food allergens occurs primarily through inhalation of dust, steam, vapors, and aerosolized proteins generated during cutting, scrubbing or cleaning, cooking or boiling, and drying activities. Suspicion of the diagnosis of occupational asthma should lead to proper investigation to confirm the diagnosis objectively. Most inhaled food allergy is IgE mediated, and skin prick tests or specific IgE tests are useful tools to support the diagnosis, but objective evidence of asthma by monitoring of peak expiratory flows at and off work or specific inhalation challenges offers a better diagnostic value. This article provides a list of the various foods, food additives, and contaminants that have been associated with occupational asthma.

  13. A 7-month cigarette smoke inhalation study in C57BL/6 mice demonstrates reduced lung inflammation and emphysema following smoking cessation or aerosol exposure from a prototypic modified risk tobacco product.

    PubMed

    Phillips, Blaine; Veljkovic, Emilija; Peck, Michael J; Buettner, Ansgar; Elamin, Ashraf; Guedj, Emmanuel; Vuillaume, Gregory; Ivanov, Nikolai V; Martin, Florian; Boué, Stéphanie; Schlage, Walter K; Schneider, Thomas; Titz, Bjoern; Talikka, Marja; Vanscheeuwijck, Patrick; Hoeng, Julia; Peitsch, Manuel C

    2015-06-01

    Modified risk tobacco products (MRTP) are designed to reduce smoking-related health risks. A murine model of chronic obstructive pulmonary disease (COPD) was applied to investigate classical toxicology end points plus systems toxicology (transcriptomics and proteomics). C57BL/6 mice were exposed to conventional cigarette smoke (3R4F), fresh air (sham), or a prototypic MRTP (pMRTP) aerosol for up to 7 months, including a cessation group and a switching-to-pMRTP group (2 months of 3R4F exposure followed by fresh air or pMRTP for up to 5 months respectively). 3R4F smoke induced the typical adaptive changes in the airways, as well as inflammation in the lung, associated with emphysematous changes (impaired pulmonary function and alveolar damage). At nicotine-matched exposure concentrations of pMRTP aerosol, no signs of lung inflammation and emphysema were observed. Both the cessation and switching groups showed a similar reversal of inflammatory responses and no progression of initial emphysematous changes. A significant impact on biological processes, including COPD-related inflammation, apoptosis, and proliferation, was identified in 3R4F-exposed, but not in pMRTP-exposed lungs. Smoking cessation or switching reduced these perturbations to near sham-exposed levels. In conclusion, the mouse model indicated retarded disease progression upon cessation or switching to pMRTP which alone had no adverse effects.

  14. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  15. Lung deposition of droplet aerosols in monkeys.

    PubMed

    Cheng, Y S; Irshad, H; Kuehl, P; Holmes, T D; Sherwood, R; Hobbs, C H

    2008-09-01

    Nonhuman primates are often the animal models of choice to study the infectivity and therapy of inhaled infectious agents. Most animal models for inhaled infectious diseases use aerosol/droplets generated by an atomization technique such as a Collison nebulizer that produces particles in the size range of 1 to 3 microm in diameter. There are few data in the literature on deposition patterns in monkeys. Our study was designed to measure the deposition pattern in monkeys using droplets having diameters of 2 and 5 microm using an exposure system designed to expose monkeys to aerosols of infectious agents. Six cynomolgus monkeys were exposed to droplets. The aerosol solution was generated from a Vero cell supernate containing DMEM + 10% fetal bovine serum tagged with Tc-99m radiolabel. Collison and Retec nebulizers were used to generate small and large droplets, respectively. The particle size (as determined from a cascade impactor) showed an activity median aerodynamic diameter (AMAD) of 2.3 and 5.1 microm for the Collison and Retec nebulizer, respectively. The animals were anesthetized, placed in a plethysmography box, and exposed to the aerosol. The deposition pattern was determined using a gamma camera. Deposition in the head airways was 39% and 58% for 2.3- and 5.1-microm particle aerosols, respectively, whereas the deposition in the deep lung was 12% and 8%, respectively. This information will be useful in developing animal models for inhaled infectious agents.

  16. Medical Modeling of Particle Size Effects for CB Inhalation Hazards

    DTIC Science & Technology

    2015-09-01

    typical city. As has been described , many of the parameters in the model are hard-coded due to limitations in data transfer with SCIPUFF. When fully... describes the resulting medical impact. Many current models assume that only the 1 to 5 micron “respirable” particles capable of reaching the pulmonary...well. Inhalation mechanics , FXCODA, DARRT, bioagent, aerosol, particle size, particle deposition, biological agents, ricin, tularemia Unclassified

  17. Inhaled histamine increases human lung mucociliary transport

    SciTech Connect

    Mussatto, D.J.; Garrard, C.S.; Trumbull, J.J.; Bowers, M.W.; Sanders, C.J.; Yeates, D.B.; Lourenco, R.V.

    1986-03-01

    Histamine, a mediator of airways constriction, alters ciliary beat frequency, bronchial mucus production, and epithelial ion transport; and in dogs, increases mucociliary transport. To evaluate the effect of inhaled histamine on human tracheobronchial mucociliary clearance, the authors measured lung mucociliary clearance (LMC) and tracheal mucociliary transport rate (TMTR) in 5 healthy, nonsmoking subjects in a randomized, double-blind, cross-over study. The concentration of inhaled histamine which produced a 20% fall in FEV/sub 1/ was established for each subject. On a separate day the subjects inhaled a 9 ..mu..m MMAD /sup 99m/Tc-Fe/sub 2/O/sub 3/ aerosol. LMC and TMTR were then measured for 2.5h using a gamma camera and a tracheal multidetector probe. Simultaneously, the subjects were challenged every 26 +/- 4 min with either PBS or histamine in PBS. The Fe/sub 2/O/sub 3/ retained after 24h for histamine (14.4 +/- 7.6%) and PBS studies (13.1 +/- 8.6%) indicated no difference in deposition of Fe/sub 2/O/sub 3/ (ANOVA). Fe/sub 2/O/sub 3/ clearance at 30 min was increased in the histamine studies (61 +/- 21% compared to the PBS studies (44 +/- 29%; p < 0.02, ANOVA)). TMTR was also increased with histamine (7.6 +/- 3.4 mm/min) compared to PBS (4.6 +/- 1.7 mm/min; p < 0.001, ANOVA). Results indicate an acute stimulatory effect of inhaled histamine on mucous transport in humans.

  18. Effect of aerosol propellants and surfactants on airway resistance

    PubMed Central

    Sterling, G. M.; Batten, J. C.

    1969-01-01

    The effects on the airways of inhalation of the vehicles used in two commercial pressurized bronchodilator aerosols were studied in 20 normal and seven asthmatic subjects. Changes in bronchial calibre due to bronchoconstriction were measured as changes in airway resistance using a constant volume whole body plethysmograph, and results were expressed as changes in the ratio Airway conductance/Thoracic gas volume (=specific airway conductance). The aerosols caused very slight bronchoconstriction in the normal subjects, with a mean decrease of 5·3% in specific airway conductance after inhalation of a spray containing sorbitol trioleate as a surface tension lowering agent, and of 9·7% after inhalation of a spray containing lecithin. This effect was prevented by prior inhalation of atropine methonitrate, and its mechanism was therefore probably a vagally mediated reflex. The bronchoconstriction was also reversed by the addition of isoprenaline to the aerosol. The asthmatic subjects showed larger mean reductions in specific airway conductance of 13% and 21% after sorbitol and lecithin respectively: the response was again prevented by atropine. We conclude that, although the aerosol vehicles cause slight bronchoconstriction, this is unlikely to be a clinical danger since it is insufficient to cause symptoms of wheezing, and is less than that caused by inhalation of a single cigarette. Moreover, the constriction is regularly converted to dilatation in both normal and asthmatic subjects by the addition of atropine or isoprenaline to the aerosol. PMID:5821624

  19. Aerosol Use in the Pulmonary Function Lab.

    PubMed

    Ruppel, Gregg L

    2015-06-01

    Aerosolized medications are frequently used in the pulmonary function laboratory. The 2 most common implementations are bronchodilators and bronchial challenge agents. Bronchodilator administration is not well standardized, largely because of the various methods of delivery available for clinical practice. Metered-dose inhalers used with spacer devices are the most common route for bronchodilator administration, but many laboratories use small-volume nebulizers. Interpretation of pre- and post-bronchodilator studies is confounded by the definitions of airway obstruction and bronchodilator responsiveness. Protocols for administering bronchial challenge aerosols (methacholine, mannitol, hypertonic saline) are well defined but are susceptible to some of the same problems that limit comparison of bronchodilator techniques. Bronchial challenges with inhaled aerosols are influenced not only by the delivery device but by the patient's breathing pattern, particularly in protocols that include deep inspiratory efforts.

  20. A review of the development of Respimat Soft Mist Inhaler.

    PubMed

    Dalby, R; Spallek, M; Voshaar, T

    2004-09-28

    Respimat Soft Mist Inhaler (SMI) is a new generation inhaler from Boehringer Ingelheim developed for use with respiratory drugs. The device functions by forcing a metered dose of drug solution through a unique and precisely engineered nozzle (the uniblock), producing two fine jets of liquid that converge at a pre-set angle. The collision of these two jets generates the soft mist. The soft mist contains a high fine particle fraction of approximately 65 to 80%. This is higher than aerosol clouds from conventional portable inhaler devices, such as pressurised metered dose inhalers (pMDIs) and dry powder inhalers (DPIs). In addition, the relatively long generation time of the aerosol cloud (approximately 1.5s) facilitates co-ordination of inhalation and actuation--a major problem with pMDIs. These features, together with the slow velocity of the soft mist, result in larger amounts of the drug reaching the lungs and less being deposited in the oropharynx compared with either pMDIs or DPIs. Generation of the soft mist from Respimat SMI is purely mechanical, so propellants are not necessary. The innovative design of Respimat SMI, using water-based drug formulations, ensures patients receive consistent and reliable doses of the drug with each actuation. The device was initially tested in scintigraphic lung deposition studies and produced encouraging results when compared with the chlorofluorocarbon-based pMDI (CFC-MDI). Subsequent clinical studies have confirmed that Respimat SMI is effective and safe in delivering bronchodilators to patients with asthma or chronic obstructive pulmonary disease.

  1. Inhaled therapeutics for prevention and treatment of pneumonia.

    PubMed

    Safdar, Amar; Shelburne, Samuel A; Evans, Scott E; Dickey, Burton F

    2009-07-01

    The lungs are the most common site of serious infection owing to their large surface area exposed to the external environment and minimum barrier defense. However, this architecture makes the lungs readily available for topical therapy. Therapeutic aerosols include those directed towards improving mucociliary clearance of pathogens, stimulation of innate resistance to microbial infection, cytokine stimulation of immune function and delivery of antibiotics. In our opinion inhaled antimicrobials are underused, especially in patients with difficult-to-treat lung infections. The use of inhaled antimicrobial therapy has become an important part of the treatment of airway infection with Pseudomonas aeruginosa in cystic fibrosis and the prevention of invasive fungal infection in patients undergoing heart and lung transplantation. Cytokine inhaled therapy has also been explored in the treatment of neoplastic and infectious disease. The choice of pulmonary drug delivery systems remains critical as air-jet and ultrasonic nebulizer may deliver sub-optimum drug concentration if not used properly. In future development of this field, we recommend an emphasis on the study of the use of aerosolized hypertonic saline solution to reduce pathogen burden in the airways of subjects infected with microbes of low virulence, stimulation of innate resistance to prevent pneumonia in immunocompromised subjects using cytokines or synthetic pathogen-associated molecular pattern analogues and more opportunities for the use of inhaled antimicrobials. These therapeutics are still in their infancy but show great promise.

  2. Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

    PubMed Central

    Saputra, Devina; Yoon, Jin-ha; Park, Hyunju; Heo, Yongju; Yang, Hyoseon; Lee, Eun Ji; Lee, Sangjin; Song, Chang-Woo; Lee, Kyuhong

    2014-01-01

    An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-γ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be 12.5 μg/m3) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions. PMID:25071917

  3. Inhaled therapeutics for prevention and treatment of pneumonia

    PubMed Central

    Safdar, Amar; Shelburne, Samuel A.; Evans, Scott E.; Dickey, Burton F.

    2015-01-01

    The lungs are the most common site of serious infection owing to their large surface area exposed to the external environment and minimum barrier defense. However, this architecture makes the lungs readily available for topical therapy. Therapeutic aerosols include those directed towards improving mucociliary clearance of pathogens, stimulation of innate resistance to microbial infection, cytokine stimulation of immune function and delivery of antibiotics. In our opinion inhaled antimicrobials are underused, especially in patients with difficult-to-treat lung infections. The use of inhaled antimicrobial therapy has become an important part of the treatment of airway infection with Pseudomonas aeruginosa in cystic fibrosis and the prevention of invasive fungal infection in patients undergoing heart and lung transplantation. Cytokine inhaled therapy has also been explored in the treatment of neoplastic and infectious disease. The choice of pulmonary drug delivery systems remains critical as air-jet and ultrasonic nebulizer may deliver sub-optimum drug concentration if not used properly. In future development of this field, we recommend an emphasis on the study of the use of aerosolized hypertonic saline solution to reduce pathogen burden in the airways of subjects infected with microbes of low virulence, stimulation of innate resistance to prevent pneumonia in immunocompromised subjects using cytokines or synthetic pathogen-associated molecular pattern analogues and more opportunities for the use of inhaled antimicrobials. These therapeutics are still in their infancy but show great promise. PMID:19538104

  4. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  5. Hydrofluoroalkane formulations of inhaled corticosteroids for the treatment of asthma.

    PubMed

    Zeidler, Michelle; Corren, Jonathan

    2004-01-01

    Current international guidelines for the treatment of asthma advocate inhaled corticosteroids as first-line therapy for persistent symptoms. As chlorofluorocarbon (CFC)-based products are being phased out because of environmental concerns, new inhaler propellants, such as hydrofluoroalkane (HFA)-134a, have been developed. The reformulation of existing corticosteroid compounds into HFA propellants has resulted in two distinct classes of corticosteroid aerosols consisting of HFA suspensions and HFA solutions. The new HFA formulations of flunisolide and beclomethasone dipropionate exist as solutions, whereas HFA preparations of fluticasone propionate, triamcinolone acetonide, and mometasone furoate are formulated as suspensions. HFA suspensions retain the same particle size, deposition, and efficacy profiles as their CFC counterparts. HFA solutions, however, exist as extra-fine aerosols which have been shown to penetrate more effectively into the peripheral regions of the lung. Comparisons of HFA solutions with their CFC counterparts have demonstrated equivalent efficacy when given in smaller doses. The safety profiles of both HFA suspensions and solutions, given at equivalent doses, are comparable to CFC formulations. Increasing evidence suggests that inflammation of the small airways plays an important role in the pathogenesis of asthma. Currently, the clinical implications of long-term treatment of the peripheral lung using an extra-fine inhaled corticosteroid aerosol remain uncertain. Future studies, involving histopathologic and clinical endpoints, will be necessary to determine whether treatment with HFA solutions offers significant advantages over currently available therapies.

  6. Development of the Releasable Asbestos Field Sampler

    EPA Science Inventory

    A risk assessment for intermittent, low-level exposure to asbestos requires personal breathing concentration data. Currently, activity-based sampling (ABS) is the preferred approach to measurement of a person’s inhalation exposure; i.e., asbestos structures per cubic centimeter ...

  7. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    SciTech Connect

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-06-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling period 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).

  8. Real-time measurement of inhaled and exhaled cigarette smoke: Implications for dose

    NASA Astrophysics Data System (ADS)

    McGrath, Conor; Warren, Nigel; Biggs, Philip; McAughey, John

    2009-02-01

    Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of 150 -- 250 nm count median diameter (CMD). Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, the average CMD of inhaled smoke was 160 nm while the average CMD of exhaled smoke was 239 nm with an average growth factor of 1.5.

  9. Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin

    USGS Publications Warehouse

    Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.

    2000-01-01

    In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.

  10. IN SILLICO LOBAR MODELS OF HUMAN LUNGS FOR TARGETED DELIVERY OF AEROSOLIZED PHARMACEUTICALS

    EPA Science Inventory

    The identification of factors affecting the deposition patterns of aerosolized pharmaceuticals has important implications to medicine (e.g., inhalation therapy regimens) and toxicology (e.g., drug testing protocols). Airway morphology is a critical element of the process, influen...

  11. Retained gas sampler interim safety assessment

    SciTech Connect

    Pasamehmetoglu, K.O.; Miller, W.O.; Unal, C.; Fujita, R.K.

    1995-01-13

    This safety assessment addresses the proposed action to install, operate, and remove a Retained Gas Sampler (RGS) in Tank 101-SY at Hanford. Purpose of the RGS is to help characterize the gas species retained in the tank waste; the information will be used to refine models that predict the gas-producing behavior of the waste tank. The RGS will take samples of the tank from top to bottom; these samples will be analyzed for gas constituents. The proposed action is required as part of an evaluation of mitigation concepts for eliminating episodic gas releases that result in high hydrogen concentrations in the tank dome space.

  12. Inhalants. Specialized Information Service.

    ERIC Educational Resources Information Center

    Do It Now Foundation, Phoenix, AZ.

    The document presents a collection of articles about inhalant abuse. Article 1 presents findings on the psychophysiological effects related to the use of amyl or butyl nitrate as a "recreational drug." Article 2 suggests a strong association between chronic sniffing of the solvent toulene and irreversible brain damage. Article 3 warns…

  13. Inhaled insulin--does it become reality?

    PubMed

    Siekmeier, R; Scheuch, G

    2008-12-01

    After more than 80 years of history the American and European Drug Agencies (FDA and EMEA) approved the first pulmonary delivered version of insulin (Exubera) from Pfizer/Nektar early 2006. However, in October 2007, Pfizer announced it would be taking Exubera off the market, citing that the drug had failed to gain market acceptance. Since 1924 various attempts have been made to get away from injectable insulin. Three alternative delivery methods where always discussed: Delivery to the upper nasal airways or the deep lungs, and through the stomach. From these, the delivery through the deep lungs is the most promising, because the physiological barriers for the uptake are the smallest, the inspired aerosol is deposited on a large area and the absorption into the blood happens through the extremely thin alveolar membrane. However, there is concern about the long-term effects of inhaling a growth protein into the lungs. It was assumed that the large surface area over which the insulin is spread out would minimize negative effects. But recent news indicates that, at least in smokers, the bronchial tumour rate under inhaled insulin seems to be increased. These findings, despite the fact that they are not yet statistical significant and in no case found in a non-smoker, give additional arguments to stop marketing this approach. Several companies worked on providing inhalable insulin and the insulin powder inhalation system Exubera was the most advanced technology. Treatment has been approved for adults only and patients with pulmonary diseases (e.g., asthma, emphysema, COPD) and smokers (current smokers and individuals who recently quitted smoking) were excluded from this therapy. Pharmacokinetics and pharmacodynamics of Exubera are similar to those found with short-acting subcutaneous human insulin or insulin analogs. It is thus possible to use Exubera as a substitute for short-acting human insulin or insulin analogs. Typical side effects of inhaled insulin were coughing

  14. A Search for Correlations Between Four Different Atmospheric Aerosol Measurement Systems Atop Rattlesnake Mountain, Washington

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2004-05-01

    Accurate atmospheric aerosol transport measurements are important to international nuclear test monitoring, emergency response, health and ecosystem toxicology, and climate change. An International Monitoring System (IMS) is being established which will include a suite of aerosol radionuclide sensors. To explore the possibility of using the IMS sites to improve the understanding of global atmospheric aerosol transport, four state-of-the-art aerosol measurement systems were placed atop Rattlesnake Mountain at Pacific Northwest National Laboratory. The Radionuclide Aerosol Sampler/Analyzer measures radionuclide concentration via gamma-ray spectroscopy. The Cascade Impactor Beam Analyzer Technique measures 30 elements in three aerosol sizes using PNNLâ's Ion Beams Materials Analysis Laboratory. The Tapered Element Oscillating Microbalance provides time-averaged aerosol mass concentrations for a range of sizes. The Multi-Filter Rotating Shadowband Radiometer measures the solar irradiance to derive an aerosol optical depth. Results and correlations from the four different detectors will be presented.

  15. Future options for aerosol delivery to children.

    PubMed

    Bisgaard, H

    1999-01-01

    There is an increasing awareness of the importance of reliable aerosol delivery, with emphasis on the dose delivered to the lungs, optimal clinical control, cost-effectiveness, and safety in children. Dose prescription should relate to the expected lung dose rather than the factory-dispensed dose, as at present. The device determines the lung dose. Clearly, therefore, the device should be considered an integral part of the prescription. Drug approval processes should clearly specify the device, and discourage the use of other devices. This would rationalize the choice of devices. Important new insights into factors essential for drug delivery to the airways have been acquired in recent years. Nasal inhalation increases systemic bioavailability, reduces lung dose, and adds to its variability; hence, face masks to prevent nasal breathing have been developed. Similarly, dead space in the inspiratory line causes a proportional reduction in lung dose; hence, attention should be paid to reducing such dead space. Plastics in spacers cause a rapid loss of drug due to electrostatic attraction of the aerosol. The residence time of the aerosol, i.e., the time available for inhalation, is increased in nonelectrostatic spacers, allowing less compliant children enough time to obtain a full dose. Eliminating the electrostatic charge can change the lung dose by several times; hence, nonelectrostatic materials should be used in future spacer devices. Compliance is the biggest problem in drug delivery to children. The inhaler design process should be reversed, adapting technology to the child. Interactive microchip technology should provide intelligent devices that react to correct handling and breathing maneuvers. An intelligent nebulizer has been developed that adapts nebulization to the child's breathing pattern, nebulizing only during inhalation and avoiding loss of aerosol during exhalation. An automatic device (AirPac) has been developed that transforms a dry-powder inhaler

  16. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations

    PubMed Central

    Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas

    2016-01-01

    Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618

  17. [The scientific validation and outlook for the practical use of halo-aerosol therapy].

    PubMed

    Chervinskaia, A V

    2000-01-01

    The paper describes a new medical technique--halo-aerosol therapy, the main acting factor of which is dry highly dispersed aerosol of sodium chloride in natural concentration. Halo-aerosol therapy represents a new trend in aerosol medicine. It includes two methods: halotherapy and halo-inhalation. Biophysical and pathophysiological foundations of the new method, how it can be realized are outlined. Clinical reasons are provided for application of halo-aerosol therapy for prevention, treatment and rehabilitation of patients with respiratory diseases. Characteristics and differences of the two halo-aerosol therapy variants are analysed.

  18. Silicone Wristbands as Personal Passive Samplers

    PubMed Central

    2014-01-01

    Active-sampling approaches are commonly used for personal monitoring, but are limited by energy usage and data that may not represent an individual’s exposure or bioavailable concentrations. Current passive techniques often involve extensive preparation, or are developed for only a small number of targeted compounds. In this work, we present a novel application for measuring bioavailable exposure with silicone wristbands as personal passive samplers. Laboratory methodology affecting precleaning, infusion, and extraction were developed from commercially available silicone, and chromatographic background interference was reduced after solvent cleanup with good extraction efficiency (>96%). After finalizing laboratory methods, 49 compounds were sequestered during an ambient deployment which encompassed a diverse set of compounds including polycyclic aromatic hydrocarbons (PAHs), consumer products, personal care products, pesticides, phthalates, and other industrial compounds ranging in log Kow from −0.07 (caffeine) to 9.49 (tris(2-ethylhexyl) phosphate). In two hot asphalt occupational settings, silicone personal samplers sequestered 25 PAHs during 8- and 40-h exposures, as well as 2 oxygenated-PAHs (benzofluorenone and fluorenone) suggesting temporal sensitivity over a single work day or week (p < 0.05, power =0.85). Additionally, the amount of PAH sequestered differed between worksites (p < 0.05, power = 0.99), suggesting spatial sensitivity using this novel application. PMID:24548134

  19. Development of syringe pump assisted headspace sampler.

    PubMed

    Go, Un Jeong; Eom, In-Yong

    2014-09-26

    This report describes a new platform for headspace sampling technique, i.e. a syringe pump assisted headspace sampler (SPHS). The stand type pump's syringe itself was used as a sealed sample vial and a needle trap device (NTD) was adopted as a miniaturized sorbent tube. The NTD was directly used to inject trapped VOCs into a gas chromatograph. The proposed sampler was designed to take a whole headspace volume instead of a portion of it so as to enhance easily the extraction efficiency. The performance of the SPHS-NTD system was evaluated and compared with the solid-phase microextraction (SPME) with a static headspace (HS) sampling technique. Calibration curves were obtained for aqueous TEX (toluene, ethylbenzene, and o-xylene) solutions in the concentration range of ∼0.1-45 ng/mL. The calculated limit of detections (LOD, S/N=3) for TEX were 0.13 ng/mL or less. This SPHS-NTD was successfully applied to analyze aqueous TEX in river water samples and showed highly good recovery ranged from 97.2% to 105.8% for all tested VOCs.

  20. Air sampler performance at Ford's farm range

    SciTech Connect

    Glissmeyer, J.A.; Johnston, J.W.

    1984-07-01

    An air-sampling system for a large-caliber depleted uranium (DU) penetrator firing range was tested. The objectives of the test were: to determine the bias between the monitoring readings and DU concentrations; and to determine if the target bay real-time monitor (RTM) tracks the decaying dust concentration. The test procedure was to operate total and respirable airborne particle samplers adjacent to the target bay monitors. A series of air samples was also taken after the test firings adjacent to the target bay RTM. Exhaust particle samples were analyzed for gross alpha, gross beta and uranium content. The target bay RTM correlated well (0.977) with the sequential samples. Average concentration from the RTM did not correlate with either the long-term total or respirable sampler DU concentrations. The monitor used to confirm a low dust concentration when the door is open correlated well (0.810) with the RTM; the other bay monitor did not. In the ventilation discharge, the long-term average monitor readings did not correlate with DU concentrations, probably due to levels near lower detection limits. Smearable surface-contamination samples showed highest contamination on the equipment, gravel floor and exhaust intake. The location air-intake contamination increased over the first 3 rounds. Contamination was reduced by a low-pressure water spray washdown to about the same concentration as often the second round, then remained at about twice the level. 2 references, 18 figures, 16 tables. (MF)

  1. OVERVIEW OF AN INTEGRATIVE SAMPLER FOR ...

    EPA Pesticide Factsheets

    Anthropogenic pollution is recognized as a global problem contributing to degradation of ecosystem quality, to loss of numerous plant and animal species, and to adverse impacts on human health. There is an increasing realization that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants as well. An approach to provide a time-weighted average (TWA) assessment is critical in understanding organism exposure to the complex mixture of pollutants present in the environment. A recently developed device, the polar organic chemical integrative sampler (POCIS), is designed to integratively sample the more polar waterborne organic chemicals. Laboratory trials and field deployments have demonstrated that the POCIS is very effective for sequestering hydrophilic chemicals such as antibiotics, hormones, other pharmaceutically derived chemicals, polar pesticides, surfactants, etc. Environmentally derived sample extracts from the integrative samplers are readily amenable for assays utilizing bio-indicator tests. An overview of the POCIS and selected environmental applications will be presented. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and

  2. Silicone wristbands as personal passive samplers.

    PubMed

    O'Connell, Steven G; Kincl, Laurel D; Anderson, Kim A

    2014-03-18

    Active-sampling approaches are commonly used for personal monitoring, but are limited by energy usage and data that may not represent an individual's exposure or bioavailable concentrations. Current passive techniques often involve extensive preparation, or are developed for only a small number of targeted compounds. In this work, we present a novel application for measuring bioavailable exposure with silicone wristbands as personal passive samplers. Laboratory methodology affecting precleaning, infusion, and extraction were developed from commercially available silicone, and chromatographic background interference was reduced after solvent cleanup with good extraction efficiency (>96%). After finalizing laboratory methods, 49 compounds were sequestered during an ambient deployment which encompassed a diverse set of compounds including polycyclic aromatic hydrocarbons (PAHs), consumer products, personal care products, pesticides, phthalates, and other industrial compounds ranging in log K(ow) from -0.07 (caffeine) to 9.49 (tris(2-ethylhexyl) phosphate). In two hot asphalt occupational settings, silicone personal samplers sequestered 25 PAHs during 8- and 40-h exposures, as well as 2 oxygenated-PAHs (benzofluorenone and fluorenone) suggesting temporal sensitivity over a single work day or week (p < 0.05, power =0.85). Additionally, the amount of PAH sequestered differed between worksites (p < 0.05, power = 0.99), suggesting spatial sensitivity using this novel application.

  3. Efficacy and safety of ipratropium bromide/albuterol delivered via Respimat inhaler versus MDI.

    PubMed

    Zuwallack, R; De Salvo, M C; Kaelin, T; Bateman, E D; Park, C S; Abrahams, R; Fakih, F; Sachs, P; Pudi, K; Zhao, Y; Wood, C C

    2010-08-01

    We compared the efficacy and safety of ipratropium bromide/albuterol delivered via Respimat inhaler, a novel propellant-free inhaler, versus chlorofluorocarbon (CFC)-metered dose inhaler (MDI) and ipratropium Respimat inhaler in patients with COPD. This was a multinational, randomized, double-blind, double-dummy, 12-week, parallel-group, active-controlled study. Patients with moderate to severe COPD were randomized to ipratropium bromide/albuterol (20/100mcg) Respimat inhaler, ipratropium bromide/albuterol MDI [36mcg/206mcg (Combivent Inhalation Aerosol MDI)], or ipratropium bromide (20mcg) Respimat inhaler. Each medication was administered four times daily. Serial spirometry was performed over 6h (0.15min, then hourly) on 4 test days. The primary efficacy variable was forced expiratory volume in 1s (FEV(1)) change from test day baseline at 12 weeks. A total of 1209 of 1480 randomized, treated patients completed the study; the majority were male (65%) with a mean age of 64 yrs and a mean screening pre-bronchodilator FEV(1) (percent predicted) of 41%. Ipratropium bromide/albuterol Respimat inhaler had comparable efficacy to ipratropium bromide/albuterol MDI for FEV(1) area under the curve at 0-6h (AUC(0-6)), superior efficacy to ipratropium Respimat inhaler for FEV(1) AUC(0-4) and comparable efficacy to ipratropium Respimat inhaler for FEV(1) AUC(4-6). All active treatments were well tolerated. This study demonstrates that ipratropium bromide/albuterol 20/100mcg inhaler administered four times daily for 12 weeks had equivalent bronchodilator efficacy and comparable safety to ipratropium bromide/albuterol 36mcg/206mcg MDI, and significantly improved lung function compared with the mono-component ipratropium bromide 20 mcg Respimat inhaler. [Clinical Trial Identifier Number: NCT00400153].

  4. COMPARISON OF INTEGRATED SAMPLERS FOR MASS AND COMPOSITION

    EPA Science Inventory

    The primary objective of EPA's Atlanta Supersites Project was to compare and evaluate a wide variety of samplers from time-integrated mass only monitors, to integrated and semi-continuous chemical speciation samplers, to single particle mass spectrometers. This paper will desc...

  5. Evaluation of a passive air sampler for measuring indoor formaldehyde.

    PubMed

    Kim, Sun-Tae; Yim, Bongbeen; Jeong, Jaeho

    2007-04-01

    A passive air sampler, using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, was evaluated for the determination of formaldehyde in indoor environments. Chromatography paper cleaned using a 3% hydrogen peroxide solution was experimentally determined as being the optimum absorption filter for the collection of formaldehyde (0.05 microg cm(-2) formaldehyde). From a linear-regression analysis between the mass of formaldehyde time-collected on a passive air sampler and the formaldehyde concentration measured by an active sampler, the sampling rate of the passive air sampler was 1.52 L h(-1). The sampling rate, determined for the passive air sampler in relation to the temperature (19 - 28 degrees C) and the relative humidity (30 - 90%), were 1.56 +/- 0.04 and 1.58 +/- 0.07 L h(-1), respectively. The relationship between the sampling rate and the air velocity was a linear-regression within the observed range. In the case of exposed samplers, the stability of the collected formaldehyde decreased with increasing storage time (decrease of ca. 25% after 22 days); but with the unexposed samplers the stability of the blank remained relatively unchanged for 7 days (decrease of ca. 37% after 22 days). The detection limits for the passive air sampler with an exposure time of 1 day and 7 days were 10.4 and 1.48 microg m(-3), respectively.

  6. Design and validation of a passive deposition sampler.

    PubMed

    Einstein, Stephanie A; Yu, Chang-Ho; Mainelis, Gediminas; Chen, Lung Chi; Weisel, Clifford P; Lioy, Paul J

    2012-09-01

    A new, passive particle deposition air sampler, called the Einstein-Lioy Deposition Sampler (ELDS), has been developed to fill a gap in passive sampling for near-field particle emissions. The sampler can be configured in several ways: with a protective hood for outdoor sampling, without a protective hood, and as a dust plate. In addition, there is an XRF-ready option that allows for direct sampling onto a filter-mounted XRF cartridge which can be used in conjunction with all configurations. A wind tunnel was designed and constructed to test the performance of different sampler configurations using a test dust with a known particle size distribution. The sampler configurations were also tested versus each other to evaluate whether or not the protective hood would affect the collected particle size distribution. A field study was conducted to test the sampler under actual environmental conditions and to evaluate its ability to collect samples for chemical analysis. Individual experiments for each configuration demonstrated precision of the sampler. The field experiment demonstrated the ability of the sampler to both collect mass and allow for the measurement of an environmental contaminant i.e. Cr(6+). The ELDS was demonstrated to be statistically not different for Hooded and Non-Hooded models, compared to each other and the test dust; thus, it can be used indoors and outdoors in a variety of configurations to suit the user's needs.

  7. Discipline-Based Art Education: A Curriculum Sampler.

    ERIC Educational Resources Information Center

    Alexander, Kay, Ed.; Day, Michael, Ed.

    This sampler was designed for art specialists and art museum educators with a basic understanding of teaching discipline-based art education content. The introduction offers a brief history of the Sampler and explains its intended purpose and use. Then 8 unit models with differing methodologies for relating art objectives to the four disciplines:…

  8. Design and validation of a passive deposition sampler

    PubMed Central

    Yu, Chang-Ho; Mainelis, Gediminas; Chen, Lung Chi; Weisel, Clifford P.; Lioy, Paul J.

    2014-01-01

    A new, passive particle deposition air sampler, called the Einstein–Lioy Deposition Sampler (ELDS), has been developed to fill a gap in passive sampling for near-field particle emissions. The sampler can be configured in several ways: with a protective hood for outdoor sampling, without a protective hood, and as a dust plate. In addition, there is an XRF-ready option that allows for direct sampling onto a filter-mounted XRF cartridge which can be used in conjunction with all configurations. A wind tunnel was designed and constructed to test the performance of different sampler configurations using a test dust with a known particle size distribution. The sampler configurations were also tested versus each other to evaluate whether or not the protective hood would affect the collected particle size distribution. A field study was conducted to test the sampler under actual environmental conditions and to evaluate its ability to collect samples for chemical analysis. Individual experiments for each configuration demonstrated precision of the sampler. The field experiment demonstrated the ability of the sampler to both collect mass and allow for the measurement of an environmental contaminant i.e. Cr6+. The ELDS was demonstrated to be statistically not different for Hooded and Non-Hooded models, compared to each other and the test dust; thus, it can be used indoors and outdoors in a variety of configurations to suit the user's needs. PMID:22820464

  9. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  10. Siting Samplers to Minimize Expected Time to Detection

    SciTech Connect

    Walter, Travis; Lorenzetti, David M.; Sohn, Michael D.

    2012-05-02

    We present a probabilistic approach to designing an indoor sampler network for detecting an accidental or intentional chemical or biological release, and demonstrate it for a real building. In an earlier paper, Sohn and Lorenzetti(1) developed a proof of concept algorithm that assumed samplers could return measurements only slowly (on the order of hours). This led to optimal detect to treat architectures, which maximize the probability of detecting a release. This paper develops a more general approach, and applies it to samplers that can return measurements relatively quickly (in minutes). This leads to optimal detect to warn architectures, which minimize the expected time to detection. Using a model of a real, large, commercial building, we demonstrate the approach by optimizing networks against uncertain release locations, source terms, and sampler characteristics. Finally, we speculate on rules of thumb for general sampler placement.

  11. Design and evaluation of a solid sampler for the monitoring of airborne 1,6-hexamethylene diisocyanate (HDI) and its prepolymers in two-component spray painting.

    PubMed

    Huynh, C K; Vu-Duc, T; Savolainen, H

    1992-03-01

    An active, solvent-free solid sampler was developed for the collection of 1,6-hexamethylene diisocyanate (HDI) aerosol and prepolymers. The sampler was made of a filter impregnated with 1-(2-methoxyphenyl)piperazine contained in a filter holder. Interferences with HDI were observed when a set of cellulose acetate filters and a polystyrene filter holder were used; a glass fiber filter and polypropylene filter cassette gave better results. The applicability of the sampling and analytical procedure was validated with a test chamber, constructed for the dynamic generation of HDI aerosol and prepolymers in commercial two-component spray paints (Desmodur N75) used in car refinishing. The particle size distribution, temporal stability, and spatial uniformity of the simulated aerosol were established in order to test the sampler. The monitoring of aerosol concentrations was conducted with the solid sampler paired to the reference impinger technique (impinger flasks contained 10 mL of 0.5 mg/mL 1-(2-methoxyphenyl)piperazine in toluene) under a controlled atmosphere in the test chamber. Analyses of derivatized HDI and prepolymers were carried out by using high-performance liquid chromatography and ultraviolet detection. The correlation between the solvent-free and the impinger techniques appeared fairly good (Y = 0.979X-0.161; R = 0.978), when the tests were conducted in the range of 0.1 to 10 times the threshold limit value (TLV) for HDI monomer and up to 60 micrograms/m3 (3 U.K. TLVs) for total -N=C=O groups.

  12. Design and evaluation of a solid sampler for the monitoring of airborne 1,6-hexamethylene diisocyanate (HDI) and its prepolymers in two-component spray painting

    SciTech Connect

    Huynh, C.K.; Vu-Duc, T.; Savolainen, H. )

    1992-03-01

    An active, solvent-free solid sampler was developed for the collection of 1,6-hexamethylene diisocyanate (HDI) aerosol and prepolymers. The sampler was made of a filter impregnated with 1-(2-methoxyphenyl)piperazine contained in a filter holder. Interferences with HDI were observed when a set of cellulose acetate filters and a polystyrene filter holder were used; a glass fiber filter and polypropylene filter cassette gave better results. The applicability of the sampling and analytical procedure was validated with a test chamber, constructed for the dynamic generation of HDI aerosol and prepolymers in commercial two-component spray paints (Desmodur N75) used in car refinishing. The particle size distribution, temporal stability, and spatial uniformity of the simulated aerosol were established in order to test the sampler. The monitoring of aerosol concentrations was conducted with the solid sampler paired to the reference impinger technique (impinger flasks contained 10 mL of 0.5 mg/mL 1-(2-methoxyphenyl)piperazine in toluene) under a controlled atmosphere in the test chamber. Analyses of derivatized HDI and prepolymers were carried out by using high-performance liquid chromatography and ultraviolet detection. The correlation between the solvent-free and the impinger techniques appeared fairly good (Y = 0.979X-0.161; R = 0.978), when the tests were conducted in the range of 0.1 to 10 times the threshold limit value (TLV) for HDI monomer and up to 60 micrograms/m3 (3 U.K. TLVs) for total -N=C=O groups.

  13. SiO2 aerosol nanoparticle reactor for occupational health and safety studies.

    PubMed

    Ostraat, Michele L; Swain, Keith A; Krajewski, James J

    2008-06-01

    Important questions are emerging about potential occupational safety, toxicological, and ecotoxicological effects and occupational inhalation exposure risks to engineered aerosol nanoparticles. Although multiple avenues are available to synthesize nanoparticles, few tools are accessible to industrial hygienists and inhalation toxicologists to produce well-characterized aerosols of known aerosol size distribution and particle number concentration that are stable, simple, and robust to operate. This article describes a SiO(2) aerosol nanoparticle reactor that has been developed as a tool for the study of the safety, health, and environmental consequences of exposure to nanoparticle synthesis and processing. The SiO(2) aerosol nanoparticle reactor is capable of stable, long-term synthesis of amorphous SiO(2) aerosol nanoparticles from d(50) = 10-70 nm at particle concentrations approximately 10(4)-10(7)particles/cm(3) that does not produce halogen-containing byproducts and does not require daily monitoring of the particle size distribution. This reactor is designed to produce a well-characterized aerosol to enable subsequent testing with a continuous, stable supply of aerosol nanoparticles (i) to facilitate inhalation toxicology studies, (ii) to measure explosion characteristics of aerosol nanoparticles, (iii) to determine the barrier efficacy for respirator filtration, bag house exhaust, and personal protective garment media challenged with diverse aerosol nanoparticles, and (iv) to develop airborne monitoring technologies for verifying workplace safety protocols. This article details reactor design, synthesis parameters, and instruments available to characterize the resulting aerosol nanoparticle size distributions.

  14. Performance of combination drug and hygroscopic excipient submicrometer particles from a softmist inhaler in a characteristic model of the airways.

    PubMed

    Longest, P Worth; Tian, Geng; Li, Xiang; Son, Yoen-Ju; Hindle, Michael

    2012-12-01

    Excipient enhanced growth (EEG) of inhaled submicrometer pharmaceutical aerosols is a recently proposed method intended to significantly reduce extrathoracic deposition and improve lung delivery. The objective of this study was to evaluate the size increase of combination drug and hygroscopic excipient particles in a characteristic model of the airways during inhalation using both in vitro experiments and computational fluid dynamic (CFD) simulations. The airway model included a characteristic mouth-throat (MT) and upper tracheobronchial (TB) region through the third bifurcation and was enclosed in a chamber geometry used to simulate the thermodynamic conditions of the lungs. Both in vitro results and CFD simulations were in close agreement and indicated that EEG delivery of combination submicrometer particles could nearly eliminate MT deposition for inhaled pharmaceutical aerosols. Compared with current inhalers, the proposed delivery approach represents a 1-2 order of magnitude reduction in MT deposition. Transient inhalation was found to influence the final size of the aerosol based on changes in residence times and relative humidity values. Aerosol sizes following EEG when exiting the chamber (2.75-4.61 μm) for all cases of initial submicrometer combination particles were equivalent to or larger than many conventional pharmaceutical aerosols that frequently have MMADs in the range of 2-3 μm.

  15. Food hypersensitivity by inhalation

    PubMed Central

    Ramirez, Daniel A; Bahna, Sami L

    2009-01-01

    Though not widely recognized, food hypersensitivity by inhalation can cause major morbidity in affected individuals. The exposure is usually more obvious and often substantial in occupational environments but frequently occurs in non-occupational settings, such as homes, schools, restaurants, grocery stores, and commercial flights. The exposure can be trivial, as in mere smelling or being in the vicinity of the food. The clinical manifestations can vary from a benign respiratory or cutaneous reaction to a systemic one that can be life-threatening. In addition to strict avoidance, such highly-sensitive subjects should carry self-injectable epinephrine and wear MedicAlert® identification. Asthma is a strong predisposing factor and should be well-controlled. It is of great significance that food inhalation can cause de novo sensitization. PMID:19232116

  16. [Health significance of inhaled particles].

    PubMed

    Gillissen, A; Gessner, C; Hammerschmidt, S; Hoheisel, G; Wirtz, H

    2006-03-24

    Particulates refer to particles, dust, dirt, soot and aerosol mists that has suspended in the surrounding air. They may consist of solids of various forms including fibres or liquids. Long term exposure to silicon dioxide containing dusts (crystalline silica: quartz, tridymite, cristobalite, coesite, stishovite) may cause pneumoconiosis in the form of acute or/either chronic silicosis. Asbestos refers to a divers family of crystalline hydrated fibrous siliates typically exhibiting a greater tha 3:1 length ot diameter ratio. It is subdivided into serpentine (Chrysotile) and amphibole (crocidolite, amosite, anthophyllite, tremolite, actinolite). Exposure to asbestos fibres may cause lung fibrosis and promote cancer of the lung or the pleura. Besides the induction of malignant diseases dust exposure may result in obstructive as well as restrictive lung diseases which may be compensate in case of the recognition as a occupational diseases. Other occupational exposures leading to pneumoconiosis are caused be talc, or metals including aluminium containing dusts. Also the group of man-made mineral (MMMFs) or vitreous fibres (MMVFs), including glass wool, rock wool, slag wool, glass filaments, microfibres, refractory ceramic fibres are bioactive under certain experimental conditions. Although it has been shown that MMMFs may cause malignancies when injected intraperitoneally in high quantities in rodents, inhalation trials and human studies could not reproduce these results in the same precision. Fine particles (particulate matter = PM) comprise one of the most widespread and harmful air pollutants in the industrialized world. PM may cause worsening of asthma and other respiratory diseases, reduce lung function development in children, potentially increased the risk of premature death in the elderly and enhance mortality from cardiac diseases. Because of the small size PM2.5 is seen to be even more hazardous than PM10.

  17. Treatment of Inhalation Injury

    DTIC Science & Technology

    1983-01-21

    injuries not visible with endoscopy. . Thermal and especially chemical inhalation injuries. Direct damage to the surfactant is probably implicated. o...exists a set of indirect alveolar lesions, subordinated to the skin burn itself, which is common in patients with extensive burns. This we call the...normo or hypocapnia. Very likely, a 5th lesional level exists which is the capillary itself(Venus et al). By primary or secondary damage , it affects the

  18. Field performance of the CATHIA-T sampler and two cyclones against the standard Cowled sampler for thoracic fiber concentrations.

    PubMed

    Lee, Eun Gyung; Nelson, John; Hintz, Patrick J; Joy, Gerald; Andrew, Michael E; Harper, Martin

    2010-07-01

    The performance of two thoracic samplers, the GK2.69 cyclone and the CATHIA-T sampler, and the GK3.51 cyclone was investigated in the field against the standard cowled sampler (current NIOSH 7400 method) to determine the effect of thoracic sampling. The CATHIA-T sampler and the GK2.69 cyclone were operated at 7 and 1.6 l min(-1), respectively. The GK3.51 sampler is related to the GK2.69 cyclone, but designed to give a thoracic cut at a flow rate of 3.2 l min(-1). A total of 136 area samples were obtained from a tremolitic talc processing mill and 148 area samples were obtained within a quarry in which metamorphosed volcanic rocks were being crushed for construction stone. Sample slides were prepared using the dimethyl formamide/Euparal technique and relocatable cover slips. NIOSH 7400 'A' counting rules were used to examine fibers. Additionally, counters were asked to record the number of fibers where a fiber meets the 'A' rules and is wider than 3-mum physical diameter in order to estimate the proportion of extra-thoracic fibers. A few slides from each sampler type were randomly selected and fiber widths for those fibers satisfying the counting rules were measured to determine median width ratios of each thoracic sampler to the cowled sampler. Overall, the combined results of this study and the previous study by the same authors (Lee et al., 2008) showed lower fiber concentrations for the CATHIA-T sampler and higher concentrations for the GK2.69 cyclone and the GK3.51 cyclone compared to the standard cowled sampler. The proportion of extra-thoracic fibers (>3-mum physical diameter) on the filters collected with each type of thoracic samplers was comparable to the proportion of such fibers collected with the cowled sampler. The most consistent result over this study and our previous study is that both cyclones gave higher fiber concentrations than the CATHIA-T sampler. However, the estimated width ratios of each cyclone type to the cowled sampler were similar to or

  19. The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination.

    PubMed

    Laube, Beth L

    2005-09-01

    Aerosolized medications have been used for centuries to treat respiratory diseases. Until recently, inhalation therapy focused primarily on the treatment of asthma and chronic obstructive pulmonary disease, and the pressurized metered-dose inhaler was the delivery device of choice. However, the role of aerosol therapy is clearly expanding beyond that initial focus. This expansion has been driven by the Montreal protocol and the need to eliminate chlorofluorocarbons (CFCs) from traditional metered-dose inhalers, by the need for delivery devices and formulations that can efficiently and reproducibly target the systemic circulation for the delivery of proteins and peptides, and by developments in medicine that have made it possible to consider curing lung diseases with aerosolized gene therapy and preventing epidemics of influenza and measles with aerosolized vaccines. Each of these drivers has contributed to a decade or more of unprecedented research and innovation that has altered how we think about aerosol delivery and has expanded the role of aerosol therapy into the fields of systemic drug delivery, gene therapy, and vaccination. During this decade of innovation, we have witnessed the coming of age of dry powder inhalers, the development of new soft mist inhalers, and improved pressurized metered-dose inhaler delivery as a result of the replacement of CFC propellants with hydrofluoroalkane. The continued expansion of the role of aerosol therapy will probably depend on demonstration of the safety of this route of administration for drugs that have their targets outside the lung and are administered long term (eg, insulin aerosol), on the development of new drugs and drug carriers that can efficiently target hard-to-reach cell populations within the lungs of patients with disease (eg, patients with cystic fibrosis or lung cancer), and on the development of devices that improve aerosol delivery to infants, so that early intervention in disease processes with aerosol

  20. History of aerosol therapy: liquid nebulization to MDIs to DPIs.

    PubMed

    Anderson, Paula J

    2005-09-01

    Inhaled therapies have been used since ancient times and may have had their origins with the smoking of datura preparations in India 4,000 years ago. In the late 18th and in the 19th century, earthenware inhalers were popular for the inhalation of air drawn through infusions of plants and other ingredients. Atomizers and nebulizers were developed in the mid-1800s in France and were thought to be an outgrowth of the perfume industry as well as a response to the fashion of inhaling thermal waters at spas. Around the turn of the 20th century, combustible powders and cigarettes containing stramonium were popular for asthma and other lung complaints. Following the discovery of the utility of epinephrine for treating asthma, hand-bulb nebulizers were developed, as well as early compressor nebulizers. The marketing of the first pressurized metered-dose inhaler for epinephrine and isoproterenol, by Riker Laboratories in 1956, was a milestone in the development of inhaled drugs. There have been remarkable advances in the technology of devices and formulations for inhaled drugs in the past 50 years. These have been influenced greatly by scientific developments in several areas: theoretical modeling and indirect measures of lung deposition, particle sizing techniques and in vitro deposition studies, scintigraphic deposition studies, pharmacokinetics and pharmacodynamics, and the 1987 Montreal Protocol, which banned chlorofluorocarbon propellants. We are now in an era of rapid technologic progress in inhaled drug delivery and applications of aerosol science, with the use of the aerosolized route for drugs for systemic therapy and for gene replacement therapy, use of aerosolized antimicrobials and immunosuppressants, and interest in specific targeting of inhaled drugs.

  1. Calibration of nylon organic chemical integrative samplers and sentinel samplers for quantitative measurement of pulsed aquatic exposures.

    PubMed

    Morrison, Shane A; Belden, Jason B

    2016-06-03

    Environmental exposures often occur through short, pulsed events; therefore, the ability to accurately measure these toxicologically-relevant concentrations is important. Three different integrative passive sampler configurations were evaluated under different flow and pulsed exposure conditions for the measurement of current-use pesticides (n=19), polyaromatic hydrocarbons (n=10), and personal care products (n=5) spanning a broad range of hydrophobicities (log Kow 1.5-7.6). Two modified POCIS-style samplers were investigated using macroporous nylon mesh membranes (35μm pores) and two different sorbent materials (i.e. Oasis HLB and Dowex Optipore L-493). A recently developed design, the Sentinel Sampler (ABS Materials), utilizing Osorb media enclosed within stainless steel mesh (145μm pores), was also investigated. Relatively high sampling rates (Rs) were achieved for all sampler configurations during the short eight-day exposure (4300-27mL/d). Under flow conditions, median Rs were approximately 5-10 times higher for POCIS-style samplers and 27 times higher for Sentinel Samplers, as compared to static conditions. The ability of samplers to rapidly measure hydrophobic contaminants may be a trade off with increased flow dependence. Analyte accumulation was integrative under pulsed and continuous exposures for POCIS-style samplers with mean difference between treatments of 11% and 33%; however, accumulation into Sentinel Samplers was more variable. Collectively, results show that reducing membrane limitations allows for rapid, integrative accumulation of a broad range of analytes even under pulsed exposures. As such, these sampler designs may be suitable for monitoring environmental substances that have short aquatic half-lives.

  2. Detection of acute inhalation injury in fire victims by means of technetium-99m DTPA radioaerosol inhalation lung scintigraphy.

    PubMed

    Lin, W Y; Kao, C H; Wang, S J

    1997-02-01

    Mortality and morbidity in fire victims are largely a function of injury due to heat and smoke. While the degree and area of burn together constitute a reliable numerical measure of cutaneous injury due to heat, as yet no satisfactory measure of inhalation injury has been developed. In this study, we employed technetium-99m diethylene triamine penta-acetic acid (DTPA) radioaerosol lung scintigraphy (inhalation scan) to evaluate acute inhalation injury in fire victims. Ten normal controls and 17 survivors from a fire accident were enrolled in the study. All patients suffered from respiratory symptoms (dyspnoea and/or cough with sputum). 99mTc-DTPA aerosol inhalation lung scintigraphy was performed in all subjects, using a commercial lung aerosol delivery unit. The degree of lung damage was presented as the clearance rate (k; %/min) calculated from the time-activity curve over the right lungs. In addition, the distribution pattern of the radioactivity in the lungs was evaluated and classified into two groups: homogeneous distribution and inhomogeneous distribution. A plain chest radiograph (CxR) and pulmonary function test (PFT) were performed in the same group of patients. The results showed that 6/17 (35.3%) patients had inhomogeneous distribution of radioactivity in their inhalation scans, and 11/17 (64.7%) had homogeneous scans. Five of the six patients with inhomogeneous scans were admitted for further management, and all patients with homogeneous scans were discharged from the emergency department and needed no further intensive care. The clearance rates of the right lung were 0.73%+/-0.13%/min for normal controls and 1.54%+/-0.58%/min for fire victims. The difference was significant, with a P value of less than 0.01. Using a cut-off value of 0.9%/min (all normal subjects were below 0. 9%/min), 14 (82.4%) patients had abnormal clearance rates of 99mTc-DTPA from the lung. In contrast, only three (17.6%) patients had abnormal CxR and three (17.6%) had abnormal

  3. Comparison of Aerosol Formulations of Formoterol Fumarate and Budesonide

    PubMed Central

    Nirale, N. M.; Nagarsenker, M. S.; Mendon, S. B.; Chanagare, R.; Katkurwar, A.; Lugade, V.

    2011-01-01

    The aerodynamic diameter of pharmaceutical aerosols is the main factor governing their deposition in the human respiratory tract. Particle size of the pharmaceutical aerosols is characterized by liquid impingers and Andersen Cascade Impactors. The present study was aimed at comparing two metered dose inhaler formulation containing formoterol fumarate (6 μg) and budesonide (200 μg). These two formulations were evaluated by using Twin Stage Impinger and Andersen Cascade Impactor. Study revealed that developed metered dose inhaler I formulation of the formoterol fumarate and budesonide had lower mass median aerodynamic diameter and higher fine particle fraction than marketed formulation. PMID:22457551

  4. Development and Comparison of New High Efficiency Dry Powder Inhalers for Carrier-Free Formulations

    PubMed Central

    Behara, Srinivas R.B.; Longest, P. Worth; Farkas, Dale R.; Hindle, Michael

    2013-01-01

    High efficiency dry powder inhalers (DPIs) were developed and tested for use with carrier-free formulations across a range of different inhalation flow rates. Performance of a previously reported DPI was compared with two new designs in terms of emitted dose (ED) and aerosolization characteristics using in vitro experiments. The two new designs oriented the capsule chamber (CC) at different angles to the main flow passage, which contained a 3D rod array for aerosol deaggregation. Computational fluid dynamics simulations of a previously developed deaggregation parameter, the NDSD, were used to explain device performance. Orienting the CC at 90° to the mouthpiece, the CC90-3D inhaler provided the best performance with an ED=73.4%, fine particle fractions (FPF) less than 5µm and 1µm of 95.1% and 31.4%, respectively, and a MMAD=1.5µm. For the carrier-free formulation, deaggregation was primarily influenced by capsule aperture position and the NDSD parameter. The new CC-3D inhalers reduced the percent difference in FPF and MMAD between low and high flows by 1–2 orders of magnitude compared with current commercial devices. In conclusion, the new CC-3D inhalers produced extremely high quality aerosols with little sensitivity to flow rate and are expected to deliver approximately 95% of the ED to the lungs. PMID:24307605

  5. Pharmaceutical aerosols for the treatment and prevention of Tuberculosis

    PubMed Central

    Hanif, Shumaila N. M.; Garcia-Contreras, Lucila

    2012-01-01

    Historically, pharmaceutical aerosols have been employed for the treatment of obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease, but in the past decades their use has been expanded to treat lung infections associated with cystic fibrosis and other respiratory diseases. Tuberculosis (TB) is acquired after inhalation of aerosol droplets containing the bacilli from the cough of infected individuals. Even though TB affects other organs, the lungs are the primary site of infection, which makes the pulmonary route an ideal alternative route to administer vaccines or drug treatments. Optimization of formulations and delivery systems for anti-TB vaccines and drugs, as well as the proper selection of the animal model to evaluate those is of paramount importance if novel vaccines or drug treatments are to be successful. Pharmaceutical aerosols for patient use are generated from metered dose inhalers, nebulizers, and dry powder inhalers (DPIs). In addition to the advantages of providing more efficient delivery of the drug, low cost, and portability, pharmaceutical dry powder aerosols are more stable than inhalable liquid dosage forms and do not require refrigeration. Methods to manufacture dry powders in respirable sizes include micronization, spray drying, and other proprietary technologies. Inhalable dry powders are characterized in terms of their drug content, particle size, and dispersibility to ensure deposition in the appropriate lung region and effective aerosolization from the device. These methods will be illustrated as they were applied for the manufacture and characterization of powders containing anti-tubercular agents and vaccines for pulmonary administration. The influence of formulation, selection of animal model, method of aerosol generation, and administration on the efficacy demonstrated in a given study will be illustrated by the evaluation of pharmaceutical aerosols of anti-TB drugs and vaccines in guinea pigs by our

  6. Gibbs Recursive Sampler: finding transcription factor binding sites.

    PubMed

    Thompson, William; Rouchka, Eric C; Lawrence, Charles E

    2003-07-01

    The Gibbs Motif Sampler is a software package for locating common elements in collections of biopolymer sequences. In this paper we describe a new variation of the Gibbs Motif Sampler, the Gibbs Recursive Sampler, which has been developed specifically for locating multiple transcription factor binding sites for multiple transcription factors simultaneously in unaligned DNA sequences that may be heterogeneous in DNA composition. Here we describe the basic operation of the web-based version of this sampler. The sampler may be acces-sed at http://bayesweb.wadsworth.org/gibbs/gibbs.html and at http://www.bioinfo.rpi.edu/applications/bayesian/gibbs/gibbs.html. An online user guide is available at http://bayesweb.wadsworth.org/gibbs/bernoulli.html and at http://www.bioinfo.rpi.edu/applications/bayesian/gibbs/manual/bernoulli.html. Solaris, Solaris.x86 and Linux versions of the sampler are available as stand-alone programs for academic and not-for-profit users. Commercial licenses are also available. The Gibbs Recursive Sampler is distributed in accordance with the ISCB level 0 guidelines and a requirement for citation of use in scientific publications.

  7. Evaluation of portable air samplers for monitoring airborne culturable bacteria

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Bell-Robinson, D. M.; Groves, T. O.; Stetzenbach, L. D.; Pierson, D. L.

    2000-01-01

    Airborne culturable bacteria were monitored at five locations (three in an office/laboratory building and two in a private residence) in a series of experiments designed to compare the efficiency of four air samplers: the Andersen two-stage, Burkard portable, RCS Plus, and SAS Super 90 samplers. A total of 280 samples was collected. The four samplers were operated simultaneously, each sampling 100 L of air with collection on trypticase soy agar. The data were corrected by applying positive hole conversion factors for the Burkard portable, Andersen two-stage, and SAS Super 90 air samplers, and were expressed as log10 values prior to statistical analysis by analysis of variance. The Burkard portable air sampler retrieved the highest number of airborne culturable bacteria at four of the five sampling sites, followed by the SAS Super 90 and the Andersen two-stage impactor. The number of bacteria retrieved by the RCS Plus was significantly less than those retrieved by the other samplers. Among the predominant bacterial genera retrieved by all samplers were Staphylococcus, Bacillus, Corynebacterium, Micrococcus, and Streptococcus.

  8. Are We Done with Respiratory Deposition and Dosimetry of Inhaled Particles?

    EPA Science Inventory

    Deposition of inhaled particles and subsequent dose estimation in the respiratory airways is an essential information needed for assessing potential health hazard of airborne pollutant particles on the one hand and therapeutic efficacy of drug aerosols on the other hand. Over sev...

  9. Development of Respimat® Soft Mist™ Inhaler and its clinical utility in respiratory disorders

    PubMed Central

    Dalby, Richard N; Eicher, Joachim; Zierenberg, Bernd

    2011-01-01

    The Respimat® Soft Mist™ Inhaler (SMI) (Boehringer Ingelheim International GmbH, Ingelheim, Germany) was developed in response to the need for a pocket-sized device that can generate a single-breath, inhalable aerosol from a drug solution using a patient-independent, reproducible, and environmentally friendly energy supply. This paper describes the design and evolution of this innovative device from a laboratory concept model and the challenges that were overcome during its development and scaleup to mass production. A key technical breakthrough was the uniblock, a component combining filters and nozzles and made of silicon and glass, through which drug solution is forced using mechanical power. This allows two converging jets of solution to collide at a controlled angle, generating a fine aerosol of inhalable droplets. The mechanical energy comes from a spring which is tensioned by twisting the base of the device before use. Additional features of the Respimat® SMI include a dose indicator and a lockout mechanism to avoid the problems of tailing-off of dose size seen with pressurized metered dose inhalers. The Respimat® SMI aerosol cloud has a unique range of technical properties. The high fine particle fraction allied with the low velocity and long generation time of the aerosol translate into a higher fraction of the emitted dose being deposited in the lungs compared with aerosols from pressurized metered dose inhalers and dry powder inhalers. These advantages are realized in clinical trials in adults and children with obstructive lung diseases, which have shown that the efficacy and safety of a pressurized metered dose inhaler formulation of a combination bronchodilator can be matched by a Respimat® SMI formulation containing only one half or one quarter of the dose delivered by a pressurized metered dose inhaler. Patient satisfaction with the Respimat® SMI is high, and the long duration of the spray is of potential benefit to patients who have

  10. Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection

    PubMed Central

    Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D.; Mittal, Suresh K.

    2015-01-01

    The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 103 plaque-forming units (p.f.u.) [2 × 105 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900

  11. The Collector Head Of Viking Lander 1's Surface Sampler

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The collector head of Viking l's surface sampler is full of Martian soil destined for the gas chromatograph mass spectrometer, the instrument which analyzes the surface material for the presence of organic molecules. The material was scooped out of the surface on August 3, but the sampler arm stopped operating while transporting it to the instrument. The Martian soil will be deposited into the instrument's processor today. The surface sampler is operating properly, but the cause of last week's problem is not yet known. This picture, taken Monday (August 9), was made for operational purposes, focusing on the collector head. Hence, the out-of-focus view of the Martian surface.

  12. 7 CFR 800.185 - Duties of official personnel and warehouse samplers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Duties of official personnel and warehouse samplers... official personnel and warehouse samplers. (a) General. Official personnel and warehouse samplers shall... of § 800.161. (d) Scope of operations. Official personnel and warehouse samplers shall operate...

  13. How to Use Metered-Dose Inhalers

    MedlinePlus

    ... inhaler the right way so that the full dose of medication reaches your lungs. You can use ... inhaler.These directions explain how to use metered-dose inhalers. If you are using a different type ...

  14. Quartz in coal dust deposited on internal surface of respirable size selective samplers.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Kashon, Michael; Kusti, Mohannad; Harper, Martin

    2014-01-01

    The objective of the present study is to quantify quartz mass in coal dust deposited on the internal cassette surface of respirable size-selective samplers. Coal dust was collected with four different respirable size-selective samplers (10 mm Dorr-Oliver nylon [Sensidyne, St. Petersburg, Fla.], SKC Aluminum [SKC Inc., Eighty Four, Pa.], BGI4L [BGI USA Inc., Waltham, Mass.], and GK2.69 cyclones [BGI USA Inc.]) with two different cassette types (polystyrene and static-dissipative polypropylene cassettes). The coal dust was aerosolized in a calm air chamber by using a fluidized bed aerosol generator without neutralization under the assumption that the procedure is similar to field sampling conditions. The mass of coal dust was measured gravimetrically and quartz mass was determined by Fourier transform infrared spectroscopy according to the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods, Method 7603. The mass fractions of the total quartz sample on the internal cassette surface are significantly different between polystyrene and static-dissipative cassettes for all cyclones (p < 0.05). No consistent relationship between quartz mass on cassette internal surface and coal dust filter mass was observed. The BGI4L cyclone showed a higher (but not significantly) and the GK2.69 cyclone showed a significantly lower (p < 0.05) internal surface deposit quartz mass fraction for polystyrene cassettes compared to other cyclones. This study confirms previous observations that the interior surface deposits in polystyrene cassettes attached to cyclone pre-selectors can be a substantial part of the sample, and therefore need to be included in any analysis for accurate exposure assessment. On the other hand, the research presented here supports the position that the internal surface deposits in static-dissipative cassettes used with size-selective cyclones are negligible and that it is only necessary to analyze the filter catch.

  15. The Adaptive Aerosol Delivery (AAD) Technology: Past, Present, and Future

    PubMed Central

    Dyche, Tony

    2010-01-01

    Abstract Conventional aerosol delivery systems and the availability of new technologies have led to the development of “intelligent” nebulizers such as the I-neb Adaptive Aerosol Delivery (AAD) System. Based on the AAD technology, the I-neb AAD System has been designed to continuously adapt to changes in the patient's breathing pattern, and to pulse aerosol only during the inspiratory part of the breathing cycle. This eliminates waste of aerosol during exhalation, and creates a foundation for precise aerosol (dose) delivery. To facilitate the delivery of precise metered doses of aerosol to the patient, a unique metering chamber design has been developed. Through the vibrating mesh technology, the metering chamber design, and the AAD Disc function, the aerosol output rate and metered (delivered) dose can be tailored to the demands of the specific drug to be delivered. In the I-neb AAD System, aerosol delivery is guided through two algorithms, one for the Tidal Breathing Mode (TBM), and one for slow and deep inhalations, the Target Inhalation Mode (TIM). The aim of TIM is to reduce the treatment time by increasing the total inhalation time per minute, and to increase lung deposition by reducing impaction in the upper airways through slow and deep inhalations. A key feature of the AAD technology is the patient feedback mechanisms that are provided to guide the patient on delivery performance. These feedback signals, which include visual, audible, and tactile forms, are configured in a feedback cascade that leads to a high level of compliance with the use of the I-neb AAD System. The I-neb Insight and the Patient Logging System facilitate a further degree of sophistication to the feedback mechanisms, by providing information on long term adherence and compliance data. These can be assessed by patients and clinicians via a Web-based delivery of information in the form of customized graphical analyses. PMID:20373904

  16. The Adaptive Aerosol Delivery (AAD) technology: Past, present, and future.

    PubMed

    Denyer, John; Dyche, Tony

    2010-04-01

    Conventional aerosol delivery systems and the availability of new technologies have led to the development of "intelligent" nebulizers such as the I-neb Adaptive Aerosol Delivery (AAD) System. Based on the AAD technology, the I-neb AAD System has been designed to continuously adapt to changes in the patient's breathing pattern, and to pulse aerosol only during the inspiratory part of the breathing cycle. This eliminates waste of aerosol during exhalation, and creates a foundation for precise aerosol (dose) delivery. To facilitate the delivery of precise metered doses of aerosol to the patient, a unique metering chamber design has been developed. Through the vibrating mesh technology, the metering chamber design, and the AAD Disc function, the aerosol output rate and metered (delivered) dose can be tailored to the demands of the specific drug to be delivered. In the I-neb AAD System, aerosol delivery is guided through two algorithms, one for the Tidal Breathing Mode (TBM), and one for slow and deep inhalations, the Target Inhalation Mode (TIM). The aim of TIM is to reduce the treatment time by increasing the total inhalation time per minute, and to increase lung deposition by reducing impaction in the upper airways through slow and deep inhalations. A key feature of the AAD technology is the patient feedback mechanisms that are provided to guide the patient on delivery performance. These feedback signals, which include visual, audible, and tactile forms, are configured in a feedback cascade that leads to a high level of compliance with the use of the I-neb AAD System. The I-neb Insight and the Patient Logging System facilitate a further degree of sophistication to the feedback mechanisms, by providing information on long term adherence and compliance data. These can be assessed by patients and clinicians via a Web-based delivery of information in the form of customized graphical analyses.

  17. Inhalation exposure of animals.

    PubMed Central

    Phalen, R F

    1976-01-01

    Relative advantages and disadvantages and important design criteria for various exposure methods are presented. Five types of exposures are discussed: whole-body chambers, head-only exposures, nose or mouth-only methods, lung-only exposures, and partial-lung exposures. Design considerations covered include: air cleaning and conditioning; construction materials; losses of exposure materials; evenness of exposure; sampling biases; animal observation and care; noise and vibration control, safe exhausts, chamber loading, reliability, pressure fluctuations; neck seals, masks, animal restraint methods; and animal comfort. Ethical considerations in use of animals in inhalation experiments are also discussed. PMID:1017420

  18. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  19. [Aerosol vaccination against dangerous infectious diseases].

    PubMed

    Stepanov, A V; Marinin, L I; Vorob'ev, A A

    1999-01-01

    The paper summarizes the results of development of the aerosol method, one of the mass ways of human vaccination. Analysis of materials suggests that Russia has designed highly effective live plague, tularemia, and anthrax vaccines that can be used to immunize in different ways: by epicutaneous and subcutaneous, and inhalation routes. The advantages and disadvantages of aerosol vaccination are shown. The correct use of this method provides a substantial effect when the epidemic situation is complicated and when there is a need for vaccination of large cohorts at the earliest possible time.

  20. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine aerosols, ranging from 18 to 625 ng/m3, were five times higher than total biogenic sulfate concentrations measured during Fall in the same region (Rempillo et al., 2011). A comparison of the isotope ratio for SO2 and fine aerosols offers a way to determine aerosol growth from local SO2 oxidation. For some samples, the values for SO2 and fine aerosols were close together suggesting the same source for SO2 and aerosol sulfur.Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor

  1. Targeted delivery of magnetic aerosol droplets to the lung.

    PubMed

    Dames, Petra; Gleich, Bernhard; Flemmer, Andreas; Hajek, Kerstin; Seidl, Nicole; Wiekhorst, Frank; Eberbeck, Dietmar; Bittmann, Iris; Bergemann, Christian; Weyh, Thomas; Trahms, Lutz; Rosenecker, Joseph; Rudolph, Carsten

    2007-08-01

    The inhalation of medical aerosols is widely used for the treatment of lung disorders such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, respiratory infection and, more recently, lung cancer. Targeted aerosol delivery to the affected lung tissue may improve therapeutic efficiency and minimize unwanted side effects. Despite enormous progress in optimizing aerosol delivery to the lung, targeted aerosol delivery to specific lung regions other than the airways or the lung periphery has not been adequately achieved to date. Here, we show theoretically by computer-aided simulation, and for the first time experimentally in mice, that targeted aerosol delivery to the lung can be achieved with aerosol droplets comprising superparamagnetic iron oxide nanoparticles--so-called nanomagnetosols--in combination with a target-directed magnetic gradient field. We suggest that nanomagnetosols may be useful for treating localized lung disease, by targeting foci of bacterial infection or tumour nodules.

  2. Automated particulate sampler field test model operations guide

    SciTech Connect

    Bowyer, S.M.; Miley, H.S.

    1996-10-01

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  3. The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder.

    PubMed

    Yang, Michael Y; Verschuer, Jordan; Shi, Yuyu; Song, Yang; Katsifis, Andrew; Eberl, Stefan; Wong, Keith; Brannan, John D; Cai, Weidong; Finlay, Warren H; Chan, Hak-Kim

    2016-11-20

    The present study investigates the effect of DPI resistance and inhalation flow rates on the lung deposition of orally inhaled mannitol dry powder. Mannitol powder radiolabeled with (99m)Tc-DTPA was inhaled from an Osmohaler™ by healthy human volunteers at 50-70L/min peak inhalation flow rate (PIFR) using both a low and high resistance Osmohaler™, and 110-130L/min PIFR using the low resistance Osmohaler™ (n=9). At 50-70L/min PIFR, the resistance of the Osmohaler™ did not significantly affect the total and peripheral lung deposition of inhaled mannitol [for low resistance Osmohaler™, 20% total lung deposition (TLD), 0.3 penetration index (PI); for high resistance Osmohaler™, 17% TLD, 0.23 PI]. Increasing the PIFR 50-70L/min to 110-130L/min (low resistance Osmohaler™) significantly reduced the total lung deposition (10% TLD) and the peripheral lung deposition (PI 0.21). The total lung deposition showed dependency on the in vitro FPF (R(2)=1.0). On the other hand, the PI had a stronger association with the MMAD (R(2)=1.0) than the FPF (R(2)=0.7). In conclusion the resistance of Osmohaler™ did not significantly affect the total and regional lung deposition at 50-70L/min PIFR. Instead, the total and regional lung depositions are dependent on the particle size of the aerosol and inhalation flow rate, the latter itself affecting the particle size distribution.

  4. Fluidized Bed Asbestos Sampler Design and Testing

    SciTech Connect

    Karen E. Wright; Barry H. O'Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  5. Challenges in changing to non-chlorofluorocarbon inhalers in the treatment of asthma

    PubMed Central

    Walley, T; Bundred, P; Rannard, A; Bogg, J

    1999-01-01

    The chlorofluorocarbon (CFC)-based metered dose inhaler, which has been the mainstay of the management of obstructive lung diseases, will soon be phased out world wide and replaced by CFC-free devices. Patients will have to be changed to the devices in a co-ordinated manner to avoid any risk to their health and safety. The different shapes and aerosol delivery characteristics of the new inhalers, as well as their distinctive taste, could add to the levels of poor drug use already experienced in asthma. From previous change scenarios in disease management, the potential for unstable asthma control is a real possibility with all the attendant costs. By using the time available before CFC-based inhalers are withdrawn, there is an opportunity to enhance asthma management during this period of change.


Keywords: metered dose inhalers; asthma; chlorofluorocarbons PMID:10567594

  6. Repurposing tromethamine as inhaled therapy to treat CF airway disease

    PubMed Central

    Alaiwa, Mahmoud H. Abou; Launspach, Janice L.; Sheets, Kelsey A.; Rivera, Jade A.; Gansemer, Nicholas D.; Taft, Peter J.; Thorne, Peter S.; Welsh, Michael J.; Stoltz, David A.

    2016-01-01

    In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3– and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3– increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3–-independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease. PMID:27390778

  7. Compliance with inhaled asthma medication in preschool children.

    PubMed Central

    Gibson, N. A.; Ferguson, A. E.; Aitchison, T. C.; Paton, J. Y.

    1995-01-01

    BACKGROUND--Previous studies have shown poor compliance with regular drug therapy in children and adults with asthma. In preschool children the parents supervise and are responsible for drug administration, but little is known of compliance in this group. In addition, there are few data on the patterns of drug use of inhaled prophylactic asthma therapy or of the relation between compliance and symptom control. A study was undertaken to address these issues with the hypothesis that parental supervision would result in good compliance. METHODS--The subjects were 29 asthmatic children aged 15 months to five years already established on inhaled prophylactic medication delivered through a large volume spacer. The prescribed drug regimens varied between subjects. This was an observational study using an electronic inhaler timer device to record the date and time of each actuation of the aerosol canister. Diary cards were used for parallel recording of symptoms and parentally reported compliance with a drug regimen. RESULTS--Variable and generally poor compliance was demonstrated with a median of 50% of study days with full compliance (subject range 0-94%) and an overall median of 77% of prescribed doses of therapy taken during the study period. No relation was found between frequency of prescribed regimen and good compliance. Day care was associated with poorer compliance. No relation between good compliance and low symptom scores was found. CONCLUSION--Compliance with inhaled prophylactic therapy is poor in preschool children with asthma whose medication is administered under parental supervision. Images PMID:8553301

  8. Validation of parachlorobenzotrifluoride, benzotrifluoride, and monochlorotoluene on diffusive samplers.

    PubMed

    Yost, C; Harper, M

    2000-01-01

    Three solvents (OXSOL 10, monochlorotoluene or mixed isomers of 1- chloro-2-methyl benzene and 1-chloro-4-methyl benzene; OXSOL 100, parachlorobenzotrifluoride or 1-chloro-4-(trifluoromethyl) benzene; and OXSOL 2000, benzotrifluoride or trifluoromethyl benzene) produced by Occidental Chemical Corporation (Niagara Falls, NY) were considered as candidates for SKC, Inc.'s on-going diffusive sampler validation program. The 575-series diffusive sampler contains coconut-shell charcoal (575-001) or Anasorb 747 (575-002). Both samplers were used in this study. Desorption efficiency was tested at loadings equivalent to eight-hour time-weighted average (TWA) exposures to 0.01-2 times the Occidental Chemical Corporation in-house limit values (respectively: 50 ppm, 25 ppm, and 100 ppm,. All results met the National Institute for Occupational Safety and Health (NIOSH) criteria of > 75 percent, and, except for the lower loadings of parachlorobenzotrifluoride, the results were in the range of 90-110 percent. The calculated uptake rates were verified for different periods of exposure, up to eight hours, and found to be within 5 percent of the calculated for all three compounds on both samplers. A detailed comparison of the results from different time periods indicated no significant reverse diffusion effects for any combination of sampler and analyte. Samplers exposed to standard atmospheres of each compound were stored for three weeks at ambient temperatures and reanalyzed with results between 94 and 107 percent of expected. Based on full validation of samplers for the lower homologue (benzene), the bi-level theory of sample validation as endorsed by international validation protocols establishes this as a complete validation of the featured samplers for sampling vapors of these chemicals in air.

  9. SAW atomization application on inhaled pulmonary drug delivery

    NASA Astrophysics Data System (ADS)

    Qi, Aisha; Friend, James; Yeo, Leslie

    2008-12-01

    Pulmonary drug delivery transports the drug formulations directly to the respiratory tract in the form of inhaled particles or droplets. Because of the direct target treatment, it has significant advantages in the treatment of respiratory diseases, for example asthma. However, it is difficult to produce monodispersed particles/droplets in the 1-10 micron range, which is necessary for deposition in the targeted lung area or lower respiratory airways, in a controllable fashion. We demonstrate the use of surface acoustic waves (SAWs) as an efficient method for the generation of monodispersed micron dimension aerosols for the treatment of asthma. SAWs are ten nanometer order amplitude electroacoustic waves generated by applying an oscillating electric field to an interdigital transducer patterned on a piezoelectric substrate. The acoustic energy in the waves induces atomization of the working fluid, which contains a model drug, albuterol. Laser diffraction techniques employed to characterize the aerosols revealed mean diameter of the aerosol was around 3-4 μm. Parallel experiments employing a one-stage (glass) twin impinger as a lung model demonstrated a nearly 80% of atomized drug aerosol was deposited in the lung. The aerosol size distribution is relatively independent of the SAW frequency, which is consistent with our predictive scaling theory which accounts for the dominant balance between viscous and capillary stresses. Moreover, only 1-3 W powers consumption of SAW atomization suggests that the SAW atomizer can be miniaturized into dimensions commensurate with portable consumer devices.

  10. Pulmonary effects of acid sulfate inhalation in the guinea pig

    SciTech Connect

    Silbaugh, S.A.; Mauderly, J.L.; Wolff, R.K.; Carpenter, R.L.; Brownstein, D.G.; Harkema, J.R.; Rothenberg, S.J.

    1982-07-01

    Guinea pigs were exposed by inhalation for 1 to 8 hours to sulfuric acid aerosols of various sizes and concentrations in order to provide quantitative information for standards setting. The effects of sulfuric acid aerosols were examined to determine acute mortality, changes in respiratory function and morphology, response mechanisms, differences in individual sensitivity and changes in airway response to bronchoconstrictors. An aerosol generator for another sulfur-containing pollutant, ammonium bisulfite, was developed for use in animal exposures. Also, lung lesions which simulate human emphysema were produced by intratracheal elastase instillation to investigate a potential impaired animal model for sulfur pollutant exposures. Pulmonary mechanics, lung morphology, and histamine sensitivity data all suggest that the guinea pig reacts to sulfuric acid aerosols with a nearly all-or-none airway constrictive response. Results also indicate that the concentration at which this response occurs is affected by aerosol size, exposure profile and individual animal sensitivity. No acute pulmonary function changes were noted at concentrations below 15 mg/m/sup 3/. The reason for these differences is unknown.

  11. Inhalation delivery of protein therapeutics.

    PubMed

    Kane, Colleen; O'Neil, Karyn; Conk, Michelle; Picha, Kristen

    2013-04-01

    Inhaled therapeutics are used routinely to treat a variety of pulmonary diseases including asthma, COPD and cystic fibrosis. In addition, biological therapies represent the fastest growing segment of approved pharmaceuticals. However, despite the increased availability of biological therapies, nearly all inhaled therapeutic